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Atomic displacement parameters (ADPs) are crystallographic information

describing the statistical distribution of atoms around an atom site. Anisotropic

ADPs by atom were directly derived from classical molecular dynamics (MD)

simulations using a universal machine-learned potential. The (co)valences of

atom positions were taken over recordings at different time steps in a single MD

simulation. The procedure is demonstrated on extended solids, namely rocksalt

structure MgO and three thermoelectric materials, Ag8SnSe6, Na2In2Sn4 and

BaCu1.14In0.86P2. Unlike the very frequently used lattice dynamics approach, the

MD approach can obtain ADPs in crystals with substitutional disorder and

explicitly at finite temperature, but not under conditions where atoms migrate in

the crystal. The calculated ADP approaches 0 when the temperature approaches

0, and the ADP is proportional to the temperature when the atom is in a

harmonic potential and the sole contribution to the actual non-zero ADP is from

the zero-point motion. The zero-point motion contribution can be estimated

from the proportionality constant assuming this Einstein model. ADPs from

MD simulations could act as a tool complementing experimental efforts to

understand the crystal structure including the distribution of atoms around atom

sites.

1. Introduction

Atomic displacement parameters (ADPs) are often provided

as part of crystallographic structural data and may represent

atomic motion, possible static displacive disorder and thermal

vibration (Trueblood et al., 1996). In the past, there was

discussion of ‘thermal vibrations’ (Willis & Pryor, 1975), but

the International Union of Crystallography now recommends

using the term ‘ADP’ (Trueblood et al., 1996). ADPs are

generally anisotropic. Calculation of ADPs is important in

particular to model light elements such as H, where obtaining

ADPs from X-ray diffraction is difficult, and to provide clues

for obtaining a better picture of the actual crystal structure

through refinement.

Theoretical derivations of ADPs are typically performed

indirectly through lattice dynamics analysis, where the dyna-

mical matrix is obtained and the vibrational, or phonon,

frequency of each mode is calculated. Examples of formalisms

may be found in the work of Erba et al. (2013), Madsen et al.

(2013), Lane et al. (2012).

The lattice dynamics approach is difficult to apply in

systems where disorder of elements on a (sub)lattice plays a

critical role. Models with large supercells and/or a very short

range order on the (sub)lattice are required and the symmetry

is different from the experimental model. Ordering may
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significantly affect the final results in a small supercell with

short-range ordering.

Split-site systems are also problematic with lattice dynamics.

One example of a split site is a double-well potential with

minima at two very close positions. The average position of an

atom at this site will be the middle of the two positions at

elevated temperatures, while the atom will be at one of the

minima at the 0 K limit. Placing the atom at the elevated

temperature position leads to an imaginary mode at the �

point.

In contrast, direct derivation of anisotropic ADPs, assuming

a normal (or Gaussian) distribution, from molecular dynamics

(MD) simulations is possible even for disordered systems and

split-site systems. The averages of displacement vector

components from the mean atom position, such as h��C
i��

C
ji,

are simply the (co)variances of atom positions, for instance

Cov(��C
i + �C

i, ��C
j + �C

j). Here, �C
i and ��C

i are the i

component of the mean atom position vector and the displa-

cement vector, respectively, in Cartesian coordinates for a

given atom. A large number of displacement values for a

given crystal can be obtained from MD simulations, and

derivation of ADPs from these values is very straightforward.

This approach was used to obtain the anisotropic ADPs of

ND3 (Reilly et al., 2007) and benzophenone (Reilly et al.,

2013).

The ADP of an individual atom and that of an atom site

must be clearly distinguished. The (co)variance of positions

for a single atom is obtained in the former, while the (co)

variance in the latter is taken over positions of multiple atoms

that are each affine transformed such that the images of atoms

are at almost the same position. The latter is experimentally

observed, while the former is readily obtained using MD.

The direct method can, in principle, derive ADPs for any

system. One notable exception is when atoms migrate during

the simulations and are not trapped around an equilibrium

point. The drawback of the direct method is that each MD

simulation gives different results and obtaining very reliable

values requires a long simulation time and/or a large supercell,

which could be computationally expensive using first-princi-

ples calculations.

Verifying the accuracy of ADPs is a difficult issue to

address. The ADPs in crystal structure refinement absorb

systematic errors. Thus, it is highly challenging to obtain

accurate ADPs. In X-ray electron-density analysis, ADPs

obtained separately from X-ray and neutron diffraction data

are typically compared to evaluate the accuracy. An extremely

careful study on monoclinic Ni(ND3)4(NO2)2 showed average

differences of ADPs for non-hydrogen atoms on the order of a

few 0.0001 Å2, or less than 10%, between 9 (1) K X-ray

diffraction (XRD) and 13 (1) K neutron diffraction measure-
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Figure 1
Experimentally obtained crystal structures of (a, b) Ag8SnSe6 (Takahashi et al., 2024), (c) Na2In2Sn4 (Yamada et al., 2023) and (d) BaCu1.14Cu0.86P2

(Sarkar et al., 2024b). The 300 K experimentally obtained anisotropic ADPs for Ag1 and Ag3 are shown in (a), while the 300 K computationally derived
ADPs for all Ag are given in (b). (a, b) Gray, dark purple and green circles represent Ag, Sn and Se sites, respectively. (c) Yellow and purple circles
represent Na and In/Sn sites, respectively. (d) Green, blue and light purple circles represent the main Ba, Cu/In and P sites, respectively. The small brown
circles above and below large green circles are the Ba11 sites of Sarkar et al. (2024b). This reference claims that the Ba site is triple-split where most of
the Ba occupies the main Ba1 site (green circles) but about 18% enters Ba11 sites at 175 K.



ments (Iversen et al., 1996). The ADPs from classical MD

simulations suffer some uncertainty from statistical processing

in addition to systematic deviations from the true value from

the use of approximations and the difference in classical and

quantum dynamics.

This paper demonstrates the use of universal machine-

learned neural network potential (NNP) MD simulations to

obtain the ADP. The calculated ADPs were compared with

experimentally reported values for rocksalt structure MgO

and three thermoelectric materials, namely argyrodite struc-

ture Ag8SnSe6 (Takahashi et al., 2024), Na2In2Sn4 (Yamada et

al., 2023) with a helical tunnel framework structure, and

ThCr2Si2-type phosphide BaCu1.14In0.86P2 (Sarkar et al.,

2024b). Some have intrinsic substitutional disorder. The

crystal structures of the thermoelectric materials are visua-

lized in Fig. 1. The ADPs are especially interesting in the

thermoelectric materials because rattling atoms with large

ADPs, which may be very anisotropic, could be effective in

reducing the thermal conductivity and improving the

thermoelectric performance.

2. Formalism

Various symbols are used in the literature to describe ADPs,

including U, UC, B and �, and these have not always been used

consistently. Table 1 summarizes the recommendations from a

subcommittee on ADP nomenclature from the International

Union of Crystallography [from Section 1.3 of Trueblood et al.

(1996)]. Here, r is the mean atom position vector and u is the

displacement vector from r. The basis vector lengths of the

reciprocal axes are denoted as a*, b* and c* or a1, a2 and a3.

The crystallographic information file (CIF) format uses U,

while the Protein Data Bank (PDB) convention adopts UC

(Grosse-Kunstleve & Adams, 2002). The U and UC are iden-

tical only when the basis vectors are orthogonal to each other.

ADPs can be visualized as Oak Ridge Thermal Ellipsoid Plot

(ORTEP) ellipsoids, where the semi-axes are along the three

eigenvectors of U and the lengths are proportional to the

corresponding eigenvalue of U (Johnson, 1965). Details of the

transformation between different ADP definitions are

summarized in Appendix A (Section A1).

The following is the proposed procedure to obtain ADPs:

(1) Conduct MD simulations.

(2) Calculate UC for each atom from positions obtained

from MD simulations.

(3) Average UC for atoms related by translational

symmetry.

