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Spin space groups, formed by operations where the rotation of the spins is

independent of the accompanying operation acting on the crystal structure, are

appropriate groups to describe the symmetry of magnetic structures with null

spin–orbit coupling. Their corresponding spin point groups are the symmetry

groups to be considered for deriving the symmetry constraints on the form of the

crystal tensor properties of such idealized structures. These groups can also be

taken as approximate symmetries (with some restrictions) of real magnetic

structures, where spin–orbit coupling and magnetic anisotropy are however

present. Here we formalize the invariance transformation properties that must

satisfy the most important crystal tensors under a spin point group. This is done

using modified Jahn symbols, which generalize those applicable to ordinary

magnetic point groups [Gallego et al. (2019). Acta Cryst. A75, 438–447]. The

analysis includes not only equilibrium tensors, but also transport, optical and

non-linear optical susceptibility tensors. The constraints imposed by spin colli-

nearity and coplanarity within the spin group formalism on a series of repre-

sentative tensors are discussed and compiled. As illustrative examples, the

defined tensor invariance equations have been applied to some known magnetic

structures, showing the differences in the symmetry-adapted form of some

relevant tensors, when considered under the constraints of its spin point group

or its magnetic point group. This comparison, with the spin point group implying

additional constraints in the tensor form, can allow one to distinguish those

magnetic-related properties that can be solely attributed to spin–orbit coupling

from those that are expected even when spin–orbit coupling is negligible.

1. Introduction

Although the theory of spin space groups (SpSGs) was

proposed and developed more than 50 years ago (Brinkman &

Elliott, 1966; Litvin & Opechowski, 1974; Litvin, 1977), it is

only recently that these groups have become the object of

much interest and have been intensively applied in the

framework of electronic band studies of magnetic materials.

As symmetry groups associated with negligible spin–orbit

coupling (SOC), the SpSG of a magnetic structure is in general

a supergroup of its magnetic space group (MSG), and as a

consequence the SpSG may dictate symmetry constraints on

the properties of the material, additional to those resulting

from its MSG. In the framework of electronic bands, more

symmetry constraints in general imply more band degen-

eracies. Thus, the application of SpSGs has been used to

identify the presence of spin band splittings, which are present

not only under the MSG of the structure but also under its

SpSG, being therefore quite robust and especially important
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as SOC-free effects (Liu et al., 2022). For example, the so-

called altermagnets, which refer to collinear antiferromagnets

with spin splitting in the SOC-free limit (Yuan et al., 2020;

Šmejkal et al., 2022a; Šmejkal et al., 2022b; Mazin, 2022), can

be described in terms of their SpSGs. The same can be said for

other forms of unconventional magnetism in materials with

non-collinear magnetism (Yuan et al., 2021; Hellenes et al.,

2024). It is in this context that three independent groups have

very recently enumerated and classified the SpSGs, and

considered in detail their application in the symmetry analysis

of electronic bands of magnetic materials (Chen et al., 2024;

Jiang et al., 2024; Xiao et al., 2024).

In general, the comparison of the SpSG and the MSG of a

magnetic structure could be used to distinguish and resolve

features and properties that are only SOC effects, and there-

fore they are expected in general to be quite weak or even

negligible. In practice, for real materials, this approach may

partially fail if the observed spin arrangement includes

features due to SOC effects. Notwithstanding this problem,

the relevance of SpSGs in the study of tensor properties of

magnetic materials, establishing a general rigorous formalism,

is still a field to be explored in detail. Some recent contribu-

tions have already been made (Watanabe et al., 2024; Zhu et

al., 2024). This work is a further step in this direction.

Gallego et al. (2019) carried out a comprehensive analysis of

the symmetry-adapted form of all kinds of crystal tensor

properties in non-magnetic and magnetic materials, consid-

ering their relevant symmetry groups, namely crystallographic

point groups and crystallographic magnetic point groups,

respectively. Here, following a similar approach, we analyze

the symmetry-adapted forms of crystal tensors under the spin

point group (SpPG) associated with the SpSG of a structure,

and compare them with those expected from its actual

magnetic point group (MPG).

The article is organized in the following form: after a

recapitulation of the physical meaning and mathematical

structure of the SpSGs and their corresponding SpPGs, their

relation with ordinary MPGs is discussed in detail. We then

formalize the symmetry conditions to be satisfied by crystal

tensors in magnetic crystals under a given SpPG. For this

purpose, the Jahn symbols (Jahn, 1949), describing the trans-

formation properties of each tensor for the symmetry opera-

tions, are here generalized to take into account the particular

features of SpPG operations. Using this generalization, we

establish the corresponding generalized Jahn symbol for all

kinds of tensors, including equilibrium, transport and optical

properties. This formalism is then applied to a series of

examples of experimental magnetic structures, for which the

symmetry-adapted form of various tensors under the SpPG of

the structure is determined, and compared with the less

stringent constraints under its MPG, where possible SOC

effects are necessarily taken into account. Very different types

of SpPG–MPG relations can be realized in a magnetic struc-

ture, and the examples presented here try to cover the most

representative ones. Finally, in Appendix A we have included

a glossary of some important groups used in the paper and

their notation.

2. Spin space groups and spin point groups

2.1. Spin space groups as the symmetry groups of SOC-free

magnetic structures

A well defined symmetry group of a physical system must be

constituted by operations which, apart from keeping the

system indistinguishable, constitute a subgroup of the group of

transformations that keep the energy of the system invariant.

This ensures that the constraints on the system implied by

these operations are stable, in the sense that they are main-

tained if, for instance, in the case of a thermodynamic system,

temperature or pressure are varied (excluding a symmetry-

breaking phase transition taking place); or in the case of a

system ground state, the symmetry constraints are maintained

if the Hamiltonian parameters are continuously varied. As a

consequence, a symmetry group defined under this condition

can be assigned to a whole thermodynamic phase, or to the

ground state for some continuous range of the Hamiltonian

parameters. This is why in non-magnetic commensurate crystal

structures the operations of the space groups, which describe

their symmetry, are formed by combinations of rotations,

translations and space inversion, which all keep the energy

invariant. Hereafter, we shall call this type of operations space

operations, and they will be generally represented by the

symbol fRjtg, where R represents a proper or improper rota-

tion of the system, including the limiting cases of R being the

identity 1, or the space inversion 1, while t represents a space

translation of the system.

In the case of incommensurate modulated crystal structures,

global phase shift(s) of the incommensurate modulation(s)

also keep the energy invariant and, therefore, the so-called

superspace groups describing the symmetry of these systems

are constructed by adding these extra energy-invariant

transformations, when the combined symmetry operations

that keep the system indistinguishable are defined (Janssen et

al., 2004). For instance, a generic operation of a (3 + 1)D

superspace group with a single independent incommensurate

wavevector can be expressed as fRjt; �g, indicating that the

space operation fRjtg is followed by a global shift � of the

incommensurate modulation in the structure (Perez-Mato et

al., 1984).

In the same way, in the case of commensurate magnetic

structures, MSGs are constructed by adding the time-reversal

operation, which reverses both spins and momenta, when

defining the operations of the group (Litvin, 2016; Campbell et

al., 2024). The time-reversal operation indeed keeps the

energy invariant, and is in fact a trivial symmetry operation

always present (and therefore not explicitly considered) in all

non-magnetic or magnetically disordered structures, while in

magnetic structures it may only be present if combined with

some space operation different from the trivial identity. Thus,

a generic operation of an MSG can be expressed as fR; �jtg,

with � being � 1 if time reversal is included, and +1 otherwise.

It is important in the context of the present work to stress that

the space operation fR; �jtg of an MSG necessarily operates

on the system as a whole, i.e. it also includes a transformation

of its atomic spins or its spin density, as the spin orientation
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and the crystal structure are in general energy-coupled

through the SOC. Thus, an energy-invariant operation fR; �jtg

transforms not only the crystal structure, given for instance by

a scalar density �ðrÞ, with the space operation fRjtg:

�0ðrÞ ¼ � fRjtg� 1r
� �

; ð1Þ

but it also transforms the magnetic moment density MðrÞ of

the system into a new one M0ðrÞ that satisfies

M0ðrÞ ¼ � detðRÞR �M fRjtg� 1r
� �

; ð2Þ

where detðRÞ is the determinant of the matrix R. Thus, in

equation (2), both the axial-vector character of the magnetic

moment and the inclusion or not of time reversal in the

operation are taken into account. If after applying the

operation the transformed functions coincide with the original

ones, so that �0ðrÞ ¼ �ðrÞ and M0ðrÞ ¼ MðrÞ, then the operation

fR; �jtg belongs to the MSG of the structure.

MSGs are therefore the appropriate groups that can

describe the symmetry of a commensurate magnetic structure,

i.e. the set of symmetry constraints that are expected to be

satisfied by the structure within the whole range of a ther-

modynamic phase, or in the case of a ground state, to be

satisfied within a continuous range of the Hamiltonian para-

meters. However, if the SOC in the structure can be consid-

ered negligible, then any arbitrary global rotation RS of the

spin arrangement, with full independence of the crystal

orientation, is also energy-invariant. Here, however, we must

explicitly separate the usually small orbital contribution

MorbðrÞ to the magnetization density MðrÞ from the contribu-

tion of the actual spins MsðrÞ, because these additional energy-

free spin rotations to be included refer only to MsðrÞ, while the

orbital contribution MorbðrÞ remains locked to the space

operations. Hence, we can express these additional energy-

invariant transformations of MsðrÞ as

M0sðrÞ ¼ Rs �MsðrÞ; ð3Þ

where Rs is any 3D proper rotation. This extension in SOC-

free structures of the set of energy-invariant transformations

implies that their symmetry can be described by the SpSGs

(Brinkman & Elliott, 1966; Litvin & Opechowski, 1974),

where operations of the type considered in MSGs can also be

combined with spin rotation operations of the type indicated

in equation (3). Thus, a generic operation of an SpSG could be

expressed as fRSjjfR; �jtgg, indicating the combination of an

MSG-type operation fR; �jtg with an additional proper rota-

tion RS of the spins. As in SOC-free structures spins are

uncoupled from the crystal structure, RS in the operation

above can be defined in such a way that it includes the

necessary rotation to be applied to the spins, while the space

operation fR; �jtg, in contrast with its interpretation in an

MSG, does not act on the spins, but applies only to the

magnetic moments of orbital origin.

Hence, if fRSjjfR; �jtgg is an operation of the SpSG of a

magnetic structure, it implies that the following equations are

fulfilled:

�ðrÞ ¼ � fRjtg� 1r
� �

; ð4Þ

MorbðrÞ ¼ � detðRÞR �Morb fRjtg
� 1r

� �
; ð5Þ

MsðrÞ ¼ �RS �Ms fRjtg
� 1r

� �
: ð6Þ

Thus, the rotation applied to the spins is fully unlocked from

the space operation and can be an improper one, � RS, or a

proper one, RS, depending on whether the operation includes

time reversal or not. In contrast, the atomic magnetic

moments of orbital origin are locked to the crystal and are

transformed in the usual form of an MSG operation.

For convenience, following the usual convention, we

simplify the notation of SpSG operations in the form

fUjjfRjtgg, where U represents the proper or improper rota-

tion �RS indicated in equation (6), and, therefore, if U is an

improper rotation, the whole operation includes time reversal,

and this inclusion not only applies to the spins but also to the

orbital degrees of freedom in equation (5) and any other time-

related variables in the system, like momenta. Hence, while

the symbol fUjjfRjtgg denotes the space operation part as

fRjtg, it is important to take into account that this space

operation may include time reversal, depending on the value

of the determinant of U, although it is not explicitly indicated.

In the case of an experimental magnetic structure, equation

(5) for the orbital magnetic moments is difficult to assess, as

orbital and spin contributions generally remain unresolved.

Given the expected smallness or null value of the orbital

contribution, equation (6) is usually assumed to be applicable

to the determined atomic magnetic moments (Chen et al.,

2024; Jiang et al., 2024; Xiao et al., 2024). However, it should be

noted that this assumption may fail, and equations (5) and (6)

imply that, under the constraints of an SpSG (and therefore

assuming negligible SOC), orbital atomic magnetic moments

and spin moments may be forced to have different directions.

This can only happen in the case of non-coplanar magnetic

structures because, as explained below, the SpSGs of collinear

and coplanar structures forbid, through equation (5), any

magnetic ordering of orbital type (Watanabe et al., 2024).

2.2. Subgroups of SpSGs. The non-trivial SpSG and the spin-

only subgroup

Several important subgroups can be distinguished in an

SpSG. The spin-only subgroup is formed by the operations of

type fUjjf1j0gg, i.e. operations that do not involve any space

operation, except the identity, or time reversal in the case that

detðUÞ ¼ � 1. Following the notation of Chen et al. (2024), if

we call GSO the spin-only subgroup, the full SpSG, say GSS, can

be described as the direct product of a so-called non-trivial

SpSG, GNT, and the spin-only subgroup GSO (Litvin &

Opechowski, 1974):

GSS ¼ GNT �GSO: ð7Þ

Note that, by definition, each space operation fRjtg in GNT is

paired with one, and only one, spin operation U.

