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Chemistry, Adam Mickiewicz University, Poznań, Poland, and cInstitute of Bioorganic Chemistry, Polish Academy of
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The double-layer honeycomb with hexagonal cells, three rhombic faces between

the two layers and p3m1 layer space-group symmetry, used universally by

honeybees, is often considered to be the most efficient (from the point of view of

wax economy) and the only honeycomb manufactured by bees. However,

another variant of a symmetric and periodic double-layer hexagonal honeycomb

with two hexagons and two rhombi between the two layers and slightly better

wax economy was discovered theoretically in 1964 by Fejes Tóth and found in

nature some years later. The present work shows that there is yet another

possibility, with the interface formed by one hexagon and two quadrangles, in

addition to the trivial case with flat hexagonal cell bottoms and very poor wax

economy. Moreover, we demonstrate that the geometry of the Fejes Tóth

honeycomb can be optimized for even better wax economy. All the theoretical

honeycomb types are derived using the principle of Dirichlet-domain

construction and shown to have more and less symmetric variants. Wax economy

is calculated for each case, confirming that indeed the modified Fejes Tóth

honeycomb is the most efficient, while the trivial flat-bottom case is the least.

1. Introduction

The elegant symmetry and construction principle of the

double-layer honeycomb has fascinated people for centuries.

In his famous book De Nive Sexangula (The Six-Cornered

Snowflake), Johannes Kepler (1611, 1966) dissected the

trigonal interface between the two layers and associated it

with the closest packing of identical spheres (Dauter &

Jaskolski, 2014). Our own interest in the structure and

symmetry of honeycombs is also a spinoff of our work on

sphere packing (Jaskolski et al., 2025).

The classic honeycomb, constructed with natural beeswax

and adopted almost universally by most honeybees, consists of

two layers of hexagonal cells, which are used by the queen to

lay eggs, and in which the hatched larvae and then pupae are

appropriately fed (with the purpose of nurturing workers,

drones or a new queen) by the worker bees (Fig. 1). (In fact,

drones are raised in larger and less regular cells, while the

queen cell is separate and very large.) After full metamor-

phosis, the empty cells are used for storing honey and pollen,

i.e. they function as a food depot for the bee colony. Opinions

are still divided as to how the bees actually manufacture their

combs, but the prevailing notion is that they start from some

less regular patterns, such as a bubbly foam-like structure

(Weaire & Phelan, 1994) or a hexagonal lattice of cylindrical

cells (Nazzi, 2016), which are gradually converted into a

regular lattice of hexagons due to the physical properties of

beeswax.
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The two identical layers of a honeycomb are packed back-

to-back with their bottoms at the interface. The bottom of

each cell is not flat but is constructed as a convex pyramidal

dome from three identical rhombic faces, arranged according

to 3m symmetry. The topology of the trigonal bottom is 444,

meaning that it is formed from three quadrangles. The trigonal

bottoms of the two layers nest tightly together, forming a

corrugated sheet of rhombic faces, which is the ideal, single-

walled interface of the two-layer structure (Fig. 2). In other

words, each rhombic face of the trigonal bottom is shared by

two cells, one from each layer, and the three rhombic faces of a

cell from one layer are shared by three adjacent but different

cells from the opposite layer.

Since the production of wax is metabolically costly for the

worker bees, the principle of honeycomb construction may be

to cover a given volume with the minimal amount of wax. It

has been intuitively felt that such a construction should

correspond to the most efficient use of space and to the most

economical (i.e. minimal) use of wax. However, in 1964 the

Hungarian mathematician László Fejes Tóth (FT hereafter)

realized that a similarly compact interface may be constructed

with different cell bottoms, having 6464 topology, i.e. formed

from two hexagons and two quadrangles. Even more impor-

tantly, FT calculated that the wax economy would be �0.35%

better than in the classic 444 honeycomb. FT’s discovery

turned out to be more than a mere mathematical curiosity

when beekeepers in China found a strain of bees that actually

use the 6464 principle for the construction of their honey-

combs (Yang et al., 2022).

In the present paper, we have revisited the honeycomb,

asking if the two known honeycomb principles (444 and 6464)

are all the possibilities of a consistent, symmetrical and peri-

odic two-layer interface of hexagonal cells. We found that

there is indeed yet another topology possible, denoted 644, in

addition to the trivial case 6 of flat (hexagonal) bottoms, and

that in each of the four topologies there are more and less

symmetric variants, in analogy to the special and general

positions of crystallographic space groups.

In addition, our analysis shows that the FT 6464 honeycomb

can be geometrically modified to obtain a honeycomb with

even better wax efficiency, 0.15% more economical than the

FT variant and 0.50% better than the tri-rhombic 444 variant.

We derived each of the possible honeycomb topologies

from the packing principle of Dirichlet domains and calcu-

lated the wax economy in each case. Moreover, we analyze the

symmetry of each variant and describe it in terms of the layer

space groups known in crystallography (Kopský & Litvin,

2006).

2. Geometric construction of the honeycombs

As mathematical models, honeycombs can be built using a

procedure analogous to the construction of Dirichlet domains,

aka Voronoi polyhedra (Nowacki, 1935, 1976). Fig. 3 presents

a 2D version of this procedure. It starts with two parallel rows

of equally spaced points called generators, marked green and

numbered 0–4 in Fig. 3. The rows are at a distance h and have a

relative shift of dx. Each of the generator points is surrounded

by (black) line segments that are perpendicular at half-length

to the vectors joining these points with their neighbors (thin

green lines). The black lines (planes in 3D) would mutually
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Figure 2
Stereoview of a fragment of the classic two-layer hexagonal honeycomb
with 444 topology of cell bottoms. There are two layers of identical cells,
here shown as an upper and lower layer (in reality they are left and right
layers of a vertical honeycomb). The designation 444 denotes three
quadrangles (here rhombi) forming a cell floor (or ‘ceiling’ in the lower
layer). One of the rhomboidal faces of the central lower cell is shaded
gray. The bottoms of the cells from the two layers fit perfectly together,
forming a corrugated interface.

Figure 3
Construction of a 2D honeycomb. Each honeycomb edge (black) is
perpendicular to a line (thin green) joining two neighboring generating
points (green dots), equally spaced in two parallel rows on both sides of
the mean honeycomb plane (dashed green line) passing through the
centers of symmetry at mid-points of the bottom edges of each cell. The
vertical edges are of arbitrary height, but they all reach the same level at
the honeycomb outer base (where the openings of the cells are).

Figure 1
Honeybees building a honeycomb. Courtesy of Laryssa Kwoczak from
https://www.beekeepingmadesimple.com/.

https://www.beekeepingmadesimple.com/
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Table 1
The honeycomb variants discussed in this work, defined by the dx, dy shifts in column 0.

The honeycomb features are presented in consecutive columns as follows: (1) a single honeycomb cell; (2) two pairs of cells from the two layers, showing how their
bottoms fit together; (3) projection of one upper-layer cell (red) on several lower-layer cells (blue), with the Dirichlet-domain generating points in green (for the

lower cells) or black (upper cell), and with auxiliary vectors between those points (green dashed lines) that generate the bottom faces of the red upper cell; the
centers of symmetry are marked as small black circles and the black lines mark the reference frame for the coordinates of the vertices of the red cell (x axis
horizontal, y vertical); the dx, dy shifts are marked explicitly in rows 3 and 7; (4) projection on the mean plane of a honeycomb fragment with several upper- and
lower-layer cells, with all edges and vertices above the mean plane in red and all edges and vertices below that plane in blue; the vertices and edges lying exactly on
the mean plane are in green; the symmetry elements of the appropriate layer space group are in black. The shaded areas in column (4) cover one unit cell of the
corresponding layer space groups. The relatively small figures in this table are reproduced at a larger scale in the supporting information.

0 1 2 3 4

dx = 1/2, dy =
p

3/2

dx = 0, dy =
p

3/2

dx = 1/4, dy =
p

3/4

dx = 0, dy = 0

dx = 1/4, dy =
p

3/2

dx = 0, dy =
p

3/4



intersect forming a well defined convex polygon (polyhedron

in 3D). In the construction of true Dirichlet domains (i.e. for

an infinite array, or lattice, of generators) such lines (planes)

would enclose a complete and identical polygon (polyhedron)

around each generating point. Since in the present construc-

tion a neighboring row of points is only on one side, the

resulting cells are open at the opposite side. Each thus-

obtained cell has two parallel, vertical edges resulting from

inter-generator contacts within the same row, as well as some

other edges at the bottom, corresponding to neighbors from

the opposite row. [The length of the vertical segments (or cell

walls) is arbitrary but they all have to reach to the same

hexagonal base plane at the cell openings. In nature, cell depth

(or cell wall height) may vary with bee species.] The

arrangement (shape) of these bottom edges depends on the

particular values of the h and dx parameters. Such a 2D

honeycomb has centers of symmetry at mid-points of the line

segments at the cell bottoms, located at their intersections with

the mean plane (dashed green line) passing through the

honeycomb.

In 3D honeycombs, instead of two rows of generating

points, there are two parallel layers of points arranged on a

pattern of symmetric hexagons. Again, vectors between these

points and their neighbors define intersecting planes, which

eventually form the ‘half-domains’ (in Dirichlet sense), open

at one side. The resulting cells will always have six vertical

faces arising from contacts with points within the same layer,

forming a hexagonal prism, as well as some faces at the

bottom, between points from the two opposite layers. Of

course, since all the generating points are symmetrically

equivalent, all cells must be identical and the whole honey-

comb arrangement has well defined symmetry, corresponding

to one of the layer space groups (Kopský & Litvin, 2006). The

exact shape of the cell in 3D depends on the distance h

between the two layers of generating points and on their

relative parallel shifts dx and dy. There is always a center of

symmetry at the center of each bottom face and located at the

mean honeycomb plane. The honeycomb, therefore, always

has at least the layer space group p1. For some particular dx

and dy values, however, the symmetry may be higher (see

Section 4).

Table 1 illustrates certain aspects of honeycombs with

various dx, dy layer shifts and, therefore, with various

topology and symmetry. All the diagrams in Table 1 assume

that the parameter h is selected to minimize the total area of

all honeycomb cell faces for given values of dx and dy. The

blue outline in column (1) of the dx = 0, dy =
p

3/2 honeycomb

(second row) corresponds to the newly discovered (see

Section 5) most economical honeycomb, while the black color

corresponds to the FT honeycomb that is not optimal in this

respect. Geometrically, these two honeycombs differ by a 2.8�

rotation of the hexagonal bottom faces around their hori-

zontal (long) diagonals and a concomitant rotation of the

rhombic faces.

3. The topology of possible honeycombs

Fig. 4(a) shows the coordinate system used for the description

of the honeycomb geometry. It is assumed that the edge of the

hexagonal honeycomb cell cross section has unit length.

Panels (b) and (c) show a projection of the lower honeycomb

cell on the honeycomb mean plane. The points and lines,

shown in different sets of color in these panels, mark the sites

where the center of the upper cell will project onto this

plane according to different dx and dy shifts and different

topologies.

There are four distinct honeycomb topologies, designated

using the ‘vertex count’ notation, as shown in Fig. 4(b). ‘6464’

means that each cell has four faces at the bottom in the

circular order of a hexagon, tetragon, hexagon and tetragon.

‘444’ describes the bottom faces of three tetragons etc. Within

the regions marked by different colors, the topologies are the

same but, of course, the individual shapes of the honeycomb

faces may be different. These shapes will also depend on the

parameter h, which defines the distance between the planes of

the Dirichlet centers (generators) of cells in the two honey-

comb layers. The topology, however, does not depend on h.

In general, the whole hexagonal region, shown in gray in

Figs. 4(b), 4(c), has the 6464 topology and p1 layer symmetry

for the majority of honeycomb arrangements, except certain

specific lines and points marked in different colors. In Fig. 4

and in all subsequent figures, as well as in the trigonometric

calculations in the supporting information, it is assumed that

the horizontal direction is along x and the vertical direction is

along y, as marked in Fig. 4(a). The asymmetric unit (ASU) of

the hexagons in Fig. 4 is the triangle delimited by the thin

black lines, covering a region with the coordinates of 0 � x �

1/2 and 0 � y � x
p

3.
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Table 1 (continued)

0 1 2 3 4

dx = 1/5, dy = 2
p

3/5
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For the calculations and all figures, it is assumed that the

relative shift of dx = dy = 0 of the two honeycomb layers

corresponds to the trivial situation where the center (i.e.

generating point) of one layer is exactly above the center in

the other layer at a distance h. Such a honeycomb, with a flat

hexagonal bottom face and 6 topology, corresponds to the

green vertex of the ASU triangle.

The blue dot at dx = 1/2, dy =
p

3/2 corresponds to the

classic tri-rhombic honeycomb with 444 topology. The black

dots at mid-points of the hexagon edges at dx = 0, dy =
p

3/2

mark the 6464 topology with the orthorhombic cmma

symmetry. They correspond to both, the FT and the ‘best’

honeycombs.

The long red diagonal of the hexagon in Fig. 4(b) with the

equation dx � dy/
p

3 = 0, including the red point at its center,

represents the 644 topology. The remaining, gray region of

Figs. 4(b), 4(c) corresponds to the 6464 topology.

4. Honeycomb symmetry

The different colors in Fig. 4(c) correspond to different

symmetries of the honeycombs, obtained when cells of one

layer, shown in projection on the mean honeycomb plane, are

translated relative to cells in the complementary layer. Again,

the gray color corresponds to mapping of honeycombs with p1

symmetry (and 6464 topology). The honeycomb corre-

sponding to the black point at the center of the outer hexagon

edge also has this topology, but represents the FT and the

‘best’ cells with the layer space group cmma. All three red

lines, marked in Fig. 4(c) as borders of the ASU triangle,

correspond to honeycombs with the c2/m layer space group.

On each line, however, the monoclinic twofold axis has

different orientation, perpendicular to each of the ASU edges.

These lines also represent two different topologies, 644 and

6464.

The blue points at dx = 1/2, dy =
p

3/2 correspond to the

classic tri-rhombic honeycomb with p3m1 layer symmetry,

while the green point at the hexagon center, i.e. with perfect

overlap of flat-bottom cells from the two layers, corresponds

to the p6/mmm layer space group.

Symmetry of the honeycomb types also dictates the number

of ways in which the two layers can be matched. For example,

with the 3m point symmetry of the classic 444 honeycomb cell,

one of the layers will fit the other in three orientations,

differing by 120� rotations as well as after three mirror

reflections of this point group. The trivial honeycomb 6 with

6/mmm point symmetry allows six matching orientations,

differing by 60� rotations and 6+1 mirror reflections. For the

mm2 and 2/m point symmetries the number of mutual orien-

tations of the two honeycomb layers also reflects all the

symmetry operations of these layer space groups.

5. Wax economy of the honeycomb variants

The amount of wax needed to build a honeycomb is propor-

tional to the total area of all faces of the honeycomb cell. As

mentioned in the Introduction, it had been thought for a long

time (and often still is) that the classic tri-rhombic 444

honeycomb represented the most economical (i.e. requiring

the least amount of wax) honeycomb architecture. It was,

therefore, a big revelation, when Fejes Tóth (1964) demon-

strated mathematically that a more economical honeycomb

(the symmetric 6464 variant) is possible. A strong real-life

confirmation for his findings was provided by Yang et al.

(2022), who reported that such natural honeycombs are

indeed built by some bees in China. The relative gain of the FT

honeycomb over the classic 444 version was calculated as less

than 0.35% of the reference area of the hexagonal cell cross

section (Fejes Tóth, 1964).

Here we show that the cell surface area economy can be

further improved, beyond the FT gain, to 0.50%, if the tilt of

the hexagonal faces of the FT honeycomb is increased by 2.8�

[Fig. 3(a)]. The optimal geometry can be derived by assuming

the unit length of the hexagonal base edge and calculating the

total area of all cell faces as

A ¼ 6 d � wð Þ þ 2wþ 5
p

3=4þ 4w2
� �

=2þ
p

3=4þ 12w2
� �

=2;
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Figure 4
Diagrams illustrating the coordinate system with the asymmetric unit in gray (a), as well as the topology (b) and layer space-group symmetry (c) of the
honeycombs in relation to the location of the site where the center of an upper-layer cell projects onto the mean plane of the lower layer. See text for
explanation.



where d is the half-width of the double-layer honeycomb and

w is the distance of the bottom vertices from the mean plane of

the 6464 honeycomb, as shown in Fig. 5. The four components

of the formula for A designate, respectively, (i) the six

rectangular ABCE segments of the faces of the hexagonal

prism, (ii) the four CDE triangles, (iii) the two cell bottom

hexagons and (iv) the two cell bottom rhombi. The extremum

of the A(w) function is found in the zero point of the first

partial derivative @A/@w, and is additionally confirmed as a

minimum by plotting the A(w) function (Fig. 6). The minimal

area occurs at w = 0.279214, which is different from the value

of 0.25 assumed by FT.

The exact dimensions of the honeycomb cells vary among

different bee species, but also between individual cells of the

same honeycomb (e.g. Hailu & Biratu, 2016; http://www.

dave-cushman.net/bee/cellsize.html; https://beeinformed.org/

2017/11/03/comb-management-part2-comb-size/). The width

of the worker bee honeycomb cells varies from 4.5 to 5.5 mm

between different species and can also vary up to 10% within

one honeycomb. The cell depth usually measures between 9

and 12 mm. Our interpretation of the honeycomb geometry is

to some extent idealized by the assumption that all cells are

identical and symmetrically arranged in two opposite hexa-

gonal layers. In the numerical calculations presented in Table 2

and in the supporting information, it was somewhat arbitrarily

assumed that the depth of the honeycomb cell, i.e. half-

thickness of the whole two-layer honeycomb, is d = 1.5 times

the length of the edge of the hexagonal cell base. (We note

that the relative wax economy is independent of the arbitrary

value of d. For real-life honeycomb cells one could assume d’

3.5 times the length of the edge of the hexagonal cell base.) All

values quoted in Table 2 and in the supporting information are

obtained for the optimal values of the h parameter that

minimize the total face area of the honeycomb cell preserving

the same values of dx and dy, with the exception of the FT

case, where the total area is not optimized with respect to h.

Table 2 presents the area differences relative to the optimal

value of the ‘best’ 6464 honeycomb, expressed in % of the

hexagonal cell base area. These values are relative and do not
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Figure 6
Dependence of the total cell face area A of the honeycomb on the
distance w from the cell-bottom middle vertices to the honeycomb mean
plane (Fig. 5). This graph is relevant for honeycombs with dx = 0, dy =p

3/2, including the ‘best’ and FT versions. The angle � on the alternative
abscissa shows the corresponding dihedral angle between the cell floor
hexagon and its adjacent prismatic face of the 6464 cell. The two larger
points marked on the plot correspond to the total cell face areas A of the
FT and ‘best’ honeycombs.

Figure 5
Illustration of a honeycomb cell with dx = 0, dy =

p
3/2, showing how the

positions of the cell-bottom vertices (here shown at the top) are related to
the parameter w.

Table 2
Characteristics of various honeycombs.

A is the total area of all honeycomb cell faces, �A/A is the relative difference between this area and that of the ‘best’ 6464 honeycomb, expressed as % of the
hexagonal cell-base area, equal to 3

p
3/2’ 2.6, assuming cell depth d = 1.5. The �S/S column gives the relative saving of wax, shown as the fraction of a slab of wax

(of amount S) of thickness t/2 and area equal to the cell base. For �S/S calculation the face thickness t is assumed as 10% of the unit length of the hexagon edge.
The dx and dy parameters of the bottom entry may adopt any numerical values within the ranges 0 � dx � 1/2, 0 � dy � dx

p
3/2.

dx dy Topology Symmetry A �A/A (%) S �S/S (%) Table 1 row

1/2
p

3/2 444 p3m1 11.12132 0.50 0.53083 0.27 1

0
p

3/2 6464 cmma 11.10843 0 0.53048 0 2 ‘best’
0

p
3/2 6464 cmma 11.11237 0.15 0.53065 0.13 2 FT

1/4
p

3/4 644 c2/m 11.22592 4.52 0.53564 3.97 3
0 0 6 p6/mmm 11.59808 18.85 0.55191 16.50 4
1/4

p
3/2 6464 c2/m 11.11442 0.23 0.53070 0.17 5

0
p

3/4 6464 c2/m 11.21222 3.99 0.53528 3.70 6

Any Any 6464 p1 7

http://www.dave-cushman.net/bee/cellsize.html
http://www.dave-cushman.net/bee/cellsize.html
https://beeinformed.org/2017/11/03/comb-management-part2-comb-size
https://beeinformed.org/2017/11/03/comb-management-part2-comb-size


depend on the arbitrary cell depth d parameter. These results

are also presented in graphical form in Fig. 7.

It is evident from Fig. 7 that the honeycomb surface area is

much more sensitive to the shift along y than along x. The

difference between the classic and ‘best’ honeycombs is only

0.50%, and is achieved at dx = 1/2 (maximum possible) but at

the same dy =
p

3/2 value. On the other hand, the difference is

18.85% for two honeycombs (‘best’ 6464 and trivial 6) with the

same dx = 0 but shifted by
p

3/2 (maximum possible) along the

y axis.

