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X-ray diffraction is ideal for probing the sub-surface state during complex or

rapid thermomechanical loading of crystalline materials. However, challenges

arise as the size of diffraction volumes increases due to spatial broadening and

because of the inability to deconvolute the effects of different lattice defor-

mation mechanisms. Here, we present a novel approach that uses combinations

of physics-based modeling and machine learning to deconvolve thermal and

mechanical elastic strains for diffraction data analysis. The method builds on a

previous effort to extract thermal strain distribution information from diffrac-

tion data. The new approach is applied to extract the evolution of the

thermomechanical state during laser melting of an Inconel 625 wall specimen

which produces significant residual stress upon cooling. A combination of heat

transfer and fluid flow, elasto-plasticity and X-ray diffraction simulations is used

to generate training data for machine-learning (Gaussian process regression,

GPR) models that map diffracted intensity distributions to underlying ther-

momechanical strain fields. First-principles density functional theory is used to

determine accurate temperature-dependent thermal expansion and elastic

stiffness used for elasto-plasticity modeling. The trained GPR models are found

to be capable of deconvoluting the effects of thermal and mechanical strains, in

addition to providing information about underlying strain distributions, even

from complex diffraction patterns with irregularly shaped peaks.

1. Introduction

Understanding and controlling the development of residual

stress during traditional welding, and now additive manu-

facturing (AM), is an ongoing challenge. Rapid, localized

heating then solidification leads to large thermal stresses

which, in turn, lead to plastic flow and residual stress. These

residual stresses can drive hot-cracking or cause such severe

distortions that a part is unusable. Optical and thermography

measurements provide a means to characterize the tempera-

ture gradients driving stress development (Moylan et al., 2014;

Everton et al., 2016; Fox et al., 2017; Fisher et al., 2018;

Montazeri et al., 2019; Dunbar & Nassar, 2018; Forien et al.,

2020; Ashby et al., 2022), but are limited to the surface. In

addition, while significant focus has been placed on developing

high-speed X-ray imaging at synchrotron sources to monitor

melt pool characteristics and the development of porosity in

support of AM processing, the use of scattering and the study

of stress development have been limited in comparison.

However, recent work is building upon imaging efforts to also

use scattering to study complex rapid solidification processes

(Kenel et al., 2016; Calta et al., 2018; Cunningham et al., 2019;

Hocine et al., 2020; Oh et al., 2021a; Oh et al., 2021b; Thampy et

al., 2020; Silveira et al., 2023; Chen et al., 2023; Scheel et al.,
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2023; Dass et al., 2023). More specifically, diffraction processes

are capable of monitoring the development of texture, phases

and residual strains (and related stress).

An acute challenge in using diffraction to monitor stress

development in combined thermal and mechanical loading is

that both temperature and mechanical stress alter the state of

the crystal lattice (which is what is probed during diffraction

measurements). Specifically, in cubic crystal types, both

temperature and hydrostatic stress will alter the volumetric

portion of the lattice strain tensor in the same fashion, making

deconvolution of the effects difficult. Assumptions can be

made regarding whether the thermal or mechanical alterations

to the lattice state are dominant for analysis, but these can

introduce significant uncertainty into interpretation of data

when magnitudes become approximately equal. In addition,

the spread of thermal and mechanical strain distributions

through a diffraction volume can be extensive, particularly

when using high-energy X-rays in transmission through thick

specimens. A single diffraction image (projection) does not

provide sufficient information for direct reconstruction of the

distributions present.

To overcome these challenges, we present a machine

learning (ML) approach in which Gaussian process regression

(GPR) models are trained to learn the relationship between

diffraction patterns underlying thermomechanical strain

distributions. The ML training process is supported by physics-

based modeling of the heating and cooling processes that lead

to stress development. This modeling, along with accurate

diffraction simulations, is used to create a ‘dictionary’ of

diffraction patterns for ML model training. The trained ML

model is then transferred to the analysis of experimental data.

To attain accurate thermal and mechanical properties, density

functional theory (DFT) is utilized. This work builds on our

previous effort to extract temperature (thermal strain) distri-

bution metrics from in situ diffraction patterns (Lim et al.,

2023). However, as mentioned, due to convolution of the

effects of thermal and mechanical strain, this previous effort

was only accurate at high temperatures. Transfer learning is

particularly appropriate for cases where the underlying

physics is fairly well understood and modeled. Any uncer-

tainty in the accuracy of the model may have implications for

‘transferring’ to real data. Thus, high-fidelity models are

required and improvements to our previous work have been

made through the following advances: (i) the use of DFT for

temperature-dependent thermomechanical properties, (ii)

modeling of stress distributions using a thermomechanical

elasto-plasticity model, (iii) update of the X-ray diffraction

modeling framework to incorporate anisotropic lattice strains

during mechanical loading, and (iv) update of the GPR model

training to utilize anisotropic diffraction ring expansion and

contraction.

The approach is demonstrated through extraction of

thermal and elastic strain distribution metrics from a wall

specimen of Inconel 625 in a transmission geometry that has

become a standard for in situ AM experiments. An overview

of the data processing workflow is provided in Fig. 1. This

work begins by describing the experimental data to be

analyzed in Section 2. Next, in Section 3, summaries of the

various physics models used for GPR model training are

provided. The GPR models used and their training are

described in Section 4. The trained GPR models are then

applied to experimental in situ diffraction data in Section 5.

The article ends by discussing the approach and avenues for

future study in Section 6.
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Figure 1
Overview of the simulations used to train Gaussian process regression (GPR) models for X-ray diffraction data analysis. The trained models are
subsequently transferred to the target (experimental) domain to separate thermal and mechanical strain effects from experimental X-ray diffraction
data. Temperature fields Tðr; tÞ and temperature-dependent properties [Young’s modulus EðTÞ, Poisson’s ratio �ðTÞ and coefficient of thermal expansion
�ðTÞ] are used as input for thermomechanical modeling to predict evolving thermal "Tðr; tÞ and elastic strains """Eðr; tÞ. These strains are used for input
into X-ray diffraction simulations and GPR model training. The trained GPR models are then used for analysis of experimental data.