Only the SpSGs of collinear and coplanar structures have

spin-only subgroups GSO different from the trivial identity.
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Collinear structures have all the same GSO, formed by the

continuous point group of all rotations around the direction of

the spins and all mirror planes containing this direction.

Similarly to Chen et al. (2024), we will designate this spin-only

subgroup, common to all collinear structures, as 1nm1.

Although formally in an SpSG the collinearity direction is

arbitrary with respect to the crystal lattice, for reasons

explained below, we also indicate explicitly a specific orien-

tation with respect to the lattice of the operations by means of

a subscript n.

The spin-only subgroup GSO of all coplanar structures is

formed by the identity and a mirror plane with the orientation

of the spin planes, i.e. fmnjjf1j0gg, with n indicating the

perpendicular direction to the spin planes. In an analogous

manner to the collinear GSO, we denote the group as mn 1,

where n indicates a specific direction with respect to the

lattice. Equation (7) implies that collinear and coplanar

structures have very specific SpSGs, distinguishable by their

spin-only subgroup, either 1nm1 or mn 1. We shall call them

collinear and coplanar SpSGs, respectively. It is important to

stress that this formally implies that collinearity and co-

planarity are always symmetry-protected in a SOC-free struc-

ture. We shall call all other SpSGs, which have as GSO only the

identity, non-coplanar SpSGs, since they can only be asso-

ciated with magnetic structures that are neither collinear nor

coplanar.

In collinear and coplanar SpSGs, their non-trivial subgroup

GNT defined by equation (7) is not unique. Keeping the group

structure, the U of some of the operations fUkfRjtgg of GNT

can be substituted by its product with some spin operation of

the corresponding spin-only subgroup 1nm1 or mn 1. In the case

of collinear structures, the non-trivial GNT is usually chosen

such that the U operations are either the identity or the

inversion. This can always be done because all possible U

operations compatible with collinearity (i.e. arbitrary proper

or improper rotations about the spin direction n, twofold axes

perpendicular to n or planes containing n) can be written as

the product of a U operation of GSO and the identity or the

inversion. Thus, the GNT of a collinear SpSG is isomorphic to a

Shubnikov group, where each space operation is completed

with a spin operation þ1 or � 1, similar to what is done with

ordinary MSGs. However, since in the SpSG the space

operations do not act on the spins, this Shubnikov-like non-

trivial SpSG is generally different from the MSG of the

structure. While the non-trivial GNT of a collinear SpSG,

defined by a Shubnikov-like group, is independent of the spin-

lattice orientation, the MSG, which is also a subgroup of the

SpSG and is also described by a Shubnikov group, generally

depends on the direction of the spins with respect to the

crystal structure. Several examples of this situation will be

discussed below.

In the case of coplanar SpSGs, by convention the non-trivial

groups GNT are chosen such that their spin operations U are all

proper rotations in 3D. This choice can always be made (Litvin

& Opechowski, 1974), since any improper U operation can be

automatically transformed into a proper one by multiplying it

by the mirror operation of GSO. In the case of non-coplanar

SpSGs, the spin-only group is trivial, and the full SpSG coin-

cides with the non-trivial subgroup.

Another important subgroup of an SpSG is formed by all

operations of type f1kfR; tgg, i.e. space operations that are not

accompanied by any spin rotation, nor by time reversal. By

definition, this is a subgroup of the non-trivial subgroup of the

SpSG. The set of space operations fRjtg of this subgroup is an

ordinary space group, say L0. If we call G0 the ordinary space

group formed by all space operations fRjtg present in GNT, this

space group G0 can then be decomposed in cosets with respect

to L0:

G0 ¼ L0 þ g2L0 þ . . .þ gnL0:

As L0 is a normal subgroup of G0 (Litvin & Opechowski,

1974), the cosets in the above equation form a factor group

G0/L0 with coset representatives fgig. All space operations in a

coset giL0 have associated the same spin point-group opera-

tion, say Ui. Hence, the point group formed by all spin

operations fUig present in GNT is isomorphic to the factor

group G0/L0. This is a property that has been systematically

applied for the enumeration of non-trivial SpSGs (Chen et al.,

2024; Jiang et al., 2024).

The mentioned recent works that classify and enumerate

SpSGs use different alternative notations, and the establish-

ment of a unified nomenclature will still require time and

effort. We will therefore not enter into notation details in this

work, and when describing a specific SpSG, we will indicate its

symbol in the notation proposed by Chen et al. (2024),

complemented with a full description of a set of generators of

the group, if necessary. These authors also use a four-index

notation, N1:N2:ik:n1, for the non-trivial part of the SpSGs,

where N1 and N2 are the numerical indices in the International

tables for crystallography (Aroyo, 2016) for the space groups

L0 and G0, respectively, associated with the SpSG. The number

ik is the klassengleich index of L0 with respect to G0, and n1 is

just an ordering index. The klassengleich index ik indicates the

multiplication factor of a primitive unit cell describing the

lattice of L0 with respect to that of G0. Therefore, if ik > 1, the

non-trivial subgroup GNT of the SpSG necessarily includes

some operations of type fUkf1jtgg, which are very important

when considering the corresponding SpPG.

In an SpSG, by definition, the spin operations U are inde-

pendent of the space operations. This has led to the conven-

tion of using an orthonormal reference system for the

description of these operations, fully independent of the

crystallographic axes, with its orientation only partially fixed in

collinear and coplanar structures to the spin directions or the

spin planes, respectively, and with an arbitrary orientation

with respect to the lattice. However, we have here a situation

similar to that of ordinary space groups, where the arbitrari-

ness of the origin in space is not an obstacle to fixing this origin

in a convenient way. In the same way, in the SpSG formalism,

the arbitrariness of the global orientation of the spin system

with respect to the lattice should not be an obstacle to

choosing and fixing a convenient reference frame for the spin

system with respect to the lattice. In our view, in most cases, it

is convenient to choose this frame equal to that for the space
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operations. In this work, we will then express the operations U

and R of any operation fUkfRjtgg in a common reference

system defined by the conventional unit cell and the crystal-

lographic axes which are normally used for the description of

the space operations. This does not imply any loss of gener-

ality, as an arbitrary global orientation of the U operations

with respect to the crystallographic axes can always be intro-

duced if desired, when describing these operations in the

chosen reference frame.

In addition, in most cases, magnetic anisotropy cannot be

fully ignored and spins have a very specific relative orientation

with respect to the crystallographic axes. Even with a hypo-

thetical null SOC and the energy being independent of the

relative orientation of spin and space operations, magnetic

crystal tensor properties are measured and quantified in a

reference frame locked to the crystal structure, and therefore

their symmetry-adapted form in this reference frame depends

in general on the relative orientation of the spin and space

operations. Therefore, for practical reasons, when dealing with

the SpSG of a specific structure, the spin operations in the

SpSG will be described (locked) under the specific spin-lattice

orientation observed in the structure. As shown below, this

allows a consistent comparison of the SpSG and MSG

symmetries that can be assigned to the structure, and their

corresponding constraints.

2.3. Spin point groups

For the symmetry properties of crystal tensors, only the

SpPG is relevant. This is formed by the pairs of point-group

operations fUjjRg present in the SpSG operations. The

subgroup of operations fUjj1g form the spin-only point group

PSO. Similarly to equation (7), the full SpPG can be decom-

posed in a direct product of a so-called ‘non-trivial’ SpPG, PNT,

and the spin-only point group PSO:

PS ¼ PNT � PSO: ð8Þ

However, the similarity with equation (7) may be misleading

because, as discussed above, GNT may have operations of type

fUkf1 j tgg, with t not being a lattice translation. These

operations form the so-called spin-translation group GST, and

their point-group operations fUk1g will belong to PSO. Hence,

the SpPGs PNT and PSO do not necessarily coincide with the

point groups separately associated with GNT and GSO, PSO

being in general a supergroup of the point group associated

with GSO. This means that while there are only two possible

spin-only space groups GSO, associated with collinear and

coplanar structures, the number of possible spin-only point

groups PSO does not have this restriction and may also be

relevant for non-coplanar SpSGs.

The spin-only subgroup PSO in equation (8) can then

generally be decomposed in the direct product of two

subgroups:

PSO ¼ PSOG � PSOintr; ð9Þ

where PSOintr is the intrinsic (or trivial) point group 1nm1 or
mn 1 present in collinear and coplanar SpSGs, and PSOG is the

spin-only point group that may be present in the non-trivial

GNT. The additional PSOG must be considered only in the case

that the klassengleich index ik of the subgroup L0 with respect

to G0, mentioned above, is larger than one, such that the

translation lattice of L0 is a sublattice of the lattice in G0. For

ik ¼ 1 and a non-coplanar SpSG, the SpPG is directly a non-

trivial SpPG, and no spin-only subgroup must be considered.

Liu et al. (2022) enumerated collinear and coplanar SpPGs by

restricting PSOG to be the identity. These groups would be

valid if ik ¼ 1 and could be useful for local symmetry studies

even if ik > 1. In our study of macroscopic properties, however,

PSOG must necessarily be included.

The fact that, in contrast to SpSGs, the spin-only point

subgroups PSO are not limited to two, and are not generally

trivial, means that the term ‘non-trivial’ assigned to the point

group PNT in equation (8) is somehow ill-founded. We

however stick to this terminology. A derivation of the possible

non-equivalent non-trivial SpPGs PNT in equation (8) was

done by Litvin (1977), and a total of 598 were enumerated.

This derivation was done taking into account that the point-

group operations U can only be crystallographic.

The structure of the SpPG described in equation (8) allows

the derivation of the symmetry-adapted form of any tensor in

a stepwise form, considering first the constraints caused by the

non-trivial group PNT and then adding those coming from PSO.

In many cases, PNT can be chosen to coincide with the actual

MPG of the structure, and PSO is only the intrinsic spin-only

subgroup, associated with the collinearity or the coplanarity of

the structure (see Section 3). In such cases, the SpPG form of

the tensor can then be obtained by just adding the constraints

due to PSOintr to those under the MPG of the structure.

3. Relation between spin and magnetic groups

By definition, the SpSG of a magnetic structure does not

depend on the global orientation of the spin system with

respect to the lattice. However, if spin and space operations

are described in the same reference frame, the subgroup of

operations fUjjfRjtgg that fulfill U ¼ þR or � R constitute

according to equations (2) and (6) an MSG, which proves to be

the MSG of the structure if (and only if) the SpSG is being

described under the specific relative spin-lattice orientation

observed in the structure. Only under this condition do the

SpSG and the actual MSG of the magnetic structure have a

group–subgroup relation. Conversely, the same SpSG can

have different MSGs as subgroups depending on the chosen

orientation of the spin operations U with respect to the lattice,

and as a consequence, the same SpSG can be associated with

magnetic structures that have very different MSGs.

Therefore, the application of the SpSG symmetry on a

magnetic structure and its comparison with its MSG requires a

specific orientation of the spin operations U to be fixed with

respect to the lattice, which must be consistent with the spin-

lattice orientation observed in the structure. In the following,

if no indication to the contrary is given, the SpSG and the

SpPG of a magnetic structure will be described fulfilling this

condition. In this way, the stronger symmetry constraints on
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the tensors under its SpPG can be compared with those

expected under the MSG, when SOC effects are taken into

account. This is consistent with the fact that in experimental

magnetic structures the spins have a specific global orientation

(and domain-related ones) with respect to the lattice, as

magnetic anisotropy is generally present in some form. In axial

symmetric or pseudo-symmetric systems the spin orientation

on the basal plane often remains undetermined, but in most

cases, it is an experimental problem rather than a physical one.

We distinguish two types of experimental magnetic struc-

tures, depending on their SpSG–MSG group–subgroup rela-

tion, namely structures with minimal SpSG and structures with

non-minimal SpSG.

(i) Magnetic structures with minimal SpSG. In these struc-

tures both their SpSG and their MSG have the same space

operations. A majority of the observed commensurate

magnetic structures enter into this group. A necessary condi-

tion for this to happen is that the klassengleich index ik of the

SpSG, described in Section 2.2, is either 1 or 2, as if ik > 2 the

SpSG must include some operations of type fUjjf1jtgg with

U 6¼ �1, whose space operations (namely translations) cannot

be present in the MSG. Thus, ik � 2 is required to ensure that

the spin-only point group of the SpSG of these structures is

limited to PSOintr plus the additional time-reversal operation,

f� 1jj1g, in the case of ik ¼ 2.

The only difference between the SpSG and the MSG of a

structure with minimal SpSG is the intrinsic spin-only

subgroup in the case of collinear and coplanar structures,

while in non-coplanar structures, both groups fully coincide.

