research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Supramolecular structures of substituted α,α′-trehalose derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bQuadrant Drug Delivery Ltd, 1 Mere Way, Ruddington, Nottingham NG11 6JS, England, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 19 April 2004; accepted 4 May 2004)

The structures of five substituted α,α′-trehalose trehalose derivatives have been determined, and these are compared with those of four previously published analogues. In 2,2′,3,3′,4,4′-hexaacetato-6,6′-bis-O-methylsulfonyl-α,α′-trehalose, C26H38O21S2, where the molecules lie across twofold rotation axes in the space group C2, a single C—H⋯O=S hydrogen bond links the molecules into sheets. 2,2′,3,3′,4,4′-Hexaacetato-6,6′-bis-O-(4-toluenesulfonyl)-α,α′-trehalose, C38H46O21S2, crystallizes with Z′ = 2 in the space group P212121 and a combination of three C—H⋯O hydrogen bonds, each having a carbonyl O atom as an acceptor, and a C—H⋯π(arene) hydrogen bond link the molecules into a three-dimensional framework. 2,2′,3,3′,4,4′-Hexaacetato-6,6′-diazido-α,α′-trehalose, C24H32N6O15, crystallizes as a partial ethanol solvate and three C—H⋯O hydrogen bonds link the substituted trehalose molecules into a three-dimensional framework. In 2,2′,3,3′-tetraacetato-6,6′-bis(N-acetylamino)-α,α′-trehalose dihydrate, C24H36N2O15·2H2O, the substituted trehalose molecules lie across twofold rotation axes in the space group P21212 and a three-dimensional framework is generated by the combination of O—H⋯O and N—H⋯O hydrogen bonds. The diaminotrehalose molecules in 6,6′-diamino-α,α′-trehalose dihydrate, C12H24N2O9.2(H2O), lie across twofold rotation axes in the space group P43212: a single O—H⋯N hydrogen bond links the trehalose molecules into sheets, which are linked into a three-dimensional framework by O—H⋯O hydrogen bonds.

1. Introduction

Recent reports on the structures of the multiply substituted α,α′-trehalose derivatives (1) [see (I)[link]], which crystallizes as an ethyl acetate monosolvate (Baddeley et al., 2001[Baddeley, T. C., Clow, S. M., Cox, P. J., McLaughlin, A. M. & Wardell, J. L. (2001). Acta Cryst. E57, o456-o457.]), (2), which crystallizes as a partial (0.7 mol) hydrate (Clow et al., 2001[Clow, S. M., Cox, P. J., Gilmore, G. L. & Wardell, J. L. (2001). Acta Cryst. E57, o77-o78.]), (3) (Baddeley et al., 2002[Baddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Howie, R. A. & Wardell, J. L. (2002). Acta Cryst. E58, o476-o477.]) and (4) (Baddeley et al., 2003[Baddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Murdoch, A. M. & Wardell, J. L. (2003). Acta Cryst. E59, o753-o755.]) indicate that, despite the wide variation of the substituents, particularly those at the 6 and 6′ positions, the pyranose rings all adopt very similar chair conformations, as judged by the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

In (1)–(3) there are no direction-specific interactions between the molecules, but in (4) a single O—H⋯O hydrogen bond links the molecules into helical C12 (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains, which are weakly reinforced by a C—H⋯O=C hydrogen bond. Two further C—H⋯O contacts were reported in (4), but both of these involve methyl C—H bonds. Since it is now well established (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-255.]) that in the solid state methyl groups, H3C—X, generally undergo very rapid rotation about their C—X bonds, even at very low temperatures, such that the H-atom sites identified from diffraction data generally represent the minima in the corresponding rotational potential functions, rather than statically occupied sites, it is unlikely that contacts involving methyl C—H bonds such as those reported will, or can, have any structural significance.

[Scheme 1]

In this paper, we report the molecular and supramolecular structures of further examples of substituted α,α′-trehalose derivatives, (5)–(9) [see (I)[link]], where the substituents were selected to afford the possibility of other types of direction-specific intermolecular interactions: for example, (5) and (6) both offer the possibility of C—H⋯O=S hydrogen bonds, while both C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking interactions could occur in (6); C—H⋯N hydrogen bonds could in principle occur in (7); O—H⋯O and N—H⋯O hydrogen bonds could both occur in (8); and O—H⋯O, N—H⋯O, and O—H⋯N hydrogen bonds are all possible in (9).

2. Experimental

2.1. Syntheses

Compound (5): A solution of 2,2′,3,3′,4,4′-hexa-O-acetyl-α,α′-trehalose (10 g, 16.8 mmol) and methanesulfonyl chloride (5.8 g, 4 cm3, 50.5 mmol) in acetonitrile (30 cm3) and pyridine (10 cm3) was stirred for 3 h, and rotary evaporated to leave an oily solid. After shaking the residue with water, a solid was collected, washed with water, dried in vacuo at 330 K and recrystallized from ethanol; yield 10.4 g (92%), m.p. 441 K, lit. m.p. 441–442 K; (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]); [α]D (CHCl3) 146.2°, lit. [α]D (CHCl3) 143° (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]). NMR (CDCl3): δ(1H) 2.01 (s, 3H, Me), 2.05 (s, 3H, Me), 2.08 (3, 3H, Me), 3.01 (s, 3H, Me), 4.11 (td, 1H, J = 2.14, 6.22, H-5), 4.14 (dd, 1H, J = 2.14, 11.10, H-6′), 4.22 (dd, 1H, J = 6.22, 11.10, H-6), 4.98 (t, 1H, J = ca 9), 5.01 (dd, 1H, J = 3.85, 10.37, H-2), 5.28 (d, 1H, J = 3.85, H-1), 5.46 (t, 1H, J = 10.37, H-3): δ(13C) 20.6, 37.7, 66.5, 68.2, 68.4, 69.6, 69.7, 92.6, 169.6, 169.8, 169.9. IR (KBr, cm−1): 2972, 2932, 1760, 1743, 1357, 1219, 1178, 1143, 1037, 1018, 989, 955, 811.

Compound (6): A solution of 2,2′,3,3′,4,4′-hexa-O-acetyl-α,α′-trehalose (10 g, 16.8 mmol) and 4-toluenesulfonyl chloride (9.6 g, 50.5 mmol) in acetonitrile (30 cm3) and pyridine (10 cm3) was stirred for 24 h and DMAP (ca 10 mg) added. After stirring for a further 5 h, the solution was evaporated to a syrupy residue, which was poured into water with vigorous stirring. The off-white precipitate was filtered off, washed with water and air dried. The resulting solid was washed with boiling ethanol, dried at 330 K in vacuum and recrystallized from ethanol; yield 11.4 g (90.4%), m.p. 431–434 K, lit. m.p. 443–445 K (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]). NMR (CDCl3): δ(1H) 1.98 (s, 3H, Me), 2.01 (s, 3H, Me), 2.06 (s, 3H, Me), 2.43 (s, 3H, Me), 4.02 (m, 2H), 4.10 (m, 1H), 4.90 (m, 3H), 5.38 (m, 1H), 7.32 (d, 2H, J = 7.95), 7.72 (d, 2H, J = 8.35): δ(13C) 20.6, 21.6, 67.6, 68.2, 68.6, 69.2, 69.8, 92.8, 128.0, 129.9, 132.4, 145.3, 169.5, 169.6, 169.9. IR (KBr, cm−1): 2963, 1754, 1371, 1221, 1178, 1081, 1039, 979, (810, 669, 554). MS (ES+, MeCN): 667.4 [100%], 796.4 [30%], 925.5 [20%, M + Na], 458.4 [18%], 417.4 [15%], 771.5 [10%, M − CH3C6H4SO2 + Na].

Compound (7): To a solution of 2,2′,3,3′,4,4′-hexa-O-acetyl-6,6′-di-O-methanesulfonyl-α,α′-trehalose (10.0 g, 14.9 mmol) in DMSO (60 cm3) was added sodium azide (3.0 g, 46 mmol) and the solution heated to 350 K. After 1 h, TLC with ethyl acetate:light petroleum (boiling range 313–333 K) (2:1 v/v) as eluent showed complete reaction. The solution was poured into water (200 cm3) and the solid was collected, dried and recrystallized from ethanol as a partial solvate; yield 8.5 g (94%), m.p. 413 K, lit. m.p. 387–389 K (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]), 392–393 K (Kurita et al., 1994[Kurita, K., Masuda, N., Aibe, S., Murakami, K., Ishii, S. & Nishimura, S. (1994). Macromolecules, 27, 7544-7549.]), 394–398 K (Liav & Goren, 1980[Liav, A. & Goren, M. B. (1980). Carbohydr. Res. 87, 287-293.]); [α]D (CHCl3) 127°, lit. [α]D (CHCl3) 134° (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]), (CHCl3) 138° (Kurita et al., 1994[Kurita, K., Masuda, N., Aibe, S., Murakami, K., Ishii, S. & Nishimura, S. (1994). Macromolecules, 27, 7544-7549.]). NMR (CDCl3): δ(1H) 2.02 (s, 3H, Me), 2.05 (s, 3H, Me), 2.11 (s, 3H, Me), 3.16 (dd, 1H, J = 2.44, 13.32, H-6′), 3.36 (dd, 1H, J = 7.39, 13.32, H-6), 4.08 (m, 1H, J = 2.44, 7.39, 9.1, H-5), 4.98 (dd, 1H, 9.4, 9.9, H-4), 5.07 (dd, 1H, J = 3.82, 10.31, H-2), 5.31 (d, 1H, J = 3.82, H-1), 5.45 (dd, 1H, J = 9.4, 10.31, H-3): δ(13C) 20.7, 51.0, 67.7, 69.8, 69.9, 92.7, 169.6, 170.0. IR (KBr, cm−1): 2101, 1740, 1211, 1033, 1014. MS (ES+, MeCN): 667.2 [100%, M + Na], 105.1 [50%], 642.2 [20%].

Compound (8): To a solution of 2,2′,3,3′,4,4′-hexa-O-acetyl-6,6′-di-O-azido-α,α′-trehalose (10.0 g, 16.4 cm3) in thf (80 cm3) was added triphenylphosphine (9.0 g, 34.4 mmol) and water (2 cm3). After stirring for 1 h, TLC, using ethyl acetate: light petroleum (2:1 v/v) as eluent, indicated the consumption of the starting material. The suspension was filtered and the solid 2,2′,3,3′,4,4′-hexa-O-acetyl-6,6′-diamino-6,6′-dideoxy-α,α′-tre­halose was washed with dichloromethane and dried; yield 4.9 g (51%), m.p. 418–428 K. NMR (CDCl3): δ(1H) 1.95 (s, 3H, Me), 2.05 (s, 3H, Me), 2.07 (s, 3H, Me), 3.14 (dd, 1H, J = 7.59, 14.15, H-6), 3.42 (t, 1H, J = 9.57, H-4), 3.68 (m, 1H, H-5), 3.81 (dd, 1H, J = 2.61, 14.15, H-6′), 4.85 (dd, 1H, J = 3.58, 10.3, H-2), 5.33 (d, 1H, J = 3.58, H-1), 5.34 (m, 1H, J = 10.3, H-3): δ(13C) 21.3, 22.8, 40.8, 71.7, 72.0, 72.1, 72.4, 73.4, 94.4, 175.5. MS (ES+): 579.0 [100%], 301.0 [80%], 615.1 [45%, M + Na].

A solution of the foregoing 2,2′,3,3′,4,4′-hexa-O-acetyl-6,6′-diamino-6,6′-dideoxy-α,α′-trehalose (0.5 g) in pyridine (10 cm3) was allowed to stand overnight. Diethyl ether was added to precipitate the rearranged product, (8), which was recrystallized from aqueous ethanol as the dihydrate, m.p. 477 K; lit. m.p. (from ethanol/ether) 470–473 K (Liav & Goren, 1980[Liav, A. & Goren, M. B. (1980). Carbohydr. Res. 87, 287-293.]); [α]D (MeOH) 123.2°, lit. [α]D (MeOH/water, 3:1) 130° (Liav & Goren, 1980[Liav, A. & Goren, M. B. (1980). Carbohydr. Res. 87, 287-293.]). NMR (CDCl3): δ(1H) 1.80 (s, 3H, Me), 1.98 (s, 3H, Me), 2.02 (s, 3H, Me), 2.91 (m, 1H, H-6), 3.38 (t, 1H, J = 9.15, H-4), 3.54 (m, 1H, H-5), 3.70 (m, 1H, H-6′), 4.79 (dd, 1H, J = 3.66, 10.37, H-2), 5.18 (m, 2H, H-1 and H-3), 7.81 (t, J = 4.28, NHCOCH3): δ(13C) 20.3, 20.8, 22.4, 69.0, 69.8, 71.4, 71.7, 90.6, 169.7, 169.9. IR (KBr, cm−1): 3615–3096, 2867, 1739, 1643, 1571, 1437, 1378, 1236, 1141, 1047, 1017. MS (ES+): 615.3 [100%, M + Na], 573.3 [6%, M − Ac + Na], 1207.7 [2%, 2M + Na], 531.3 [1%, M − 2Ac + Na].

Compound (9): A suspension of 2,2′,3,3′,4,4′-hexa-O-acetyl-6,6′-di-O-azido-α,α′-trehalose (5.0 g, 7.8 mmol) and sodium methoxide (42.2 mg, 0.78 mmol) in methanol (40 cm3) was stirred for 4.5 h. The colourless solution was neutralized with DOWEX 50 W X-8 resin and the resin filtered off. The resin was washed with methanol, and the filtrates and washings were combined and evaporated to leave a white product, 6,6′-diazido-6,6′-dideoxy-α,α′-trehalose, which was crystallized from ethanol; yield 2.05 g (67%), m. p. 474–476 K; [α]D (water) 153°; lit. m.p. 482–484 K (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]), 463–465 K (Kurita et al., 1994[Kurita, K., Masuda, N., Aibe, S., Murakami, K., Ishii, S. & Nishimura, S. (1994). Macromolecules, 27, 7544-7549.]), lit. [α]D (water) 158° (Birch & Richardson, 1968[Birch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411-415.]). NMR (CDCl3): δ(1H) 3.29(t, 1H, J = 9.23, H-3/4), 3.39 (dd, 1H, J = 6.16, 13.68, H-6), 3.51 (m, 2H, J = 2.39, 13.68, H-6′, H-2), 3.66 (t, 1H, J = 9.23, H-3/4), 3.81 (ddd, 1H, J = 2.39, 5.81, 9.92, H-5), 5.03 (d, 1H, J = 3.76, H-1): δ(13C) 51.9, 71.5, 71.9, 72.1, 73.3, 94.8. IR (KBr, cm−1): 3537–3263, 2947, 2918, 2200, 2106, 1601, 1446, 1415, 1344, 1288, 1147, 1105, 1070, 1043, 984, 930, 584, 567. MS (ES+): 415.1 ([100%, M + Na], 455.3 [32%], 432.9 [25%, M + Na + H2O].

The foregoing 6,6′-diazido-6,6′-dideoxy-α,α′-trehalose (0.5 g, 1.27 mmol) and triphenylphosphine (1.34 g, 5.10 mmol) were dissolved in DMF (10 cm3). After 2 h when effervescence had ceased, ammonium hydroxide solution (30%, 4 cm3) was added and a precipitate formed. Ethanol (50 cm3) was added and the reaction mixture was heated at 330 K for 2 h to ensure complete dissolution. Crystals of 6,6′-diamino-6,6′-dideoxy-α,α′-trehalose dihydrate were obtained on cooling; 260 mg (60%); m.p. 498–500 K; lit. m.p. 473 K (Kurita et al., 1994[Kurita, K., Masuda, N., Aibe, S., Murakami, K., Ishii, S. & Nishimura, S. (1994). Macromolecules, 27, 7544-7549.]). NMR (CDCl3): δ(1H) 2.70 (dd, 1H, J = 7.63, 13.73, H-6), 2.95 (dd, 1H, J = 2.44, 13.73, H-6′), 3.29 (t, 1H, J = 9.77, H-3/4), 3.62 (dd, 1H, J = 3.36, 10.07, H-2), 3.71 (m, 1H, H-5), 3.80 (t, 1H, J = 9.77, H-3/4), 5.17 (d, 1H, J = 3.36, H-1)): δ(13C) 44.0, 73.6, 73.8, 74.9, 75.0, 95.4. IR (KBr, cm−1): 3544–3315, 2930, 2904, 1638, 1615, 1382, 1155, 1105, 1087, 1038, 1016, 986, 939.

2.2. Data collection, structure solution and refinement

Diffraction data for (5)–(9) were collected at 120 (2) K using a Nonius Kappa-CCD diffractometer, using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Other details of cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]; Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.],b[Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.]; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Table 1
Experimental details

  (5) (6) (7) (8) (9)
Crystal data
Chemical formula C26H38O21S2 C38H46O21S2 C24H32N6O15·0.35C2H6O C24H36N2O15·2H2O C12H24N2O9·2H2O
Mr 750.68 902.89 660.68 628.58 376.36
Cell setting, space group Monoclinic, C2 Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P21212 Tetragonal, P43212
a, b, c (Å) 21.3279 (8), 8.9299 (4), 8.8382 (4) 18.1484 (9), 21.1046 (9), 23.4224 (14) 12.2281 (4), 15.5803 (6), 18.1066 (8) 8.8385 (2), 21.8363 (8), 8.0831 (2) 8.6093 (2), 8.6093 (2), 22.1566 (8)
β (°) 99.4537 (17) 90.00 90.00 90.00 90.00
V3) 1660.43 (12) 8971.1 (8) 3449.6 (2) 1560.04 (8) 1642.25 (8)
Z 2 8 4 2 4
Dx (Mg m−3) 1.501 1.337 1.272 1.338 1.522
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 3048 14 269 4368 2067 1163
θ range (°) 3.3–27.5 3.0–24.4 3.1–27.5 2.5–27.5 3.0–27.5
μ (mm−1) 0.25 0.20 0.11 0.11 0.13
Temperature (K) 120 (2) 120 (2) 150 (2) 120 (2) 120 (2)
Crystal form, colour Block, colourless Lath, colourless Block, colourless Block, colourless Block, colourless
Crystal size (mm) 0.30 × 0.25 × 0.15 0.30 × 0.10 × 0.02 0.50 × 0.30 × 0.25 0.30 × 0.20 × 0.15 0.15 × 0.15 × 0.10
           
Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD
Data collection method φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.934 0.949 0.942 0.960 0.972
Tmax 0.964 0.996 0.974 0.983 0.987
No. of measured, independent and observed reflections 6104, 3048, 2781 34 701, 14 269, 8221 17 686, 4368, 2580 13 388, 2067, 1658 8561, 1163, 951
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.059 0.110 0.104 0.091 0.055
θmax (°) 27.5 25.0 27.5 27.5 27.5
Range of h, k, l −27 → h → 26 −20 → h → 20 −12 → h → 15 −11 → h → 11 −9 → h → 11
  −10 → k → 11 −24 → k → 24 −18 → k → 20 −28 → k → 27 −11 → k → 11
  −11 → l → 11 −26 → l → 26 −23 → l → 23 −9 → l → 10 −20 → l → 28
           
Refinement
Refinement on F2 F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.05 0.060, 0.136, 0.96 0.070, 0.191, 0.99 0.055, 0.148, 1.12 0.043, 0.126, 0.98
No. of reflections 3048 14 269 4368 2067 1163
No. of parameters 227 1113 439 215 115
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.1014P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0479P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.1153P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.0109P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.9377P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 0.001 <0.0001 <0.0001 <0.0001
Δρmax, Δρmin (e Å−3) 0.48, −0.62 0.86, −0.28 0.43, −0.43 0.47, −0.41 0.24, −0.35
Extinction method SHELXL None None None None
Extinction coefficient 0.0065 (18)
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1018 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6179 Friedel pairs
Flack parameter 0.16 (10) −0.02 (8)
Computer programs used: Kappa-CCD server software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), DENZO-SMN and SHELXS97 (Sheldrick, 1997b[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), SHELXL97 (Sheldrick, 1997a[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

For (5) the systematic absences permitted C2 and Cm as possible space groups: in view of the enantiopure nature of the chiral compound, the space group C2 was selected and confirmed by the analysis. For each of (6) and (7) the space group P212121 was uniquely assigned from the systematic absences: similarly P21212 was uniquely assigned for (8). For (9) the systematic absences permitted one of the enantiomeric pair P41212 and P43212: space group P43212 was selected by reference to the known absolute configuration of the compound. The structures were all solved by direct methods and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce the statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). In (5), (8) and (9) the disaccharide unit lies across a twofold rotation axis, while in (6) there are two independent disaccharide molecules in the asymmetric unit. In (7) there is a partially occupied ethanol: when the C and O atoms of this unit were refined isotropically, the site-occupancy factor refined to 0.35 (2). Thereafter this occupancy was fixed at 0.35, while the C and O atoms were refined anisotropically. In all the compounds the absolute structure was set from the known absolute configuration of the enantiopure chiral α,α′-trehalose starting material: in the case of (5) and (6) this was confirmed by the values of the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 0.16 (10) and −0.02 (8), respectively. For (7)–(9) the absence of any significant anomalous scatterers meant that the Flack parameters for these compounds [values 4.1 (18), −0.1 (17) and 0 (3), respectively] were inconclusive (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]): hence the Friedel-equivalent reflections were merged prior to the final refinements of (7)–(9). All H atoms were located in difference maps and in (5)–(8) they were fully ordered. The H atoms bonded to C atoms were all treated as riding atoms with distances 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic CH). The H atoms bonded to N or O in (8) were allowed to ride on their parent atoms at the positions found from the difference maps, with distances N—H 0.81 Å; O—H 0.82 Å (in the trehalose component) and 0.96 and 0.98 Å in the water molecule. In (9) the H atoms bonded to O2 and O4 in the trehalose component were both modelled as riding atoms using two sites with 0.50 occupancy and O—H distances of 0.84 Å; the H atoms bonded to N were allowed to ride at the positions found from the difference maps with N—H distances 0.95 and 1.00 Å; the H atoms of the water molecule were likewise allowed to ride at the positions found from the difference maps with O—H distances 0.94 and 0.99 Å. Examination of the refined structures using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) showed small voids in (6), each of volume ca 37 Å3; however, these contained no significant electron density as they are probably too small to accommodate even a water molecule.

