research papers
Isomeric iodo-N-(nitrobenzyl)anilines: interplay of hard and soft hydrogen bonds, iodo⋯nitro interactions and aromatic π⋯π stacking interactions
aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, cInstituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-150 Niterói, Rio de Janeiro-RJ, Brazil, and dInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk
Molecules of 2-iodo-N-(4-nitrobenzyl)aniline, 4-O2NC6H4CH2NHC6H4I-2′ (1) are linked into chains by C—H⋯O hydrogen bonds. In the isomeric compound 3-iodo-N-(4-nitrobenzyl)aniline (2) a combination of N—H⋯O and C—H⋯O hydrogen bonds and iodo⋯nitro and aromatic π⋯π stacking interactions links the molecules into a three-dimensional framework structure. The two-dimensional supramolecular structure of 4-iodo-N-(4-nitrobenzyl)aniline (6) is built from a combination of C—H⋯O and N—H⋯π(arene) hydrogen bonds and aromatic π⋯π stacking interactions. 2-Iodo-N-(2-nitrobenzyl)aniline (7) crystallizes with two molecules in the and these molecules are linked into ladders by a combination of N—H⋯O and C—H⋯O hydrogen bonds and iodo⋯nitro and aromatic π⋯π stacking interactions. Comparisons are made between the supramolecular structures of these compounds and those of other isomers, in terms both of the types of direction-specific intermolecular interactions exhibited and the dimensionality of the resulting supramolecular structures.
1. Introduction
As part of a general study of the interplay of hydrogen bonds, iodo⋯nitro interactions and aromatic π⋯π stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species [see (I)] containing a variety of X spacer units, including arenesulfonamides (A) and (B) (Kelly et al., 2002) and Schiff-base (C) (Wardell et al., 2002) and (D) (Glidewell, Howie et al., 2002), together with some benzylanilines (E) (Glidewell, Low et al., 2002).
In the case of the Schiff-base D), we were able to study the supramolecular aggregation modes in eight of the possible nine isomers (Glidewell, Howie et al., 2002), although the structure of the 4,4′-isomer, which crystallizes with Z′ = 2 in Fdd2, proved to be elusive because of the intractable disorder. In this series the interplay of the various weak intermolecular interactions is such that neither the supramolecular structure nor even the range of interactions involved can readily be predicted for any single example from a detailed knowledge of all the rest of the series. With this in mind, we have now expanded our preliminary study (Glidewell, Low et al., 2002) of the benzylanilines (E) to incorporate a total of six isomers of this series, (1), (2) and (4)–(7) [see (II)].
of type (2. Experimental
2.1. Synthesis
Nitrobenzylidene-iodoanilines were prepared as previously described (Glidewell, Howie et al., 2002) and subsequently reduced using a fivefold molar excess of sodium borohydride in refluxing methanol. After work-up, crystals of (1), (2), (6) and (7) suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Compound (8) is an oil at ambient temperature and we have not been able to induce crystallization, even at reduced temperatures: (3) and (4) are solids at ambient temperature but, despite repeated efforts, we have so far been unable to obtain any crystals of either compound which are suitable for single-crystal X-ray diffraction.
2.2. Data collection, structure solution and refinement
Diffraction data for (1), (2), (6) and (7) were collected at 120 (2) K using a Nonius Kappa-CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Other details of the cell data, data collection and are summarized in Table 1, together with details of the software employed (Ferguson, 1999; Nonius, 1997; Otwinowski & Minor, 1997; Sheldrick, 1997a,b; McArdle, 2003).1
For (1) and (6) the P21/c was uniquely assigned from the likewise, the P212121 was uniquely assigned for (2). Compound (7) is triclinic, and the was selected and confirmed by the subsequent analysis. The structures were solved by and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976). All H atoms were located from difference maps and they were included in the refinements as riding atoms with the bond distances C—H 0.95 (aromatic) or 0.99 Å (CH2) and N—H 0.88 Å. The of (2) in the crystal selected for study was established by the use of the (Flack, 1983), whose final value was −0.01 (2) with 1191 Friedel pairs present.
Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003). Details of molecular conformations are given in Table 2. Details of hydrogen-bond dimensions and short intramolecular contacts, and iodo⋯nitro interactions are given in Tables 3 and 4. Figs. 1–13 show the molecular components, with the atom-labelling schemes, and aspects of the supramolecular structures.
‡For the atom labels in the two independent molecules, see Fig. 11. |
|
|
3. Results and discussion
3.1. Molecular conformations
The molecular conformations of iodo-(N-benzyl)anilines can be defined in terms of just four torsional angles and these are given in Table 2 for (1), (2) and (4)–(7). For the central spacer unit, the torsional angle C11—C17—N1—C21 shows that for (2) this unit is essentially trans planar, whereas for all other examples discussed here this torsional angle is close to ±90°, indicative of a markedly non-planar unit. The iodinated ring C21–C26 is generally nearly co-planar with the fragment C21—N1—C17. Since the labelling of the iodinated ring is determined by the location of the I substituent, the values show, for example, that in (1) and (2) the I substituent lies off different edges of the molecule: thus in (1) the I is on the same edge as the N—H bond, while in (2) it is on the opposite edge (Figs. 1 and 3). It seems possible that the short intramolecular N—H⋯I contacts in (1) (Table 3) play a significant role in controlling the overall conformation of (I). Likewise in the 2-iodo derivative (7), there is a short intramolecular N—H⋯I contact which may be significant in controlling the orientation of the iodinated ring. A similar difference occurs between (4) and (5) (Glidewell, Low et al., 2002). In (2) and (7), as well as in (4), the nitrated ring is nearly co-planar with the adjacent C11—C17—N1 fragment, but this is far from the case in (1), (5) and (6). In all cases there are some fairly short intramolecular C—H⋯O contacts (Table 3). The biggest deviation of the nitro group from co-planarity with the adjacent aryl ring occurs in (7), where moreover the two molecules show a marked difference: apart from this, the molecules in the selected are close to being mirror images (see Fig. 11). It will be noted (see §3.2) that the structures of all these compounds exhibit direction-specific intermolecular interactions and it is thus probable that the energies associated with these intermolecular interactions are of similar magnitudes to the potential-energy barriers associated with rotation about the single bonds specified in Table 2.
One consequence of the conformational behaviour revealed by the torsional angles is that each molecule is chiral in the solid state, having no internal symmetry whatsoever. Compounds (1), (6) and (7) all crystallize in centrosymmetric space groups containing equal numbers of the two enantiomeric forms, as do (4) and (5) [P21/n and Pbca, respectively (Glidewell, Low et al., 2002)]: however, (2) crystallizes in the P212121 where each crystal can contain only one Since (2) is almost certainly racemic in solution, its crystallization is as a conglomerate: while the of the molecules in the crystal selected for study was readily determined, this configuration has no chemical significance.
The bond lengths and inter-bond angles show no unusual values.
3.2. Supramolecular structures
3.2.1. Compound (1)
In (1) (Fig. 1) there are neither N—H⋯O or X—H⋯π(arene) hydrogen bonds (where X = C or N) nor iodo⋯nitro or aromatic π⋯π stacking interactions. The only direction-specific interactions between the molecules are two independent C—H⋯O hydrogen bonds (Table 2), which combine to link the molecules into chains.
Atom C13 in the nitrated ring of the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro O11 in the molecule at (-x, 1 - y, 1 - z), so generating by inversion an R22(10) ring centred at (0, ½, ½): atom C26 in the iodinated ring at (x, y, z) similarly acts as a hydrogen-bond donor to O12 at (-x, 2 - y, 1 - z), producing an R22(22) ring centred at (0, 1, ½). The propagation by inversion of these two motifs thus generates a chain of rings running parallel to the [010] direction (Fig. 2).
3.2.2. Compound (2)
The supramolecular structure of (2) (Fig. 3), in contrast to that of (1), contains both N—H⋯O and C—H⋯O hydrogen bonds (Table 2) as well as both iodo⋯nitro interactions (Table 3) and aromatic π⋯π stacking interactions: as a result, this structure is three-dimensional, as opposed to the one-dimensional aggregation in (1). It is convenient to analyse the formation of the three-dimensional supramolecular network in (2) in terms of chains running parallel to the [100], [010] and [001] directions. There is an N—H⋯O hydrogen bond, albeit rather weak, which generates a C(9) chain running parallel to the [010] direction: N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to O11 in the molecule at (), thereby producing a chain generated by the 21 screw axis along (½, y, ¾) (Fig. 4).
