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Bloch waves are often used in dynamical diffraction calculations, such as

simulating electron diffraction intensities for crystal structure refinement.

However, this approach relies on matrix diagonalization and is therefore

computationally expensive for large unit cell crystals. Here Bloch wave theory is

re-formulated using the physical optics concepts underpinning the multislice

method. In particular, the multislice phase grating and propagator functions are

expressed in matrix form using elements of the Bloch wave structure matrix. The

specimen is divided into thin slices, and the evolution of the electron wave-

function through the specimen calculated using the Bloch phase grating and

propagator matrices. By decoupling specimen scattering from free space

propagation of the electron beam, many computationally demanding simula-

tions, such as 4D STEM imaging modes, 3D ED precession and rotation electron

diffraction, phonon and plasmon inelastic scattering, are considerably simplified.

The computational cost scales as OðN2Þ per slice, compared with OðN3Þ for a

standard Bloch wave calculation, where N is the number of diffracted beams. For

perfect crystals the performance can at times be better than multislice, since only

the important Bragg reflections in the otherwise sparse diffraction plane are

calculated. The physical optics formulation of Bloch waves is therefore an

important step towards more routine dynamical diffraction simulation of large

data sets.

1. Introduction

Data-intensive electron microscopy methods, such as 4D

scanning transmission electron microscopy (4D STEM) and

3D electron diffraction (3D ED), require large-scale

computing of dynamical diffracted intensities for quantitative

analysis (Ophus, 2019; Gemmi et al., 2019). Adding inelastic

scattering events, in particular phonons (Forbes et al., 2010;

Zeiger & Rusz, 2020) and plasmons (Mendis, 2019; Barthel et

al., 2020), increases the computational complexity even

further. The multislice algorithm (Cowley & Moodie, 1957;

Kirkland, 2010) is often used for dynamical diffraction

calculations, especially if the sample is thin and non-periodic.

However, multislice is impractical for (say) 3D ED tomo-

graphy simulations, so that Bloch waves must be used instead

(Palatinus et al., 2015; Klar et al., 2023). There have been

several attempts to increase the speed of dynamical diffraction

calculations. For example, Ophus (2017) introduced the

PRISM algorithm for 4D STEM simulations. Instead of

simulating every STEM probe position, multislice simulations
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are performed for a limited number of partial plane waves

within the STEM probe, which are then used to construct the

exit wave at each scan position. Similarly, Mendis (2024a)

proposed a scattering cluster algorithm, that replaced the

computationally expensive eigen-decomposition routine in

Bloch waves to a simpler matrix multiplication operation. For

inelastic scattering, the mixed static potential method of

Peters (2021) reduces the number of phase grating calcula-

tions required for a frozen phonon multislice simulation.

Finally, Mendis (2023) introduced a phase scrambling

algorithm (PSA), which modelled all inelastic scattering

in a multislice simulation simultaneously, with a random

phase introduced to preserve incoherence between inelastic

events.

Both multislice and Bloch wave theories are derived from

the Schrödinger equation (Kirkland, 2010) and are therefore

equivalent. In this paper, the close relationship between the

two theories is examined in more detail. In particular, the

multislice phase grating and propagator functions in reciprocal

space are expressed as matrices, containing off-diagonal and

diagonal Bloch wave structure matrix elements, respectively.

The decoupling of specimen transmission and free space

electron propagation enables efficient Bloch wave simulation

of computationally demanding applications, such as 4D

STEM, 3D ED and inelastic scattering. A common feature in

all these examples is that the specimen remains fixed, while

only the electron wavevector undergoes any change. For

example, PRISM simulates individual partial plane waves

within the STEM probe for an identical specimen, while for

phonon and plasmon inelastic scattering, the diffuse back-

ground intensity is modelled by a change in the incident

electron wavevector (Mendis, 2024b). A physical optics

approach to Bloch wave simulations is therefore proposed,

where matrices, consisting of Bloch wave structure matrix

elements, replace the phase grating and propagator functions

in multislice. The Bloch phase grating matrix must be calcu-

lated only once for the (fixed) specimen. The specimen is

divided into a series of thin slices, and the evolution of the

incident electron wavefunction within the specimen calculated

by applying the Bloch phase grating and propagator matrices

for each slice. The computational complexity of a physical

optics Bloch wave simulation therefore scales in a similar

manner to multislice. Furthermore, computational techniques

such as PRISM and PSA, which were originally developed for

multislice, can also be extended to Bloch wave theory via this

method.

The organization of the paper is as follows. In Section 2 the

physical optics theory of Bloch wave scattering is presented.

Applications to 3D ED, 4D STEM and phonon, plasmon

inelastic scattering calculations are also discussed. Section 3

covers simulation details, while results are presented in

Section 4. The accuracy of physical optics Bloch wave

simulations is compared with that of multislice, the two

theories being mathematically equivalent, although numerical

differences remain due to practical limitations in the

implementation of each technique. A summary is provided in

Section 5.