Therefore, for non-coplanar structures of this type, SpSG

symmetry considerations do not add any additional constraint

on their material tensors. However, in collinear and coplanar

structures with minimal SpSG, the spin-only subgroup makes a

difference. Their SpSG can be expressed as the direct product

of the actual MSG of the structure with the corresponding

collinear or coplanar spin-only group, and the corresponding

point groups will satisfy similar relations, namely:

PS ¼ PM �
1nm 1 ð10Þ

PS ¼ PM �
mn 1; ð11Þ

where PS and PM are the SpPG and MPG of the structure and

n defines the orientation of the collinear or coplanar

arrangement, as discussed above. As shown below with some

examples, this implies that the symmetry-adapted form of any

spin-related tensor for these structures under the SpPG can be

simply derived taking the tensor form under the MPG,

obtained by applying the usual known rules, as can be

obtained for instance in MTENSOR (Gallego et al., 2019), and

then introducing the additional constraints resulting from the

extra symmetry represented by PSOintr.

Magnetic structures with minimal SpSG can be easily

identified by comparing their MSG label in the Opechowski–

Guccione (OG) notation (Campbell et al., 2022) with the four-

index label of the non-trivial subgroup of their SpSG in the

notation of Chen et al. (2024). The space group, denoted G0 in

Section 2.2, formed by the space operations fRjtg of the non-

trivial SpSG, must coincide with the space group associated

with the MSG, which is formed by all its operations, disre-

garding the inclusion or not of time reversal. This latter space

group is called the family space group F of the MSG (Litvin,

2013; Campbell et al., 2022). Therefore, magnetic structures

with minimal SpSG fulfill F ¼ G0. The space-group type of F is

given by the first number of the numerical label of the MSG in

the OG notation (using the space-group numerical indices of

the International tables of crystallography), while the second

number in the four-index notation of Chen et al. (2024)

corresponds to G0. If these two numbers coincide, and ik � 2,

G0 and F necessarily coincide. The two space groups are not

only of the same type, but because of the restriction on the ik

value, they must be the same space group, and the structure

has a minimal SpSG.

From the approximately 2000 entries of commensurate

magnetic structures in the MAGNDATA database (Gallego et

al., 2016) about 1500 have minimal SpSGs. We can therefore

infer that in approximately 75% of the cases the differences in

the symmetry-adapted tensor forms when considering MPG or

SpPG symmetries are limited to the additional constraints

coming from PSOintr in the case of collinear and coplanar

structures.

(ii) Magnetic structures with non-minimal SpSG. These are

the structures where their SpSG includes space operations

that are not present in their MSG. About 25% of the

commensurate structures in MAGNDATA have non-minimal

SpSGs, with their G0 being a strict supergroup of F: G0 >F.

The klassengleich index ik of the non-trivial SpSG being larger

than 2 is a sufficient condition for this strict group–subgroup

relation to be satisfied, but it can also happen for ik = 1 or 2. In

such structures, it is clear that the additional SpPG symmetry

constraints cannot be reduced to those coming just from

PSOintr, because the point group of the non-trivial SpSG will be

a strict supergroup of the MPG. By definition, the space-group

operations in G0 must keep the positional crystal structure

invariant. Therefore, G0 can only be a strict supergroup of F if

the magnetic ordering is such that the space group F associated

with the MSG loses some of the space-group operations of the

paramagnetic phase. If we call GP the space group of the

paramagnetic phase, then in general for this second type of

commensurate magnetic structures GP � G0>F. Whether or

not G0 is a strict subgroup of GP makes no difference when it

comes to reducing crystal tensors. We will see examples of

both situations later.

It will be shown below in detail that there are tensors, such

as those involving only space degrees of freedom, or those

involving orbital degrees of freedom, where only the space

parts R of the operations of the SpPG are relevant for their

transformation properties. The symmetry-adapted form of

these tensors under an SpPG can therefore be derived

considering only the space operations in the SpPG, as done in

ordinary MPGs. In the case of orbital-related tensors, one has

also to consider if the operation includes time reversal or not,

but the specific spin operation U is irrelevant. It is therefore

convenient to define, for a given SpPG, an auxiliary ordinary

MPG that we denote as the effective MPG, MPGeff, which can
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be used instead of the full SpPG to derive the symmetry-

adapted form of these non-magnetic tensors or orbital-related

tensors. The MPGeff is constructed by taking the space part R

of each fUjjRg operation of the SpPG, without time reversal

(R) or with time reversal (R0), depending on whether detðUÞ is

þ1 or � 1, respectively. The MPGeff is, in general, a supergroup

of the actual MPG of the structure. The symmetry constraints

under the SpPG on the mentioned type of tensors can then be

obtained by considering this MPGeff instead of the real MPG,

when applying the well known rules for MPGs (Gallego et al.,

2019). The MPGeff of collinear and coplanar structures is just

the gray point group resulting from adding the time-reversal

operation to the point group of the space group G0 associated

with the SpSG. This is because in both collinear and coplanar

structures their spin-only group, PSOintr, includes at least an

operation fUjj1g with detðUÞ ¼ � 1, and therefore the corre-

sponding MPGeff contains the time-reversal operation. Thus, if

P0 is the point group of G0, the corresponding MPGeff can be

expressed as P0:1
0. Only if the structure has a non-minimal

SpSG will this gray point group MPGeff include point-group

operations R that are not present in its actual MPG.

4. Tensor transformations under spin point-group

operations

Given a physical property represented by a tensor A, the

symmetry restrictions that a SpSG forces on A can be found by

knowing the way in which the operations fUjjRg of the SpPG

transform that tensor. According to the Neumann principle

generalized to SpSGs, the operations of the SpPG on the

tensor must leave it invariant, i.e. we can symbolically write

fUjjRgA ¼ A.

The specific action of an operation fUjjRg depends greatly

on the nature of the tensor considered. This complexity, which

is already found when trying to reduce tensors according to

the MPGs (Birss, 1963; Grimmer, 1993; Grimmer, 1994;

Kleiner, 1966; Cracknell, 1973; Shtrikman & Thomas, 1965;

Kopský, 2015), is higher when dealing with the SpPGs. We will

begin our discussion by considering the action of fUjjRg on

various tensors of rank 1, starting with examples where such

action is simple and direct. These cases are those in which only

the R part or only the U part is involved in the transformation.

4.1. Pure-lattice and pure-spin vectors

Pure-lattice and pure-spin vectors are tensors of rank 1

whose transformations only involve either the space part Rij or

the spin part Uij (i; j ¼ 1; 2; 3) of the SpPG transformation.

An example of a pure-lattice vector is the electric polarization

Pi, and an example of a pure-spin vector is the spin component

of the magnetization Mi. The transformations in these cases

have the familiar forms:

P0i ¼ RijPj ð12Þ

M0i ¼ UijMj: ð13Þ

Note that, given the definition of U in Section 2, it is not

necessary in equation (13) to multiply the right-hand side by

the determinant of U even though M is an axial vector.

The possible orbital contribution to the magnetization is not

included in equation (13) and will be ignored for the moment.

This will be incorporated later in our treatment.

The two quantities P and M are prototypes of two of the

four basic ferroic effects. These four effects are rank-1 tensors

which differ from each other by their specific transformations

under the space inversion 1 ¼ f1jj1g and time reversal

10 ¼ f� 1jj1g. They are key to analyzing the action of fUjjRg

on the various tensor quantities, and we will assign them

different labels (V, eV, M, T), which specify the four different

behaviors shown in Table 1.

Thus, with reference to this table, we say that P is a tensor of

type V (polar Vector) and M is a tensor of type M (axial

Magnetic vector). The prototypes of the other two basic

effects are the moment of the polarization A ¼ r� P (eV,

axial pure-lattice vector) and the moment of the magnetiza-

tion or Toroidic moment T ¼ r�M (T, polar mixed vector).

The transformation of a vector of type eV under fUjjRg is

also simple,

A0i ¼ detðRÞRijAj: ð14Þ

The simplicity of equation (14) comes from the fact that both r

and P are pure-lattice vectors, and in their transformation only

the space part R of the operation intervenes. This is, however,

not the case for a tensor of type T, which involves both space

and spin operations R and U, and whose analysis will be

postponed until after the discussion of the transformations of

the magnetoelectric tensor.

4.2. The magnetoelectric tensor

The magnetoelectric effect is described by a tensor of rank 2

that describes either the magnetization induced by an applied

electric field E (inverse effect, Mi ¼ �
inv
ij Ej) or the polarization

induced by an applied magnetic field H (direct effect,

Pi ¼ �
dir
ij Hj).

Since E is a pure-lattice vector and �inv
ij must transform as

the product MiEj, we easily obtain the transformation law of

the inverse effect,

�inv
ij
0 ¼ UikRj‘�

inv
k‘ ; ð15Þ
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Table 1
Transformation of the four basic ferroic effects under the space-inversion
and time-reversal operations.

The four effects are denoted by the symbols V, eV, M and T. Effects V and T
are odd for the space inversion, while eVand M are even. For the time reversal
V and eV are even, while M and T are odd.

V eV M T

1 ¼ f1 k 1g � 1 1 1 � 1
10 ¼ f� 1 k 1g 1 1 � 1 � 1



i.e. tensor �inv
ij is a tensor of rank 2, whose transformation

mode involves R and U. We say that �inv is a tensor of type

MV.

The direct effect can be analyzed similarly. Thermodynamic

arguments indicate (Nye, 1985) that the tensor of the direct

effect is equal to the transpose of the tensor of the inverse

effect ½�inv ¼ ð�dirÞT�, so taking the transpose of equation (15)

we have

�dir
ij
0 ¼ RikUj‘�

dir
k‘ : ð16Þ

In the following we will use the symbols � ¼ �dir and

�T ¼ �inv for the direct and inverse effects, respectively.

4.3. The toroidic moment

The transformation law for the toroidic moment T can be

deduced by noting that this quantity transforms just like the

antisymmetric part of the magnetoelectric tensor (direct or

inverse effect) (Spaldin et al., 2008). This can be deduced by

noticing that the quantities �T
ij (we take the inverse effect as an

example) transform as the product MiEj, so that ð�T
ij � �

T
ji Þ will

transform as MiEj � MjEi. Since the electric field transforms

as the position vector r, then MiEj � MjEi will transform as

the k component of the vector M� r, which corresponds to

the association ði ¼ 1; j ¼ 2Þ ! k ¼ 3 and circular permuta-

tions.

The components Ti can therefore be assimilated in the

quantities 1
2
"ijk�

T
jk from the point of view of their transfor-

mation laws, where "ijk is the Levi-Civita symbol. We can say

that T is a quantity of type {MV} (or {VM}), the curly brackets

denoting the antisymmetric part. If we define a tensor

�ij ¼ 2Mixj (where xj are the components of r), then we

directly have Ti ¼
1
2
"ijk�jk. Writing this tensor as a sum of a

symmetric part �s and an antisymmetric part �a, i.e.

� ¼ �s þ �a, with �s ¼ 1
2
ð�ij þ �jiÞ ¼ Mixj þMjxi and

�a ¼ 1
2
ð�ij � �jiÞ ¼ Mixj � Mjxi, we will have from equation

(15)

�a
ij
0 ¼

1

2
ðUimRj‘ � UjmRi‘Þð�

a
m‘ þ �

s
m‘Þ ð17Þ

�s
ij
0 ¼

1

2
ðUimRj‘ þ UjmRi‘Þð�

a
m‘ þ �

s
m‘Þ; ð18Þ

from which we can deduce the transformation law for T. It is

interesting to note that equations (17) and (18) indicate that

the transformations for �a and �s are, in general, coupled. In

other words, these transformations cannot be written in the

usual form �a
ij
0 ¼ Ximj‘�

a
m‘ or �s

ij
0 ¼ Yimj‘�

s
m‘ (with X, Y

suitable transformation matrices), because in the right-hand

sides of equations (17) and (18) there are also contributions

dependent on �s and �a, respectively. This means that neither

�s nor �a (and thus the toroidic moment) are true tensors for

SpPG transformations. From equations (17) or (18) it can be

deduced that �s and �a become uncoupled if

UimRj‘ � UjmRi‘ þ Ui‘Rjm � Uj‘Rim ¼ 0

and

UimRj‘ � Ui‘Rjm þ UjmRi‘ � Uj‘Rim ¼ 0;

i.e.

UimRj‘ � Uj‘Rim � ð� UjmRi‘ þ Ui‘RjmÞ ¼ 0 ð19Þ

which, in general, is not satisfied. A special case occurs for the

MPG operations, in which U‘n ¼ �R‘n. When this condition is

met, it can be easily seen that equation (19) does certainly

hold.