(4) If necessary, convert to U, change the basis vectors of

some sites, then average U over sites with the same Wyckoff

position.

(5) Convert to whatever ADP quantity that is convenient.

The ADPs are already standard deviations of numerous

atom positions. Providing a standard deviation, often denoted

using parentheses, of a standard deviation (calculated ADP)

from a single simulation is mathematically not sound.

Suppose there are 1 million data points from a single MD

simulation. The data points can be split into 10 sets with

100 000 data points, and the standard deviation of U obtained

from 10 sets of 100 000 data points can be obtained. This

standard deviation would be different from 100 sets of 10 000

data points. The standard deviation depends on how the data

points are split, and thus it is not a well defined value.

However, the U of the 1 million data points is the same as both

the average U of 10 sets of 100 000 data points and the average

U of 100 sets of 10 000 data points; thus the U obtained from

all data points is a well defined value.

The averages and standard deviations of U over different

runs with different atom orderings, and those of U/T over

different temperatures T are meaningful.

3. Methodology

3.1. MD procedure

MD simulations were conducted using the commercially

available Matlantis package from Preferred Networks with

their universal PreFerred Potential (PFP) (Takamoto et al.,

2022) version 7.0.0, a NNP trained on the Perdew–Burke–

Ernzerhof (PBE) generalized gradient approximation (GGA)

to density functional theory (DFT) (Perdew et al., 1996).

Diverse compounds consisting of any of all 96 elements lighter

than Cm inclusive may be modeled using the same potential.

Adopting a potential model instead of first-principles

calculations results in accumulation of atom positions at a

pace that is orders of magnitude faster. Too much computa-

tional resource is necessary when using first-principles calcu-

lations to obtain a sufficient amount of atom position

information for derivation of ADPs with reasonable precision.

On the other hand, classical force fields or potentials are only

available for a limited number of systems, and fine-tuning

classical force fields or potentials for each crystal in consid-

eration requires a high level of expertise. Additionally, much

time is necessary for fitting and verification. Using an off-the-

shelf universal potential applicable to a wide variety of

systems is a very practical approach, at least as a first attempt

to newly explore a crystal.
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Table 1
Notations of position and displacement vectors, bases and ADPs.

Basis Direct lattice (a, b, c) or (a1, a2, a3) Direct lattice (a*a, b*b, c*c) or (a1a1, a2a2, a3a3) Cartesian basis (e1, e2, e3)

Components of r x, y, z or x1, x2, x3 �, �, � or �1, �2, �3 �C, �C, �C or �C
1, �C

2, �C
3

Components of u �x, �y, �z or �x1, �x2, �x3 ��, ��, �� or ��1, ��2, ��3 ��C, ��C, ��C or ��C
1, ��C

2, ��C
3

Related ADP �ij = 2�2h�xi�xji Uij = h��i��ji UC
ij = h��C

i��
C

ji
Unit of related ADP Dimensionless Length2 Length2



Various universal machine-learning NNPs have been

proposed in recent years (Jacobs et al., 2025). The PFP with

the Matlantis package was chosen partly because it has a long

history with continuous updates by dedicated researchers. The

developers trained the potential on a proprietary data set

exceeding 60 million configurations using the VASP code

(Kresse & Furthmüller, 1996; Kresse & Joubert, 1999). It is not

overfitted to a particular published data set such as the

Materials Project. The PFP is available as a ‘take it or leave it’

potential; the user cannot modify it.

The canonical, or constant number of atoms, volume and

temperature (NVT), ensemble was used with a Nosé–Hoover

thermostat (Nosé, 1984; Hoover, 1985). The objective of this

paper is to demonstrate direct derivation of ADPs from MD

simulations using a reasonable energy and force calculator,

and fine-tuning the NNP for individual compounds is outside

the scope.

Structural and calculation details of the considered crystals

are described below.

3.2. MgO simulations

The experimental ADPs of MgO were compared with

theoretical values obtained using the proposed procedure.

MgO takes the rocksalt structure with space-group type Fm3m

(No. 225). The Mg and O occupy one Wyckoff position each

(4a and 4b), both without variable parameters. The ADPs are

isotropic.

The MgO conventional unit cell contains four Mg and four

O atoms. The computational lattice parameter at 0 K is

4.2567 Å, which was used for MD simulations. Supercells of

the conventional cell with sizes 3 � 3 � 3, 4 � 4 � 4,

5 � 5 � 5, 6 � 6 � 6 and 7 � 7 � 7 were obtained and used.

The effect of the lattice expansion on the ADPs was also

studied. The lattice parameter at 300 K is 0.15% larger than at

20–100 K, according to the experimental volume per mol data

of White & Anderson (1966). Therefore, additional calcula-

tions were conducted on 5 � 5 � 5 supercells where the lattice

parameter was increased by 0.15%.

MD simulations were conducted with a time step of 2 fs, and

the number of steps was 50000 (100 ps). Positions were

recorded every 100 steps, but the positions for the first 10000

steps (20 ps, 100 position recordings, hereafter equilibration

steps) were discarded to account for initial shifting of atoms to

attain equilibration. The temperature T was varied between 50

and 500 K in 50 K intervals.

3.3. Ag8SnSe6 simulations

The unit cell of Ag8SnSe6 contains 30 atoms and its space-

group type is Pmn21 (No. 31). The experimental lattice para-

meters at 300 K are a = 7.91440, b = 7.82954 and c =

11.05912 Å, which were used for MD simulations. The Ag

atoms rattle and are of interest in this study. There are five

symmetrically different Ag sites. The Wyckoff positions of

sites Ag1, Ag2 and Ag3 are 4b, and those of Ag4 and Ag5 are

2a (Takahashi et al., 2024).

2 � 2 � 2 and 3 � 3 � 3 supercells were built for MD

simulations of Ag8SnSe6. The time step was 2 fs, and the

number of steps was 155000 and 60000, respectively (310 and

120 ps, respectively). Positions were recorded every 100 steps,

but the positions for the first 20000 steps (40 ps, 200 position

recordings) were discarded as equilibration steps. The number

of Na position data is the same in the two calculations

(16 � 2 � 2 � 2 Ag atoms � 1350 position recordings and

16 � 3 � 3 � 3 Ag atoms � 400 position recordings). The

temperature T was varied between 50 and 300 K in 50 K

intervals.

The U for each Ag atom in a MD simulation was obtained

by taking the (co)variances of atom positions from position

recordings. The symmetrically equivalent coordinate triplets

for 4a sites are (x, y, z), (� x + 1/2, � y, z + 1/2), (x + 1/2, � y,

� z + 1/2) and (� x, y, z). The U for the second, third and

fourth types of atoms can be transformed to U for the first

type, which is reported in this paper, using a matrix R

[equation (16)] which is a diagonal matrix with diagonal

components (� 1, � 1, 1), (1, � 1, 1) and (� 1, 1, 1), respec-

tively. For 2a sites with equivalent coordinate triplets (0, y, z)

and (0, � y, z + 1/2), the diagonal matrix R of the latter has

diagonal components (1, � 1, 1). The final U value of each

Wyckoff position of Ag was derived by averaging the U, for

each atom, over all atoms in all simulations.

3.4. Na2In2Sn4 simulations

The unit cell of Na2In2Sn4 contains 16 atoms and its space-

group type is P212121 (No. 19). The experimental lattice

parameters at 300 K are a = 6.3091, b = 6.5632 and c =

11.3917 Å, which were used for MD simulations. There are

four 4a sites, where one is fully occupied by Na and the other

three are shared by In and Sn with a 1:2 ratio. Na has high

anisotropy and rattles in this compound (Yamada et al., 2023).

For Na2In2Sn4, 4 � 4 � 2 supercells were built containing

128 Na sites and 384 In/Sn sites. Ten supercells, where 128 In

and 256 Sn atoms were randomly assigned to the 384 In/Sn

sites, were built as initial structures. The time step was 2 fs,

positions were recorded every 100 steps, and 55000 steps

(110 ps, 500 position recordings) were considered. The first

5000 steps (10 ps, 50 position recordings) were discarded as

equilibration steps. The temperature T was varied between 50

and 300 K in 50 K intervals.