2. Mathematical background

2.1. Physical optics description of Bloch wave scattering

In Bloch wave theory the electron wavefunction at

specimen depths z and zþ�z are related by (Hirsch et al.,

1965; Spence & Zuo, 1992)

ugðzþ�zÞ ¼ expð2�i�zAÞugðzÞ; ð1Þ

where ug is a column vector comprising the Fourier transform

coefficients of the electron wavefunction. Bragg beam inten-

sities are expressed as the square modulus jug zð Þj2. A is the so-

called structure matrix, defined by

Agh ¼

sg g ¼ hð Þ

me

h2kn

Vg� h ¼
k

kn

� �
�

2�
Vg� h g 6¼ hð Þ

8
<

:
; ð2Þ

where sg is the deviation parameter for the Bragg beam g and

k is the electron wavenumber within the specimen, with

component kn along the specimen surface normal direction.

Specimen tilting changes all elements in the structure matrix;

the diagonal terms via sg and non-diagonal terms via kn. Vg� h

is the Fourier coefficient of the crystal potential. Note that the

mean inner potential V0 does not appear in the structure

matrix, since this is included as a (small) correction to the

electron wavenumber k (Hirsch et al., 1965; Spence & Zuo,

1992). The mean inner potential represents a uniform back-

ground and therefore for the present discussion it is conve-

nient to set V0 ¼ 0, since the Bragg beam intensities do not

depend on the precise value of V0. The other physical

constants are Planck’s constant h, mass (m) and charge (e)

of an electron. The interaction constant is defined by � =

�ek=Eo, where Eo ¼ hkð Þ2=2m is the incident electron kinetic

energy.

Equation (1) is usually solved by diagonalizing the structure

matrix, i.e.

ugðzþ�zÞ ¼ Cfexpð2�i��zÞgC� 1ugðzÞ; ð3Þ

where C is a square matrix of all eigenvectors. Since C is

unitary, its inverse C� 1 ¼ ðCTÞ�, where T denotes matrix

transpose and the asterisk sign the complex conjugate (Hirsch

et al., 1965). fexpð2�i��zÞg is a diagonal matrix, with �

being the eigenvalues of A. Eigen-decomposition is compu-

tationally expensive, with the complexity scaling as OðN3Þ for

an N � N square matrix. Note that computational complexity

is defined here as the number of arithmetic operations

required to calculate a given quantity directly. The actual

algorithm used for calculations may however have fewer

arithmetic operations.

Let us now assume normal plane wave incidence, i.e.

k ¼ kn, and express the structure matrix as the sum of two

simpler matrices:

A ¼ AQ þAP ð4aÞ

AQ

� �

gh
¼

0 g ¼ hð Þ
�

2�
Vg� h g 6¼ hð Þ

(

ð4bÞ
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APð Þgh¼
sg g ¼ hð Þ

0 g 6¼ hð Þ

�

: ð4cÞ

The hollow matrix AQ consists of only the non-diagonal

terms of the structure matrix, which contain specimen-related

information. In contrast, the diagonal matrix AP consists of

only the diagonal elements of A that describe electron beam

propagation via the deviation parameter. Provided �z is small

equation (1) approximates to

ugðzþ�zÞ � exp 2�i�zAQ

� �
exp 2�i�zAPð ÞugðzÞ: ð5Þ

The approximation is because AP and AQ are non-commuting

matrices. The above equation should be compared with the

equivalent multislice result for normal plane wave incidence

(Kirkland, 2010):

 R; zþ�zð Þ ¼ exp i�Vp Rð Þ þ
i�z

4�k
r2

xy

� �

 R; zð Þ

� exp i�Vp Rð Þ
� �

exp
i�z

4�k
r2

xy

� �

 ðR; zÞ; ð6Þ

where  ðR; zÞ is the real-space electron wavefunction at

specimen depth z and position vector R in the plane

perpendicular to the electron optic axis. Vp is the projected

potential and r2
xy = ð@2=@x2Þ þ ð@2=@y2Þ is the Laplacian

operator. The approximation is due to the fact that the Vp and

r2
xy operators do not commute. Equation (6) must be Fourier

transformed for direct comparison with equation (5). It can be

shown that (Kirkland, 2010)