Consequently, to obtain the symmetry-adapted form of T,

we must first consider the symmetry invariance of a tensor �

which transforms similarly to the magnetoelectric tensor,

using equation (15) or (16), and then take its antisymmetric

part by means of the product of this tensor with the Levi-

Civita tensor. Note that this procedure does not require the

use of equations (17) and (18). Thus, the component T 0p of the

toroidic moment transformed by the operation fUjjRg will be

given by

T 0p ¼
1

2
"pijUikRj‘�k‘: ð20Þ

The complexity of this transformation law is a characteristic of

SpPGs and leads to more laborious tensor symmetry reduc-

tions than those for MPGs.

4.4. Equilibrium properties

Once the transformation properties of the four basic ferroic

effects have been deduced, we can obtain the corresponding

transformations for the different equilibrium properties

through their constitutive equations. They can be described in

each case by an appropriate combination of the labels V and

M, which accounts for the intrinsic symmetry of the tensor.

These combinations constitute symbols that generalize the so-

called Jahn symbols (Gallego et al., 2019; Jahn, 1949) used with

the MPGs.

Table 2 lists a selection of equilibrium properties, the

constitutive equation, the Jahn symbols for the MPGs and

SpPGs, and an outline of the transformation law in the case of

the SpPGs. The table only lists tensors of properties where

spin magnetism is involved, and therefore their transformation

rules have to be modified when considering SpPG symmetry.

In the case of pure-lattice tensors, the known transformation

rules for ordinary space-group operations are still in place, as

they only involve space operations R. Hence, in tensors such

as electric polarization, dielectric susceptibility or piezo-

electric tensor, a difference between the constraints when

considering MPG and SpPG symmetry can only occur in

structures with a non-minimal SpSG, where the space group

G0 associated with the SpSG is a supergroup of the family

group F of its MSG (see Section 3). The calculation of the

symmetry-adapted form of these tensors under the SpPG can

be obtained by applying the well known transformation rules

for MPGs under the symmetry given by MPGeff, which was

defined in Section 3.

Apart from the magnetization, there is in Table 2 one case

(magnetic susceptibility) where the transformation includes
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only the U part, in which the invariance against fUjjRg is

written in the simple form:

�m
ij ¼ UikUj‘�

m
k‘: ð21Þ

In all other examples, both R’s and U’s are involved in various

combinations. Particularly complicated are the tensor trans-

formations whose symbol includes {MV}.

An extension of Table 2, with a more comprehensive list of

material properties, is given in the supporting information

(Table S1).

As an example of how to find the symmetry-adapted shape

of a given tensor, we choose the electrotoroidic effect �ij (type

{MV}V). �ij is reduced in a two-step process. First we take a

type MVV rank-3 tensor, bijk, and reduce it. Then, we contract

the first two indices by means of the product with "ijk. More

explicitly, first we will find the bijk tensor invariant under all

operations fUjjRg by requiring

bijk ¼ Ui‘RjmRknb‘mn; ð22Þ

and, afterwards, we will take the antisymmetric part of bijk

with respect to the first two indices in the form

�pk ¼
1

2
"pijbijk: ð23Þ

The additional symmetries indicated in Table 2 by the square

brackets are easy to handle. For example, to reduce the

piezotoroidic tensor �ijk (direct effect) that transforms

according to {MV}[V2], we will first take a type MVVV

auxiliary tensor of rank 4 and require its invariance under the

SpPG, i.e.

bijk‘ ¼ UimRjnRkpR‘qbmnpq: ð24Þ

Now, once equation (24) is solved, tensor �ijk is obtained by

means of the expression

�pk‘ ¼
1

4
"pijðbijk‘ þ bij‘kÞ; ð25Þ

which takes out the antisymmetric part of bijk‘ in the first two

indices and symmetrizes the final tensor in the k and ‘ indices.

We end this section by noting that the Jahn symbols in Table

2 can be used not only to derive the symmetry restrictions of

the tensors under a given SpPG, but also to obtain the relation

between tensors corresponding to two structures with the

same SpPG, differing only in a global spin rotation. Thus, if

this rotation (proper or improper) is described by a matrix P,

the new tensor is obtained from the old one after substituting

U by P and taking a rotation R equal to the identity, Rij ¼ �ij,

in the last column of Table 2. For example, in the case of the

magnetization

M0i ¼ PijMj; ð26Þ

where M0 is the magnetization of the structure with the spins

rotated. Similarly, the magnetic susceptibility of the rotated

spin structure �m 0 will be

�m
ij
0 ¼ PikPj‘�

m
j‘; ð27Þ

and in the case of the inverse magnetoelectric tensor we will

have

�T
ij
0 ¼ Pik�

T
kj: ð28Þ

This is of interest, for example, for relating the tensors of two

collinear (or coplanar) structures with different orientations of

the spin direction (or of the spin plane) with respect to the

lattice. Note, however, that their scope is wider and they can

be used more generally, even with non-coplanar structures.

In this respect it is interesting to point out that one could

alternatively define the symmetry-adapted form of the tensors

under a SpPG using two different reference frames for spin

and lattice variables, so that the spin-related indices of the

tensor refer to a spin reference system independent of the one

used for the lattice. This approach permits a general descrip-

tion for the tensors under the SpPG symmetry. For example,

the magnetoelectric tensor can be defined as a tensor �T
i0j with

unprimed lattice indices and primed indices referring to the

spin space. Thus, the physical meaning of this coefficient is that

an electric field along j in the lattice induces a magnetization

along i0, the direction i0 being defined with respect to the
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Table 2
Selection of some equilibrium properties with their Jahn symbols for the MPGs and SpPGs and their transformation laws under the SpPG.

Only tensors related to spin magnetism are listed (see text). "ijk is the Levi-Civita symbol, and "jk and �jk stand for the strain and stress tensors, respectively. In the
case of MPGs the label e in the Jahn symbol indicates an axial tensor and the label a a magnetic tensor, i.e. odd for time reversal. This means that the law of tensor

transformation includes a change of sign for improper operations (e) or for operations that include time reversal (a). The square brackets and curly brackets
indicate symmetry and antisymmetry of pairs of indices, respectively. The symmetric or antisymmetric character is not explicit in the outline of the transformation
law indicated in the last column.

Tensor description Defining equation Jahn symbol (MPG/SpPG) Transformation laws (SpPG)

Magnetization Mi aeV/M UM

Polar toroidic moment Ti aV/{MV} UR�; Ti ¼
1
2
"ijk�jk

Magnetic susceptibility tensor �m
ij Mi ¼ �

m
ij Hj [V2]/[M2] UU�m

Magnetoelectric tensor �T
ij (inverse effect) Mi ¼ �

T
ij Ej aeV2/MV UR�T

Electrotoroidic tensor �ij (inverse effect) ti ¼ �ijEj aV2/{MV}V URRb; �ij ¼
1
2
"ik‘bk‘j

Piezotoroidic tensor �ijk (direct effect) ti ¼ �ijk�jk aV[V2]/{MV}[V2] URRRb; �ijk ¼
1
2
"i‘pb‘pjk

Second-order magnetoelectric tensor �ijk (direct effect) Pi ¼ �ijkHjHk V[V2]/V[M2] RUU�

Piezomagnetic tensor �ijk (direct effect) Mi ¼ �ijk�jk aeV[V2]/ M[V2] URR�

Magnetostriction tensor Nijk‘ "ij ¼ Nijk‘HkH‘ [V2][V2]/[V2][M2] RRUUN

http://doi.org/10.1107/S2053273325004127


reference frame of the spins, which can be chosen totally

independent of the lattice. We will return to this point later,

when we analyze some examples.

4.5. Equilibrium properties related to orbital degrees of

freedom

The Jahn symbol of all tensors in Table 2 contains the letter

‘M’, as it corresponds to magnetic tensor properties resulting

from the electronic spins. But, in general, all these tensors may

also have a contribution of orbital origin. As discussed in

Section 2.1, in contrast to the atomic spins, orbital magnetic

moments are locked to the lattice even in SOC-free systems,

and therefore the orbital part of these tensors transforms

according to the usual Jahn symbol for MPGs. For instance,

upon an operation fUjjRg of the SpPG, the magnetization

Morb of the orbital origin is transformed as a magnetic axial

vector according to the space operation R, incorporating the

possible time reversal if detðUÞ ¼ � 1 (Watanabe et al., 2024).

Thus, we will have the counterpart of equation (13),

Morb;i
0 ¼ detðUÞ detðRÞRijMorb;j: ð29Þ

The associated Jahn symbol is aeV, as in an ordinary MPG.

Note, however, that here the MPG to be used is MPGeff,

described in Section 3, whose elements in the fUjjRg notation

are of the form fdetðUÞ detðRÞRjjRg.

Orbital contributions of properties listed in Table 2 are thus

transformed differently from their spin contributions. For

example, the magnetoelectric tensor (inverse effect) has an

orbital component �orb T whose transformation law corre-

sponds to the Jahn symbol aeV2. This means that for an

operation fUjjRg the transformation is of the form

�orb T
ij

0 ¼ detðUÞ detðRÞRikRj‘�
orb T
k‘ : ð30Þ

The toroidic moment also has an orbital component Torb.

Since the operations fdetðUÞ detðRÞRjjRg of MPGeff verify

equation (19), the transformation law is simpler here than in

the case of the spin component. For the orbital contribution,

we have decoupled the transformations of the symmetric and

antisymmetric parts of the magnetoelectric tensor, which gives

rise to the simple result:

Torb;i
0 ¼ detðUÞRijTorb;j: ð31Þ

As a last example we take the orbital part of the magnetic

susceptibility, which transforms as

�m;orb
ij

0 ¼ RikRj‘�
m;orb
k‘ ; ð32Þ

i.e. in the same way as in a non-magnetic crystal.

Therefore, in general, the symmetry-adapted form of the

tensors of orbital origin can be simply derived using the

transformation rules for the MPGeff. The tensors for the full

properties are then the sum of the tensors for the spin and

orbital contributions. This has important simple consequences

because, as shown in Section 3, the MPGeff of all collinear and

coplanar structures are gray. This implies that the orbital

contribution to all tensors that are odd under time reversal

(i.e. ‘a’ present in the Jahn symbol) is necessarily null in

collinear and coplanar structures, if SpSG symmetry is valid.

On the other hand, for tensors that are even under time

reversal (i.e. ‘a’ not present in the Jahn symbol), the colli-

nearity or coplanarity of the structure does not introduce any

specific restriction to their orbital contributions. Finally, it

should also be noted that the tensors accounting for the orbital

contributions under the symmetry constraints of a SpPG are

independent of the global orientation of the spin arrangement.

Table S1 in the supporting information also shows sepa-

rately the transformation rules for the orbital and spin

contributions in a selection of equilibrium properties.

4.6. Constraints on equilibrium tensors of collinear and

coplanar magnetic structures

As indicated by equation (8), any SpPG is the direct

product of a non-trivial part and a spin-only point group.

Collinear and coplanar structures are characterized by the fact

that they always possess a certain minimum symmetry, PSOintr,

in their spin-only point group PSO. This symmetry alone

produces certain general restrictions on some tensor proper-

ties, which can be derived separately.

In collinear materials the spin operations U of PSOintr form

the continuous group1m, and in the coplanar case the group

m. In order to derive the tensor constraints on a general

basis, and following the usual convention, we take the z axis

parallel to the spins in the case of collinear groups, and in the

case of coplanar groups the plane of symmetry is taken

perpendicular to z. Hence, the generators of the two PSO are

ðf1zjj1g; fmxjj1gÞ and ðfmzjj1gÞ, respectively. For each specific

structure, the resulting tensor constraints derived for this

generic z direction will then have to be translated to the actual

collinear or coplanar orientation with respect to the lattice,

which is present in the structure. These operations strongly

constrain the form of some tensors, as shown in Table 3. The

table only lists tensors for spin magnetism contributions. The

constraints resulting from collinearity or coplanarity in the

case of tensor contributions of orbital origin were discussed in

the previous section, where they were reduced to the simple

rule that tensors odd for time reversal are null, while for even

ones they do not imply any specific restriction. This means that

time-odd tensors in collinear and coplanar structures under

SpSG symmetry can only have contributions of spin origin.

For pure-lattice tensors, where only space operations are

involved, obviously collinearity or coplanarity do not intro-

duce any specific restriction, and are not included in the table

either.

The constraints described in Table 3, resulting from the

collinearity or coplanarity of the structure, i.e. from PSOintr,

must be added to the symmetry-adapted form of the tensor

deduced from the non-trivial subgroup of the SpPG, and the

non-intrinsic spin-only group (if it exists). In the case of

structures with minimal SpSG (see Section 3), it is sufficient to

add the collinear or coplanar constraints described in the table

to the symmetry-adapted form of the tensor for the actual

MPG of the structure.
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When dealing with properties where the spin contribution

to the toroidic moment is involved, Table 3 does not directly

show the constraints due to collinearity or coplanarity.