The final U was obtained similarly as in Ag8SnSe6. The

symmetrically equivalent coordinate triplets for 4a sites are

(x, y, z), (� x + 1/2, � y, z + 1/2), (� x, y + 1/2, � z + 1/2) and

(x + 1/2, � y + 1/2, � z). The U for the second, third and fourth

types of atoms can be transformed to U for the first type,

which is reported in this paper, using a matrix R [equation

(16)] which is a diagonal matrix with diagonal components

(� 1, � 1, 1), (� 1, 1, � 1), and (1, � 1, � 1), respectively.

3.5. BaCu1.14In0.86P2 simulations

The unit cell of BaCu1.14In0.86P2 contains 10 atoms and its

space-group type is I4/mmm (No. 139). The experimental

lattice parameters at 175 K are a = b = 4.0073 and c = 13.451 Å,
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which were used for MD calculations. Cu and In share a 4d site

and P occupies a 4e site. Ba mainly resides at the 2a site, but

the Ba site is reported as triple-split: 82% of Ba is at the 2a

site, while 18% of Ba are at a 4e site very close to the 2a site (at

z = �0.02 compared with z = 0 at the 2a site).

6 � 6 � 2 supercells were used for MD simulations, which

contain 144, 164, 124 and 288 Ba, Cu, In and P atoms,

respectively, or 72(BaCu1.139In0.861P2). Ten supercells were

prepared as initial structures. The Cu and In atoms were

randomly assigned to the 288 Cu/In sites. All Ba were initially

positioned at the center of the triple-split sites, namely the 2a

site, assuming that Ba can move to the 4e site, as necessary,

during the initial equilibration steps. The time step was 2 fs,

positions were recorded every 100 steps, and 55000 steps

(110 ps, 500 position recordings) were considered. The first

5000 steps (10 ps, 50 position recordings) were discarded as

equilibration steps. The temperature T was varied between 25

and 300 K in 25 K intervals.

The final U was obtained similarly as in Ag8SnSe6. The

I4/mmm symmetry forces U11 = U22 and U23 = U13 = U12 = 0,

although this is not exactly attained with statistical handling of

atom positions. The quantities (U11 + U22)/2 (simply denoted

as U11 for brevity), U33 and the isotropic Uiso = (U11 + U22 +

U33)/3 were evaluated in this study.

3.6. Similarity of ADPs

An obvious way to discuss the similarities of isotropic ADPs

is simply by comparing the U values. However, comparing

anisotropic U with different principal axis directions is not

straightforward, especially in degenerate cases where the

principal axes can be taken differently (an extreme case is

isotropic U).

According to Whitten & Spackman (2006), a measure of the

overlap between probability density functions from two

ADPs, U1 and U2, is

R12 ¼
23=2ðdet U� 1

1 U� 1
2 Þ

1=4

½detðU� 1
1 þU� 1

2 Þ�
1=2

ð1Þ

and the similarity index is defined as

S12 ¼ 100ð1 � R12Þ: ð2Þ

For isotropic U with Uiso1 and Uiso2,

R12 ¼
2

Uiso1 þ Uiso2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uiso1Uiso2

p
� �3=2

; ð3Þ

which is the ratio of the geometric to arithmetic mean raised to

the power of 3/2.

4. Results and discussion

The computational ADPs are those of individual atoms (ADP

by atom) unless noted otherwise, while the experimental

ADPs are as-reported values of ADP by site.

4.1. MgO

Fig. 2 shows the Uiso versus T for Mg and O (the subscript

‘iso’ is dropped for brevity hereon in this section). The lines

are linear regressions of U / T, and this trend is found over

all temperature ranges and for all supercells.

The convergence of Uiso with respect to sampling time may

be judged by plotting the Uiso over certain time periods in a

long MD run. There are 500 position recordings from the

50000 step (100 ps) MD simulations, and the 10 Uiso obtained

from the 50(n � 1) + 1-th to 50n-th position recordings are

plotted for 1 � n � 10 in Fig. 3. The Uiso is converged when
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Figure 2
ADP Uiso versus temperature T of (a) Mg and (b) O in MgO. The linear
regressions pass through the origin. The dashed lines represent Uiso of the
5 � 5 � 5 supercell corrected with the Einstein model. The Lp+0.15%
points are from the 5 � 5 � 5 supercell with the lattice parameter
increased by 0.15% to account for the lattice expansion at 300 K.

Figure 3
Uiso for MgO based on the 50(n � 1) + 1-th to 50n-th position recordings
within the 500 position recordings from a MD simulation.



the Uiso is roughly the same value over different n. The Uiso for

n = 1 is clearly larger than those from other n, and the n = 1

and 2 results are discarded as ‘still in equilibration and not

converged with respect to sampling time’.

Fig. 4 plots U/T versus T. Ideally, the proportionality factor

should be the same over the entire temperature and over all

supercells with the same lattice parameters. U/T for T � 150 K

calculations tend to be larger than for T � 200 K calculations

in supercells other than 3 � 3 � 3; thus the U/T averaged over

T � 200 K points are considered from now on. There is a 11%

difference between U/T of 3 � 3 � 3 and 7 � 7 � 7 supercells

for both Mg and O, while this difference decreases to 2%

between 5 � 5 � 5 and 7 � 7 � 7 supercells for both Mg and

O. Therefore, the 5 � 5 � 5 supercell is reasonably converged

with regard to size.

The standard deviation of U/T normalized by the average

U/T over the seven points between 200 and 500 K is discussed

next. With the exception of 5% for Mg and O in the 5 � 5 � 5

supercell, the value is less than 3% for both Mg and O in

the other four supercell sizes. Increasing the lattice parameter

of the 5 � 5 � 5 supercell by 0.15% results in a �1% increase

in the U/T; thus, considering thermal expansion does not result

in a substantial difference in U, especially near room

temperature.

Experimental determination of ADPs of both Mg and O is

possible using XRD partly because their atomic numbers, Z,

are close to each other (Z = 12 and 8 for Mg and O, respec-

tively). The reported values of U from XRD or electron

diffraction at room temperature are 0.0038–0.0040 and 0.0042–

0.0046 Å2 for Mg and O, respectively (Lawrence, 1973; Sasaki

et al., 1979; Tsirelson et al., 1998).

The fitted values of 0.0037 and 0.0034 Å2 for Mg and O,

respectively, at 298 K with the 5 � 5 � 5 supercell (the same

value is obtained with or without lattice parameter expansion

of 0.15%) slightly underestimate experimental values.

However, applying a correction accounting for zero-point

motion based on the Einstein model increases U to 0.0042 Å2

for both Mg and O, with or without lattice parameter expan-

sion (the correction is discussed in detail in Section 4.5). This
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Figure 4
ADP Uiso divided by temperature T versus T for (a) Mg and (b) O in
MgO. The horizontal lines are the average value. The Lp+0.15% points
are from the 5 � 5 � 5 supercell with the lattice parameter increased by
0.15% to account for the lattice expansion at 300 K. The horizontal lines
for 6 � 6 � 6 and 5 � 5 � 5 Lp+0.15% almost overlap.

Figure 5
(a, b) Computational and (c) experimental U values of Ag8InSe6. The
displayed quantities and their symbols are the same as experimental data
[shown in (c)] by Yamada et al. (2023). Linear regressions pass through
the origin. A point in (a) of Ag3 U3 at 0.17 is not shown in this vertical
scale.



corrected value for O is much closer to the experimental

results.