F exp
i�z

4�k
r2

xy

� �

 ðR; zÞ

� �

¼ PðuÞF  ðR; zÞ½ �; ð7Þ

where P is the propagator function defined by

P uð Þ ¼ exp 2�is uð Þ�z½ � ð8Þ

with sðuÞ being the deviation parameter at the reciprocal

vector u. Comparing equations (7), (8) with equations (4c) and

(5), and noting that at normal plane wave incidence the

Fourier transform of  has coefficients ug, it is clear that

exp 2�i�zAPð Þ ¼ P uð Þ: ð9Þ

In other words, AP is directly related to the multislice

propagator function in reciprocal space. For equation (5) to be

consistent with equation (6) we must therefore have

exp 2�i�zAQ

� �
¼ F exp i�Vp Rð Þ

� �� �
�; ð10Þ

where � denotes the convolution operation. AQ therefore

determines the phase grating function in multislice. A proof of

equation (10) will now be presented. The projected potential is

Vp Rð Þ ¼

Zzþ
�z
2

z� �z
2

V rð Þ dz ¼

Zzþ
�z
2

z� �z
2

X

g6¼0

Vg exp 2�ig � rð Þ

" #

dz; ð11Þ

where V rð Þ is the crystal potential at position vector r ¼ R; zð Þ,

which can be expressed as a Fourier series due to the crystal

periodicity. Note that the mean inner potential is omitted, to

be consistent with the Bloch wave result V0 ¼ 0. Writing

g ¼ ðg?; gzÞ, where g? and gz are, respectively, components of

g normal and parallel to the electron optic axis, we obtain

Vp Rð Þ ¼
X

g6¼0

Vg exp 2�ig? � Rð Þ

Zzþ
�z
2

z� �z
2

exp 2�igzz
� �

dz

�
X

g6¼0

Vg exp 2�ig � rð Þ

" #

�z: ð12Þ

The approximation in equation (12) is valid in the limit of

small �z. Therefore

F exp i�Vp Rð Þ
� �� �

¼

Z

1þ i�Vp Rð Þ þ . . .
� �

expð� 2�iu � rÞ dr

¼ � uð Þ þ i��z
X

h6¼0

Vh� h � uð Þ þ . . . : ð13Þ

In the last line of equation (13) a dummy reciprocal vector h is

used to replace g, for reasons that will become clear later on. �

symbols represent Dirac delta functions. The result of

convolving equation (13) with a function f uð Þ that has the

same periodicity in reciprocal space as the crystal is given by

F exp i�Vp Rð Þ
� �� �

� f ðuÞ
� �

u¼g

¼ f gð Þ þ i��z
X

h6¼0

Vh f g � hð Þ þ . . . : ð14Þ

f uð Þ may, for example, represent the right-hand side of

equation (7); equation (14) would then be the Fourier trans-

form of equation (6). Making the transformation h! g � h:

F exp i�Vp Rð Þ
� �� �

� f ðuÞ
� �

u¼g

¼ f gð Þ þ i��z
X

h6¼g

Vg� h f hð Þ þ . . . : ð15Þ

Consider now the left-hand side of equation (10). Writing

the periodic function f uð Þ as a column vector over reciprocal

vectors h we have

exp 2�i�zAQ

� �
f uð Þ ¼ Iþ 2�i�zAQ þ . . .

� �
..
.

f ðhÞ

..

.

0

B
B
@

1

C
C
A; ð16Þ

where I is the identity matrix. From equation (4b) it is clear

that the first two terms in equations (15) and (16) are equal.

Similar arguments can be used to demonstrate that the higher-

order terms are equal as well (see the supporting information).

This completes the proof of equation (10).

Before concluding this section, it is instructive to examine

the error involved in using a physical optics description of

Bloch wave scattering. We have

exp 2�i�zAð Þ ¼ exp 2�i�zAQ

� �
exp 2�i�zAPð Þ

� exp � �i�z AQ;AP

� �� �
. . . ; ð17Þ

where [ ] is the commutator bracket. It is easy to show that
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AQ;AP

� �

gh
¼

0 ðg ¼ hÞ
�

2�
Vg� h sh � sg

� �
ðg 6¼ hÞ

:

(

ð18Þ

The commutator matrix contains both specimen and beam

propagation information coupled, and therefore lacks a

straightforward physical interpretation. Chen & Van Dyck

(1997) have proposed more accurate multislice methods,

where a similar mixed operator is used to model electron

beam propagation within the specimen potential, as opposed

to free space propagation. Higher-order terms in equation (17)

will introduce further, more complicated, corrections. In

Sections 2.2 to 2.4, application of the physical optics Bloch

wave method to different simulations, namely 3D ED, 4D

STEM and inelastic scattering, will be described in more

detail.

2.2. 3D ED and computational complexity

Precession electron diffraction (PED) and continuous

rotation electron diffraction (cRED) are often used to

suppress dynamical diffraction in 3D ED measurements

(Vincent & Midgley, 1994; Nederlof et al., 2013). In PED, the

electron beam is precessed in a hollow cone at fixed specimen

orientation. In a standard quantum-mechanical Bloch wave

simulation equation (1) must be solved for every incident

wavevector, and the Bragg diffracted intensities incoherently

summed to give the final result. For N diffracted beams the

computational cost for diagonalizing the structure matrix A is

OðN3Þ for every incident wavevector. Compare this with the

physical optics approach given by equation (5). Since AP is a

diagonal matrix [equation (4c)]:

exp 2�i�zAPð Þ ¼ exp 2�i�zsg

� �� �
: ð19Þ

The right-hand matrix consists only of expð2�i�zsgÞ terms

along the diagonal and zero elsewhere. Since ug is an N � 1

column vector, propagation of electron beams between slices,

which is given by expð2�i�zAPÞugðzÞ in equation (5), requires

only N multiplications. On the other hand, multiplication by

the Bloch phase grating matrix expð2�i�zAQÞ requires N2

multiplications; the greater complexity for this step is because

of the convolution operation in equation (10). In practice, AQ

has to be diagonalized first to evaluate expð2�i�zAQÞ,

although since the specimen is fixed this can be re-used in the

simulation. If there are a relatively small number of beams

(e.g. Si [001] in this work; Section 4.1) then AQ is diagonalized

only once. However, in PED of large unit cell crystals the total

number of Bragg beams can be quite large, and therefore it is

desirable to select only a subset of strongly excited beams for

any given incident wavevector. A single diagonalization of AQ

would then only be applicable for a limited wavevector range.

Outside this range, AQ would have to be diagonalized again

for the new set of Bragg beams.