Instead, it indicates the restrictions on the tensors out of which

these quantities are constructed by antisymmetrizing two of

the indices. For example, for the inverse electrotoroidic effect

�ij (type {VM}V), the form corresponding to a 3-index tensor

of type VMV, bijk, is indicated. It is on this extended tensor that

the rest of the SpPG constraints must be applied when

deducing the final form of the property in question. This issue

is due to the fact that �ij is not really a genuine tensor for SpPG

transformations (since Ti is not, see Section 4.3).

In the supporting information we have extended Table 3

with more properties, and also explicitly list the restrictions on

orbital contributions where applicable (Table S2).

4.7. Transport phenomena

For non-equilibrium transport properties, it is the Onsager

theorem, and not the constitutive relationships, that indicates

how these tensors transform under the time-reversal opera-

tion (Butzal & Birss, 1982; Eremenko et al., 1992; Grimmer,

1994; Shtrikman & Thomas, 1965). For example, it can be

shown from the Onsager theorem that the electrical resistivity

�, which relates electric field E and current density J

(Ei ¼ �ijJj), is transformed by time reversal in the form:

f� 1jj1g�ij ¼ �ji: ð33Þ

This expression allows the definition of a symmetric part �s

and an antisymmetric part �a (� ¼ �s þ �a) (Grimmer, 2017)

that are even and odd for time reversal, i.e.

f� 1jj1g�s ¼ �s; f� 1jj1g�a ¼ � �a: ð34Þ

Therefore, since the electric field E is a vector of type V, we

deduce that �s must be a tensor of type [V2]. As for �a, it

should be noted that although in principle the U part of fUjjRg

affects neither the electric field nor the current density, the

second of equations (34) implies that there must be a sign

change in the transformation if the time reversal is included in

the fUjjRg operation, i.e. if U is improper.

Thus, for the symmetric part we have

�s
ij ¼ RikRj‘�

s
k‘ ð35Þ

and for the antisymmetric part

�a
ij ¼ detðUÞRikRj‘�

a
k‘: ð36Þ

In other words, �a is an antisymmetric magnetic tensor, whose

Jahn symbol is a{V2}, just as with ordinary MPGs. �s accounts

for the ordinary electric resistivity, whereas �a is responsible

for the anomalous (or spontaneous) Hall effect.

Similar to the orbital components of the equilibrium

properties, the transformations of �s and �a by the SpPG are

formally identical to those of an MPG, and, therefore, the

symmetry-adapted form of the tensors can be obtained just

with the methods employed for MPGs, applied to the MPGeff

that can be associated with the SpPG.
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Table 3
Constraints imposed by collinearity and coplanarity on some magnetic tensors of equilibrium properties, assuming SpPG symmetry.

Only tensors related to spin magnetism are listed. The z direction is taken as the spin direction in the collinear case and as the direction perpendicular to the spin
planes in the coplanar case.

Tensor Collinear structure Coplanar structure

Magnetization Mi

(spin contribution)
ð0; 0;M3Þ ðM1;M2; 0Þ

Toroidic moment Tp

(spin contribution)
Tp ¼

1
2
"pij�ij

0 0 0

0 0 0

�31 �32 �33

0

@

1

A
�11 �12 �13

�21 �22 �23

0 0 0

0

@

1

A

Magnetic susceptibility �m
ij

(spin contribution)
�m

11 0 0

0 �m
11 0

0 0 �m
33

0

@

1

A
�m

11 �m
12 0

�m
12 �m

22 0

0 0 �m
33

0

@

1

A

Magnetoelectric tensor �T
ij

(spin contribution) (inverse effect)
0 0 0

0 0 0

�T
31 �T

32 �T
33

0

@

1

A
�T

11 �T
12 �T

13

�T
21 �T

22 �T
23

0 0 0

0

@

1

A

Electrotoroidic tensor �pk

(spin contribution) (inverse effect)
�pk ¼

1
2
"pijbijk

b1ij ¼ b2ij ¼ 0, b3ij no restriction b1ij, b2ij no restriction, b3ij ¼ 0

Piezotoroidic tensor �pk‘

(spin contribution) (direct effect)
�pk‘ ¼

1
2
"pijbijk‘

b1ijk ¼ b2ijk ¼ 0, b3ijk no restriction b1ijk, b2ijk no restriction, b3ijk ¼ 0

Second-order magnetoelectric
tensor �ijk

(spin contribution) (direct effect)

�11 �11 �13 0 0 0

�21 �21 �23 0 0 0

�31 �31 �33 0 0 0

0

@

1

A
�11 �12 �13 0 0 �16

�21 �22 �23 0 0 �26

�31 �32 �33 0 0 �36

0

@

1

A

Piezomagnetic tensor �ijk

(spin contribution) (direct effect)
�1jk ¼ �2jk ¼ 0, �3jk no restriction �1jk, �2jk no restriction, �3jk ¼ 0

Magnetostriction tensor Nijk‘

(Nik in abbreviated notation)

(spin contribution)

Ni1 ¼ Ni2, Ni3 arbitrary,
Ni4 ¼ Ni5 ¼ Ni6 ¼ 0; i ¼ 1; . . . ; 6

Ni1, Ni2, Ni3, Ni6 arbitrary,
Ni4 ¼ Ni5 ¼ 0; i ¼ 1; . . . ; 6



It is interesting to note that the restrictions imposed by the

SpPGs on the magnetization and �a are not equivalent. This is

in sharp contrast to the case of the ordinary MPGs, where it

can be shown that the Jahn symbols for M and �a (aeV and

a{V2}, respectively) are equivalent, in such a way that the

occurrence of magnetization is closely linked to the existence

of the anomalous Hall effect. However, in the framework of

SpPGs, the equivalence in the transformation law is between

the anomalous Hall effect and just the orbital part of the

magnetization. Therefore, it can be the case of having

Morb ¼ 0 so that �a ¼ 0 (without SOC), and yet there is a non-

zero spin component of the magnetization. Thus, there are

ferromagnetic systems where the anomalous Hall effect can

only be a SOC effect. Conversely, antiferromagnetic (non-

coplanar) structures may exhibit an anomalous Hall effect,

even with the spin macroscopic magnetization being zero

(Watanabe et al., 2024).

The application of external magnetic fields leads to the

definition of new effects that are described by tensors of ranks

higher than 2. For example, keeping only terms linear in H,

�ijðHÞ ¼ �ijð0Þ þ RijkHk þ . . . ; ð37Þ

and separating symmetric and antisymmetric parts, we have

two tensors, Rs
ijk ¼

1
2
ðRijk þ RjikÞ and Ra

ijk ¼
1
2
ðRijk � RjikÞ,

symmetric and antisymmetric in the first two indices, respec-

tively. The symmetric part of the spin component Rs is of type

[V2]M and accounts for the linear magnetoresistance, while

the spin contribution to Ra is of type a{V2}M, and is the tensor

describing the ordinary Hall effect (Grimmer, 2017). The

meaning of these symbols is as follows:

Rs
ijk
0 ¼ Ri‘RjmUknRs

‘mn ð½V
2�MÞ ð38Þ

and

Ra
ijk
0 ¼ detðUÞRi‘RjmUknRa

‘mn ðafV
2gMÞ: ð39Þ

These transformations are also valid for the spin Hall resis-

tivity tensor, �ij
k, that connects the electric field with the spin

current polarized in the k direction Jk (Ei ¼ �ij
kJj

k) (Seemann

et al., 2015; Železný et al., 2017). Since the relation between Jk

and J is just a term that is transformed as the spin (type M), it

follows that the symmetric part of �ij
k in ij must also transform

as [V2]M and the antisymmetric part as a{V2}M.

Tensors Rijk and �ij
k also have orbital components (orbital

Hall tensor and orbital-current Hall resistivity) (Bernevig et

al., 2005). For example, in the case of the Hall effect, we will

have for the symmetric and antisymmetric parts the transfor-

mations

Rorb;s
ijk

0 ¼ detðUÞ detðRÞRi‘RjmRknRorb;s
‘mn ðae½V2�VÞ ð40Þ

and

Rorb;a
ijk

0 ¼ detðRÞRi‘RjmRknRorb;a
‘mn ðefV2gVÞ: ð41Þ

We end this section with a reference to thermoelectric tensors

Seebeck � and Peltier �. The Seebeck effect relates a

temperature gradient rT to the appearance of an electric field

(Ei ¼ �ijrjT), and the Peltier effect connects an electric field

with a heat flux density q (qi ¼ �ijEj). For the Seebeck and

Peltier effects the Onsager relations lead to f� 1jj1g�ij ¼ �ji

and f� 1jj1g�ij ¼ �ji (Gallego et al., 2019). It is then interesting

to take the combinations 1
2
ð�ij þ �jiÞ and 1

2
ð�ij � �jiÞ, which are

invariant and anti-invariant under time reversal, respectively

(Grimmer, 2017). From these behaviors under f� 1jj1g, and

following the same reasoning as in the case of �s and �a, it can

be deduced that 1
2
ð�ij þ �jiÞ must be a V2 tensor and

1
2
ð�ij � �jiÞ must be of aV2 type. The former is responsible for

the ordinary Seebeck effect and the latter for the so-called

spontaneous Nernst effect.

Table 4 contains a summary of the transformation proper-

ties of the spin contributions for some transport tensors. As

with the tensors discussed in the previous section, in the case

of those having Jahn symbols without the letter ‘M’, the

additional constraints resulting from the SpPG can be simply

obtained by comparing their symmetry-adapted forms under

MPGeff with those under the actual MPG of the structure. A

table including more transport properties together with the

separation of their orbital and spin parts, where applicable, is

shown in the supporting information (Table S3).
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Table 4
Selected examples of the spin contributions of some transport tensors and their Jahn symbols in the context of MPGs and SpPGs.

For the SpPGs the transformation laws that each Jahn symbol implies are also given.

Tensor description Defining equation Jahn symbol (MPG/SpPG) Transformation laws (SpPG)

Hall effect tensor Rs
ijk

(symmetric part)
Linear magnetoresistance

Ei ¼ RijkJjHk

Rs
ijk ¼

1
2

Rijk þ Rjik

� � ae[V2]V/[V2]M RRURs (Spin)

Hall effect tensor Ra
ijk

(antisymmetric part)
Ordinary Hall effect

Ei ¼ RijkJjHk

Ra
ijk ¼

1
2

Rijk � Rjik

� � e{V2}V/a{V2}M detðUÞRRURa (Spin)

Spin/orbital Hall resistivity tensor �s
ij

k

(symmetric part)
Ei ¼ �ij

kJj
k

�s
ij

k ¼ 1
2
�ij

k þ �ji
k

� � ae[V2]V/[V2]M RRU�s (Spin)

Spin/orbital Hall resistivity tensor �a
ij

k

(antisymmetric part)
Ei ¼ �ij

kJj
k

�a
ij

k ¼ 1
2
�ij

k � �ji
k

� � e{V2}V/a{V2}M detðUÞRRU�a (Spin)



4.8. Constraints on transport tensors of collinear and

coplanar magnetic structures

Similarly to equilibrium tensors, the minimal intrinsic spin-

only subgroup of collinear and coplanar structures can impose

important restrictions on tensors describing transport prop-

erties. A compilation of these restrictions for the spin contri-

butions of some properties is shown in Table 5. In the

supporting information we show further transport properties

and separate the constraints for the orbital and spin parts,

where relevant (Table S4). In some cases, the constraints are

very important. For example, the antisymmetric part of the

resistivity is forbidden in collinear and coplanar structures,

and therefore the anomalous Hall effect can only be non-

relativistic in non-coplanar magnetic structures (Taguchi et al.,

2001; Nagaosa et al., 2010). The same happens for the spon-

taneous Nernst and Ettingshausen effects. Similarly, the spin

Hall resistivity tensor is highly restricted in collinear and

coplanar materials, with the antisymmetric part of the tensor

totally vanishing in the case of collinear structures (Zhang et

al., 2018). In contrast, the orbital contribution of the anti-

symmetric part of the Hall effect tensor (orbital part of the

ordinary Hall effect, see Table S4 in the supporting informa-

tion) is not restricted by the collinearity or coplanarity, and in

fact that property can exist in materials of any symmetry.

4.9. Optical properties

The optical behavior of a material is based on the properties

of its dielectric permittivity tensor at high frequencies "ij, as

well as on the changes that this tensor undergoes when the

material is subjected to external influences (magnetic fields,

electric fields, stress . . . ). As we have pointed out in our study

of equilibrium properties, the permittivity tensor is of type

[V2] for static electric fields. However, at optical frequencies

the material response is not in equilibrium. It can be shown

that Onsager’s relations give rise to an expression similar to

equation (33) for the action of time reversal on the optical

dielectric tensor (Eremenko et al., 1992), i.e.

f� 1jj1g"ij ¼ "ji: ð42Þ

Following the same reasoning as for the resistivity, the

separation into symmetric and antisymmetric parts,

" ¼ "s þ "a, even and odd for time reversal, gives rise to the

following Jahn symbols: [V2] for "s and a{V2} for "a. The

symmetric term describes the index ellipsoid and the anti-

symmetric part the spontaneous Faraday effect.

