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The overall crystallographic process involves acquiring experimental data and

using crystallographic software to find the structure solution. Unfortunately,

while diffracted intensities can be measured, the corresponding phases – needed

to determine atomic positions – remain experimentally inaccessible (phase

problem). Direct methods and the Patterson approach have been successful in

solving crystal structures but face limitations with large structures or low-

resolution data. Current artificial intelligence (AI) based approaches, such as

those recently developed by Larsen et al. [Science (2024), 385, 522–528], have

been applied with success to solve centrosymmetric structures, where the phase

is binary (0 or �). The current work proposes a new phasing method designed

for AI integration, applicable also to non-centrosymmetric structures, where the

phase is a continuous variable. The approach involves discretizing the initial

phase values for non-centrosymmetric structures into a few distinct values (e.g.

values corresponding to the four quadrants). This reduces the complex phase

problem from a continuous regression task to a multi-class classification

problem, where only a few phase seed values need to be determined. This

discretization allows the use of a smaller training dataset for deep learning

models, reducing computational complexity. Our feasibility study results show

that this method can effectively solve small, medium and large structures, with

the minimum percentage of phase seeds (three or four points in the interval

[0, 2�]), and 10% to 30% of seed symmetry-independent reflections. This phase-

seeding method has the potential to extend AI-based approaches to solve crystal

structures ab initio, regardless of complexity or symmetry, by combining AI

classification algorithms with classical phasing procedures.

1. Abbreviations

AI: artificial intelligence.

MPE: mean phase error.

Rf: crystallographic agreement factor.

Nasym: number of non-hydrogen atoms in the asymmetric

unit.

Nrefl: number of symmetry-independent reflections.

EDM: electron-density modification.

’a: actual phase value.

’d: discretized phase value.

Percseed: percentage of the number of seed reflections with

respect to Nrefl.

Perclim: minimum Percseed for which the phasing procedure

leads to the correct structure solution.

MPElim: maximum MPE for which the phasing procedure

leads to the correct structure solution.

E: reflection-normalized structure-factor amplitude.
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2. Introduction

For almost a century, the solution at the atomic level of

unknown crystal structures has been the main aim of crystal-

lography. Experiments offer the possibility to measure only

diffracted intensities from crystals, with a Bragg discrete

sampling. Bragg intensities, sampled on the reciprocal-space

nodes, are related to the Fourier transform of the electron

density of the unknown structures. However, any information

about the corresponding phases, which is essential to derive

atomic positions within the crystal unit cell through a Fourier

synthesis of the square root of the scattered intensities, is

missing (crystallographic phase problem). Direct methods

(DM) (Karle & Hauptman, 1950) revolutionized crystal-

lography by using probabilistic approaches to solve the phase

problem. DM rely on relationships among the phases of

different reflections and have been particularly successful for

small and medium-sized molecules (Giacovazzo, 2014). The

theory requires that atoms are completely resolved as separate

objects (Sayre, 1952). If this condition does not hold, then the

probabilistic principle, on which DM depend, loses significant

efficiency to reliably estimate unknown phases. DM are typi-

cally used successfully to solve the phase problem for small

and medium-sized molecules.

The alternative Patterson approaches (Patterson, 1934) use

direct-space maps to determine interatomic distances directly

from the inverse Fourier transform of diffraction intensities.

These ab initio approaches are particularly effective even for

large-size structures, when heavy atoms are present, through

suitable deconvolution procedures of the Patterson maps

(Burla et al., 2006).

Moreover, atomic resolution is often not available in

experimental data. Extrapolation methods involve mathema-

tical techniques to predict the reflection intensities that are not

directly observed, allowing for the extension of diffraction

data to higher resolution. This method has been useful in

improving the accuracy of phase determination (Caliandro et

al., 2005a,b).

Ab initio approaches (dual-space methods), combined with

EDM techniques (Zhang et al., 2006), are highly effective for

determining macromolecular structures when (quasi-)atomic

resolution data are available (Weeks et al., 1994; Schneider &

Sheldrick, 2002; Jia-xing et al., 2005; Burla et al., 2015). They

can also be used to locate the substructure of heavy atoms or

anomalous scatterers in SIR–MIR (single/multiple isomor-

phous replacement) or SAD–MAD (single-/multiple-wave-

length anomalous diffraction) experiments.

Remarkable developments in ab initio methods, supported

by their implementation in advanced software, running on

high-performance computers, have greatly simplified and

automated the structure solution of crystalline compounds

with varying chemical compositions and complex structures,

and made a substantial impact on a wide range of scientific

fields.

This progress has shifted focus towards areas where solving

structures presents significant challenges, such as proteins or

microcrystalline powder structures.

Since the 1990s, several methods have been developed to

tackle the problem of crystal structure solution from powder

diffraction data. However, even for small-sized structures,

solving powder structures remains challenging in many cases,

as powder diffraction data often contain uncertainties intrin-

sically arising from the experimental process. Consequently, in

powder diffraction, not only the phases are unknown, but the

reliability of the diffraction intensities is also low (Altomare et

al., 2019), further declining at high resolution due to peak

overlapping, a common challenge in this technique. These

factors complicate the use of DM in the solution process. For

powder diffraction, direct-space methods have greatly

improved the crystal structure determination by avoiding the

limitations of DM and effectively handling low-resolution

data. Direct-space methods involve generating trial crystal

structures within the crystal unit cell, with each trial’s relia-

bility assessed by comparing the calculated diffraction pattern

with the experimental data. The approach models the

observed pattern as a whole, optimizing the structural model

to achieve the best data fit (David, 2019; Černý & Favre-

Nicolin, 2019; Shankland, 2019; Cuocci et al., 2022). However,

the initial structural knowledge used to generate the trial

structures must be reliable and accurately represent the

system under investigation, particularly in terms of bond

distances and angles. When this condition is not met, direct-

space methods can be unsuccessful.