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON. The pyranose ring-puckering parameters are given in Table 2[link] and parameters for selected hydrogen bonds are given in Table 3[link].1 Figs. 1–15[link][link][link][link][link][link][link][link][link][link][link][link][link][link][link] show the molecular aggregates, with the atom-labelling schemes, and aspects of the supramolecular structures.

Table 2
Ring-puckering parameters for pyranose rings (Å, o)

Ring-puckering parameters are for the atom sequence (O5, C1, C2, C3, C4, C5).

  Q (Å) θ (°) φ (°)
(1) 0.549 (2) 4.5 (3) 14 (3)
  0.563 (2) 4.3 (3) 106 (4)
       
(2) 0.56 (1) 9 (1) 94 (7)
  0.57 (1) 3 (1) 322 (21)
       
(3) 0.592 (2) 4.5 (2) 246 (2)
       
(4) 0.571 (5) 4.5 (5) 319 (5)
  0.568 (5) 5.5 (5) 317 (5)
       
(5) 0.579 (3) 4.9 (3) 122 (4)
       
(6) 0.553 (5) 3.9 (5) 11 (7)
  0.544 (5) 5.5 (5) 354 (5)
  0.554 (5) 6.3 (5) 357 (5)
  0.569 (5) 4.4 (5) 308 (7)
       
(7) 0.558 (4) 8.7 (4) 332 (3)
  0.546 (5) 5.1 (5) 347 (6)
       
(8) 0.567 (3) 8.4 (3) 75 (2)
       
(9) 0.580 (3) 4.3 (3) 245 (4)

Table 3
Selected hydrogen-bond parameters (Å, °)

D—H⋯A H⋯A DA D—H⋯A
(5)
C6—H6A⋯O61i 2.43 3.221 (4) 136
       
(6)
C4C—H4C⋯O41Dii 2.46 3.365 (7) 150
C6C—H6F⋯O41Dii 2.49 3.272 (6) 136
C55C—H55C⋯O31Biii 2.41 3.313 (7) 160
C53D—H53D⋯Cg1iv 2.66 3.418 (7) 137
       
(7)
C6A—H6B⋯O41Bv 2.32 3.268 (6) 160
C6B—H6C⋯O31Avi 2.48 3.363 (8) 149
C6B—H6D⋯O41Avii 2.52 3.400 (7) 148
       
(8)
N1—H1A⋯O6W 2.05 2.835 (4) 165
O4—H4A⋯O61vi 1.81 2.606 (3) 162
O6W—H6C⋯O31viii 2.21 3.009 (4) 137
O6W—H6D⋯O4ix 1.93 2.865 (3) 164
       
(9)
O3—H3A⋯N1iii 1.88 2.711 (3) 168
O4—H4B⋯O4x 2.01 2.833 (3) 165
O6W—H6C⋯O3 1.74 2.667 (3) 155
O6W—H6D⋯O6Wx 1.75 2.733 (5) 165
Symmetry codes: (i) [{1\over 2} - x, {1\over 2} + y, 1 - z]; (ii) [-{1\over 2} + x, {3\over 2} - y, -z]; (iii) x, 1 + y, z; (iv) [{1\over 2} - x, 2 - y, {1\over 2} + z]; (v) [{3\over 2} - x, 1 - y, -{1\over 2} + z]; (vi) [-{1\over 2} + x, {1\over 2} - y, 1 - z]; (vii) [{3\over 2} - x, 1 - y, {1\over 2} + z]; (viii) 1 - x, 1 - y, -1 + z; (ix) x, y, -1 + z; (x) [1 - y, 1 - x, {1\over 2}-z].
†Cg1 is the centroid of the ring C51C–C56C.
[Figure 1]
Figure 1
The molecule of (5) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms marked `a' are at the symmetry position (1 - x, y, 1 - z). For the sake of clarity the H atoms have been omitted.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of (5) showing the formation of a (001) sheet of R44(36) rings. For the sake of clarity, the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 3]
Figure 3
The two independent molecules of (6) showing the atom-labelling scheme: (a) molecule A; (b) molecule B. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity the H atoms have been omitted.
[Figure 4]
Figure 4
Stereoview of part of the crystal structure of (6), showing the formation of a C(13)C(13)[R12(6)] chain of rings along [100]. For the sake of clarity, the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 5]
Figure 5
Stereoview of part of the crystal structure of (6) showing the formation of a chain along [001] generated by the C—H⋯π(arene) hydrogen bond. For the sake of clarity, the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 6]
Figure 6
The trehalose molecule of (7) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For the sake of clarity, the partial ethanol solvate molecule is omitted.
[Figure 7]
Figure 7
Stereoview of part of the crystal structure of (7) showing the formation of a C(12) helical chain along [100]. For the sake of clarity the ethanol molecule is omitted and the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 8]
Figure 8
Stereoview of part of the crystal structure of (7) showing the formation of a chain of rings along [001]. For the sake of clarity the ethanol molecule is omitted and the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 9]
Figure 9
Stereoview of part of the crystal structure of (7) showing the formation of a chain along [010]. For the sake of clarity the ethanol molecule is omitted and the H atoms bonded to C atoms but not taking part in the motif shown are omitted.
[Figure 10]
Figure 10
The molecule of (8), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms marked `a' are at the symmetry position (1 - x, 1 - y, z).
[Figure 11]
Figure 11
Stereoview of part of the crystal structure of (8) showing the formation of a (001) sheet of R44(44) rings. For the sake of clarity the water molecule is omitted, as are the H atoms bonded to C atoms.
[Figure 12]
Figure 12
Stereoview of part of the crystal structure of (8) showing the formation of a molecular ladder along [001]. For the sake of clarity, the H atoms bonded to C atoms are omitted.
[Figure 13]
Figure 13
The independent molecular components of compound (9) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms marked `a' are at the symmetry position (y, x, -z).
[Figure 14]
Figure 14
Stereoview of part of the crystal structure of (9) showing the formation of a (001) sheet of R44(44) rings. For the sake of clarity the water molecule is omitted, as are the H atoms bonded to C atoms.
[Figure 15]
Figure 15
Stereoview of part of the crystal structure of (9) showing the formation of a chain of rings along [001], which links the (001) sheets. For the sake of clarity, the H atoms bonded to C atoms are omitted.

3. Results and discussion

3.1. Pyranose ring conformations

For each of (5)–(9) the ring-puckering parameters for the pyranose rings, corresponding to the atom sequence (O5, C1, C2, C3, C4, C5) for each independent ring, are collected in Table 2[link], along with those for the previously published structures of (1)–(4) by way of comparison. It is clear that the gross conformations of these rings are largely independent both of the degree of substitution and of the steric bulk of the substituents. In every case the value of the parameter θ is less than 10°, indicating only a small distortion of the ring shape from the expected chair conformation; a regular chair conformer of exact D3d([\bar 3]m) symmetry has a θ value of zero (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

Consistent with this deduction, the total puckering amplitude Q lies in the range 0.54–0.58 Å for (5)–(9), only a little less than the Q value of 0.63 Å calculated for the chair conformer of cyclohexane. However, the φ values in (5)–(9) are all close to N × 60°, where N takes the values N = 2 in (5), N = 0, 5 or 6 in (6), N = 6 in (7), N = 1 in (8) and N = 4 in (9), indicating that the distortions from the chair conformation are all towards the boat conformation. Thus, the rings are slightly flattened, allowing the ring angle C—O—C to increase somewhat beyond the tetrahedral angle: in fact, in (5)–(9) the ring C—O—C angles lie in the range 113.0 (3)° for ring A in (7) to 114.9 (4)° for ring D of (6), with a mean value of ca 113.7°.

Similar distortions of the chair conformation towards the boat form are also evident in (1), (3) and (4), although in (2) the uncertainties associated with the φ values preclude any analysis of the nature of the ring distortion in this compound.

3.2. Supramolecular structures

Where amino or hydroxyl groups are available, as in (8) and (9), the supramolecular aggregation is dominated by hard (Braga et al., 1995[Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.]; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press.]) hydrogen bonds of O—H⋯O, O—H⋯N and N—H⋯O types, and where these are present, the supramolecular structures are three dimensional. In derivatives where hard hydrogen bonds are not possible, soft hydrogen bonds of C—H⋯O type become dominant, giving a two-dimensional structure in (5) or three-dimensional structures as in (6) and (7). The structures of most of the compounds described here exhibit a substantial number of C—H⋯O contacts in which the H⋯O distances are close to the sum of their van der Waals radii. In general, we have considered only C—H⋯O interactions where the H⋯O distance is less than 2.55 Å and where the C—H⋯O angle exceeds 135°; however, contacts involving methyl groups have been discounted because of the rotational properties of these groups. Furthermore, because of the large numbers of contacts present, we have considered only the minimum numbers of the strongest interactions which suffice to define the dimensionality of the supramolecular structures.

3.2.1. Compound (5)

Molecules of (5) (Fig. 1[link]) lie across the rotation axes in the space group C2 and the reference molecule was selected as that across the axis along (½, y, ½). A single C—H⋯O=S hydrogen bond (Table 3[link]) links the molecules into sheets in which each molecule acts as a double donor and as a double acceptor of hydrogen bonds, such that each molecule is linked to four others. Atom C6 at (x, y, z), which is adjacent to the very electronegative sulfonyl unit, and which forms part of the molecule across the axis along (½, y, ½), acts as a hydrogen-bond donor, via H6A, to sulfonyl O61 at (½ − x, ½ + y, 1 − z), which forms part of the molecule whose central atom O1 is at (0, ½ + y, ½). Similarly, O61 at (x, y, z) accepts a hydrogen bond from C6 at (½ − x, −½ + y, 1 − z), part of the molecule whose O1 atom is at (0, −½ + y, ½). Propagation of this hydrogen bond by rotation then generates a deeply puckered (001) sheet in the form of a (4,4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R44(36) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) ring (Fig. 2[link]).

There are no direction-specific interactions between adjacent sheets, but there is one rather short non-bonded contact, probably attractive, within the sheet. The atoms O31 at (x, y, z) and C61 at (1 - x, 1 + y, 1 - z) are separated by only 2.973 (4) Å, rather less than the sum of the van der Waals radii, 3.22 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]): since O31 is a carbonyl O, while methyl C61 is bonded to a sulfonyl group, these two atoms will be polarized as Oδ and Cδ+. Since the methyl group is almost certainly undergoing rapid rotation about the C—S bond, the associated C—H⋯O interaction is unlikely to be structurally significant.

3.2.2. Compound (6)

Although (6) is very similar in chemical type to (5), both its crystallization behaviour and its supramolecular structure are rather different. Compound (6) (Fig. 3[link]) crystallizes with Z′ = 2 in space group P212121 [cf. Z′ = 0.5 in C2 for (5)] and its supramolecular structure is based on a combination of three C—H⋯O hydrogen bonds, with carbonyl O, rather than sulfonyl O, as the acceptor in each, together with a C—H⋯π(arene) hydrogen bond (Table 3[link]). On the other hand, aromatic ππ stacking interactions are absent from the structure of (6).

The molecules of type B, with O1B as the central atom, form a single three-dimensional framework from which the type A molecules, having O1A as the central atom, are pendent. The formation of the framework structure is most readily analysed in terms of the one-dimensional sub-structures (Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]) generated by the C—H⋯O and C—H⋯π(arene) hydrogen bonds in turn.

In the type B molecule at (x, y, z), atoms C4C and C6C both act as hydrogen-bond donors, via H4C and H6F, respectively, to carbonyl atom O41D in the type B molecule at (−½ + x, [3\over 2]y, −z), so producing a C(13)C(13)[R12(6)] chain of rings running parallel to the [100] direction and generated by the 21 screw axis along (x, ¾, 0) (Fig. 4[link]). A second, antiparallel chain of this type is generated by the 21 axis along (−x, ¼, ½). The [100] chain is modestly reinforced by a dipolar interaction between nearly antiparallel carbonyl groups. The carbonyl group C21C—O21C in the type B molecule at (x, y, z) and the carbonyl group C21D—O21D in the type B molecule at (−½ + x, [3\over 2]y, −z) lie in the same [100] chain of rings: the O21C⋯C21Di and C21C⋯O21Di distances [symmetry code: (i) [-{1\over 2}+ x, {3\over 2}- y, -z]] are 2.958 (7) and 3.221 (7) Å, so forming a nearly rhomboidal type II (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]) interaction.

The C—H⋯π(arene) hydrogen bond also involves only the type B molecules and it gives rise to a chain parallel to [001]. The phenyl atom C53D in the type B molecule at (x, y, z) acts as a hydrogen-bond donor to the phenyl ring C51C—C56C in the type B molecule at ([{1\over 2} - x, 2 - y, {1\over 2}+ z]), giving a chain generated by the 21 screw axis along (¼, 1, z) (Fig. 5[link]). The combination of the [100] and [001] chains, when propagated by the space group generates a continuous three-dimensional framework of type B molecules, to which the type A molecules are linked via a third C—H⋯O hydrogen bond. The phenyl atom C55C in the type B molecule at (x, y, z) acts as a hydrogen-bond donor to the carbonyl O31B atom in the type A molecule at (x, 1 + y, z): had the asymmetric unit been selected so that the two independent molecules were linked within it by this C—H⋯O hydrogen bond, one of the molecules would necessarily have fallen entirely outside the unit cell.

3.2.3. Compound (7)

Compound (7) crystallizes as a partial ethanol solvate in the space group P212121 (Fig. 6[link]): because of the low occupancy, 0.35, of the ethanol sites, only the interactions between disaccharide molecules will be discussed. The supramolecular aggregation is dominated by three C—H⋯O hydrogen bonds (Table 3[link]), all involving ring C—H bonds as donors and carbonyl O as acceptors; together they link the molecules into a continuous three-dimensional framework.

Atom C6B in the molecule at (x, y, z) acts as a hydrogen-bond donor, via H6C, to the carbonyl atom O31A in the molecule at ([-{1\over 2}+ x, {1\over 2}- y, 1 - z]), so forming a simple C(12) chain running parallel to the [100] direction, and generated by the 21 screw axis along (x, ¼, ½) (Fig. 7[link]). A second chain of this type, antiparallel to the first, is generated by the 21 axis along (−x, ¾, 0).

In a more complex motif, atoms C6A and C6B in the molecule at (x, y, z) act as hydrogen-bond donors, via H6B and H6D, respectively, to the carbonyl O atoms O41B in the molecule at ([{3\over 2}- x, 1 - y, -{1\over 2}+ z]) and O41A in the molecule at ([{3\over 2}- x, 1 - y, {1\over 2}+ z]) so forming a C(13)C(13)[R22(14)] chain of rings running parallel to the [001] direction and which is generated by the 21 screw axis along (¾, ½, z) (Fig. 8[link]). A second chain of this type, antiparallel to the first, is generated by the 21 axis along (¼, 0, −z).

The [100] and [001] chains are each generated by the repetition of just one of the interactions described above: the combination of the two interactions together generates a chain running parallel to the [010] direction (Fig. 9[link]), and the combination of the [100], [010] and [001] chains generates the three-dimensional framework structure.

3.2.4. Compound (8)

In (8) the substituted trehalose molecules lie across a twofold rotation axis in the space group P21212, selected for the reference molecule as that along (½, ½, z), while the water molecule lies in a general position. In the selected asymmetric unit the water molecule is linked to the disaccharide by means of an N—H⋯O hydrogen bond (Table 3[link]), so forming a compact three-molecule aggregate (Fig. 10[link]). The supramolecular aggregation is then determined by the six hydroxyl or water O—H bonds available in each three-molecule aggregate for external hydrogen-bond formation. The construction of the resulting three-dimensional framework structure can then most readily be analysed in terms of the effect of each distinct hydrogen bond in turn.

The hydroxyl O4 atoms at (x, y, z) and (1 - x, 1 - y, z) both lie in the reference disaccharide molecule whose central atom O1 lies at (½, ½, z). These two hydroxyl atoms act as hydrogen-bond donors, respectively, to atoms O61 at (−½ + x, ½ − y, 1 − z) and at ([3\over 2]x, ½ + y, 1 − z), which themselves lie in molecules whose central atoms are at (0, 0, 1 − z) and (1, 1, 1 − z), respectively. Similarly, the two atoms of type O61 in the reference molecule across (½, ½, z) accept hydrogen bonds from the O4 atoms at (½ + x, ½ − y, 1 − z) and (½ − x, ½ + y, 1 − z), which lie, respectively, in molecules where the O1 atoms are at (1, 0, 1 − z) and (0, 1, 1 − z). In this manner, a single O—H⋯O hydrogen bond generates a (001) sheet in the form of a (4,4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R44(44) ring (Fig. 11[link]).

The (001) sheets are formed solely by the disaccharide components and they are linked into a three-dimensional framework by the water molecules. The water atom O6W at (x, y, z) acts as a hydrogen-bond donor, via H6D, to the hydroxyl atom O4 at (x, y, -1 + z), so generating by translation a C22(8) chain parallel to the [001] direction, and the action of the twofold rotation axis converts this chain into a molecular ladder, in which parallel C22(8) chains act as the uprights and the disaccharide molecules as the rungs (Fig. 12[link]). The combination of the [001] chains with the (001) sheets is sufficient to produce a three-dimensional structure, but this is further reinforced by a third O—H⋯O hydrogen bond. The water atom O6W at (x, y, z), which lies in the reference (001) sheet, acts as a hydrogen-bond donor via H6C to the acetato atom O31 at (1 - x, 1 - y, -1 + z), which lies in the adjacent sheet along [001], again linking adjacent sheets.

3.2.5. Compound (9)

The diaminotrehalose molecules in (9) lie across twofold rotation axes in the space group P43212, selected for the reference molecule as that having z = 0, x = y; there is also a water molecule lying in a general position and in the selected asymmetric unit (Fig. 13[link]) this water molecule is linked to the disaccharide via an O—H⋯O hydrogen bond (Table 3[link]). With no acyl substituents present, there is an extensive series of hydrogen bonds present in the structure, encompassing O—H⋯O, O—H⋯N and N—H⋯O types. However, the three-dimensional nature of the supramolecular structure can be readily established in terms of just two hydrogen bonds, in addition to that within the asymmetric unit; one of these hydrogen bonds generates sheets and the second links the sheets into a three-dimensional framework. The other hydrogen bonds can be regarded as reinforcing elaborations.

The hydroxyl atom O3 at (x, y, z) acts as a hydrogen-bond donor to the amino atom N1 at (x, 1 + y, z), so generating by translation a C(7) chain running parallel to the [010] direction: the action of the twofold axes through the molecules generates a similar chain running parallel to the [100] direction and the combination of these two chain motifs generates a (001) sheet in the form of a (4,4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R44(44) ring and involving only a single O—H⋯N hydrogen bond (Fig. 14[link]). It may be noted here that although the gross topology of the (001) sheets in (8) and (9) is the same, the sheet in (8) is generated by a combination of twofold rotation and screw axes, whereas that in (9) is generated by a combination of translation and twofold rotation axes.

There are two interactions which link the (001) sheets into a continuous framework. Atom O4 at (x, y, z) lies in the (001) sheet whose twofold rotation axes are at z = 0; this atom acts as a hydrogen-bond donor, via H4B, to O4 at ([1 - y, 1 - x, {1\over 2} - z]), which lies in the sheet with its axes at z = ½. Although the occupancy of the H4B site is only 0.5, there is no necessary correlation between the occupancy of the H4A and H4B sites throughout a given sheet and hence 50% of the H4B sites in any sheet will be available to form this hydrogen bond. In an entirely similar way, the water atom O6W, which is linked to the z = 0 sheet via O3 (Table 3[link]), acts as a hydrogen-bond donor, via H6D, to O6W at ([1 - y, 1 - x, {1\over 2}- z]), which is linked to the sheet at z = ½. Propagation of these interactions by rotation and translation then links each (001) sheet to the two adjacent sheets, forming a chain of rings along the [001] direction (Fig. 15[link]).

