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The general equation �M(r) = �(r) + g(r) of the � direct methods (�-GEQ) is

established which, when expressed in the form �M(r) � �(r) = g(r), is used in the

SMAR phasing algorithm [Rius (2020). Acta Cryst A76, 489–493]. It is shown

that SMAR is based on the alternating minimization of the two residuals R�(�) =R
V [�(�) � �(�)s�]

2 dV and R�(�) =
R

V m�[�M(�) � �(�)s�]
2 dV in each

iteration of the algorithm by maximizing the respective S�(�) and S�(�) sum

functions. While R�(�) converges to zero, R�(�) converges, as predicted by the

theory, to a positive quantity. These two independent residuals combine �M and

� each with |�| while keeping the same unknowns, leading to overdetermination

for diffraction data extending to atomic resolution. At the beginning of a SMAR

phase refinement, the zero part of the m� mask [resulting from the zero

conversion of the slightly negative �(�) values] occupies �50% of the unit-cell

volume and increases by �5% when convergence is reached. The effects on the

residuals of the two SMAR phase refinement modes, i.e. only using density

functions (slow mode) supplemented by atomic constraints (fast mode), are

discussed in detail. Due to its architecture, the SMAR algorithm is particularly

well suited for Deep Learning. Another way of using �-GEQ is by solving it in

the form �(r) = �M(r) � g(r), which provides a simple new derivation of the

already known �M tangent formula, the core of the � recycling phasing algorithm

[Rius (2012). Acta Cryst. A68, 399–400]. The nomenclature used here is: (i) � is

the set of ’ structure factor phases of � to be refined; (ii) �M(�) = FT� 1{c(|E| �

h|E|i)�exp(i�)} with � = {�}, the set of phases of |�| and c = scaling constant; (iii)

m� = mask, being either 0 or 1; s� is 1 or � 1 depending on whether �(�) is

positive or negative.

1. Introduction

Historically, direct methods were developed to solve small

crystal structures directly from high-resolution single-crystal

diffraction data. From their origins in the 1950s (Sayre, 1952;

Cochran, 1952; Zachariasen, 1952), they have seen continuous

advances over the years, not only driven by the steady increase

in computing power, but also by clever algorithms and effi-

cient implementations. Computing power continues to

increase but the solution of larger structures at lower resolu-

tion is still hindered in the case of equal atoms and requires

the use of ubiquitous model fragments and density modifica-

tion. In their widespread successful application, the time scale

is in any case shorter than the experimental effort involved in

X-ray structure determination.

One of the most recent advances in direct methods has

been the |�|-based algorithm (SMAR) maximizing the SM, |�|

(= SMAR) sum function (Rius, 2020). It corresponds to the

latest stage in the evolution of the SM origin-free modulus sum
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function (originally named ZR; Rius, 1993) which still involved

triple-phase structure invariants. Even today, ZR is the

simplest and certainly one of the most successful direct

methods working exclusively in reciprocal space (Rius et al.,

1995). However, it was almost immediately superseded by the

Shake & Bake strategy alternating between reciprocal- and

real-space refinements (dual-space recycling methods) which

allowed the solution of larger crystal structures (Weeks et al.,

1993; Miller et al., 1993). Dual-space methods do not eliminate

phase relationships in reciprocal space but complement them

with peak picking in real space as an extreme form of density

modification. A comprehensive description at the height of

development of dual-space recycling methods can be found in

the International Tables for Crystallography, Vol. F (Sheldrick

et al., 2012).

Following this trend, triple-phase invariants (whose number

becomes exceedingly large for large structures) were replaced

in SM by the more efficient and accurate Fourier transforms

(FT) (Rius et al., 2007; Rius, 2014). More recently, the �2

function in SM was replaced by the mathematically simpler |�|

function and a new mask was introduced that takes the

negative values of � into account. Both changes have led to the

SMAR phasing algorithm (Rius, 2020). Important aspects of

its application have been covered in two recent publications,

the first dealing with its extension to larger crystal structures

by introducing the fast inner-pixel preservation procedure

(ipp) for density modification (Rius & Torrelles, 2021) and

using initial phase values derived from the modulus function.

In the second publication SMAR was adapted to the solution

of anomalous scattering substructures in protein crystals (Rius

& Torrelles, 2022). The present short introduction is intended

to provide a brief overview of the 30-year development of that

particular type of direct methods which shares the implicit or

explicit use of the �’ �M (or �P) approximation (Rius, 2012a).

To distinguish this family of direct methods from the rest – and

also to help in their identification – the general term ‘� direct

methods’ is coined in this publication.

The aim of this article is to complete the theoretical foun-

dations of the SMAR phasing algorithm. The algorithm

described by Rius (2020) and shown in Fig. 1 essentially

consists of the iterative application of the phasing formula

’new
k ¼ phase of

Z

V

�MðrÞm
0
�;tðrÞ exp ði2�krÞ dr; ð1Þ

where (i) ’k is the phase of the kth structure factor of � and

belongs to the set � of phases to be refined; (ii) �M(�) is equal

to FT� 1 c jEj � hjEjið Þ expði�Þ
� �

with � = {�} being the set of

phases of |�| and c a scaling constant; (iii) r is a position vector

inside V, the unit-cell volume; and (iv) m0�;t is a mask function

defined in Table 1 that can take the values 1, 0 or � 1. The

representative test case shown in Table 1 (t = 2.5) indicates

that the zero part in the m0�;t mask is around 50% at the

beginning of a phase refinement with initially random phase

values; as the refinement converges, the zero part increases by

up to 5%. Most of the remaining part of the mask is taken up

by ones, as the proportion of � 1 values is kept very small

(<1.0%).

The SMAR phasing algorithm was originally derived from

the SMAR sum function. A sum function such as SMAR gener-

ally corresponds to the mixed integral of a residual as e.g. in

the case of expression (20) in relation to (21) in this article.