For homologous proteins, the phase problem is frequently

addressed using molecular replacement (MR). This technique

involves the rigid-body placement (both the orientation and

position) of a search model – an identical or structurally

similar protein – within the asymmetric unit of a target crystal

to minimize the root mean square deviation between the two

structures. The best configuration is determined by the

agreement between calculated and observed structure factors,

assessed using various MR search functions, as implemented

in different software (e.g. Fujinaga & Read, 1987; Navaza,

1994; Glykos & Kokkinidis, 2000; Read, 2001; McCoy et al.,

2007; Caliandro et al., 2009b; Vagin & Teplyakov, 2010). MR

has been instrumental in solving the structures of many

proteins, especially when high-quality homologous models are

available (Rossmann, 2001).

AI, particularly through tools like AlphaFold, has revolu-

tionized the prediction of protein structures from amino acid

sequences. AlphaFold, developed by DeepMind, uses deep

learning techniques to predict the 3D structure of proteins

with remarkable accuracy. This AI-driven approach has

significantly advanced our ability to model protein structures,

even in cases where experimental data are limited (Jumper et

al., 2021). However, there are still many unknowns, especially

for novel protein folds that lack homologous structures. These

new folds often require innovative approaches to accurately

determine their phases and structures (Vila, 2023).

To highlight the relevance of AI tools in protein structure

prediction, the 2024 Chemistry Nobel Prize was awarded to J.

Jumper and D. Hassabis for developing AlphaFold, along with

D. Baker for advancements in computational protein design,

which have been strengthened by AI in recent years.

research papers

Acta Cryst. (2025). A81, 188–201 Benedetta Carrozzini et al. � The phase-seeding method: a challenge for AI 189



Nanomaterials present unique challenges for phase deter-

mination due to their small size and often complex structures.

Traditional crystallographic methods may be insufficient to

resolve phases accurately. New techniques, such as phase

engineering and the use of advanced microscopy, are being

explored to address these challenges (Shi et al., 2024). These

unresolved issues highlight the ongoing need for innovation

and development in the field of crystallography to improve

phase determination and structural analysis.

The role of AI, in particular machine learning (ML), in

crystallography has been expanding rapidly, impacting various

fields (Billinge & Proffen, 2024; Greasley & Hosein, 2023;

Nawaz et al., 2023; Surdu & Győrgy, 2023; Guccione et al.,

2023). Recent advances in developing neural networks trained

on large datasets show promise in providing more accurate

phase predictions, even from low-resolution data, searching

for the solution in both the reciprocal space (Larsen et al.,

2024) and the direct space (Pan et al., 2023).

Larsen et al. (2024) show that using reciprocal space is

better than direct space (Pan et al., 2023), since the variables to

be determined in the direct space, i.e. the positions of atoms,

vary continuously within the crystalline cell. The limitations of

this novel approach (Larsen et al., 2024) are the limit on the

maximum unit-cell dimensions smaller than 1 nm and the

restriction to centrosymmetric structures which, in turn, limits

the phase to a binary variable (0 or �). These modest limits are

imposed by the computation costs of implementing an efficient

deep learning neural network. Therefore, extending AI

approaches to non-centrosymmetric structures is challenging,

because the phase, which, in general, is a continuous variable,

complicates the application of multi-class approaches. These

approaches typically rely on a limited set of possible phase

values, which significantly reduces computational costs and

enhances efficiency. However, this constraint seems to prevent

their direct use in handling the continuous nature of the phase

in non-centrosymmetric structures.

To overcome these limitations, in this work we propose a

novel phasing method, tailored for integration with AI tech-

niques. In the first step of the phasing process, initial guess

phases for non-centrosymmetric structures are discretized into

a few discrete values, such as those corresponding to the four

quadrants’ values. This strategy could allow reduction of the

mathematical crystallographic phase problem from a general

statistical regression problem, needed for retrieving the values

of a continuous phase variable, to a multi-class classification

problem, in which only very few values must be determined, in

analogy with the 0 and � values for centrosymmetric struc-

tures. Moreover, the reduction of the general phase problem

(continuous variable problem) to a multi-class classification

problem (discrete variable problem) could allow the use of a

less extended input set for the training step of deep learning

networks. In fact, assigning random initial phase values for a

centrosymmetric structure, as demonstrated by Larsen et al.

(2024), effectively sets the correct values for half of the

reflections. In this case, the phase acts as a binary variable,

which reduces the AI task to determining the correct values

for the other half of the reflections.

Therefore, to mitigate the high computational costs asso-

ciated with implementing AI techniques for solving the phase

problem in arbitrary crystallographic space groups, this work

presents a proof of concept aimed at approximating initial

continuous phase values for non-centrosymmetric structures

by using discrete values from four quadrants (0, �/2, �, 3�/4)

or other discrete approximations, such as (0, �), (0, 2�/3, 4�/3)

or (0, �/3, 2�/3, �, 4�/3, 5�/3).

3. Methods

We propose here a general procedure to solve non-centro-

symmetric crystal structures, based on the concept of phase

seeding and the use of AI. The steps involved in the procedure

are outlined in Fig. 1. Experimental data acquired in single-

crystal or powder X-ray diffraction experiments are prelimi-

narily subjected to indexing procedures to determine the

crystal cell parameters and symmetry. This approach uniquely

defines the reciprocal lattice and allows for the identification

of reflections with restricted phase values, if present, as well as

those with general phase values. Each node of the reciprocal

lattice corresponds to a Bragg reflection, which is character-

ized by a diffraction intensity. This intensity is directly

measured in the case of single-crystal X-ray diffraction

experiments or obtained by extracting intensities from an

X-ray powder diffraction pattern. Additionally, each reflection

has a corresponding phase value. The obtained reflection set is

then submitted to a pre-processing step where all possible

phase values, ranging continuously from 0� to 360� for general

reflections of non-centrosymmetric structures, are discretized

by sampling a few points (from 2 to 6) within this range. In

addition, a set of discrete phase values is generated for

restricted phase reflections, if they are expected by the

symmetry. In this paper, the task of the phase seed generation

is carried out by an automatic procedure, but it can also be

effectively performed using a typical AI process. Experimental

amplitudes and calculated phases are used as input for a

phasing procedure within crystallographic software, which

typically operates iteratively in both direct and reciprocal

space, implementing phase extension and refinement. At the

end of the phasing procedure the electron-density map is

calculated in direct space, and it is interpreted in terms of an

atomistic model by automatic model-building computational

routines. The crystal structures so obtained can then be vali-

dated against experimental data and stereochemistry

restraints. This general architecture can in principle be applied
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Figure 1
Scheme of the phase-seeding procedure used for crystal structure
determination.



to small molecules and biological macromolecules, provided

the AI is trained on each specific type of structure.

