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Twisted homophase bilayers, stacks of two rotated monolayers such as graphene,

exhibit remarkable physical properties absent in their constituent monolayers.

The structure of bilayer systems is dominated by a moiré effect and critically

depends on the twist angle. Quiquandon & Gratias [Acta Cryst. (2025), A81, 94–

106] develop a crystallographic framework for rigorous description of the

structure of bilayers, including systems without a coincidence lattice. They offer

a set of tools that can describe the structure of any arbitrary bilayer system and

enable the connection with its physical properties.

In the beginning was graphene, a single atomic layer of

carbon atoms arranged on a hexagonal honeycomb lattice, and

it was the premier experimental realization of a true 2D

material. It quickly turned out that graphene possesses

remarkable physical properties including ballistic electronic

transport, extreme strength and high optical opacity (for a

recent review, see e.g. Urade et al., 2023). The discovery of

further single-layer materials, such as the 2D compound

hexagonal BN (Kubota et al., 2007) or the hexagonal transi-

tion-metal dichalcogenide MoS2 (Radisavljevic et al., 2011),

advanced research of 2D materials into a mature scientific

discipline.

In a next evolution step, homophase bilayers, stacks of two

identical monolayers, were addressed (Novoselov et al., 2004).

These systems become particularly interesting when the two

monolayers are twisted with respect to each other (Trambly de

Laissardière et al., 2010, 2012) and even more so if they are

twisted at a small angle. Bistritzer & MacDonald (2011)

predicted a ‘magic angle’ of about 1.1� at which the Dirac

velocity vanishes, accompanied by a flat band structure and a

sharp peak of the Dirac-point density of states. This was

experimentally confirmed by Cao et al. (2018), who observed

flat bands at zero Fermi energy and superconductivity below

1.7 K. This result is in contrast to monolayer graphene, which

is not superconductive. Bilayer graphene thus displays prop-

erties that are not present in its constituent monolayers. There

are more examples like this: while graphene monolayers are

zero-bandgap semiconductors, bilayer graphene has a

bandgap, which is even tunable (Min et al., 2007). Bilayer

graphene shows degenerate electronic states, which are not

present in monolayers, leading to a fractional Hall effect that

can be tuned by an electric field (Kou et al., 2014). Observa-

tions like the latter have led to the term ‘twistronics’ for the

electronics of twisted bilayer devices.

The appearance of these novel properties is directly linked

to an increase in structural complexity. Graphene monolayers

have a particularly simple structure, but adding a twisted
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second layer fundamentally changes the situation. At small

twist angles the atom arrangement in the bilayer system is

dominated by a moiré effect creating a long-range modulation

of the structure. Consequently, the system’s lattice parameter

by far exceeds that of the constituent monolayers, and the

large unit cell contains numerous different local atomic

environments (Fig. 1).

In a twisted bilayer, the structure is critically dependent on

the twist angle (Feuerbacher, 2021), and the physical proper-

ties, in turn, are critically dependent on the structure. This

demands a rigorous crystallographic description that includes

the twist-angle dependence. It is essential to understand how

the symmetries of the bilayer system interplay with the

Coulomb interaction (Kou et al., 2014), how they lead to

phenomena like flat bands, the resulting electronic localiza-

tion, or shifting Van Hove singularities.

Quiquandon and Gratias, therefore, embarked on an in-

depth study with the goal of developing a crystallographic

framework for twisted homophase bilayer systems. Their work

resulted in a series of papers, the first dealing with bilayers that

have a coincidence lattice (Gratias & Quiquandon, 2023). This

is the case when the twist angle is a fraction of �, resulting in a

periodic bilayer with a standard space group. The second

paper describes the more general case of bilayers without a

coincidence lattice, where the resulting crystal is not periodic

but ‘almost periodic’ (Quiquandon & Gratias, 2025). Crys-

tallographically, the system then is in a rather elusive state, yet

demands rigorous description as it is still linked to specific

physical properties. In order to approach this situation, the

authors employ two innovative strategies: first, they introduce

a descriptive formalism in terms of complex numbers, which

makes operations in the plane such as rotations and transla-

tions very easy to handle through the well established

framework of conformal transformations. Second, they use the

concept of the ‘zero locus’, a generalization of the 0-lattice

introduced for the treatment of grain boundaries (Bollmann,

1967). The zero locus enables the transition from bilayer

systems with a coincidence lattice to the more general case of

bilayer systems without a coincidence lattice. In the context of

twisted homophase bilayers, the zero locus refers to the

geometric set of points that remain invariant under the

combined operations of rotation and translation between the

two layers. The authors show that there always exists a set of

invariant points, which do not move when one layer is rotated

and translated relative to the other. Unlike a coincidence

lattice, which forms only for rational twists, the zero locus

exists for any arbitrary twist angle. This makes the zero locus a

more general mathematical structure, which is capable of

describing bilayer symmetries even in non-periodic cases.

What the eye, or the electron microscope, sees when

looking at twisted bilayers is the moiré crystal, which corre-

sponds to the interference pattern of the superposed functions

describing the mass distribution or the electron density in the

individual monolayers. The moiré crystal, again, is periodic

when a coincidence lattice exists but it is almost periodic in the

general case. The authors provide an explicit description of the

general moiré crystal and use it to directly infer the crystal-

lographic symmetries of the bilayer system.

With their work, Quiquandon and Gratias provide a novel

crystallographic framework for twisted bilayer systems. Their

approach offers a set of tools that can describe the structure of

any arbitrary bilayer system in a closed manner. Not only does

it enable one to make connections between almost periodic

moiré patterns and known physical phenomena like quantum

interference and electronic localization, but it can also be

employed to localize configurations at which specific physical

properties become most pronounced. Conversely, bilayer

crystallography can be used to relate empirically pinpointed

configurations like ‘magic angles’ to specific crystallographic

conditions. In essence, this framework provides a solid crys-

tallographic foundation for the burgeoning field of twistronics.

It enables deeper insights into the structure–property rela-

tionships in twisted bilayer materials and will be invaluable for

future progress in this rapidly developing field.
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Figure 1
Bilayer system consisting of two graphene monolayers (red and blue) at a
twist angle of 6.0�. The unit cell of a monolayer (small blue rhomb) and
the resulting moiré crystal (green rhomb) are shown.
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