4.2. Ag8InSe6

Figs. 5(a), 5(b) show the ADPs for Ag obtained from

2 � 2 � 2 and 3 � 3 � 3 supercells, respectively. The isotropic

ADP (Uiso) is given for Ag2, Ag3 and Ag5 while the three

eigenvalues of the ADP are provided, as U1 < U2 < U3, to be

consistent with Fig. 3 of Takahashi et al. (2024), which is

reproduced as Fig. 5(c) with the same symbols and scales as in

Figs. 5(a), 5(b). The 2 � 2 � 2 and 3 � 3 � 3 supercell results

are very similar except for 300 K, suggesting good conver-

gence, and have roughly the same values as the experimental

results in Fig. 5(c). However, there are minor differences. Ag3

U1 and U2 approach 0 as temperature T!0 in calculations, but

this is not the case in experiment.

The calculated 2 � 2 � 2 supercell, 3 � 3 � 3 supercell and

experimental results in Fig. 5 show qualitatively similar trends,

but the exact values can differ by more than 0.01 Å2, which

could be considered a very large value. Computational values

can be refined by adding more data points by increasing the

simulation time. The ADPs from the two supercells in Fig. 5

are different by less than 10% except for Ag3 U3 at 300 K, and

the systematic difference between calculations and experi-

ments cannot be addressed by calculating more data points.

Developing and/or using an energy and forces calculator other

than PFP may result in a better agreement, but this is outside

the scope of this study.

The principal semi-axis lengths of the ellipsoid, which are

the three eigenvalues of the matrix U, help explain the shape

of the ellipsoid. The calculated U values are U1 < U2 << U3 and

U1 << U2 < U3 in Ag1 and Ag3, respectively, resulting in cigar-

like (prolate) and saucer-like (oblate) ellipsoids, respectively,

as expected from experimental results. The computational Ag

ADPs at 300 K based on the 3 � 3 � 3 supercell are shown in

Fig. 1(b). The shapes of the Ag1 and Ag3 ellipsoids are

consistent with the experimentally obtained ellipsoids in Fig.

1(a). The calculated Ag1 U1, Ag1 U2, Ag3 U2 and Ag5 Uiso are

proportional to temperature over the entire temperature

range shown, as is indicated in the linear fit that passes

through the origin in Figs. 5(a), 5(b). Other calculated U

values appear to approach U!0 in the limit T!0 with the

clear exception of Ag3 U3. The Ag3 U3 value for 50 K is

surprisingly larger than the 100 K value in both 2 � 2 � 2 and

3 � 3 � 3 supercells.

The Ag1 and Ag3 sites are almost threefold trigonal planar

coordinated. The experimental Ag–Se distances for Ag1 are

2.653, 2.659 and 2.707 Å, while those for Ag3 are 2.541, 2.687

and 2.774 Å. The chemical pressure from the very short Ag3–

Se distance of 2.541 Å strongly motivates Ag to rattle in the

direction out of the coordination plane (Takahashi et al.,

2024), which can effectively result in a split site. This rattling

mechanism caused by ‘retreat from stress’ is found in tetra-

hedrites and tennantites (Cu,Zn)12(Sb,As)4S13 (Suekuni et al.,

2018). The chemical pressure is much weaker for Ag1; thus

Ag1 can be a non-split site while a similarly coordinated Ag3

may be a split site in the direction almost normal to the

threefold coordination plane. Experimentally, none of U1, U2

and U3 of Ag3 approach U!0 in the limit T!0, which is also

a hint of site splitting.

Fig. 6 is a schematic of a double-split site for qualitative

discussion on the temperature (T) dependence of U by atom.

The energy is proportional to T. At very low T (T1), the atom

is trapped in one of the wells, resulting in a small U. The U is

very large at higher T (T2) which allows atoms to move

between the wells, for example by thermal fluctuation or

tunneling, but is sufficiently low that atoms still reside in one

of the wells. This is because the atom is typically located far

from the average position between the wells. Further

increasing T such that the atom is effectively in a single well

(T3) results in a substantial decrease in U because the atom

can now be at the center of the well. Gradually increasing T

(T4) results in a gradually increasing U. The U by atom and U

by site should be almost the same for T � T2, but, at T1, the U

by site is expected to be much larger than U by atom because

atoms can occupy both wells of the site.

research papers

Acta Cryst. (2025). A81, 279–293 Yoyo Hinuma � Direct derivation of anisotropic atomic displacement parameters 285

Figure 6
Schematic of atom distribution in a double-well potential.

Table 2
U of Ag in Ag8SnSe6 at 200 K from 3 � 3 � 3 supercell MD simulations.

The unit is Å2.

U11 U22 U33 U23 U13 U12 U3 U2 U1 U3/U1 Uiso

Ag1 0.024 0.023 0.029 0.008 0.006 0.010 0.041 0.022 0.013 3.2 0.025
Ag2 0.025 0.028 0.038 � 0.004 0.006 � 0.001 0.042 0.026 0.022 1.9 0.030
Ag3 0.041 0.065 0.047 0.004 � 0.025 0.009 0.072 0.065 0.017 4.3 0.051
Ag4 0.031 0.028 0.019 � 0.004 0.000 0.000 0.031 0.029 0.018 1.7 0.026

Ag5 0.037 0.023 0.013 0.005 0.000 0.000 0.037 0.025 0.012 3.2 0.025



Tables 2 and 3 show the elements of U, the eigenvalues U1,

U2 and U3, U3/U1 and Uiso for all Ag sites at 200 K and 300 K,

respectively, from the 3 � 3 � 3 supercell simulations. Taka-

hashi et al. (2024) used anisotropic U for Ag1 and Ag3 because

this dramatically improved the Rwp of experimental data at

300 K. Calculations can provide anisotropic U for all Ag

simultaneously and independently without the need for

repeated refinement attempts. The calculated value of a

measure of anisotropy, U3/U1, at 300 K is roughly 4 for Ag1,

Ag3 and Ag5 (Table 3). The Uiso of Ag3 is roughly double that

of Ag1 and Ag5, while the number of Ag5 atoms is half that of

Ag1. Therefore, considering anisotropy of Ag5 might result in

a smaller improvement of Rwp compared with Ag1 and Ag3.

Ag2 and Ag4 are less anisotropic than Ag1, Ag3 and Ag5

because of their smaller U3/U1; thus using anisotropic U would

not improve Rwp significantly. The trends are similar for both

200 K (Table 2) and 300 K (Table 3).

The convergence of U in the 3 � 3 � 3 supercell simulation

was checked by comparing the similarity index between U

from position recordings 201 to 400 and 401 to 600 (the initial

200 are discarded). The similarity index was 0.02, 0.07, 0.06,

0.04 and 0.16 for Ag1 to Ag5, respectively. This is about one

order of magnitude smaller than the similarity index for Ag1

and Ag3 between the experimental and calculated values

(position recordings between 201 and 600), which are 0.67 and

0.43, respectively. Therefore, the U values are regarded as

converged with respect to sampling time.

4.3. Na2In2Sn4

Fig. 7 shows the eigenvalues of experimental (Yamada et al.,

2023) and calculated U, denoted as U1 < U2 < U3, for Na and

In/Sn1 sites. (Uaniso_a is used instead of U3 in the original

reference.) The results for In/Sn2 and In/Sn3 sites are very

similar to those of the In/Sn1 sites and are not shown. The In

and Sn U are calculated separately, although one U for In and

Sn combined is obtained experimentally.

The experimental and computational U values of Na are

comparable with each other, and U3 of Na is significantly

larger than U1 and U2 for all temperatures, implying an almost

cigar-shaped spheroid [Fig. 7(a)]. The experimental U1, U2 and

U3 are roughly proportional to T (linear regressions passing

through the origin are shown as black lines). The calculated U

is roughly the same as the experimental U, but the details are

slightly different. All of U1, U2 and U3 are almost proportional

to T up to about 150 K, but consistently become larger than

the linear regression of 50, 100 and 150 K values that pass
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Table 3
U values of Ag in Ag8SnSe6 at 300 K from 3 � 3 � 3 supercell MD simulations.

The unit is Å2.