3.1. Discretization

Non-centrosymmetric space groups have most of the

reflections with phase values ranging in a continuous way from

0 to 360� and, for some space groups, a small number of special

reflections with restricted phase values, which can assume two

values separated by 180�. The percentage of special reflec-

tions, relative to general ones, is determined by the crystal

symmetry. To reduce the complexity of the problem, the phase

values of general reflections have been discretized by four

different types of sampling density, as shown in Fig. 2. Given

the actual value ’a of the phase of each general reflection, the

corresponding discretized value ’d is assumed as the phase of

the nearest sampling point along the circle of unit radius. For

restricted phase reflections, ’a can assume only two values

180� apart and the corresponding ’d is randomly chosen

among these allowed values. For example, in the case of

restricted phases of 0� and 180�, ’d is assigned according to the

first sampling density shown in Fig. 2(a) and limited to one of

these two allowed phase values.

3.2. Phase seed generation

Random phase values are initially assigned to all input

reflections. Given these random values ’a, the corresponding

discretized values ’d for general reflections are then deter-

mined according to the selected sampling density (Fig. 2). For

special reflections, ’d is restricted to the allowed discrete

values. A subset of seed reflections is chosen randomly among

the set of experimental symmetry-independent reflections,

including both general and phase-restricted reflections. The

percentage of seed reflections with respect to the total number

of independent reflections, Percseed, is defined and varied. For

seed reflections, ’a is given by the true phase value calculated

from the published crystal structure, and ’d is associated by

considering the nearest sampling value of a general reflection.

For restricted phase reflections, seed phase values coincide

with the true values, since ’a and ’d are equal. Different ways

of generating the phase seed have been explored and are

compared in Section 4.6, where selections of seed reflections,

based on data resolution or intensity, have been attempted

and applied on a set of crystal structures.

3.3. Phase extension and refinement

Measured amplitudes and phase values assigned as

explained in Section 3.2 are used as input for standard phasing

procedures. As shown in Fig. 3, the initial phase values are

chosen randomly for most reflections and set equal to their

true values only for a small number (seed) of reflections. For

non-seed reflections, the initial phase values are discretized

according to one of the hypotheses shown in Fig. 2. The aim of

the phasing procedure is both to propagate the good phase

information from the seed of reflections to all the symmetry-

independent reflections (phase extension), and to improve the

phase values going from discrete values to continuous values

(phase refinement). The phase extension and refinement

procedure operates EDM cycles, where measured amplitudes

are used as experimental constraints. Electron-density-map

modifications are applied in direct space to enforce the

atomistic hypothesis and propagated in reciprocal space as

new phase values assigned to measured reflections (Cowtan,

1994; Giacovazzo & Siliqi, 1997; Burla et al., 2005). Non-

measured reflections are also considered in the recycling,

according to the ‘free lunch’ procedure (Caliandro et al.,

2007). They have the effect of avoiding the phase refinement

being trapped in local minima, and artificially increasing the

data resolution and quality of the electron-density map

(Caliandro et al., 2008). In the case of protein structures,

molecular envelope calculations are added to the EDM to

describe regions delegated to the solvent (Burla et al., 2003).

Data from protein crystals collected at low resolution (>2.0 Å)

are treated by the Synergy-CAB pipeline (Carrozzini et al.,

2023), which includes EDM cycles based on the difference

electron-density map (Caliandro et al., 2009a; Burla et al.,

2011), coupled with automated model building (Cowtan, 2006,

2014; Langer et al., 2008; Terwilliger et al., 2008) and refine-

ment procedures (Murshudov et al., 2011). After the phase

extension and refinement procedure, a new phase value is

assigned to all symmetry-independent reflections, with the

result that the good phase values, initially confined to the seed

reflections, are propagated to all the reflections.

The quality of the final phase values is checked by calcu-

lating the mean phase error (MPE) relative to the phase

values derived from the known structural model, as well as by

determining the crystallographic agreement factor (Rf)

between the calculated and observed amplitudes. Based on

these two figures of merit, which operate in reciprocal and

direct space, respectively, we can evaluate the validity of the
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Figure 2
Discretization of phase values, according to four different sampling hypotheses: 2 values (a), 3 values (b), 4 values (c) and 6 values (d). The actual phase
value (’a, blue circle) and the corresponding discretized one (’d, red circle) are highlighted for each sampling case.



crystal structure solution and assess the efficiency of the phase

seed generation.

3.4. Computer programs

The SIR2014 software (Burla et al., 2015) was used to

generate the phase seed, calculate the MPE as a function of

the phase seed size (i.e. the percentage of reflections assigned

with the correct discretized phase values, Percseed) and carry

out the phasing extension and refinement procedure. This

latter task is accomplished in different ways depending on the

type of structure to be solved. For microcrystalline structures,

the program EXPO2014 (Altomare et al., 2013) was used to

extract the reflection intensities from the experimental

powder diffraction patterns of a few published powder struc-

tures, whose cell parameters and space groups had been

determined. The extracted reflection intensities were then

treated as single-crystal data and used as input to SIR2014.

3.5. Structure selection

The phase-seeding procedure was tested on 100 known

crystal structures taken from the Crystallographic Open

Database (COD) (Gražulis et al., 2009), the Cambridge

Structural Database (CSD) (Groom et al., 2016) and the

Protein Data Bank (PDB) (Berman et al., 2000), whose crys-

tallographic properties are listed in Tables S1, S2 and S3 in the

supporting information. The structures are categorized into

small (Nasym < 80), medium (80 < Nasym < 300) and large

(Nasym > 300) structures, depending on the number of non-

hydrogen atoms in the asymmetric unit. Six structures having

200 < Nasym < 300 have been included in the set of large

structures, since they are biological macromolecules taken

from the PDB. For each group of structures, relevant variables

affecting the phasing procedures, such as the presence of

heavy atoms, crystal symmetry, data resolution and unit-cell

dimensions, were evenly sampled to effectively test the

phasing seed procedure across a wide range of cases. It should

be noted that the set of test structures includes two structures

that do not have symmetry-restricted reflections, i.e. the small

structure with COD code 2218160, with space group R3 (Table

S1), and the large structure with PDB code 1gyo, space group

P31 (Table S3). Four structures solved by X-ray powder

diffraction data are also included in the test set (Table S4).