2. Material and experiment description

The material tested was Inconel 625 (IN625) which was

extracted from a block built using laser powder bed fusion at

the National Institute of Standards and Technology (NIST)

(Levine et al., 2020). The block was built in an EOS M290

system using powder also obtained from EOS. The block

dimensions were 50 � 15 � 6 mm, where the 6 mm direction

is the build direction. The build followed manufacturer

recommendations (Son et al., 2020) of laser power of 285 W,

laser speed of 960 mm s� 1 and interlayer rotation of 67.5�.

After build, the specimen was stress-relief heat treated at

800�C for 2 h. A wall specimen was then extracted using

electro-discharge machining with dimensions of 15 � 0.53

� 3 mm, with the 3 mm dimension being aligned with the

build dimension. Previous characterization (including electron

backscatter diffraction) of the material found that the grain

size ranged from approximately 10 to 100 mm with a mean

between 25 and 30 mm (Lim et al., 2023).

The wall specimen was then used for an in situ laser melting

experiment at Sector 1-ID of the Advanced Photon Source.

An existing in operando laser powder bed fusion (LPBF)

simulator (Zhao et al., 2017) consisting of a laser and control,

sealed chamber and sample staging was used for laser melting.

A schematic of the experimental geometry is provided in Fig.

2. The laser system was composed of a ytterbium fiber laser

(IPG YLR-500-AC) controlled with an intelliSCANde 30.

Using this system, the laser was rastered along the top of the

wall specimen in the x direction at velocity v with magnitude

of 0.05 m s� 1 and power P of 120 W (2400 J m� 1), generating

a relatively large high-temperature region and resulting resi-

dual stresses. During laser melting, a primarily uniaxial tensile

residual stress developed along the top of the wall specimen.

This process consisted of (i) rapid expansion during heating,

(ii) compressive stresses sufficiently high to generate plastic

flow and permanent compression, and (iii) extension and

tensile loading as the specimen cooled to accommodate

compatibility. The primary tensile mechanical ("E
xx) strains that

develop during cooling are also illustrated on the specimen in

Fig. 2.

During the laser melting, the wall specimen was illuminated

by a 61.332 keV X-ray beam (Yb K�) with dimensions of

50 mm (along x) � 30 mm (along z). The energy divergence of

the beam was 5� 104. The diffraction data were collected

using a Pilatus3 X CdTe 2M detector sitting 752 mm down-

stream of the sample. The beam center was placed 20 mm

below the top of the specimen and the sample and beam were

fixed as the laser passed over the diffraction volume. The

detector was positioned such that five complete (111, 200, 220,

311, 222) and one nearly complete (400) diffraction peaks

were measured on the detector (maximum 2� angle of 13�).

Diffraction data were collected for 4 s at a rate of 250 Hz and

exposure time of 1 ms, with data collection synchronized such

that the laser passed over the diffraction volume at 0.2 ms.

Representative diffraction images collected before and after

laser melting are shown in Figs. 3(a) and 3(b), respectively. We

note that, with the rapid data collection rate, minor phases

such as the � phase do not diffract sufficient intensity to be

characterized.

For use in ML models (described below), each diffraction

image was then integrated into six different azimuthal bins,

which are illustrated in Fig. 4(a). The bins (blue) along the

image horizontal are aligned with projections of the strain
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Figure 2
Schematic of the (simulation and experiment) geometry for the wall laser
melting experiment. The inset indicates points where diffraction
measurements and simulations were performed with respect to the top of
the sample. The X-ray beam was centered 20 mm below the sample
surface during the experiment (shaded green), while the X-ray beam was
centered 20, 40 and 60 mm below the sample surface for various simula-
tions used in GPR model training.

Figure 3
Representative diffraction images from (a) the experimental sample
before laser melting, (b) the experimental sample after laser melting, (c) a
thermomechanical simulation used for GPR surrogate model training.
Maximum intensity thresholds have been selected for each image to make
the diffraction peaks and their extent visible.



tensor """ near the x direction ("xx), while vertical bins (red) are

projections near the z direction ("zz). The other four sets of

bins (orange, green, teal, purple) further capture the aniso-

tropy of the diffraction ring evolution. Once integrated, the six

sets of 1D diffraction profiles were concatenated into a single

vector, illustrated in Fig. 4(b). This choice of binning strategy

was made as a compromise between probing a sufficient

number of grains along different directions while still

capturing the anisotropy of diffraction ring shape changes due

to multiaxial elastic strains.

3. Training data generation

3.1. Heat transfer and fluid flow

The heat transfer and fluid flow modeling that is used to

generate input temperature fields is discussed in detail by

Mukherjee et al. (2018a, 2018b). The model is designed to be

capable of simulating the LPBF process, but modeling of

melting of solid materials is also possible. The code uses a

finite difference scheme to simultaneously solve for conser-

vation of mass, energy and momentum. An adaptive grid is

used with the calculation grid refining around the current

position of the laser spot and melt pool (i.e. the regions with

largest thermal gradients and the melt pool interface). The

conditions and material parameters mirror those found in the

previous effort upon which this work builds (Lim et al., 2023),

with the only modification being that the simulations were re-

performed with an extended cooldown period (5 s) to allow

the specimen to cool closer to room temperature for more

input into the thermomechanical processing. The material

properties used for simulations were calculated using JMatPro

(Saunders et al., 2003) and are summarized in Table 1.

A series of simulations were performed rastering a simu-

lated laser heat source over the top of wall specimens with the

same thickness (0.53 mm) and height (3 mm) as in the

experiment. The length of the specimen was 11.5 mm to

reduce computational cost. The heat source moved along the

top surface (normal z) in the x direction. Following Lim et al.

(2023), nine different simulations were performed around the

nominal experimental laser setting (power and speed varied)

with the same approximate laser size and they are summarized

in Table 2. The extra thermomechanical simulations beyond

120 W and 0.04 m s� 1 help to compensate for any uncertainty

in the laser parameters applied during the experiment. After

the heat source passed over the length of the specimen, the

sample was allowed to cool for 5 s, as mentioned. The primary

outputs are temperature fields T(r), where r denotes position,

saved at a rate of 500 Hz as the heat source moved and then

100 Hz as the sample cooled for a total of 150 time steps. As

mentioned, the code adaptively changes the calculation grid

throughout the simulation for computational efficiency. To

research papers

4 of 14 Rachel E. Lim et al. � Deconvoluting thermomechanical effects using ML Acta Cryst. (2025). A81

Figure 4
(a) Illustration of the six sets of azimuthal bins (colored) around which
diffraction images were integrated. (b) Concatenation of the 1D intensity
data from the different bins for use in ML models. A comparison of
representative experimental and simulated diffraction data is shown.