Only when the residual is known can the derivation of the

phasing algorithm be considered complete, which leads to a

better understanding of it and enables, for example, the esti-

mation of the minimum value of the residual. In this context,

the use of the �M ’ � approximation in Rius (2020) repre-

sented a limitation. To overcome this, the relationship

between �M and � is worked out in Appendix A, resulting in

�-GEQ which, when modified accordingly, leads to one of the

two desired SMAR residuals. The derivation of the second

residual is simpler and introduces the phases corresponding to

|�(�)| in the algorithm. To increase the readability of this

article, �-GEQ is derived separately in Appendix A and a

summary thereof given in Section 2.2.

To complete this introduction, it is interesting to mention,

particularly for newcomers, that density modification in the

context of direct methods was efficiently introduced in

ACORN (Foadi et al., 2000). ACORN and SHELXE (Shel-

drick, 2002) both use density sharpening and negative density

elimination. Later, in the VLD algorithm, a difference and a

flipping term were combined (Burla et al., 2010). Finally,

another related and more modern development was

SHELXT, which is more broadly associated with the charge-
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Figure 1
The iterative SMAR phasing algorithm in four stages. (Upper right-hand
corner) Initial (or updated) ’ phase estimates belonging to set � are
combined with observed |E| values to obtain � and �(�)s� = |�(�)| [the
superscript 1) indicates that � is stored]. (Upper left) The FT of |�(�)| is
calculated to get the new set � of � phases as well as the calculated |�|
values. (Lower left corner) The new � values are combined with the
experimental �E = |E| � h|E|i and Fourier transformed to obtain �M(�).
The m� mask and the s� signs are derived from the stored �(�), and the
�M(�)s�m� = �0 product is carried out. (Lower right) The FT of �0 supplies
the updated ’ phases [the superscript 2) indicates that when ipp is applied,
�0 is further modified to �0 0 before the FT operation] as well as the
calculated Ej j values.

Table 1
Values of the m�(r) mask and the s�(r) sign functions obtained from
�(r, �) and for t = 2.5 with �2

� being the (phase-independent) variance of
�(r) and m0� = s�m� (Rius, 2020).

The meanings of COREs, SPZs and SNZs are explained in Section 2.1.
Columns 6 and 7 give the mask compositions in % at the first and last itera-
tions of a SMAR phase refinement reaching convergence (slow convergence

mode) using the diffraction data for Actinomycin Z3 (Schäfer et al., 1998).

Condition Corresponds to m0� m� s� First Last

�(r, �) > 0 COREs and SPZs 1 1 1 50.0 45.3
0 � �(r, �) > � t�� SNZs 0 0 � 1 49.4 54.5

�(r, �) � � t�� Very negative values � 1 1 � 1 0.62 0.23



flipping algorithm but combines it with direct methods and

with density modification at part of the peak positions, used to

eliminate atoms at random without atoms (Sheldrick, 2015).

One distinctive feature of the density modification in SMAR is

the zero conversion of only slight negative densities and the

preservation of the inner peak pixels (Rius & Torrelles, 2021).

All calculations in this article have been performed with a

modified version of the XLENS_v1 code (Rius, 2011). The

diffraction data used in the test calculations correspond to:

(i) Actinomycin Z3 with 1228 (C, N, O) + 8 Cl atoms in the

unit cell. According to the refinement protocol in the Protein

Data Bank (PDB code 1a7z), 4 Cl sites are partially occupied

and the other 4 Cl atoms have a rather large B value, so that

their scattering powers are considerably reduced. The

minimum d spacing (dmin) is 0.95 Å; a = 14.803, b = 24.780 and

c = 65.059 Å, space group P212121 (Schäfer et al., 1998).

(ii) Alpha1 peptide with 503 (C, N, O) + 1 Cl. dmin = 0.90 Å;

a = 20.846, b = 20.909 and c = 27.057 Å, � = 102.40, � = 95.33

and � = 119.62�, P1 (Privé et al., 1999).

(iii) Pep1 with 344 (C, N, O). dmin = 1.00 Å; a = 13.999, b =

21.602 and c = 21.615 Å, P212121 (Antel et al., 1995).

(iv) Suoa with 188 (C, N, O). dmin = 1.00 Å; a = 18.350, b =

21.441 and c = 8.350 Å, P212121 (Oliver & Strickland, 1984).

2. Basic elements of the SMAR algorithm

2.1. The q Fourier synthesis: its mask definition and general

relationship to |q|

When solving crystal structures by direct methods from

atomic resolution X-ray diffraction intensity data, the elec-

tron-density function is normally calculated with the Fourier

synthesis

� r;�Tð Þ ¼
1

V

X

k

Ek

�
�

�
� exp ði’kÞ exp ð� i2�krÞ; ð2Þ

where |Ek| is the modulus and ’k is the phase value of the

(quasi)-normalized structure factor of the kth reflection

(Main, 1975). The moduli and phases of all reflections form

the {|E|} and � = {’} sets, respectively. For clarity, the phase

type (and eventually the modulus type) used in the Fourier

synthesis is added to the function name when required to

avoid confusion, e.g. �(r, �T) specifies that �(r) is calculated

with �T (the index T stands for true phase values).

Expression (2) is stated in terms of the normalized scat-

tering factors, i.e. f̂ j = fj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

m f 2
m

p
for an arbitrary atom j (with

fj being its normal scattering factor including the Debye–

Waller factor). For the sake of simplicity, a crystal structure

with N equal atoms in the unit cell is assumed throughout, so

that the normalized scattering factor reduces to f̂ = 1=
ffiffiffiffi
N
p

.