4. Results

The results are reported separately, dividing the test structures

according to their size, i.e. the number of non-hydrogen atoms

in the asymmetric unit. The results address both the char-

acterization of the pre-processing step, i.e. the evaluation of

the MPE of the pre-processed dataset obtained by using phase

values assigned with different sampling densities and phase

seeds with different size (Percseed), and the phasing step, i.e.

the assessment of the minimum size of the phase seed that

leads to a valid structure solution (Perclim).

4.1. Small structures

The evaluation of the MPE obtained after the pre-proces-

sing step for the non-centrosymmetric test structure with COD

number 2225745 (Table S1) is shown in Fig. 4. Here MPE is

plotted as a function of the size of the phase seed, measured by

Percseed, and the sampling density used. It can be noted that

even when only 2 values are used to define the phase value of

general reflections, MPE remains below 50� for Percseed >

80%, and with even lower values obtained for higher sampling

densities. It is worth noting that the difference in MPE values

at various sampling densities is most evident for larger seed

size. When instead Percseed is below 30% phase sampling with

2 or 6 values is almost equivalent.

The assessment of the phasing procedure has been carried

out by considering the sampling densities from 2 to 6 and all

the considered Percseed values. For this structure, the Perclim

value is 30% for sampling with 2 angles, 20% for sampling with

3 and 10% for sampling with 4 angles, and again 20% for

sampling with 6 values. The corresponding MPElim values are

research papers

192 Benedetta Carrozzini et al. � The phase-seeding method: a challenge for AI Acta Cryst. (2025). A81, 188–201

Figure 3
Scheme of the procedure to process X-ray diffraction data to produce a
full set of phases. Reflections holding phase values close to the true ones
are shown in blue.

Figure 4
MPE of the discretized phase values with respect to the true values as a
function of the size of the phase seed, i.e. the percentage of reflections
assigned with the correct discretized phase values (Percseed). The
minimum Percseed for each one of the 4 different sampling densities, for
which the initial set of phases converge towards a solution (Perclim), are
highlighted by arrows. Calculations have been performed on the small
test structure COD 2225745, the first of those listed in Table S1.
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75.6�, 77.9, 82.1� and 74.7�, respectively (see arrows in Fig. 4).

It is interesting to note that increasing the sampling density

from 4 to 6 worsens the phasing results, as a seed with larger

size (Percseed 20% instead of 10%) and smaller MPE (MPElim

74.7� instead of 82.1�) are needed to converge to the solution.

This structure is easily solved by the modern direct methods

(MDM) procedure implemented in SIR2014. The first trial of

the tangent procedure (Burla et al., 2015) is able to phase 10%

of the Nrefl reflections with higher E values with MPE = 20�,

and subsequent EDM cycles extend this phase information

reaching MPE = 10� over the Nrefl reflections.

The results of the phasing procedure obtained for the full

set of small test structures are shown in Fig. 5. The efficiency of

the phasing procedure as a function of the sampling density

follows an expected increasing trend, with both Perclim and

MPElim decreasing when a larger number of sampling values is

used [Fig. 5(a)]. However, deviations from this trend

frequently occur among the test structures, as seen in Fig. 4 for

the structure with COD number 2225745 relative to the

sampling density with 4 values. These deviations are respon-

sible for the anomaly in the MPElim curve in Fig. 5(a), which

corresponds to a higher value obtained when sampling with 4

points. This could be due to a greater ease of exploring phase

space when sampling at lower density, preventing the phasing

procedure from getting trapped in local minima. As a matter

of fact, the highest number of test structures successfully

solved with the minimum seed size (Percseed = 10) is obtained

when sampling with 4 points [Fig. 5(b)].

An overall study through the entire set of small test struc-

tures is reported in the supporting information (Section S3).

For the pre-processing step, Fig. S2 shows that the MPE values

obtained after pre-processing depend linearly on the size of

the phase seed, and the slope of this dependence is nearly

constant throughout the test structures, despite the fact that it

depends on the number of sampling points, as already seen in

Fig. 4. From Fig. S2 it can be noted that when only 2 sampling

points are used, the MPE obtained for maximum seed size, i.e.

when Perclim = 100, has a large variability with respect to the

cases in which more sampling points are used. The lower MPE

values are reached for crystal structures with higher symmetry,

and in fact the MPE values anti-correlate with the number of

symmetry operators, as shown in Fig. S3. This trend reduces

for higher sampling densities, so it can be attributed to an

artefact due to the poor sampling of the phase values.

For the phasing step, Figs. S4(a), S4(b) show that the Perclim

values are between 10% and 30% and they have a positive

correlation with data resolution, and a negative correlation

with the atomic number of the heaviest atom in the crystal cell

(Zmax). The corresponding MPElim values [Figs. S4(c), S4(d)]

range between 65� and 85� and, as expected, exhibit opposite

trends to Perclim when correlated with data resolution and

Zmax. The correlation with other crystallographic variables is

less significant.

4.2. Medium structures

The results of the pre-processing step applied to the

medium-sized structure with COD number 2012193 (see first

row in Table S2) are shown in Fig. 6. Besides the overall

similarity with results obtained for the small test structure

(Fig. 4), medium-sized structures exhibit a more marked
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Figure 5
Results of the phase-seeding procedure on the full set of small test structures used in this study. (a) Perclim (left axis) and MPElim (right axis) and (b) the
number of successfully solved test structures plotted for Perclim values (%) ranging from 10 to 50 as a function of the sampling density.

