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In elastic crystals, a hyperelastic description is conventionally assumed, and the

strain energy potential is idealized as a Taylor-series expansion in strain about

an unstrained reference state. Coefficients of quadratic terms are second-order

or linear elastic constants. Coefficients of higher-order terms are elastic

constants of third order, fourth order, and so on. Recently published work by

Telyatnik [Acta Cryst. (2024), A80, 394–404] extends prior knowledge of

symmetry properties for anisotropic elastic constants of single crystals, as well as

transversely isotropic and isotropic solids, to terms up to sixth order. Effective

elastic constants for polycrystalline aggregates, with possible anisotropy, were

reported by Telyatnik, in the same article, to the same order. A terse summary of

nonlinear crystal elasticity and independent elastic constants of orders two and

three are given in this commentary for context. Methods and results of

Telyatnik, anticipated to be of great utility to crystal elasticity research, are then

highlighted.

1. Nonlinear elasticity of crystals

Linear elasticity accurately describes the mechanical response

of elastic solids when deformations are small and the stress–

strain response is linear, meaning Hooke’s law applies. Linear

elasticity theory (Voigt, 1910; Love, 1927; Hearmon, 1946) can

be successfully applied to many, if not most, problems in

structural mechanics. A nonlinear theory, on the other hand, is

needed for accurate descriptions of mechanics of solids when

deformations are large or when linearity breaks down.

All known solids are ultimately nonlinear. No finite volume

of any real material can be compressed to a point of infinite-

simal size: its bulk modulus must eventually increase with

decreasing volume to prevent this. Nonlinear elasticity can

describe wave propagation in pre-stressed crystals (Thurston

& Brugger, 1964; Thurston et al., 1966; Thurston, 1974) and

short-range core effects from lattice defects (Teodosiu, 1982).

At regimes departing more from linearity (Chang & Barsch,

1967), or in shock compression, elastic constants up to order

four have been measured (Fowles, 1967; Graham, 1972). In

strong crystals such as quartz, sapphire and diamond, large

uniaxial compressive deformations can be reached before

inelasticity from dislocation motion, deformation twinning or

fracture ensues (Clayton, 2019). Chen et al. (2020) showed the

importance of anisotropic constants up to fifth order on the

stability of silicon.

Symmetries of second-order constants for anisotropic

elasticity of crystals have been known for over a century

(Voigt, 1910; Hearmon, 1946). Independent third-order

constants have been known for all crystal classes since works

by Fumi (1951) and Hearmon (1953), and those of fourth-

order since the work of Brendel (1979). Measurements of

third-order constants often rely on sound speeds in pre-
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stressed crystals (Thurston & Brugger, 1964; Brugger, 1965;

Thurston, 1974). Contemporary first-principles atomic simu-

lations involving density functional theory (DFT) have been

used to predict constants up to orders four and five (Chen et

al., 2020; Pandit & Bongiorno, 2023). Since elastic constants

are ultimately related to interatomic forces (Born & Huang,

1954; Wallace, 1972), characteristics of elastic constants give

insight into atomic-scale physics, and vice versa. Higher-order

constants are associated with anharmonicity (Hiki & Granato,

1966; Hiki, 1981).

A brief primer is given here; theoretical presentations of

nonlinear elasticity for anisotropic crystals are available in

books on the subject (Thurston, 1974; Teodosiu, 1982; Clayton,

2011). Let x ¼ xðX; tÞ be the spatial position vector of a

material particle that occupied a reference position X at some

initial time t ¼ t0. Cartesian coordinates ðxk;XKÞ with

k;K ¼ 1; 2; 3 are used for Euclidean 3-space, and repeated

indices are summed. The deformation gradient FðX; tÞ is the

two-point tensor

F ¼ @x=@X $ FiJ ¼ @xi=@XJ; det F> 0: ð1Þ

Per the Cauchy–Born rule, primitive Bravais lattice vectors of

a crystalline material at point ðX; tÞ deform affinely with

FðX; tÞ (Born & Huang, 1954; Clayton, 2011). The classical

strain measure for nonlinear crystal elasticity is the Green–

Lagrange strain (Wallace, 1972; Thurston, 1974; Clayton,

2011):

E ¼ 1
2ðF

TF � 1Þ ¼ ET $ EIJ ¼
1
2ðFkIFkJ � �IJÞ ¼ EJI : ð2Þ

Strain energy per unit initial volume is WðEðFÞÞ ¼ �WðFÞ.