Table 1
IN625 model parameters used in the heat transfer and fluid flow modeling
calculated using JMatPro.

Thermal conductivity and specific heat are temperature T dependent (units
K).

Model parameter Value

Density (kg m� 3) 8440
Solidus temperature (K) 1563
Liquidus temperature (K) 1623

Specific heat (J/kg/K) 360.4 + 0.26T � 4 � 10� 6 T2

Thermal conductivity (W/m/K) 0.56 + 2.9 � 10� 2T � 7 � 10� 6 T2

Latent heat of fusion (J kg� 1) 209.2 � 103

Viscosity (kg/m/s) 5.3 � 10� 3

Temperature coefficient of
surface tension (N/m/K)

� 0.37 � 10� 3

Surface tension (N m� 1) 1.82

Absorptivity factor 0.3
Emissivity factor 0.4

Table 2
Table summarizing the data sets generated for GPR.

Thermomechanical simulations were performed with different laser powers
and velocities, in addition to X-ray simulations moving the position of the

X-ray beam with respect to the top of the sample.

No. Power (W) Velocity (m s� 1) X-ray position (mm)

1 100 0.04 20
2 100 0.04 40

3 100 0.04 60
4 100 0.05 20
5 100 0.05 40
6 100 0.05 60
7 100 0.06 20
8 100 0.06 40

9 100 0.06 60
10 120 0.04 20
11 120 0.04 40
12 120 0.04 60
13 120 0.05 20
14 120 0.05 40
15 120 0.05 60

16 120 0.06 20
17 120 0.06 40
18 120 0.06 60
19 140 0.04 20
20 140 0.04 40
21 140 0.04 60

22 140 0.05 20
23 140 0.05 40
24 140 0.05 60
25 140 0.06 20
26 140 0.06 40
27 140 0.06 60



prepare the temperature fields for use in the next steps of the

workflow (Fig. 1), the simulations were post-processed using

bilinear interpolation to remap the output to a regular grid

with a point spacing of 20 mm.

3.2. Thermomechanical model

Once the nine time series temperature fields were calcu-

lated from the heat transfer and fluid flow modeling, they were

used as external data inputs for an elasto-plasticity model in

ANSYS (ANSYS, 2011) to generate thermal "TðrÞ and elastic

strain """EðrÞ fields. The element type used was eight node

‘brick’ elements with three degrees of freedom (translations in

x, y and z) at each node. Element sizes ranged from 125 to

140 mm (approximately 10000 elements per simulation) along

their edges.

In the model used (Taylor et al., 1970; ANSYS, 2011), strains

are additively decomposed into thermal, elastic and plastic

portions with the total deformation field being that required to

maintain compatibility,

""" ¼ "TIþ """E þ """P: ð1Þ

The thermomechanical model employed includes thermal

expansion,

"""T ¼

ZT

T0

�ðTÞ dT; ð2Þ

and temperature-dependent isotropic linear elasticity,

"""E ¼
1þ �ðTÞ

EðTÞ
r �

�ðTÞ

EðTÞ
TrðrÞI: ð3Þ

Plasticity is governed by rate-independent J2 plasticity and

linear hardening where yielding occurs when

�YðTÞ þHðTÞ ~"P ¼ ~�; ð4Þ

where �YðTÞ is the initial temperature-dependent yield

strength, HðTÞ is the temperature-dependent hardening rate,

~"P is the equivalent plastic strain and ~� is the equivalent (von

Mises) stress. If the stresses are sufficient to initiate yielding

(and ultimately the development of residual stress), plastic

flow occurs. As the literature is limited regarding temperature-

dependent properties of specific alloy compositions, the

temperature-dependent coefficient of thermal expansion �ðTÞ

and the elastic moduli, Young’s modulus EðTÞ and Poisson’s

ratio �ðTÞ were determined using first-principles DFT. The

process by which these values were calculated is presented in

Appendix A (Section A1). The thermal expansion and elastic

moduli used for thermomechanical model input are provided

in Fig. 5. The temperature-dependent coefficient of thermal

expansion measured from the same IN625 build as the

experimental thin wall with dilatometry and used to evaluate

the DFT results is also provided in Fig. 5(a). The tabulated

yield and hardening parameters were determined from a

combination of mechanical tests (�500�C) performed on the

same material and IN625 parameters built into the ANSYS

package (Table 3).

Each time step takes the previously calculated thermal field

and calculates local thermal strains [equation (2)] from the
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Figure 5
Temperature-dependent (a) coefficient of thermal expansion �, (b)
isotropic Young’s modulus E and (c) isotropic Poisson’s ratio � used as
input for the finite element simulations of the development of thermal
and residual stresses in the AM IN625 wall specimens derived from the
single-crystal elastic moduli calculated from DFT. Dilatometer
measurements of thermal expansion used to evaluate the DFT results are
also provided in (a).

Table 3
Temperature-dependent yield �Y(T) and hardening H(T) parameters
used in the elasto-plasticity simulations.

Temperature (�C) �Y(T) (MPa) H(T) (MPa)

25 691 395
500 615 395

816 260 286
982 105 35
1093 57 20



temperature-dependent coefficient of thermal expansion

previously calculated using DFT (Shang et al., 2024). A strain

field is then calculated which satisfies both compatibility (in

conjunction with the thermal and plastic strain) and

mechanical equilibrium. In all thermomechanical simulations,

the thermal gradient was sufficient to initiate yielding and

plastic flow. While plastic strain does not directly alter the

crystal lattice and resulting diffraction, the deformation

incompatibility created by the plastic strain gives rise to elastic

strain and stress distributions which are measurable through

diffraction. Fig. 6 shows representative fields (P = 120 W, v =

0.05 m s� 1 and spot diameter of 100 mm) calculated by the

thermomechanical model as the laser passes over the sample

[Figs. 6(a), 6(c), 6(e) and 6(g)] and after cooling [Figs. 6(b),

6(d), 6(f) and 6(h)]. The thermal and elastic strains are plotted

with different color scales due to the large differences in

maximum magnitude. Important to note are the relatively

large residual tensile "E
xx strains that develop during the

cooling process.