The [001] chain formation involves both the iodo⋯nitro interaction and the C—H⋯O hydrogen bond. The C17 atom at (x, y, z) acts as a hydrogen-bond donor, via H172, to O11 at (), so producing a C(8) chain generated by the 21 screw axis along (¼, 0, z). At the same time, there is a fairly short two-centre iodo⋯nitro interaction between I23 in the molecule at (x, y, z) and O12 in that at (x, y, -1 + z), which generates by translation a C(12) chain along [001]. The combination of the two [001] motifs generates a chain of edge-fused R33(18) rings (Fig. 5).
These two chain types, parallel to [010] and [001], combine to form sheets parallel to (100) and these are linked by a combination of the two types of hydrogen bond. Atom N1 in the molecule at (), which lies in the (100) sheet in the domain 0.07 < x < 0.93, acts as a hydrogen-bond donor to O11 in the molecule at (), which forms part of the (100) sheet in the domain 1.07 < x < 1.93, and the resulting [100] chain (Fig. 6) links all of the (100) sheets into a three-dimensional framework. This linking of the (100) sheets is reinforced by π⋯π stacking interactions. The nitrated ring in the molecule at (x, y, z) makes an angle of only 4.1° with the iodinated rings of the two molecules at () and (): the interplanar spacings are both ca 3.45 Å with ring-centroid separations of 3.674 (5) and 3.760 (5) Å, respectively (Fig. 7).
3.2.3. Compound (6)
The supramolecular aggregation in (6) (Fig. 8) exhibits neither N—H⋯O hydrogen bonds nor iodo⋯nitro interactions: instead, the C—H⋯O hydrogen bond and the aromatic π⋯π stacking interaction are augmented by an N—H⋯π(arene) hydrogen bond, which forms in preference to the N—H⋯O hydrogen bond which might have been expected here. A single C—H⋯O hydrogen bond which involves a nitro O atom as an acceptor generates a simple chain running parallel to the [010] direction. Atom C16 in the nitrated ring of the molecule at (x, y, z) acts as a hydrogen-bond donor to O11 in the molecule at (x, 1 + y, z), so generating by translation a C(7) chain along [010] (Fig. 9).
The N—H⋯π(arene) hydrogen bond combines with the π⋯π stacking interactions to generate chains running parallel to the [001] direction. Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the iodinated ring C21–C26, centroid Cg2 (Table 2), of the molecule at (). At the same time, the nitrated ring of the molecule at (x, y, z) forms π⋯π stacking interactions with the corresponding rings of the molecules at () and (): the angle between the adjacent rings is only ca 1.6°, and the centroid separation and the are 3.844 (5) and ca 3.45 Å, respectively, corresponding to a centroid offset of ca 1.74 Å. Propagation of the mutually cooperative and mutually reinforcing N—H⋯π and π⋯π interactions thus produces a chain along [001] generated by the c-glide plane at y = 0.75 (Fig. 10). The combination of [010] and [001] chains generates a sheet parallel to (100), but there are no direction-specific interactions between adjacent sheets.
3.2.4. Compound (7)
Compound (7) (Fig. 11) crystallizes with Z′ = 2 in : within the selected N3 in molecule 2 (containing N3 and I42) acts as a hydrogen-bond donor to O12 in molecule 1 (containing N1 and I22), but N1 does not participate in any intermolecular hydrogen bonding. This difference in behaviour between N1 and N3 suffices to preclude any possibility of additional symmetry. In addition to the single N—H⋯O hydrogen bond within the the molecules are further linked into molecular ladders by a single, rather weak C—H⋯O hydrogen bond and a single, rather weak iodo⋯nitro interaction, whose action is reinforced by two independent aromatic π⋯π stacking interactions.
Atom C33 in the nitrated ring of molecule 2 at (x, y, z) acts as a hydrogen-bond donor to O11 in molecule 1 at (1 - x, -y, 1 - z): in combination with the N—H⋯O hydrogen bond within the this C—H⋯O hydrogen bond generates a centrosymmetric cyclic four-molecule aggregate, centred at (½, 0, ½) and characterized by an R44(20) ring (Fig. 12). The formation of this aggregate is reinforced by one of the π⋯π interactions. The nitrated rings C31–C36 of the type 2 molecules at (x, y, z) and (1 - x, -y, 1 - z) are parallel with an of 3.385 (9) Å; the centroid separation is 3.685 (4) Å, corresponding to a near-ideal centroid offset of 1.46 (9) Å (Fig. 12).
These four-molecule aggregates are further linked by a combination of iodo⋯nitro and aromatic π⋯π stacking interactions to form the molecular ladder. Atom I42 in the type 2 molecule at (x, y, z) forms part of the cyclic aggregate centred at (½, 0, ½): this I atom forms a weak two-centre iodo⋯nitro interaction with O32 in the type 2 molecule at (-1 + x, 1 + y, z), which lies in the cyclic aggregate centred at (−½, 1, ½). At the same time, the nitrated ring C11–C16 of molecule 1 at (x, y, z) forms a π⋯π stacking interaction with the iodinated ring C41–C46 of molecule 2 at (-x, 1 - y, 1 - z), which is also a part of the cyclic aggregate centred at (−½, 1, ½) (Fig. 13). In this manner the molecules are linked by the cooperative combination of four types of intermolecular interactions into ladders running parallel to the [10] direction.
3.3. General comments on the supramolecular structures
The molecular constitutions of (1)–(9) [see (II)] allow the possibility of six different types of direction-specific intermolecular interaction. These are N—H⋯O and C—H⋯O, hydrogen bonds, iodo⋯nitro interactions, and aromatic π⋯π stacking interactions. In the event, no single compound in this series whose structure has been determined to date exhibits more than four of these types, while (1) exhibits only one type, namely C—H⋯O hydrogen bonds. Compounds (4)–(6) all exhibit three types of direction-specific intermolecular interaction, but the selection is, in fact, different for each: while the structures of all three of these compounds contain C—H⋯O hydrogen bonds, only that of (5) contains N—H⋯O and C—H⋯π(arene) hydrogen bonds, only that of (6) contains N—H⋯π(arene) hydrogen bonds, and only that of (4) contains iodo⋯nitro interactions. In addition, while the structures of both (4) and (6) contain aromatic π⋯π stacking interactions, these are absent from the structure of (5).
Not only do the number and identity of the types of intermolecular interactions vary, but the structural consequences of these interactions also show a wide range of behaviour. Thus, while (2) and (7) both contain the same four types of intermolecular interactions, namely N—H⋯O and C—H⋯O hydrogen bonds, and iodo⋯nitro and π⋯π stacking interactions, the consequences of these are entirely different in that the overall supramolecular structures of (2) and (7) are three- and one-dimensional, respectively. Compounds (1) and (7), exhibiting one and four types, respectively, in the intermolecular interactions, both have one-dimensional supramolecular structures; (5) and (6) both have two-dimensional supramolecular structures; (2) and (4), exhibiting four and three types, respectively, of intermolecular interaction, both have three-dimensional supramolecular structures.
4. Concluding comments
The molecular conformations of the isomeric iodo-N-(nitrobenzyl)anilines (see §3.1) and the patterns in their supramolecular aggregation (see §3.3) point to a subtle interplay of the weak direction-specific intermolecular forces. Weak forces of the types manifest here, dependent upon molecular polarizability and polarization, are not easy to model computationally. The variations in the supramolecular aggregation behaviour within an extended series of isomeric compounds, such as those described here, provide a keen test of computational methods for crystal-structure prediction (Lommerse et al., 2000; Motherwell et al., 2002): the accurate prediction of behaviour across such a series of isomeric species would generate real confidence in the efficacy of the predictive methods employed.