The variation of "ij due to the space dispersion (dependence

with the light wavevector k), the application of an electric field

and the application of a magnetic field can be written,

respectively, as

"ijðkÞ ¼ "ijð0Þ þ i�ij‘k‘ þ �
ð2Þ
ij‘mk‘km þ . . . ; ð43Þ

"ijðEÞ ¼ "ijð0Þ þ rijkEk þ Rijk‘EkE‘ þ . . . ; ð44Þ

"ijðHÞ ¼ "ijð0Þ þ izijkHk þ Rijk‘HkH‘ þ . . . : ð45Þ

Again, if we separate "ij into symmetric and antisymmetric

parts, and take into account the properties of transformation

of E, H and k (the latter being a rank-1 tensor that changes

sign both under inversion f1jj1g and under time reversal

f� 1jj1g), we can easily deduce the Jahn symbols of the various

tensors involved. A summary of some of the effects up to rank

3 is given in Table S5 of the supporting information. Table 6

shows just the case of the spin contribution to the Faraday

effect tensors (symmetric and antisymmetric parts), where the

Jahn symbols for SpPGs are different from those for MPGs.

If the medium is non-dissipative it can be shown that "ij

must be Hermitian (Landau & Lifshitz, 1960), i.e. "ij ¼ "
�
ji. If

this situation arises, it can be easily shown that the symmetric

and antisymmetric parts of the various tensors must be real or

purely imaginary. So, for example, for the Pockels tensor r,

defined in equation (44), the symmetric part rs

½rs
ijk ¼

1
2
ðrijk þ rjikÞ� is a real tensor and the antisymmetric part

ra ½ra
ijk ¼

1
2
ðrijk � rjikÞ� is purely imaginary. The presence of i in

equations (43) and (45) makes the antisymmetric part of �ij‘

and zijk (natural optical activity and ordinary Faraday effect)

real.

4.10. Constraints on optical tensors of collinear and coplanar

magnetic structures

As in the preceding cases, collinearity and coplanarity also

impose restrictions on tensors for optical properties, as is

shown in Table S6 of the supporting information. Since some

optical tensors share the same Jahn symbol with some of the

transport tensors listed in Tables 4 and S3, their constraints

can also be deduced from those tables. For example, the

spontaneous Faraday effect, the spin contribution of the

ordinary Faraday effect and the spin contribution of the
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Table 5
Constraints imposed by collinearity and coplanarity on the spin contributions of some tensors for transport phenomena assuming SpPG symmetry.

The z direction is chosen as in Table 2 to define the orientation of the spins or the spin planes.

Tensor Collinear structure Coplanar structure

Hall effect tensor Rs
ijk (symmetric part) (spin contribution)

Linear magnetoresistance
Rs

ij1 ¼ Rs
ij2 ¼ 0, Rs

ij3 no restriction Rs
ij1, Rs

ij2 no restriction, Rs
ij3 ¼ 0

Hall effect tensor Ra
ijk

(antisymmetric part) (spin contribution)

Ordinary Hall effect

Ra ¼ 0 Ra
ij1 ¼ Ra

ij2 ¼ 0, Ra
ij3 no restriction

Spin Hall resistivity tensor �s
ij

k (symmetric part) �s1 ¼ �s2 ¼ 0, �s3 no restriction �s1, �s2 no restriction, �s3 ¼ 0
Spin Hall resistivity tensor �a

ij
k (antisymmetric part) �a1 ¼ �a2 ¼ �a3 ¼ 0 �a1 ¼ �a2 ¼ 0, �a3 no restriction



magneto-optic Kerr effect tensors have the same shape as the

antisymmetric part of the resistivity, the antisymmetric part of

the spin Hall resistivity and the symmetric part of the spin Hall

tensors, respectively. Consequently, PSOintr already restricts

greatly the form of these tensors both in collinear and

coplanar structures. Other properties that can be readily

shown to vanish for collinear and coplanar structures under

SpSG symmetry are the spontaneous gyrotropic birefringence

and the antisymmetric part of the Pockels effect (Table S6).

Table 7 shows as an example the restrictions for the spin

contributions to the Faraday tensors.

In the supporting information we complete our study of

crystal tensors, giving an account of the transformation

properties (Section S2) and constraints (Section S3) given by

the SpPGs on some non-linear optical (NLO) properties. The

main conclusion is that such tensors can be studied on the

basis of the MPGeff exclusively.

5. Examples

In the following we will present several examples of experi-

mental magnetic structures with non-coplanar, coplanar and

collinear ordering for which we will obtain the symmetry-

adapted tensor forms for some selected properties. All the

examples have been retrieved from the MAGNDATA data-

base of the Bilbao Crystallographic Server (Gallego et al.,

2016).

We will introduce examples of the two types of magnetic

structures that can be distinguished regarding the relation of

their MSG and SpSG, which were discussed in Section 3.

These two types are, on the one hand, the structures with a

minimal SpSG, where the SpPG only differs from the MPG by

the inclusion of the intrinsic spin-only subgroup PSOintr (if

collinear or coplanar), and the remaining ones, where the

MPG is a strict subgroup of the SpPG, with the SpPG having

additional space operations and/or non-trivial spin-only

operations fUjj1g. As explained in Section 3, in order to

determine the relation between the MSG of a magnetic

structure and its SpSG, the SpSG must be described by

choosing the orientation of the spin operations with respect to

the lattice, consistently with the observed structure.

5.1. Structures with a minimal SpSG

As has been pointed out in Section 3, a majority of the

reported magnetic structures have a minimal possible SpSG

with respect to their MSG, where the family group F of the

MSG is equal to the space group G0 of the space operations

fRjtg of the SpSG. Under these conditions, the MPG and the

SpPG have the same set of lattice operations R, and the SpPG

PS can be written as PS ¼ PM � PSOintr, where PM is the MPG

of the structure and PSOintr the corresponding intrinsic spin-

only point group.

This has interesting consequences when it comes to

obtaining the tensor reductions induced by the SpPG. Starting

from the well known tensor forms under the MPG symmetry

[obtained for example using the MTENSOR program

(Gallego et al., 2019)], the constraints due to the SpPG can be

found by simply adding, in the case of collinear or coplanar

structures, those given by PSOintr, which we have tabulated in

previous sections. In the case of non-coplanar structures the

SpPG and the MPG coincide and no additional SpPG

constraint exists.

We will now examine some examples of materials that

illustrate the points made above.

5.1.1. Collinear DyB4 (entry 0.22 in MAGNDATA)

DyB4 has space group Pbam (No. 55) in its paramagnetic

phase and below 21 K exhibits a collinear magnetic structure

(Will & Schafer, 1979), with propagation vector k ¼ 0 and

MSG Pb0am (OG No. 55.3.433), and therefore its MPG is

m0mm. The spins are oriented along c. A scheme of the

structure is displayed in Fig. 1. As the MSG keeps all the space

operations of the parent space group Pbam, then the corre-

sponding SpSG is minimal, with no additional space operation.

This SpSG has been identified as P � 1b 1a 1m1m1 (No.
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Figure 1
Magnetic structure of DyB4 below 21 K. Dy and B atoms are represented
by blue and green spheres, respectively.

Table 6
Spin contribution to the Faraday effect tensors with their Jahn symbols in the context of MPGs and SpPGs, and their transformation laws under an SpPG
operation.

Tensor description Defining equation Jahn symbol (MPG/SpPG) Transformation laws (SpPG)

Faraday effect tensor zs
ijk

(symmetric part)

Magneto-optic Kerr effect (MOKE)

"ijðHÞ ¼ "ijð0Þ þ izijkHk

zs
ijk ¼

1
2

zijk þ zjik

� � ae[V2]V/[V2]M RRUzs (Spin)

Faraday effect tensor za
ijk

(antisymmetric part)
Ordinary Faraday effect

"ijðHÞ ¼ "ijð0Þ þ izijkHk

za
ijk ¼

1
2

zijk � zjik

� � e{V2}V/a{V2}M detðUÞRRUza (Spin)



26.55.1.1) in the so-called international notation (Chen et al.,

2024), but one should take care that in this SpSG notation the

x and y axes of the lattice have been interchanged with respect

to the basis of the MSG Pb0am. This means that, keeping the

same basis as in the MSG, the non-trivial SpPG can be

denoted as 1m � 1m 1m, which is generated by the operations:

f1jjmxg, f� 1jjmyg and f1jjmzg. We can then write

1m � 1m 1m1zm1 ¼ m0mm�1zm 1: ð46Þ

We will use equation (46) to deduce, as an example, the

constraints of the magnetoelectric tensor (inverse effect)

under the SpPG (see Table 2). For the MPG m0mm we have

�Tðm0mmÞ ¼

0 0 0

0 0 �T
23

0 �T
32 0

0

@

1

A;

as can be easily checked. But the additional spin-only group
1zm1 in the SpPG cancels out the elements of the first two

rows (see Table 3). Therefore, the final tensor form under the

SpPG symmetry is simply

�T ¼

0 0 0

0 0 0

0 �T
32 0

0

@

1

A: ð47Þ

It is interesting to analyze the same case but assuming now

that the spins are aligned along a or b. The counterparts of

equation (46) are

1m � 1m 1m1xm1 ¼ mmm0 �1xm 1

and

1m � 1m 1m1ym1 ¼ m0m0m0 �1ym 1:

In the first case, the MPG mmm0 gives a tensor

�Tðmmm0Þ ¼

0 �T
12 0

�T
21 0 0

0 0 0

0

@

1

A

and in the second

�Tðm0m0m0Þ ¼

�T
11 0 0

0 �T
22 0

0 0 �T
33

0

@

1

A:

For these orientations, 1xm1 eliminates the second and third

rows of �T, while 1ym1 does the same with the first and third

rows. Then we have under the SpPG

�T ¼

0 �T
12 0

0 0 0

0 0 0

0

@

1

A ð48Þ

and

�T ¼

0 0 0

0 �T
22 0

0 0 0

0

@

1

A; ð49Þ

respectively.

These three results are easily interpretable. The three

tensor forms for the three spin directions, equations (47)–(49),

correspond to the same physical effect under the SpPG. They

simply indicate that the electric-induced magnetization can

only take place along the spin directions, which without SOC

would be arbitrary. In contrast, independently of the direction

of the spins, the electric field must be applied along a specific

crystal direction, namely the y axis, which is the direction

perpendicular to the unique mirror plane with U ¼ � 1 in the

non-trivial SpPG. As can be seen with this example, physically

equivalent tensor reductions under the same SpPG, for

different orientations of the spins, can be derived starting from

tensor forms under different MPGs.

Equations (48) and (49) could have been deduced from

equation (47) by using equation (28), which relates the �T

tensors in structures differing in their spin orientations. Using

this procedure we easily obtain that the only surviving coef-

ficient in equations (47)–(49) must have numerically the same

value.

In the description proposed at the end of Section 4.4, the

magnetoelectric tensor of this example, when described with

separate spin and lattice systems, would have only a single

coefficient, �T
302, similar to equation (47). This means that an

electric field along the y lattice direction induces a magneti-

zation along the spin direction z0, whatever this may be.

Equations (47)–(49) are particular cases of this more general

rule.

5.1.2. Collinear MnF2 (entry 0.15 in MAGNDATA)

MnF2 has space group P42=mnm (No. 136) in the para-

magnetic parent phase. Upon cooling it undergoes a transition

to a collinear magnetic phase with propagation vector k ¼ 0

(Yamani et al., 2010). The structure of the magnetic phase is

shown in Fig. 2. The spins are parallel to [001], with MSG

P402=mnm0 (OG No. 136.5.1156). Here again the MSG keeps

all space operations of the parent space group P42=mnm, and

therefore the corresponding SpSG is necessarily minimal. This
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Table 7
Constraints imposed by collinearity and coplanarity on the spin contributions to the Faraday tensors assuming SpPG symmetry.

Tensor Collinear structure Coplanar structure

Faraday effect tensor zs
ijk (symmetric part) (spin contribution)

Magneto-optic Kerr effect (MOKE)

zs
ij1 ¼ zs

ij2 ¼ 0, zs
ij3 no restriction zs

ij1; zs
ij2 no restriction, zs

ij3 ¼ 0

Faraday effect tensor za
ijk

(antisymmetric part) (spin contribution)
Ordinary Faraday effect

za ¼ 0 za
ij1 ¼ za

ij2 ¼ 0, za
ij3 no restriction



SpSG is P � 142=
1m � 1n 1m1m1 (No. 65.136.1.1) (Chen et al.,

2024). The corresponding SpPG, � 14= 1m � 1m 1m1m1, gener-

ated by the operations

f� 1jj4zg; f1jjmzg; f1jjm1�10g; f1zjj1g; fmxjj1g;

can then be related to the MPG in the form

� 14= 1m � 1m 1m1zm1 ¼ 40=mmm0 �1zm 1:

The tensor constraints according to the SpPG will then be

those of the MPG plus those due to the collinearity spin-only

group 1zm1.

We can take as an example the piezomagnetic tensor �ijk

(see Table 2), which has recently been considered in connec-

tion with a discussion about the altermagnetism of this

material (Bhowal & Spaldin, 2024; Radaelli, 2024). The results

are obtained straightforwardly using the MTENSOR program

and Table 3.

The constraints under the MPG give

� ¼

0 0 0 �14 0 0

0 0 0 0 �14 0

0 0 0 0 0 �36

0

@

1

A; ð50Þ

where the usual Voigt index contraction has been used for the

last two indices of �ijk. Adding the restrictions of Table 3, the

only coefficient that survives is simply �36. This means that the

magnetization induced by stress is only along the spin direc-

tion, and it can be induced only upon application of a �12

(¼ �6) shear stress. Therefore, this is the non-relativistic

piezomagnetic effect, which the system is expected to have

even if SOC is negligible.

In contrast with the example of Section 5.1.1, in this case if

we consider any other hypothetical spin direction for the

collinear spin arrangement, the resulting MPG will lose some

space operations, and therefore the SpSG will not be minimal

with respect to the new MPG. Therefore, the simple method to

derive the SpSG-adapted form of the tensors employed above

is not possible for any other spin direction. But from equation

(50) we can infer how it would be the SOC-free piezomagnetic

effect in any case. Taking into account that � is of type M[V2],

and following a procedure similar to the one carried out for

the magnetoelectric tensor in the previous example, we easily

arrive at

�ijk
0 ¼ Pi‘�‘jk; ð51Þ

where �0ijk is the piezomagnetic tensor of the new structure

and Pi‘ is the rotation matrix relating both spin orientations.

In this case, equation (51) leaves as non-null elements only

�i6
0 ¼ Pi3�36 (i ¼ 1; 2; 3). Thus, in the SOC-free limit the

induced magnetization is always along the spin direction,

whatever this is, but the applied stress must be a shear �6 on

the crystal basal plane. In the description using separate spin

and lattice reference systems (end of Section 4.4) we would

have here a tensor with just a single coefficient, �306, meaning

that a stress �6 induces a magnetization along the spin direc-

tion, this being arbitrary.

5.1.3. Coplanar CoSO4 (entry 1.519 in MAGNDATA)

CoSO4 has a paramagnetic phase with space group Cmcm

(No. 63), and a magnetic phase below 15.5 K with propagation

vector k ¼ ð1; 0; 0Þ (Frazer & Brown, 1962). The material is

coplanar, mx being the spin-only mirror plane (see Fig. 3). Its

MSG is PCbcn in the Belov–Neronova–Smirnova (BNS)

notation, with OG numerical index 63.16.52. The non-trivial

SpSG is 10.63.2.1 (Chen et al., 2024). Also, in this case, despite

the non-zero propagation vector, which implies the breaking

of the body-centering lattice translation, all operations of the

parent space group are maintained in the MSG. The lost

centering translation is kept in the MSG as an antitranslation,

i.e. a translation combined with time reversal. Thus, the MPG

of the structure is mmm:10, and the SpPG is necessarily

minimal with respect to it. The SpPG can be written as the

direct product of the MPG and the coplanar spin-only group:

mmm:10 � mx 1. The SpPG tensor constraints can be derived,

as in previous examples, by adding to the constraints of the

MPG those of the fmxjj1g plane of mx 1.

Let us consider the spin Hall resistivity tensor as an

example. The MPG restricts the antisymmetric part of that

tensor to the form
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Figure 3
Magnetic structure of CoSO4 below 15.5 K showing the spins of the Co
atoms (blue spheres). The O and S atoms are represented by red and
yellow spheres, respectively.

Figure 2
Magnetic structure of MnF2 showing the spins of the Mn atoms (violet
spheres). F atoms are represented by small gray spheres.



�a1
¼

0 0 0

0 0 �23
1

0 � �23
1 0

0

B
@

1

C
A; �

a2
¼

0 0 �13
2

0 0 0

� �13
2 0 0

0

B
@

1

C
A;

�a3
¼

0 �12
3 0

� �12
3 0 0

0 0 0

0

B
@

1

C
A: ð52Þ

We can now add the additional SpPG constraints due to the

coplanarity. According to Table 5, the SpPG only allows a non-

zero �a1 (note that the plane in PSO is mx instead of mz) while

it forces �a2 and �a3 to be null. If the tensor is expressed using

separate spin and lattice reference frames, the only surviving

term is �23
30 ¼ � �32

30, where z0 is the direction perpendicular

to the spin plane, whatever its orientation with respect to the

lattice.

In this case, the symmetric part of the spin resistivity is

already zero under the MPG since this group contains the

time-reversal operation and this part of the tensor is time-odd

when considered for the MPG operations (see Table 4).

5.2. Structures with a non-minimal SpSG

In the examples that we will consider in this section, there

are non-trivial differences between the space operations in the

MPG and SpPG of the structures and/or the spin-only group

PSO in the SpPG is larger than PSOintr. In this case PS cannot be

written as a product PM � PSOintr. We will take two materials

(and another two in Sections S5 and S6 of the supporting

information) with different spin configurations, non-coplanar,

coplanar and collinear, and we will review for them a certain

set of selected properties, where we will compare the

symmetry-adapted form of the corresponding tensors for the

MPG and SpPG symmetries.

5.2.1. Coplanar Mn3Ge (entry 0.377 in MAGNDATA)

The paramagnetic phase of Mn3Ge is hexagonal with space

group P63=mmc (No. 194). Below 380 K the material under-

goes a transition to a coplanar magnetic structure (Soh et al.,

2020). The plane of spins is perpendicular to the hexagonal

axis [see Fig. 4(a)], and the MSG of the structure is Cm0cm0

(OG No. 63.8.58). The corresponding MPG is m0xmym0z, where

the x; y; z axes are associated with the orthorhombic unit cell

ðaþ b; � aþ b; cÞ of the MSG standard unit cell. The relation

of these orthorhombic axes with the crystallographic hexa-

gonal a; b; c unit-cell vectors is depicted in Fig. 4(b).

The SpSG of this structure is a coplanar group with a non-

trivial SpSG having the numerical index 11.194.1.2 (Chen et

al., 2024). The SpPG is generated by the following operations

(not a minimal set, to facilitate comparison with the MPG):

SpPG :fmzjj1g; f1jjmzg; fmxjjmxg; f1jj1g; f3zjj6zg;

while the generators of the orthorhombic MPG are

MPG :fmxjjmxg; f1jj1g; fmzjjmzg;

where we have used the same reference system of ortho-

rhombic axes x; y; z for both the spin and the space operations.

The SpPG contains the MPG, as it should, and adds two

additional generators: the threefold/sixfold rotation and the

spin-only mirror plane. The requirement of tensor invariance

for these two operations is sufficient to derive the additional

constraints on the tensors under the SpPG. The MPGeff

corresponding to the above SpPG, to be considered for orbital

contributions, is 6=mmm:10. As in all coplanar and collinear

structures, it is a gray magnetic group, which forbids any

orbital contribution to any time-odd tensor.

Table 8 gathers a few examples of tensors, showing the

difference in their symmetry-adapted forms under SpPG and

MPG symmetries. Some comments on the results are in order.

The SpPG does not allow the existence of spontaneous

magnetization, unlike the MPG. This implies that the allowed

ferromagnetism of this material, which is observed macro-

scopically as a weak feature (Soh et al., 2020), has the SOC as

the ultimate cause. Remarkably, the anomalous Hall effect,

described by the antisymmetric terms of the resistivity,

�13 ¼ � �31, has been reported to be ‘giant’ (Kiyohara et al.,

2016), though it should also be a SOC effect, since it is allowed

by the MPG and forbidden by the SpPG.

The electric and magnetic susceptibilities change from

being diagonal in the MPG with three independent terms to

having two of them equal in the SpPG, keeping the axial

symmetry of the parent phase. A similar case happens with the

ordinary Seebeck effect and the symmetric part of the electric

resistivity, with a single additional constraint, �22 ¼ �11, in the

SpPG. The spin Hall resistivity �ij
k (antisymmetric part in the

ij indices) also reduces from having three to only one inde-

pendent coefficient. Note that the spin-only operation fmzjj1g,

due to the coplanarity of the structure, is already sufficient to

make the antisymmetric part of the spin resistivity vanish for x

and y polarizations, �a1 ¼ �a2 ¼ 0 (see Table 5). On the other

hand, the symmetric part of �ij
k is also drastically reduced (five

independent coefficients under the MPG versus one coeffi-

cient under the SpPG). In particular, �3 goes from being

allowed in the MPG to being null in the SpPG, which can be

attributed exclusively to the coplanar spin-only symmetry

present in the SpPG.
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Figure 4
(a) Magnetic structure of Mn3Ge, showing the spins of the Mn atoms. (b)
Relationship between the hexagonal unit-cell vectors a; b; c and the
orthorhombic xyz directions of the basis unit vectors used to express the
material tensors in the standard setting of its MSG, Cm0cm0.



5.2.2. Non-coplanar DyVO3 (entry 0.106 in MAGNDATA)

This material has space group Pbnm (No. 62) in its para-

magnetic phase. At low temperatures, both V and Dy atoms

are magnetically ordered with a non-coplanar spin arrange-

ment, which is depicted in Fig. 5 (Reehuis et al., 2011). The

MSG of this magnetic structure is P11201=m0 (OG No. 11.5.63).

Being non-coplanar, the SpSG coincides with its non-trivial

subgroup, which is denoted by the numerical label 2.62.1.8 by

Chen et al. (2024). Thus, the SpSG, in contrast with the MSG,

keeps all the space operations of the parent space group

Pbnm, keeping an orthorhombic symmetry, while the MSG is

monoclinic. Taking as reference system the abc crystal-

lographic axes shown in Fig. 5, for both the spin and space

operations, the corresponding SpPG can be denoted as
2y mx

mx my
mz mz, which can be identified with the non-trivial

SpPG with number 81 in the listing of Litvin (1977), if the

labeling of the axes in the spin space is changed. As generators

of this SpPG we can take

fmzjjmzg; f1jj1g; fmxjjmyg;

whereas the MPG (20z=m0z) is generated by the first two of

these three generators. Thus, the MPG is a subgroup of the

SpPG, which is obtained from the former by just adding an

additional generator.

With regard to the effective symmetry for the orbital

contributions within the SpSG formalism, it is straightforward

to derive using the SpPG generators listed above that MPGeff

= mm0m0.
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Figure 5
Magnetic structure of DyVO3 at 6 K showing only the magnetic atoms.
Blue and red spheres represent Dy and V atoms, respectively.

Table 8
Comparison of symmetry-adapted tensor forms of some selected tensor properties in the magnetic phase of Mn3Ge according to the magnetic and spin
point groups.

Tensor property MPG SpPG

Magnetization ð0;M2; 0Þ ð0; 0; 0Þ
Magnetic susceptibility/

electric susceptibility
�11 0 0

0 �22 0

0 0 �33

0

@

1

A
�11 0 0

0 �11 0

0 0 �33

0

@

1

A

Electric resistivity �11 0 �13

0 �22 0

� �13 0 �33

0

@

1

A
�11 0 0

0 �11 0

0 0 �33

0

@

1

A

Spin Hall resistivity
(symmetric part)

0 �12
1 0

�12
1 0 0

0 0 0

0

@

1

A;

�11
2 0 0

0 �22
2 0

0 0 �33
2

0

@

1

A;

0 �12
1 0

�12
1 0 0

0 0 0

0

@

1

A;

� �12
1 0 0

0 �12
1 0

0 0 0

0

@

1

A;

0 0 0

0 0 �23
3

0 �23
3 0

0

@

1

A

�3 ¼ 0

Spin Hall resistivity
(antisymmetric part)

0 0 0

0 0 �23
1

0 � �23
1 0

0

@

1

A;

0 0 �13
2

0 0 0

� �13
2 0 0

0

@

1

A;

�1 ¼ �2 ¼ 0

0 �12
3 0

� �12
3 0 0

0 0 0

0

@

1

A �3 ¼

0 �12
3 0

� �12
3 0 0

0 0 0

0

@

1

A

Ordinary Seebeck effect
aij ¼

1
2
ð�ij þ �jiÞ

a11 0 0

0 a22 0

0 0 a33

0

@

1

A
a11 0 0

0 a11 0

0 0 a33

0

@

1

A

Spontaneous Nernst effect
bij ¼

1
2
ð�ij � �jiÞ

0 0 b13

0 0 0

b31 0 0

0

@

1

A

b ¼ 0



We can now review a series of tensor properties and

compare their symmetry-adapted forms according to both the

MPG and SpPG.