4. Concluding comments

It is striking how little the conformations of the pyranose rings in substituted α,α′-trehalose molecules are affected either by the extent of the substitution or by the steric bulk of the substituents: this is clearly illustrated at the extremes of the range of substitution considered here by (3) and (9) [see (I)[link]], where the ring-puckering behaviour is essentially identical for the two compounds. On the other hand, the direction-specific intermolecular forces are very strongly influenced by the substitution pattern, with (4)–(9) forming a supramolecular structure (4) in one dimension, (5) in two dimensions and (6)–(9) three dimensions, while (1)–(3) contain effectively isolated molecules.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

For all compounds, data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
In full text version
(5) 2,2',3,3',4,4'-Hexaacetato-6,6'-bis-O-methylsulfonyl-α,α'-trehalose top
Crystal data top
C26H38O21S2F(000) = 788
Mr = 750.68Dx = 1.501 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3048 reflections
a = 21.3279 (8) Åθ = 3.3–27.5°
b = 8.9299 (4) ŵ = 0.25 mm1
c = 8.8382 (4) ÅT = 120 K
β = 99.4537 (17)°Block, colourless
V = 1660.43 (12) Å30.30 × 0.25 × 0.15 mm
Z = 2
Data collection top
Kappa-CCD
diffractometer
3048 independent reflections
Radiation source: rotating anode2781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 2726
Tmin = 0.934, Tmax = 0.964k = 1011
6104 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1014P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.48 e Å3
3048 reflectionsΔρmin = 0.62 e Å3
227 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0065 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1018 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.16 (10)
Crystal data top
C26H38O21S2V = 1660.43 (12) Å3
Mr = 750.68Z = 2
Monoclinic, C2Mo Kα radiation
a = 21.3279 (8) ŵ = 0.25 mm1
b = 8.9299 (4) ÅT = 120 K
c = 8.8382 (4) Å0.30 × 0.25 × 0.15 mm
β = 99.4537 (17)°
Data collection top
Kappa-CCD
diffractometer
3048 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2781 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.964Rint = 0.059
6104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.48 e Å3
S = 1.05Δρmin = 0.62 e Å3
3048 reflectionsAbsolute structure: Flack (1983), 1018 Friedel pairs
227 parametersAbsolute structure parameter: 0.16 (10)
1 restraint
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48997 (13)0.6069 (4)0.3623 (3)0.0165 (6)
C20.48718 (13)0.7206 (4)0.2339 (3)0.0179 (7)
C30.43143 (13)0.8265 (4)0.2393 (3)0.0160 (6)
C40.37131 (13)0.7332 (4)0.2258 (3)0.0170 (6)
C50.37716 (13)0.6118 (3)0.3488 (3)0.0169 (6)
O50.43313 (9)0.5223 (3)0.3446 (2)0.0172 (5)
O40.32153 (9)0.8347 (3)0.2519 (2)0.0190 (5)
C410.26512 (14)0.8250 (4)0.1554 (4)0.0205 (7)
C420.22101 (15)0.9469 (4)0.1858 (4)0.0259 (7)
O410.25405 (11)0.7303 (4)0.0591 (3)0.0346 (6)
O30.42296 (10)0.9264 (3)0.1097 (2)0.0189 (5)
C310.43967 (14)1.0730 (4)0.1390 (4)0.0219 (7)
C320.41495 (17)1.1692 (4)0.0048 (4)0.0305 (8)
O310.46981 (11)1.1150 (3)0.2575 (3)0.0283 (6)
O20.54540 (9)0.8073 (3)0.2558 (2)0.0188 (5)
C210.59471 (14)0.7434 (4)0.1995 (3)0.0208 (7)
O210.58974 (10)0.6302 (3)0.1271 (3)0.0256 (5)
C220.65478 (15)0.8328 (5)0.2437 (4)0.0283 (8)
O10.50000.6900 (3)0.50000.0176 (7)
C60.32139 (15)0.5049 (4)0.3221 (4)0.0204 (7)
O60.32225 (11)0.4119 (3)0.4579 (3)0.0244 (5)
S10.33306 (4)0.23747 (10)0.45198 (9)0.0242 (2)
C610.41110 (16)0.2172 (5)0.5466 (4)0.0287 (8)
O610.29125 (12)0.1756 (3)0.5459 (3)0.0392 (7)
O620.32804 (12)0.1905 (3)0.2964 (3)0.0312 (6)
H10.52680.53810.36010.020*
H20.48170.66820.13260.021*
H30.43800.88460.33740.019*
H40.36110.68770.12130.020*
H50.37980.65930.45210.020*
H42A0.23011.03780.13100.039*
H42B0.22690.96740.29610.039*
H42C0.17700.91570.15010.039*
H32A0.36841.17130.00960.046*
H32B0.42871.12840.08740.046*
H32C0.43151.27110.02300.046*
H22A0.67390.80850.34940.042*
H22B0.64480.93990.23620.042*
H22C0.68470.80820.17440.042*
H6A0.28110.56210.30140.025*
H6B0.32420.44100.23200.025*
H61A0.41590.26750.64640.043*
H61B0.44030.26230.48470.043*
H61C0.42100.11060.56180.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0130 (13)0.0192 (16)0.0167 (14)0.0019 (12)0.0007 (11)0.0027 (13)
C20.0163 (14)0.0199 (16)0.0169 (15)0.0007 (13)0.0012 (11)0.0004 (13)
C30.0159 (14)0.0173 (15)0.0147 (14)0.0005 (13)0.0020 (11)0.0034 (13)
C40.0174 (14)0.0163 (14)0.0169 (14)0.0032 (14)0.0016 (10)0.0037 (14)
C50.0162 (13)0.0175 (16)0.0163 (14)0.0042 (12)0.0007 (11)0.0018 (12)
O50.0153 (10)0.0165 (11)0.0192 (11)0.0003 (9)0.0012 (8)0.0006 (9)
O40.0164 (10)0.0179 (11)0.0223 (11)0.0034 (10)0.0019 (8)0.0011 (10)
C410.0175 (14)0.0208 (16)0.0226 (16)0.0034 (14)0.0018 (12)0.0016 (15)
C420.0212 (16)0.0225 (17)0.0332 (19)0.0039 (14)0.0017 (13)0.0006 (15)
O410.0268 (12)0.0408 (15)0.0323 (13)0.0085 (13)0.0071 (10)0.0157 (14)
O30.0210 (10)0.0182 (11)0.0168 (11)0.0003 (10)0.0004 (8)0.0041 (9)
C310.0168 (15)0.0166 (16)0.0334 (19)0.0012 (13)0.0079 (13)0.0006 (14)
C320.0304 (19)0.0276 (19)0.0323 (19)0.0007 (16)0.0012 (14)0.0121 (17)
O310.0262 (11)0.0232 (13)0.0339 (14)0.0001 (10)0.0003 (10)0.0028 (11)
O20.0121 (10)0.0225 (12)0.0223 (11)0.0006 (9)0.0041 (8)0.0025 (9)
C210.0189 (15)0.0267 (18)0.0167 (14)0.0043 (15)0.0022 (11)0.0047 (15)
O210.0242 (11)0.0252 (13)0.0282 (13)0.0035 (10)0.0062 (9)0.0052 (11)
C220.0185 (15)0.0338 (19)0.0322 (18)0.0017 (15)0.0030 (13)0.0002 (16)
O10.0177 (15)0.0187 (16)0.0152 (15)0.0000.0009 (11)0.000
C60.0207 (15)0.0197 (16)0.0208 (16)0.0032 (13)0.0027 (12)0.0036 (14)
O60.0330 (12)0.0164 (12)0.0253 (12)0.0010 (10)0.0087 (10)0.0042 (10)
S10.0225 (4)0.0189 (4)0.0310 (5)0.0012 (3)0.0038 (3)0.0041 (4)
C610.0259 (16)0.031 (2)0.0279 (17)0.0031 (15)0.0004 (13)0.0033 (15)
O610.0334 (14)0.0284 (14)0.0592 (19)0.0037 (11)0.0181 (13)0.0114 (14)
O620.0327 (14)0.0230 (14)0.0345 (14)0.0007 (10)0.0042 (10)0.0036 (11)
Geometric parameters (Å, º) top
C1—O11.412 (3)C31—O311.196 (4)
C1—O51.415 (4)C31—C321.489 (5)
C1—C21.517 (4)C32—H32A0.98
C1—H11.00C32—H32B0.98
C2—O21.449 (4)C32—H32C0.98
C2—C31.526 (4)O2—C211.360 (4)
C2—H21.00C21—O211.192 (4)
C3—O31.440 (4)C21—C221.506 (5)
C3—C41.517 (4)C22—H22A0.98
C3—H31.00C22—H22B0.98
C4—O41.443 (4)C22—H22C0.98
C4—C51.526 (4)O1—C1i1.412 (3)
C4—H41.00C6—O61.457 (4)
C5—O51.442 (3)C6—H6A0.99
C5—C61.513 (4)C6—H6B0.99
C5—H51.00O6—S11.577 (3)
O4—C411.359 (4)S1—O621.425 (3)
C41—O411.196 (4)S1—O611.426 (3)
C41—C421.492 (5)S1—C611.745 (3)
C42—H42A0.98C61—H61A0.98
C42—H42B0.98C61—H61B0.98
C42—H42C0.98C61—H61C0.98
O3—C311.371 (4)
O1—C1—O5112.4 (2)C31—O3—C3116.5 (2)
O1—C1—C2105.9 (3)O31—C31—O3123.4 (3)
O5—C1—C2110.3 (2)O31—C31—C32125.9 (3)
O1—C1—H1109.4O3—C31—C32110.7 (3)
O5—C1—H1109.4C31—C32—H32A109.5
C2—C1—H1109.4C31—C32—H32B109.5
O2—C2—C1109.3 (2)H32A—C32—H32B109.5
O2—C2—C3108.7 (3)C31—C32—H32C109.5
C1—C2—C3109.0 (2)H32A—C32—H32C109.5
O2—C2—H2109.9H32B—C32—H32C109.5
C1—C2—H2109.9C21—O2—C2115.1 (3)
C3—C2—H2109.9O21—C21—O2123.1 (3)
O3—C3—C4106.5 (2)O21—C21—C22125.9 (3)
O3—C3—C2110.8 (2)O2—C21—C22111.0 (3)
C4—C3—C2108.1 (3)C21—C22—H22A109.5
O3—C3—H3110.5C21—C22—H22B109.5
C4—C3—H3110.5H22A—C22—H22B109.5
C2—C3—H3110.5C21—C22—H22C109.5
O4—C4—C3106.1 (3)H22A—C22—H22C109.5
O4—C4—C5108.0 (2)H22B—C22—H22C109.5
C3—C4—C5111.4 (2)C1—O1—C1i116.5 (3)
O4—C4—H4110.4O6—C6—C5109.2 (2)
C3—C4—H4110.4O6—C6—H6A109.8
C5—C4—H4110.4C5—C6—H6A109.8
O5—C5—C6106.2 (2)O6—C6—H6B109.8
O5—C5—C4110.3 (2)C5—C6—H6B109.8
C6—C5—C4111.5 (2)H6A—C6—H6B108.3
O5—C5—H5109.6C6—O6—S1121.2 (2)
C6—C5—H5109.6O62—S1—O61119.53 (17)
C4—C5—H5109.6O62—S1—O6109.56 (14)
C1—O5—C5113.5 (2)O61—S1—O6104.76 (16)
C41—O4—C4117.3 (2)O62—S1—C61110.27 (17)
O41—C41—O4122.9 (3)O61—S1—C61108.62 (17)
O41—C41—C42126.0 (3)O6—S1—C61102.68 (17)
O4—C41—C42111.1 (3)S1—C61—H61A109.5
C41—C42—H42A109.5S1—C61—H61B109.5
C41—C42—H42B109.5H61A—C61—H61B109.5
H42A—C42—H42B109.5S1—C61—H61C109.5
C41—C42—H42C109.5H61A—C61—H61C109.5
H42A—C42—H42C109.5H61B—C61—H61C109.5
H42B—C42—H42C109.5
O1—C1—C2—O257.2 (3)C3—C4—O4—C41135.4 (3)
O5—C1—C2—O2179.1 (2)C5—C4—O4—C41105.1 (3)
O1—C1—C2—C361.5 (3)C4—O4—C41—O415.5 (5)
O5—C1—C2—C360.5 (3)C4—O4—C41—C42173.9 (3)
O2—C2—C3—O367.0 (3)C4—C3—O3—C31134.6 (2)
C1—C2—C3—O3173.9 (2)C2—C3—O3—C31108.1 (3)
O2—C2—C3—C4176.7 (2)C3—O3—C31—O3112.8 (4)
C1—C2—C3—C457.6 (3)C3—O3—C31—C32166.9 (3)
O3—C3—C4—O468.4 (3)C1—C2—O2—C2184.3 (3)
C2—C3—C4—O4172.6 (2)C3—C2—O2—C21156.8 (2)
O3—C3—C4—C5174.4 (2)C2—O2—C21—O215.6 (4)
C2—C3—C4—C555.3 (3)C2—O2—C21—C22173.4 (3)
O4—C4—C5—O5170.1 (2)O5—C1—O1—C1i64.9 (2)
C3—C4—C5—O554.0 (3)C2—C1—O1—C1i174.5 (2)
O4—C4—C5—C672.1 (3)O5—C5—C6—O671.7 (3)
C3—C4—C5—C6171.8 (2)C4—C5—C6—O6168.1 (2)
O1—C1—O5—C557.4 (3)C5—C6—O6—S1115.1 (3)
C2—C1—O5—C560.6 (3)C6—O6—S1—O6211.8 (3)
C6—C5—O5—C1177.8 (2)C6—O6—S1—O61141.1 (2)
C4—C5—O5—C156.8 (3)C6—O6—S1—C61105.4 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O61ii0.992.433.221 (4)136
Symmetry code: (ii) x+1/2, y+1/2, z+1.
(6) 2,2',3,3',4,4'-Hexaacetato-6,6'-bis-O-(4-toluenesulfonyl)-α,α'-trehalose top
Crystal data top
C38H46O21S2F(000) = 3792
Mr = 902.89Dx = 1.337 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14269 reflections
a = 18.1484 (9) Åθ = 3.0–24.4°
b = 21.1046 (9) ŵ = 0.20 mm1
c = 23.4224 (14) ÅT = 120 K
V = 8971.1 (8) Å3Lath, colourless
Z = 80.30 × 0.10 × 0.02 mm
Data collection top
Kappa-CCD
diffractometer
14269 independent reflections
Radiation source: rotating anode8221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
ϕ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 2020
Tmin = 0.949, Tmax = 0.996k = 2424
34701 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
14269 reflectionsΔρmax = 0.86 e Å3
1113 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 6179 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
C38H46O21S2V = 8971.1 (8) Å3
Mr = 902.89Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 18.1484 (9) ŵ = 0.20 mm1
b = 21.1046 (9) ÅT = 120 K
c = 23.4224 (14) Å0.30 × 0.10 × 0.02 mm
Data collection top
Kappa-CCD
diffractometer
14269 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
8221 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.996Rint = 0.110
34701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.136Δρmax = 0.86 e Å3
S = 0.96Δρmin = 0.28 e Å3
14269 reflectionsAbsolute structure: Flack (1983), 6179 Friedel pairs
1113 parametersAbsolute structure parameter: 0.02 (8)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.2823 (2)0.2825 (2)0.0073 (2)0.0240 (13)
C2A0.3524 (3)0.2477 (2)0.0090 (2)0.0209 (12)
C3A0.3628 (3)0.1895 (2)0.0276 (2)0.0226 (13)
C4A0.3566 (3)0.2053 (2)0.0899 (2)0.0256 (13)
C5A0.2864 (3)0.2426 (2)0.1029 (2)0.0251 (13)
O5A0.28341 (17)0.29753 (15)0.06555 (15)0.0257 (9)
O1A0.22043 (16)0.24330 (15)0.00622 (14)0.0249 (9)
O2A0.35004 (17)0.22817 (15)0.06771 (16)0.0278 (9)
C21A0.3768 (3)0.2699 (3)0.1062 (3)0.0321 (15)
O21A0.3993 (2)0.32150 (19)0.09272 (18)0.0475 (11)
C22A0.3755 (3)0.2434 (3)0.1657 (2)0.0432 (16)
O3A0.43702 (16)0.16739 (15)0.01695 (15)0.0259 (9)
C31A0.4483 (3)0.1042 (3)0.0099 (2)0.0329 (15)
O31A0.3990 (2)0.06620 (18)0.0117 (2)0.0488 (12)
C32A0.5276 (3)0.0907 (2)0.0007 (3)0.0364 (16)
O4A0.34950 (17)0.14673 (15)0.12111 (16)0.0307 (9)
C41A0.4095 (3)0.1235 (3)0.1484 (3)0.0374 (15)
O41A0.4663 (2)0.1520 (2)0.1512 (2)0.0762 (17)
C42A0.3947 (3)0.0584 (3)0.1700 (3)0.0480 (17)
C6A0.2842 (3)0.2678 (2)0.1620 (2)0.0299 (14)
O51A0.20846 (18)0.28854 (15)0.17302 (16)0.0325 (9)
S1A0.19409 (8)0.34989 (7)0.21051 (7)0.0371 (4)
O52A0.1169 (2)0.34868 (18)0.22094 (17)0.0456 (11)
O53A0.2455 (2)0.35042 (18)0.25691 (16)0.0487 (11)
C51A0.2149 (3)0.4122 (2)0.1643 (2)0.0327 (14)
C52A0.2674 (4)0.4566 (3)0.1781 (3)0.0567 (19)
C53A0.2793 (4)0.5059 (3)0.1410 (3)0.064 (2)
C54A0.2437 (3)0.5117 (3)0.0905 (3)0.0475 (18)
C55A0.1915 (3)0.4670 (3)0.0766 (3)0.0504 (18)
C56A0.1764 (3)0.4182 (3)0.1134 (3)0.0370 (16)
C57A0.2600 (3)0.5654 (3)0.0501 (3)0.077 (3)
C1B0.1545 (3)0.2796 (2)0.0103 (2)0.0263 (13)
C2B0.0881 (3)0.2371 (2)0.0005 (2)0.0282 (14)
C3B0.0769 (3)0.1899 (2)0.0471 (2)0.0288 (14)
C4B0.0797 (3)0.2214 (2)0.1045 (2)0.0319 (14)
C5B0.1469 (3)0.2642 (2)0.1104 (2)0.0273 (13)
O5B0.14840 (17)0.30854 (15)0.06373 (15)0.0260 (9)
O2B0.09614 (18)0.20283 (17)0.05266 (17)0.0340 (10)
C21B0.0684 (3)0.2324 (3)0.1003 (3)0.0358 (15)
O21B0.0433 (2)0.2837 (2)0.09920 (17)0.0432 (11)
C22B0.0728 (3)0.1894 (3)0.1515 (3)0.0501 (18)
O3B0.00380 (17)0.16370 (16)0.03715 (16)0.0304 (9)
C31B0.0083 (3)0.1016 (3)0.0475 (3)0.0350 (15)
O31B0.0384 (2)0.06656 (18)0.0658 (2)0.0513 (12)
C32B0.0855 (3)0.0836 (2)0.0334 (3)0.0422 (17)
O4B0.08762 (18)0.17426 (17)0.14887 (16)0.0368 (10)
C41B0.0255 (4)0.1507 (3)0.1735 (3)0.0422 (16)
O41B0.0349 (2)0.1690 (2)0.16320 (19)0.0553 (12)
C42B0.0444 (4)0.0988 (3)0.2147 (3)0.062 (2)
C6B0.1439 (3)0.3029 (3)0.1642 (3)0.0407 (16)
O51B0.21530 (18)0.33562 (17)0.16801 (17)0.0393 (10)
S1B0.22312 (8)0.38606 (7)0.21745 (7)0.0391 (4)
O52B0.1631 (2)0.42937 (18)0.2143 (2)0.0565 (12)
O53B0.2342 (2)0.35406 (19)0.27059 (17)0.0514 (12)
C51B0.3047 (3)0.4211 (3)0.1951 (3)0.0411 (16)
C52B0.3048 (4)0.4568 (3)0.1444 (3)0.056 (2)
C53B0.3710 (5)0.4814 (3)0.1263 (3)0.065 (2)
C54B0.4359 (4)0.4721 (3)0.1559 (4)0.066 (2)
C55B0.4346 (4)0.4389 (3)0.2070 (3)0.068 (2)
C56B0.3682 (3)0.4130 (3)0.2261 (3)0.0545 (19)
C57B0.5094 (4)0.4962 (4)0.1326 (4)0.108 (3)
C1C0.2152 (2)0.7826 (2)0.0120 (2)0.0233 (12)
C2C0.1473 (3)0.7443 (2)0.0038 (2)0.0234 (13)
C3C0.1361 (3)0.6884 (2)0.0362 (2)0.0255 (14)
C4C0.1406 (3)0.7091 (2)0.0979 (2)0.0242 (13)
C5C0.2090 (3)0.7488 (2)0.1090 (2)0.0249 (13)
O5C0.21055 (16)0.80155 (15)0.06949 (15)0.0244 (8)
O1B0.27881 (16)0.74521 (15)0.00206 (14)0.0240 (8)
O2C0.15398 (18)0.71882 (16)0.06037 (16)0.0305 (9)
C21C0.1158 (3)0.7479 (3)0.1021 (3)0.0312 (14)
O21C0.0805 (2)0.79616 (18)0.09450 (16)0.0404 (10)
C22C0.1211 (3)0.7134 (3)0.1575 (3)0.0476 (17)
O3C0.06341 (16)0.66463 (16)0.02448 (15)0.0283 (9)
C31C0.0524 (3)0.6003 (3)0.0233 (3)0.0374 (16)
O31C0.1010 (2)0.56270 (18)0.02933 (19)0.0470 (12)
C32C0.0276 (3)0.5870 (3)0.0140 (3)0.0467 (18)
O4C0.14873 (18)0.65245 (16)0.13194 (15)0.0318 (9)
C41C0.0888 (3)0.6276 (3)0.1574 (3)0.0456 (16)
O41C0.0292 (2)0.6525 (2)0.1559 (2)0.0702 (15)
C42C0.1069 (4)0.5649 (3)0.1829 (3)0.068 (2)
C6C0.2073 (3)0.7761 (2)0.1675 (2)0.0282 (13)
O51C0.28161 (18)0.79889 (15)0.18183 (15)0.0298 (9)