Supporting information
10.1107/S0108768104012017/na5018sup1.cif
contains datablocks global, (1), (2), (6), (7). DOI:Structure factors: contains datablock 593. DOI: 10.1107/S0108768104012017/na5018Isup2.fcf
Structure factors: contains datablock s594. DOI: 10.1107/S0108768104012017/na5018IIsup3.fcf
Structure factors: contains datablock s592. DOI: 10.1107/S0108768104012017/na5018IIIsup4.fcf
Structure factors: contains datablock s591. DOI: 10.1107/S0108768104012017/na5018IVsup5.fcf
For all compounds, data collection: Kappa-CCD server software (Nonius, 1997); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b) for (1), (2), (7); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (6). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a) for (1), (2), (7); OSCAIL and SHELXS97 (Sheldrick, 1997) for (6). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C13H11IN2O2 | F(000) = 688 |
Mr = 354.14 | Dx = 1.878 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2850 reflections |
a = 16.1564 (6) Å | θ = 3.3–27.5° |
b = 9.3589 (3) Å | µ = 2.55 mm−1 |
c = 8.3326 (3) Å | T = 120 K |
β = 96.333 (1)° | Block, red |
V = 1252.25 (8) Å3 | 0.32 × 0.22 × 0.15 mm |
Z = 4 |
Kappa-CCD diffractometer | 2850 independent reflections |
Radiation source: frotating anode | 2641 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | h = −20→20 |
Tmin = 0.496, Tmax = 0.682 | k = −11→12 |
8013 measured reflections | l = −7→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0212P)2 + 2.0006P] where P = (Fo2 + 2Fc2)/3 |
2850 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 1.10 e Å−3 |
0 restraints | Δρmin = −0.74 e Å−3 |
C13H11IN2O2 | V = 1252.25 (8) Å3 |
Mr = 354.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.1564 (6) Å | µ = 2.55 mm−1 |
b = 9.3589 (3) Å | T = 120 K |
c = 8.3326 (3) Å | 0.32 × 0.22 × 0.15 mm |
β = 96.333 (1)° |
Kappa-CCD diffractometer | 2850 independent reflections |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | 2641 reflections with I > 2σ(I) |
Tmin = 0.496, Tmax = 0.682 | Rint = 0.050 |
8013 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.10 e Å−3 |
2850 reflections | Δρmin = −0.74 e Å−3 |
163 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.34831 (15) | 0.8976 (3) | 0.5028 (3) | 0.0208 (5) | |
C11 | 0.21295 (17) | 0.8913 (3) | 0.6217 (3) | 0.0192 (5) | |
C12 | 0.19261 (19) | 0.7557 (3) | 0.5640 (4) | 0.0281 (6) | |
C13 | 0.1112 (2) | 0.7071 (4) | 0.5551 (5) | 0.0318 (7) | |
C14 | 0.0509 (2) | 0.7958 (3) | 0.6038 (4) | 0.0245 (6) | |
N14 | −0.03558 (17) | 0.7472 (3) | 0.5918 (3) | 0.0297 (6) | |
O11 | −0.05405 (19) | 0.6383 (4) | 0.5214 (5) | 0.0834 (13) | |
O12 | −0.0862 (2) | 0.8140 (4) | 0.6529 (6) | 0.0817 (14) | |
C15 | 0.0693 (2) | 0.9301 (4) | 0.6644 (5) | 0.0389 (8) | |
C16 | 0.1511 (2) | 0.9776 (4) | 0.6731 (5) | 0.0369 (8) | |
C17 | 0.30204 (17) | 0.9441 (3) | 0.6341 (3) | 0.0221 (6) | |
C21 | 0.33837 (17) | 0.9641 (3) | 0.3538 (3) | 0.0175 (5) | |
C22 | 0.39526 (16) | 0.9418 (3) | 0.2390 (3) | 0.0169 (5) | |
I22 | 0.499804 (10) | 0.810111 (19) | 0.29835 (2) | 0.01968 (8) | |
C23 | 0.38454 (17) | 1.0054 (3) | 0.0883 (3) | 0.0201 (5) | |
C24 | 0.31735 (19) | 1.0959 (3) | 0.0458 (3) | 0.0223 (6) | |
C25 | 0.26030 (18) | 1.1191 (3) | 0.1566 (4) | 0.0233 (6) | |
C26 | 0.27045 (18) | 1.0544 (3) | 0.3076 (3) | 0.0215 (6) | |
H1 | 0.3833 | 0.8256 | 0.5187 | 0.08 (2)* | |
H12 | 0.2348 | 0.6955 | 0.5302 | 0.034 (11)* | |
H13 | 0.0972 | 0.6138 | 0.5159 | 0.064 (14)* | |
H15 | 0.0270 | 0.9891 | 0.6996 | 0.056 (13)* | |
H16 | 0.1649 | 1.0701 | 0.7146 | 0.051 (12)* | |
H171 | 0.3017 | 1.0499 | 0.6368 | 0.025 (9)* | |
H172 | 0.3317 | 0.9105 | 0.7375 | 0.022 (8)* | |
H23 | 0.4234 | 0.9872 | 0.0131 | 0.042 (11)* | |
H24 | 0.3106 | 1.1411 | −0.0569 | 0.023 (8)* | |
H25 | 0.2139 | 1.1799 | 0.1286 | 0.023 (9)* | |
H26 | 0.2306 | 1.0716 | 0.3811 | 0.032 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0214 (12) | 0.0234 (12) | 0.0190 (11) | 0.0033 (9) | 0.0087 (9) | 0.0018 (9) |
C11 | 0.0212 (13) | 0.0211 (14) | 0.0167 (12) | −0.0015 (10) | 0.0078 (10) | 0.0007 (10) |
C12 | 0.0241 (15) | 0.0264 (16) | 0.0340 (17) | 0.0023 (12) | 0.0044 (12) | −0.0099 (13) |
C13 | 0.0242 (16) | 0.0283 (17) | 0.0430 (19) | −0.0015 (12) | 0.0041 (14) | −0.0113 (14) |
C14 | 0.0224 (15) | 0.0295 (16) | 0.0225 (14) | −0.0011 (11) | 0.0061 (12) | 0.0055 (11) |
N14 | 0.0252 (13) | 0.0325 (15) | 0.0321 (14) | −0.0023 (11) | 0.0068 (11) | 0.0080 (12) |
O11 | 0.0298 (16) | 0.095 (3) | 0.127 (3) | −0.0225 (17) | 0.0141 (18) | −0.067 (3) |
O12 | 0.0360 (18) | 0.065 (2) | 0.154 (4) | −0.0124 (14) | 0.054 (2) | −0.037 (2) |
C15 | 0.0291 (17) | 0.0275 (17) | 0.066 (2) | −0.0020 (13) | 0.0302 (16) | −0.0096 (17) |
C16 | 0.0343 (18) | 0.0243 (16) | 0.057 (2) | −0.0061 (13) | 0.0264 (16) | −0.0138 (15) |
C17 | 0.0220 (14) | 0.0272 (15) | 0.0187 (13) | −0.0028 (11) | 0.0094 (10) | −0.0035 (12) |
C21 | 0.0198 (12) | 0.0140 (12) | 0.0197 (12) | −0.0017 (10) | 0.0065 (10) | −0.0030 (10) |