Isentropic or isothermal conditions are implied; elastic

constants are isentropic or isothermal values. Cauchy (true)

stress is

r ¼
1

det F
F
@W

@E
FT $ �ij ¼

1

det FkK

FiL

@W

@ELM

FjM: ð3Þ

Using Greek indices �; �; �; . . . ¼ 1; 2; . . . ; 6 for Voigt nota-

tion (Thurston, 1974; Clayton, 2011), series expansion of W

gives

W ¼ W0 þ C�E� þ
1
2
C��E�E� þ

1
6
C���E�E�E�

þ 1
24

C����E�E�E�E� þ
1

120
C�����E�E�E�E�E� þ . . . :

ð4Þ

The constant datum energy is W0, first-order C� ¼ 0 for a

stress-free reference state, second-order constants are C��,

third-order are C���, and so on. Constants have implied

symmetries:

C�� ¼ C��; C��� ¼ C��� ¼ C��� ¼ C���; . . . : ð5Þ

For materials (i.e. crystal classes) of lowest (i.e. triclinic)

symmetry, C�� and C��� have 21 and 56 independent

components, respectively.

Denote by R an orthogonal matrix (RTR ¼ 1) that belongs

to the symmetry group of transformations for a given material

(e.g. its Laue group or crystal class). Then �WðFRÞ ¼ �WðFÞ

yields constraints among the elastic constants of each order

dictated by that symmetry group. The greater the intrinsic

symmetry, the more expansive the symmetry group, and

heuristically the fewer independent elastic constants of a given

order. For example, if a material is isotropic, R can be any

rotation, limiting the number of independent C�� to two and

C��� to three.

For crystal structures, standard conventions are used to

relate coordinate axes to directions in the lattice (Brainerd et

al., 1949); an example is shown in Fig. 1 for a triclinic crystal.

Independent second- and third-order elastic constants (Fumi,

1951; Hearmon, 1953) for all 11 Laue groups and isotropic

solids are reported for easy reference in Tables 1 and 2,
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Figure 1
Standard coordinate axes fX1;X2;X3g ! fX;Y;Zg and natural lattice
directions (a, b, c) for a triclinic class I crystal. Based on Brainerd et al.
(1949) (redrawn by the author).

Table 1
Second-order elastic constants.

N, triclinic; M, monoclinic; O, orthorhombic; R, rhombohedral; T, tetragonal;
H, hexagonal; C, cubic; iso, isotropic; I and II, classes of respective higher and

lower symmetry. A :¼ 1
2
ðC11 � C12Þ. Bottom row: No. of independent

constants. See Thurston (1974), Clayton (2011).

N M O TII TI RII RI HII HI CII CI iso

11 11 11 11 11 11 11 11 11 11 11 11

12 12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 12 12 12
14 0 0 0 0 14 14 0 0 0 0 0
15 15 0 0 0 15 0 0 0 0 0 0
16 0 0 16 0 0 0 0 0 0 0 0
22 22 22 11 11 11 11 11 11 11 11 11

23 23 23 13 13 13 13 13 13 12 12 12
24 0 0 0 0 � 14 � 14 0 0 0 0 0
25 25 0 0 0 � 15 0 0 0 0 0 0
26 0 0 � 16 0 0 0 0 0 0 0 0
33 33 33 33 33 33 33 33 33 11 11 11
34 0 0 0 0 0 0 0 0 0 0 0
35 35 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0 0 0
44 44 44 44 44 44 44 44 44 44 44 A
45 0 0 0 0 0 0 0 0 0 0 0
46 46 0 0 0 � 15 0 0 0 0 0 0
55 55 55 44 44 44 44 44 44 44 44 A
56 0 0 0 0 14 14 0 0 0 0 0

66 66 66 66 66 A A A A 44 44 A

21 13 9 7 6 7 6 5 5 3 3 2



following Brugger (1965), Thurston (1974) and Clayton

(2011).

Also of theoretical interest are Cauchy symmetries arising if

all interatomic forces are central, as from a pair potential

(Love, 1927; Born & Huang, 1954). In tensor form, second-

order constants then obey CIJKL ¼ CIKJL ¼ CILKJ ; similar

constraints arise at higher orders. In cubic classes of greatest

symmetry, C12 ¼ C44, C112 ¼ C155 and C123 ¼ C144 ¼ C456 in

Voigt notation. In a Cauchy isotropic solid, C�� and C��� each

contain but one independent constant, and Poisson’s ratio

� ¼ 1
4
.

Symmetric second-order strain tensors differing from E of

(2) have been used in nonlinear elastic potentials akin to (4),

with noted advantages for describing DFT (Nielsen, 1986) and

shock (Clayton, 2019) data. Symmetries of elastic constant

tensors of all orders are unchanged (e.g. Tables 1 and 2 remain

valid) so long as the strain tensor has components referred to

fXKg; any such strain transforms the same under the action of

R. Values of C�� are identical for all such strain measures, but

values of C��� and constants of successively higher orders

generally differ, and (3) is transformed for strain different

from E. Another example is linear elasticity, for which the

small strain tensor is ��� ¼ 1
2
½@u=@X þ ð@u=@XÞT� with displa-

cement u ¼ x � X. To first order in @u=@X, ��� � E. Informally,

when jF � 1j � 1, W0 ¼ 0 and W is truncated at order two, (3)

and (4) give Hooke’s law:

�� ¼
@W

@��
¼ C����; W ¼ 1

2
C������: ð6Þ

The effective elastic constants of heterogeneous solids (e.g.

polycrystalline aggregates) depend on the properties and

orientations of constituents (Gnaupel-Herold, 2023). If an

aggregate has a certain target symmetry, estimates or bounds

on its effective ‘averaged’ constants can be obtained from

theoretical averaging schemes. For second-order constants,

well known estimates include upper and lower bounds of

Voigt and Reuss, respectively, Hill’s proposition (Hill, 1952)

that interpolates between the two, and ‘self-consistent’ models

(Kroner, 1958; De Wit, 1997). Such methods were extended to

third-order constants for isotropic (Barsch, 1968; Lubarda,

1997) and textured (Johnson, 1985; Kube & Turner, 2016)

polycrystals. Isotropic Voigt averages of fourth-order

constants for aggregates of cubic crystals were derived by

Krasilnikov & Vekilov (2019).

2. Nonlinear crystal elasticity to sixth order

Telyatnik (2024) recently developed numerically efficient

algorithms for symbolic computations of effective elastic

constants of orders two through six for polycrystalline aggre-

gates having overall target symmetries of any crystal class,

transverse isotropy or full isotropy. Constituent crystallites can

have any anisotropy. Effective constants are defined as arith-

metic averages over the minimal set of symmetry operations

generating a given target symmetry. In cases of targeted

transverse or full isotropy, continuous integrals replace

discrete averages. For efficiency, nested calculations for higher

symmetries apply precomputed averages from lower symme-

tries. Gauss–Jordan elimination is used to find algebraic
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Table 2
Third-order elastic constants.

Notation in first row follows Table 1. A :¼ C111 þ C112 � C222;
B :¼ � 1

2
ðC115 þ 3C125Þ; C :¼ 1

2
ðC114 þ 3C124Þ; D :¼ � 1

4
ð2C111 þ C112 � 3C222Þ;

E :¼ � C114 � 2C124; F :¼ � C115 � 2C125; G :¼ � 1
2
ðC115 � C125Þ;

H :¼ 1
2
ðC114 � C124Þ; I :¼ 1

4
ð2C111 � C112 þ C222Þ; J :¼ 1

2
ðC113 � C123Þ;

K :¼ � 1
2
ðC144 � C155Þ; L :¼ 1

2
ðC112 � C123Þ; M :¼ 1

4
ðC111 � C112Þ;

N :¼ 1
8
ðC111 � 3C112 þ 2C123Þ. Bottom row: No. of independent constants. See

Thurston (1974), Clayton (2011).

N M O TII TI RII RI HII HI CII CI iso

111 111 111 111 111 111 111 111 111 111 111 111
112 112 112 112 112 112 112 112 112 112 112 112
113 113 113 113 113 113 113 113 113 113 112 112
114 0 0 0 0 114 114 0 0 0 0 0

115 115 0 0 0 115 0 0 0 0 0 0
116 0 0 116 0 116 0 116 0 0 0 0
122 122 122 112 112 A A A A 113 112 112
123 123 123 123 123 123 123 123 123 123 123 123
124 0 0 0 0 124 124 0 0 0 0 0
125 125 0 0 0 125 0 0 0 0 0 0
126 0 0 0 0 � 116 0 � 116 0 0 0 0

133 133 133 133 133 133 133 133 133 112 112 112
134 0 0 0 0 134 134 0 0 0 0 0
135 135 0 0 0 135 0 0 0 0 0 0
136 0 0 136 0 0 0 0 0 0 0 0
144 144 144 144 144 144 144 144 144 144 144 L
145 0 0 145 0 145 0 145 0 0 0 0

146 146 0 0 0 B 0 0 0 0 0 0
155 155 155 155 155 155 155 155 155 155 155 M
156 0 0 0 0 C C 0 0 0 0 0
166 166 166 166 166 D D D D 166 155 M
222 222 222 111 111 222 222 222 222 111 111 111
223 223 223 113 113 113 113 113 113 112 112 112
224 0 0 0 0 E E 0 0 0 0 0

225 225 0 0 0 F 0 0 0 0 0 0
226 0 0 � 116 0 116 0 116 0 0 0 0
233 233 233 133 133 133 133 133 133 113 112 112
234 0 0 0 0 � 134 � 134 0 0 0 0 0
235 235 0 0 0 � 135 0 0 0 0 0 0
236 0 0 � 136 0 0 0 0 0 0 0 0

244 244 244 155 155 155 155 155 155 166 155 M
245 0 0 � 145 0 � 145 0 � 145 0 0 0 0
246 246 0 0 0 G 0 0 0 0 0 0
255 255 255 144 144 144 144 144 144 144 144 L
256 0 0 0 0 H H 0 0 0 0 0
266 266 266 166 166 I I I I 155 155 M
333 333 333 333 333 333 333 333 333 111 111 111

334 0 0 0 0 0 0 0 0 0 0 0
335 335 0 0 0 0 0 0 0 0 0 0
336 0 0 0 0 0 0 0 0 0 0 0
344 344 344 344 344 344 344 344 344 155 155 M
345 0 0 0 0 0 0 0 0 0 0 0
346 346 0 0 0 � 135 0 0 0 0 0 0

355 355 355 344 344 344 344 344 344 166 155 M
356 0 0 0 0 134 134 0 0 0 0 0
366 366 366 366 366 J J J J 144 144 L
444 0 0 0 0 444 444 0 0 0 0 0
445 445 0 0 0 445 0 0 0 0 0 0
446 0 0 446 0 145 0 145 0 0 0 0
455 0 0 0 0 � 444 � 444 0 0 0 0 0

456 456 456 456 456 K K K K 456 456 N
466 0 0 0 0 124 124 0 0 0 0 0
555 555 0 0 0 � 445 0 0 0 0 0 0
556 0 0 � 446 0 � 145 0 � 145 0 0 0 0
566 566 0 0 0 125 0 0 0 0 0 0
666 0 0 0 0 � 116 0 � 116 0 0 0 0

56 32 20 16 12 20 14 12 10 8 6 3



relationships among all elastic constants of a given order, for

each target symmetry. Computations exceed capabilities of

existing tools supplementing Vol. D of the International Tables

for Crystallography (Authier & Zarembowitch, 2003).

Independent elastic constants and symmetry relationships

for all crystal classes, transverse isotropy and full isotropy, for

orders two through six, are provided in Appendix A of

Telyatnik (2024) and Telyatnik (2021). Previously, such infor-

mation (e.g. as in Tables 1 and 2) was available only for

constants of all crystal classes and isotropy, to order four

(Brendel, 1979). Averages for independent elastic constants,

again up to sixth order, are given in Appendix B of Telyatnik

(2024) and Telyatnik (2021). These include the target

symmetries of all crystal classes, transverse isotropy and

isotropy. Other appendices (Telyatnik, 2021; Telyatnik, 2024)

list all components and rotation matrices. For anisotropic

target symmetries, averages are defined as described in the

preceding paragraph. These averages do not incorporate data

on local crystal orientations (i.e. distribution functions)

included in some prior definitions of effective third-order

constants (Johnson, 1985; Kube & Turner, 2016). Therefore,

anisotropic aggregate constants of Telyatnik (2024) cannot be

expected to reproduce effective constants of textured poly-

crystalline metals, for example. However, these anisotropic

aggregate values can serve as higher-symmetry approxima-

tions for constants of classes of lower true symmetry

(Telyatnik, 2021).

For isotropic target symmetry, averaged constants

(Telyatnik, 2024) are consistent with Voigt’s postulate.

Previous isotropic averages were usually limited to second and

third orders, with the latter for constituents having cubic or

hexagonal symmetry (Barsch, 1968; Lubarda, 1997; Kube &

Turner, 2016). Previously, the highest known order of derived,

isotropic Voigt-averaged constants was four, as reported in

Appendix A of Krasilnikov & Vekilov (2019) for crystallites of

general anisotropy (e.g. triclinic symmetry) and verified

independently by Telyatnik (2024). Therefore, the isotropic

Voigt-type averages for five independent fifth-order constants

and seven independent sixth-order constants derived by

Telyatnik (2024) appear to be a new and valuable contribution

to nonlinear elasticity theory for solid crystals.

Finally, note that for some solids under extreme strain

[e.g. rubbery polymers (Ogden, 1984) and biological tissues

(Fung, 1993)] Taylor polynomials like (4) can be cumbersome

so are often replaced with other functional forms (e.g. expo-

nentials) needing fewer constants to fit data. These solids are

often idealized as incompressible, for which (3) and (4) are

inappropriate.
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