However, consideration of honeycomb face areas without

taking into account their thickness reflects an idealized case.

In reality, the amount of wax also depends on the ways in

which the faces join each other. Excepting the very border of

the honeycomb, all edges formed by meeting faces are three-

way junctions, as illustrated in Fig. 8(a). Likewise, all vertices

are formed by at least six faces. The surplus (saving) area of

wax at the edge formed by two faces of thickness t meeting at

an angle � is P = t2/4 tan (90� � �/2). The total amount of wax

is proportional to the area of all faces A times half the width of

the cell face, i.e. �A � t/2. The surplus of wax at the junction

of two faces is proportional to the edge length l times the

square of the face half-width, i.e. �l(t/2)2. A similar effect is

present at vertices, where six or more faces meet. However,

here the surplus is proportional to the cube of the face half-

width, i.e �(t/2)3. Assuming, as in the calculations of Table 2,

that the thickness of the cell faces t is 10% of the cell base edge

(i.e. t = 0.1), we get an estimate of vertex saving that is an order

of magnitude smaller than the effect of the edges. We, there-

fore, neglect the influence of the vertices in the calculations

presented in Table 2. The fraction of the surplus area relative

to the t2 cross section at a cell edge formed by two faces joined

at an angle � is presented in Fig. 8(b).

The amount of wax per one honeycomb cell is, therefore,

calculated according to the following formula:

S ¼ Atot

t

2
�
X

i

li

t2

4
tan 90� �

�i

2

� �
;

where the summation is over all cell edges of length li and

internal angles �i, as listed in the supporting information for

all the honeycombs under discussion. The �S/S column of

Table 2 gives the relative saving of wax, shown as a fraction of

a slab of wax (of amount S) of thickness t/2 and area equal to

the cell base. It is a general conclusion that the more faces and

edges there are at the cell bottom, the better the wax economy.
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Figure 7
A diagram showing the difference between the total area of honeycomb
faces (with optimized h values) and the area of the economically ‘best’
reference honeycomb, expressed in % of the hexagonal cell base area, for
the ASU region marked in Fig. 4. The blue dots are for exactly calculated
values and the lines show interpolated values.

Figure 8
(a) Cross section of a junction between three honeycomb faces, each of
thickness t, inclined at different angles to each other, with the darkened
areas showing the surplus regions [e.g. P1 = t2/4 tan (90� � �1/2) etc.]
where wax is saved. (b) Diagram showing the surplus area P at an edge
formed by two honeycomb faces, in relation to the dihedral angle �
between these faces. The values of P are plotted as fractions of t2.



Superficially, it might appear that the honeycomb cell

volume depends on its bottom topology. However, this is not

the case. If we have a double-layer honeycomb of 2d thickness

with hexagonal cells with base edge of unit length, then no

matter how the interface between the identical layers is

constructed, the cell volume will remain the same.

The supporting information presents auxiliary figures and

detailed calculations of wax saving in different honeycomb

configurations. It also recapitulates the FT-style derivation of

the 6464 and 444 topologies.

6. Conclusions and outlook

The four topologies (444, 6464, 644, 6), and their less/more

symmetric variants, of two-layered honeycombs are indeed all

the possibilities of symmetric and periodic arrangements of

regular hexagonal cells. However, this does not exhaust all the

possibilities in general, because there might be, in analogy to

periodic tiling of the 2D plane, cells shaped as triangles,

general parallelograms, rectangles or squares. Such shapes

were beyond the present analysis but might be the subject of a

separate study. Moreover, one could also consider aperiodic

tiling of the 2D plane with identical polygons, such as in the

example of the einstein aperiodic monotile (Smith et al., 2024),

to which the third dimension would be added by (i) creating

cells along the plane normal, (ii) ending them with an

appropriate bottom (the same einstein monotile in the trivial

case), and (iii) matching two such layers back-to-back across

the common interface formed by the interweaving bottoms.

Analysis of such an aperiodic honeycomb would be a tall

order, however.

Finally, we note that beekeepers often prompt honeycomb

making by inserting in the beehive frames artificially made

‘stump’ honeycombs, consisting essentially of the trigonal

interlayer sheet with very short stumps of the prismatic cells,

which serve as a template for worker bees. Such artificial

honeycombs could be printed according to the optimal FT

geometry, allowing the beekeeper (but not the bees!) to save a

little bit on the wax material. It would be interesting to see

how the bees would treat such modified honeycombs.
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