C22 | 0.0170 (12) | 0.0135 (12) | 0.0208 (13) | −0.0008 (10) | 0.0047 (9) | −0.0029 (10) |
I22 | 0.01576 (11) | 0.02505 (12) | 0.01885 (11) | 0.00215 (6) | 0.00468 (7) | 0.00052 (7) |
C23 | 0.0207 (13) | 0.0200 (13) | 0.0203 (13) | −0.0030 (10) | 0.0055 (10) | −0.0018 (11) |
C24 | 0.0274 (15) | 0.0191 (14) | 0.0205 (13) | −0.0008 (11) | 0.0033 (11) | 0.0026 (11) |
C25 | 0.0237 (14) | 0.0177 (14) | 0.0285 (15) | 0.0024 (11) | 0.0028 (12) | 0.0002 (11) |
C26 | 0.0227 (13) | 0.0180 (13) | 0.0250 (14) | 0.0003 (11) | 0.0088 (11) | −0.0021 (11) |
N1—C21 | 1.382 (4) | C15—H15 | 0.95 |
N1—C17 | 1.458 (3) | C16—H16 | 0.95 |
N1—H1 | 0.88 | C17—H171 | 0.99 |
C11—C12 | 1.383 (4) | C17—H172 | 0.99 |
C11—C16 | 1.388 (4) | C21—C26 | 1.405 (4) |
C11—C17 | 1.515 (4) | C21—C22 | 1.413 (4) |
C12—C13 | 1.386 (4) | C22—C23 | 1.383 (4) |
C12—H12 | 0.95 | C22—I22 | 2.105 (3) |
C13—C14 | 1.375 (4) | C23—C24 | 1.392 (4) |
C13—H13 | 0.95 | C23—H23 | 0.95 |
C14—C15 | 1.374 (4) | C24—C25 | 1.392 (4) |
C14—N14 | 1.463 (4) | C24—H24 | 0.95 |
N14—O12 | 1.188 (4) | C25—C26 | 1.390 (4) |
N14—O11 | 1.197 (4) | C25—H25 | 0.95 |
C15—C16 | 1.389 (5) | C26—H26 | 0.95 |
C21—N1—C17 | 121.4 (2) | N1—C17—C11 | 114.4 (2) |
C21—N1—H1 | 119.3 | N1—C17—H171 | 108.7 |
C17—N1—H1 | 119.3 | C11—C17—H171 | 108.7 |
C12—C11—C16 | 119.3 (3) | N1—C17—H172 | 108.6 |
C12—C11—C17 | 120.7 (3) | C11—C17—H172 | 108.7 |
C16—C11—C17 | 120.0 (3) | H171—C17—H172 | 107.6 |
C11—C12—C13 | 120.5 (3) | N1—C21—C26 | 121.8 (2) |
C11—C12—H12 | 119.8 | N1—C21—C22 | 121.4 (2) |
C13—C12—H12 | 119.8 | C26—C21—C22 | 116.7 (2) |
C14—C13—C12 | 119.0 (3) | C23—C22—C21 | 121.7 (2) |
C14—C13—H13 | 120.5 | C23—C22—I22 | 118.84 (19) |
C12—C13—H13 | 120.5 | C21—C22—I22 | 119.50 (19) |
C15—C14—C13 | 122.0 (3) | C22—C23—C24 | 120.6 (3) |
C15—C14—N14 | 118.4 (3) | C22—C23—H23 | 119.7 |
C13—C14—N14 | 119.6 (3) | C24—C23—H23 | 119.7 |
O12—N14—O11 | 120.8 (3) | C23—C24—C25 | 118.8 (3) |
O12—N14—C14 | 120.3 (3) | C23—C24—H24 | 120.6 |
O11—N14—C14 | 118.9 (3) | C25—C24—H24 | 120.6 |
C14—C15—C16 | 118.5 (3) | C26—C25—C24 | 120.8 (3) |
C14—C15—H15 | 120.8 | C26—C25—H25 | 119.6 |
C16—C15—H15 | 120.8 | C24—C25—H25 | 119.6 |
C11—C16—C15 | 120.7 (3) | C25—C26—C21 | 121.4 (3) |
C11—C16—H16 | 119.6 | C25—C26—H26 | 119.3 |
C15—C16—H16 | 119.6 | C21—C26—H26 | 119.3 |
C16—C11—C12—C13 | 1.0 (5) | C12—C11—C17—N1 | 37.1 (4) |
C17—C11—C12—C13 | 179.1 (3) | C16—C11—C17—N1 | −144.8 (3) |
C11—C12—C13—C14 | 0.3 (5) | C17—N1—C21—C26 | −15.7 (4) |
C12—C13—C14—C15 | −1.5 (5) | C17—N1—C21—C22 | 165.7 (2) |
C12—C13—C14—N14 | 178.7 (3) | N1—C21—C22—C23 | 178.5 (3) |
C15—C14—N14—O12 | −10.0 (5) | C26—C21—C22—C23 | −0.1 (4) |
C13—C14—N14—O12 | 169.8 (4) | N1—C21—C22—I22 | −2.2 (3) |
C15—C14—N14—O11 | 171.0 (4) | C26—C21—C22—I22 | 179.25 (19) |
C13—C14—N14—O11 | −9.2 (5) | C21—C22—C23—C24 | 0.9 (4) |
C13—C14—C15—C16 | 1.3 (6) | I22—C22—C23—C24 | −178.4 (2) |
N14—C14—C15—C16 | −178.8 (3) | C22—C23—C24—C25 | −1.2 (4) |
C12—C11—C16—C15 | −1.1 (5) | C23—C24—C25—C26 | 0.6 (4) |
C17—C11—C16—C15 | −179.2 (3) | C24—C25—C26—C21 | 0.2 (4) |
C14—C15—C16—C11 | 0.0 (6) | N1—C21—C26—C25 | −179.0 (3) |
C21—N1—C17—C11 | 79.3 (3) | C22—C21—C26—C25 | −0.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O11i | 0.95 | 2.47 | 3.403 (5) | 167 |
C26—H26···O12ii | 0.95 | 2.55 | 3.272 (4) | 132 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1. |
C13H11IN2O2 | F(000) = 688 |
Mr = 354.14 | Dx = 1.903 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2783 reflections |
a = 7.0966 (2) Å | θ = 2.9–27.5° |
b = 12.5908 (4) Å | µ = 2.59 mm−1 |
c = 13.8360 (6) Å | T = 120 K |
V = 1236.27 (8) Å3 | Needle, orange |
Z = 4 | 0.38 × 0.05 × 0.03 mm |
Kappa-CCD diffractometer | 2783 independent reflections |
Radiation source: rotating anode | 2437 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | h = −8→9 |
Tmin = 0.440, Tmax = 0.927 | k = −16→16 |
9541 measured reflections | l = −15→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0137P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2783 reflections | Δρmax = 0.54 e Å−3 |
163 parameters | Δρmin = −0.61 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1191 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
C13H11IN2O2 | V = 1236.27 (8) Å3 |
Mr = 354.14 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0966 (2) Å | µ = 2.59 mm−1 |
b = 12.5908 (4) Å | T = 120 K |
c = 13.8360 (6) Å | 0.38 × 0.05 × 0.03 mm |
Kappa-CCD diffractometer | 2783 independent reflections |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | 2437 reflections with I > 2σ(I) |
Tmin = 0.440, Tmax = 0.927 | Rint = 0.050 |
9541 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.050 | Δρmax = 0.54 e Å−3 |
S = 1.01 | Δρmin = −0.61 e Å−3 |
2783 reflections | Absolute structure: Flack (1983), 1191 Friedel pairs |
163 parameters | Absolute structure parameter: −0.01 (2) |
0 restraints |
x | y | z | Uiso*/Ueq | ||
N1 | 0.3919 (5) | 0.3395 (3) | 0.4693 (2) | 0.0218 (8) | |
