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The complete classification of (primitive, generic) parallelohedra in a given

dimension is a challenging computational task. Nearly 50 years have passed

since the classification for the last dimension, n = 5, was completed. One

application of such a classification is in solving the lattice sphere covering

problem for the corresponding dimension. The paper by Dutour Sikirić & van

Woerden [Acta Cryst. (2025), A81, https://doi.org/10.1107/S2053273324010143]

marks a milestone in the classification effort for dimension n = 6. It provides a

complete classification of all primitive iso-edge domains; here primitive paral-

lelohedra are identified based on their facet vectors.

1. A question about tiling space

The question ‘How can a space be tiled by replicas of a set?’

may appear innocent at first glance. However, a closer look

reveals that it raises several fundamental questions: What is

‘space’? What is meant by ‘tiled’? What are ‘replicas’? What is

a ‘set’?

Even when restricting the question to the most basic

version, it yields fascinating answers. Restrict the space to n-

dimensional (Euclidean) space; restrict the sets to be a single

prototile, an n-dimensional convex polytope; restrict the

replicas to be congruent copies of the prototile; restrict the

tiling procedure so that only lattice translates are allowed

which result in a facet-to-facet tiling. Then the question

becomes ‘How can n-dimensional Euclidean space be tiled by

lattice translates of congruent convex polytopes, in a facet-to-

facet manner?’

This specific question has a long history and allows for

relevant, complete, mathematically rigorous answers.

Such convex polytopes that tile space, facet-to-facet,

through lattice translates are called parallelohedra. It has been

known since antiquity that in two dimensions there are only

two parallelohedra: the square and the hexagon (see Fig. 1).

For three dimensions, the question was first posed and

answered by the Russian mathematician, crystallographer and

mineralogist Evgraf Stepanovich Fedorov in 1885. He showed

that there are exactly five three-dimensional parallelohedra:

the cube, the hexagonal prism, the rhombic dodecahedron, the

elongated dodecahedron and the truncated octahedron (see

Fig. 2). As Boris Nikolayevich Delaunay remarked in 1956:

‘Tradition ascribes to Plato the discovery of the five regular

convex polyhedra, to Archimedes the thirteen convex semi-

regular polyhedra, to Kepler and Poinsot the four regular

nonconvex solids, and Fedorov found the five parallelohedra’

[taken from Senechal & Galiulin (1984); see Austin (2013) for

a modern derivation of Fedorov’s result using an approach by

Conway and Sloane].
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2. Geometry of parallelohedra

Before classifying all possible parallelohedra in a given

dimension n, it is essential to gather more geometric infor-

mation about parallelohedra.

A characterization of parallelohedra was discovered by

Venkov, Alexandrov and McMullen (see Zong, 1996). It uses

the concept of belts. A ridge [that is an ðn � 2Þ-dimensional

face, so, if n ¼ 3, we talk about the edges] defines a belt of a

polytope. A belt is a collection of the polytopes’ facets

[ðn � 1Þ-dimensional faces] that contains, as a translate, either

the given ridge or its negative. The characterization is as

follows: a convex polytope is a parallelohedron if and only if

(a) it is centrally symmetric, (b) all its facets are centrally

symmetric, (c) if each belt contains either four or six facets.

The n-dimensional generalization of the truncated octahe-

dron serves as the model case for n-dimensional parallelo-

hedra. It is called the permutahedron and can be defined as the

Voronoi cell of the dual of the root lattice A�n (Fig. 3).

Generally, the Voronoi cell of a lattice L = Zb1 þ . . .þ Zbn,

defined by a vector space basis b1; . . . ; bn, is the set of points

VðLÞ ¼ fx 2 Rn : kxk � kx � vk for all v 2 Lg

that are closer to the origin than to any of the other lattice

points. Voronoi cells are fundamental in discrete geometry –

Dirichlet, for instance, investigated them as early as 1850,

more than 50 years before Voronoi’s comprehensive study

(Voronoi, 1908, 1909) of Voronoi cells of lattices. Voronoi cells

are known by various names. In crystallography, for example,

Voronoi cells are also referred to as Wigner–Seitz cells or

Brillouin zones.

