LOW-TEMPERATURE MODIFICATION OF DMM(TCNQ)$_2$

Experimental) and the fact that repeated susceptibility measurements have always given the same result (Oostra, 1984) make it reasonable to assume that the measured $\chi(T)$ curve belongs to the most accessible modification (Ia).

It is noteworthy that the phase transition of (I) to (Ia) leads to octameric rather than to tetrameric stacks, as is expected for isolated stacks in which the exchange interaction between the conduction electrons is modified (Huisinga, Kommandeur, Jonkman & Haas, 1982). In the above discussion of the (Ia) structure the changes in the stack have been attributed to the ordering of the DMM groups, indicating that the phase transition is most probably driven by this ordering. However, it is not clear to what extent the modification of the exchange interactions at T_c also contributes to the stability of the low-temperature structure.

The current interest and many helpful suggestions of Professor Dr A. Vos are gratefully acknowledged. Part of this work was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO). The computations were carried out at the Computing Centre of the University of Groningen.

References

International Union of Crystallography

Compilation of Temperature Factors for Elements and Binary Compounds

The Commission on Neutron Diffraction has initiated a new project for compiling accurate temperature factors. The compilation will be restricted to elements and binary compounds. Later, it may be extended to other compounds, replacing the compilation published in Volume III of International Tables for X-ray Crystallography.

Interested crystallographers are requested to contact any one of the following:

Dr N. M. Butt, Nuclear Physics Division, PINSTECH, Post Office Nilore, Rawalpindi, Pakistan.
Dr G. Heger, Kernforschungszentrum, Karlsruhe IAK 1, Postfach 3640, D-7500 Karlsruhe, West Germany.
Dr B. T. M. Willis, Chemical Crystallography Laboratory, 9 Parks Road, Oxford, England.

A copy of a preliminary compilation can be obtained from Dr N. M. Butt.