C17 | 0.4045 (5) | 0.2280 (3) | 0.4779 (3) | 0.0207 (9) | |
C11 | 0.3936 (4) | 0.1839 (2) | 0.5785 (3) | 0.0168 (7) | |
C12 | 0.4180 (4) | 0.0752 (3) | 0.5892 (3) | 0.0206 (8) | |
C13 | 0.4024 (5) | 0.0272 (3) | 0.6789 (3) | 0.0204 (9) | |
C14 | 0.3602 (4) | 0.0912 (3) | 0.7580 (3) | 0.0164 (8) | |
N14 | 0.3393 (4) | 0.0413 (3) | 0.8530 (2) | 0.0236 (8) | |
O11 | 0.3704 (4) | −0.0537 (2) | 0.86032 (19) | 0.0325 (7) | |
O12 | 0.2921 (4) | 0.09823 (19) | 0.92151 (19) | 0.0302 (6) | |
C15 | 0.3389 (4) | 0.1994 (3) | 0.7494 (3) | 0.0181 (8) | |
C16 | 0.3554 (5) | 0.2455 (3) | 0.6593 (2) | 0.0176 (9) | |
C21 | 0.3891 (5) | 0.3868 (3) | 0.3778 (3) | 0.0177 (8) | |
C22 | 0.3470 (5) | 0.3278 (3) | 0.2944 (3) | 0.0183 (8) | |
C23 | 0.3437 (5) | 0.3795 (3) | 0.2056 (2) | 0.0182 (8) | |
I23 | 0.28995 (3) | 0.28735 (2) | 0.081314 (17) | 0.02517 (8) | |
C24 | 0.3805 (5) | 0.4864 (3) | 0.1961 (3) | 0.0196 (8) | |
C25 | 0.4207 (5) | 0.5439 (3) | 0.2803 (3) | 0.0217 (9) | |
C26 | 0.4255 (5) | 0.4944 (3) | 0.3688 (3) | 0.0188 (8) | |
H1 | 0.3858 | 0.3793 | 0.5214 | 0.026* | |
H171 | 0.5253 | 0.2049 | 0.4489 | 0.025* | |
H172 | 0.3019 | 0.1960 | 0.4392 | 0.025* | |
H12 | 0.4458 | 0.0330 | 0.5341 | 0.025* | |
H13 | 0.4201 | −0.0472 | 0.6863 | 0.024* | |
H15 | 0.3132 | 0.2417 | 0.8047 | 0.022* | |
H17 | 0.3405 | 0.3201 | 0.6526 | 0.021* | |
H22 | 0.3212 | 0.2539 | 0.2986 | 0.022* | |
H24 | 0.3786 | 0.5200 | 0.1346 | 0.024* | |
H25 | 0.4451 | 0.6179 | 0.2761 | 0.026* | |
H26 | 0.4542 | 0.5348 | 0.4249 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0356 (19) | 0.021 (2) | 0.0086 (16) | 0.0022 (16) | 0.0016 (14) | −0.0001 (14) |
C17 | 0.0159 (19) | 0.027 (3) | 0.019 (2) | 0.0013 (18) | −0.0020 (15) | 0.0058 (19) |
C11 | 0.0110 (17) | 0.022 (2) | 0.0170 (18) | −0.0032 (12) | −0.0049 (16) | 0.0027 (18) |
C12 | 0.021 (2) | 0.022 (2) | 0.019 (2) | 0.0022 (14) | 0.0004 (18) | −0.0040 (19) |
C13 | 0.016 (2) | 0.021 (2) | 0.024 (2) | −0.0020 (15) | −0.0018 (15) | 0.0027 (17) |
C14 | 0.0115 (17) | 0.026 (2) | 0.0120 (19) | −0.0078 (14) | −0.0025 (15) | 0.0044 (16) |
N14 | 0.021 (2) | 0.032 (2) | 0.0178 (18) | −0.0032 (14) | −0.0028 (13) | 0.0064 (16) |
O11 | 0.0441 (18) | 0.0251 (18) | 0.0282 (16) | 0.0076 (13) | 0.0026 (13) | 0.0123 (13) |
O12 | 0.0436 (15) | 0.0319 (15) | 0.0149 (13) | −0.0030 (12) | 0.0024 (17) | 0.0032 (13) |
C15 | 0.0173 (18) | 0.023 (2) | 0.0136 (17) | 0.0000 (15) | −0.0001 (13) | −0.0005 (18) |
C16 | 0.0169 (19) | 0.016 (2) | 0.020 (2) | −0.0009 (13) | −0.0003 (15) | 0.0030 (15) |
C21 | 0.0127 (19) | 0.025 (2) | 0.0149 (19) | 0.0034 (16) | 0.0007 (14) | 0.0002 (16) |
C22 | 0.019 (2) | 0.018 (2) | 0.018 (2) | 0.0028 (14) | 0.0009 (14) | −0.0014 (15) |
C23 | 0.016 (2) | 0.023 (2) | 0.015 (2) | 0.0015 (15) | −0.0023 (14) | −0.0029 (16) |
I23 | 0.03187 (13) | 0.02975 (13) | 0.01389 (12) | 0.00336 (12) | −0.00212 (10) | −0.00242 (13) |
C24 | 0.0205 (19) | 0.024 (2) | 0.0148 (19) | 0.0040 (16) | 0.0036 (16) | 0.0076 (17) |
C25 | 0.019 (2) | 0.018 (2) | 0.028 (2) | 0.0029 (15) | −0.0036 (15) | 0.0041 (17) |
C26 | 0.018 (2) | 0.021 (2) | 0.0182 (19) | 0.0008 (16) | −0.0020 (15) | −0.0003 (17) |
N1—C21 | 1.399 (4) | N14—O12 | 1.235 (4) |
N1—C17 | 1.412 (4) | C15—C16 | 1.380 (5) |
N1—H1 | 0.88 | C15—H15 | 0.95 |
C17—C11 | 1.501 (5) | C16—H17 | 0.95 |
C17—H171 | 0.99 | C21—C26 | 1.384 (5) |
C17—H172 | 0.99 | C21—C22 | 1.404 (5) |
C11—C12 | 1.387 (4) | C22—C23 | 1.391 (5) |
C11—C16 | 1.388 (5) | C22—H22 | 0.95 |
C12—C13 | 1.385 (5) | C23—C24 | 1.378 (5) |
C12—H12 | 0.95 | C23—I23 | 2.109 (3) |
C13—C14 | 1.391 (5) | C24—C25 | 1.400 (5) |
C13—H13 | 0.95 | C24—H24 | 0.95 |
C14—C15 | 1.375 (5) | C25—C26 | 1.375 (5) |
C14—N14 | 1.464 (4) | C25—H25 | 0.95 |
N14—O11 | 1.220 (4) | C26—H26 | 0.95 |
C21—N1—C17 | 120.1 (3) | C14—C15—C16 | 119.1 (3) |
C21—N1—H1 | 120.0 | C14—C15—H15 | 120.5 |
C17—N1—H1 | 120.0 | C16—C15—H15 | 120.5 |
N1—C17—C11 | 116.3 (3) | C15—C16—C11 | 120.6 (3) |
N1—C17—H171 | 108.2 | C15—C16—H17 | 119.7 |
C11—C17—H171 | 108.2 | C11—C16—H17 | 119.7 |
N1—C17—H172 | 108.2 | C26—C21—N1 | 119.6 (3) |
C11—C17—H172 | 108.2 | C26—C21—C22 | 119.0 (3) |
H171—C17—H172 | 107.4 | N1—C21—C22 | 121.4 (3) |
C12—C11—C16 | 119.3 (4) | C23—C22—C21 | 118.8 (3) |
C12—C11—C17 | 117.3 (4) | C23—C22—H22 | 120.6 |
C16—C11—C17 | 123.4 (3) | C21—C22—H22 | 120.6 |
C13—C12—C11 | 121.1 (4) | C24—C23—C22 | 122.6 (3) |
C13—C12—H12 | 119.5 | C24—C23—I23 | 119.6 (3) |
C11—C12—H12 | 119.5 | C22—C23—I23 | 117.8 (3) |
C12—C13—C14 | 118.0 (4) | C23—C24—C25 | 117.7 (3) |
C12—C13—H13 | 121.0 | C23—C24—H24 | 121.2 |
C14—C13—H13 | 121.0 | C25—C24—H24 | 121.2 |
C15—C14—C13 | 121.9 (3) | C26—C25—C24 | 120.8 (4) |
C15—C14—N14 | 119.4 (3) | C26—C25—H25 | 119.6 |
C13—C14—N14 | 118.6 (3) | C24—C25—H25 | 119.6 |
O11—N14—O12 | 123.6 (3) | C25—C26—C21 | 121.2 (4) |
O11—N14—C14 | 118.5 (3) | C25—C26—H26 | 119.4 |
O12—N14—C14 | 117.9 (3) | C21—C26—H26 | 119.4 |
C21—N1—C17—C11 | −176.0 (3) | C12—C11—C16—C15 | −1.0 (4) |
