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Germany. *Correspondence e-mail: fabrykiewicz@ifk.rwth-aachen.de

A bridge is established between the Gregorkiewitz & Boschetti [Acta Cryst.

(2024), A80, 439–445] and Stephens [J. Appl. Cryst. (1999), 32, 281–289] form-

alisms of anisotropic peak broadening in powder diffraction. The paper by

Gregorkiewitz & Boschetti presented formulas describing position shifts of low-

symmetry peaks due to different lattice relaxation schemes. Anisotropic peak

broadening caused by lattice relaxation can be parameterized by the variance of

slightly dispersed peaks’ positions. The calculated variances are compared with

formulas from the widely used phenomenological model of anisotropic peak

broadening by Stephens. Specific relations between anisotropic peak broadening

parameters can be a hint of a possible unresolved peak splitting due to lattice

symmetry lowering.

The paper by Gregorkiewitz & Boschetti (2024) presented

formulas for the 1=d2
hkl position of hkl contributions to the

same (hkl) peak in a powder diffraction pattern considering

six minimal lattice symmetry relaxation schemes: (1) cubic to

tetragonal, (2) cubic to rhombohedral, (3) hexagonal to

orthorhombic/monoclinic, (3a) hexagonal to orthorhombic,

(4) tetragonal to orthorhombic, (5) orthorhombic to mono-

clinic, (6) monoclinic to anorthic (triclinic). Based on these

formulas I calculated the variances �2ðh; k; lÞ of the 1=d2
hkl

values of the hkl contributions. For all relaxation schemes the

variances �2ðh; k; lÞ are expressed as fourth-order polynomials

in h, k, l indices:

�2ðh; k; lÞ ¼
X

HKL

SHKLhHkKlL; ð1Þ

with H þ K þ L ¼ 4. Symmetry restrictions for each Laue

class for SHKL coefficients were given by Popa (1998). A

phenomenological model of anisotropic peak broadening

(Stephens, 1999; Popa, 1998) assumes that each crystallite in a

powder sample is in general triclinic and that only average

lattice constants over the whole sample fulfil restrictions of a

given lattice symmetry. In this approach SHKL coefficients are

linear combinations of covariance matrix elements, which

describe a lattice constant distribution in the polycrystalline

sample (see Stephens, 1999). For each of the lattice relaxation

schemes (1–6) listed above, the barycentre shift �h1=d2
hkli, the

variance �2ðh; k; lÞ of 1=d2
hkl and the relations between SHKL

parameters are given in Table 1. The effective peak widths

calculated in a Rietveld refinement depend on the instru-

https://doi.org/10.1107/S2053273325003134
https://journals.iucr.org/a
https://scripts.iucr.org/cgi-bin/full_search?words=Rietveld%20refinement&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=pseudosymmetry&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=microstructures&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Fabrykiewicz,%20P.
mailto:fabrykiewicz@ifk.rwth-aachen.de
http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273325003134&domain=pdf&date_stamp=2025-04-24


mental resolution function, on �2ðh; k; lÞ and on possible other

effects, e.g. crystallite size effects etc. Without specifying the

peakshape function one can say that the total peak width is

monotonic with �2ðh; k; lÞ.

The anisotropic peak broadening method is often used to

improve the Rietveld refinement, but the values of the

Stephens parameters SHKL are not always discussed. The

equalities between SHKL parameters in Table 1 included in

square brackets, e.g. ½S400 ¼ S040 ¼ S004�, are identical to those

given by Stephens (1999). The relations between SHKL para-

meters included in two neighbouring brackets, e.g.

S004 ¼ � S220 (see cubic to tetragonal in Table 1) are additional

restrictions due to the specific lattice relaxation scheme and

they were not provided by Gregorkiewitz & Boschetti (2024).

The equations in Table 1 form a bridge between the Gregor-

kiewitz & Boschetti (2024) and Stephens (1999) formalisms,

giving the values of the SHKL parameters in terms of lattice

parameter increments. One has to keep in mind that defini-

tions of anisotropic peak broadening parameters used in

Rietveld refinement software do not always agree with the

definitions from the Stephens (1999) paper. For a quantitative

analysis of the SHKL parameters one should refer to the

documentation of the specific Rietveld refinement program in

use.

Leineweber (2017) showed a relationship between aniso-

tropic peak broadening parameters and the strain tensor

within symmetry-related low-symmetry domain states.

Applying his general formula [see equation 10 of Leineweber

(2017)] to the cubic to tetragonal lattice relaxation scheme

leads to the same relationship between SHKL parameters as

given for this scheme in Table 1 [see equation 17 of Leine-

weber (2017)].

The study of Leineweber (2017) points out that the high-

symmetry model with anisotropic peak broadening para-

meters and the low-symmetry model with isotropic peak

broadening frequently yield in Rietveld refinements similar

agreement factors. Therefore the choice of the proper model

should be made in combination with possibly available addi-

tional information. Statistically relevant non-zero values of

SHKL parameters fulfilling the relations given in Table 1

obtained in Rietveld refinement of powder diffraction data

can be a signature of a possible unresolved peak splitting due

to lattice symmetry lowering. It should be possible to imple-

ment an automatic check of this relationship in Rietveld

analysis software, which will alert the user to when there are

grounds to consider a low-symmetry lattice model. Users

could also manually constrain SHKL parameters to follow

equalities given in Table 1.