S1C0.28957 (8)0.86651 (7)0.21056 (7)0.0346 (4)
O52C0.2343 (2)0.87298 (17)0.25370 (16)0.0433 (10)
O53C0.36546 (19)0.87061 (17)0.22487 (17)0.0427 (11)
C51C0.2692 (3)0.9178 (2)0.1541 (2)0.0296 (14)
C52C0.3192 (3)0.9232 (2)0.1094 (2)0.0315 (14)
C53C0.3026 (3)0.9607 (2)0.0635 (3)0.0355 (15)
C54C0.2374 (3)0.9940 (2)0.0610 (3)0.0363 (16)
C55C0.1885 (3)0.9888 (3)0.1057 (3)0.0383 (16)
C56C0.2038 (3)0.9509 (2)0.1522 (3)0.0372 (15)
C57C0.2201 (3)1.0356 (3)0.0099 (3)0.060 (2)
C1D0.3426 (3)0.7828 (2)0.0067 (2)0.0240 (13)
C2D0.4106 (3)0.7436 (2)0.0076 (2)0.0247 (13)
C3D0.4203 (3)0.6900 (2)0.0338 (2)0.0272 (14)
C4D0.4186 (3)0.7145 (2)0.0951 (2)0.0241 (13)
C5D0.3485 (3)0.7524 (2)0.1051 (2)0.0253 (13)
O5D0.34661 (17)0.80267 (15)0.06396 (16)0.0264 (9)
O2D0.40426 (18)0.71665 (16)0.06365 (16)0.0297 (9)
C21D0.4286 (3)0.7525 (3)0.1076 (3)0.0348 (15)
O21D0.4498 (2)0.80604 (18)0.10127 (17)0.0391 (10)
C22D0.4257 (3)0.7168 (3)0.1634 (3)0.0434 (16)
O3D0.49263 (16)0.66269 (16)0.02471 (16)0.0288 (9)
C31D0.4965 (3)0.6027 (3)0.0054 (3)0.0385 (16)
O31D0.4427 (2)0.57111 (19)0.0049 (2)0.0618 (15)
C32D0.5741 (3)0.5820 (3)0.0018 (3)0.0451 (17)
O4D0.41842 (18)0.66013 (16)0.13239 (15)0.0304 (9)
C41D0.4828 (3)0.6448 (3)0.1586 (3)0.0436 (17)
O41D0.5365 (2)0.6759 (2)0.1561 (2)0.0807 (18)
C42D0.4768 (3)0.5823 (3)0.1885 (3)0.067 (2)
C6D0.3447 (3)0.7820 (3)0.1628 (2)0.0346 (15)
O51D0.2722 (2)0.80853 (16)0.17204 (17)0.0400 (10)
S1D0.25718 (8)0.88184 (7)0.16115 (8)0.0430 (4)
O52D0.2203 (2)0.8892 (2)0.10723 (17)0.0550 (12)
O53D0.3236 (2)0.91536 (18)0.1719 (2)0.0542 (13)
C51D0.1933 (3)0.8966 (3)0.2159 (3)0.0372 (15)
C52D0.2177 (3)0.9151 (3)0.2686 (3)0.0541 (19)
C53D0.1667 (4)0.9279 (3)0.3117 (3)0.057 (2)
C54D0.0926 (3)0.9211 (3)0.3018 (3)0.0447 (17)
C55D0.0688 (3)0.9012 (3)0.2489 (3)0.0498 (18)
C56D0.1198 (3)0.8887 (3)0.2058 (3)0.0465 (17)
C57D0.0368 (3)0.9342 (3)0.3492 (3)0.068 (2)
H1A0.27900.32250.01530.029*
H2A0.39540.27670.00340.025*
H3A0.32610.15610.01690.027*
H4A0.40100.22930.10300.031*
H5A0.24240.21520.09600.030*
H22A0.37510.27830.19330.065*
H22B0.33110.21760.17080.065*
H22C0.41930.21720.17180.065*
H32A0.53550.04480.00070.055*
H32B0.55650.11000.03150.055*
H32C0.54310.10840.03600.055*
H42A0.43830.04250.19010.072*
H42B0.38340.03040.13780.072*
H42C0.35270.05940.19620.072*
H6A0.29860.23440.18960.036*
H6B0.31870.30390.16600.036*
H52A0.29490.45310.21240.068*
H53A0.31400.53760.15140.077*
H55A0.16570.47000.04140.060*
H56A0.13930.38820.10400.044*
H57A0.27160.60370.07200.116*
H57B0.21680.57330.02600.116*
H57C0.30210.55420.02590.116*
H1B0.15570.31340.01970.032*
H2B0.04310.26430.00340.034*
H3B0.11490.15570.04480.035*
H4B0.03370.24650.11090.038*
H5B0.19280.23800.11000.033*
H22D0.07160.21490.18650.075*
H22E0.11880.16510.15010.075*
H22F0.03080.16020.15120.075*
H32D0.08960.03730.03220.063*
H32E0.11880.10030.06270.063*
H32F0.09890.10120.00380.063*
H42D0.00820.06450.21130.093*
H42E0.09370.08230.20600.093*
H42F0.04380.11550.25370.093*
H6C0.13640.27520.19780.049*
H6D0.10310.33390.16240.049*
H52B0.26080.46380.12340.068*
H53B0.37210.50560.09210.078*
H55B0.47840.43380.22870.081*
H56B0.36700.38960.26080.065*
H57D0.52300.47150.09880.162*
H57E0.50470.54090.12220.162*
H57F0.54760.49150.16190.162*
H1C0.21740.82120.01270.028*
H2C0.10300.77240.00200.028*
H3C0.17370.65490.02830.031*
H4C0.09520.73280.10920.029*
H5C0.25420.72230.10400.030*
H22G0.12100.74390.18900.071*
H22H0.16690.68870.15850.071*
H22I0.07890.68470.16150.071*
H32G0.03580.54110.01410.070*
H32H0.05650.60660.04460.070*
H32I0.04290.60460.02290.070*
H42G0.07230.53300.16880.102*
H42H0.15730.55290.17230.102*
H42I0.10320.56760.22460.102*
H6E0.19160.74350.19530.034*
H6F0.17180.81170.16910.034*
H52C0.36470.90090.11060.038*
H53C0.33670.96380.03290.043*
H55C0.14351.01180.10450.046*
H56C0.16940.94760.18260.045*
H57G0.17021.05280.01370.090*
H57H0.25561.07060.00810.090*
H57I0.22351.01040.02520.090*
H1D0.34060.82070.01880.029*
H2D0.45510.77150.00620.030*
H3D0.38110.65720.02800.033*
H4D0.46290.74140.10270.029*
H5D0.30480.72430.09950.030*
H22J0.42900.74680.19520.065*
H22K0.37910.69340.16590.065*
H22L0.46700.68690.16530.065*
H32J0.57630.53560.00210.068*
H32K0.60390.59830.02990.068*
H32L0.59350.59850.03800.068*
H42J0.47010.54860.16020.100*
H42K0.43450.58300.21450.100*
H42L0.52200.57450.21030.100*
H61G0.35520.74970.19230.042*
H61H0.38230.81580.16590.042*
H52D0.26900.91920.27580.065*
H53D0.18340.94140.34810.068*
H55D0.01760.89600.24180.060*
H56D0.10330.87470.16940.056*
H57J0.02200.89410.36690.102*
H57K0.00660.95510.33300.102*
H57L0.05920.96170.37810.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.018 (3)0.025 (3)0.028 (4)0.001 (2)0.001 (2)0.003 (3)
C2A0.023 (3)0.020 (3)0.020 (3)0.006 (2)0.002 (2)0.002 (3)
C3A0.015 (3)0.021 (3)0.031 (4)0.003 (2)0.002 (2)0.005 (3)
C4A0.023 (3)0.019 (3)0.035 (4)0.000 (2)0.001 (3)0.009 (3)
C5A0.019 (3)0.028 (3)0.028 (4)0.003 (2)0.003 (3)0.001 (3)
O5A0.029 (2)0.023 (2)0.025 (2)0.0047 (16)0.0020 (17)0.0026 (18)
O1A0.0178 (19)0.029 (2)0.027 (2)0.0007 (16)0.0023 (17)0.0005 (17)
O2A0.030 (2)0.031 (2)0.023 (2)0.0010 (17)0.0035 (18)0.0014 (19)
C21A0.031 (3)0.043 (4)0.023 (4)0.011 (3)0.006 (3)0.004 (3)
O21A0.068 (3)0.040 (3)0.034 (3)0.005 (2)0.005 (2)0.003 (2)
C22A0.042 (4)0.063 (4)0.025 (4)0.006 (3)0.004 (3)0.000 (3)
O3A0.0163 (19)0.020 (2)0.041 (3)0.0006 (15)0.0064 (17)0.0020 (18)
C31A0.027 (3)0.035 (4)0.037 (4)0.002 (3)0.002 (3)0.001 (3)
O31A0.025 (2)0.031 (2)0.090 (4)0.0022 (18)0.008 (2)0.007 (2)
C32A0.026 (3)0.029 (3)0.054 (5)0.011 (2)0.004 (3)0.004 (3)
O4A0.026 (2)0.027 (2)0.039 (3)0.0023 (16)0.0018 (18)0.0059 (19)
C41A0.027 (3)0.048 (4)0.037 (4)0.003 (3)0.004 (3)0.008 (3)
O41A0.053 (3)0.063 (3)0.112 (5)0.005 (2)0.035 (3)0.045 (3)
C42A0.061 (4)0.035 (4)0.048 (5)0.014 (3)0.001 (3)0.015 (3)
C6A0.026 (3)0.033 (3)0.031 (4)0.006 (2)0.002 (3)0.001 (3)
O51A0.031 (2)0.030 (2)0.036 (3)0.0050 (17)0.0093 (18)0.0025 (19)
S1A0.0472 (10)0.0394 (9)0.0246 (9)0.0129 (7)0.0019 (8)0.0007 (8)
O52A0.042 (2)0.055 (3)0.040 (3)0.0207 (19)0.017 (2)0.007 (2)
O53A0.063 (3)0.052 (3)0.031 (3)0.021 (2)0.010 (2)0.000 (2)
C51A0.043 (4)0.029 (3)0.026 (4)0.008 (3)0.001 (3)0.002 (3)
C52A0.061 (5)0.063 (5)0.046 (5)0.011 (4)0.029 (4)0.011 (4)
C53A0.064 (5)0.052 (5)0.076 (6)0.031 (4)0.024 (4)0.009 (4)
C54A0.034 (4)0.035 (4)0.074 (6)0.006 (3)0.015 (4)0.016 (4)
C55A0.043 (4)0.052 (4)0.056 (5)0.010 (3)0.014 (3)0.028 (4)
C56A0.027 (3)0.042 (4)0.042 (4)0.008 (3)0.010 (3)0.007 (3)
C57A0.037 (4)0.055 (4)0.140 (8)0.004 (3)0.009 (4)0.048 (5)
C1B0.020 (3)0.026 (3)0.034 (4)0.002 (2)0.004 (3)0.005 (3)
C2B0.025 (3)0.034 (4)0.026 (4)0.003 (2)0.001 (3)0.005 (3)
C3B0.015 (3)0.038 (4)0.033 (4)0.003 (2)0.000 (3)0.002 (3)
C4B0.027 (3)0.032 (3)0.037 (4)0.000 (3)0.004 (3)0.005 (3)
C5B0.021 (3)0.026 (3)0.034 (4)0.003 (2)0.005 (3)0.002 (3)
O5B0.0208 (19)0.030 (2)0.027 (2)0.0038 (15)0.0007 (17)0.0067 (19)
O2B0.029 (2)0.043 (2)0.030 (3)0.0044 (18)0.0002 (18)0.009 (2)
C21B0.031 (3)0.046 (4)0.030 (4)0.011 (3)0.008 (3)0.003 (3)
O21B0.052 (3)0.048 (3)0.030 (3)0.009 (2)0.002 (2)0.003 (2)
C22B0.039 (4)0.071 (5)0.040 (5)0.013 (3)0.005 (3)0.013 (4)
O3B0.019 (2)0.026 (2)0.046 (3)0.0023 (16)0.0036 (17)0.001 (2)
C31B0.030 (3)0.032 (4)0.043 (4)0.008 (3)0.005 (3)0.008 (3)
O31B0.032 (2)0.036 (2)0.086 (4)0.0040 (19)0.010 (2)0.006 (3)
C32B0.029 (3)0.032 (4)0.066 (5)0.004 (3)0.012 (3)0.005 (3)
O4B0.026 (2)0.050 (3)0.035 (3)0.0034 (18)0.0035 (19)0.002 (2)
C41B0.041 (4)0.048 (4)0.038 (4)0.007 (3)0.007 (3)0.000 (3)
O41B0.032 (3)0.078 (3)0.056 (3)0.018 (2)0.008 (2)0.003 (3)
C42B0.069 (5)0.068 (5)0.050 (5)0.010 (4)0.006 (4)0.012 (4)
C6B0.030 (3)0.057 (4)0.035 (4)0.002 (3)0.001 (3)0.011 (3)
O51B0.033 (2)0.042 (2)0.044 (3)0.0020 (18)0.0007 (19)0.021 (2)
S1B0.0467 (9)0.0360 (9)0.0346 (10)0.0003 (7)0.0029 (8)0.0049 (8)
O52B0.062 (3)0.045 (3)0.063 (3)0.014 (2)0.009 (3)0.006 (3)
O53B0.060 (3)0.059 (3)0.034 (3)0.013 (2)0.009 (2)0.007 (2)
C51B0.052 (4)0.034 (4)0.037 (4)0.008 (3)0.001 (3)0.002 (3)
C52B0.079 (6)0.043 (4)0.047 (5)0.006 (4)0.003 (4)0.001 (4)
C53B0.108 (7)0.053 (5)0.034 (5)0.024 (4)0.010 (5)0.001 (4)
C54B0.080 (6)0.068 (5)0.051 (6)0.039 (4)0.014 (5)0.007 (5)
C55B0.050 (5)0.081 (6)0.073 (6)0.033 (4)0.002 (4)0.016 (5)
C56B0.052 (4)0.066 (5)0.046 (5)0.022 (3)0.002 (4)0.002 (4)
C57B0.106 (7)0.130 (8)0.088 (8)0.073 (6)0.028 (6)0.015 (6)
C1C0.020 (3)0.033 (3)0.017 (3)0.008 (2)0.004 (2)0.002 (3)
C2C0.021 (3)0.025 (3)0.024 (4)0.001 (2)0.003 (3)0.000 (3)
C3C0.014 (3)0.029 (3)0.034 (4)0.000 (2)0.004 (2)0.009 (3)
C4C0.022 (3)0.022 (3)0.028 (4)0.007 (2)0.001 (2)0.006 (3)
C5C0.025 (3)0.023 (3)0.026 (4)0.001 (2)0.000 (3)0.001 (3)
O5C0.025 (2)0.024 (2)0.024 (2)0.0011 (15)0.0018 (17)0.0004 (18)
O1B0.0168 (19)0.0234 (19)0.032 (2)0.0021 (15)0.0002 (17)0.0043 (17)
O2C0.026 (2)0.038 (2)0.028 (3)0.0049 (17)0.0001 (18)0.012 (2)
C21C0.026 (3)0.037 (4)0.031 (4)0.007 (3)0.006 (3)0.004 (3)
O21C0.046 (2)0.048 (3)0.027 (3)0.006 (2)0.009 (2)0.004 (2)
C22C0.048 (4)0.067 (5)0.028 (4)0.001 (3)0.004 (3)0.019 (4)
O3C0.0164 (19)0.029 (2)0.039 (3)0.0013 (16)0.0035 (17)0.0014 (19)
C31C0.028 (4)0.033 (4)0.051 (5)0.004 (3)0.002 (3)0.001 (3)
O31C0.032 (2)0.027 (2)0.082 (4)0.0029 (19)0.007 (2)0.005 (2)
C32C0.039 (4)0.028 (4)0.074 (5)0.000 (3)0.011 (3)0.002 (3)
O4C0.030 (2)0.029 (2)0.036 (3)0.0014 (17)0.0008 (18)0.0074 (19)
C41C0.040 (4)0.050 (4)0.047 (5)0.007 (3)0.003 (3)0.013 (4)
O41C0.052 (3)0.064 (3)0.094 (4)0.007 (2)0.032 (3)0.037 (3)
C42C0.068 (5)0.045 (4)0.090 (6)0.011 (3)0.005 (4)0.038 (4)
C6C0.023 (3)0.033 (3)0.029 (4)0.002 (2)0.002 (3)0.000 (3)
O51C0.028 (2)0.031 (2)0.031 (2)0.0003 (17)0.0079 (17)0.0010 (18)
S1C0.0397 (9)0.0381 (9)0.0260 (9)0.0022 (7)0.0030 (8)0.0034 (7)
O52C0.057 (3)0.045 (3)0.028 (3)0.003 (2)0.006 (2)0.006 (2)
O53C0.040 (2)0.047 (3)0.042 (3)0.0103 (19)0.0186 (19)0.003 (2)
C51C0.030 (3)0.029 (3)0.029 (4)0.004 (2)0.002 (3)0.001 (3)
C52C0.031 (3)0.027 (3)0.037 (4)0.004 (2)0.000 (3)0.003 (3)
C53C0.027 (3)0.038 (4)0.041 (4)0.000 (3)0.008 (3)0.004 (3)
C54C0.029 (3)0.030 (3)0.050 (5)0.007 (3)0.002 (3)0.014 (3)
C55C0.030 (3)0.032 (4)0.053 (5)0.004 (3)0.000 (3)0.005 (3)
C56C0.026 (3)0.040 (4)0.045 (4)0.001 (3)0.008 (3)0.006 (3)
C57C0.029 (4)0.069 (5)0.082 (6)0.006 (3)0.001 (4)0.035 (4)
C1D0.024 (3)0.027 (3)0.021 (4)0.002 (2)0.001 (2)0.000 (3)
C2D0.028 (3)0.026 (3)0.020 (4)0.003 (2)0.006 (3)0.001 (3)
C3D0.016 (3)0.031 (3)0.035 (4)0.004 (2)0.000 (3)0.004 (3)
C4D0.017 (3)0.025 (3)0.031 (4)0.001 (2)0.001 (2)0.009 (3)
C5D0.020 (3)0.029 (3)0.027 (4)0.001 (2)0.001 (3)0.003 (3)
O5D0.0203 (19)0.026 (2)0.033 (3)0.0017 (15)0.0016 (17)0.0020 (19)
O2D0.028 (2)0.034 (2)0.028 (3)0.0054 (17)0.0040 (18)0.000 (2)
C21D0.026 (3)0.043 (4)0.035 (4)0.010 (3)0.002 (3)0.003 (4)
O21D0.049 (3)0.035 (3)0.033 (3)0.007 (2)0.005 (2)0.005 (2)
C22D0.038 (4)0.059 (4)0.033 (4)0.005 (3)0.002 (3)0.011 (3)
O3D0.017 (2)0.026 (2)0.043 (3)0.0028 (16)0.0040 (17)0.003 (2)
C31D0.030 (4)0.036 (4)0.049 (5)0.000 (3)0.000 (3)0.007 (3)
O31D0.030 (2)0.037 (3)0.119 (5)0.002 (2)0.008 (3)0.017 (3)
C32D0.039 (4)0.035 (4)0.061 (5)0.012 (3)0.006 (3)0.001 (3)
O4D0.024 (2)0.035 (2)0.033 (2)0.0011 (16)0.0035 (17)0.007 (2)
C41D0.036 (4)0.057 (4)0.037 (4)0.006 (3)0.003 (3)0.018 (4)
O41D0.044 (3)0.091 (4)0.107 (5)0.024 (3)0.033 (3)0.062 (3)
C42D0.043 (4)0.062 (5)0.097 (7)0.006 (3)0.017 (4)0.046 (5)
C6D0.033 (3)0.041 (4)0.030 (4)0.012 (3)0.003 (3)0.001 (3)
O51D0.039 (2)0.032 (2)0.049 (3)0.0003 (18)0.013 (2)0.000 (2)
S1D0.0421 (9)0.0417 (10)0.0451 (12)0.0001 (7)0.0117 (8)0.0023 (9)
O52D0.058 (3)0.074 (3)0.033 (3)0.021 (2)0.005 (2)0.001 (2)
O53D0.038 (3)0.049 (3)0.075 (4)0.010 (2)0.019 (2)0.001 (2)
C51D0.033 (4)0.043 (4)0.035 (4)0.001 (3)0.008 (3)0.015 (3)
C52D0.036 (4)0.067 (5)0.059 (5)0.015 (3)0.006 (4)0.030 (4)
C53D0.057 (5)0.060 (5)0.053 (5)0.018 (4)0.016 (4)0.025 (4)
C54D0.049 (4)0.036 (4)0.049 (5)0.002 (3)0.014 (4)0.013 (3)
C55D0.034 (4)0.060 (5)0.056 (5)0.001 (3)0.001 (4)0.012 (4)
C56D0.041 (4)0.055 (4)0.043 (5)0.008 (3)0.003 (3)0.004 (4)
C57D0.061 (5)0.083 (5)0.059 (6)0.011 (4)0.036 (4)0.017 (4)
Geometric parameters (Å, º) top
C1A—O5A1.401 (6)C1C—O5C1.406 (6)
C1A—O1A1.429 (5)C1C—O1B1.418 (5)
C1A—C2A1.518 (6)C1C—C2C1.519 (6)
C1A—H1A1.00C1C—H1C1.00
C2A—O2A1.436 (6)C2C—O2C1.436 (6)
C2A—C3A1.509 (7)C2C—C3C1.520 (7)
C2A—H2A1.00C2C—H2C1.00
C3A—O3A1.448 (5)C3C—O3C1.439 (5)
C3A—C4A1.502 (7)C3C—C4C1.511 (7)
C3A—H3A1.00C3C—H3C1.00
C4A—O4A1.441 (5)C4C—O4C1.444 (6)
C4A—C5A1.528 (6)C4C—C5C1.520 (6)
C4A—H4A1.00C4C—H4C1.00
C5A—O5A1.452 (6)C5C—O5C1.447 (6)
C5A—C6A1.484 (7)C5C—C6C1.489 (7)
C5A—H5A1.00C5C—H5C1.00
O1A—C1B1.424 (5)O1B—C1D1.417 (5)
O2A—C21A1.350 (6)O2C—C21C1.346 (6)
C21A—O21A1.205 (6)C21C—O21C1.216 (6)
C21A—C22A1.502 (8)C21C—C22C1.493 (8)
C22A—H22A0.98C22C—H22G0.98
C22A—H22B0.98C22C—H22H0.98
C22A—H22C0.98C22C—H22I0.98
O3A—C31A1.360 (6)O3C—C31C1.372 (6)
C31A—O31A1.203 (6)C31C—O31C1.195 (6)
C31A—C32A1.481 (7)C31C—C32C1.495 (7)
C32A—H32A0.98C32C—H32G0.98
C32A—H32B0.98C32C—H32H0.98
C32A—H32C0.98C32C—H32I0.98
O4A—C41A1.354 (6)O4C—C41C1.346 (6)
C41A—O41A1.195 (6)C41C—O41C1.203 (6)
C41A—C42A1.489 (7)C41C—C42C1.489 (8)
C42A—H42A0.98C42C—H42G0.98
C42A—H42B0.98C42C—H42H0.98
C42A—H42C0.98C42C—H42I0.98
C6A—O51A1.466 (5)C6C—O51C1.470 (5)
C6A—H6A0.99C6C—H6E0.99
C6A—H6B0.99C6C—H6F0.99
O51A—S1A1.586 (4)O51C—S1C1.584 (3)
S1A—O52A1.422 (4)S1C—O53C1.420 (4)
S1A—O53A1.433 (4)S1C—O52C1.430 (4)
S1A—C51A1.745 (6)S1C—C51C1.748 (5)
C51A—C52A1.374 (8)C51C—C56C1.378 (7)
C51A—C56A1.388 (7)C51C—C52C1.392 (7)
C52A—C53A1.373 (8)C52C—C53C1.367 (7)
C52A—H52A0.95C52C—H52C0.95
C53A—C54A1.354 (9)C53C—C54C1.378 (7)
C53A—H53A0.95C53C—H53C0.95
C54A—C55A1.376 (8)C54C—C55C1.378 (8)
C54A—C57A1.506 (8)C54C—C57C1.517 (8)
C55A—C56A1.371 (7)C55C—C56C1.380 (8)
C55A—H55A0.95C55C—H55C0.95
C56A—H56A0.95C56C—H56C0.95
C57A—H57A0.98C57C—H57G0.98
C57A—H57B0.98C57C—H57H0.98
C57A—H57C0.98C57C—H57I0.98
C1B—O5B1.397 (6)C1D—O5D1.408 (6)
C1B—C2B1.525 (7)C1D—C2D1.523 (7)
C1B—H1B1.00C1D—H1D1.00
C2B—O2B1.427 (6)C2D—O2D1.434 (6)
C2B—C3B1.509 (7)C2D—C3D1.501 (7)
C2B—H2B1.00C2D—H2D1.00
C3B—O3B1.457 (6)C3D—O3D1.450 (6)
C3B—C4B1.501 (7)C3D—C4D1.526 (7)
C3B—H3B1.00C3D—H3D1.00
C4B—O4B1.445 (6)C4D—O4D1.443 (6)
C4B—C5B1.524 (7)C4D—C5D1.521 (6)
C4B—H4B1.00C4D—H4D1.00
C5B—O5B1.439 (6)C5D—O5D1.433 (6)
C5B—C6B1.502 (7)C5D—C6D1.489 (7)
C5B—H5B1.00C5D—H5D1.00
O2B—C21B1.373 (7)O2D—C21D1.352 (7)
C21B—O21B1.175 (6)C21D—O21D1.204 (6)