To facilitate X-ray diffraction simulations from the elasto-

plasticity results, a series of scripts were developed to convert

ANSYS mechanical data into a format compatible with X-ray

simulations. This effort included developing (i) a new Python-

based binding for ASCII output of ANSYS data; (ii) a script to

convert element position, stress and strain data into the

coordinate system used by the diffraction simulation frame-

work; and (iii) developing a framework to interpolate ther-

momechanical data onto a finer grid (20 mm spacing)

necessary for diffraction simulations.

3.3. X-ray diffraction simulations

The forward modeling framework for generating synthetic

diffraction patterns for model training utilizes HEXRD

(Bernier et al., 2011; Nygren et al., 2020) and is described in

more detail by Pagan et al. (2020). Simulations build on our

previous effort (Lim et al., 2023), but have now been modified

to include the anisotropic scattering effects of the deviatoric

portion of the elastic strain tensor on the diffraction simula-

tions. The series of nine elastic strain """EðrÞ and thermal strain

fields "TðrÞ (remapped to a 20 mm grid) calculated from

thermomechanical simulations were used as input for the

diffraction simulations. A scattering volume is built around

each field point in which discrete scattering crystals can be

placed. Here, grains are modeled with a 25 mm equivalent

grain size so two crystals are inserted around each scattering

volume for over 200 crystals in the diffraction volume. Each

crystal is modeled with 1� of misorientation to provide a finite

peak width perpendicular to the radial direction on the

detector and ease numeric issues associated with calculating

the diffraction condition. The crystals are randomly oriented

which is consistent with the lack of texture found in the heat-

treated IN625 being modeled. Here we project the macro-

scopic elastic and thermal strains onto the discrete diffracting

crystals.

To model the effects of thermal and elastic strains, the

reciprocal-lattice vectors, g, within each grain are stretched

from a reference g0:

g ¼ ðI � "TI � """EÞ � g0: ð5Þ

The reference cubic lattice parameter used for calculation of

g0 was 3.5981 Å. At each time step, diffraction from a set of

lattice planes within a grain is determined to occur based on

the incoming X-ray energy and bandwidth,

ko � ki ¼ g; ð6Þ

where ko and ki are the outgoing and incoming wavevectors,

respectively. The list of reciprocal-lattice vectors (lattice

planes) checked had a maximum 2� of 13�, matching the

experiment. The diffraction events are then projected to the

detector. Here the instrument geometry and detector were

selected to match the experiment. If the temperature within a

scattering volume exceeds the solidus temperature, no

diffraction event is projected. Diffraction events from

different sets of lattice planes are weighted by the structure

factor. Drops in intensity due to absorption are neglected as

this effect is minimal at high energy. Here, we emphasize that

as the reciprocal-lattice vectors in grains modeled at different

positions are stretched by varying amounts based on the

thermal and elastic strain fields, both diffraction peak shifts

and broadening are naturally captured. Specifically, we

capture broadening of a diffraction peak from distributions of

temperature and mechanical strain in the diffraction volume,

broadening from the relatively large diffraction volume size

and broadening from the finite-energy bandwidth (see Pagan

et al., 2020). We do not specifically incorporate broadening

from grain-to-grain strain interactions from elastic anisotropy

or dislocation broadening as plastic strain accumulates. In this

case, the extreme thermomechanical distributions present in

the diffraction volume are assumed to be the dominant source

of broadening. The modeled broadening is a key feature for

the ML model to learn with regards to the distributions of

strain present in the diffraction volume.
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Figure 6
Representative fields from the thermomechanical simulations (P = 120 W,
v = 0.05 m s� 1 and spot diameter of 100 mm) as the laser is passing
overhead: (a) T, (c) "T, (e) "E

xx and (g) "E
zz. Representative fields from the

same laser parameter simulation after cooling: (b) T, (d) "T, (f) "E
xx and

(h) "E
zz.



Diffraction simulations for each elasto-plasticity simulation

were repeated three times with the beam placed at 20, 40 and

60 mm from the top of the specimen and the rastering laser

beam (see Fig. 2). Note that the experiment was only

performed with the beam centered at 20 mm from the sample

surface. The purpose of this is twofold. Performing simulations

at different X-ray beam positions on the sample increased the

amount of diffraction images generated for model training,

and it helped to account for any uncertainty in beam place-

ment with respect to the temperature field in the sample. In

total, 27 sets of X-ray simulations in conditions similar to the

experiment (three different diffraction volumes for each of the

nine laser conditions simulated) were performed, with 75

diffraction images from each. This produced 2025 diffraction

images in total for GPR model training. Once the 2D

diffraction patterns were simulated for the entire time series,

each pattern was integrated azimuthally in the same fashion as

the experimental data, which is illustrated in Fig. 4. Note that

the mismatch between synthetic and experimental data of the

relative intensities of each peak within each color highlights

the local variations of texture due to the combination of beam

and grain size. After integration, background scattering was

added to the same data of the same magnitude as that

observed in the experiment.

4. ML model and training

GPR (Williams & Rasmussen, 2006) was used for learning the

mapping between diffraction data and the distributions of

thermal and elastic strain present within the diffraction

volume. The approach here is an extension of our previous

effort of mapping isotropic diffraction ring evolution to

temperature (thermal strain) fields present, to now map

anisotropic diffraction ring evolution (both peak shifts and

broadening) to elastic and thermal strain distributions present.

GPR assumes a normal distribution of mapping functions, f

(here strain field metrics), from input data, x (here diffracted

intensity distributions along different sample directions). The

mean mapping function (�f ) from the normal distribution is the

prediction of the model. A natural benefit of the approach is

that uncertainty is estimated from the variance of the mapping

functions. Other ML approaches, such as neural networks, do

not as readily provide measures of the uncertainty of predic-

tions. The mapping functions learned are linear combinations

of input training data x�, where the coefficients are dependent

on the similarity of the training and input data. If input data

are similar (here determined by Euclidean distance) to

training data, those training data are more heavily weighted,

as dictated by the chosen covariance function (see below). In

addition, if the input data for the model are not similar to any

training data, the uncertainty of the model prediction

increases.

