Poster

Crystal structures of the phases in the systems $T_5M_3-T_5M'_3$ (*T* = Ti, Zr, Hf; *M* = Al, Ga; *M*' = Si, Ge, Sn, Pb, Sb, Bi)

Ya. Tokaychuk¹, R. Gladyshevskii¹

¹Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

yaroslav.tokaychuk@lnu.edu.ua

In the ternary systems T-M-M' (T = Ti, Zr, Hf; M = Al, Ga; M' = Si, Ge, Sn, Pb, Sb, Bi) in the cross-section $T_5M_3-T_5M'_3$ at 600°C phases with four structure types are observed: Mn₅Si₃ – **A** (Pearson symbol *hP*16, space group *P*6₃/*mcm*), W₅Si₃ or its ternary ordered variant Nb₅SiSn₂ – **B** (*t1*32, *14/mcm*), Yb₅Sb₃ – **C** (*oP*32, *Pnma*), and Y₅Bi₃ – **D** (*oP*32, *Pnma*). The closely related structure type Hf₅CuSn₃ – **E** (*hP*18, *P*6₃/*mcm*), which is a filled ternary variant of the structure type Mn₅Si₃ and a ternary ordered variant of the structure type Ti₅Ga₄, exists in some of these systems at a neighboring composition [1].

Table. Structure types of phases in the systems $T_5M_3-T_5M'_3$ (T = Ti, Zr, Hf; M = Al, Ga; M' = Si, Ge, Sn, Pb, Sb, Bi) at 600°C (data at other temperatures are given in italics; solid solutions based on binary phases are indicated by parentheses; × no binary compound; * no data available).

	System					
	Ti_5M_3 - $Ti_5M'_3$		Zr_5M_3 - $Zr_5M'_3$		$Hf_5M_3-Hf_5M'_3$	
M'	M = Al	M = Ga	M = Al	M = Ga	M = Al	M = Ga
Si	$\times - (A)$	$\mathbf{B} - (A)$	$\times - \mathbf{B} - (\mathbf{A})$	(A) - (A)	$\times - \mathbf{A} - (\mathbf{A})$	(A)
Ge	$\times - (A)$	$\mathbf{B} - (A)$	$\times - \mathbf{B} - \mathbf{E} - (\mathbf{A})$	A – A	$\times - \mathbf{A} - \mathbf{E} - (\mathbf{A})$	(A)
Sn	$\times - B - (A)$	(B) - B - A	$\times - \mathbf{B} - \mathbf{B} - (\mathbf{A})$	$(\mathbf{A}) - \mathbf{B} - (\mathbf{A})$	$\times - \mathbf{A} - \mathbf{B} - (\mathbf{E})$	(A) - B - (E)
Pb	$\times - B - \times$	B – ×	$\times - B - (A)$	A – A	$\times - B - \times$	$A - \times$
Sb	$\times - B - C$	$\mathbf{B} - (\mathbf{A}) - \mathbf{B} - \mathbf{C}$	$\times - \mathbf{B} - \mathbf{B} - (\mathbf{A})$	$(\mathbf{A}) - \mathbf{B} - (\mathbf{A})$	$\times - \mathbf{A} - \mathbf{B} - \mathbf{E} - (\mathbf{D})$	$(\mathbf{A}) - \mathbf{B} - \mathbf{E} - (\mathbf{D})$
Bi	*	B-×	× – A	A – A	*	$\mathbf{A} - \mathbf{X}$

Continuous solid solutions with Mn₅Si₃-type structure form in the systems Hf–Ga–{Si,Ge} at 600°C. Limited solid solutions T_5M_3 . $_xM'_x$ of substitution type with the same structure type exist in the systems Ti–Ga–Sb (at 400°C), Zr–Ga–Si (at 800°C), and Hf–{Al,Ga}–{Sn,Sb} (at 600°C), and limited solid solutions $T_5M_xM'_{3,x}$ in the systems Ti–Al–Si (at 700°C), Ti–Al–Ge (1000°C), Ti–Al–Sn (at 900°C), Ti–Ga–{Si,Ge} (at 800°C), Zr–Al–{Si,Ge,Sn} (at 600°C), Zr–Ga–Si (at 800°C), Zr–Ga–{Sn,Sb} (at 600°C), Hf–Al–{Si,Ge} (at 600°C), and Hf–{Al,Ga}–{Sn,Sb} (at 600°C). A limited solid solution Ti₅Ga_{3,x}Sn_x of substitution type with W₅Si₃type structure has been reported in the system Ti–Ga–Sn (at 1300°C), individual ternary compounds $T_5(M_{1,x}M'_x)_3$ with W₅Si₃/Nb₅SiSn₂type structure exist in the systems Ti–Al–Sn (at 900°C), Ti–{Al,Ga}–Sb (at 400°C), {Zr,Hf}–{Al,Ga}–{Sn,Sb} (at 600°C), and {Ti,Zr,Hf}–Al–Pb (at 900°C), whereas limited solid solutions Hf₅ M_x Sb_{3,x} with Y₅Bi₃-type structure were revealed in the systems Hf– {Al,Ga}–Sb (at 600°C).

In the systems Hf–{Al,Ga}–Sb (at 600°C) the formation of the solid solutions Hf₅ M_x Sb₃ of inclusion type with Hf₅CuSn₃-type structure was observed. The structure type Hf₅CuSn₃ was also found for individual ternary compounds $T_5MM'_3$ in the systems {Zr,Hf}–Al–Ge (at 600°C) and Hf–{Al,Ga}–Sb (at 600°C).

 Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds, Release 2023/24, Eds. P. Villars, K. Cenzual, ASM International, Materials Park, Ohio, USA.