C21B—C22B1.507 (8)C21D—C22D1.509 (8)
C22B—H22D0.98C22D—H22J0.98
C22B—H22E0.98C22D—H22K0.98
C22B—H22F0.98C22D—H22L0.98
O3B—C31B1.351 (6)O3D—C31D1.346 (7)
C31B—O31B1.204 (6)C31D—O31D1.208 (6)
C31B—C32B1.489 (7)C31D—C32D1.484 (7)
C32B—H32D0.98C32D—H32J0.98
C32B—H32E0.98C32D—H32K0.98
C32B—H32F0.98C32D—H32L0.98
O4B—C41B1.360 (6)O4D—C41D1.358 (6)
C41B—O41B1.188 (6)C41D—O41D1.177 (6)
C41B—C42B1.502 (8)C41D—C42D1.497 (8)
C42B—H42D0.98C42D—H42J0.98
C42B—H42E0.98C42D—H42K0.98
C42B—H42F0.98C42D—H42L0.98
C6B—O51B1.471 (6)C6D—O51D1.446 (5)
C6B—H6C0.99C6D—H61G0.99
C6B—H6D0.99C6D—H61H0.99
O51B—S1B1.579 (4)O51D—S1D1.592 (4)
S1B—O52B1.424 (4)S1D—O53D1.421 (4)
S1B—O53B1.430 (4)S1D—O52D1.438 (4)
S1B—C51B1.736 (6)S1D—C51D1.756 (6)
C51B—C56B1.375 (8)C51D—C56D1.365 (7)
C51B—C52B1.406 (8)C51D—C52D1.369 (8)
C52B—C53B1.374 (9)C52D—C53D1.397 (8)
C52B—H52B0.95C52D—H52D0.95
C53B—C54B1.381 (9)C53D—C54D1.372 (8)
C53B—H53B0.95C53D—H53D0.95
C54B—C55B1.386 (10)C54D—C55D1.378 (8)
C54B—C57B1.529 (9)C54D—C57D1.527 (8)
C55B—C56B1.396 (8)C55D—C56D1.395 (8)
C55B—H55B0.95C55D—H55D0.95
C56B—H56B0.95C56D—H56D0.95
C57B—H57D0.98C57D—H57J0.98
C57B—H57E0.98C57D—H57K0.98
C57B—H57F0.98C57D—H57L0.98
O5A—C1A—O1A111.0 (4)O5C—C1C—O1B111.4 (4)
O5A—C1A—C2A110.0 (4)O5C—C1C—C2C109.6 (4)
O1A—C1A—C2A108.9 (4)O1B—C1C—C2C109.0 (4)
O5A—C1A—H1A109.0O5C—C1C—H1C108.9
O1A—C1A—H1A109.0O1B—C1C—H1C108.9
C2A—C1A—H1A109.0C2C—C1C—H1C108.9
O2A—C2A—C3A108.3 (4)O2C—C2C—C1C110.9 (4)
O2A—C2A—C1A110.7 (4)O2C—C2C—C3C106.8 (4)
C3A—C2A—C1A110.8 (4)C1C—C2C—C3C111.7 (4)
O2A—C2A—H2A109.0O2C—C2C—H2C109.1
C3A—C2A—H2A109.0C1C—C2C—H2C109.1
C1A—C2A—H2A109.0C3C—C2C—H2C109.1
O3A—C3A—C4A108.0 (4)O3C—C3C—C4C109.5 (4)
O3A—C3A—C2A106.3 (4)O3C—C3C—C2C106.0 (4)
C4A—C3A—C2A111.2 (4)C4C—C3C—C2C111.0 (4)
O3A—C3A—H3A110.4O3C—C3C—H3C110.1
C4A—C3A—H3A110.4C4C—C3C—H3C110.1
C2A—C3A—H3A110.4C2C—C3C—H3C110.1
O4A—C4A—C3A108.0 (4)O4C—C4C—C3C107.2 (4)
O4A—C4A—C5A105.5 (4)O4C—C4C—C5C106.2 (4)
C3A—C4A—C5A111.7 (4)C3C—C4C—C5C111.5 (4)
O4A—C4A—H4A110.5O4C—C4C—H4C110.6
C3A—C4A—H4A110.5C3C—C4C—H4C110.6
C5A—C4A—H4A110.5C5C—C4C—H4C110.6
O5A—C5A—C6A106.0 (4)O5C—C5C—C6C106.9 (4)
O5A—C5A—C4A108.8 (4)O5C—C5C—C4C109.4 (4)
C6A—C5A—C4A113.1 (4)C6C—C5C—C4C110.7 (4)
O5A—C5A—H5A109.6O5C—C5C—H5C109.9
C6A—C5A—H5A109.6C6C—C5C—H5C109.9
C4A—C5A—H5A109.6C4C—C5C—H5C109.9
C1A—O5A—C5A113.9 (4)C1C—O5C—C5C113.2 (4)
C1B—O1A—C1A111.3 (3)C1D—O1B—C1C112.2 (4)
C21A—O2A—C2A116.2 (4)C21C—O2C—C2C117.1 (4)
O21A—C21A—O2A122.4 (5)O21C—C21C—O2C123.2 (5)
O21A—C21A—C22A125.8 (6)O21C—C21C—C22C124.7 (6)
O2A—C21A—C22A111.8 (5)O2C—C21C—C22C112.0 (5)
C21A—C22A—H22A109.5C21C—C22C—H22G109.5
C21A—C22A—H22B109.5C21C—C22C—H22H109.5
H22A—C22A—H22B109.5H22G—C22C—H22H109.5
C21A—C22A—H22C109.5C21C—C22C—H22I109.5
H22A—C22A—H22C109.5H22G—C22C—H22I109.5
H22B—C22A—H22C109.5H22H—C22C—H22I109.5
C31A—O3A—C3A118.5 (4)C31C—O3C—C3C118.9 (4)
O31A—C31A—O3A122.5 (5)O31C—C31C—O3C123.2 (5)
O31A—C31A—C32A126.9 (5)O31C—C31C—C32C127.5 (5)
O3A—C31A—C32A110.6 (4)O3C—C31C—C32C109.3 (5)
C31A—C32A—H32A109.5C31C—C32C—H32G109.5
C31A—C32A—H32B109.5C31C—C32C—H32H109.5
H32A—C32A—H32B109.5H32G—C32C—H32H109.5
C31A—C32A—H32C109.5C31C—C32C—H32I109.5
H32A—C32A—H32C109.5H32G—C32C—H32I109.5
H32B—C32A—H32C109.5H32H—C32C—H32I109.5
C41A—O4A—C4A118.5 (4)C41C—O4C—C4C119.0 (4)
O41A—C41A—O4A122.5 (5)O41C—C41C—O4C123.0 (6)
O41A—C41A—C42A126.9 (5)O41C—C41C—C42C126.7 (6)
O4A—C41A—C42A110.5 (5)O4C—C41C—C42C110.2 (5)
C41A—C42A—H42A109.5C41C—C42C—H42G109.5
C41A—C42A—H42B109.5C41C—C42C—H42H109.5
H42A—C42A—H42B109.5H42G—C42C—H42H109.5
C41A—C42A—H42C109.5C41C—C42C—H42I109.5
H42A—C42A—H42C109.5H42G—C42C—H42I109.5
H42B—C42A—H42C109.5H42H—C42C—H42I109.5
O51A—C6A—C5A107.2 (4)O51C—C6C—C5C108.5 (4)
O51A—C6A—H6A110.3O51C—C6C—H6E110.0
C5A—C6A—H6A110.3C5C—C6C—H6E110.0
O51A—C6A—H6B110.3O51C—C6C—H6F110.0
C5A—C6A—H6B110.3C5C—C6C—H6F110.0
H6A—C6A—H6B108.5H6E—C6C—H6F108.4
C6A—O51A—S1A119.7 (3)C6C—O51C—S1C118.3 (3)
O52A—S1A—O53A120.8 (3)O53C—S1C—O52C120.5 (2)
O52A—S1A—O51A104.0 (2)O53C—S1C—O51C104.1 (2)
O53A—S1A—O51A108.6 (2)O52C—S1C—O51C108.8 (2)
O52A—S1A—C51A109.5 (3)O53C—S1C—C51C110.2 (2)
O53A—S1A—C51A108.9 (3)O52C—S1C—C51C109.1 (2)
O51A—S1A—C51A103.7 (2)O51C—S1C—C51C102.6 (2)
C52A—C51A—C56A119.3 (5)C56C—C51C—C52C119.7 (5)
C52A—C51A—S1A121.2 (5)C56C—C51C—S1C121.4 (4)
C56A—C51A—S1A119.5 (4)C52C—C51C—S1C118.8 (4)
C53A—C52A—C51A118.5 (6)C53C—C52C—C51C119.7 (5)
C53A—C52A—H52A120.8C53C—C52C—H52C120.1
C51A—C52A—H52A120.8C51C—C52C—H52C120.2
C54A—C53A—C52A123.1 (6)C52C—C53C—C54C121.2 (5)
C54A—C53A—H53A118.5C52C—C53C—H53C119.4
C52A—C53A—H53A118.5C54C—C53C—H53C119.4
C53A—C54A—C55A118.3 (6)C55C—C54C—C53C118.7 (6)
C53A—C54A—C57A121.6 (6)C55C—C54C—C57C120.8 (5)
C55A—C54A—C57A120.1 (6)C53C—C54C—C57C120.5 (5)
C56A—C55A—C54A120.3 (6)C54C—C55C—C56C121.1 (5)
C56A—C55A—H55A119.9C54C—C55C—H55C119.5
C54A—C55A—H55A119.9C56C—C55C—H55C119.5
C55A—C56A—C51A120.5 (5)C51C—C56C—C55C119.6 (5)
C55A—C56A—H56A119.8C51C—C56C—H56C120.2
C51A—C56A—H56A119.8C55C—C56C—H56C120.2
C54A—C57A—H57A109.5C54C—C57C—H57G109.5
C54A—C57A—H57B109.5C54C—C57C—H57H109.5
H57A—C57A—H57B109.5H57G—C57C—H57H109.5
C54A—C57A—H57C109.5C54C—C57C—H57I109.5
H57A—C57A—H57C109.5H57G—C57C—H57I109.5
H57B—C57A—H57C109.5H57H—C57C—H57I109.5
O5B—C1B—O1A111.2 (4)O5D—C1D—O1B110.3 (4)
O5B—C1B—C2B110.0 (4)O5D—C1D—C2D109.3 (4)
O1A—C1B—C2B109.7 (4)O1B—C1D—C2D109.0 (4)
O5B—C1B—H1B108.6O5D—C1D—H1D109.4
O1A—C1B—H1B108.6O1B—C1D—H1D109.4
C2B—C1B—H1B108.6C2D—C1D—H1D109.4
O2B—C2B—C3B108.2 (4)O2D—C2D—C3D107.6 (4)
O2B—C2B—C1B111.1 (4)O2D—C2D—C1D110.6 (4)
C3B—C2B—C1B111.8 (4)C3D—C2D—C1D111.2 (4)
O2B—C2B—H2B108.6O2D—C2D—H2D109.1
C3B—C2B—H2B108.6C3D—C2D—H2D109.1
C1B—C2B—H2B108.6C1D—C2D—H2D109.1
O3B—C3B—C4B110.0 (4)O3D—C3D—C2D108.1 (4)
O3B—C3B—C2B104.8 (4)O3D—C3D—C4D106.9 (4)
C4B—C3B—C2B111.5 (4)C2D—C3D—C4D110.5 (4)
O3B—C3B—H3B110.2O3D—C3D—H3D110.4
C4B—C3B—H3B110.2C2D—C3D—H3D110.4
C2B—C3B—H3B110.2C4D—C3D—H3D110.4
O4B—C4B—C3B110.0 (4)O4D—C4D—C5D108.8 (4)
O4B—C4B—C5B105.3 (4)O4D—C4D—C3D107.4 (4)
C3B—C4B—C5B111.7 (5)C5D—C4D—C3D109.9 (4)
O4B—C4B—H4B109.9O4D—C4D—H4D110.2
C3B—C4B—H4B109.9C5D—C4D—H4D110.2
C5B—C4B—H4B109.9C3D—C4D—H4D110.2
O5B—C5B—C6B106.5 (4)O5D—C5D—C6D107.4 (4)
O5B—C5B—C4B109.4 (4)O5D—C5D—C4D107.8 (4)
C6B—C5B—C4B111.6 (5)C6D—C5D—C4D113.6 (4)
O5B—C5B—H5B109.8O5D—C5D—H5D109.3
C6B—C5B—H5B109.8C6D—C5D—H5D109.3
C4B—C5B—H5B109.8C4D—C5D—H5D109.3
C1B—O5B—C5B113.5 (4)C1D—O5D—C5D114.9 (4)
C21B—O2B—C2B115.2 (4)C21D—O2D—C2D116.7 (4)
O21B—C21B—O2B123.0 (6)O21D—C21D—O2D122.4 (6)
O21B—C21B—C22B126.3 (6)O21D—C21D—C22D126.0 (6)
O2B—C21B—C22B110.6 (5)O2D—C21D—C22D111.7 (5)
C21B—C22B—H22D109.5C21D—C22D—H22J109.5
C21B—C22B—H22E109.5C21D—C22D—H22K109.5
H22D—C22B—H22E109.5H22J—C22D—H22K109.5
C21B—C22B—H22F109.5C21D—C22D—H22L109.5
H22D—C22B—H22F109.5H22J—C22D—H22L109.5
H22E—C22B—H22F109.5H22K—C22D—H22L109.5
C31B—O3B—C3B119.2 (4)C31D—O3D—C3D118.1 (4)
O31B—C31B—O3B123.1 (5)O31D—C31D—O3D123.0 (5)
O31B—C31B—C32B125.8 (5)O31D—C31D—C32D125.6 (6)
O3B—C31B—C32B111.2 (5)O3D—C31D—C32D111.4 (5)
C31B—C32B—H32D109.5C31D—C32D—H32J109.5
C31B—C32B—H32E109.5C31D—C32D—H32K109.5
H32D—C32B—H32E109.5H32J—C32D—H32K109.5
C31B—C32B—H32F109.5C31D—C32D—H32L109.5
H32D—C32B—H32F109.5H32J—C32D—H32L109.5
H32E—C32B—H32F109.5H32K—C32D—H32L109.5
C41B—O4B—C4B118.3 (4)C41D—O4D—C4D117.4 (4)
O41B—C41B—O4B124.2 (6)O41D—C41D—O4D123.9 (6)
O41B—C41B—C42B125.4 (6)O41D—C41D—C42D125.0 (6)
O4B—C41B—C42B110.5 (5)O4D—C41D—C42D111.0 (5)
C41B—C42B—H42D109.5C41D—C42D—H42J109.5
C41B—C42B—H42E109.5C41D—C42D—H42K109.5
H42D—C42B—H42E109.5H42J—C42D—H42K109.5
C41B—C42B—H42F109.5C41D—C42D—H42L109.5
H42D—C42B—H42F109.5H42J—C42D—H42L109.5
H42E—C42B—H42F109.5H42K—C42D—H42L109.5
O51B—C6B—C5B105.9 (4)O51D—C6D—C5D109.9 (4)
O51B—C6B—H6C110.6O51D—C6D—H61G109.7
C5B—C6B—H6C110.6C5D—C6D—H61G109.7
O51B—C6B—H6D110.6O51D—C6D—H61H109.7
C5B—C6B—H6D110.6C5D—C6D—H61H109.7
H6C—C6B—H6D108.7H61G—C6D—H61H108.2
C6B—O51B—S1B116.1 (3)C6D—O51D—S1D120.5 (3)
O52B—S1B—O53B117.2 (3)O53D—S1D—O52D119.8 (3)
O52B—S1B—O51B109.0 (2)O53D—S1D—O51D108.1 (2)
O53B—S1B—O51B109.4 (2)O52D—S1D—O51D109.0 (2)
O52B—S1B—C51B111.3 (3)O53D—S1D—C51D110.0 (3)
O53B—S1B—C51B110.1 (3)O52D—S1D—C51D108.3 (3)
O51B—S1B—C51B98.2 (2)O51D—S1D—C51D99.7 (2)
C56B—C51B—C52B120.8 (6)C56D—C51D—C52D120.5 (6)
C56B—C51B—S1B120.2 (5)C56D—C51D—S1D119.8 (5)
C52B—C51B—S1B119.0 (5)C52D—C51D—S1D119.7 (4)
C53B—C52B—C51B117.7 (7)C51D—C52D—C53D119.5 (6)
C53B—C52B—H52B121.2C51D—C52D—H52D120.2
C51B—C52B—H52B121.2C53D—C52D—H52D120.2
C52B—C53B—C54B122.5 (7)C54D—C53D—C52D120.5 (6)
C52B—C53B—H53B118.8C54D—C53D—H53D119.7
C54B—C53B—H53B118.8C52D—C53D—H53D119.7
C53B—C54B—C55B119.4 (7)C53D—C54D—C55D119.4 (6)
C53B—C54B—C57B121.2 (8)C53D—C54D—C57D120.6 (6)
C55B—C54B—C57B119.4 (8)C55D—C54D—C57D120.0 (6)
C54B—C55B—C56B119.3 (7)C54D—C55D—C56D120.1 (6)
C54B—C55B—H55B120.3C54D—C55D—H55D120.0
C56B—C55B—H55B120.3C56D—C55D—H55D120.0
C51B—C56B—C55B120.3 (7)C51D—C56D—C55D120.0 (6)
C51B—C56B—H56B119.8C51D—C56D—H56D120.0
C55B—C56B—H56B119.8C55D—C56D—H56D120.0
C54B—C57B—H57D109.5C54D—C57D—H57J109.5
C54B—C57B—H57E109.5C54D—C57D—H57K109.5
H57D—C57B—H57E109.5H57J—C57D—H57K109.5
C54B—C57B—H57F109.5C54D—C57D—H57L109.5
H57D—C57B—H57F109.5H57J—C57D—H57L109.5
H57E—C57B—H57F109.5H57K—C57D—H57L109.5
O5A—C1A—C2A—O2A176.1 (4)O5C—C1C—C2C—O2C174.0 (4)
O1A—C1A—C2A—O2A54.3 (5)O1B—C1C—C2C—O2C51.9 (5)
O5A—C1A—C2A—C3A56.0 (5)O5C—C1C—C2C—C3C55.0 (5)
O1A—C1A—C2A—C3A65.8 (5)O1B—C1C—C2C—C3C67.1 (5)
O2A—C2A—C3A—O3A69.6 (5)O2C—C2C—C3C—O3C70.3 (5)
C1A—C2A—C3A—O3A168.8 (4)C1C—C2C—C3C—O3C168.3 (4)
O2A—C2A—C3A—C4A173.1 (4)O2C—C2C—C3C—C4C170.9 (4)
C1A—C2A—C3A—C4A51.5 (5)C1C—C2C—C3C—C4C49.5 (6)
O3A—C3A—C4A—O4A77.1 (4)O3C—C3C—C4C—O4C77.9 (5)
C2A—C3A—C4A—O4A166.6 (4)C2C—C3C—C4C—O4C165.4 (4)
O3A—C3A—C4A—C5A167.3 (4)O3C—C3C—C4C—C5C166.2 (4)
C2A—C3A—C4A—C5A51.1 (5)C2C—C3C—C4C—C5C49.6 (5)
O4A—C4A—C5A—O5A170.5 (4)O4C—C4C—C5C—O5C171.0 (4)
C3A—C4A—C5A—O5A53.4 (5)C3C—C4C—C5C—O5C54.6 (5)
O4A—C4A—C5A—C6A72.0 (5)O4C—C4C—C5C—C6C71.5 (5)
C3A—C4A—C5A—C6A170.9 (4)C3C—C4C—C5C—C6C172.1 (4)
O1A—C1A—O5A—C5A58.6 (5)O1B—C1C—O5C—C5C58.2 (5)
C2A—C1A—O5A—C5A61.9 (5)C2C—C1C—O5C—C5C62.4 (5)
C6A—C5A—O5A—C1A177.8 (4)C6C—C5C—O5C—C1C177.6 (4)
C4A—C5A—O5A—C1A60.3 (5)C4C—C5C—O5C—C1C62.5 (5)
O5A—C1A—O1A—C1B78.4 (5)O5C—C1C—O1B—C1D82.7 (5)
C2A—C1A—O1A—C1B160.4 (4)C2C—C1C—O1B—C1D156.2 (4)
C3A—C2A—O2A—C21A148.5 (4)C1C—C2C—O2C—C21C103.2 (5)
C1A—C2A—O2A—C21A89.9 (5)C3C—C2C—O2C—C21C134.9 (4)
C2A—O2A—C21A—O21A2.3 (7)C2C—O2C—C21C—O21C4.7 (7)
C2A—O2A—C21A—C22A176.9 (4)C2C—O2C—C21C—C22C174.2 (4)
C4A—C3A—O3A—C31A103.8 (5)C4C—C3C—O3C—C31C100.5 (5)
C2A—C3A—O3A—C31A136.7 (4)C2C—C3C—O3C—C31C139.7 (5)
C3A—O3A—C31A—O31A0.5 (8)C3C—O3C—C31C—O31C3.1 (9)
C3A—O3A—C31A—C32A178.8 (5)C3C—O3C—C31C—C32C176.5 (5)
C3A—C4A—O4A—C41A101.8 (5)C3C—C4C—O4C—C41C98.6 (5)
C5A—C4A—O4A—C41A138.6 (5)C5C—C4C—O4C—C41C142.1 (5)
C4A—O4A—C41A—O41A5.8 (9)C4C—O4C—C41C—O41C4.4 (9)
C4A—O4A—C41A—C42A170.9 (4)C4C—O4C—C41C—C42C171.7 (5)
O5A—C5A—C6A—O51A74.2 (4)O5C—C5C—C6C—O51C76.3 (5)
C4A—C5A—C6A—O51A166.6 (4)C4C—C5C—C6C—O51C164.7 (4)
C5A—C6A—O51A—S1A143.4 (3)C5C—C6C—O51C—S1C134.8 (4)
C6A—O51A—S1A—O52A169.5 (4)C6C—O51C—S1C—O53C173.2 (4)
C6A—O51A—S1A—O53A39.7 (4)C6C—O51C—S1C—O52C43.6 (4)
C6A—O51A—S1A—C51A76.0 (4)C6C—O51C—S1C—C51C71.9 (4)
O52A—S1A—C51A—C52A126.7 (5)O53C—S1C—C51C—C56C142.1 (4)
O53A—S1A—C51A—C52A7.3 (6)O52C—S1C—C51C—C56C7.8 (5)
O51A—S1A—C51A—C52A122.8 (5)O51C—S1C—C51C—C56C107.5 (5)
O52A—S1A—C51A—C56A51.5 (5)O53C—S1C—C51C—C52C40.3 (5)
O53A—S1A—C51A—C56A174.6 (4)O52C—S1C—C51C—C52C174.7 (4)
O51A—S1A—C51A—C56A59.1 (5)O51C—S1C—C51C—C52C70.0 (4)
C56A—C51A—C52A—C53A0.8 (10)C56C—C51C—C52C—C53C0.8 (8)
S1A—C51A—C52A—C53A177.4 (5)S1C—C51C—C52C—C53C176.8 (4)
C51A—C52A—C53A—C54A2.7 (11)C51C—C52C—C53C—C54C0.7 (8)
C52A—C53A—C54A—C55A2.4 (11)C52C—C53C—C54C—C55C0.1 (8)
C52A—C53A—C54A—C57A178.0 (7)C52C—C53C—C54C—C57C179.7 (5)
C53A—C54A—C55A—C56A0.1 (10)C53C—C54C—C55C—C56C0.4 (9)
C57A—C54A—C55A—C56A179.8 (6)C57C—C54C—C55C—C56C179.8 (5)
C54A—C55A—C56A—C51A1.7 (9)C52C—C51C—C56C—C55C0.3 (8)
C52A—C51A—C56A—C55A1.4 (9)S1C—C51C—C56C—C55C177.3 (4)
S1A—C51A—C56A—C55A179.6 (5)C54C—C55C—C56C—C51C0.3 (9)
C1A—O1A—C1B—O5B81.9 (5)C1C—O1B—C1D—O5D83.6 (5)
C1A—O1A—C1B—C2B156.2 (4)C1C—O1B—C1D—C2D156.5 (4)
O5B—C1B—C2B—O2B174.9 (4)O5D—C1D—C2D—O2D173.5 (4)
O1A—C1B—C2B—O2B52.3 (6)O1B—C1D—C2D—O2D52.9 (5)
O5B—C1B—C2B—C3B54.0 (6)O5D—C1D—C2D—C3D54.1 (5)
O1A—C1B—C2B—C3B68.6 (6)O1B—C1D—C2D—C3D66.6 (5)
O2B—C2B—C3B—O3B69.9 (5)O2D—C2D—C3D—O3D69.8 (5)
C1B—C2B—C3B—O3B167.5 (4)C1D—C2D—C3D—O3D169.0 (4)
O2B—C2B—C3B—C4B171.1 (4)O2D—C2D—C3D—C4D173.6 (4)
C1B—C2B—C3B—C4B48.6 (6)C1D—C2D—C3D—C4D52.3 (5)
O3B—C3B—C4B—O4B78.7 (5)O3D—C3D—C4D—O4D70.1 (5)
C2B—C3B—C4B—O4B165.6 (4)C2D—C3D—C4D—O4D172.6 (4)
O3B—C3B—C4B—C5B164.8 (4)O3D—C3D—C4D—C5D171.7 (4)
C2B—C3B—C4B—C5B49.0 (6)C2D—C3D—C4D—C5D54.4 (5)
O4B—C4B—C5B—O5B173.4 (4)O4D—C4D—C5D—O5D174.6 (4)
C3B—C4B—C5B—O5B54.0 (5)C3D—C4D—C5D—O5D57.3 (5)
O4B—C4B—C5B—C6B69.0 (5)O4D—C4D—C5D—C6D66.6 (5)
C3B—C4B—C5B—C6B171.6 (5)C3D—C4D—C5D—C6D176.1 (4)
O1A—C1B—O5B—C5B59.9 (5)O1B—C1D—O5D—C5D58.6 (5)
C2B—C1B—O5B—C5B61.8 (5)C2D—C1D—O5D—C5D61.2 (5)
C6B—C5B—O5B—C1B177.4 (4)C6D—C5D—O5D—C1D174.1 (4)
C4B—C5B—O5B—C1B61.9 (5)C4D—C5D—O5D—C1D63.2 (5)
C3B—C2B—O2B—C21B146.7 (4)C3D—C2D—O2D—C21D150.4 (4)
C1B—C2B—O2B—C21B90.3 (5)C1D—C2D—O2D—C21D88.0 (5)
C2B—O2B—C21B—O21B3.9 (7)C2D—O2D—C21D—O21D5.1 (7)
C2B—O2B—C21B—C22B174.2 (4)C2D—O2D—C21D—C22D174.6 (4)
C4B—C3B—O3B—C31B97.5 (5)C2D—C3D—O3D—C31D114.8 (5)
C2B—C3B—O3B—C31B142.6 (5)C4D—C3D—O3D—C31D126.3 (5)
C3B—O3B—C31B—O31B1.5 (8)C3D—O3D—C31D—O31D0.5 (8)
C3B—O3B—C31B—C32B178.6 (5)C3D—O3D—C31D—C32D179.8 (5)
C3B—C4B—O4B—C41B91.9 (5)C5D—C4D—O4D—C41D138.2 (5)
C5B—C4B—O4B—C41B147.6 (5)C3D—C4D—O4D—C41D102.9 (5)
C4B—O4B—C41B—O41B4.5 (9)C4D—O4D—C41D—O41D6.2 (9)
C4B—O4B—C41B—C42B175.2 (5)C4D—O4D—C41D—C42D171.4 (5)
O5B—C5B—C6B—O51B67.5 (5)O5D—C5D—C6D—O51D69.8 (5)
C4B—C5B—C6B—O51B173.3 (4)C4D—C5D—C6D—O51D171.1 (4)
C5B—C6B—O51B—S1B173.1 (3)C5D—C6D—O51D—S1D96.9 (5)
C6B—O51B—S1B—O52B52.3 (4)C6D—O51D—S1D—O53D29.9 (5)
C6B—O51B—S1B—O53B77.0 (4)C6D—O51D—S1D—O52D101.9 (4)
C6B—O51B—S1B—C51B168.3 (4)C6D—O51D—S1D—C51D144.7 (4)
O52B—S1B—C51B—C56B134.8 (5)O53D—S1D—C51D—C56D157.1 (5)
O53B—S1B—C51B—C56B3.2 (6)O52D—S1D—C51D—C56D24.4 (6)
O51B—S1B—C51B—C56B111.1 (5)O51D—S1D—C51D—C56D89.5 (5)
O52B—S1B—C51B—C52B46.3 (6)O53D—S1D—C51D—C52D23.9 (6)
O53B—S1B—C51B—C52B177.9 (5)O52D—S1D—C51D—C52D156.6 (5)
O51B—S1B—C51B—C52B67.8 (5)O51D—S1D—C51D—C52D89.6 (5)