For model training, we use the rational quadratic covariance

function (kernel) k as opposed to the more common expo-

nentiated quadratic kernel. The rational quadratic kernel is

given as

kðxa; xbÞ ¼ 1þ
jjxa � xbjj

2

2�L2

� �� �

; �> 0; ð7Þ

where xa and xb are two input data points, while � and L

control the decay rate for weights. As � decreases, training

data of increased dissimilarity from the input data are incor-

porated into model predictions, while L provides a further

control if necessary. Here, we use L = 1 and � = 1. The choice

of the rational quadratic kernel slows the decay of the inter-

polation, leading to more training data points being used in

each prediction.

For GPR model training and testing, 26 of the data sets

were used, while one (No. 13, see Table 2) was reserved for

testing. We trained 16 different GPR models to learn mapping

between the mean, maximum, minimum and standard devia-

tions (STDs) of "T, "E
xx, "E

xz and "E
zz within the illuminated

diffraction volume and the diffraction data. For these simu-

lations (and the experiment), "E
xz is minimal across the sample;

however, this still provides a further test of the model. In this

diffraction geometry, the projections of g along y are minimal

and as such "E
yy, "E

xy and "E
yz are not probed. We note that the

trained GPR models are not fitting analytic functions to the

peaks, and thus not restricted to regularly shaped diffraction

peaks (e.g. Gaussian or Lorentzian) and are capable of

mapping ‘split’ peaks or those with long tails to underlying

strain distributions (Lim et al., 2023).

To examine the accuracy of the predictions of the trained

GPR models, the reserved testing data set was used as input

for the trained models and the output predictions were then

compared with the true thermomechanical distribution

quantities. Fig. 7 shows the comparisons between mean strains

in diffraction volumes from the thermomechanical model

output (here serving as ground truth) and predictions from the

trained GPR model using diffraction data as input. Figs. 7(a),

7(b), 7(c) and 7(d) correspond to "T, "E
xx, "E

zz and "E
xz. Note the
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Figure 7
Accuracy predicting reserved testing data of trained surrogate models to
determine the mean of (a) "T, (b) "E

xx, (c) "E
zz and (d) "E

xz within a
diffraction volume from input diffraction spectra. The dashed blue line
denotes one-to-one correlation, and the black line is a linear fit.



difference in strain scales between thermal and elastic strains

(due to large differences in magnitude) which will continue

through the rest of the work. In general, the GPR model

predictions for mean strains are accurate with the ground

truth falling within the uncertainty bounds. In Fig. 7(a), the

thermal strain "T
Mean predictions tend to be closer to the

ground truth at room temperature, with deviations at higher

strains (temperatures). For the primary mechanical strains

"E
xx-Mean in Fig. 7(b), the opposite is true: the accuracy tends to

be better at larger strains. The predictions of the mean "E
zz-Mean

and "E
xz-Mean generally fit well within the strain bounds where

there are data (besides a small number of outliers), but we

note that the magnitude of mean strains is relatively low for

these strain components.

Often of more interest are the maximum and minimum

strains, particularly the maximum, within the diffraction

volume. Fig. 8 shows comparisons between maximum strains

in the reserved testing data and the various GPR model

predictions. For "T
Max: in Fig. 8(a), there is a small under-

prediction of the maximum strain at higher strain (tempera-

ture values). This is similar to "E
xx-Max: in Fig. 8(b) which also

shows some degree of under-prediction at higher strain values.

In Figs. 8(c) and 8(d), it can be seen that there is a small under-

prediction of "E
zz-Max: and "E

xz-Max:, respectively, across the

diffraction ranges of strain shown. The under-predictions

across all strain components may be related to very small

volume fractions of material in general contributing the

diffraction peaks in comparison with the mean. Similarly to

Fig. 8, Fig. 9 shows comparisons between minimum strains in

the reserved testing data and the various GPR model

predictions. The predictions of the minimum thermal strains

"T
Min: in Fig. 9(a) generally match well the ground truth across

the total strain range. For the minimum "E
xx strains, the trends

differ from predictions of the maximum in that there is a small

over-prediction across the strain range. For "E
zz-Min: and

"E
xz-Min:, the strains are generally slightly under-predicted at

high strain values and over-predicted at lower strain values, as

seen in Figs. 9(c) and 9(d).

The final strain metric for which GPR models were trained

to extract from the diffraction data was the standard deviation

(STD) of the distributions of strain within a diffraction

volume. The results of the trained models for STD for "T, "E
xx,

"E
zz and "E

xz are shown in Figs. 10(a), 10(b), 10(c) and 10(d),

respectively. The predictions of STD across GPR models

across all strain types and components tend to under-predict
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Figure 8
Accuracy predicting reserved testing data of trained surrogate models to
determine the maximum of (a) "T, (b) "E

xx, (c) "E
zz and (d) "E

xz within a
diffraction volume from input diffraction spectra. The dashed blue line
denotes one-to-one correlation, and the black line is a linear fit.

Figure 9
Accuracy predicting reserved testing data of trained surrogate models to
determine the minimum of (a) "T, (b) "E

xx, (c) "E
zz and (d) "E

xz within a
diffraction volume from input diffraction spectra. The dashed blue line
denotes one-to-one correlation, and the black line is a linear fit.

Figure 10
Accuracy predicting reserved testing data of trained surrogate models to
determine the standard deviation of (a) "T, (b) "E

xx, (c) "E
zz and (d) "E

xz

within a diffraction volume from input diffraction spectra. The dashed
blue line denotes one-to-one correlation, and the black line is a linear fit.



the spread of the temperature distributions. This again is likely

due to the very small contributions of extreme values (parti-

cularly maximums) which contribute very little intensity to the

diffraction pattern. However, the GPR models are not

predicting any aphysical STD values (such as a negative

value).

5. Application to experimental data

The trained GPR surrogate models were used to analyze the

evolution of the thermal and elastic strains within the

diffraction volume during the in situ laser melting experiment

described in Section 2. As mentioned, the raw experimental

diffraction images were azimuthally binned into six different

1D line profiles that were concatenated into a single vector

(Fig. 4). Results from applying the model to a single laser pass

are presented; results from applying the trained surrogate

models to a second laser pass at a different position on the

same sample are provided in Appendix A (Section A2). Fig. 11

shows the output metrics associated with thermal strains in the

diffraction volume during the in situ experiment. The means of

the GPR predictions from each diffraction measurement are

shown with black dots, while the red error bars are the

variance of the GPR predictions which can be used as a

measure of uncertainty. The mean [Fig. 11(a)], maximum [Fig.