U11 U22 U33 U23 U13 U12 U3 U2 U1 U3/U1 Uiso

Ag1 0.042 0.040 0.053 0.015 0.013 0.019 0.076 0.037 0.022 3.5 0.045
Ag2 0.043 0.051 0.066 � 0.014 0.003 0.002 0.075 0.046 0.040 1.9 0.053
Ag3 0.060 0.110 0.068 0.010 � 0.034 0.014 0.114 0.098 0.026 4.3 0.080
Ag4 0.052 0.048 0.034 � 0.008 0.000 � 0.001 0.053 0.051 0.031 1.7 0.045

Ag5 0.065 0.038 0.022 0.007 0.000 � 0.001 0.065 0.040 0.019 3.3 0.041

Figure 7
The eigenvalues of experimental (Yamada et al., 2023) and calculated U
of Na2In2Sn4, of (a) Na and (b, c) In/Sn sites, shown with different
symbols, plotted against temperature. (c) is an enlargement of (b) for
small U. Experimental values are shown with black filled symbols and the
linear regressions passing through the origin are shown with solid lines.
Computational values are shown with empty symbols and the linear
regressions in (a) passing through the origin for 50, 100 and 150 K points
are shown with solid lines at T < 175 K and are extrapolated using dashed
lines at T > 175 K.



through the origin (shown as red solid lines below 175 K,

extrapolations to higher temperature shown with dashed lines

above 175 K).

This deviation from proportionality in calculations is even

more profound in In/Sn1 sites. The calculated U3 of In1 is

comparable with the U3 of Na at 300 K, which is very different

from the experimental results [Fig. 7(b)]. However, the

experimental and computational U values are relatively close

to each other at 50 and 100 K [Fig. 7(c), which is an enlarge-

ment of Fig. 7(b) at low U].

A large U value results in a large displacement from the

equilibrium position. The standard deviation of the atom

position, �, is simply the square root of U. A U of 0.09 Å2

along a certain direction corresponds to a � of 0.3 Å.

Assuming a normal distribution, the atom is more than 3� =

0.9 Å away from the average position for 0.3% of the time.

This 0.9 Å is roughly one-third of the In/Sn–In/Sn bond length

(�2.87 Å).

In the author’s previous study on LaH2.75O0.125 (Hinuma,

2025), the isotropic ADP of O, Uiso (denoted as h�r2i in the

reference), is roughly proportional to temperature below

�0.02 Å2 but becomes much larger than what is expected from

the proportionality trend above this threshold Uiso value. The

Uiso of La is proportional up to �0.03 Å2, which covers the

entire considered range of T. This LaH2.75O0.125 is known as a

very good H ion conductor. The H and O, together with

vacancies, share the same sublattice in LaH2.75O0.125; thus O

may easily move away from the original site after a very small

displacement on the order of �0.1 Å from the equilibrium

position.

The mean square displacement (MSD) of an atom trapped

near the equilibrium point becomes a constant regardless of

time. This MSD is the ADP when the initial position of the

atom is the equilibrium point. However, the MSD is propor-

tional to time in a diffusing atom under Brownian motion, and

the proportionality factor is two times the dimension times the

diffusion coefficient. For very slowly moving atoms, the

moving of some atoms away from the original equilibrium

position can be detected but the diffusion coefficient cannot

be derived with reasonable precision with a realistic simula-

tion time. MD simulations find that In/Sn atoms can move

away from the equilibrium point at above 175 K, based on

MSD increasing with time and/or too large U values, and

thereby the proposed algorithm concedes that it is not

applicable in this material. Assigning atoms to the nearest site

might be possible, for example by Gaussian mixture modeling

or Voronoi tessellation, and atom sites must be correctly

identified or provided explicitly.

Inspection of atom movements during MD simulations of

Na2In2Sn4 revealed significant displacements of atoms at T �

200 K. The increase in U above the proportionality trend in

calculations, but not in experiment, is caused by the difference

in how U is obtained. Experimentally, the displacement of

atoms is the distance to the nearest atom site, and the same

diffusing atom may be assigned to different sites as time

progresses. In contrast, the displacement in calculations is

always the distance to the original atom site. The calculated U

overestimates the actual U when atoms can move away from

the original site.

For the record, Table 4 shows calculated U values of Na

together with reported experimental values at 200, 250 and

300 K (Yamada et al., 2023). The calculated and experimental

values for 200, 250 and 300 K are consistent with each

other, although the sign is different in some off-diagonal U

coefficients.

4.4. BaCu1.14Cu0.86P2

Table 5 shows the calculated U of BaCu1.14In0.86P2 at 175 K

together with experimental results (Sarkar et al., 2024b) at

173 K. In the reference, the same Uiso was provided for each
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Table 4
U of Na in Na2In2Sn4 derived from MD simulations at various temperatures T.

Experimental values from Yamada et al. (2023) are shown in brackets. Units of T and U are K and Å2, respectively.

T U11 U22 U33 U23 U13 U12

50 0.009 0.009 0.009 � 0.004 � 0.005 0.005
100 0.020 0.021 0.018 � 0.009 � 0.011 0.011
150 0.033 0.033 0.028 � 0.015 � 0.017 0.019
200 0.046 (0.055) 0.047 (0.051) 0.039 (0.048) � 0.021 (� 0.024) � 0.024 (� 0.033) 0.030 (0.036)

250 0.072 (0.072) 0.070 (0.065) 0.065 (0.061) � 0.029 (0.049) � 0.036 (� 0.043) 0.037 (� 0.032)
300 0.092 (0.087) 0.088 (0.078) 0.094 (0.073) � 0.029 (� 0.040) � 0.051 (0.055) 0.034 (0.060)

Figure 8
Calculated U values by atom for BaCu1.14In0.86P2. The anisotropic U11

and U33 are given for Ba and Cu because of their large anisotropy, and
isotropic Uiso is plotted for In and P with low anisotropy. The linear
regressions in solid lines are not forced to pass through the origin. The
range of �1 standard deviation of U over 10 calculations is shown.



split Ba site, and anisotropic U was not given for Ba. Aniso-

tropic U was provided for the Cu/In and P sites. Experimen-

tally, the Cu/In site has the largest U and is moderately

anisotropic with U33/U11 = 1.38, while the U of P is very

anisotropic with U33/U11 = 2.24 and is slightly smaller than that

of Cu/In. The calculations underestimate experimentally

determined U. Notably, the calculated U33 of Cu/In and P are

roughly one-half and one-third of the experimental U33,

respectively.

Fig. 8 shows the calculated anisotropic U of Ba and Cu and

isotropic Uiso of In and P. The Uiso of In and P are almost the

same value for all temperatures T. All atoms are in an almost

harmonic potential, with the linear regressions passing very

close to the origin although not required to do so. There were

no migrating atoms. The �1 standard deviation over the 10

MD runs is shown. The standard deviation of Cu is large

because of the large U value and relatively large (standard

deviation)/(mean average) ratio.

Assuming U / T over the temperature range, the (standard

deviation)/(mean average) over all considered temperatures

was 4.6% or less for all of U11, U33 and Uiso of all elements (the

mean averages and standard deviations are given in Table 6).

The correction to U from zero-point motion based on the

Einstein model [details in Appendix A (Section A2), UlowT

and Tc in equations (29) and (30), respectively] was calculated.

The correction is at most 11% for P and 4% within other

elements. The corrected U is given in Table 5.

The difference in U between experiment and calculations in

Table 5 arises from how the values were derived. The

experimental ADPs are by site, while the calculated ADPs in

Table 5 and Fig. 8 are the averages of ADPs by atom.

Therefore, the U33 by site was additionally derived using a

histogram of z coordinates. Atoms with coordinates outside of

� 0.1 < z < 0.4 were translated to this range in integer multiples

of 0.5; note that BaCu1.14In0.86P2 is a body-centered crystal.

Figs. 9(a)–9(d) show the histograms for Ba, Cu, In and P,

respectively, for T = 50, 175 and 300 K. The bin size of the z

coordinate is 0.001. There are 144 atoms � 500 position

recordings � 10 supercells = 720000 total positions for Ba.

Only the z’ 0.14 peak is shown for P (there is another peak at

z ’ � 0.14, which is a mirror image around z = 0, that is not

shown). The normal distribution regressions and their stan-

dard deviations are also given, which can be used to obtain the

ADP by site. The histogram for Cu in Fig. 9(b) cannot be

described well by a single normal distribution.

The curve for Ba has a single peak, and the experimentally

suggested triple-well scenario with small peaks at �z = �0.02

(Sarkar et al., 2024b) is clearly denied. In contrast, Cu, but not

In, shows a triple peak with additional peaks at �z ’ �0.025.

Figs. 9(e), 9(f) show the histograms of Cu and Cu/In combined,

respectively, for T = 50 and 175 K and the regressions

y ¼ A

(

p exp �
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2

2�2

� �

þ
1 � p

2
exp �
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2

2�2

� �

þ
1 � p

2
exp �

ðz � 0:25þ�zÞ
2

2�2

� �)

: ð4Þ

The values to be fitted are a scaling constant A, the occu-

pancy ratio of the main peak p, the standard deviation of the

peaks � and the position of the additional peaks �z. Equation

(4) provides a very good fit, and the parameters used in fitting

are given in Table 7. Very interestingly, the p for Cu/In at

175 K is 0.811, which is the experimental occupancy of the
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Table 5
U of BaCu1.14In0.86P2 at 175 K (Sarkar et al., 2024b).

Values from MD simulations are shown together with experimental values from Sarkar et al. (2024b). U values corrected for the zero-point motion based on the
Einstein model are also shown. In Sarkar et al. (2024b), the Uiso of Ba is the same for Ba1 and Ba11 sites and the ADP of Ba is not given, and only the combined

ADP is provided for Cu/In sites. The Cu/In values from calculations, shown in brackets, are the 164:124 weighted averages based on the Cu/In atom ratio. The unit
of U is 10� 4 Å2.

Calculated Corrected Experiment

U11 U33 U33/U11 Uiso U11 U33 U33/U11 Uiso U11 U33 U33/U11 Uiso

Ba 77 101 1.31 85 80 104 1.31 88 103
Cu 116 193 1.66 142 121 197 1.63 147
In 65 71 1.09 67 68 74 1.08 70
Cu/In (94) (140) (1.49) (110) (99) (144) (1.46) (114) 165 222 1.35 184

P 70 71 1.01 70 77 78 1.01 78 93 208 2.24 131

Table 6
Mean average and standard deviation (std dev.) over 12 temperatures of U/T, by atom, of BaCu1.14In0.86P2 as well as UlowT and Tc based on the Einstein
model.

The (standard deviation)/(mean average) over all considered temperatures was 4.6% or less for all of U11, U33 and Uiso of all elements.

Mean (10� 5 Å2 K� 1) Std dev. (10� 5 Å2 K� 1) UlowT (10� 4 Å2) Tc (K)

U11 U33 Uiso U11 U33 Uiso U11 U33 Uiso U11 U33 Uiso

Ba 4.45 5.86 4.92 0.15 0.19 0.17 20 23 21 45 39 42
Cu 6.73 11.07 8.18 0.12 0.20 0.12 36 46 40 53 42 48
In 3.78 4.10 3.89 0.07 0.07 0.06 20 21 20 53 51 52
Ba 4.00 4.06 4.02 0.03 0.04 0.02 40 40 40 99 98 99



main peak of Ba. The �z of Ba in the experiment is 0.021,

while the �z of Cu/In in the calculation is a very similar value

of 0.026.

Fig. 10 plots the calculated U33 ADP by atom and by site.

The site ADP is obtained as U33
site ¼ c2�2 where c is the lattice

parameter and � is the standard deviation of the histogram.

The ADP was obtained for Cu only, In only, and Cu/In

combined for the 4d site. A single normal distribution and a

superposition of three normal distributions with the same � as

in equation (4), which models a triple-split site, were calcu-

lated with Cu and Cu/In sites.

In Fig. 10, all shown U33 are well described with linear fits.

There is no contribution to U except for the zero-point motion

that is not reflected in the calculations. The non-zero U33 by

site but zero U33 by atom at T!0 implies a significant

contribution to U by site from disorder of Cu/In sites, which

causes atoms to move away from the average atom sites

defined as points. This is in addition to any contributions from

zero-point motion that is not reflected in the calculations.

The single-crystal XRD data of Sarkar et al. (2024a)

[Cambridge Crystallographic Data Centre (CCDC) No.

2285845] were re-refined using a model suggested by ADP
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Figure 9
Distribution of z coordinates of (a) Ba, (b, e) Cu, (c) In, (d) P and (f) Cu+In combined in BaCu1.14In0.86P2 derived from the atom positions obtained from
MD simulations. The atom positions were binned with 0.001 intervals of z. The points are fitted to (a–d) normal distributions (solid lines) and (e, f)
superposition of three normal distributions in equation (4). The standard deviation � of the distributions is shown in (a–d).

Table 7
Parameters used to fit curves in Figs. 9(e), 9(f) using equation (4).

Elements T (K) A (103) p � �z

Cu 175 28.4 0.66 0.0115 0.0257

Cu 50 35.1 0.63 0.0092 0.0257
Cu/In 175 56.3 0.81 0.0101 0.0264
Cu/In 50 67.4 0.79 0.0084 0.0257



calculations, which has a triple-split Cu site and no splitting in

Ba, In and P sites. The results are summarized in Table 8. The

R1 [I > 2�(I)] and R1 (all data) of the re-refinement are 0.0298

and 0.0318, which are better than 0.031 and 0.033, respectively,

in the original reference (Sarkar et al., 2024b). However, the

ADPs in the re-refinement are not consistent with the calcu-

lated values in Table 5.

4.5. Behavior of U at T!0

The Einstein model is considered first, where atoms are

each isolated in a harmonic potential and the atoms do not

explicitly interact with each other. The relation U / T holds

between an ADP component U and temperature T at suffi-

ciently high temperatures. On the other hand, U converges to

a non-zero value, UlowT, at very low temperatures where the

zero-point motion cannot be ignored. A crossover tempera-

ture Tc is defined, which is the T corresponding to UlowT

assuming that the U / T relation holds down to 0 K. This Tc

can be obtained once a combination of U and T in the U / T

regime is obtained. [See Appendix A (Section A2) for the

mathematical details for this section.] Using the U/T propor-

tionality factor is preferred, if available, instead of a single

combination.

Experimental results of U3 for In in Na2In2Sn4 are

proportional to temperature down to 90 K [see Fig. 4(b) of

Yamada et al. (2023)]. Using values of U3 = 0.15 Å2 at 250 K in

the figure, UlowT = 0.008 Å2 and Tc = 13 K. Therefore, effects

from the zero-point motion are not relevant in the tempera-

ture range studied in this system.

The heat capacity C in the Einstein model is not propor-

tional to T3 at T!0, although experimentally C / T3 is often

found. In contrast, the Debye model gives C / T3 at T!0. In

the Debye model, the U at T!0 converges to a non-zero U

value, UlowT_D, and U / T at sufficiently high temperature, as

in the Einstein model. The crossover temperature Tc_D can be

defined similarly, which is 1/4 of the Debye temperature in the

simplest approximation. The UlowT_D and Tc_D areffiffiffi
3
p
=2 � 87% smaller than UlowT and Tc, respectively.

The Einstein and Debye models are totally different

assumptions on atom vibrations in the crystal. Different atoms

can have different characteristic frequencies in different

directions in the Einstein model, while there is only one

Debye temperature in a crystal.

An elastic neutron scattering study reports the Debye

temperature of MgO as 743 � 8 K (Beg, 1976), corresponding

to Tc_D = 186 K. The corresponding Einstein model crossover

temperature, Tc, would be roughly 214 K. The U based on the

Einstein model and the U / T proportionality factor of the

5 � 5 � 5 supercell model are shown as blue dashed lines in

Fig. 2. The Tc for Mg and O are 187 and 244 K, respectively,

which are close to the 214 K inferred from the experimental

Debye temperature.

From another perspective, the NNP MD simulations in this

study can clearly identify whether the experimental non-zero

U at T!0 is solely the consequence of zero-point motion in an

Einstein model or whether there are contributions from

something else, such as configurational disorder or a split site.

Therefore, ADPs estimated from NNP MD act as a probe to

complement experimental observations.

Why does the U / T proportionality persist at very low T in

the NNP MD simulations, but not in experiment? This

paradox can be resolved easily. The NNP MD is based on

classical dynamics although the parameters are fitted to non-

classical DFT, and there is no zero-point motion in classical

dynamics.

The author raises an open question. Is it ever possible for a

classical MD to give a non-zero ADP at T!0 in systems

where atoms are in a harmonic potential, such as in MgO?

5. Summary

The anisotropic ADPs by atom were directly derived from

MD simulations taking the (co)variances over atom positions

at different time steps. A universal machine-learned NNP was

used to accelerate the calculations. The proposed method is

applicable to systems with substitutional disorder and split

sites, unlike with conventional methods using the dynamical

matrix from phonon modes calculated at 0 K. The ADPs can

be obtained by atom, where the (co)variance of each atom is

obtained and then averaged for atoms in an atom site, or by

site, where the (co)variance is calculated over all atoms at the
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Table 8
Re-refinement of single-crystal XRD data of BaCu1.14In0.86P2 (Sarkar et
al., 2024b) based on a model suggested from MD simulations.

Lattice parameters are a = b = 4.0773 (4) and c = 13.451 (2) Å, ‘Occ.’ is the
site-occupancy factor.

x y z Occ. U11 (Å2) U33 (Å2)

Ba1 0 0 0.0 1 0.0106 (3) 0.0222 (5)
Cu1 0.5 0 0.25 0.381 (14) 0.0163 (4) 0.0123 (12)
Cu2 0.5 0 0.2720 (17) 0.096 (7) 0.0163 (4) 0.0123 (12)

In1 0.5 0 0.25 0.427 0.0163 (4) 0.0123 (12)
P1 0.5 0.5 � 0.1330 (2) 1 0.0093 (7) 0.0210 (12)

Figure 10
Calculated U33 per atom (empty symbols) and by site (filled symbols) in
BaCu1.14In0.86P2. The U33 by site is the variance of the normal distribution
fit as in Fig. 8. The variance from fitting of three superposed normal
distributions with the same valences is shown for Cu and Cu/In sites
(triangular symbols for ‘split’ sites).



atom site. The zero-point motion is not reflected in an ADP

from classical MD simulations, but it can be estimated by

extrapolation assuming an Einstein model using the propor-

tionality factor between the ADP and temperature, if

proportionality holds. The proposed method gives ADPs of

MgO that are consistent with experimental values. The

experimentally obtained shapes of anisotropic displacement

ellipsoids of rattling atoms in thermoelectric materials

Ag8SnSe6 and Na2In2Sn4 are consistent with calculated results.

The possibility of splitting of the Ag3 site of Ag8SnSe6 can be

detected through calculation of the ADP over different

temperatures. Migration of atoms was found in Na2In2Sn4 at

T � 200 K, resulting in a very large ADP by atom that

disagrees with the experimentally obtained, much smaller

ADPs by atom site. The ADPs by atom and by site are clearly

different in the thermoelectric material BaCu1.14In0.86P2,

which is caused by disorder in the shared Cu/In site. The non-

zero ADPs by site at T!0 in BaCu1.14In0.86P2 are a good

reason why ADPs should not be referred to as ‘temperature

factors’ or ‘thermal ellipsoids’ because there are contributions

to the 0 K ADPs from disorder of Cu/In atoms other than the

zero-point motion. The investigations in this study suggest the

effectiveness and limitations of direct ADP derivation from

MD simulations and the use of calculated ADPs as a tool

complementing experimental efforts to determine the crystal

structure including atom displacement around atom sites.

APPENDIX A

Mathematical details

A1. Relations between different ADP definitions

The U, b and B are related by [equation (38) of Trueblood et

al. (1996)]

Ujl ¼ �jl=ð2�2ajalÞ ¼ Bjl=8�2: ð5Þ

Using a scaling matrix

S ¼

a� 0 0

0 b� 0

0 0 c�

0

@

1

A; ð6Þ

b ¼ 2�2SUS: ð7Þ

The Debye–Waller factor for a diffraction vector

h ¼
X3

i¼1

hia
i ¼

X3

i¼1

hC
i ei; ð8Þ

which is a row vector in reciprocal space, is

T hð Þ ¼ exp �
X3

j¼1

X3

l¼1

hj�
jlhl

 !

¼ exp � 2�2
X3

j¼1

X3

l¼1

hja
jUjlalhl

 !

¼ exp � 2�2
X3

j¼1

X3

l¼1

hC
j UC

jl hC
l

 !

ð9Þ

[from equations (21), (24), (34) and (36) of Trueblood et al.

(1996)]. Here, (e1, e2, e3) is an orthonormal basis.

One transformation matrix between the bases (a, b, c) and

(e1, e2, e3) is [equation (50) of Trueblood et al. (1996)]

A ¼

a b cos � c cos �

0 b sin � � c sin � cos ��

0 0 1=c�

0

@

1

A: ð10Þ

Coordinates of vector r in bases (a, b, c), (a*a, b*b, c*c) and

(e1, e2, e3), which are denoted as (x, y, z), (�, �, �) and (�C, �C,

�C), respectively, transform as

ð�C; �C; �CÞ
T
¼ Aðx; y; zÞ

T
ð11Þ

[based on equation (41) of Trueblood et al. (1996)] and

ð�C; �C; �CÞ
T
¼ ASð�; �; �Þ

T
ð12Þ

[based on equations (46)–(48) of Trueblood et al. (1996)].

Matrix

D ¼ AS ð13Þ

was used by Trueblood et al. (1996).

The transformation between U with the basis (a*a, b*b, c*c)

and UC with the orthonormal basis (e1, e2, e3) is

UC ¼ ASUSAT ¼ DUDT ð14Þ

[based on equation (49) of Trueblood et al. (1996)].

The ADPs of an atom are often visualized as an ellipsoid.

The principal semi-axes of the ellipsoid are simply the three

eigenvalues of UC, and the directions of the semi-axes are

those of the eigenvectors. The matrix of three eigenvectors P

and the diagonal matrix with three corresponding eigenvalues

Q are obtained as

P� 1UCP ¼ Q: ð15Þ

The eigenvectors in the bases (a, b, c) and (a*a, b*b, c*c) are

derived with equations (10) and (11), respectively. Alter-

natively, principal component analysis may be used to obtain

the eigenvalues and eigenvectors of UC.

The conversion of U between two atoms with the same

Wyckoff position, p and q, is given below. Let the mean

positions of the two atoms p and q, r ¼ ðx; y; zÞT and

r0 ¼ ðx0; y0; z0ÞT, be related as

r0 ¼ Rrþ t; ð16Þ

where R is a rotation matrix and t is a translation vector. The

relation between displacement vectors u ¼ ð�x;�y;�zÞT

and u0 ¼ ð�x0;�y0;�z0ÞT is

u0 ¼ Ru: ð17Þ

The goal here is to change the basis vectors defining U0 such

that the transformed quantity U00 is directly comparable with

U, which is accomplished by

U00 ¼ ðR� 1ÞU0ðR� 1Þ
T
: ð18Þ

This transformation is useful to increase the number of

atoms with U values that can be easily averaged, thereby

improving the reliability of results. The average U and UC of
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atoms that are directly comparable is simply the mean of U

and UC of the atoms, respectively.