Figure 6
MPE of the discretized phase values with respect to the true values as a
function of the size of the phase seed, measured by Percseed, i.e. the
percentage of reflections to which the true discretized phase values have
been assigned. The lowest Percseed for which the initial set of phases
converged towards a solution are highlighted by arrows. Calculations
have been performed on the medium test structure with COD 2012193,
the first of those listed in Table S2.



decrease of the MPE as a function of Percseed than the small-

sized structures. This is confirmed by the overall analysis on all

the structures listed in Table S2 (Fig. S5). Even for this

structure, the result of the phasing process is surprisingly

different from what we expected, given that the smaller Perclim

is obtained by the coarser sampling (2 values). Higher

sampling densities produce worse results, i.e. higher Perclim.

This structure can be solved ab initio by using the MDM

procedure (Burla et al., 2015) in SIR2014. The structure

solution is reached only at the 46th trial, and after using the

RELAX procedure (Burla et al., 2000, 2002).

Despite the anomaly found for the first structure in Table

S2, when the averages among all the medium structures are

considered, the trends of Perclim and MPElim as a function of

the sampling density are both decreasing, as expected [Fig.

7(a)]. Most of the medium test structures are solved with

Perclim = 20, whereas small structures were mostly solved with

Percseed = 10 [cf. Fig. 7(b) and Fig. 5(b)], and the distribution

of Perclim is nearly similar when using 4 and 6 phase values.

[Fig. 7(b)].

The overall results of the pre-processing step for medium

structures (shown in Section S4) confirm what has already

been observed for small structures.

As regards the pre-processing step, the MPE values

decrease linearly as Percseed increases, with a slope that is

constant among the test structures but increases with the

number of sampling points (Fig. S5). Moreover, the MPE

values anti-correlate with the number of symmetry operators,

with a dependence increasing at lower sampling densities

(Fig. S6).

Regarding the phasing step, Fig. S7 shows that the Perclim

values are between 10% and 30% even for medium structures,

they have a positive correlation with data resolution, and a

negative correlation with Zmax [Figs. S7(a), S7(b)]. The

corresponding MPElim values are still between 65� and 85�

[Figs. S7(c), S7(d)].

4.3. Large structures

An example of application of the pre-processing step to a

large structure (the protein with PDB code 193l, whose crys-

tallographic data are shown in the first row of Table S3) is

shown in Fig. 8. The MPE values and their dependence on

Percseed are similar to those seen for medium structures (Fig.

6). For the 193l structure, the results of the phasing process are

in line with what is expected, as the coarser phase sampling

with 2 values performs worse (Perclim = 20) with respect to

higher sampling densities (Perclim = 10). This structure cannot

be solved ab initio by SIR2014.

By averaging across all the large structures, higher values of

Perclim and lower values of MPElim are obtained compared

with medium structures [Fig. 9(a)]. The fraction of structures

solved by using Percseed = 30 increases with respect to the case

of medium structures, the distribution of Perclim is nearly

similar when using 3 and 4 phase values, and the best results

are obtained when using 6 phase values [Fig. 9(b)].

The dependence of the MPE resulting from the pre-

processing step is in line with what was observed for small and

medium structures (Figs. S8, S9). However, the results of the

phasing step reveal some differences: the Perclim values are

between 10% and 40% and have a positive correlation with

data resolution (Res) [Fig. S10(a)], but surprisingly they have

a positive correlation also with Zmax [Fig. S10(b)], in contrast
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Figure 8
MPE of the discretized phase values with respect to the true values as a
function of the size of the phase seed, measured by Percseed, i.e. the
percentage of reflections to which the true discretized phase values have
been assigned. The lowest Percseed for which the initial set of phases
converged towards a solution are highlighted by arrows. Calculations
have been performed on the large test structure PDB 193l, the first of
those listed in Table S3.

Figure 7
Results of the phase-seeding procedure on the full set of medium test structures used in this study. (a) Perclim (left axis) and MPElim (right axis) and (b)
the number of successfully solved test structures plotted for Perclim values (%) ranging from 10 to 50 as a function of the sampling density.



to what was observed for small and medium structures. The

corresponding MPElim values, between 60� and 85�, are

consistent with a similar trend shown as a function of Res and

Zmax [Figs. S10(c), S10(d)]. This anomaly can be explained by

the role of heavy atoms in proteins, which are specifically

introduced to enhance the phasing process, a necessity for

crystals that diffract at low resolution. As a result, the corre-

lation coefficient between Res and Zmax for large structures is

0.74, significantly higher than that for medium (0.00) and small

(0.20) structures, and the dependence of MPElim on Zmax

reflects that on Res.

4.4. Global statistics

A comparison across small, medium and large structures

reveals that none of the test structures considered in this study

could be solved by the neural network developed by Larsen et

al. (2024). This limitation arises not only due to the non-

centrosymmetric nature of our test structures, but also because

the network was trained with input data limited to a maximum

Miller index value of 10. As shown in Fig. 10, the minimum

value of the maximum Miller index is 22 for large structures,

and 18 for medium and small structures, well above the limit of

10 shown by the dashed red line.

The results of the phase-seeding procedure are summarized

in Fig. 11, where a slight increase in the mean Perclim values

can be seen when moving from small to medium and then to

large structures, as shown in Fig. 11(a). Concerning the

dependence on the sampling density, it can be deduced that

the use of 2 values is not recommended due to the system-

atically higher Perclim values. Smaller values can be obtained

when using 3 values, but the best option is between 4 and 6

values. For small and medium structures the performance of 4

and 6 values is very similar, so 4 is a preferred sampling density

for computational resource arguments, while for large struc-

tures the 6 values lead to better results. The mean MPElim

values in Fig. 11(b) follow an opposite trend, showing a slight

decrease moving from small to large structures and from lower

to higher sampling densities. The use of 6 values produces the

lowest MPElim values, but the dependence on the sampling

density is not as clear as for Perclim. Actually the dependence

of MPElim on sampling density is affected by two contribu-

tions: one arising from the size of the phase seed, the other due

to the discretization of the continuous angular variable.

Therefore, MPElim cannot serve as a reliable criterion for

determining the best sampling density.