11(b)] and minimum [Fig. 11(c)] of the distribution of thermal

strains all show a spike in thermal strain as the laser passes

over the diffraction volume at 0.2 s. In addition, the STDs of

the distributions [Fig. 11(d)] also rapidly increase as the laser

passes over the specimen and then decrease back to near zero,

which is expected as the entire specimen returns to room

temperature.

Fig. 12 shows the output distribution metrics from the

trained GPR models for "E
xx. In the "E

xx output metrics, there

appears to be a small non-zero tensile strain at the beginning

of the test (possibly from sample mounting or manufacture)

which then becomes compressive as the laser passes over the

sample. As the sample cools, the expected tensile residual

stress develops with a larger magnitude than the original

tensile strain at the beginning of the test. The general behavior

of these strain distribution metrics output from the GPR
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Figure 11
The evolving (a) mean "T

Mean, (b) maximum "T
Max:, (c) minimum "T

Min: and
(d) standard deviation "T

STD of the distribution of thermal strain within
the experimental X-ray diffraction volume with respect to time t
extracted using trained GPR surrogate models. The red error bars
correspond to the square root of the variance (standard deviation) of the
GPR surrogate model predictions.

Figure 12
The evolving (a) mean "E

xx-Mean, (b) maximum "E
xx-Max:, (c) minimum

"E
xx-Min: and (d) standard deviation "E

xx-STD of the distribution of elastic
strain within the experimental X-ray diffraction volume with respect to
time t extracted using trained GPR surrogate models. The red error bars
correspond to the square root of the variance (standard deviation) of the
GPR surrogate model predictions.

Figure 13
The evolving (a) mean "E

zz-Mean, (b) maximum "E
zz-Max:, (c) minimum

"E
zz-Min: and (d) standard deviation "E

zz-STD of the distribution of elastic
strain within the experimental X-ray diffraction volume with respect to
time t extracted using trained GPR surrogate models. The red error bars
correspond to the square root of the variance (standard deviation) of the
GPR surrogate model predictions.



model is consistent with the evolution of strains expected from

simulation (see Fig. 6). The most critical observation is that the

GPR surrogate models appear to be able to isolate the rela-

tively small (in comparison with the thermal strains)

compressive mechanical strains that occur due to localized

heating, while simultaneously capturing the large thermal

strains [Fig. 11(a)]. In addition, the STD of "E
xx shown in Fig.

11(d) increased from the start of the test and did not decay as

the temperature fell, reflecting the distributions of residual

strain in the specimens.

The GPR model distribution metric outputs from the other

two strain components, "E
zz and "E

xz, are shown in Fig. 13 and

Fig. 14. In the distributions in Fig. 13, a difference of behavior

is observed between the maximum [Fig. 13(b)] and minimum

strains [Fig. 13(c)] in the distribution. While the maximum

strains become slightly tensile as the laser passes over the

specimen, the minimum strains become negative and then

remain negative through cooling. The final mean of the

distribution of "E
zz is consistent with unconstrained Poisson

contraction from the tensile residual strains that developed.

Similar to "E
xx-STD, "E

zz-STD peaks as the laser passes over the

sample then decays to a value marginally larger than at the

start of the test [Fig. 14(d)]. The distribution metrics of "E
xz

generally show similar trends to those of "E
zz as can be see in

Fig. 14. However, the STD of the distribution of shear strains

"E
xz-STD is at a minimum as the laser passes over the diffraction

volume.

6. Discussion

Here, we demonstrated a machine-learning-enabled approach

to analyzing complex diffraction patterns from volumes

containing distributions of thermal and mechanical strains.

Future application of this approach is to support the devel-

opment of new classes of process diagnostics for (additive)

manufacturing. Porosity from lack-of-fusion or keyholing and

residual stress from unexpected process excursions are still

challenges leading to failed builds. Surface optical measure-

ments and thermography provide some insight into porosity

formation, but in particular do not provide insight into resi-

dual stress development. While not immediate, rapid advances

in high-brightness laboratory X-ray source technology [e.g.

current metal jet (Larsson et al., 2011) and future thin-film

diamond sources (Kandlakunta et al., 2019; Tan et al., 2022)]

could lead to in-chamber AM diagnostics. To characterize the

thermomechanical state of the material in-chamber using

these sources, non-standard analysis of diffraction data is

needed. As opposed to trying to determine what the average

material response is under relatively well characterized

thermomechanical loading, instead, a process diagnostic needs

to quantify thermomechanical state using relatively well

understood material response (which is the approach taken

here). While our approach was applied to analyzing material

being laser melted, it can also be applied to any rapid, complex

testing scenario where distributions of thermal and mechan-

ical strains are expected (e.g. dynamic loading). In addition,

our approach provides a path forward for analyzing other

types of challenging material processing scenarios where

measured lattice deformation is composed of different types

of eigenstrains besides temperature (e.g. intrinsic piezoelectric

or chemical).

Using the ML surrogate model trained with thermo-

mechanical simulations for analyzing the diffraction data

provides several primary benefits over more standard methods

that analyze the shifts of diffraction peaks using analytical

function fitting to probe temperature (Hocine et al., 2020; Oh

et al., 2021a; Oh et al., 2021b) or temperature and mechanical

strain (Schmeiser et al., 2021; Scheel et al., 2023). First, the lack

of peak fitting allows a wider range of peak shapes to be

quantitatively analyzed. For example, ‘split’ diffraction peaks

are often encountered due to the wide differences, or distri-

butions, of temperatures between the inside and outside of a

melted region. Second, the thermomechanical modeling

provides a means of decoupling thermal strains and volu-

metric elastic strains which will deform the lattice in the same

fashion. Third, the method provides metrics about the distri-

butions of strains present which can be of significant interest

for microstructural evolution as many features develop as

functions of field gradients. Lastly, the GPR surrogate models

provide a natural measure of uncertainty through output of

the variance of the model predictions.