Due to the limited number of Fourier terms (a consequence

of the finite number of measured intensities), the �(r, �T)

synthesis is affected by Fourier series truncation effects. These

termination effects are mainly reflected in the broadening of

the atomic peaks, each consisting of a large spherically

symmetric positive central part (= CORE) surrounded by

negative and positive waves (ripples) that decrease as one

moves away from the peak center. For point-like atoms (for

which broadening due to scattering factors and thermal

vibration effects are largely removed), the limiting spherical

surface of the CORE lies �0.72 � dmin (Å) from the peak

center [it corresponds to the first zero of the T3 spreading

function in Lipson & Cochran (1966)]. For locations lying

outside neighboring COREs, the ripple contributions of

neighboring atoms add up and result in slightly negative and

slightly positive zones (SNZs and SPZs, respectively). The

�(r, �) values contained in the interval [0, � t��] make up the

SNZs (�� and t are defined in Table 1). Since the � distribution

in the crystal is positive definite, the probability that the SNZs

accommodate the COREs of atomic peaks is zero, so this

information can be introduced in the form of an m�, t mask

which is 0 for all negative � in the [0, � t��] interval (negative

ripple conversion to zero) and 1 elsewhere. As shown in

Table 1, the mask value depends on �(r) and the t parameter

(since t is always 2.5 in this work, it is suppressed in m�, t for

notation simplicity and we use simply m�). Table 1 also shows

that the zero part of the mask extends to at least 50% of the

unit-cell volume for t’ 2.5 (just for comparison, for t � 10 the

threshold is so low that the mask values of all negative �

values become zero).

The relationship between the syntheses |�(�)| and �(�) is

given by the equality

�ðr;�Þ
�
�

�
� ¼ �ðr;�Þ s�ðrÞ 8 r � V; ð3Þ

in which s�ðrÞ is 1 or � 1 depending on whether �(r, �) is

positive or negative. This equality is completely general, so the

product �(r, �)s�(r) can always replace |�(r, �)| in the deri-

vation of the residuals. Finally, since � is positive definite and

diffraction data are assumed to reach atomic resolution, it is

clear for � = �T that the negative s�ðrÞ values in (3) are always

associated with small �(r, �T), so that (3) becomes �(r, �T) =

|�(r, �T)| 8 r � V. If we denote the phase set of the Fourier

coefficients of the |�(r, �T)| synthesis by �T, then �T ffi �T.
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Table 2
Overview of the properties of the two main peak types of the �M Fourier synthesis.

The peak strength of a �(rl) peak corresponds to f Nref/V.

Peak type (function) Peak positions Peak strengths Number in unit cell

A! � At rl atomic positions (l = 1, N) �(rl) = �M(rl) N
B! g At rjlm = rj + rl � rm with l 6¼ m and j 6¼ m (j, l, m = 1, N) g(rjlm) ’ strength of {�(rl)/(N � 1)} N(N � 1)2



2.2. The general equation of d direct methods and its

different forms

The �M Fourier synthesis defined by

�M r;�Tð Þ ¼
c

V

X

k

Ek

�
�

�
� � h Ej ji

� �
exp ði’kÞ exp ð� i2�krÞ; ð4Þ

with c = 2=ðjEj � 1=
ffiffiffiffi
N
p
Þ, is studied in detail in Appendix A,

showing that it contains two types of positive peak (A and B).

Table 2 lists their peak strengths and positions. The stronger

peaks of type A correspond to � (which are resolved in the

Fourier map). The N � 1 times weaker peaks of type B are

located at positions other than the atomic positions (co-

incidence is accidental). These are the main constituents of the

function g(r) and, due to their large number, must be severely

overlapped in the unit cell. The standard form of the general

equation of the � direct methods (�-GEQ) corresponds to the

sum of both contributions �(r) and g(r) [equation (43)].

However, �-GEQ can be used in other forms. For example it

can be solved for �, so �-GEQ then takes the form

�ðrÞ ¼ �MðrÞ � gðrÞ: ð5Þ

One obvious difficulty here is how to handle the unknown g

function. This difficulty can be circumvented by introducing

the mask m�� (being either 0 or 1), which results from the

realizations that (i) �M and � have their strong peaks at the

atomic positions; and (ii) g is formed by the positive strongly

overlapped peaks of type B which are much more numerous

but also much smaller than the peaks in �M and �. As shown in

Fig. 2, the m�� mask is obtained by expressing the threshold

�� in terms of the computable �(�M) by means of �� =

t1�(�M), with t1 ’ 2.5, such that m��(r) = 1 for �M(r) ��� and

m��(r) = 0 otherwise. This can be mathematically expressed by

� rð Þ ¼ K�M rð Þm�� rð Þ; ð6Þ

with K being a suitable scaling constant. Fourier transforming

both sides of (6), and since E and � are linked by the Fourier

transform E = FT(�), the formula

E ¼ K FT �Mm��

� �
ð7Þ

results. The angular part of (7) corresponds to the �M tangent

formula which forms the core of the � recycling algorithm

(Rius, 2012a,b). It has been successfully applied to X-ray

diffraction data from small crystal structures, to 3D electron

diffraction data (Rius et al., 2013; Capitani et al., 2014) and,

due to its robustness, to synchrotron tts (tts = through the

substrate) microdiffraction data (Rius et al., 2017). Some

considerations regarding the implementation of the �M

tangent formula are given in Section A3.

SMAR uses another form of �-GEQ in which g is isolated,

namely

�M r;�Tð Þ � � r;�Tð Þ ¼ g rð Þ 8 r � V: ð8Þ

According to �T ffi �T at the end of Section 2.1, (8) can be

expressed in terms of �T (= the set of phases corresponding to

|�(�T)|) so that

�M r; �Tð Þm� rð Þ � � r; �Tð Þm� rð Þ ¼ g rð Þm� rð Þ 8 r � V; ð9Þ

where both sides are multiplied by m� [which is derived from

�(�T)]. Expression (9) is the basic equation for one of the two

SMAR residuals (R�). Note the positive effect of introducing

the mask m�. Since the zero part of the mask is �50% of the

unit-cell volume, the unwanted contribution of g in (9) is

suppressed for at least half of the unit cell.

3. The SMAR residuals

Each iteration of the SMAR algorithm consists of two differ-

entiated parts, ending each part with the application of the

corresponding phasing formula (upper-left and lower-right

corners of Fig. 1). In this section, the two SMAR residuals

leading to these phasing formulae are determined. In the

following r is omitted unless absolutely necessary.

3.1. The R�(v) residual

The |�(�)| density function results from applying the

absolute value operator to the �(�) Fourier synthesis. The

structure factors of |�(�)| correspond to its Fourier transform,

�j j exp ði�Þ ¼ FT � �ð Þ
�
�

�
�

� �
; ð10Þ

with the moduli and phase values of the structure factors being

globally denoted {|�|} and �, respectively. The inverse Fourier

transform of both sides of (10) yields

� �j jf g; �ð Þ ¼ � �ð Þ
�
�

�
�: ð11Þ

For � = �T it can be assumed that �j jf g ffi Ej jf g. Consequently,

the integral

R� �ð Þ ¼

Z

V

� Ej jf g; �ð Þ � � �j jf g; �ð Þ½ �
2
dV ð12Þ
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Figure 2
(Left) Part of a hypothetical one-dimensional unit cell corresponding to
an atomic position, with schematic representation of the associated �M(x)
and �(x) [equation (5)]. The binary mask m��(x) is 1 if �M(x) is larger
than the �� threshold and 0 otherwise. (Right) The same part of the unit
cell shows the product function �M(x)m��(x), which is proportional to
�(x) (for equiatomic structures). If the number N of expected atoms in
the unit cell is known, then the �M tangent formula reduces to a structure
factor calculation over the N largest product-function peaks greater than
��, i.e. the integral of the FT in expression (7) reduces to a sum.



must be close to zero for R�ð�TÞ which corresponds to the

minimum of R�. Simplifying the notation of �({|E|}, �) to �(�)

and replacing �({|�|}, �) first by |�(�)| according to (11) and

then by �(�)s� according to (3), integral (12) takes the simpler

form

R� �ð Þ ¼

Z

V

� �ð Þ � � �ð Þs�
� �2

dV: ð13Þ

During the refinement the function �(�)s� is always posi-

tive. To find the new � set minimizing R�(�), the integrand of

(13) is developed into three integrals. The two integrals with

integrands |�(�)|2 and �2(�) are both equal to 1
V

P
k Ekj j

2 and

hence phase independent; however, the third one,

� 2S� �ð Þ ¼ � 2

Z

V

� �ð Þ� �ð Þs� dV; ð14Þ

is phase dependent. The maximum of a functional like S�(�)

[which is equivalent to the minimum of R�(�) due to the minus

sign in (14)] can be found by solving the condition for an

extremum, @S�/@� = 0, 8 � 2 �, which, in parallel to Rius et al.

(2007), yields the � phasing formula,

�new ¼ phase of FT � �ð Þs�
� �

: ð15Þ

3.2. The R�(U) residual

The residual R� is obtained from the left side of (9) after

generalizing �T to �. This generalization entails two changes:

(i) �M(r, �T) is simply changed to �M(r, �), since in both cases

the Fourier coefficients of �M contain the observed |E| � h|E|i

values; and (ii) �(r, �T) is changed to �(r, {|�|}, �). However,

since �(r, {|�|}, �) = |�(r, �)| = �(r, �)s�(r) because of (11) and

then (3), the selected generalized form is �(r, �)s�(r) [this

selection ensures that �(�) enters the residual expression

(17)]. By applying these two changes to the left-hand side of

(9), it becomes

�M r; �ð Þm� rð Þ � � r;�ð Þs�ðrÞm� rð Þ 8 r � V: ð16Þ

Integration of (16) after squaring gives the R� residual,

R� �ð Þ ¼

Z

V

�M �ð Þm� � � �ð Þm�s�
� �2

dV; ð17Þ

where �(�)m�s� is always positive [= |�(�)|m�]. Of method-

ological importance is the minimum value of R� which occurs

for R�(�T). An estimate of this value is obtained by squaring

and integrating the right-hand side of (9), namely

R� �Tð Þ ¼

Z

V

m�g2 dV: ð18Þ

In this integral, g = �M(�T) � �(�T) given in (8) and �(�T)

used to calculate m� are both different functions with different

peak distributions. Consequently, the samples of g2 at the

points where m� = 1 can be assumed to be random, allowing

the factorization of hm�i from the integral

R� �Tð Þ ffi hm�i

Z

V

g2 dV ¼ hm�iIg2 : ð19Þ

The value of the normalized Ig2 is given by equation (49) in

Appendix B, i.e.

Ig2 ¼ c � 1ð Þ
2
h Ej j2ik � c c � 2ð Þ h Ej jikð Þ

2
’ 1:12:

According to (19), R� does not converge to zero but to the

positive value R�(�T) ’ 1.12 � hm�i. Since it is known from

Table 1 that hm�i is �0.45 (at the end of a converging

refinement), the approximated value of R�(�T) should be 0.45

� 1.12 = 0.50.

Once the residual R� is defined and its minimum value

known, the last step is to find the � phase set that minimizes

R�. For this purpose, (17) is transformed into the sum

R� ¼ PþQ � 2S�; ð20Þ

with P, Q and S� being the following integrals:

S� ¼

Z

V

�Mð�Þ � �ð Þs�m� dV; ð21Þ

P ¼

Z

V

�2ð�Þm� dV; ð22Þ

Q ¼

Z

V

�2
Mð�Þm� dV: ð23Þ

The presence of the mask m� complicates the solution of

these integrals. The interested reader can find in Section 3.2.1

their evaluations with the help of experimental information.

The principal conclusion of Section 3.2.1 is that minimizing R�
is essentially equivalent to maximizing S�. Knowing this, one

only needs to find the desired maximum of S�(�) by solving

the condition for an extremum, @S�/@’ = 0, 8 ’ 2 �. By

expressing �(�) in (21) as a Fourier synthesis, then

S� �ð Þ ¼
1

V

X

k

E� k

�
�

�
� exp ði’� kÞ

�

Z

V

�M r; �ð Þm� rð Þ s� rð Þ exp ði2�krÞ dr ð24Þ

and, in parallel to Rius et al. (2007) and Rius (2020), the

application of the condition for an extremum to (24) gives the

� (or also SMAR) phasing formula,

’new ¼ phase of FT �M �ð Þm�s�
� �

: ð25Þ

For simplicity, the Fourier-transformed function �Mm�s� is

denoted �0 in the slow convergence mode and �00 in the fast

convergence mode (see Section 4).

3.2.1. Evolution of R�, S�, P and Q during the SMAR phase

refinements

First, the values of the integrals (21), (22) and (23) are

normalized by division with

research papers

Acta Cryst. (2025). A81 Jordi Rius � The general equation of � direct methods 5 of 10



SRO2 ¼

Z

V

�2 dV; ð26Þ

which only depends on the |E| values and is therefore

computable. The values of � 2S�, P and Q during the phase

refinement progress were determined with the SMAR phasing

algorithm already implemented in XLENS_v1 (Rius, 2020).

The density function values used in the estimation of (21), (22)

and (23) are those available before applying ipp (Fig. 1).

Tables 3 and 4 show the evolutions for Actinomycin Z3, Suoa,

Pep1 and Alpha1 peptide (each grouping of four numbers

given in this subsection always refers to this order of test

structures; the output files of the test calculations are available

in the supporting information). For Actinomycin Z3, the

evolutions of 2S�, �P and �Q are also represented in Fig. 3.

The evolution of the different integrals can be summarized as

follows:

(i) Integral S�: When starting from random phase values, the

initial � 2S� values are always close to zero for all test struc-

tures and become � 1.17, � 1,18, � 1.16 and � 1.09 at the end of

the respective convergent refinements.

(ii) Integral P: The initial P0 value of integral P is 0.50 for all

test structures and, as the phase refinement progresses, the

difference �P = P � P0 increases. �P is approximately

proportional to 2S� with the slopes hk�Pi equal to 0.171 (6),

0.155 (6), 0.159 (6) and 0.162 (5) for the four test structures

(Tables 3 and 4). Consequently, the following empirical linear

relationship between P and 2S� can be established,

P ¼ 0:50þ hk�Pi2S�: ð27Þ

(iii) Integral Q: To understand the significance of integral Q,

the integral

SDEL ¼

Z

V

�2
M dV ð28Þ

is also calculated for each test structure [it only depends on the

(|E| � h|E|i)2 quantities]. The corresponding SDEL values are

1.762, 1.790, 1.756 and 1.728. According to Tables 3 and 4, the

initial Q values are Q0 = 0.89, 0.89, 0.88 and 0.89, i.e. Q0’ 0.50

� SDEL. In addition, during the respective phase refinements,

the largest Q � Q0 differences are only 0.05, 0.01, 0.02 and

0.01. Consequently, it can be assumed that Q ’ Q0.

By taking all these results into account, R� can be simplified

to

R� ’ P0 þQ0ð Þ � 1 � hk�Pið Þ2S�: ð29Þ

Since P0, Q0 and hk�Pi can be considered nearly constant

during the phase refinement, it follows from (29) that mini-

mizing R� is essentially equivalent to maximizing S�.

4. The phase refinement modes in SMAR

Since most experimental results of SMAR have already been

discussed by Rius & Torrelles (2021, 2022) and in Section 3.2.1

of this contribution, only a selection of points directly related

to the topic of this article are treated here, grouped according

to the convergence mode.

4.1. The slow convergence mode

This mode only works with density functions, that is, the

positions of the atomic peaks are not used. This mode requires

the inclusion of the Fourier terms of all reflections (strong +

weak) in the calculation of � and �M. The �0 = �Mm�s� values

entered in the SMAR phasing formula are obtained as follows:

(i) For slightly negative � values (amounting to 50–55% of

the unit cell), the �0 values are 0.

(ii) For positive � values (regardless of their strength and

representing 45–50% of the unit cell), �0 is equal to �M.

(iii) Only for very negative � values (<1% of the unit cell

for t ’ 2.5), �0 is equated to � �M (the minus sign multiplying

�M tends to restore the sign of the very negative � value).
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Figure 3
Evolution of the normalized 2SMAR (top, in blue), (P � P0) (middle, in
red) and (Q � Q0) (bottom, in green) for a converging SMAR refinement
using Actinomycin Z3 data (Schäfer et al., 1998) (t = 2.5). See the heading
of Table 3 for further details.

Table 3
Evolution of � 2S� [equation (21)], P [equation (22)], Q [equation (23)]
and R� [equation (20)] during a converging default SMAR refinement
from random starting phases for Actinomycin Z3 (Schäfer et al., 1998),
normalized by division by SRO2 [equation (26)] (t = 2.5).

hk�Pi in (27) is the proportionality constant k�P averaged over the number of
refinement cycles. The columns headed 0 and � 1 list the number of zero and
negative voxels, respectively, in the �0 map in %. The columns headed CC�0

and CC�0 0 give the correlation coefficients before and after the ipp application.

Iteration � 2S� P Q R� k�P 0 � 1 CC�0 CC�0 0

1 0.000 0.518 0.888 1.41 – 49.75 0.17 0.002 0.515
2 � 0.436 0.574 0.880 1.02 0.169 51.60 0.09 0.307 0.652

5 � 0.622 0.601 0.890 0.87 0.162 52.32 0.08 0.425 0.710
10 � 0.678 0.614 0.898 0.83 0.168 52.39 0.10 0.457 0.729
15 � 0.700 0.621 0.905 0.82 0.172 52.48 0.10 0.467 0.745
20 � 0.724 0.624 0.913 0.81 0.172 52.53 0.11 0.479 0.746
21 � 0.744 0.628 0.915 0.80 0.172 52.62 0.10 0.491 0.767
22 � 0.826 0.642 0.936 0.75 0.172 52.91 0.09 0.533 0.800

23 � 1.070 0.687 0.944 0.56 0.175 55.00 0.07 0.664 0.876
24 � 1.164 0.710 0.936 0.48 0.172 54.65 0.08 0.714 0.906
25 � 1.169 0.710 0.934 0.48 0.172 54.70 0.07 0.717 0.908
29 � 1.166 0.710 0.938 0.48† 0.180 54.68 0.08 0.715 0.903

hk�Pi = 0.171 (6) (28�)

† R� value at the end of the converging refinement.

http://doi.org/10.1107/S2053273324009628


In summary, �0 corresponds either to unrestricted �M and

� �M values or to fixed �M = 0 ones. The mask used by the

SMAR algorithm results in smooth phase refinements based

only on density functions. On the other hand, the experimental

R�(�T) values calculated at the end of converging phase

refinements using (20) are 0.48, 0.42, 0.43 and 0.47 for Acti-

nomycin Z3, Suoa, Pep1 and Alpha1 peptide, respectively

(Tables 3 and 4). These values agree with the theoretical

estimation of R�(�T) ’ 0.50 found in Section 3.2.

Regarding the very negative densities, some of them are due

to the wrong input model (generated by the random starting

phases) and disappear during the convergence process. The

reductions observed in �0 are 0.17% ! 0.08% for Actino-

mycin Z3, 0.18% ! 0.06% for Alpha1 peptide, 0.18% !

0.02% for Pep1 and 0.17%! 0.01% for Sucrose (Tables 3 and

4). To get an idea of the effect of t on the phasing of the

intensity data of the four test structures, the sums of their total

number of successful trials (out of 25) were determined for t =

1.5, 2.0, 2.5 and 10.0 (in the last case, the negative densities are

all zero). The respective sums are 34, 76, 69 and 59 (Table S1 in

the supporting information). The largest sums are obtained for

t = 2.0 and 2.5 and the smallest for t = 1.5. For t = 10.0, the

resulting sum is slightly worse than for t = 2.0 or 2.5. These

results suggest that (i) the best t values are between 2.0 or 2.5,

and (ii) although they represent only a small percentage of the

unit cell, setting the very negative densities equal to zero is not

beneficial for phase refinement. A possible explanation of the

physical meaning of the very negative densities can be found

in Section 3.3 of Rius (2020). In any case, a future compre-

hensive study focusing on this point would be useful.

4.2. The fast convergence mode

In this mode, which is the default operating mode of the

SMAR algorithm, the part working only with density functions

is supplemented by an additional step in which �0 is modified

by the ipp method to give �00 (Rius & Torrelles, 2021), which in

turn replaces �0 in the � phasing formula (25). The ipp method

is an effective way of accelerating the phase refinement and

assumes that the approximate number N of expected atoms is

known (which is normally the case). Briefly explained, ipp

identifies in the �0 Fourier map those grid points closest to the

centers of the N largest peaks. The �0 values of the 27 inner-

peak grid points are then preserved for each peak and the

remaining grid points of the �0 Fourier map are set to zero,

giving rise to the new �00. In this way no interpolation is

required to find peak centers and, at the same time, the large

�0 values are preserved. Additionally, if the grid size �grid is

�0.33 Å, ipp implicitly applies the minimum interpeak

separation (mips) constraint. The criterion for considering a

positive maximum of the �0 Fourier synthesis a peak is that the

voxel closest to the peak center must be surrounded by 26

smaller nearest-neighbor voxels (some can even be negative).

Consequently, none of the nearest neighboring voxels can

become the center of another �0 peak. This means that for an

isometric grid element with �grid = 0.33 Å the average mips

value is 0.955 Å [the minimum, intermediate and maximum

separations are 2 � 0.33 � 1 = 0.67 Å (6�), 2 � 0.33 �
ffiffiffi
2
p

=

0.96 Å (12�) and 2 � 0.33 �
ffiffiffi
3
p

= 1.16 Å (8�), respectively].

According to (19), the value of R�(�T) is proportional to hm�i.

In the fast convergence mode, due to the application of ipp,

hm�i = 27N/Nvox, where Nvox is the total number of voxels in

the unit cell. For Actinomycin Z3, 27N = 33372 and Nvox =

664875, and hence hm�i = 0.05, much smaller than the typical

hm�i values for the slow convergence mode (�0.45).

Accordingly, R�(�T) = 1.12 � 0.05 = 0.06 is also much smaller

than in the slow convergence mode.

A characteristic of this mode is that the calculation of �(�)

only includes Fourier terms of those reflections satisfying the

|E| � |E|lim condition with |E|lim = 1.0, while the calculation of

�M(�) (and thus of �0) is always done with the Fourier terms of

all k reflections (Fig. 1). That only the large |E| values should

participate in the � update is certainly related to the fact that

only the 27 inner voxels close to the peak center are preserved

(the rest of the peak voxels become part of the zero mask).

This is supported by the fact that, in the slow convergence

mode, the Fourier terms of all reflections must be included in

the calculation of �(�).
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Table 4
As for Table 3 but for three additional test examples.

Only three stages of each phase refinement have been selected (at the beginning, when convergence begins and when it ends). In all three examples Q � Q0� 0.02
during the phase refinement.

Data set Iteration � 2S� P Q R� k�P 0 � 1 CC�0 CC�0 0

Suoa 1 � 0.033 0.517 0.893 1.38 – 49.71 0.17 0.024 0.602
(Oliver & Strickland, 1984) 13 � 0.747 0.617 0.890 0.76 0.157 53.62 0.04 0.504 0.753

27 � 1.180 0.702 0.900 0.42 0.171 56.44 0.01 0.742 0.917

hk�Pi = 0.155 (6) (26�)

Pep1 1 � 0.025 0.520 0.880 1.38 – 49.86 0.18 0.018 0.602
(Antel et al., 1995) 14 � 0.712 0.611 0.875 0.77 0.154 53.13 0.05 0.487 0.740

28 � 1.169 0.702 0.899 0.43 0.173 55.76 0.02 0.736 0.907

hk�Pi = 0.159 (6) (27�)

Alpha1 peptide 1 � 0.013 0.519 0.866 1.37 – 49.90 0.18 0.000 0.575
(Privé et al., 1999) 21 � 0.651 0.605 0.861 0.82 0.156 52.40 0.09 0.451 0.711

42 � 1.089 0.687 0.875 0.47 0.167 54.18 0.05 0.703 0.906
hk�Pi = 0.162 (5) (41�)

http://doi.org/10.1107/S2053273324009628


4.3. The correlation coefficient

In addition to estimating R�, the agreement of minuends

and subtrahends in (17) can also be estimated using the

correlation coefficient

CC�0 ¼
SMAR

P Qð Þ
1=2

ð30Þ

(using the density values before ipp for the slow convergence

case). For refinements reaching convergence, the found CC�0

values are 0.715 for Actinomycin Z3 (Table 3), 0.742 for Suoa,

0.736 for Pep1 and 0.705 for Alpha1 peptide (Table 4). These

moderately high correlation coefficients also confirm the small

discrepancy introduced in the CC�0 calculation by the g

contributions of those voxels with m� = 1. As expected, the

corresponding CC�0 0 values (also listed in Tables 3 and 4) are

much higher due to the smaller number of voxels with m� = 1,

e.g. CC�0 = 0.72 and CC�0 0 = 0.90 for Actinomycin Z3.

5. Conclusions

The main objective of this research was to complete the

theoretical aspects of the SMAR phasing algorithm. For this

purpose, the connection between �M and � has been examined

in detail. This leads to the general equation of � direct

methods (�-GEQ) which, written in its standard form, is �M =

� + g, where the density function g is mainly formed by a large

number of small positive B-type peaks. Two ways of using

�-GEQ have been investigated. In SMAR, �-GEQ is used in its

difference form, �M � � = g, while in � recycling it is used

solved for �, so � = �M � g. In this second case, it has been

shown that the �M tangent formula can be derived directly

from it by including a suitable mask.

Regarding the SMAR residuals it can be concluded that:

(i) R�(�) measures the [�(�) � �(�)s�]
2 differences in the

entire unit cell. The minimum value of R� is R�(�T) ’ 0.

(ii) The R�(�) residual is based on its basic equation (9), i.e.

�M(�T)m� � �(�T)m� = gm�, where �T are the � phases

corresponding to |�(�T)|.

(iii) R�(�) measures the [�M(�)m� � �(�)m�s�]
2 differ-

ences in the entire unit cell after considering that

�(�) ffi �(�)s�. The minimum value corresponds to R�(�T)

’ hm�i Ig2 where Ig2 ’ 1:12. It is shown that minimizing R�(�)

is essentially equivalent to maximizing the sum function S�(�)

[equation (21)], despite the presence of the m� mask in the

R�(�) definition. In all the examples calculated by the author,

the S� maximum (characterized by a sudden S� increase) is

always the true solution �T which stands out clearly from the

false solutions.

(iv) The convergence of SMAR is achieved by alternately

applying the � and � (or SMAR) phasing formulas in each

iteration. These are �new = phase of FT{�(�)s�} and ’new =

phase of FT{�M(�)m�s�}, respectively.

It has been found that at the start of a SMAR refinement,

the zero part of the mask (created by converting the slightly

negative density function values to zero) occupies 50% of V

and increases by �5% after convergence. According to

R�(�T) ’ 1.12hm�i the presence of the zero part of the mask

leads to a drop in the R� value when convergence begins, since

the volume of the regions with only a g contribution is

reduced. When the number N of expected atoms is actively

used (fast convergence mode), each SMAR iteration is

supplemented with the ipp application, which increases

significantly the volume of the zero part of the mask.

Finally, a brief reflection is in order. It is known that non-

crystalline materials have a continuous diffraction pattern and

that oversampling of the intensity data (Shannon, 1949) results

in an overdetermined system of equations from which the

phases can be solved (even at non-atomic resolution) (Miao et

al., 2000). It is also known that oversampling cannot be

applied to crystals due to their 3D periodicity. Here it is shown

that, in the case of crystals, the combination of �M and � each

with |�| produces two independent residuals while keeping the

same unknowns. This also leads to overdetermination which

should explain the observed efficiency of SMAR. It is also

interesting to note that the SMAR algorithm is particularly

well suited for Deep Learning due to its architecture.

APPENDIX A

Derivation of the general equation of d direct methods

A1. Definition and peak analysis of the dM Fourier synthesis

The term �M is defined in the unit cell by

�M r;�Tð Þ ¼
c

V

X

k

Ek

�
�

�
� � h Ej ji

� �
exp ði’kÞ exp ð� i2�krÞ;

ð31Þ

with {’} = �T and with c being an appropriate scaling constant.

It can be reformulated by making use of the �M = �P/2 equality

(Rius, 2012a), wherein �P is the Fourier synthesis which differs

from (31) only in that (|Ek| � h|E|i) is replaced by

(|Ek|2 � h|E|2i). Consequently, (31) can be written as

�M rð Þ ¼
c

2V

X

k

Ek

�
�

�
�2� h Ej j2i

� �

Ek

�
�

�
�

Ek

�
�

�
� exp ði’kÞ exp ð� i2�krÞ:

ð32Þ

By expressing (|Ek|2 � |E|2) and Ekj j exp ði’kÞ in terms of atom

positions, it follows that

�M rð Þ ¼

c

2V

X

k

1

Ek

�
�

�
�

X

j

f̂ j

X

l

X

mð6¼lÞ

f̂ l f̂ m exp i2�k rj þ rl � rm � r
� �� �

;

ð33Þ

with f̂ j denoting the normalized scattering factor of atom j. As

can be derived from (33), �M has N3 � N2 peaks at r = rj + rl �

rm (l 6¼ m), since exp ½i2�kðrj þ rl � rm � rÞ� is the unit for all

k. Of interest are the values of �M at the N atomic positions, i.e.

at r = rl with l = 1, N. It can easily be verified that there are

N � 1 superposed peaks contributing to �M(rl), i.e. those that

satisfy the equation rl = rj + rl � rm with l 6¼ m and j = m, e.g.

for N = 3 and r2 these are r1 + r2 � r1 and r3 + r2 � r3. To
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estimate the total strength of the �M peak at r = rl, expression

(33) is rearranged into

�M rð Þ ¼
c

2V

X

l

f̂ l

X

k

exp i2�k rl � rð Þ
� �

�
X

mð6¼lÞ

f̂ m exp � i2�krmð Þ
X

j

1

Ek

�
�

�
�

f̂ j exp i2�krj

� �
;

ð34Þ

with

X

j

1

Ek

�
�

�
�

f̂ j exp ði2�krjÞ ¼ exp ði’kÞ; ð35Þ

X

mð6¼lÞ

f̂ m exp ð� i2�krmÞ ¼ Ek

�
�

�
� exp ð� i’kÞ � f̂ l exp ð� i2�krlÞ:

ð36Þ

For r = rl, the exp i2�k rl � rð Þ½ � term in (34) becomes unity. In

addition, if (35) and (36) are considered, expression (34) can

be further simplified to

�M rlð Þ ¼
c

2V
f̂ l

X

k

Ek

�
�

�
� � f̂ l exp ði’kÞ exp ð� i2�krlÞ

h i
ð37Þ

¼
c

2

f̂ lNk

V

 !

h Ej jik � f̂ l� rlð Þ

" #

; ð38Þ

since
P

k jEkj = h|E|ikNk and, for an equal atom structure, it

holds that

1

V

X

k

f̂ l exp ði’kÞ exp ð� i2�krlÞ ¼ � rlð Þ: ð39Þ

The strength of an atomic peak in � is f̂ lNk=V, so (38) can

be simplified to

�M rlð Þ ¼ c
h Ej jik � ð1=

ffiffiffiffi
N
p
Þ

2
� rlð Þ ð40Þ

by considering f̂ l = 1=
ffiffiffiffi
N
p

. Finally, by making

c ¼ 2= h Ej jik � ð1=
ffiffiffiffi
N
p
Þ

h i
; ð41Þ

the strength of �M(rl) is equal to �(rl) in (40). The �M peaks

placed at atomic positions compose the set of type A peaks.

Let us consider the remaining �M peaks at r = rj + rl � rm

with l 6¼m and j 6¼m, which form the set of type B peaks. For a

given B peak, the corresponding r position is obtained by

adding the rj � rm, j 6¼ m, interatomic vector to the atomic

position vector rl, so the superposition of r with an atomic

position is accidental. Consequently, the strength of a (single)

B-type peak, e.g. at rjlm, is weaker than that of a �M(rl) peak

(formed by the superposition of N � 1 single peaks).

According to (40), it holds that

strength of �M rjlm

� �
� strength of � rlð Þ= N � 1ð Þ

� �
: ð42Þ

A2. The general equation for d(M) direct methods

According to the above results, �M(�T) contains two types

of positive peaks (A and B). Table 2 lists their peak strengths

and positions. The stronger peaks of type A correspond to �

and are resolved in the Fourier map. The N � 1 times weaker

peaks of type B are located at positions other than the

atomic positions (coincidence is accidental). Due to their large

number, i.e. N(N � 1)2 [for comparison, there are only

N(N � 1) non-origin peaks in the modulus function], these

peaks must have a strong overlap in the unit cell. The peaks of

type B are the main constituents of the g function. Conse-

quently, �M can be considered as the sum of both contribu-

tions, i.e.

�M rð Þ ¼ � rð Þ þ g rð Þ 8 r � V; ð43Þ

which is called the general equation of �(M) direct methods. In

the following, the subscript M is left out of the equation name

for the sake of generality. (Note that the g function could also

contain contributions from even weaker unconsidered peaks.)

A3. The dM Fourier synthesis expressed with the signs of the

|E| � h|E|i differences in the phase terms

In general, the Fourier coefficients of �M and � have

different moduli and may differ in phase values. This is not

obvious when comparing (2) and (4) because in both expres-

sions the corresponding Fourier terms have the same ’ phase

values (which is quite useful for programming). However,

when the absolute values ||E| � h|E|i| are used in the synthesis,

a phase shift �’ must be added to each ’ to take into account

the sign. Consequently, while the Fourier coefficients of � are

|E|exp(i’), those of �M are ||E| � h|E|i|exp[i(’ + �’)], with

�’ = 0 for |E| > h|E|i (strong reflections) and �’ = � for

|E| < h|E|i (weak reflections).

APPENDIX B

Solution of integral Ig2 =
R
V g2 dV

Assuming that the integrand of Ig2 is g2 = [�M(�T) � �(�T)]2,

squaring the binomial gives

Ig2 ¼

Z

V

�2
M �Tð Þ þ �

2 �Tð Þ � 2�M �Tð Þ � �Tð Þ
� �

dV: ð44Þ

The integral of the first two summands in (44) when expressed

in terms of the respective Fourier coefficients is

Z

V

�2
M þ �

2
� �

dV ¼
1

V

X

k

c Ek

�
�

�
� � h Ej ji

� �� �2
þ Ek

�
�

�
�2

n o

¼
1

V
c2 þ 1
� �X

k

Ek

�
�

�
�2� c2h Ej ji2

" #

: ð45Þ

If one proceeds analogously with the third summand in (44), it

follows that
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� 2

Z

V

�M �Tð Þ� �Tð Þ dV ¼

� 2c

V2

X

k

X

k0

Ek

�
�

�
� � h Ej ji

� �
Ek0

�
�

�
� exp i ’k þ ’k0ð Þ

� �

�

Z

V

exp � i2� kþ k0ð Þr½ � dr: ð46Þ

This means that the integral is zero except for k0 = � k where it

becomes V, so that the final term in (46) can be approximated

by

� 2c

V

X

k

Ek

�
�

�
� � h Ej ji

� �
Ek

�
�

�
� exp i ’k � ’kð Þ

� �
: ð47Þ

The values of the exponentials in (47) are 1, so that it reduces

to

� 2c

V

X

k

Ek

�
�

�
� � h Ej ji

� �
Ek

�
�

�
�: ð48Þ

By adding (45) and (48) and normalizing by
R

V
�2 dV =

Nkh Ej j2ik=V = Nk=V, the final expression of the integral Ig2 is

obtained, namely

Ig2 ¼ c � 1ð Þ
2
h Ej j2ik � c c � 2ð Þ h Ej jikð Þ

2
: ð49Þ

From the theory of the distribution of |E| values, the values of

h|E|2i, h|E|i (acentric case) and c ’ 2/h|E|i can be derived, i.e.

1.00, 0.89 and 2.25, respectively, so that (49) gives Ig2 ’ 1.12.

Note that Ig2 only depends on |E| and |E| � h|E|i, since the

phases cancel out. Consequently, the values of Ig2 for g2 equal

to [�M(�T) � �(�T)]2 and to [�M(�T) � �(�T)]2 are identical.
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