4.5. Powder data

Applying phasing methods to powder diffraction data

presents additional challenges compared with the single-

crystal analysis. One key difficulty is the extraction of reflec-

tion intensities from the experimental X-ray diffraction

pattern, which is complicated by intrinsic characteristics of the

powder profile, especially the unavoidable overlap of diffrac-

tion peaks. Table S5 reports the Rf value calculated between

extracted and true structure-factor amplitudes for the powder

data structures considered in this study. The average value is

43%, to be compared with the values of 9%, 11% and 20%

obtained for Rf calculated between measured and true struc-

ture factors for, respectively, small, medium and large single-

crystal structures. As concerns seed phasing, this degradation

of the input information does not affect the MPE values and
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Figure 9
Results of the phase-seeding procedure on the full set of large test structures used in this study. (a) Perclim (left axis) and MPElim (right axis) and (b) the
number of successfully solved test structures plotted for Perclim values (%) ranging from 10 to 50 as a function of the sampling density.

Figure 10
Maximum cell axis length versus the maximum Miller index for the small,
medium and large test structures considered in this study. The value
hmax = 10 is shown by the dashed line.



their dependence on Percseed (Fig. 12), which are similar to

those seen for small single-crystal structures (Fig. 4); rather, it

greatly influences the phasing process. In fact, the output of

the pre-processing step, shown in Fig. S11, is comparable with

that observed for small single-crystal structures. Nevertheless,

only two structures out of the four listed in Table S4 are solved

by phase seeding: Bamo and ampicillin. They have the highest

data resolution and contain heavy atoms (Ba and Mo for

Bamo, S for ampicillin) which act as a pivot for the phasing

process. Even for these structures, the solution is reached for

values of Perclim (arrows in Fig. 12 for Bamo) that are much

higher than those encountered for small single-crystal struc-

tures. Adopting different seed generation modes does not

improve the phasing process. Bamo and ampicillin can be

solved ab initio by DM implemented in EXPO2013.

For the other two structures, Aldx and Theoph, a partially

correct structural fragment was obtained by using seed size

with Perclim > 50%. These structural fragments are similar to

those obtained by DM in EXPO. However, attempts to

complete these partial structures through Fourier-recycling

procedures, as implemented in the EXPO2013 program

(Altomare et al., 2008, 2012), were unsuccessful. Even with

Percseed values set to 100%, the complete fragment could not

be recovered. This indicates that the use of discrete values for

the phases of non-centrosymmetric structures is unable to

improve the poor information on structure-factor vectors

contained in the extracted intensities. The significant error on

the extracted structure-factor magnitudes hinders the effective

propagation of the phase seed.

4.6. Alternative ways to generate the phase seed

In the results presented so far, the reflections used to form

the seed have been chosen randomly among the measured

symmetry-independent ones. In this section we explore

different ways of selecting reflections for the seed, based on

reflection variables relevant to the phasing process. They are

the resolution (d), given by

d ¼
n�

2 sin #
; ð1Þ

where � is the primary X-ray beam wavelength and # is the

secondary X-ray beam scattering angle (Giacovazzo, 2014),

and the normalized structure factor, defined by

E ¼
F
ffiffiffiffiffiffiffiffiffi
hF2i

p ; ð2Þ

where F is the modulus of the structure factor of a given

reflection, and the average at the denominator is calculated

over all the reflections (Giacovazzo, 2014). E values have the

advantage of being independent on the resolution of the

reflection and have the property that

hE2i ¼ 1; ð3Þ

(Giacovazzo, 2014). Therefore, reflections can be identified by

three key variables: the Miller indices (hkl), which determine

their position within the reciprocal-lattice grid; the resolution

value (d), which depends on the radial distance of the reflec-

tion from the centre of the reciprocal lattice; and the E value,

which corresponds to the reflection intensity normalized to the

scattering power of the specific crystal. These variables are

weakly correlated, as can be seen in Fig. S12, and can there-

fore lead to selections of reflections very different from each

other. We implemented the following alternative criteria for

seed generation:

(i) Random: the criterion already adopted, where reflec-

tions are chosen randomly among the Nrefl measured ones.

The number of reflections is determined by fixing the

percentage with respect to Nrefl.

(ii) hkl-Sorted: the size of the seed is fixed by defining the

limit of the reciprocal lattice that contains it. All reflections

are contained in the cubic grid having maximum Miller index

hmax = 5, 10, 15, 20 or 25.

(iii) d-Sorted: reflections are sorted according to their data

resolution, then the seed is formed by taking all reflections

from the lower to higher resolution. The number of reflections

is determined by fixing the percentage with respect to Nrefl.

(iv) E-Sorted: reflections are sorted according to their E

values, then the seed is formed by taking all reflections from

the higher to the lower E value. The number of reflections is

determined by fixing the percentage with respect to Nrefl.
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Figure 11
Box plot of the seed size (a) and of the MPE (b) that lead to a structure solution, calculated for the set of small, medium and large test structures for
sampling densities from 2 to 6. The mean values of the distributions are shown by crosses.



(v) E-Random: the reflections are chosen randomly among

those having large E values (E > 1.0). The number of reflec-

tions is determined by fixing the percentage with respect to

Nrefl.

The efficacy of these criteria to generate the phase seed is

compared in Fig. 13, using a single-crystal structure (the

protein with PDB code 193l). It can be noted that the MPE

values mainly depend on the seed size (Percseed), while they

are only slightly affected by the selection criterion used for

seed generation. However, the selection criterion significantly

affects the efficiency of the phasing procedure. In fact, the hkl-

sorted strategy results in a successful structure solution only

when using a maximum value for the Miller indices hmax = 25,

which corresponds to Percseed = 28%. Similarly, the E-sorted

strategy does not appear particularly efficient, as the structure

solution is reached only by using a large seed (Percseed = 30%).

The Random and d-sorted criteria show equivalent effective-

ness, both leading to a successful structure solution at Percseed

= 20%. However, the highest efficiency is obtained by the E-

random strategy, for which the structure solution is reached by

using a small seed (Percseed = 10%).

To verify the generality of these results, we compare in Fig.