A first simple example is the spontaneous magnetization. It

readily follows that the MPG allows a magnetization of the

form M ¼ ðM1;M2; 0Þ. If considered under the SpPG, as only

the U operations are involved in the transformations for the

spin contribution to the magnetization, it can easily be seen by

just inspecting the above-mentioned generators that under the

SpPG the spin magnetization is restricted to the y direction,

i.e. ð0;M2; 0Þ. The magnitude of the magnetization along this

direction is in fact very important, as can be seen in Fig. 5. In

contrast, any additional spin magnetization along x, which is

also allowed by the MPG, if present, would necessarily be a

SOC effect and would break the SpPG assigned to the struc-

ture. Note, however, that a non-zero magnetization M1 is

allowed to exist without SOC, and under the same SpPG, but

with the condition that it must be of orbital origin. Indeed, as

MPGeff = mm0m0, the orbital contribution to the magnetiza-

tion must be of the form Morb ¼ ðM1; 0; 0Þ, which should be

added to the spin magnetization allowed along y.

This is an example of the problem, which was mentioned in

Section 2, that may arise in practice, when the SpSG of an

experimentally determined magnetic structure is identified.

Let us consider the hypothetical case of a structure like the

one in this example, with negligible SOC, but with a significant

orbital contribution to the atomic moments of orbital origin,

resulting in a non-zero magnetization of orbital origin along x,

as permitted by the SpSG. As the SpSG symmetry is usually

determined assuming that atomic magnetic moments have

only spin contributions, the observed magnetic ordering would

be considered incompatible with the actual SpSG of the

structure, and instead a wrong SpSG will be assigned.

Another only-U tensor is the spin contribution to the

magnetic susceptibility �m [see equation (21) and Table 2]. As

the SpPG maintains the orthorhombic symmetry, it is

constrained to be of the form

�m ¼

�m
11 0 0

0 �m
22 0

0 0 �m
33

0

@

1

A: ð53Þ

Considering the corresponding MPGeff, it is clear that the

orbital contribution must have a similar diagonal form. Note,

however, that, according to the rigorous definition of the

SpPG, the diagonal directions x, y and z of the tensor in

equation (53) refer only to the spin arrangement, while the

diagonal axes of the orbital magnetic susceptibility are the

crystallographic ones. In the SpSG formalism, the spin

arrangement is considered unlocked from the lattice, and its

global orientation is assumed to be arbitrary. Hence, if the

SpPG concept is taken literally, the two diagonal tensors of

spin and the orbital magnetic susceptibilities refer in general

to two different systems of axes. But the clear locking between

lattice and spins in a real case as this, obvious in Fig. 5, makes it

necessary that the reference axes for the spins are chosen

coincident with the crystallographic ones, as we did in the

description of the SpPG.

As the MPG is monoclinic, the magnetic susceptibility

under this lower symmetry also includes non-diagonal terms,

namely the coefficient �12, since the monoclinic axis is along z.

Thus, the tensor deviation from the orthorhombic prescribed

diagonal form, also valid for the paramagnetic phase, is

expected to be a SOC effect.

The same reduction as in equation (53) happens with other

second-rank tensors like, for example, the static electric

susceptibility �e. Although the Jahn symbol of this tensor is

the same for the MPG as for the SpPG ([V2]), the final form of

the reduced tensor is different because of the presence of the

extra space operation in the SpPG. Identical conclusions are

reached for the symmetric part of the electric resistivity tensor

� or the symmetric part of the optical dielectric tensor ", since

their Jahn symbols are [V2] in all cases (see Tables S3 and S5 in

the supporting information).

The antisymmetric parts of the electric resistivity tensor �

and optical dielectric tensor " also have different forms for the

MPG and SpPG (see the last columns in Tables S3 and S5 in

the supporting information). The final symmetry-adapted

forms of the tensors are

�a ¼

0 0 �13

0 0 �23

� �13 � �23 0

0

@

1

A and �a ¼

0 0 0

0 0 �23

0 � �23 0

0

@

1

A

ð54Þ

for the MPG and SpPG, respectively, and equivalent forms for

the antisymmetric part of the optical dielectric tensor. The

second of equations (54) shows that even under the SpPG

symmetry, and therefore with negligible SOC, the anomalous

Hall effect (and the spontaneous Faraday effect) are permitted

in the material. The �23 component is the so-called geometric

part of the anomalous Hall effect, whereas �13 is a Karplus–

Luttinger term, as it is SOC-assisted (Watanabe et al., 2024).

Further tensor properties of this material are presented in

the supporting information (Section S4) along with other

example materials: non-coplanar CaFe3Ti4O12 and collinear

UCr2Si2C (Sections S5 and S6, respectively).

6. Related literature

The following references are cited in the supporting infor-

mation: Kleinman (1962), Klyshko (2011), Lemoine et al.

(2018), Patino et al. (2021), Pershan (1963), Popov et al. (1995),

Tsirkin & Souza (2022).

7. Conclusions

In this paper we present a general formalism for the derivation

of the symmetry-adapted form of any crystal tensor property

of a magnetic material considering its SpPG. We have stressed

the important fact that a null SOC is required for a SpSG to be

rigorously considered as a symmetry group of a magnetic

structure. This means that SpSGs should be considered in
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most real cases as approximate symmetries. In order to

compare tensor constraints under SpSG symmetry with those

under the actual magnetic group of the structure, both the spin

and magnetic groups must be described within a common

framework, where they have a group–subgroup relation. This

implies the choice of a specific orientation of the spin

arrangement with respect to the lattice, consistent with the

observed structure. In this way, SOC-free tensor properties,

permitted by the SpPG symmetry, can be systematically

distinguished from those having necessarily SOC as their

ultimate cause.

After reviewing the mathematical structure of SpSGs and

SpPGs and their relation with ordinary MSGs and MPGs, the

symmetry conditions to be satisfied by crystalline tensors

under a SpPG have been analyzed. More specifically, we have

carried out a systematic study of the specific action that a

fUjjRg operation of a SpPG produces on various types of

tensors describing macroscopic physical properties of

magnetic structures. The transformation laws obtained

constitute a generalization of the laws corresponding to the

MPG operations, which are particular cases when U ¼ �R.

Using a generalization of the Neumann principle to SpPGs we

have found the restrictions that the SpPG symmetry imposes

on four types of tensors, describing equilibrium, transport,

optical and second-order NLO properties. To each tensor

property we have assigned a symbol, which generalizes the

Jahn symbols for the MPGs and summarizes its transformation

properties under a general operation fUjjRg.

We demonstrate that the spin-only symmetry, which is

intrinsic in the SpPG of all collinear or coplanar magnetic

structures, introduces very general constraints on the tensors

when SOC-free SpPG symmetry is assumed. It is worth noting

that, in most practical cases (about 75% of the reported

structures), the SpSG only adds the spin-only symmetry and,

therefore, the general collinear-based or coplanar-based

constraints are the only extra restrictions to be added to the

constraints resulting from the MPG. Finally, we illustrate the

effects of the SpPG symmetries on various tensor properties

for more complex SpPG–MPG relations by analyzing several

examples of representative materials with non-coplanar,

coplanar and collinear magnetic orderings.

A word of caution is in order regarding the way that the

formalism presented in this work can be applied to an

experimentally determined magnetic structure. The identifi-

cation of the MSG of a given structure is a well defined

mathematical process, with no additional assumption needed,

except that the structure is correct. But the determination of

its SpSG, as its alternative symmetry group in the case that the

SOC is null, has some ambiguities. The SpSGs of practically all

commensurate magnetic structures available in the MAGN-

DATA database have been calculated and reported in several

works (Chen et al., 2024; Jiang et al., 2024; Xiao et al., 2024).

However, these SpSG identifications were done with the

implicit assumption that the spin arrangement does not have

any feature caused by the SOC that would falsify the calcu-

lated SpSG. This is usually quite a reasonable assumption

because, except for the magnetic anisotropy that locks the

global orientation of the spin arrangement with respect to the

lattice, structural effects with SOC origin are usually weak. In

many cases, they are not detectable by the typical neutron

diffraction techniques employed in magnetic structure deter-

mination. However, this assumption sometimes fails, for

instance, when the structure includes some small but signifi-

cant spin canting of SOC origin. As an example, if one inspects

Fig. 3, one may suspect that the deviation of the structure from

collinearity is a local locking effect, which requires a non-zero

SOC. Thus, there are experimental structures whose assigned

SpSG is a subgroup of the resulting SpSG if the SOC contri-

bution were not considered (no canting in the example above),

and the distinction between SOC-free and SOC-based tensor

properties using the assigned SpSG would be wrong. The

SpSGs identified from MAGNDATA entries also assumed

that the magnetic orderings have no orbital contribution or

are irrelevant for the SpSG determination. We have seen

above that in collinear structures the associated SpSG

symmetry forbids in any case any orbital contribution to the

atomic spins. There are, however, collinear structures with a

demonstrated significant contribution to the atomic moments

due to SOC effects. Hence, in such cases, ignoring the presence

of the orbital contribution paradoxically allows one to assign

the correct SOC-free SpSG.

Regardless of whether the calculated SpSG of an experi-

mentally determined magnetic structure is or is not the SOC-

free symmetry group of the system, it might be tempting to

consider this group as a ‘geometric’ symmetry feature, which

could be applied to derive the symmetry constraints for any

property of the material. This would be, however, wrong. If the

tensor constraints dictated by the identified SpSG symmetry

were taken as exact, then many important observations would

remain unexplained, such as the weak ferromagnetism in

collinear or coplanar structures, the magnetically induced

electric polarization found in many multiferroics, or the

significant orbital contribution present in some collinear

structures. In summary, SpSG symmetry should not be

generally taken as the real symmetry of a structure, but as a

good approximation, which allows one to separate, as shown in

this work, those features and properties in the system which

are not caused by the SOC, and therefore are especially

important.

To end this paper, we would like to announce that we have

recently developed a computer program (STENSOR) that,

following the approach presented in this article, permits an

automatic calculation of symmetry-adapted tensors under a

given oriented SpPG and its comparison with their form under

the corresponding MPG. It is open access and has been

incorporated in the Bilbao Crystallographic Server (https://

cryst.ehu.es/cryst/stensor.html).

APPENDIX A

Glossary of some important groups used in the article and

their notation

GSS Full spin space group (SpSG) formed by operations

fUjjfRjtgg.
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GSO Spin-only space group. Subgroup of GSS formed by

operations fUjjf1j0gg.

GNT Non-trivial SpSG. Subgroup of GSS formed by opera-

tions fUjjfRjtgg with fRjtg 6¼ f1j0g for those operations with

U 6¼ 1. For collinear structures U ¼ �1 (Shubnikov-like

group) by convention. For coplanar structures jUj ¼ 1, proper

operation, by convention.
1nm1 Collinear GSO with spin direction along n.
mn 1 Coplanar GSO with spin plane normal along n.

L0 Space group formed by operations fRjtg such that

f1jjfRjtgg 2 GNT.

G0 Space group formed by all operations fRjtg such that

fUjjfRjtgg 2GNT. G0 and L0 are related by G0 = L0 + g2 L0 +

. . . + gn L0, with gi coset representatives.

GST Spin-translation group of GNT. Subgroup of GNT

formed by operations fUjj1jtg with t not being a lattice

translation if U 6¼ 1.

GP Space group of the paramagnetic phase.

MSG Magnetic space group. Subgroup of GSS with opera-

tions f�RjjfRjtgg.

F Family space group of a MSG. Space group formed by all

operations fRjtg present in the MSG, irrespective of whether

or not they include time reversal.

PS Spin point group (SpPG) formed by operations fUjjRg.

PSO Spin-only point group. Subgroup of PS formed by

operations fUjj1g.

PSOintr Intrinsic spin-only point group, PSOintr = 1nm1 for

collinear and PSOintr = mn 1 for coplanar groups.

PSOG Subgroup of PSO. Intersection between PSO and the

set of operations fUjj1g such that fUjjf1jtgg 2GST. It is a

proper subgroup of PSO if the spin translation group GST

contains elements with U 6¼ 1. Relation between PSO and

PSOG, PSO = PSOintr � PSOG.

PNT Non-trivial spin point group. Subgroup of PS formed by

operations fUjjRg with R 6¼ 1 except for the identity.

PM Magnetic point group (MPG). Subgroup of PS with

operations f�RjjRg. For minimal SpSGs, i.e. when SpSG and

MSG have the same operations fRjtg, the relation between PM

and PS is PS = PM � PSOintr.

MPGeff Effective magnetic point group of a SpPG with

elements fUjjRg. It is the magnetic point group formed by

operations fdetðUÞ detðRÞRjjRg.
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