A2. Temperature dependence of the ADP in Einstein and

Debye models

The ADP in the Einstein model is discussed first. A 1D

harmonic potential is considered with the standard Hamilto-

nian

Ĥ ¼ �
h- 2

2m

d2

dx2
þ

m!2

2
x2

� �

; ð19Þ

where x is the position, m is the particle mass and ! is the

characteristic angular frequency. An atom is placed in this

potential. Although this potential does not have terms

describing explicit interactions with other atoms, this potential

reflects the interactions between atoms.

The eigenvalues of this potential are

En ¼ nþ 1=2ð Þh- !; ð20Þ

where n are non-negative integers. The corresponding

variance of the position, which is also the same as the ADP, U,

is

Un ¼ x2
� �
¼

En

m!2
: ð21Þ

In the classical limit of continuous En, and when the equi-

partition theorem holds,

U ¼ x2
� �
/ E / T: ð22Þ

The partition function of the eigenvalues in equation (17) is

Z ¼
X1

n¼0

exp �
En

kT

� �

¼ 2 sinh
h- !

2kT

� �� �� 1

ð23Þ

and U for a certain T is

U ¼ Z� 1
X1

n¼0

Un exp �
En

kT

� �

¼
h-

2m!
coth

h- !

2kT

� �

: ð24Þ

The limits of U at kT � h- ! and kT � h- ! are

UlowT ¼
h-

2m!
ð25Þ

and

UhighT ¼
kT

m!2
¼ UlowT

T

Tc

; ð26Þ

respectively, using a crossover temperature where UlowT =

UhighT, namely

Tc ¼
h- !

2k
: ð27Þ

When a set of U and T in the U / T regime, (U1, T1), is

known,

! ¼

ffiffiffiffiffiffiffiffiffi
kT1

mU1

s

; ð28Þ

resulting in

UlowT ¼
h-

2

ffiffiffiffiffiffiffiffiffiffiffi
U1

mkT1

s

¼ 3:4824

ffiffiffiffiffiffiffiffiffi
U1

mT1

s

ð29Þ

Tc ¼
h-

2

ffiffiffiffiffiffiffiffiffiffiffiffi
T1

mkU1

s

¼ 3:4824

ffiffiffiffiffiffiffiffiffi
T1

mU1

s

ð30Þ

and

U ¼ UlowT coth Tc=Tð Þ: ð31Þ

The crossover temperature tends to be higher in light atoms

with small U/T atoms. Atoms with smaller U are more tightly

bound to the equilibrium point.

The rightmost term in equations (29) and (30) is when units

of daltons for mass, K for temperature and Å2 for U are used.

The proportionality factor between U and T may be used

instead of U1/T1 if this can be obtained from fitting.

The correction factor to U arising from the zero-point

motion may be written as

U � UhighT

UhighT

¼
Tc

T
coth

Tc

T

� �

� 1: ð32Þ

The function f xð Þ ¼ cothð1=xÞ=x � 1 converges relatively

slowly to 0 when x is increased. Its value when x = 1, 2, 3, 4, 5, 6

and 10 is 0.313, 0.082, 0.037, 0.021, 0.013, 0.019 and 0.003,

respectively. In other words, the correction factor is 30%, 10%,

3% and 1% when T/Tc is 1.023, 1.81, 3.3 and 5.8, respectively.

The Debye model is considered next. The simplest model of

a 3D crystal is considered with one atom per unit cell,

degenerate acoustic branches, and polarization vectors

forming an orthonormal tern is considered (Grosso & Parra-

vicini, 2014). The U from the Debye model along a certain

direction is, using a Debye temperature TD,

UD ¼ 3
h- 2T2

mkT3
D

ZTD=T

0

1

ex � 1
þ

1

2

� �

x dx: ð33Þ

The low- and high-temperature approximations are

UD lowT ¼
3

4

h- 2

mkTD

ð34Þ

and

UD highT ¼ 3
h- 2T

mkT2
D

; ð35Þ

respectively. The crossover temperature where

UD lowT ¼ UD highT is

TD c ¼ TD=4: ð36Þ

The UD_lowT can be obtained from a set of U and T in the

U / T regime, (U1, T1), as

UD lowT ¼
h-

4

ffiffiffiffiffiffiffiffiffiffiffi
3U1

mkT1

s

¼ 3:0159

ffiffiffiffiffiffiffiffiffi
U1

mT1

s

: ð37Þ
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The rightmost term is when units of daltons for mass, K for

temperature and Å2 for U are used. According to equations

(30) and (37),

UD lowT ¼
ffiffiffi
3
p
=2

� �
UlowT ð38Þ

and

TD c ¼
ffiffiffi
3
p
=2

� �
Tc: ð39Þ

Note that the UD_lowT must be the same for all atoms and all

directions in this simplest Debye model.
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Sasaki, S., Fujino, K. & Takéuchi, Y. (1979). Proc. Jpn. Acad. Ser. B
55, 43–48.

Suekuni, K., Lee, C. H., Tanaka, H. I., Nishibori, E., Nakamura, A.,
Kasai, H., Mori, H., Usui, H., Ochi, M., Hasegawa, T., Nakamura,
M., Ohira–Kawamura, S., Kikuchi, T., Kaneko, K., Nishiate, H.,
Hashikuni, K., Kosaka, Y., Kuroki, K. & Takabatake, T. (2018).
Adv. Mater. 30, 1706230.

Takahashi, S., Kasai, H., Liu, C., Miao, L. & Nishibori, E. (2024).
Cryst. Growth Des. 24, 6267–6274.

Takamoto, S., Shinagawa, C., Motoki, D., Nakago, K., Li, W., Kurata,
I., Watanabe, T., Yayama, Y., Iriguchi, H., Asano, Y., Onodera, T.,
Ishii, T., Kudo, T., Ono, H., Sawada, R., Ishitani, R., Ong, M.,
Yamaguchi, T., Kataoka, T., Hayashi, A., Charoenphakdee, N. &
Ibuka, T. (2022). Nat. Commun. 13, 2991.

Trueblood, K. N., Bürgi, H.-B., Burzlaff, H., Dunitz, J. D., Gramac-
cioli, C. M., Schulz, H. H., Shmueli, U. & Abrahams, S. C. (1996).
Acta Cryst. A52, 770–781.

Tsirelson, V. G., Avilov, A. S., Abramov, Yu. A., Belokoneva, E. L.,
Kitaneh, R. & Feil, D. (1998). Acta Cryst. B54, 8–17.

White, G. K. & Anderson, O. L. (1966). J. Appl. Phys. 37, 430–432.

Whitten, A. E. & Spackman, M. A. (2006). Acta Cryst. B62, 875–888.

Willis, B. T. M. & Pryor, A. W. (1975). Thermal vibrations in crys-
tallography. London: Cambridge University Press.

Yamada, T., Yoshiya, M., Kanno, M., Takatsu, H., Ikeda, T., Nagai, H.,
Yamane, H. & Kageyama, H. (2023). Adv. Mater. 35, 2207646.

research papers

Acta Cryst. (2025). A81, 279–293 Yoyo Hinuma � Direct derivation of anisotropic atomic displacement parameters 293

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB20
https://doi.org/10.1039/d4ta01063a
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ae5158&bbid=BB31

	Abstract
	1. Introduction
	2. Formalism
	3. Methodology
	3.1. MD procedure
	3.2. MgO simulations
	3.3. Ag8SnSe6 simulations
	3.4. Na2In2Sn4 simulations
	3.5. BaCu1.14In0.86P2 simulations
	3.6. Similarity of ADPs

	4. Results and discussion
	4.1. MgO
	4.2. Ag8InSe6
	4.3. Na2In2Sn4
	4.4. BaCu1.14Cu0.86P2
	4.5. Behavior of U at T&rarr;0

	5. Summary
	APPENDIX A: Mathematical details
	A1. Relations between different ADP definitions
	A2. Temperature dependence of the ADP in Einstein and Debye models

	Acknowledgements
	Funding information
	References