N1—C17—C11—C12 | −175.9 (3) | C17—C11—C16—C15 | 177.1 (3) |
N1—C17—C11—C16 | 6.0 (5) | C17—N1—C21—C26 | −163.4 (3) |
C16—C11—C12—C13 | 0.9 (5) | C17—N1—C21—C22 | 17.7 (6) |
C17—C11—C12—C13 | −177.3 (3) | C26—C21—C22—C23 | 0.2 (5) |
C11—C12—C13—C14 | 0.4 (5) | N1—C21—C22—C23 | 179.1 (3) |
C12—C13—C14—C15 | −1.7 (5) | C21—C22—C23—C24 | 0.1 (5) |
C12—C13—C14—N14 | 178.7 (3) | C21—C22—C23—I23 | 177.8 (2) |
C15—C14—N14—O11 | −175.4 (3) | C22—C23—C24—C25 | −0.6 (5) |
C13—C14—N14—O11 | 4.2 (5) | I23—C23—C24—C25 | −178.2 (2) |
C15—C14—N14—O12 | 4.1 (4) | C23—C24—C25—C26 | 0.8 (5) |
C13—C14—N14—O12 | −176.2 (3) | C24—C25—C26—C21 | −0.6 (5) |
C13—C14—C15—C16 | 1.6 (5) | N1—C21—C26—C25 | −178.9 (3) |
N14—C14—C15—C16 | −178.8 (3) | C22—C21—C26—C25 | 0.1 (5) |
C14—C15—C16—C11 | −0.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O11i | 0.88 | 2.53 | 3.196 (4) | 133 |
C17—H172···O11ii | 0.99 | 2.43 | 3.357 (5) | 156 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1/2, −y, z−1/2. |
C13H11IN2O2 | F(000) = 688 |
Mr = 354.14 | Dx = 1.862 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2785 reflections |
a = 21.2778 (15) Å | θ = 3.1–27.5° |
b = 8.1809 (5) Å | µ = 2.53 mm−1 |
c = 7.2793 (4) Å | T = 120 K |
β = 94.316 (2)° | Needle, yellow |
V = 1263.53 (14) Å3 | 0.48 × 0.04 × 0.02 mm |
Z = 4 |
Kappa-CCD diffractometer | 2785 independent reflections |
Radiation source: rotating anode | 1934 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.064 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan SORTAV (Blessing, 1995 & 1997) | h = −27→27 |
Tmin = 0.377, Tmax = 0.951 | k = −10→10 |
12705 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0209P)2] where P = (Fo2 + 2Fc2)/3 |
2785 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 1.13 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C13H11IN2O2 | V = 1263.53 (14) Å3 |
Mr = 354.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 21.2778 (15) Å | µ = 2.53 mm−1 |
b = 8.1809 (5) Å | T = 120 K |
c = 7.2793 (4) Å | 0.48 × 0.04 × 0.02 mm |
β = 94.316 (2)° |
Kappa-CCD diffractometer | 2785 independent reflections |
Absorption correction: multi-scan SORTAV (Blessing, 1995 & 1997) | 1934 reflections with I > 2σ(I) |
Tmin = 0.377, Tmax = 0.951 | Rint = 0.064 |
12705 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.13 e Å−3 |
2785 reflections | Δρmin = −0.60 e Å−3 |
163 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.29471 (14) | 0.6052 (4) | 0.0718 (4) | 0.0251 (8) | |
C11 | 0.17805 (17) | 0.6034 (5) | 0.0486 (4) | 0.0174 (8) | |
C12 | 0.17247 (16) | 0.7717 (5) | 0.0569 (4) | 0.0178 (8) | |
C13 | 0.11592 (18) | 0.8393 (5) | 0.1011 (5) | 0.0179 (9) | |
N13 | 0.11125 (17) | 1.0189 (4) | 0.1087 (4) | 0.0244 (8) | |
O11 | 0.15922 (13) | 1.0989 (3) | 0.0901 (4) | 0.0360 (7) | |
O12 | 0.05994 (13) | 1.0807 (3) | 0.1341 (4) | 0.0360 (7) | |
C14 | 0.06417 (18) | 0.7463 (5) | 0.1383 (4) | 0.0227 (9) | |
C15 | 0.07033 (18) | 0.5784 (5) | 0.1321 (5) | 0.0255 (9) | |
C16 | 0.12658 (19) | 0.5077 (5) | 0.0873 (5) | 0.0246 (9) | |
C17 | 0.23833 (19) | 0.5273 (5) | −0.0108 (5) | 0.0266 (10) | |
C21 | 0.32330 (17) | 0.5586 (4) | 0.2411 (5) | 0.0178 (8) | |
C22 | 0.29209 (17) | 0.4628 (5) | 0.3662 (5) | 0.0201 (9) | |
C23 | 0.32217 (17) | 0.4212 (5) | 0.5346 (5) | 0.0200 (8) | |
C24 | 0.38304 (17) | 0.4743 (4) | 0.5817 (4) | 0.0190 (8) | |
I24 | 0.429933 (12) | 0.40696 (3) | 0.83507 (3) | 0.02594 (10) | |
C25 | 0.41432 (17) | 0.5698 (4) | 0.4606 (5) | 0.0185 (8) | |
C26 | 0.38440 (17) | 0.6114 (4) | 0.2919 (5) | 0.0196 (9) | |
H1 | 0.3197 | 0.6537 | −0.0023 | 0.030* | |
H12 | 0.2070 | 0.8399 | 0.0327 | 0.021* | |
H14 | 0.0258 | 0.7960 | 0.1671 | 0.027* | |
H15 | 0.0359 | 0.5107 | 0.1585 | 0.031* | |
H16 | 0.1300 | 0.3920 | 0.0831 | 0.029* | |
H17A | 0.2391 | 0.4101 | 0.0231 | 0.032* | |
H17B | 0.2384 | 0.5345 | −0.1466 | 0.032* | |
H22 | 0.2502 | 0.4266 | 0.3349 | 0.024* | |
H23 | 0.3010 | 0.3558 | 0.6185 | 0.024* | |
H25 | 0.4560 | 0.6064 | 0.4932 | 0.022* | |
H26 | 0.4059 | 0.6772 | 0.2091 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0207 (18) | 0.031 (2) | 0.0245 (18) | 0.0029 (16) | 0.0050 (14) | 0.0043 (15) |
C11 | 0.020 (2) | 0.018 (2) | 0.0131 (18) | 0.0020 (18) | −0.0044 (14) | −0.0005 (15) |
C12 | 0.016 (2) | 0.021 (2) | 0.0156 (18) | −0.0060 (17) | −0.0028 (14) | −0.0003 (16) |
C13 | 0.023 (2) | 0.016 (2) | 0.0146 (19) | 0.0032 (18) | −0.0012 (15) | −0.0008 (15) |
N13 | 0.027 (2) | 0.022 (2) | 0.0238 (18) | 0.0045 (18) | 0.0003 (14) | 0.0009 (14) |
O11 | 0.0300 (18) | 0.0174 (17) | 0.062 (2) | −0.0029 (15) | 0.0091 (14) | 0.0015 (14) |
O12 | 0.0288 (18) | 0.0281 (18) | 0.0516 (19) | 0.0147 (15) | 0.0068 (13) | −0.0023 (14) |
C14 | 0.020 (2) | 0.030 (3) | 0.018 (2) | 0.0019 (19) | 0.0020 (15) | 0.0001 (17) |
C15 | 0.025 (2) | 0.030 (3) | 0.022 (2) | −0.007 (2) | 0.0024 (16) | 0.0038 (17) |
C16 | 0.036 (3) | 0.012 (2) | 0.024 (2) | 0.000 (2) | −0.0043 (17) | −0.0021 (16) |