C56B—C51B—C52B—C53B2.0 (9)C56D—C51D—C52D—C53D2.1 (10)
S1B—C51B—C52B—C53B176.8 (5)S1D—C51D—C52D—C53D178.9 (5)
C51B—C52B—C53B—C54B0.1 (10)C51D—C52D—C53D—C54D1.0 (10)
C52B—C53B—C54B—C55B2.4 (11)C52D—C53D—C54D—C55D0.3 (10)
C52B—C53B—C54B—C57B175.7 (7)C52D—C53D—C54D—C57D179.1 (6)
C53B—C54B—C55B—C56B2.8 (11)C53D—C54D—C55D—C56D0.7 (10)
C57B—C54B—C55B—C56B175.3 (6)C57D—C54D—C55D—C56D179.4 (6)
C52B—C51B—C56B—C55B1.6 (10)C52D—C51D—C56D—C55D1.8 (9)
S1B—C51B—C56B—C55B177.3 (5)S1D—C51D—C56D—C55D179.2 (5)
C54B—C55B—C56B—C51B0.9 (11)C54D—C55D—C56D—C51D0.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4C—H4C···O41Di1.002.463.365 (7)150
C6C—H6F···O41Di0.992.493.272 (6)136
C55C—H55C···O31Bii0.952.413.313 (7)160
C53D—H53D···Cg1iii0.952.663.418 (7)137
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1, z; (iii) x+1/2, y+2, z+1/2.
(7) 2,2',3,3',4,4'-Hexaacetato-6,6'-diazido-α,α'-trehalose ethanol solvate top
Crystal data top
C24H32N6O15·0.35(C2H6O)F(000) = 1388.4
Mr = 660.68Dx = 1.272 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4368 reflections
a = 12.2281 (4) Åθ = 3.1–27.5°
b = 15.5803 (6) ŵ = 0.11 mm1
c = 18.1066 (8) ÅT = 150 K
V = 3449.6 (2) Å3Block, colourless
Z = 40.50 × 0.30 × 0.25 mm
Data collection top
Kappa-CCD
diffractometer
4368 independent reflections
Radiation source: rotating anode2580 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1215
Tmin = 0.942, Tmax = 0.974k = 1820
17686 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1153P)2]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C24H32N6O15·0.35(C2H6O)V = 3449.6 (2) Å3
Mr = 660.68Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.2281 (4) ŵ = 0.11 mm1
b = 15.5803 (6) ÅT = 150 K
c = 18.1066 (8) Å0.50 × 0.30 × 0.25 mm
Data collection top
Kappa-CCD
diffractometer
4368 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2580 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.974Rint = 0.104
17686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 0.99Δρmax = 0.43 e Å3
4368 reflectionsΔρmin = 0.43 e Å3
439 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.7273 (4)0.5181 (3)0.4466 (3)0.0365 (10)
C2A0.7742 (4)0.4712 (3)0.3810 (2)0.0336 (10)
C3A0.8923 (4)0.4959 (3)0.3658 (2)0.0330 (10)
C4A0.9075 (3)0.5916 (3)0.3666 (2)0.0319 (10)
C5A0.8580 (3)0.6310 (3)0.4358 (2)0.0323 (9)
O5A0.7436 (2)0.60728 (18)0.43835 (16)0.0345 (7)
O2A0.7729 (3)0.3800 (2)0.39166 (17)0.0405 (8)
C21A0.6879 (4)0.3350 (3)0.3645 (3)0.0465 (13)
O21A0.6104 (3)0.3700 (3)0.3364 (2)0.0626 (11)
C22A0.7051 (5)0.2414 (3)0.3729 (4)0.0600 (16)
O3A0.9178 (2)0.4638 (2)0.29326 (16)0.0368 (7)
C31A1.0100 (4)0.4164 (3)0.2837 (3)0.0431 (12)
O31A1.0708 (3)0.4003 (3)0.3329 (2)0.0623 (11)
C32A1.0201 (5)0.3898 (4)0.2051 (3)0.0566 (15)
O4A1.0246 (2)0.6075 (2)0.36833 (17)0.0380 (8)
C41A1.0734 (4)0.6307 (3)0.3050 (3)0.0400 (11)
O41A1.0256 (3)0.6505 (3)0.2501 (2)0.0739 (13)
C42A1.1956 (4)0.6277 (4)0.3128 (3)0.0519 (14)
C6A0.8601 (4)0.7286 (3)0.4344 (3)0.0400 (11)
N61A0.8151 (4)0.7641 (3)0.5034 (3)0.0507 (11)
N62A0.7133 (5)0.7705 (4)0.5022 (3)0.0755 (16)
N63A0.6214 (6)0.7808 (6)0.5069 (5)0.130 (3)
O1A0.7745 (3)0.4874 (2)0.51250 (16)0.0361 (7)
C1B0.7050 (4)0.4999 (3)0.5742 (2)0.0368 (11)
C2B0.7717 (4)0.4976 (3)0.6441 (2)0.0361 (11)
C3B0.8181 (4)0.4091 (3)0.6604 (2)0.0368 (11)
C4B0.7299 (4)0.3419 (3)0.6550 (3)0.0412 (11)
C5B0.6655 (4)0.3517 (3)0.5831 (3)0.0431 (12)
O5B0.6234 (3)0.4363 (2)0.57713 (17)0.0434 (8)
O2B0.8642 (3)0.5549 (2)0.64116 (18)0.0393 (8)
C21B0.8466 (4)0.6365 (3)0.6612 (3)0.0432 (12)
O21B0.7572 (4)0.6626 (2)0.6776 (3)0.0691 (12)
C22B0.9484 (5)0.6890 (3)0.6601 (3)0.0539 (14)
O3B0.8586 (3)0.4111 (2)0.73484 (17)0.0398 (8)
C31B0.9673 (4)0.4051 (3)0.7473 (3)0.0474 (13)
O31B1.0329 (4)0.3954 (4)0.6980 (3)0.1026 (19)
C32B0.9931 (4)0.4164 (3)0.8266 (3)0.0473 (13)
O4B0.7800 (3)0.2568 (2)0.65226 (18)0.0443 (9)
C41B0.7822 (4)0.2105 (3)0.7152 (3)0.0413 (11)
O41B0.7506 (3)0.2380 (2)0.77264 (19)0.0526 (9)
C42B0.8330 (4)0.1250 (3)0.7022 (3)0.0532 (14)
C6B0.5673 (5)0.2906 (4)0.5805 (3)0.0564 (15)
N61B0.5151 (5)0.2915 (4)0.5069 (3)0.0709 (15)
N62B0.4528 (7)0.3508 (6)0.4967 (3)0.090 (2)
N63B0.3935 (8)0.4041 (8)0.4793 (5)0.146 (4)
O1000.3909 (11)0.5325 (8)1.0278 (6)0.072 (3)0.35
C1010.3130 (10)0.5005 (8)1.0798 (7)0.050 (4)0.35
C1020.2538 (10)0.4881 (8)1.1251 (7)0.088 (7)0.35
H1A0.64680.50690.44840.044*
H2A0.72930.48530.33650.040*
H3A0.94140.46860.40320.040*
H4A0.87430.61790.32150.038*
H5A0.89670.60920.48070.039*
H22A0.76740.22350.34260.090*
H22B0.63930.21070.35690.090*
H22C0.72000.22810.42480.090*
H32A1.08780.35710.19840.085*
H32B1.02160.44080.17350.085*
H32C0.95740.35380.19160.085*
H42A1.22430.68630.31630.078*
H42B1.22740.59910.26970.078*
H42C1.21490.59580.35760.078*
H6A0.93630.74870.42790.048*
H6B0.81660.74950.39200.048*
H1B0.66920.55740.56990.044*
H2B0.72380.51520.68630.043*
H3B0.87890.39560.62540.044*
H4B0.67950.34610.69830.049*
H5B0.71470.33970.54020.052*
H22D0.95040.72610.70380.081*
H22E0.94960.72460.61540.081*
H22F1.01220.65100.66030.081*
H32D0.98170.47650.84050.071*
H32E1.06950.40060.83550.071*
H32F0.94510.37960.85620.071*
H42D0.83380.09230.74840.080*
H42E0.90810.13270.68450.080*
H42F0.79060.09360.66500.080*
H6C0.59190.23160.59220.068*
H6D0.51320.30800.61840.068*
H1000.3970 (10)0.4977 (8)0.9940 (7)0.109*0.35
H10A0.26180.48091.04090.060*0.35
H10B0.35630.44831.09060.060*0.35
H10C0.17910.49301.10610.132*0.35
H10D0.26480.53021.16470.132*0.35
H10E0.26530.43011.14470.132*0.35
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.020 (2)0.048 (3)0.041 (2)0.007 (2)0.001 (2)0.004 (2)
C2A0.019 (2)0.045 (2)0.037 (2)0.003 (2)0.0033 (19)0.002 (2)
C3A0.020 (2)0.045 (3)0.034 (2)0.0021 (19)0.0006 (18)0.002 (2)
C4A0.013 (2)0.047 (2)0.035 (2)0.0022 (19)0.0002 (18)0.003 (2)
C5A0.016 (2)0.046 (2)0.034 (2)0.0018 (19)0.0015 (18)0.003 (2)
O5A0.0159 (15)0.0456 (17)0.0418 (16)0.0010 (13)0.0018 (13)0.0002 (14)
O2A0.0285 (18)0.0421 (17)0.0509 (18)0.0054 (15)0.0080 (15)0.0033 (15)
C21A0.037 (3)0.054 (3)0.049 (3)0.009 (3)0.000 (3)0.010 (3)
O21A0.036 (2)0.068 (2)0.085 (3)0.008 (2)0.019 (2)0.006 (2)
C22A0.054 (4)0.051 (3)0.075 (4)0.015 (3)0.005 (3)0.004 (3)
O3A0.0211 (16)0.0537 (19)0.0355 (16)0.0093 (15)0.0023 (13)0.0058 (14)
C31A0.025 (3)0.052 (3)0.052 (3)0.004 (2)0.004 (2)0.004 (2)
O31A0.035 (2)0.095 (3)0.056 (2)0.028 (2)0.0089 (18)0.007 (2)
C32A0.034 (3)0.076 (4)0.060 (3)0.013 (3)0.004 (3)0.015 (3)
O4A0.0140 (14)0.057 (2)0.0433 (18)0.0028 (14)0.0025 (13)0.0059 (15)
C41A0.022 (2)0.049 (3)0.049 (3)0.003 (2)0.006 (2)0.001 (2)
O41A0.039 (2)0.128 (4)0.055 (2)0.010 (2)0.005 (2)0.035 (3)
C42A0.020 (3)0.059 (3)0.077 (4)0.002 (2)0.016 (2)0.004 (3)
C6A0.027 (3)0.053 (3)0.040 (2)0.002 (2)0.003 (2)0.003 (2)
N61A0.043 (3)0.057 (3)0.052 (3)0.009 (2)0.004 (2)0.010 (2)
N62A0.056 (4)0.098 (4)0.072 (3)0.011 (3)0.009 (3)0.036 (3)
N63A0.043 (4)0.196 (8)0.152 (7)0.016 (5)0.030 (4)0.085 (6)
O1A0.0240 (17)0.0496 (17)0.0346 (16)0.0017 (14)0.0030 (13)0.0027 (14)
C1B0.026 (2)0.048 (3)0.036 (2)0.006 (2)0.0053 (19)0.005 (2)
C2B0.027 (3)0.045 (2)0.036 (2)0.006 (2)0.006 (2)0.002 (2)
C3B0.032 (3)0.044 (3)0.035 (2)0.006 (2)0.010 (2)0.005 (2)
C4B0.036 (3)0.045 (3)0.043 (3)0.008 (2)0.010 (2)0.003 (2)
C5B0.034 (3)0.054 (3)0.041 (3)0.011 (2)0.006 (2)0.000 (2)
O5B0.0256 (17)0.062 (2)0.0429 (18)0.0110 (15)0.0048 (14)0.0022 (16)
O2B0.0272 (17)0.0419 (18)0.0489 (18)0.0037 (14)0.0057 (15)0.0024 (15)
C21B0.041 (3)0.043 (3)0.045 (3)0.000 (2)0.002 (2)0.003 (2)
O21B0.046 (3)0.051 (2)0.110 (3)0.003 (2)0.007 (2)0.013 (2)
C22B0.044 (3)0.050 (3)0.067 (3)0.013 (2)0.002 (3)0.004 (3)
O3B0.0251 (17)0.0524 (19)0.0420 (17)0.0032 (15)0.0022 (14)0.0021 (15)
C31B0.031 (3)0.048 (3)0.063 (3)0.018 (2)0.004 (3)0.004 (3)
O31B0.049 (3)0.183 (6)0.076 (3)0.053 (4)0.011 (2)0.020 (3)
C32B0.029 (3)0.052 (3)0.061 (3)0.012 (2)0.004 (2)0.002 (3)
O4B0.045 (2)0.0426 (18)0.0451 (19)0.0080 (16)0.0135 (16)0.0029 (15)
C41B0.029 (3)0.049 (3)0.046 (3)0.008 (2)0.000 (2)0.003 (2)
O41B0.049 (2)0.065 (2)0.043 (2)0.0018 (19)0.0064 (17)0.0025 (17)
C42B0.036 (3)0.057 (3)0.066 (3)0.003 (2)0.005 (3)0.004 (3)
C6B0.051 (3)0.074 (4)0.044 (3)0.032 (3)0.000 (3)0.005 (3)
N61B0.064 (4)0.096 (4)0.053 (3)0.026 (3)0.007 (3)0.012 (3)
N62B0.077 (5)0.139 (7)0.054 (3)0.018 (5)0.015 (3)0.010 (4)
N63B0.116 (7)0.226 (11)0.098 (6)0.057 (8)0.042 (5)0.040 (6)
O1000.073 (9)0.087 (8)0.057 (7)0.007 (7)0.022 (6)0.014 (6)
C1010.034 (8)0.066 (10)0.050 (9)0.002 (7)0.012 (7)0.029 (8)
C1020.049 (11)0.138 (18)0.077 (13)0.024 (12)0.014 (10)0.083 (13)
Geometric parameters (Å, º) top
C1A—O1A1.409 (5)C2B—O2B1.441 (5)
C1A—O5A1.411 (5)C2B—C3B1.521 (7)
C1A—C2A1.508 (6)C2B—H2B1.00
C1A—H1A1.00C3B—O3B1.436 (6)
C2A—O2A1.434 (6)C3B—C4B1.506 (6)
C2A—C3A1.520 (6)C3B—H3B1.00
C2A—H2A1.00C4B—O4B1.461 (6)
C3A—O3A1.440 (5)C4B—C5B1.529 (7)
C3A—C4A1.504 (6)C4B—H4B1.00
C3A—H3A1.00C5B—O5B1.419 (6)
C4A—O4A1.454 (5)C5B—C6B1.533 (7)
C4A—C5A1.520 (6)C5B—H5B1.00
C4A—H4A1.00O2B—C21B1.340 (6)
C5A—O5A1.448 (5)C21B—O21B1.203 (6)
C5A—C6A1.521 (6)C21B—C22B1.490 (7)
C5A—H5A1.00C22B—H22D0.98
O2A—C21A1.346 (6)C22B—H22E0.98
C21A—O21A1.205 (6)C22B—H22F0.98
C21A—C22A1.482 (8)O3B—C31B1.352 (6)
C22A—H22A0.98C31B—O31B1.210 (7)
C22A—H22B0.98C31B—C32B1.480 (8)
C22A—H22C0.98C32B—H32D0.98
O3A—C31A1.359 (6)C32B—H32E0.98
C31A—O31A1.188 (6)C32B—H32F0.98
C31A—C32A1.487 (7)O4B—C41B1.350 (6)
C32A—H32A0.98C41B—O41B1.189 (6)
C32A—H32B0.98C41B—C42B1.489 (8)
C32A—H32C0.98C42B—H42D0.98
O4A—C41A1.342 (6)C42B—H42E0.98
C41A—O41A1.194 (6)C42B—H42F0.98
C41A—C42A1.503 (7)C6B—N61B1.478 (8)
C42A—H42A0.98C6B—H6C0.99
C42A—H42B0.98C6B—H6D0.99
C42A—H42C0.98N61B—N62B1.211 (10)
C6A—N61A1.473 (7)N62B—N63B1.146 (11)
C6A—H6A0.99O100—C1011.430 (18)
C6A—H6B0.99O100—H1000.822 (18)
N61A—N62A1.249 (7)C101—C1021.1108
N62A—N63A1.138 (8)C101—H10A0.99
O1A—C1B1.417 (5)C101—H10B0.99
C1B—O5B1.407 (6)C102—H10C0.98
C1B—C2B1.506 (6)C102—H10D0.98
C1B—H1B1.00C102—H10E0.98
O1A—C1A—O5A111.5 (3)O2B—C2B—C1B112.3 (3)
O1A—C1A—C2A110.3 (3)O2B—C2B—C3B106.0 (4)
O5A—C1A—C2A109.9 (4)C1B—C2B—C3B112.8 (4)
O1A—C1A—H1A108.4O2B—C2B—H2B108.5
O5A—C1A—H1A108.4C1B—C2B—H2B108.5
C2A—C1A—H1A108.4C3B—C2B—H2B108.5
O2A—C2A—C1A111.7 (3)O3B—C3B—C4B108.9 (4)
O2A—C2A—C3A106.6 (3)O3B—C3B—C2B106.9 (3)
C1A—C2A—C3A112.4 (3)C4B—C3B—C2B110.5 (4)
O2A—C2A—H2A108.7O3B—C3B—H3B110.1
C1A—C2A—H2A108.7C4B—C3B—H3B110.1
C3A—C2A—H2A108.7C2B—C3B—H3B110.1
O3A—C3A—C4A109.1 (3)O4B—C4B—C3B109.4 (4)
O3A—C3A—C2A106.5 (3)O4B—C4B—C5B106.2 (4)
C4A—C3A—C2A111.5 (4)C3B—C4B—C5B110.8 (4)
O3A—C3A—H3A109.9O4B—C4B—H4B110.1
C4A—C3A—H3A109.9C3B—C4B—H4B110.1
C2A—C3A—H3A109.9C5B—C4B—H4B110.1
O4A—C4A—C3A106.9 (3)O5B—C5B—C4B110.1 (4)
O4A—C4A—C5A107.8 (3)O5B—C5B—C6B106.9 (4)
C3A—C4A—C5A111.0 (4)C4B—C5B—C6B111.5 (4)
O4A—C4A—H4A110.3O5B—C5B—H5B109.4
C3A—C4A—H4A110.3C4B—C5B—H5B109.4
C5A—C4A—H4A110.3C6B—C5B—H5B109.4
O5A—C5A—C4A107.9 (3)C1B—O5B—C5B113.6 (3)
O5A—C5A—C6A105.8 (3)C21B—O2B—C2B116.9 (4)
C4A—C5A—C6A112.5 (4)O21B—C21B—O2B122.2 (5)
O5A—C5A—H5A110.2O21B—C21B—C22B125.3 (5)
C4A—C5A—H5A110.2O2B—C21B—C22B112.6 (5)
C6A—C5A—H5A110.2C21B—C22B—H22D109.5
C1A—O5A—C5A113.0 (3)C21B—C22B—H22E109.5
C21A—O2A—C2A118.3 (4)H22D—C22B—H22E109.5
O21A—C21A—O2A121.8 (5)C21B—C22B—H22F109.5
O21A—C21A—C22A126.8 (5)H22D—C22B—H22F109.5
O2A—C21A—C22A111.4 (5)H22E—C22B—H22F109.5
C21A—C22A—H22A109.5C31B—O3B—C3B119.6 (4)
C21A—C22A—H22B109.5O31B—C31B—O3B122.6 (5)
H22A—C22A—H22B109.5O31B—C31B—C32B126.1 (5)
C21A—C22A—H22C109.5O3B—C31B—C32B111.3 (4)
H22A—C22A—H22C109.5C31B—C32B—H32D109.5
H22B—C22A—H22C109.5C31B—C32B—H32E109.5
C31A—O3A—C3A119.0 (3)H32D—C32B—H32E109.5
O31A—C31A—O3A122.6 (4)C31B—C32B—H32F109.5
O31A—C31A—C32A127.4 (5)H32D—C32B—H32F109.5
O3A—C31A—C32A110.0 (4)H32E—C32B—H32F109.5
C31A—C32A—H32A109.5C41B—O4B—C4B117.7 (4)
C31A—C32A—H32B109.5O41B—C41B—O4B122.6 (5)
H32A—C32A—H32B109.5O41B—C41B—C42B126.7 (5)
C31A—C32A—H32C109.5O4B—C41B—C42B110.6 (4)
H32A—C32A—H32C109.5C41B—C42B—H42D109.5
H32B—C32A—H32C109.5C41B—C42B—H42E109.5
C41A—O4A—C4A117.7 (3)H42D—C42B—H42E109.5
O41A—C41A—O4A124.3 (4)C41B—C42B—H42F109.5
O41A—C41A—C42A125.0 (5)H42D—C42B—H42F109.5
O4A—C41A—C42A110.6 (4)H42E—C42B—H42F109.5
C41A—C42A—H42A109.5N61B—C6B—C5B111.1 (4)
C41A—C42A—H42B109.5N61B—C6B—H6C109.4
H42A—C42A—H42B109.5C5B—C6B—H6C109.4
C41A—C42A—H42C109.5N61B—C6B—H6D109.4
H42A—C42A—H42C109.5C5B—C6B—H6D109.4
H42B—C42A—H42C109.5H6C—C6B—H6D108.0
N61A—C6A—C5A110.8 (4)N62B—N61B—C6B114.7 (6)
N61A—C6A—H6A109.5N63B—N62B—N61B172.7 (8)
C5A—C6A—H6A109.5C101—O100—H100108.7 (17)
N61A—C6A—H6B109.5C102—C101—O100168.9 (7)
C5A—C6A—H6B109.5C102—C101—H10A93.4
H6A—C6A—H6B108.1O100—C101—H10A93.4
N62A—N61A—C6A112.8 (4)C102—C101—H10B93.4
N63A—N62A—N61A173.7 (7)O100—C101—H10B93.4
C1A—O1A—C1B112.0 (3)H10A—C101—H10B103.1
O5B—C1B—O1A111.0 (3)C101—C102—H10C109.5
O5B—C1B—C2B109.6 (4)C101—C102—H10D109.5
O1A—C1B—C2B109.5 (4)H10C—C102—H10D109.5
O5B—C1B—H1B108.9C101—C102—H10E109.5
O1A—C1B—H1B108.9H10C—C102—H10E109.5
C2B—C1B—H1B108.9H10D—C102—H10E109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6B···O41Bi0.992.323.268 (6)160
C6B—H6C···O31Aii0.992.483.363 (8)149
C6B—H6D···O41Aiii0.992.523.400 (7)148
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z+1/2.
(8) 2,2',3,3'-Tetraacetato-6,6'-bis(N-acetylamino)-α,α'-trehalose dihydrate top
Crystal data top
C24H36N2O15·2(H2O)F(000) = 668
Mr = 628.58Dx = 1.338 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2067 reflections
a = 8.8385 (2) Åθ = 2.5–27.5°
b = 21.8363 (8) ŵ = 0.11 mm1
c = 8.0831 (2) ÅT = 120 K
V = 1560.04 (8) Å3Block, colourless
Z = 20.30 × 0.20 × 0.15 mm
Data collection top
Kappa-CCD
diffractometer
2067 independent reflections
Radiation source: rotating anode1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.960, Tmax = 0.983k = 2827
13388 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0967P)2 + 0.0109P]
where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C24H36N2O15·2(H2O)V = 1560.04 (8) Å3
Mr = 628.58Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 8.8385 (2) ŵ = 0.11 mm1
b = 21.8363 (8) ÅT = 120 K
c = 8.0831 (2) Å0.30 × 0.20 × 0.15 mm
Data collection top
Kappa-CCD
diffractometer
2067 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
1658 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.983Rint = 0.091
13388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.12Δρmax = 0.47 e Å3
2067 reflectionsΔρmin = 0.41 e Å3
215 parameters
Special details top