Voronoi cells are parallelohedra. However, the converse is

currently not known, it is only conjectured. In fact, it is a

famous question of Voronoi, Voronoi’s conjecture, whether

every parallelohedron is the affine image of the Voronoi cell of

a lattice.

The number of k-dimensional faces fk of an n-dimensional

permutahedron is

ðn � kþ 1Þ! Sðnþ 1; n � kþ 1Þ;

where Sðn; kÞ are the Stirling numbers of the second kind,

counting the number of k-element partitions of an n-element

set.

In particular, the number of vertices equals f0 ¼ ðnþ 1Þ!

and the number of facets equals fn� 1 ¼ 2ð2n � 1Þ. The latter

also follows from a famous characterization of the facets of

Voronoi cells, proved by Voronoi: a lattice vector v 2 L, v 6¼ 0,

determines a facet of VðLÞ by the linear equality

fx 2 Rn : x � v ¼ 1
2

v � vg if and only if f�vg are the unique

shortest vectors in the coset vþ L=2L. Voronoi further

showed that the number of k-dimensional faces of a general n-

dimensional parallelohedron never exceeds fk (Table 1).

Despite being a model case, permutahedra are also quite

special among parallelohedra. They are zonotopes, meaning

that all faces – not just the facets – are centrally symmetric.

However, starting from dimension n = 4, parallelohedra are

not necessarily zonotopes. For example, the Voronoi cell of the
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Figure 2
Parallelohedra in dimension 3: the cube, the hexagonal prism, the
rhombic dodecahedron, the elongated dodecahedron and the truncated
octahedron.

Table 1
Number of k-dimensional faces of the n-dimensional permutahedron.

n f0 f1 f2 f3 f4 f5 f6

1 2 1

2 6 6 1
3 24 36 14 1
4 120 240 150 30 1
5 720 1800 1560 540 62 1
6 5040 15120 16800 8400 1806 126 1

Figure 1
Parallelohedra in dimension 2.

Figure 3
Three permutahedra in dimension 3.



root lattice D4 is the 24-cell, a Platonic solid in four dimen-

sions with 24 vertices and 24 octahedral facets. Notably, all

ridges are regular triangles.

3. Applications of parallelohedra

The example of the permutahedron demonstrates that

studying even a single class of n-dimensional parallelohedra

can be quite fruitful. The combinatorial structure of permu-

tahedra is extremely rich. An alternative definition, as the

convex hull of all coordinate permutations of the vector

ð1; 2; . . . ; nþ 1Þ, shows its close connection to the symmetric

group. We have already seen that the face numbers are related

to Stirling numbers. Another interesting connection is that one

can naturally subdivide the permutahedron into small cubes

having identical volume, with a one-to-one correspondence

between the cubes and spanning trees of the complete graph

on nþ 1 vertices. In particular, the volume of the n-dimen-

sional permutahedron is ðnþ 1Þn� 1, which provides a

geometric proof of Cayley’s formula in graph theory, for the

number of trees on nþ 1 labeled vertices. Postnikov (2009)

surveyed many other relations between the permutahedron

and enumerative combinatorics.

Studying all n-dimensional parallelohedra in a given

dimension is also highly useful, especially when one aims to

solve extremal geometric lattice problems. Prime examples

include the lattice sphere covering problem, the lattice

quantization problem (Conway & Sloane, 1988) and the new

lattice coloring problem (Dutour Sikirić et al., 2021).

For instance, the lattice sphere covering problem asks one to

find a collection of solid spheres which cover space so that the

collection of sphere centers forms a lattice. The goal is to find a

covering which is as economical as possible, minimizing

overlap. To measure the overlap, one can pick a random point

in space and count how many spheres the point is contained

within on average (Fig. 4). Alternatively, one can consider the

geometry of the Voronoi cell of a lattice. In this case, the

lattice is normalized so that the Voronoi cell has unit volume

and the objective is to minimize the circumradius of the

Voronoi cell. To perform this optimization procedure, one

needs detailed knowledge on how the combinatorial and

metric data of the Voronoi cell change if one varies the lattice

basis b1; . . . ; bn. Currently, optimal lattice sphere coverings

are known only up to dimension n = 5. In all these dimensions,

the lattice A�n is the optimum. However, it is known (see

Schürmann & Vallentin, 2006) that starting from dimension

n = 6, the lattice A�n is only locally optimal, not globally

optimal. So far, completing the required computation in six

dimensions has been impossible; this is mainly due to a

combinatorial explosion in the number of cases to consider,

which means that current methods require far too many

computational resources.

4. Classification of parallelohedra

The paper by Dutour Sikirić & van Woerden (2025) is an

important step towards classifying all (primitive) parallelo-

hedra in dimension 6.

A primitive parallelohedron defines a lattice tiling in which

every vertex is contained in exactly nþ 1 lattice translates.

Equivalently, this means that the Delaunay subdivision, which

is the polytopal subdivision geometrically dual to the sub-

division given by the parallelohedra, consists only of simplices.

Primitive parallelohedra are the generic parallelohedra. For

example, in dimension 2 the hexagon is primitive whereas the

square is not. In dimension 3 there is again only one primitive

parallelohedron, namely the truncated octahedron. The

dimensions 2 and 3 give a somewhat misleading picture of

primitive parallelohedra. In addition to the permutahedron,

there are many other primitive parallelohedra, and their

number grows quite quickly with the dimension n. Voronoi

(1908, 1909) showed that in dimension n = 4 there are exactly

three primitive parallelohedra. Ryshkov & Baranovskii

(1978) determined the classification in dimension n = 5. There

are 222 types. (Ryshkov & Baranovskii reported that there

are 221 types, the missing type was later found by Engel.)

Currently, the classification in dimension 6 has not yet been

achieved.

The paper by Dutour Sikirić & van Woerden is a milestone

for this open classification task. They provide a complete

classification of all generic, primitive iso-edge domains in

dimension 6. This is a coarser notion, where primitive paral-

lelohedra are identified when they possess the same facet

vectors. This results in a reduction of complexity, where

instead of ðnþ 1Þ! many vertices, ‘only’ 2ð2n � 1Þ many facets

need to be considered. Use of the term ‘iso-edge’ is motivated

by the geometric dual view: the facets of the parallelohedra

determine edges in the Delaunay subdivision.

Interestingly, only starting from dimension 5 there are

primitive parallelohedra which have the same facet vectors

but different, non-equivalent combinatorial structures. This

was recognized by Ryshkov & Baranovskii, who found

that there are 76 iso-edge domains yielding 222 primitive

parallelohedra.

Using sophisticated algorithmic techniques, Dutour Sikirić

& van Woerden determined all 55083357 iso-edge domains in

dimension 6. To do this, they subdivided the convex cone of

positive-definite quadratic forms (which is the natural para-

meter space of lattices) into polyhedral cones, in which the

Delaunay subdivision has the same edges – these are the iso-

edge domains. Up to the action of the group GLnðZÞ there are
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Figure 4
The hexagonal lattice determines the most economic (lattice) sphere
covering in dimension 2. For the lattice coloring problem, its chromatic
number equals 3.



only finitely many iso-edge domains and two iso-edge domains

are adjacent whenever they differ by a small, geometric flip

(Dutour Sikirić & Kummer, 2022). The main technical hurdle

to complete the classification was a fast isomorphism test using

canonical forms and fast polyhedral computations.

With this milestone, I sincerely hope that now the solution

of the lattice sphere covering problem in dimension n = 6 is

within reach.

References

Austin, D. (2013). Fedorov’s five parallelohedra. AMS Feature
Column, AMS, https://www.ams.org/publicoutreach/
feature-column/fc-2013-11.

Conway, J. H. & Sloane, N. J. A. (1988). Sphere packings, lattices, and
groups. Springer.
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