Assuming AQ diagonalization is a one-off calculation, the

computational cost for physical optics Bloch waves is OðZN2Þ

per incident PED wavevector, where Z is the number of slices

into which the specimen is divided. The physical optics

implementation of Bloch wave scattering is therefore more

efficient than a quantum-mechanical calculation provided

N>Z, which is satisfied for thin specimens and large unit

cell crystals. For perfect crystals, the performance can also at

times be more efficient than multislice, which scales as

Oð2ZN2
pixelslog2NpixelsÞ due to the fast Fourier transform

algorithm applied to square images of size Npixels � Npixels. The

improvement is because only the important Bragg reflections

are calculated with Bloch waves, while multislice simulates the

entire diffraction plane, which is inherently sparse for a

perfect crystal.

In cRED the diffraction patterns for a fixed incident elec-

tron wavevector at multiple specimen tilts are incoherently

summed. Specimen tilting alters both AP and AQ matrices.

However, for the latter the change is simply a multiplicative

constant sec �, since kn ¼ k cos � [equation (2)]. The new

eigenvalues of AQ change by the same factor, while the

eigenvectors remain unchanged. Therefore, earlier comments

on re-using the AQ diagonalization apply to cRED as well, i.e.

diagonalization is performed only once for specimen tilts that

share the same set of Bragg beams. The computational

complexity of cRED is hence similar to that of PED.

2.3. 4D STEM simulation procedure

The PRISM algorithm (Ophus, 2017) for fast simulation of

4D STEM data sets can be implemented using the physical

optics Bloch wave method. The electron wavefunction for a

STEM probe incident at position R ¼ Rp is given by (Mendis,

2015)

 R; zð Þ ¼

Z X

g

’g kt; zð Þ exp½2�i kt þ gð Þ � R�

� expð� 2�ikt � RpÞ expð2�ikzzÞ exp½� i� ktð Þ� dkt;

ð20Þ

where kt; kzð Þ are the transverse and longitudinal wavevector

components of the STEM probe partial plane waves and � is

the lens aberration function. ’g is the diffracted beam wave-

function for a given partial plane wave, i.e. equation (1) or (5).

The integration is carried out over the STEM probe aperture.

The diffraction pattern is obtained by Fourier transforming

equation (20) at the specimen exit plane z = t, where t is the

specimen thickness:

F  R; tð Þ½ � qð Þ

¼

Z

 R; tð Þ expð� 2�iq � RÞ dR

¼

Z X

g

’g kt; tð Þ� kt þ g � qð Þ expð� 2�ikt � RpÞ expð2�ikztÞ

� exp½� i�ðktÞ� dkt

¼
X

g

’g q � g; tð Þ exp½� 2�i q � gð Þ � Rp� expð2�ikztÞ

� exp½� i� q � gð Þ�H q � gð Þ: ð21Þ

q is a 2D reciprocal vector in the diffraction plane. H ktð Þ is a

STEM probe aperture function, which is equal to unity for any
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partial plane wave kt within the aperture and zero outside it.

For most STEM measurements it is reasonable to assume that

kz is approximately constant, so that equation (21) simplifies

to

F  R; tð Þ½ � qð Þ � expð2�ikztÞ
X

g

’g q � g; tð Þ

� exp � i 2� q � gð Þ � Rp þ � q � gð Þ
� �� �� �

�H q � gð Þ: ð22Þ

Equation (22) suggests an efficient route for 4D STEM

physical optics Bloch wave simulations. For a given STEM

probe partial plane wave kt the diffracted beams at the

specimen exit surface are calculated by applying equation (5)

iteratively for individual slices. From this the diffraction

pattern at STEM probe position R ¼ Rp readily follows, i.e.

for every diffracted beam g, ’g at the exit surface is multiplied

by the phase expf� i½2�kt � Rp þ �ðktÞ�g and assigned to the

reciprocal vector q ¼ kt þ g. The process is repeated for every

partial plane wave within the STEM probe aperture. For

overlapping discs, more than one combination of kt and g can

contribute to q in the overlapped region. Their coherent

summation according to equation (22) gives rise to inter-

ference effects. The intensity of the final diffraction pattern is

obtained by taking the square modulus. The ‘constant’ phase

term expð2�ikztÞ can be ignored, since it drops out of the

intensity. Note that the STEM probe position Rp only appears

as a phase term expð� 2�ikt � RpÞ, so that the diffraction

patterns for all probe positions can be simulated in parallel.

Furthermore, the Bloch phase grating matrix needs also to be

calculated only once, which further reduces the computing

time.

2.4. Monte Carlo simulation of inelastic scattering

The Monte Carlo method, as applied to inelastic scattering,

has been discussed in a number of previous publications

(Mendis, 2019, 2024b). Here the procedure for simulating the

diffuse scattered intensity background due to single phonon or

plasmon scattering is summarized. The first step is to divide

the sample into a series of slices, which represent the depths at

which inelastic scattering events occur. Since the phonon and

plasmon inelastic mean free paths are relatively long (Vos &

Winkelmann, 2019), the slice thickness can be made larger

than multislice or physical optics Bloch wave calculations,

without any significant loss of accuracy. The incident electron

beam is elastically propagated to a given inelastic scattering

depth s, using either equation (1) or (5). Following inelastic

scattering, there will be a change in the direction of the inci-

dent electron wavevector, characterized by the polar (�) and

azimuthal (�) scattering angles. The wavenumber of the high-

energy electron is assumed to be constant for low energy loss

phonon and plasmon excitations. Furthermore, for low-angle

scattering the ratio k=knð Þ in equation (2) is approximately

equal to unity. Therefore, only the matrix AP is updated

following inelastic scattering. The inelastic scattered electron

is elastically propagated (using the new Bloch propagator

matrix) to the specimen exit surface (depth t), and the

diffracted beam g assigned to the reciprocal vector

q ¼ �kt þ g in the diffraction plane, where �kt is the change

in the transverse wavevector component of the electron due to

inelastic scattering. Incoherently summing all inelastic scat-

tering events from all depths gives the final diffraction pattern

intensity I:

I qð Þ ¼
X

g

X

all s;�;�f g

’g t; s; �; �ð Þ
�
�

�
�2

� � q � �kt � gð Þ dP sð Þ dP �ð Þ dP �ð Þ: ð23Þ

The Dirac delta term ensures momentum or wavevector

conservation following inelastic scattering. dP sð Þ is the prob-

ability of inelastic scattering between depths s and sþ ds,

and similarly for dP �ð Þ and dP �ð Þ. They can be estimated

from the relevant differential scattering cross section (�).

For uncorrelated phonons this would be the thermal diffuse

scattering (TDS) from a single atom (Pennycook &

Jesson, 1991):

d�TDS

d�
¼ f uð Þ

2
1 � exp � 2Bu2

� �� �
: ð24Þ

f uð Þ is the atom scattering factor at scattering vector magni-

tude u, B is the Debye–Waller factor and � is the scattering

solid angle. It can be shown that for uncorrelated phonons

(Mendis 2024b)

dP sð Þ ¼ exp �
s

�ph

 !
ds

�ph

ð25aÞ

dP �ð Þ ¼

2�
d�TDS

d�

� �

sin � d�

�T
TDS

ð25bÞ

dP �ð Þ ¼
d�

2�
; ð25cÞ

where �T
TDS is the total TDS cross section, obtained by inte-

grating equation (24) over all scattering angles. For a mono-

atomic solid the phonon mean free path �ph is Nv�
T
TDS

� �� 1
,

with Nv being the atomic number density (Mendis, 2024b). A

differential scattering cross section for plasmons was proposed

by Ferrell (1956) based on a harmonic oscillator model:

d�plasmon

d�
/

1

�2 þ �2
E

; ð26Þ

where �E ¼ �E=2Eo is the characteristic scattering angle for

plasmon energy loss �E (Egerton, 1996). Due to the small

value of �E (e.g. 0.04 mrad for Si at 200 kV electron beam

voltage) the plasmon diffuse scattering is confined to small

scattering angles. Furthermore, for plasmon scattering

(Mendis, 2024b)

dP sð Þ ¼ exp �
s

�pl

 !
ds

�pl

ð27aÞ
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dP �ð Þ ¼
2� d�

�2 þ �2
E

� �
ln 1þ �c=�Eð Þ

2
� � ð27bÞ

dP �ð Þ ¼
d�

2�
: ð27cÞ

The plasmon mean free path �pl can be measured using

electron energy loss spectroscopy (Mendis, 2019). �c is the

critical scattering angle above which plasmon excitation is

damped (Egerton, 1996); it too can be experimentally

measured using energy filtered diffraction (Bertoni et al.,

2011).

Equation (23) is very time-consuming to calculate due to

the large number of possible inelastic scattering configurations

s; �; �ð Þ. This is especially true for the TDS background, which

can have large momentum transfer. Since the same Bloch

phase grating matrix is used throughout, a physical optics

Bloch wave simulation is more efficient than a standard

quantum-mechanical calculation, where a new structure

matrix has to be diagonalized after every inelastic scattering

event (Mendis, 2024b).

3. Simulation methods

All simulations were performed on a 500 Å-thick, Si [001]

specimen at 200 kV incident electron beam voltage. A total of

1681 zero-order Laue zone (ZOLZ) Fourier coefficients were

used for Bloch wave simulations, with the crystal potential

calculated using Kirkland’s (2010) atom scattering factors. In

all cases Bloch wave results were compared against multislice

simulations. The size of the (square) multislice supercell was

10ao, with a slice thickness of ao/4, where ao is the Si unit-cell

parameter. Kirkland’s (2010) atom scattering factors were

used to calculate the projected potential, sampled over

1024 � 1024 pixels.

For PED the beam precession angle was 2� and 500 incident

wavevectors with uniformly spaced azimuthal angles were

simulated. Tilted incident wavevectors do not satisfy periodic

boundary conditions, leading to potential aliasing artefacts in

multislice. The real-space electron wavefunction was therefore

multiplied by a Hanning window, prior to calculating the

diffraction pattern. For 4D STEM simulations a 15 mrad

probe semi-convergence angle was assumed with all electron-

optic aberrations set to zero. In Bloch wave calculations the

STEM probe was approximated by a total of 13234 partial
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Figure 1
PED simulation results for a 500 Å-thick Si [001] specimen with 2� beam precession angle. (a) R ratio [equation (29)] for diffracted beam intensities
plotted as a function of specimen depth. The Bragg beam intensities were calculated using the physical optics Bloch wave method for slice thicknesses of
10, 5 and 2 Å. A total of 441 reflections, including those kinematically forbidden by the diamond glide plane, were used to calculate the R ratio.
Comparison of the (b) 000, (c) 220 and (d) 400 reflection intensity pendellösung calculated using physical optics Bloch wave (2 Å slice thickness) and
multislice.



plane waves, while for multislice the STEM probe wavefunc-

tion ( p) at the specimen entrance surface was calculated

using the following semi-analytical equation (Mendis, 2015):

 p Rð Þ ¼ �

Z

ktJ0 2�ktRð Þ dR; ð28Þ

where J0 is the zero-order Bessel function of the first kind and

� is a normalization constant for the probe intensity. The

probe wavefunction converges faster for equation (28)

compared with the partial plane wave method.

For inelastic scattering simulations the calculated (uncor-

related) phonon mean free path �ph was 7724 Å. �ph is

inversely proportional to the total TDS scattering cross

section �T
TDS. Kirkland’s (2010) atom scattering factors are

however only strictly valid up to 12 Å� 1. Nevertheless, this

corresponds to a sufficiently large scattering angle of 301 mrad

at 200 kV, so that the scattering vector can be truncated

without significantly affecting the value of �T
TDS or �ph. The

plasmon mean free path of 1050 Å was measured by experi-

ment (Mendis, 2019). �E was calculated to be 0.04 mrad for a

17 eV plasmon energy loss in silicon. By comparing experi-

ment with simulation, Barthel et al. (2020) estimated a �c value

of 15.0 mrad at 300 kV, which is equivalent to 19.1 mrad at

200 kV.

The 500 Å-thick sample was divided into ten slices and it

was assumed that inelastic scattering occurred in the middle of

each slice. The single scatter diffuse intensity was then calcu-

lated using the physical optics Bloch wave model, as described

in Section 2.4. The equivalent calculation in multislice

proceeds as follows. The change in beam direction following

inelastic scattering effectively multiplies the real-space elec-

tron wavefunction by a phase ramp term expð2�i�kt � RÞ

(Barthel et al., 2020). To minimize aliasing artefacts �kt is

rounded to the nearest pixel in the diffraction plane. The

electron wavefunction must also be multiplied by the prob-

abilities dP sð Þ, dP �ð Þ and dP �ð Þ, i.e. equations (25a)–(25c) for
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Figure 2
Physical optics Bloch wave simulated electron diffraction patterns for a 15 mrad semi-convergence angle, aberration-free STEM probe positioned (a) on
an atom column and (b) off an atom column in a 500 Å-thick Si [001] specimen. The two STEM probe positions are indicated by the crosses labelled ‘A’
and ‘B’ in Fig. 3(a). The corresponding results from a multislice simulation are shown in (c) and (d), respectively. All diffraction patterns are displayed on
a square root intensity scale to highlight weak features.



phonons and equations (27a)–(27c) for plasmons. The reci-

procal-space pixel size (dq) determines the resolution d� and

d� in polar and azimuthal scattering angles. For example,

d� � �dq and d� � �dqð Þ=�, where � is the electron wave-

length (Mendis, 2023). The inelastic electron wavefunction is

then elastically propagated to the specimen exit surface.

Incoherently summing the multislice diffraction patterns for

all inelastic scattering events gives the single scatter diffuse

background.

The quantum excitation of phonons model (Forbes et al.,

2010) was also used to simulate TDS, assuming frozen

phonons consisting of independently vibrating atoms. The

electron beam was quasi-elastically propagated through a

silicon supercell where the atoms were randomly shifted

from their equilibrium lattice positions. The atom displace-

ments followed a Gaussian distribution with root mean

square displacement of 0.078 Å (Kirkland, 2010). A total of

100 frozen phonon configurations were simulated to

obtain statistically valid results. The phonon TDS is

obtained by subtracting the coherently summed diffraction

pattern from the incoherent diffraction pattern (Forbes

et al., 2010).

4. Results and discussion

4.1. Precession electron diffraction (PED)

PED is used to test convergence of the physical optics Bloch

wave model [equation (5)] with respect to slice thicknesses

(i.e. 10, 5 and 2 Å) by comparing with the (more accurate)

quantum-mechanical result [equation (1)]. Bragg beam

intensities are calculated at each specimen depth and

convergence is measured using the formula

R ¼

P
g Ig POð Þ � Ig QMð Þ
�
�

�
�

P
g Ig POð Þ

; ð29Þ

where Ig POð Þ, Ig QMð Þ are the Bloch wave physical optics and

quantum-mechanical diffracted beam intensities, respectively.

The ‘| |’ symbol denotes the absolute value. All hkl reflections

apart from those forbidden by lattice centring (i.e. hkl mixture

of even and odd indices) were used to calculate the R ratio

(441 total number of reflections). The excluded reflections do

not appear even under dynamical diffraction. Reflections

kinematically forbidden by the diamond glide plane in silicon,

such as 200, can appear dynamically under suitable conditions,

and were therefore included in the R ratio. Fig. 1(a) shows the

R ratio plotted as a function of specimen depth for the

different slice thicknesses. For a 2 Å slice thickness the R ratio

is less than 0.14% at all depths, i.e. significantly better than

current experimental crystal structure refinements using

electron diffraction (Palatinus et al., 2015; Klar et al., 2023).
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Figure 3
(a) Schematic of a single silicon unit cell in [001] projection. Open circles
denote end-on atom columns. The crosses labelled ‘A’ and ‘B’ are STEM
probe positions simulated in Fig. 2. Physical optics Bloch wave simulated
4D STEM images for (b) bright-field (BF), (c) annular bright-field (ABF)
and (d) medium-angle annular dark-field (MAADF) imaging modes. The
collection angles are 0–5 mrad for BF, 10–15 mrad for ABF and 30–
50 mrad for MAADF. The aberration-free STEM probe semi-conver-
gence angle was 15 mrad. The specimen is 500 Å-thick silicon, and the
field of view spans a single unit cell in [001] projection.