Additional remark: in the Gregorkiewitz & Boschetti

(2024) supporting information I found an error in the equa-

tions of barycentre shift for relaxation from cubic to rhom-

bohedral and from orthorhombic to monoclinic. Instead of

Br ¼ ðh
2 þ k2 þ l2Þ sin �� and Bm ¼ ðh

2=a2 þ k2=b2Þ sin ��, it

should be Br ¼ 2a� 2ðh2 þ k2 þ l2Þ sin2 ��þOðsin3 ��Þ and

Bm ¼ ðh
2=a2 þ k2=b2Þ tan2 ��, respectively.
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Table 1
Number of split peaks for general (hkl), values of barycentre shift
�h1=d2

hkli within linear approximation, variances �2ðh; k; lÞ of dispersed
1=d2

hkl positions within quadratic approximation and relations between
anisotropic peak broadening parameters SHKL as defined by Stephens
(1999) for all relaxation schemes discussed by Gregorkiewitz & Boschetti
(2024).

1. Cubic to tetragonal (3 peaks) c ¼ aþ �a

�h1=d2
hkli = � 2

3
a� 2ðh2 þ k2 þ l2Þð�a=aÞ

�2ðh; k; lÞ = 8
9

a� 4ðh4 þ k4 þ l4 � h2k2 � h2l2 � k2l2Þð�a=aÞ2

½S400 ¼ S040 ¼ S004� ¼ ½� S220 ¼ � S202 ¼ � S022� =
8
9

a� 4ð�a=aÞ2

(HHH), locally narrowest; (H00), locally broadest

2. Cubic to rhombohedral (4 peaks) � ¼ ð�=2Þ þ ��

�h1=d2
hkli ¼ 0

�2ðh; k; lÞ = 4a� 4ðh2k2 þ h2l2 þ k2l2Þð��Þ2

½S220 ¼ S202 ¼ S022� = 4a� 4ð��Þ2 and ½S400 ¼ S040 ¼ S004� ¼ 0

(H00), locally narrowest; (HHH), locally broadest

3. Hexagonal to orthorhombic/monoclinic (6 peaks)

b ¼ aþ �a and � ¼ ð2�=3Þ þ ��

�h1=d2
hkli = � 4

3
a� 2ðh2 þ hkþ k2Þ½ð�a=aÞ �

ffiffi
3
p

3
���

�2ðh; k; lÞ = 32
27

a� 4ðh2 þ hkþ k2Þ2½ð�a=aÞ2 þ ð��Þ2�

½S400 ¼ S040 ¼ S310=2 ¼ S130=2 ¼ S220=3� =
32
27

a� 4½ð�a=aÞ2 þ ð��Þ2�

½S202 ¼ S022 ¼ S112� ¼ ½S004� =
½S301=2 ¼ � S031=2 ¼ S211=3 ¼ � S121=3� ¼ 0

(00L), locally narrowest; (HKL), locally broadest

3a. Hexagonal to orthorhombic (3 peaks)

cos � ¼ � ða=2bÞ and b ¼ aþ �a

�h1=d2
hkli = � 16

9
a� 2ðh2 þ hkþ k2Þð�a=aÞ

�2ðh; k; lÞ = 128
81

a� 4 h2 þ hkþ k2
� �2

ð�a=aÞ2

½S400 ¼ S040 ¼ S310=2 ¼ S130=2 ¼ S220=3� = 128
81

a� 4ð�a=aÞ2

½S202 ¼ S022 ¼ S112� ¼ ½S004� =
½S301=2 ¼ � S031=2 ¼ S211=3 ¼ � S121=3� ¼ 0

(00L), locally narrowest; (HKL), locally broadest

4. Tetragonal to orthorhombic (2 peaks) b ¼ aþ �a

�h1=d2
hkli = � a� 2ðh2 þ k2Þð�a=aÞ

�2ðh; k; lÞ = a� 4ðh2 � k2Þ2ð�a=aÞ2

½S400 ¼ S040� ¼ ½� 2S220� = a� 4ð�a=aÞ2

½S004� ¼ ½S202 ¼ S022� ¼ 0

(HHL), locally narrowest; (H0L), locally broadest

5. Orthorhombic to monoclinic (2 peaks) � ¼ ð�=2Þ þ ��

�h1=d2
hkli ¼ 0

�2ðh; k; lÞ = 4a� 2b� 2h2k2ð��Þ2

½S220� ¼ 4a� 2b� 2ð��Þ2

½S400� ¼ ½S040� ¼ ½S004� = ½S202� ¼ ½S022� ¼ 0

(H0L), (0KL), locally narrowest; (HKL), locally broadest

6. Monoclinic to anorthic (triclinic) (2 peaks)

� ¼ ð�=2Þ þ �� and � ¼ ð�=2Þ þ ��

�h1=d2
hkli ¼ 0

�2ðh; k; lÞ =
4l2c� 2 cos� 4 �½a� 1ð�� � �� cos �Þhþ b� 1ð�� � �� cos �Þk�2

a2ð�� � �� cos �Þ� 2½S202� = b2ð�� � �� cos �Þ� 2½S022� =
1
2

abð�� � �� cos �Þ� 1ð�� � �� cos �Þ� 1½S112� = 4c� 2 cos� 4 �

½S400� ¼ ½S040� ¼ ½S004� = ½S220� ¼ ½S310� ¼ ½S130� ¼ 0

(HK0) and (00L), locally narrowest
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