Poster

Surprising Formation of a $[Bi_6O_4(OH)_4]^{6+}$ Cation in the Dodecahydro-*closo*-Dodecaborate Hydrate $[Bi_6O_4(OH)_4][B_{12}H_{12}]_3 \cdot 10 H_2O$

Alexandra Friedly¹, Lucas W. Zimmermann¹, Thomas Schleid¹

¹Institute for Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart

schleid@iac.uni-stuttgart.de

Previous studies showed that cations with polarizing properties can lead to B–H bond activation of hydroborates, as evidenced by a shift of the B–H stretching vibration band in the Raman spectra^[1]. In extreme cases, this bond activation results in a substitution reaction, as the reaction between Bi³⁺ cations and $[B_{12}H_{12}]^{2-}$ anions to the neutral molecule BiB₁₂H₁₁ has proven^[2]. In addition to this substitution, other reactions can also take place, as it occurs with the formation of the salt $[Bi_6O_4(OH)_4][B_{12}H_{12}]_3 \cdot 10 H_2O$ under basic conditions. The formation of $[M_6O_4(OH)_4]^{6n-12}$ cations is known for $M = U^{4+[3]}$, $Ce^{4+[4]}$ and $Bi^{3+[5]}$. In bismuth salts, they can be formed as products of the thermal decomposition of simple hydrated salts^[6]. In particular, the nitrate of the $[Bi_6O_4(OH)_4]^{6+}$ has been investigated with regard to its suitability for the use as anode materials in lithium-ion batteries^[6]. Also the *closo*- dodeca(carba)borate salts of the light alkali metals show promising electrochemical properties^[7]. So the salts resulting from the combination of both complex ions are of great interest for electrochemical investigations.

The new compound was obtained by the reaction of $(H_3O)_2[B_{12}H_{12}]$ with an excess of $Bi_2O_2[CO_3]$ in aqueous solution at 40 °C. The free acid of the dodecahydro-*closo*-dodecaborate was produced before by an acidic cation exchanger from $Cs_2[B_{12}H_{12}]$. From the obtained sample, a prism-shaped single crystal was separated and measured at low temperature.

 $[Bi_6O_4(OH)_4][B_{12}H_{12}]_3 \cdot 10 H_2O$ crystallizes monoclinically in the space group $P2_1/c$ with the unit-cell parameters a = 1823.04(9) pm, b = 1794.86(9) pm, c = 1358.31(7) pm and $\beta = 91.023(3)^\circ$ at 100 K for four formula unit per unit cell. In its structure, the complex cation $[Bi_6O_4(OH)_4]^{6+}$ is present, which consists of a distorted heterocubane made from four oxide with shorter (d(Bi-O) = 207 - 230 pm) and four hydroxide anions with longer distances (d(Bi-OH) = 226 - 260 pm) surrounding a $(Bi^{3+})_6$ octahedron (Figure 1). The coordination spheres of the Bi³⁺ lone-pair cations are completed by water molecules and Bi³⁺ $-H^{\delta-}$ contacts to the negatively polarized hydrogen atoms of the icosahedral $[B_{12}H_{12}]^{2-}$ anions (Figure 2).

Figure 1. The complex cation $[Bi_6O_4(OH)_4]^{6+}$ with (*left*) and without (*right*) the complete Bi^{3+} coordination sphere in the crystal structure of $[Bi_6O_4(OH)_4][B_{12}H_{12}]_3 \cdot 10 H_2O$.

Figure 2. Extended unit-cell content of $[Bi_6O_4(OH)_4][B_{12}H_{12}]_3 \cdot 10 H_2O$.

- [2] Zimmermann, L. W.; Van, Ng.-D.; Gudat, D.; Schleid; Th. (2016) Angew. Chem. Int. Ed. 55, 1909.
- [3] Lundgren, G. (1953) Ark. Kemi 5, 349.
- [4] Lundgren, G. (1956) Ark. Kemi 10, 183.
- [5] Sundvall, B. (1983) Inorg. Chem. 22, 1906.
- [6] Wu, K.; Shao, L.; Jiang, X.; Shui, M.; Ma, R.; Lao, M.; Lin, X.; Wang, D.; Long, N.; Ren, Y.; Shu, J. (2014) J. Power Sources 254, 88.
- [7] Garcia, A.; Müller, G.; Černý, R.; Rentsch, D.; Asakura, R.; Battaglia, C.; Remhof, A. (2023) J. Mater. Chem. A 22, 18996.

^[1] Muetteries, E. L.; Balthis, J. H.; Chia, Y. T.; Knoth, W. H.; Miller, H. C. (1964) Inorg. Chem. 3, 444.