Experimental. ?.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50000.50000.4133 (3)0.0203 (5)
O20.2355 (2)0.54797 (8)0.5288 (3)0.0277 (5)
O30.1489 (2)0.43759 (11)0.6972 (3)0.0401 (6)
O40.3628 (2)0.34172 (10)0.6395 (3)0.0393 (6)
O50.37591 (19)0.42726 (8)0.2523 (2)0.0226 (4)
O210.0861 (2)0.58510 (9)0.3284 (3)0.0364 (5)
O310.2831 (3)0.48702 (15)0.8978 (3)0.0586 (7)
O610.6545 (3)0.24019 (11)0.3050 (4)0.0574 (8)
N10.5457 (3)0.31774 (11)0.1653 (3)0.0317 (6)
C10.3683 (3)0.48644 (11)0.3225 (3)0.0205 (5)
C20.2395 (3)0.48866 (12)0.4482 (3)0.0239 (6)
C30.2746 (3)0.44260 (13)0.5831 (4)0.0276 (6)
C40.3005 (3)0.37896 (12)0.5128 (4)0.0293 (6)
C50.4137 (3)0.38047 (12)0.3698 (3)0.0240 (6)
C60.4163 (3)0.32100 (12)0.2744 (4)0.0339 (7)
C210.1520 (3)0.59248 (13)0.4567 (4)0.0290 (6)
C220.1565 (4)0.65001 (14)0.5568 (5)0.0403 (8)
C310.1770 (4)0.4547 (2)0.8561 (5)0.0522 (10)
C320.0645 (6)0.4261 (3)0.9678 (6)0.0852 (17)
C610.6580 (4)0.27806 (13)0.1897 (4)0.0363 (7)
C620.7924 (4)0.28368 (16)0.0767 (4)0.0444 (9)
O6W0.5812 (3)0.38698 (13)0.1289 (3)0.0538 (7)
H4A0.29370.32040.67460.082 (16)*
H1A0.54230.34080.08710.054 (13)*
H10.35210.51780.23410.042 (9)*
H20.14040.47930.39430.017 (7)*
H30.36690.45600.64480.028 (8)*
H40.20230.36120.47440.044 (10)*
H50.51710.38860.41470.020 (7)*
H6A0.41940.28620.35290.046 (10)*
H6B0.32240.31750.20840.023 (7)*
H22A0.21540.68120.49790.062 (12)*
H22B0.20400.64160.66400.088 (16)*
H22C0.05330.66500.57450.16 (3)*
H32A0.10570.38751.01050.054 (12)*
H32B0.02900.41780.90660.067 (14)*
H32C0.04290.45371.06030.13 (3)*
H62A0.87490.30450.13510.074 (15)*
H62B0.76400.30750.02120.070 (13)*
H62C0.82570.24280.04270.067 (13)*
H6C0.58730.42690.07310.20 (4)*
H6D0.49720.37850.20020.083 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (11)0.0165 (12)0.0243 (13)0.0040 (10)0.0000.000
O20.0257 (9)0.0233 (10)0.0342 (11)0.0041 (7)0.0032 (9)0.0064 (9)
O30.0360 (11)0.0474 (13)0.0369 (12)0.0028 (10)0.0115 (10)0.0066 (11)
O40.0395 (11)0.0316 (11)0.0468 (13)0.0038 (10)0.0017 (11)0.0215 (11)
O50.0294 (9)0.0122 (8)0.0261 (9)0.0006 (7)0.0015 (8)0.0001 (7)
O210.0401 (10)0.0246 (11)0.0444 (13)0.0037 (9)0.0096 (11)0.0029 (10)
O310.0585 (16)0.077 (2)0.0405 (13)0.0033 (15)0.0057 (13)0.0039 (14)
O610.0596 (16)0.0379 (13)0.0747 (18)0.0193 (11)0.0137 (15)0.0270 (14)
N10.0408 (13)0.0160 (11)0.0382 (13)0.0057 (9)0.0014 (11)0.0009 (11)
C10.0242 (12)0.0107 (11)0.0267 (12)0.0007 (9)0.0044 (11)0.0006 (10)
C20.0224 (12)0.0200 (13)0.0293 (13)0.0016 (10)0.0020 (11)0.0017 (11)
C30.0271 (13)0.0259 (13)0.0297 (14)0.0025 (11)0.0033 (12)0.0046 (12)
C40.0289 (12)0.0213 (14)0.0376 (16)0.0053 (11)0.0005 (13)0.0082 (13)
C50.0253 (11)0.0138 (12)0.0329 (14)0.0003 (10)0.0011 (12)0.0047 (11)
C60.0367 (15)0.0133 (13)0.0518 (19)0.0016 (11)0.0003 (14)0.0017 (13)
C210.0231 (12)0.0218 (14)0.0422 (17)0.0009 (10)0.0007 (13)0.0003 (13)
C220.0374 (15)0.0286 (16)0.055 (2)0.0026 (13)0.0012 (16)0.0114 (15)
C310.0485 (19)0.072 (3)0.0366 (19)0.004 (2)0.0104 (17)0.0075 (19)
C320.065 (3)0.143 (5)0.048 (2)0.008 (3)0.015 (2)0.025 (3)
C610.0462 (17)0.0156 (13)0.0469 (18)0.0062 (12)0.0008 (16)0.0022 (13)
C620.0507 (19)0.0359 (17)0.0467 (19)0.0148 (16)0.0054 (16)0.0003 (16)
O6W0.0628 (15)0.0539 (17)0.0449 (14)0.0059 (13)0.0089 (13)0.0137 (13)
Geometric parameters (Å, º) top
O1—C11.407 (3)C3—H31.00
O1—C1i1.407 (3)C4—C51.530 (4)
O2—C211.352 (3)C4—H41.00
O2—C21.450 (3)C5—C61.510 (4)
O3—C311.360 (5)C5—H51.00
O3—C31.448 (3)C6—H6A0.99
O4—C41.419 (4)C6—H6B0.99
O4—H4A0.8191C21—C221.495 (4)
O5—C11.413 (3)C22—H22A0.98
O5—C51.434 (3)C22—H22B0.9801
O21—C211.201 (4)C22—H22C0.9799
O31—C311.221 (5)C31—C321.481 (6)
O61—C611.246 (4)C32—H32A0.98
N1—C611.332 (4)C32—H32B0.98
N1—C61.445 (4)C32—H32C0.9799
N1—H1A0.8091C61—C621.503 (5)
C1—C21.527 (4)C62—H62A0.98
C1—H11.00C62—H62B0.98
C2—C31.516 (4)C62—H62C0.9801
C2—H21.00O6W—H6C0.9834
C3—C41.519 (4)O6W—H6D0.9582
C1—O1—C1i117.1 (3)C6—C5—H5108.9
C21—O2—C2117.5 (2)C4—C5—H5109.1
C31—O3—C3116.1 (3)N1—C6—C5111.5 (2)
C4—O4—H4A106.6N1—C6—H6A109.4
C1—O5—C5113.4 (2)C5—C6—H6A109.4
C61—N1—C6122.1 (3)N1—C6—H6B109.3
C61—N1—H1A123.3C5—C6—H6B109.2
C6—N1—H1A114.6H6A—C6—H6B108.0
O1—C1—O5111.27 (18)O21—C21—O2122.7 (3)
O1—C1—C2105.2 (2)O21—C21—C22126.4 (3)
O5—C1—C2109.35 (19)O2—C21—C22110.9 (3)
O1—C1—H1110.3C21—C22—H22A109.5
O5—C1—H1110.2C21—C22—H22B109.3
C2—C1—H1110.3H22A—C22—H22B109.5
O2—C2—C3105.9 (2)C21—C22—H22C109.5
O2—C2—C1110.2 (2)H22A—C22—H22C109.5
C3—C2—C1107.8 (2)H22B—C22—H22C109.5
O2—C2—H2110.9O31—C31—O3124.0 (3)
C3—C2—H2110.9O31—C31—C32126.3 (4)
C1—C2—H2110.9O3—C31—C32109.7 (4)
O3—C3—C2110.6 (2)C31—C32—H32A109.2
O3—C3—C4106.5 (2)C31—C32—H32B109.6
C2—C3—C4111.6 (2)H32A—C32—H32B109.5
O3—C3—H3109.3C31—C32—H32C109.6
C2—C3—H3109.3H32A—C32—H32C109.5
C4—C3—H3109.4H32B—C32—H32C109.5
O4—C4—C3108.2 (2)O61—C61—N1121.6 (3)
O4—C4—C5107.7 (2)O61—C61—C62121.8 (3)
C3—C4—C5111.2 (2)N1—C61—C62116.5 (3)
O4—C4—H4109.9C61—C62—H62A109.5
C3—C4—H4109.9C61—C62—H62B109.4
C5—C4—H4110.0H62A—C62—H62B109.5
O5—C5—C6106.2 (2)C61—C62—H62C109.5
O5—C5—C4111.3 (2)H62A—C62—H62C109.5
C6—C5—C4112.2 (2)H62B—C62—H62C109.5
O5—C5—H5109.1H6C—O6W—H6D119.4
C1i—O1—C1—O574.52 (17)O3—C3—C4—C5170.8 (2)
C1i—O1—C1—C2167.1 (2)C2—C3—C4—C549.9 (3)
C5—O5—C1—O151.5 (3)C1—O5—C5—C6179.9 (2)
C5—O5—C1—C264.3 (2)C1—O5—C5—C457.5 (3)
C21—O2—C2—C3154.8 (2)O4—C4—C5—O5167.3 (2)
C21—O2—C2—C188.8 (3)C3—C4—C5—O548.9 (3)
O1—C1—C2—O257.0 (2)O4—C4—C5—C673.9 (3)
O5—C1—C2—O2176.65 (19)C3—C4—C5—C6167.7 (2)
O1—C1—C2—C358.1 (2)C61—N1—C6—C5112.4 (3)
O5—C1—C2—C361.5 (3)O5—C5—C6—N171.3 (3)
C31—O3—C3—C2116.8 (3)C4—C5—C6—N1166.9 (2)
C31—O3—C3—C4121.7 (3)C2—O2—C21—O212.1 (4)
O2—C2—C3—O368.2 (3)C2—O2—C21—C22178.6 (2)
C1—C2—C3—O3173.8 (2)C3—O3—C31—O3119.0 (6)
O2—C2—C3—C4173.4 (2)C3—O3—C31—C32158.5 (4)
C1—C2—C3—C455.4 (3)C6—N1—C61—O612.5 (5)
O3—C3—C4—O471.2 (3)C6—N1—C61—C62174.3 (3)
C2—C3—C4—O4168.0 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6W0.812.052.835 (4)165
O4—H4A···O61ii0.821.812.606 (3)162
O6W—H6C···O31iii0.982.213.009 (4)137
O6W—H6D···O4iv0.961.932.865 (3)164
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z1; (iv) x, y, z1.
(9) 6,6'-diamino-α,α'-trehalose dihydrate top
Crystal data top
C12H24N2O9·2(H2O)Dx = 1.522 Mg m3
Mr = 376.36Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 1163 reflections
Hall symbol: P 4nw 2abwθ = 3.0–27.5°
a = 8.6093 (2) ŵ = 0.13 mm1
c = 22.1566 (8) ÅT = 120 K
V = 1642.25 (8) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
F(000) = 808
Data collection top
Kappa-CCD
diffractometer
1163 independent reflections
Radiation source: rotating anode951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 911
Tmin = 0.972, Tmax = 0.987k = 1111
8561 measured reflectionsl = 2028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.9377P]
where P = (Fo2 + 2Fc2)/3
1163 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C12H24N2O9·2(H2O)Z = 4
Mr = 376.36Mo Kα radiation
Tetragonal, P43212µ = 0.13 mm1
a = 8.6093 (2) ÅT = 120 K
c = 22.1566 (8) Å0.15 × 0.15 × 0.10 mm
V = 1642.25 (8) Å3
Data collection top
Kappa-CCD
diffractometer
1163 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
951 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.055
8561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
1163 reflectionsΔρmin = 0.35 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4945 (2)0.4945 (2)0.00000.0150 (5)
O20.3645 (2)0.7739 (2)0.03877 (8)0.0202 (4)
O30.5061 (3)0.7766 (2)0.15877 (8)0.0262 (5)
O40.6403 (2)0.4922 (2)0.19747 (7)0.0184 (4)
O50.3713 (2)0.3621 (2)0.07921 (7)0.0153 (4)
O6W0.3753 (3)0.8426 (3)0.26482 (9)0.0420 (6)
N10.4929 (3)0.0674 (3)0.11205 (10)0.0263 (6)
C10.3671 (3)0.4936 (3)0.04081 (10)0.0148 (5)
C20.3706 (3)0.6426 (3)0.07738 (10)0.0153 (5)
C30.5113 (3)0.6462 (3)0.11967 (10)0.0161 (5)
C40.5079 (3)0.4998 (3)0.15854 (11)0.0144 (5)
C50.5062 (3)0.3566 (3)0.11789 (10)0.0134 (5)
C60.4944 (3)0.2040 (3)0.15198 (11)0.0172 (5)
H2A0.45870.79940.03860.030*0.50
H2B0.27470.81190.03840.030*0.50
H3A0.49480.86070.14000.039*
H4A0.69610.57200.20020.028*0.50
H4B0.58920.44610.22430.028*0.50
H6C0.43830.84550.22780.050*
H6D0.28460.77140.25860.050*
H1A0.58950.07250.08710.032*
H1B0.39800.07920.09060.032*
H10.26850.49080.01700.018*
H20.27510.64440.10310.018*
H30.60920.64880.09540.019*
H40.41140.50050.18370.017*
H50.60220.35580.09250.016*
H6A0.58340.19550.18000.021*
H6B0.39810.20450.17640.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (7)0.0163 (7)0.0124 (11)0.0037 (11)0.0026 (7)0.0026 (7)
O20.0208 (10)0.0177 (10)0.0221 (9)0.0045 (8)0.0016 (8)0.0081 (7)
O30.0419 (13)0.0141 (10)0.0226 (9)0.0020 (9)0.0020 (10)0.0043 (8)
O40.0199 (10)0.0196 (10)0.0158 (8)0.0038 (8)0.0046 (7)0.0026 (8)
O50.0160 (10)0.0148 (9)0.0152 (8)0.0034 (8)0.0017 (7)0.0023 (7)
O6W0.0506 (15)0.0415 (14)0.0340 (12)0.0024 (12)0.0119 (11)0.0068 (10)
N10.0361 (15)0.0127 (11)0.0302 (12)0.0007 (11)0.0020 (12)0.0002 (9)
C10.0143 (12)0.0161 (12)0.0141 (11)0.0008 (11)0.0007 (9)0.0034 (10)
C20.0176 (13)0.0140 (13)0.0144 (11)0.0042 (11)0.0010 (10)0.0028 (10)
C30.0193 (14)0.0125 (13)0.0165 (11)0.0011 (12)0.0001 (11)0.0005 (10)
C40.0154 (12)0.0141 (12)0.0136 (10)0.0001 (11)0.0000 (10)0.0000 (10)
C50.0121 (13)0.0145 (13)0.0135 (10)0.0001 (11)0.0007 (10)0.0013 (9)
C60.0200 (14)0.0138 (13)0.0179 (11)0.0018 (11)0.0022 (12)0.0017 (10)
Geometric parameters (Å, º) top
O1—C1i1.421 (3)N1—H1A0.9992
O1—C11.421 (3)N1—H1B0.9509
O2—C21.418 (3)C1—C21.518 (3)
O2—H2A0.84C1—H11.00
O2—H2B0.8399C2—C31.532 (4)
O3—C31.419 (3)C2—H21.00
O3—H3A0.8401C3—C41.527 (3)
O4—C41.431 (3)C3—H31.00
O4—H4A0.8398C4—C51.527 (3)
O4—H4B0.8399C4—H41.00
O5—C11.416 (3)C5—C61.519 (3)
O5—C51.444 (3)C5—H51.00
O6W—H6C0.9833C6—H6A0.99
O6W—H6D1.0025C6—H6B0.99
N1—C61.472 (3)
C1i—O1—C1113.4 (3)O3—C3—C4107.95 (18)
C2—O2—H2A100.1O3—C3—C2111.4 (2)
C2—O2—H2B110.5C4—C3—C2108.2 (2)
H2A—O2—H2B141.9O3—C3—H3109.7
C3—O3—H3A112.6C4—C3—H3109.7
C4—O4—H4A117.5C2—C3—H3109.7
C4—O4—H4B91.8O4—C4—C5109.0 (2)
H4A—O4—H4B129.4O4—C4—C3111.2 (2)
C1—O5—C5113.80 (19)C5—C4—C3109.51 (18)
H6C—O6W—H6D109.3O4—C4—H4109.0
C6—N1—H1A106.8C5—C4—H4109.0
C6—N1—H1B102.8C3—C4—H4109.0
H1A—N1—H1B115.7O5—C5—C6105.7 (2)
O5—C1—O1111.51 (18)O5—C5—C4109.3 (2)
O5—C1—C2110.75 (17)C6—C5—C4113.93 (18)
O1—C1—C2108.7 (2)O5—C5—H5109.3
O5—C1—H1108.6C6—C5—H5109.3
O1—C1—H1108.6C4—C5—H5109.3
C2—C1—H1108.6N1—C6—C5113.15 (19)
O2—C2—C1110.53 (17)N1—C6—H6A108.9
O2—C2—C3112.5 (2)C5—C6—H6A108.9
C1—C2—C3111.0 (2)N1—C6—H6B108.9
O2—C2—H2107.5C5—C6—H6B108.9
C1—C2—H2107.5H6A—C6—H6B107.8
C3—C2—H2107.5
C5—O5—C1—O162.7 (2)O3—C3—C4—O461.8 (3)
C5—O5—C1—C258.5 (3)C2—C3—C4—O4177.47 (19)
C1i—O1—C1—O563.61 (16)O3—C3—C4—C5177.6 (3)
C1i—O1—C1—C2174.0 (2)C2—C3—C4—C556.9 (3)
O5—C1—C2—O2179.3 (2)C1—O5—C5—C6176.42 (18)
O1—C1—C2—O257.9 (2)C1—O5—C5—C460.6 (2)
O5—C1—C2—C355.2 (3)O4—C4—C5—O5179.02 (18)
O1—C1—C2—C367.7 (2)C3—C4—C5—O559.1 (3)
O2—C2—C3—O362.1 (3)O4—C4—C5—C661.1 (3)
C1—C2—C3—O3173.4 (2)C3—C4—C5—C6177.0 (3)
O2—C2—C3—C4179.36 (19)O5—C5—C6—N160.0 (3)
C1—C2—C3—C454.9 (3)C4—C5—C6—N1180.0 (3)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O6Wii0.841.912.721 (3)163
O2—H2B···O4iii0.842.072.806 (3)146
O3—H3A···N1iv0.841.882.711 (3)168
O4—H4A···O2v0.841.982.806 (3)167
O4—H4B···O4vi0.842.012.833 (3)165
O6W—H6C···O30.981.742.667 (3)155
O6W—H6D···O6Wvi1.001.752.733 (5)166
N1—H1A···O6Wvii1.002.413.062 (3)123
N1—H1B···O4viii0.952.453.349 (3)157
Symmetry codes: (ii) y+3/2, x+1/2, z1/4; (iii) x1/2, y+3/2, z+1/4; (iv) x, y+1, z; (v) x+1/2, y+3/2, z+1/4; (vi) y+1, x+1, z+1/2; (vii) y+3/2, x1/2, z1/4; (viii) x1/2, y+1/2, z+1/4.