As was seen in Section 4, the GPR models were most

accurate at predicting the mean of the thermal and elastic

strain distributions present in the reserved testing data. This is

not surprising as the mean of the distribution also contributes

to the peak of diffracted intensity. Importantly, the GPR

models appear to be effective at fully deconvoluting thermal

and elastic strains which, again, is a challenge due to the

inability to directly differentiate between thermal and volu-
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Figure 14
The evolving (a) mean "E

xz-Mean, (b) maximum "E
xz-Max:, (c) minimum

"E
xz-Min: and (d) standard deviation "E

xz-STD of the distribution of elastic
strain within the experimental X-ray diffraction volume with respect to
time t extracted using trained GPR surrogate models. The red error bars
correspond to the square root of the variance (standard deviation) of the
GPR surrogate model predictions.



metric elastic strains in cubic materials; applying the GPR

models to the in situ experimental data yielded evolution of

thermal and elastic strains that was consistent with physics-

based modeling.

While still generally accurate, the predictions of maximums

and minimums of the various strain distributions were subject

to under- or over-predictions, usually at the extremes of the

ranges of strain used for model training. The predictions of

standard deviations of strain distributions were also generally

under-predicted. Both of these observations are likely due to

the fact that volumes of material with extreme values of strain

generally do not contribute to the primary body of diffraction

peaks and these extreme thermomechanical states are also

extremely transient and as such have a small presence in the

simulated training data. Further effort is required to deter-

mine if extreme value accuracy could be improved by

increasing the number of simulations and the amount of data

used for surrogate model training. In particular, increasing the

number of microstructural configurations used for GPR model

training may be beneficial (i.e. instantiating the same

thermomechanical distributions with different grain orienta-

tion configurations).

For this effort, we took the approach of performing high-

fidelity simulations for both generating thermal (finite differ-

ence heat transfer and fluid flow) and elastic (finite element

elasto-plasticity) strain distributions. The rationale of this

approach was that by training with high-fidelity thermal and

elastic strain fields that may be present, less training data

would be necessary to analyze experimental data from similar

conditions. This approach appears to be successful, providing

results from experimental data in line with what is expected,

but the downside is that the complete modeling of the physical

melting and cooling process is challenging. To lower the

modeling burden, an open question worth investigating is

what fidelity of thermomechanical simulations is necessary for

sufficiently accurate thermomechanical quantification from

experimental measurements? Another approach may be to

train the models with lower computational burden semi-

analytical models (Weisz-Patrault, 2020) or high volumes of

low-fidelity simulation data. This would ease the accessibility

and adoption of our proposed approach. Similarly, another

avenue that requires further investigation is the sensitivity of

the GPR model predictions to microstructural and material

parameters used in the thermomechanical modeling for GPR

training. While the GPR models are effectively connecting

thermal and elastic strain distributions with diffracted inten-

sity distributions, microstructural and material parameters will

alter the space of distributions for model training, which may

alter final predictions. In this work, the morphologies and size

distributions of grains are not a perfect match to experiment,

but the GPR model still produces rational results indicating

that it may be possible to relax model accuracy. Furthermore,

here we opted for use of accurate material parameters,

specifically those generated with first-principles DFT.

However, this process is intensive and our presented approach

would be significantly eased if literature values with less

provenance or similar alloy compositions (e.g. using pure Ni

properties for a superalloy) could achieve similar prediction

results.

7. Summary

High-fidelity atomistic, heat transfer and fluid flow, thermo-

mechanical and X-ray scattering simulations were brought

together to train machine-learning (Gaussian process regres-

sion, GPR) surrogate models for analyzing diffraction data

with complex thermomechanical distributions of deformation

present. The trained GPR models were then transferred into

the experimental domain to extract thermal and elastic strain

distribution metrics from in situ diffraction data gathered

during laser melting of IN625. In summary:

(i) The physical modeling was used to generate over 2000

diffraction images with various thermal, elastic and micro-

structural configurations for GPR model training.

(ii) The GPR models are capable of separating the effects of

thermal and mechanical elastic strain distributions, including

at high temperatures where the magnitude of thermal strains is

significantly larger.

(iii) The GPR models were most accurate at predicting the

mean of the thermal and elastic strain distributions from

diffraction data, followed by the maximums and minimums of

the distribution. In general, the GPR models tended to under-

predict the standard deviation (or spread) of the thermal and

elastic strains present.

8. Data and code availability statement

All data used for this work are available upon reasonable

request. The Python-based diffraction simulation and GPR

training codes are also available upon request.

APPENDIX A

A1. First-principles thermomechanical property calculations

We utilized first-principles DFT using the VASP code

(Kresse & Hafner, 1993) to generate temperature-dependent

IN625 elastic moduli and coefficients of thermal expansion for

input into later thermomechanical modeling. Our process has

been described in detail elsewhere (Shang et al., 2010; Shang et

al., 2024), and is summarized here. In this approach, the

Helmholtz energy F has a 0 K static energy contribution, a

vibrational contribution and a thermal electron contribution.

Here, each individual contribution to the Helmholtz energy is

predicted independently, with the vibrational and thermal

electron contributions calculated as a function of volume V at

a given temperature T, and then the three contributions

summed. From the temperature-dependent Helmholtz energy,

the equilibrium volume V0 is calculated as a function of

temperature. The linear coefficient of thermal expansion � is

then calculated as

�ðTÞ ¼
1

3V0

@V0

@T

� �

jP: ð8Þ
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For the IN625 property modeling, we used the compositions

reported for AM Bench 2018 material (Levine et al., 2020) of

which the same powder was used here. In the IN625, the major

alloying components besides Ni are Cr (20.61 wt%), Nb

(3.97 wt%) and Mo (8.82 wt%). Based on CALPHAD

predictions, there are two major phases, i.e. the dominant face-

centered cubic (f.c.c.) matrix (�) and the topologically close-

packed (t.c.p.) phase, �. Here, we assume that the thermal

expansion and elastic properties are primarily dependent on

the f.c.c. matrix. The composition of the f.c.c. matrix according

to CALPHAD predictions is roughly Ni21Cr8Mo2Nb1 (Shang

et al., 2024). To predict properties, relatively small cubic

supercells (32-atom) were modeled, and then the results were

averaged to strike a balance between accuracy and computa-

tional efficiency. We generated six special quasirandom

structures (SQSs) (Zunger et al., 1990) and six supercells in

random approximates (SCRAPs) (Singh et al., 2021). Fig. 15

shows representative SQS and SCRAPs structures, with Fig.

15(a) showing one of the generated SQSs and Fig. 15(b) one of

the generated SCRAPs. Temperature-dependent Helmholtz

energy was calculated for each of these supercells and then

used for both coefficient of thermal expansion and elastic

moduli calculations [see details including first-principles

settings in the work of Shang et al. (2024)]. Fig. 5(a) shows the

calculated temperature-dependent coefficient of thermal

expansion �ðTÞ using this procedure. The values matched well

with experimental data used by Lim et al. (2023) within the

temperature bounds measured.

Single-crystal elastic moduli (Cij) as a function of

temperature T were predicted using the quasi-static approach

(QSA) (Wang et al., 2010; Shang et al., 2010; Shang et al., 2012)

according to the predicted relationship between Cij and V at

0 K and the previously calculated relationship between T and

V (i.e. thermal expansion) (Shang et al., 2024), resulting in the

predicted CijðTÞ. Note that the DFT-based calculations of

CijðVÞ at 0 K were predicted using the anisotropic form of

Hooke’s law (Shang et al., 2007), where the employed non-

zero strains applied are �0.01. Since both the SQSs and

SCRAPs of IN625 are monoclinic configurations, averaged

values of the elastic moduli were used to calculate

cubic elastic moduli �Cij, i.e. �C11 ¼ ðC11 þ C22 þ C33Þ=3,
�C12 ¼ ðC12 þ C13 þ C23Þ=3 and �C44 ¼ ðC44 þ C55 þ C66Þ=3.

Note that the averaged Cij values usually have deviations less

than 10% from the mean for each monoclinic configuration,

such as C11 ¼ 255.8 GPa, C22 ¼ 262.2 GPa and C33 ¼

271.7 GPa for a SCRAPS configuration (SCRAPSf) at its

equilibrium volume. Fig. 16(a) shows the cubic single-crystal

moduli �C11, �C12 and �C44 determined from the DFT calcula-

tions. From the figure, we see that both �C11 and �C12 decrease

faster than �C44 with increasing temperature.

For input into the continuum thermomechanical model

(Section 3.2), �C11, �C12 and �C44 were used to generate isotropic

elastic moduli. The means of the Reuss and Voigt averages of

an untextured cubic polycrystal (Hosford, 1993) were used to

calculate Young’s modulus EðTÞ and the shear modulus GðTÞ,

from which Poisson’s ratio �ðTÞ was calculated. For tempera-

tures beyond the melting temperature of the material, the bulk

modulus BðTÞ of the material was assumed to remain constant

while the shear modulus was reduced to 5% of the value prior

to melting. The resulting bulk modulus and shear modulus

calculated from this process are provided in Fig. 16(b).

A2. Duplicate experimental analysis

After the initial laser pass over the wall specimen from

which results were presented in Section 5, the specimen was

allowed to nominally cool and then was translated approxi-
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Figure 15
(a) One of the generated SQSs and (b) one of the generated SCRAPs of
Ni21Cr8Mo2Nb1 (32-atom supercell), where the colored spheres represent
different atom types: Ni (gray), Cr (blue), Mo (purple) and Nb (green).

Figure 16
(a) Temperature-dependent cubic single-crystal elastic moduli �Cij of AM
IN625 calculated using DFT-based quasi-harmonic analysis (QHA) and
quasi-static analysis (QSA). (b) Bulk modulus B (black line) and shear
modulus G (black dashed line) calculated from the DFT single-crystal
elastic moduli. Also shown are the bulk modulus B (red dots) and shear
modulus G (blue dots) used as input for the thermomechanical model
(TM model).



mately 2 mm with respect to the laser and incoming X-ray

beam along x such that unmelted material was now illumi-

nated. The previously described in situ laser melting experi-

ment was then repeated with the same X-ray beam, detector

and laser parameters. The diffraction images from this

measurement were then processed in an identical manner to

that described previously and used as input for the trained

GPR models. Fig. 17 shows the predicted "T metrics, Fig. 18

shows "E
xx metrics, Fig. 19 shows "E

zz metrics and Fig. 20 shows

"E
xz metrics. As can be seen, the evolution of the "T, "E

xx and "E
zz

is very similar to that reported in Section 5, providing confi-

dence in the repeatability of the measurements and data

analysis approach. There are differences in the distribution

metrics output for "E
xz, particularly as the laser passed over the

diffraction volume, but this is likely related to the shear strains
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Figure 17
The evolving (a) mean "T

Mean, (b) maximum "T
Max:, (c) minimum "T

Min: and
(d) standard deviation "T

STD of the distribution of thermal strain within
the duplicate experimental X-ray diffraction volume with respect to time t
extracted using trained GPR surrogate models. The red error bars
correspond to the square root of the variance (standard deviation) of the
GPR surrogate model predictions.

Figure 18
The evolving (a) mean "E

xx-Mean, (b) maximum "E
xx-Max:, (c) minimum

"E
xx-Min: and (d) standard deviation "E

xx-STD of the distribution of elastic
strain within the duplicate experimental X-ray diffraction volume with
respect to time t extracted using trained GPR surrogate models. The red
error bars correspond to the square root of the variance (standard
deviation) of the GPR surrogate model predictions.

Figure 19
The evolving (a) mean "E

zz-Mean, (b) maximum "E
zz-Max:, (c) minimum

"E
zz-Min: and (d) standard deviation "E

zz-STD of the distribution of elastic
strain within the duplicate experimental X-ray diffraction volume with
respect to time t extracted using trained GPR surrogate models. The red
error bars correspond to the square root of the variance (standard
deviation) of the GPR surrogate model predictions.

Figure 20
The evolving (a) mean "E

xz-Mean, (b) maximum "E
xz-Max:, (c) minimum

"E
xz-Min: and (d) standard deviation "E

xz-STD of the distribution of elastic
strain within the duplicate experimental X-ray diffraction volume with
respect to time t extracted using trained GPR surrogate models. The red
error bars correspond to the square root of the variance (standard
deviation) of the GPR surrogate model predictions.



being the most sensitive to any minor misalignment of the

laser path with the wall specimen geometry.
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