C17 | 0.035 (3) | 0.023 (2) | 0.020 (2) | 0.009 (2) | −0.0011 (17) | −0.0019 (17) |
C21 | 0.020 (2) | 0.018 (2) | 0.0163 (19) | 0.0089 (16) | 0.0025 (15) | −0.0007 (15) |
C22 | 0.017 (2) | 0.020 (2) | 0.023 (2) | 0.0005 (17) | 0.0021 (16) | −0.0037 (16) |
C23 | 0.023 (2) | 0.016 (2) | 0.022 (2) | 0.0040 (18) | 0.0060 (15) | 0.0008 (16) |
C24 | 0.026 (2) | 0.012 (2) | 0.019 (2) | 0.0034 (17) | 0.0013 (16) | −0.0019 (15) |
I24 | 0.02652 (16) | 0.03048 (18) | 0.02068 (15) | 0.00257 (14) | 0.00091 (10) | 0.00406 (12) |
C25 | 0.016 (2) | 0.016 (2) | 0.024 (2) | 0.0023 (17) | 0.0035 (15) | −0.0034 (16) |
C26 | 0.022 (2) | 0.017 (2) | 0.021 (2) | 0.0019 (18) | 0.0086 (15) | 0.0022 (16) |
N1—C21 | 1.386 (4) | C14—H14 | 0.95 |
N1—C17 | 1.449 (5) | C15—C16 | 1.390 (5) |
N1—H1 | 0.8799 | C15—H15 | 0.95 |
C17—C11 | 1.518 (5) | C16—H16 | 0.95 |
C17—H17A | 0.99 | C21—C26 | 1.393 (5) |
C17—H17B | 0.99 | C21—C22 | 1.406 (5) |
C11—C12 | 1.384 (5) | C22—C23 | 1.382 (5) |
C11—C16 | 1.392 (5) | C22—H22 | 0.95 |
C12—C13 | 1.384 (5) | C23—C24 | 1.385 (5) |
C12—H12 | 0.95 | C23—H23 | 0.95 |
C13—C14 | 1.382 (5) | C24—C25 | 1.385 (5) |
C13—N13 | 1.474 (5) | C24—I24 | 2.104 (3) |
N13—O11 | 1.229 (4) | C25—C26 | 1.383 (5) |
N13—O12 | 1.230 (4) | C25—H25 | 0.95 |
C14—C15 | 1.381 (5) | C26—H26 | 0.95 |
C21—N1—C17 | 122.9 (3) | C14—C15—C16 | 120.5 (4) |
C21—N1—H1 | 115.0 | C14—C15—H15 | 119.8 |
C17—N1—H1 | 117.6 | C16—C15—H15 | 119.8 |
N1—C17—C11 | 113.1 (3) | C15—C16—C11 | 121.2 (4) |
N1—C17—H17A | 109.0 | C15—C16—H16 | 119.4 |
C11—C17—H17A | 109.0 | C11—C16—H16 | 119.4 |
N1—C17—H17B | 109.0 | N1—C21—C26 | 119.3 (3) |
C11—C17—H17B | 109.0 | N1—C21—C22 | 122.1 (3) |
H17A—C17—H17B | 107.8 | C26—C21—C22 | 118.5 (3) |
C12—C11—C16 | 118.6 (3) | C23—C22—C21 | 120.1 (3) |
C12—C11—C17 | 119.9 (3) | C23—C22—H22 | 119.9 |
C16—C11—C17 | 121.4 (3) | C21—C22—H22 | 119.9 |
C11—C12—C13 | 119.1 (3) | C22—C23—C24 | 120.3 (3) |
C11—C12—H12 | 120.4 | C22—C23—H23 | 119.9 |
C13—C12—H12 | 120.4 | C24—C23—H23 | 119.9 |
C14—C13—C12 | 123.0 (3) | C23—C24—C25 | 120.3 (3) |
C14—C13—N13 | 119.0 (3) | C23—C24—I24 | 120.5 (3) |
C12—C13—N13 | 118.0 (3) | C25—C24—I24 | 119.1 (3) |
O11—N13—O12 | 123.5 (3) | C26—C25—C24 | 119.5 (3) |
O11—N13—C13 | 117.9 (3) | C26—C25—H25 | 120.2 |
O12—N13—C13 | 118.6 (3) | C24—C25—H25 | 120.2 |
C15—C14—C13 | 117.5 (4) | C25—C26—C21 | 121.2 (3) |
C15—C14—H14 | 121.2 | C25—C26—H26 | 119.4 |
C13—C14—H14 | 121.2 | C21—C26—H26 | 119.4 |
C21—N1—C17—C11 | 87.8 (4) | C12—C11—C16—C15 | 0.6 (5) |
N1—C17—C11—C12 | 43.3 (4) | C17—C11—C16—C15 | −176.5 (3) |
N1—C17—C11—C16 | −139.7 (3) | C17—N1—C21—C26 | 165.2 (3) |
C16—C11—C12—C13 | −0.8 (5) | C17—N1—C21—C22 | −16.5 (5) |
C17—C11—C12—C13 | 176.3 (3) | N1—C21—C22—C23 | −179.1 (3) |
C11—C12—C13—C14 | 0.2 (5) | C26—C21—C22—C23 | −0.7 (5) |
C11—C12—C13—N13 | −179.9 (3) | C21—C22—C23—C24 | 0.4 (5) |
C14—C13—N13—O11 | 174.2 (3) | C22—C23—C24—C25 | 0.1 (5) |
C12—C13—N13—O11 | −5.8 (4) | C22—C23—C24—I24 | −178.6 (3) |
C14—C13—N13—O12 | −5.4 (5) | C23—C24—C25—C26 | −0.2 (5) |
C12—C13—N13—O12 | 174.6 (3) | I24—C24—C25—C26 | 178.5 (3) |
C12—C13—C14—C15 | 0.6 (5) | C24—C25—C26—C21 | −0.2 (5) |
N13—C13—C14—C15 | −179.3 (3) | N1—C21—C26—C25 | 179.0 (3) |
C13—C14—C15—C16 | −0.8 (5) | C22—C21—C26—C25 | 0.6 (5) |
C14—C15—C16—C11 | 0.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O11i | 0.95 | 2.48 | 3.416 (5) | 170 |
N1—H1···Cg2ii | 0.88 | 2.87 | 3.563 (4) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−3/2. |
C13H11IN2O2 | Z = 4 |
Mr = 354.14 | F(000) = 688 |
Triclinic, P1 | Dx = 1.841 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1685 (1) Å | Cell parameters from 5760 reflections |
b = 10.8834 (2) Å | θ = 3.1–27.5° |
c = 15.4372 (2) Å | µ = 2.50 mm−1 |
α = 76.9219 (9)° | T = 120 K |
β = 80.0727 (7)° | Block, orange |
γ = 74.2167 (7)° | 0.22 × 0.18 × 0.12 mm |
V = 1277.36 (3) Å3 |
Kappa-CCD diffractometer | 5760 independent reflections |
Radiation source: rotating anode | 5317 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ scans, and ω scans with κ offsets | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | h = −10→10 |
Tmin = 0.597, Tmax = 0.738 | k = −14→13 |
5760 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0523P)2 + 2.2937P] where P = (Fo2 + 2Fc2)/3 |
5760 reflections | (Δ/σ)max = 0.003 |
325 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −1.65 e Å−3 |
C13H11IN2O2 | γ = 74.2167 (7)° |
Mr = 354.14 | V = 1277.36 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.1685 (1) Å | Mo Kα radiation |
b = 10.8834 (2) Å | µ = 2.50 mm−1 |
c = 15.4372 (2) Å | T = 120 K |
α = 76.9219 (9)° | 0.22 × 0.18 × 0.12 mm |
β = 80.0727 (7)° |
Kappa-CCD diffractometer | 5760 independent reflections |
Absorption correction: multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | 5317 reflections with I > 2σ(I) |
Tmin = 0.597, Tmax = 0.738 | Rint = 0.046 |
5760 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.71 e Å−3 |
5760 reflections | Δρmin = −1.65 e Å−3 |