Experimental details

(5)(6)(7)(8)
Crystal data
Chemical formulaC26H38O21S2C38H46O21S2C24H32N6O15·0.35(C2H6O)C24H36N2O15·2(H2O)
Mr750.68902.89660.68628.58
Crystal system, space groupMonoclinic, C2Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P21212
Temperature (K)120120150120
a, b, c (Å)21.3279 (8), 8.9299 (4), 8.8382 (4)18.1484 (9), 21.1046 (9), 23.4224 (14)12.2281 (4), 15.5803 (6), 18.1066 (8)8.8385 (2), 21.8363 (8), 8.0831 (2)
α, β, γ (°)90, 99.4537 (17), 9090, 90, 9090, 90, 9090, 90, 90
V3)1660.43 (12)8971.1 (8)3449.6 (2)1560.04 (8)
Z2842
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.250.200.110.11
Crystal size (mm)0.30 × 0.25 × 0.150.30 × 0.10 × 0.020.50 × 0.30 × 0.250.30 × 0.20 × 0.15
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.934, 0.9640.949, 0.9960.942, 0.9740.960, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6104, 3048, 2781 34701, 14269, 8221 17686, 4368, 2580 13388, 2067, 1658
Rint0.0590.1100.1040.091
(sin θ/λ)max1)0.6490.5950.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.145, 1.05 0.060, 0.136, 0.96 0.070, 0.191, 0.99 0.055, 0.148, 1.12
No. of reflections30481426943682067
No. of parameters2271113439215
No. of restraints1000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.620.86, 0.280.43, 0.430.47, 0.41
Absolute structureFlack (1983), 1018 Friedel pairsFlack (1983), 6179 Friedel pairs??
Absolute structure parameter0.16 (10)0.02 (8)??


(9)
Crystal data
Chemical formulaC12H24N2O9·2(H2O)
Mr376.36
Crystal system, space groupTetragonal, P43212
Temperature (K)120
a, b, c (Å)8.6093 (2), 8.6093 (2), 22.1566 (8)
α, β, γ (°)90, 90, 90
V3)1642.25 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8561, 1163, 951
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 0.98
No. of reflections1163
No. of parameters115
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35
Absolute structure?
Absolute structure parameter?

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (5) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O61i0.992.433.221 (4)136
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (6) top
D—H···AD—HH···AD···AD—H···A
C4C—H4C···O41Di1.002.463.365 (7)150
C6C—H6F···O41Di0.992.493.272 (6)136
C55C—H55C···O31Bii0.952.413.313 (7)160
C53D—H53D···Cg1iii0.952.663.418 (7)137
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x, y+1, z; (iii) x+1/2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) for (7) top
D—H···AD—HH···AD···AD—H···A
C6A—H6B···O41Bi0.992.323.268 (6)160
C6B—H6C···O31Aii0.992.483.363 (8)149
C6B—H6D···O41Aiii0.992.523.400 (7)148
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (8) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6W0.812.052.835 (4)165
O4—H4A···O61i0.821.812.606 (3)162
O6W—H6C···O31ii0.982.213.009 (4)137
O6W—H6D···O4iii0.961.932.865 (3)164
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) for (9) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O6Wi0.841.912.721 (3)163.2
O2—H2B···O4ii0.842.072.806 (3)146.2
O3—H3A···N1iii0.841.882.711 (3)167.8
O4—H4A···O2iv0.841.982.806 (3)167.2
O4—H4B···O4v0.842.012.833 (3)165.4
O6W—H6C···O30.981.742.667 (3)155.3
O6W—H6D···O6Wv1.001.752.733 (5)165.8
N1—H1A···O6Wvi1.002.413.062 (3)122.6
N1—H1B···O4vii0.952.453.349 (3)157.3
Symmetry codes: (i) y+3/2, x+1/2, z1/4; (ii) x1/2, y+3/2, z+1/4; (iii) x, y+1, z; (iv) x+1/2, y+3/2, z+1/4; (v) y+1, x+1, z+1/2; (vi) y+3/2, x1/2, z1/4; (vii) x1/2, y+1/2, z+1/4.
 

Footnotes

Present address: Instituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro-RJ, Brazil.

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA5016 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK, using a Nonius Kappa-CCD diffractometer. The authors thank the staff for all their help and advice. JNL thanks NCR Self Service Dundee for grants which have provided computing facilities for this work.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Howie, R. A. & Wardell, J. L. (2002). Acta Cryst. E58, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Murdoch, A. M. & Wardell, J. L. (2003). Acta Cryst. E59, o753–o755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaddeley, T. C., Clow, S. M., Cox, P. J., McLaughlin, A. M. & Wardell, J. L. (2001). Acta Cryst. E57, o456–o457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBirch, G. & Richardson, A. C. (1968). Carbohydr. Res. 8, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156–3166.  CrossRef CAS Web of Science Google Scholar
First citationClow, S. M., Cox, P. J., Gilmore, G. L. & Wardell, J. L. (2001). Acta Cryst. E57, o77–o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86–89. Oxford University Press.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKurita, K., Masuda, N., Aibe, S., Murakami, K., Ishii, S. & Nishimura, S. (1994). Macromolecules, 27, 7544–7549.  CrossRef CAS Web of Science Google Scholar
First citationLiav, A. & Goren, M. B. (1980). Carbohydr. Res. 87, 287–293.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–255.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds