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The phase-seeding method proposed by Carrozzini et al. [(2025), Acta Cryst.

A81, 188–201] introduces a strategy for integrating artificial intelligence (AI)

with established ab initio phasing techniques. Rather than presenting an AI-

based phasing solution itself, the authors demonstrate how traditional crystal-

lographic methods can be significantly enhanced if provided with a small subset

of approximate phase values – a ‘phase seed’ – that could, in principle, be

generated by a machine learning model. By discretizing phase values into a few

angular bins, the method transforms the continuous phase problem into a

classification task, thereby reducing the computational burden on AI training.

This hybrid approach shows promise for improving structure solution, particu-

larly for large and complex non-centrosymmetric crystals, and opens a pathway

for future AI-assisted crystallographic workflows.

1. The phase problem

The crystallographic phase problem – whereby only the

amplitudes jFðhÞj and not the phases �ðhÞ of the complex

structure factors FðhÞ ¼ jFðhÞj exp½i�ðhÞ� of each reflection h

can be retrieved from a diffraction experiment – is perhaps the

most fundamental of all crystallographic challenges. It is also

one of the most studied, because overcoming the phase

problem of a given set of single-crystal X-ray diffraction data

allows one to determine the electron density �ðrÞ by Fourier

summation over all reflections,

� rð Þ ¼ 1=V
X

h

F hð Þ exp � 2�ih � rð Þ; ð1Þ

where V is the volume of the unit cell. From the electron

density it is normally possible to infer the atomic positions.

However, arriving at the correct set of phases is not a trivial

task.

In the early days of modern crystallography, structures were

‘guessed’ and further refined by Fourier refinement, which

consists of correcting the model by inspecting approximate

electron-density maps generated using the phases from the

previous guess – basically the same technique used in crystal

structure refinements today, but without the least-squares

method, and without the aid of computers to generate density

maps. This cumbersome approach was used until the invention

of the Patterson maps (Patterson, 1934), from which heavy-

atom positions (if any) could be inferred, and the remaining

atoms derived using the Fourier refinement approach.

However, all these approaches were inherently slow,

because they required substantial computational efforts in a

time where digital computers were not yet available.

In the years after World War II, and in particular in the

1950s and 1960s, computers started to become available. At
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the same time, new ideas for solving the phase problem were

published, in particular the work by Harker & Kasper (1948)

who showed that there must exist inequality relationships

between some of the F’s and others. In other words, it was

shown that phases are not entirely lost in the diffraction

experiment but can to some degree be deduced from the

magnitudes.

This work inspired efforts by Karle & Hauptman (1950),

and simultaneously Sayre (1952) to derive approximate and

probabilistic mathematical relationships between phases of

strong reflections. These relationships are based on basic

physical constraints of the electron density in crystals, namely

that a physically meaningful density must be positive and

consists of atoms, i.e. resolved peaks of high density in a

volume of lower densities.

The concept of constraining the density to be physically

meaningful can also be performed in direct space. This is the

idea behind modern ab initio phasing approaches, such as the

charge-flipping algorithm (Oszlányi & Sütő, 2004), where trial

phase-sets are used to produce electron-density maps that are

then amended to be physically plausible (e.g. negative density

is made into positive density). Many modern methods operate

iteratively in direct and reciprocal space and are implemented

in programs such as SHELXT (Sheldrick, 2015) and SIR2014

(Burla et al., 2015).

What all these modern ab initio methods have in common is

that they require a level of computational power that was

substantial in the middle of the 20th century, but not by

today’s standards – these highly automated algorithms can

often lead to a structure solution within a few seconds given a

quite complete dataset at atomic resolution.

In recent years there has been a substantial increase in the

computational power and, in particular, development of

algorithms and software for performing supervised machine

learning (ML). There is a long tradition of exploring ML

approaches in crystallography, as demonstrated by the recent

‘Machine learning in crystallography’ virtual collection of Acta

Cryst. A (Billinge & Proffen, 2024). It is timely to investigate

whether further improvements in phasing can be performed

using such tools.

2. Use of ML for phasing

Whereas it requires effort to find the phases and thereby

derive an electron density from a set of measured structure

factors, it is very easy to generate a set of structure factors –

and thus, a synthetic dataset – from a structural model. Thanks

to the efforts put in to making algorithms for crystal structure

prediction, it is possible to generate millions of realistic, virtual

structures, and therefore it is also possible to generate millions

of virtual datasets, ideal for supervised ML approaches.

Artificial data have shown their usefulness in many of the

papers in the virtual collection mentioned above.

In the realm of protein structure determination, Pan et al.

(2023) have shown how structures of small proteins can be

inferred from Patterson maps by the use of a convolutional

neural network.

However, since virtual datasets contain both the amplitudes

and phases of the structure factors, it is also possible to

perform ML for phasing in reciprocal space, as we have

recently demonstrated for centrosymmetric crystals with small

unit cells (Larsen et al., 2024). The actual phasing algorithm is

hidden within the layers of such a deep learning approach and

is hard to unravel; however, the capability to phase below

atomic resolution – as low as 2 Å – might imply that phase

relationships beyond the positivity and atomicity inherent in

established ab initio approaches could be encoded in the

network.

3. Bottlenecks for ML approaches

Two bottlenecks appear in applying ML techniques for

phasing.

The first problem is a matter of scalability. At a given

resolution, the amount of data in a single-crystal diffraction

dataset scales linearly with the size of each unit-cell dimen-

sion. This implies that going from small unit cells (10 Å cell

dimensions) to medium (20 Å) increases the input to the

neural network by a factor of 8. In a network architecture

where the full dataset is input, this increase penalizes the

training speed and puts high demands on the hardware used

during training. In a similar vein, reducing the crystallographic

symmetry implies a substantial increase in symmetry-inde-

pendent reflections.

The second problem is that, in general, the phases can take

any value from 0 to 2�, and the general phasing problem is

therefore a regression problem. In a centrosymmetric crystal

the phases are constrained to either 0 or �, and it is therefore a

somewhat less complicated classification problem.

Fortunately, Carrozzini et al. (2025) have a good idea that

sets a more achievable benchmark for making a successful

ML-based phasing approach.

4. The phase-seeding method

In the paper by Carrozzini et al. a new idea is proposed: to

create a hybrid approach between established ab initio

phasing techniques and ML. They show that, if a neural

network could provide very crude estimates of the phases, it

would be possible to use these estimates as ‘seeds’ for further

phase estimation using established dual-space methods.

In practice, Carrozzini et al. show that if the phases of a

random selection (as small as 10%) of intense reflections of a

dataset can be correctly binned into a few regions of phase

space, e.g. the four quadrants (0, �/2, �, 3�/4), it is possible to

use these phases as seeds for further phasing in established

phasing approaches (electron-density modification and

phase-extension procedures), both for small and large unit

cells. This approach is seen to be moderately better than

classical phasing approaches for the small-molecule cases, and

shows a significant increase in solved structures for larger

structures; thus, it shows promise in complementing existing

techniques.
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However, to make this hybrid approach work, there is a

need for a type of ML algorithm that can approximate phases

on a subset of a dataset. In previous work (Larsen et al., 2024),

the Miller indices of a reflection were implicitly encoded by

the position of the reflection in the input array. If only a subset

of reflections is used, this information must become explicit,

which increases the size of the input: there is a trade-off to

consider here.

The phase-seeding approach was tested on complete data at

atomic resolution. Further work to investigate the potential of

applying this approach to low-resolution data or to incomplete

data will be very interesting; and most of all it will be inter-

esting to explore ML approaches that can provide the neces-

sary set of 10% approximately correct phases.

The work by Carrozzini and co-workers is inspiring and may

indicate that, as the use of ML approaches is steadily

increasing in crystallography, we may not see ML algorithms

fully replacing existing workflows, but rather have hybrid

approaches appearing, where ML ideas can complement and

improve established techniques.
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