Figure 4
Multislice simulated 4D STEM images for (a) BF, (b) ABF and (c)
MAADF imaging modes. The collection angles are 0–5 mrad for BF, 10–
15 mrad for ABF and 30–50 mrad for MAADF. The aberration-free
STEM probe semi-convergence angle was 15 mrad. The specimen is
500 Å-thick silicon, and the field of view spans a single unit cell in [001]
projection.



The 2 Å slice thickness is therefore considered to give

converged results and is used throughout the rest of this paper.

Because of their close similarities, it is of interest to

compare the (converged) physical optics Bloch wave results

with multislice. Fig. 1(b) shows the PED intensity pendellö-

sung for the unscattered 000 beam, while Figs. 1(c) and 1(d)

are the equivalent plots for two example Bragg diffracted

beams, namely the 220 and 400 reflections, respectively. The

overall shape of the pendellösung is similar for both methods,

although there are also clear numerical differences. There are

potentially two sources of error in the multislice simulations,

both related to the large tilt angle (2�) of the precessed beam.

The first is that the incident wavevectors do not satisfy peri-

odic boundary conditions. However, doubling the supercell

size did not have any significant effect on the multislice

intensities, suggesting that the error due to non-periodic

boundary conditions is small. Secondly, the standard multislice

propagator function (Kirkland, 2010) is strictly valid for

normal beam incidence. Chen & Van Dyck (1997) have

proposed advanced multislice schemes for tilted beams,

although this is outside the scope of the present work and was

not investigated. As for Bloch waves, errors can be introduced

due to neglecting HOLZ (higher-order Laue zone) reflections

in the calculation. This is however not a fundamental limita-

tion of the Bloch wave method; HOLZ reflections were not

included since for zone-axis orientations they typically have

only a small effect on the accuracy (Spence & Zuo, 1992),

while the computing time increases significantly.

4.2. 4D STEM

Figs. 2(a) and 2(b) are the physical optics Bloch wave

simulated diffraction patterns for a 15 mrad STEM probe

positioned on and off a Si [001] atom column [positions ‘A’ and

‘B’ marked with crosses in Fig. 3(a), respectively]. The

equivalent multislice results are shown in Figs. 2(c) and 2(d),

respectively. There is considerable fine structure within the

unscattered beam disc, partly due to interference with over-
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Figure 5
Single scatter plasmon intensity distribution for a 500 Å-thick Si [001] specimen simulated using (a) physical optics Bloch wave and (b) multislice
methods. In (c) the intensity profile along the 220 reciprocal direction is compared for each simulation. The intensity was extracted from the annotated
box region shown in (a). The unscattered beam is at the origin of the graph and is normalized for a direct visual comparison.



lapping Bragg discs. The precise details of the intensity pattern

are however different between the two simulation methods.

One source of error is the HOLZ ring and any associated

HOLZ lines within the unscattered beam disc, which are

reproduced in multislice, but not in the Bloch wave simulation

(Section 4.1). Finite sampling of the STEM probe partial plane

waves could also potentially lead to inaccuracies. For example,

the Bloch wave STEM probe wavefunction at the specimen

entrance surface showed slight deviations from the perfect

radial symmetry predicted by equation (28) (see the

supporting information). However, separate tests confirmed

that the Bloch wave diffraction patterns had converged with

respect to STEM probe sampling, so that it may be ruled out

as a dominant source of error.

Equation (22) and the physical optics Bloch wave method

were used to calculate 4D STEM images, specifically bright-

field (BF; � = 0–5 mrad), annular bright-field (ABF; � = 10–

15 mrad) and medium-angle annular dark-field (MAADF; � =

30–50 mrad). � is the collection angle for each imaging mode

and the simulated images are shown in Figs. 3(b) to 3(d). The

results are consistent with quantum-mechanical Bloch wave

calculations (see the supporting information). The images

span a single silicon unit cell in [001] projection, a schematic of

which is shown in Fig. 3(a). An important feature of equation

(22) is that all probe scan positions are calculated in parallel,

thereby significantly reducing the computation time. For the

simulation parameters in this study the BF image displays

‘white’ atom contrast, i.e. intensity maxima at the atom column

positions, while the contrast is inverted for the ABF and

MAADF images. The equivalent multislice simulated 4D

STEM images are shown in Fig. 4. The sign of BF and ABF

atomic contrast is the same for both Bloch wave and multi-

slice, although there are subtle differences in the intensity

distribution. For example, there are weak subsidiary maxima

between the atom columns for the multislice BF image, while

the atom columns appear more rounded in the multislice ABF

image compared with Bloch waves. MAADF images show

more pronounced differences, such as opposite signs for the

atomic column contrast. The MAADF signal is however more

than an order of magnitude smaller than the BF signal, and

therefore larger differences are perhaps expected, given that

the Bloch wave simulations do not exactly agree with multi-

slice (Fig. 2).

4.3. Plasmon and phonon inelastic scattering

Fig. 5(a) is the single scatter plasmon diffuse background,

calculated using the physical optics Bloch wave equation (23).

The small plasmon characteristic scattering angle �E gives rise

to intensity ‘halos’ around the otherwise sharp Bragg spots,

which are especially visible for the innermost reflections. The

broadening of the diffraction spots is consistent with experi-

mental observations (Mendis, 2024b). The equivalent multi-

slice simulated result is shown in Fig. 5(b). In Fig. 5(c) the

intensity distribution along the 220 reciprocal direction is

compared for both Bloch wave and multislice simulations. The

intensity profile was extracted along the annotated box region

shown in Fig. 5(a), and the intensity of the unscattered beam

was normalized for a direct visual comparison. The minor

quantitative differences between the two profiles are believed

to be largely due to numerical rounding errors in the inelastic

scattered wavevectors (note that the pixel size of the diffrac-

tion pattern is an order of magnitude larger than �E). This is

also likely to be the reason why the HOLZ ring in the

multislice simulation [Fig. 5(b)] has asymmetric intensity.

The single scatter phonon diffuse background, calculated

using physical optics Bloch waves [equation (23)], is shown in

Fig. 6(a). This is a considerably larger calculation than plas-

mons and took�3 days to run on a 32 GB RAM PC. A total of

147268 scattering vectors were simulated in Fig. 6(a), covering

phonon scattering angles up to 100 mrad (Mendis, 2024b). In

contrast, plasmons required only 140 scattering vectors for a

maximum scattering angle of 2 mrad (= 5�E). The equivalent

multislice simulation was computationally too expensive to

perform. This is easily understood by considering the

computational cost for each method, i.e. OðN2Þ and
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Figure 6
(a) Single scatter phonon intensity distribution for a 500 Å-thick Si [001]
specimen simulated using the physical optics Bloch wave model. (b)
shows the phonon diffuse intensity for the same specimen calculated
using multislice frozen phonons and the quantum excitation of phonons
model.



Oð2N2
pixelslog2NpixelsÞ per slice for physical optics Bloch wave

and multislice, respectively. For the simulation parameters in

this study (Section 3), the multislice simulation time is

increased by an order of magnitude.

A more efficient multislice method for simulating TDS is

the quantum excitation of phonons model (Forbes et al., 2010).

Fig. 6(b) shows the phonon diffuse intensity calculated using

this method. Strictly speaking, Fig. 6(b), which includes

multiple phonon scattering, cannot be directly compared with

the single scatter distribution in Fig. 6(a). From Poisson

statistics, single and higher-order phonon scattering consti-

tutes 6.1% and 0.2% of the total electron intensity for our

sample, respectively. Multiple scattering is therefore weak (i.e.

an order of magnitude smaller), but not entirely negligible.

This explains why the diffuse intensity is spread out to higher

scattering angles in Fig. 6(b). It may also be the reason why the

higher-order 620 Kikuchi bands are visible in Fig. 6(b), while

being only weakly present in Fig. 6(a), and revealed only after

adjusting the contrast. Nevertheless, it is clear that the gross

features in the TDS are correctly reproduced by the physical

optics Bloch wave model.

5. Summary

Matrix operators for the multislice phase grating and propa-

gator functions are derived from the Bloch wave structure

matrix. Dynamical scattering can therefore be simulated using

a physical optics approach, where the specimen interaction

and free space propagation of the electron beam are decou-

pled. This is mathematically identical to multislice, although

practical limitations in the implementation of each simulation

technique lead to small numerical differences. The physical

optics Bloch wave method is ideal for many computationally

demanding simulations in 4D STEM (imaging modes), 3D ED

(precession and rotation electron diffraction), as well as

phonon and plasmon inelastic scattering. In all these cases the

specimen remains fixed, while only beam propagation within

the specimen changes between successive simulations (e.g.

individual wavevectors within a STEM probe or precession

cone). Diagonalization of the Bloch phase grating function can

then be re-used, depending on the details of Bragg beam

selection.

The computational complexity of the physical optics Bloch

wave method scales as OðZN2Þ, where Z is the number of

slices and N the number of diffracted beams. For ‘thin’

specimens (small Z) a physical optics simulation could be

more efficient than matrix diagonalization in a standard

quantum-mechanical Bloch wave calculation, which scales as

OðN3Þ. The cut-off thickness is specimen dependent, and

increases with the unit-cell dimensions (i.e. large N). The two

formulations of Bloch wave theory, i.e. quantum-mechanical

and physical optics, provide greater flexibility for a broader

class of dynamical diffraction simulations. The quantum-

mechanical approach is desirable for small unit cell crystals,

while physical optics calculations have better performance for

large unit cells. Finally, for perfect crystal specimens, the

physical optics Bloch wave method could also at times

outperform multislice, since only the important Bragg reflec-

tions in the otherwise sparse diffraction plane are calculated.

The computer code for this work is available open access

from the Durham University research data repository (doi:

10.15128/r2m613mx59t).
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