14 the Perclim values obtained by applying the above selection

criteria for seed generation to all the test structures. In

particular, we compare the Random approach, which has been

our default method, with the E-random one, which was the

best performing for the protein with PDB code 193l, and the

hkl-sorted one, which ensures a localization of the seed within

the reciprocal space. Fig. 14 shows that E-random remains the

most effective strategy when all test structures are considered,

particularly for large and medium structures. The Random and

hkl-sorted strategies appear less efficient, as they require a

larger number of reflections to reach a successful structure

solution. It is interesting to observe the trend followed by the

Perclim values when going from small to large structures. For

the Random seed generation, they increase, indicating that the

algorithm loses efficiency when processing larger structures. A

similar, though less defined, trend is observed for the hkl-

sorted seed generation. It should be noted that for this specific

seed generation mode the Perclim value cannot be fixed, but it

depends on the threshold applied in reciprocal space (hmax).

The corresponding averaged hmax values obtained for small,

medium and large structures are 8.9, 10.8 and 15.3, respec-

tively. Instead, for the E-random seed generation the effi-

ciency of the phase-seeding protocol remains substantially

constant across structure sizes. Another interesting result is

the dependence on the sampling density among the seed

generation criteria. In this study, we tested only intermediate

sampling densities with 3 and 4 points, which showed negli-

gible differences when using the E-random and hkl-sorted

criteria. Notably, for these two latter seed generation modes,

the 3-points sampling is more effective than the 4-points

sampling for small structures.

The overall efficiency of the phase-seeding procedure in

solving the full set of test structures is assessed by considering

the best-performing criterion for seed generation, which was

found to be E-random. Since in this case most of the test

structures are solved using Percseed = 10% (the Perclim

distribution is significantly reduced around the value of 10%

in Fig. 14), we used this size of the phase seed as a benchmark

to assess the efficiency of the phase-seeding procedure. The

results, shown in Fig. 15, are compared with those obtained

using the classical ab initio phasing procedures (classical),

which correspond to DM for small and medium structures, and

Patterson methods for large structures, and using Percseed =

0%, i.e. by initiating the EDM cycles with random phases

assigned to all reflections. It can be noted that the random

phase assignment exhibits low efficiency, ranging from �40%

for small structures to �5% for large structures and, as

expected, it is outperformed by the phase assignment through

direct or Patterson methods. Phase seeding with a seed size

limited to Percseed = 10% successfully solves all medium and
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Figure 12
MPE of the discretized phase values with respect to the true values as a
function of the size of the phase seed, measured by Percseed, i.e. the
percentage of reflections to which the true discretized phase value has
been assigned. The lowest Percseed for which the initial set of phases
converged towards a solution are highlighted by arrows. Calculations
have been performed on the test structure with code name Bamo.

Figure 13
MPE of the discretized phase values with respect to the true values as a
function of the size of the phase seed, measured by Percseed, calculated for
different ways of generating the phase seed. The Percseed values of 2.6,
8.0, 17.3 and 28.0 for the hkl-sorted seed generation are not in scale on the
X axis and correspond to hmax = 10, 20, 25 and 30, respectively. The lowest
Percseed for which the initial set of phases converged towards a solution
are highlighted by arrows. Calculations have been performed on the large
test structure with PDB code 193l, the first of those listed in Table S3.



nearly all large test cases, demonstrating a higher efficiency

than classical phase methods for these structures. The

complete set of test structures can be successfully solved by

phase seeding by increasing the number of seed reflections up

to Percseed = 30%.

5. Discussion

Following the proof-of-principle application of AI to phase

crystal structures by Larsen et al. (2024), we searched for ways

to overcome the limitations of this new approach, which

included the small size of crystal structures that were studied

(with maximum unit-cell axis length <10 Å)1, the large

number of structures required for AI training and the appli-

cation to only non-centrosymmetric space groups. Our idea is

to use the AI approach to pre-process diffraction data, with

the aim of generating a seed of reflections whose phase values

are closer to the true ones. This pre-processing step is based on

two pillars: (i) discretization of phase values and (ii) genera-

tion of a seed of reflections with reliable (discretized) phase

values. Following the pre-processing step, the task of

extending this information to the full set of reflections and

further refining the phase values is accomplished by phasing

programs developed so far without the use of AI, based on

recycling procedures in direct and reciprocal spaces. The

results of our feasibility study indicate that this approach can

actually lead to the successful solution of even large-scale non-

centrosymmetric crystal structures, provided that the phase

values are sampled by using only 3 or 4 points in the interval

[0, 2�] and that the number of seed reflections is between 10%

and 30% of Nrefl. Indeed, the observation that MPE of the

seed does not depend on the characteristics of the structure

and that Perclim is even lower for large structures implies that

the phase-seeding procedure could be more efficient for large

structures. Notably, we have also demonstrated that with a

proper calibration of the seeding parameters we can make the

demand on AI performance less challenging.

The results obtained by using a random choice of seed

reflections (Random seed generation mode) have a double

interpretation. For example, the fact that the structure solu-

tion is found with Percseed = 10% can be interpreted consid-

ering (i) a 100% efficient AI procedure applied to phase a

seed formed by 10% of the Nrefl reflections, or (ii) a 50%

efficient AI procedure applied to phase a seed formed by 20%

of the Nrefl reflections. Consequently, the seed phasing

protocol can be optimized by balancing the accuracy of the AI

with the size of the phase seed, namely the number of

reflections to be phased by AI. The first choice requires more

elaborated AI strategies and larger training sets, while the

second one demands more computational resources.

The hkl-sorted seed generation mode has been used to

follow the same approach adopted by Larsen et al. (2024). This

mode represents the best solution for technically applying AI,

as it fixes the grid to be used to generate the diffraction

patterns of the training and inference structures. However, we

have seen that it is not the most effective solution for imple-

menting the phase seeding (Fig. 14), and it does not allow for

an extension towards increasingly larger structures (in fact, the

test structure with PDB code 193l, which has a large unit cell,

is solved only by using hmax = 25).

Seed generation strategies based on collecting reflections in

the order in which they are sorted according to relevant

variables for phasing, such as resolution (d) or normalized

intensity (E), overcome the limit of the hkl-random approach.

However, they seem to be less efficient than the strategies

based on a random choice of the reflections (Fig. 13). The best

strategy for generating the phase seed combines random

selections of reflections with a selection based on their

normalized intensity. In fact, the E-random approach, where

seed reflections are chosen randomly from those with E > 1.0,

was our initial attempt to select seed reflections. This aligns

with a well known saying of Professor Giacovazzo: ‘the first

foolish thing you do is always the best’. On the other hand, it is

well known that normalizing the structure factors enhances

the efficiency of phasing methods and standardizes their

application to structures with varying atomic composition

(Giacovazzo, 2014).

The practical use of the E-random approach for seed

generation, as well as any approach not based on a fixed grid,
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Figure 14
Box plot of the seed size (Perclim) that leads to a successful structure
solution, calculated for the set of small, medium and large test structures
for sampling densities 3 and 4. The mean values of the distributions are
shown by crosses.

Figure 15
Fraction of successfully solved small, medium and large test structures by
applying standard phasing procedures (classical), all-random initial
phases (Percseed = 0%) and phase seeding with Percseed = 10%. Only
sampling densities 3 and 4 are considered.

1 Given the relationship between crystal dimensions in direct and reciprocal
space (see Section S2), the size of the crystal cell is directly proportional to the
number of lattice nodes that are considered for phasing, thus to the complexity
of the input for AI.



poses challenges in applying AI, as it requires the develop-

ment of specific protocols to standardize the AI input data

derived from the measured and calculated diffraction patterns.

However, in our view, this represents the best solution to

guarantee the application of AI to the solution of increasingly

larger structures.

Regarding data resolution, Fig. S1 illustrates that crystal

structures can be realistically solved by using AI alone, trained

with a cubic reciprocal lattice of size 10, only if low-resolution

data are considered, i.e. Res lower than 4–6 Å for small–

medium structures and 8–10 Å for large structures. However,

high-resolution data are essential to correctly interpret elec-

tron-density maps in terms of chemical bonds. For this reason,

in this study, we selected test structures biased towards the

highest experimentally achievable resolution. In practice,

these structures were chosen from those originally used to

develop classical phasing methods. This choice is taken to

demonstrate that our method provides a promising alternative

to the structure-solving approaches currently in use. While

these existing methods are effective in many cases, they often

struggle with large-scale structures, low-resolution or incom-

plete data. By carefully selecting the appropriate seed reflec-

tions and their percentage, our method can be tested on

classes of structures that are difficult to address with current

approaches.

Applying phase seeding to powder data is challenging

because the uncertainties inherent in structure-factor magni-

tudes, extracted from powder profiles, combine destructively

with the approximations introduced when discretizing phase

values for non-centrosymmetric structures. As a result, the

structure solution cannot be achieved even when considering

discretized phase values assigned to all the extracted reflec-

tions (Percseed = 100%). This finding aligns with the common

difficulties encountered in solving powder structures using

traditional phase methods, particularly when the degree of

peak overlap is significant and the experimental resolution is

far from atomic.

Finally, we note that, in this study, we applied phase seeding

in a straightforward way, by treating the pre-processing and

phasing steps as independent. In other words, we applied the

standard phasing procedure followed by ab initio phasing as

implemented in the computer programs SIR2014 and

EXPO2013, for single-crystal and powder data, respectively. A

significant development of the phase-seeding strategy would

put in synergy the two steps, for example, by increasing the

weight of the seed reflections in the EDM procedure.

6. Related literature

The following references are cited in the supporting infor-

mation: Clegg & Teat (2000), Burley et al. (2006), Werner et al.

(1996), Fischer et al. (2016).

7. Conclusions

Artificial intelligence is becoming increasingly pervasive in

crystallography, assisting in solving a wide range of problems

connected to the experimental and computational aspects of

structural investigations. However, until now, the main

problem in crystallography, i.e. the phase problem, had not

been directly addressed. Larsen et al. (2024) developed a

proof-of-principle study that demonstrated that AI can

associate phase values to a set of measured intensities. This

has the potential to revolutionize ab initio crystal structure

determination, but the study has only been applied to

centrosymmetric structures containing a few atoms in the

asymmetric unit, a class of structures that is currently routinely

solved by DM. Extending the AI approach to larger structures,

and to non-centrosymmetric crystal symmetries, for which the

full angular range [0, 2�] must be explored for most phase

values (except for restricted phase values, when present), is

expected to require significant computational resources.

In this study, we propose a method to overcome the

limitations of a purely AI-driven approach, by combining AI

with standard ab initio procedures for crystal structure solu-

tion, based on probabilistic or Patterson-based methods,

through a protocol called phase seeding. We demonstrate that

a phase seed is sufficient to phase the entire structure, i.e. it is

possible to reach the correct structure by assigning discrete

phase values close to the true ones to a minimal subset of

reflections. In this context, AI is used to pre-process crystal-

lographic measurements and provide a seed of reflections with

reliable phase values to phasing programs. Investigations into

the optimal size and nature of the seed have revealed that

sampling the [0, 2�] interval with only 3 points and assigning

good phase values to 10% of the symmetry-independent

reflections yields a structural solution with almost the same

efficiency for small, medium and large structures.

The major novelties of this study lie in the possibility to

solve the phase problem of non-centrosymmetric structures of

any size through the process of phase discretization, and to

select the reflections to be considered as seeds based on their

normalized structure-factor amplitudes. Moreover, the study

establishes limits on the accuracy and extent of AI calculations

necessary to pre-process crystallographic data, by defining the

optimal number of reflections required for phase assignment

in relation to the total number of symmetry-independent

reflections.

Seed phasing has the potential to extend the AI approach to

solving ab initio crystal structures of any complexity and

symmetry by taking advantage of the latest findings in the

development of classification algorithms while also profiting

from the availability of mature and robust classical phasing

procedures.

We believe that the neural architecture most compatible

with the phase-seeding method will differ from the one

developed by Larsen et al. Their approach is tailored for

centrosymmetric structures and has been trained on a

complete set of reflections with Miller indices with maximum

h, k, l values restricted to 10, 10, 10. In contrast, the AI

framework suitable for our method could be effectively

designed and trained on a subset of reflections. This subset

could be complete or incomplete, depending on whether hkl-

sorted or E-random seed generation is employed, and the
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maximum Miller indices would not necessarily be constrained

to (10, 10, 10).

Future work will focus on testing Larsen et al.’s neural

network in combination with the phase-seeding method as

well as developing a new AI framework capable of handling

both centrosymmetric and non-centrosymmetric structures.
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