325 parameters |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4705 (4) | 0.2423 (3) | 0.9345 (2) | 0.0285 (6) | |
C17 | 0.4270 (4) | 0.2768 (3) | 0.8436 (2) | 0.0243 (7) | |
C11 | 0.2877 (4) | 0.4032 (3) | 0.8265 (2) | 0.0201 (6) | |
C12 | 0.2322 (4) | 0.4634 (3) | 0.7422 (2) | 0.0210 (6) | |
N12 | 0.3066 (4) | 0.4045 (3) | 0.6618 (2) | 0.0292 (7) | |
O11 | 0.3889 (5) | 0.2939 (3) | 0.6714 (2) | 0.0500 (8) | |
O12 | 0.2783 (6) | 0.4727 (3) | 0.5893 (2) | 0.0536 (9) | |
C13 | 0.1083 (5) | 0.5799 (4) | 0.7286 (3) | 0.0295 (8) | |
C14 | 0.0350 (5) | 0.6411 (4) | 0.7996 (3) | 0.0340 (9) | |
C15 | 0.0868 (5) | 0.5853 (4) | 0.8841 (3) | 0.0326 (8) | |
C16 | 0.2114 (4) | 0.4685 (4) | 0.8962 (2) | 0.0255 (7) | |
C21 | 0.3852 (4) | 0.1721 (3) | 1.0040 (2) | 0.0225 (6) | |
C22 | 0.4396 (4) | 0.1328 (3) | 1.0891 (2) | 0.0244 (7) | |
I22 | 0.65858 (3) | 0.18196 (3) | 1.112805 (16) | 0.03433 (10) | |
C23 | 0.3554 (5) | 0.0627 (4) | 1.1602 (3) | 0.0335 (8) | |
C24 | 0.2062 (5) | 0.0271 (3) | 1.1469 (3) | 0.0350 (9) | |
C25 | 0.1520 (5) | 0.0662 (4) | 1.0658 (3) | 0.0348 (9) | |
C26 | 0.2359 (4) | 0.1373 (4) | 0.9942 (3) | 0.0293 (7) | |
N3 | 0.3333 (4) | 0.4467 (3) | 0.3894 (2) | 0.0269 (6) | |
C37 | 0.4815 (4) | 0.3380 (3) | 0.3986 (2) | 0.0241 (7) | |
C31 | 0.4493 (4) | 0.2081 (3) | 0.3948 (2) | 0.0191 (6) | |
C32 | 0.5812 (4) | 0.0980 (3) | 0.3838 (2) | 0.0182 (6) | |
N32 | 0.7619 (3) | 0.1039 (3) | 0.37277 (19) | 0.0218 (6) | |
O31 | 0.8008 (3) | 0.1726 (3) | 0.41571 (18) | 0.0297 (5) | |
O32 | 0.8636 (3) | 0.0400 (3) | 0.32235 (19) | 0.0336 (6) | |
C33 | 0.5523 (4) | −0.0216 (3) | 0.3823 (2) | 0.0218 (6) | |
C34 | 0.3859 (4) | −0.0339 (4) | 0.3937 (2) | 0.0246 (7) | |
C35 | 0.2509 (4) | 0.0741 (4) | 0.4027 (2) | 0.0250 (7) | |
C36 | 0.2832 (4) | 0.1924 (3) | 0.4020 (2) | 0.0231 (7) | |
C41 | 0.2796 (4) | 0.5121 (3) | 0.3080 (2) | 0.0208 (6) | |
C42 | 0.1545 (4) | 0.6315 (3) | 0.3003 (2) | 0.0217 (6) | |
I42 | 0.05593 (3) | 0.71566 (2) | 0.413668 (17) | 0.03445 (9) | |
C43 | 0.0967 (4) | 0.6963 (4) | 0.2184 (3) | 0.0286 (7) | |
C44 | 0.1630 (5) | 0.6451 (4) | 0.1420 (3) | 0.0320 (8) | |
C45 | 0.2878 (5) | 0.5286 (4) | 0.1476 (2) | 0.0316 (8) | |
C46 | 0.3450 (5) | 0.4626 (3) | 0.2298 (2) | 0.0263 (7) | |
H1 | 0.5567 | 0.2679 | 0.9458 | 0.034* | |
H171 | 0.3875 | 0.2053 | 0.8307 | 0.029* | |
H172 | 0.5313 | 0.2861 | 0.8018 | 0.029* | |
H13 | 0.0745 | 0.6171 | 0.6706 | 0.035* | |
H14 | −0.0501 | 0.7207 | 0.7911 | 0.041* | |
H15 | 0.0371 | 0.6270 | 0.9336 | 0.039* | |
H16 | 0.2454 | 0.4322 | 0.9543 | 0.031* | |
H23 | 0.3959 | 0.0383 | 1.2173 | 0.040* | |
H24 | 0.1475 | −0.0228 | 1.1944 | 0.042* | |
H25 | 0.0520 | 0.0444 | 1.0568 | 0.042* | |
H26 | 0.1922 | 0.1628 | 0.9379 | 0.035* | |
H3 | 0.2745 | 0.4723 | 0.4383 | 0.032* | |
H371 | 0.5236 | 0.3304 | 0.4565 | 0.029* | |
H372 | 0.5734 | 0.3566 | 0.3504 | 0.029* | |
H33 | 0.6457 | −0.0936 | 0.3735 | 0.026* | |
H34 | 0.3637 | −0.1158 | 0.3954 | 0.030* | |
H35 | 0.1361 | 0.0665 | 0.4093 | 0.030* | |
H36 | 0.1893 | 0.2656 | 0.4066 | 0.028* | |
H43 | 0.0114 | 0.7759 | 0.2151 | 0.034* | |
H44 | 0.1236 | 0.6891 | 0.0861 | 0.038* | |
H45 | 0.3348 | 0.4936 | 0.0951 | 0.038* | |
H46 | 0.4297 | 0.3827 | 0.2325 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0193 (13) | 0.0414 (17) | 0.0235 (14) | −0.0077 (12) | −0.0080 (11) | 0.0012 (13) |
C17 | 0.0230 (16) | 0.0265 (16) | 0.0205 (16) | −0.0006 (13) | −0.0066 (12) | −0.0024 (13) |
C11 | 0.0189 (14) | 0.0200 (14) | 0.0232 (16) | −0.0051 (12) | −0.0058 (12) | −0.0049 (12) |
C12 | 0.0213 (15) | 0.0209 (15) | 0.0231 (16) | −0.0073 (12) | −0.0061 (12) | −0.0035 (12) |
N12 | 0.0417 (18) | 0.0287 (15) | 0.0229 (15) | −0.0172 (14) | −0.0128 (13) | 0.0009 (12) |
O11 | 0.070 (2) | 0.0406 (17) | 0.0346 (16) | 0.0090 (16) | −0.0134 (15) | −0.0205 (14) |
O12 | 0.098 (3) | 0.0430 (18) | 0.0224 (14) | −0.0192 (18) | −0.0194 (16) | −0.0001 (13) |
C13 | 0.0209 (16) | 0.0243 (16) | 0.042 (2) | −0.0069 (13) | −0.0117 (14) | 0.0045 (15) |
C14 | 0.0198 (16) | 0.0217 (16) | 0.057 (3) | −0.0005 (13) | −0.0024 (16) | −0.0069 (17) |
C15 | 0.0274 (18) | 0.0295 (18) | 0.044 (2) | −0.0101 (15) | 0.0090 (16) | −0.0193 (17) |
C16 | 0.0236 (16) | 0.0302 (17) | 0.0247 (16) | −0.0074 (14) | −0.0013 (13) | −0.0091 (14) |
C21 | 0.0153 (14) | 0.0238 (16) | 0.0247 (16) | 0.0005 (12) | −0.0037 (12) | −0.0028 (13) |
C22 | 0.0210 (15) | 0.0258 (16) | 0.0230 (16) | 0.0014 (13) | −0.0012 (12) | −0.0075 (13) |
I22 | 0.02431 (14) | 0.05411 (18) | 0.02607 (14) | −0.00191 (11) | −0.00718 (9) | −0.01675 (11) |
C23 | 0.038 (2) | 0.0326 (19) | 0.0234 (17) | −0.0010 (16) | 0.0017 (15) | −0.0045 (15) |
C24 | 0.0334 (19) | 0.0206 (16) | 0.036 (2) | −0.0016 (14) | 0.0201 (16) | 0.0017 (15) |
C25 | 0.0237 (17) | 0.0289 (18) | 0.051 (2) | −0.0054 (14) | 0.0058 (16) | −0.0146 (17) |
C26 | 0.0204 (16) | 0.0335 (19) | 0.0340 (19) | −0.0045 (14) | −0.0046 (14) | −0.0080 (15) |
N3 | 0.0313 (15) | 0.0228 (14) | 0.0195 (14) | 0.0071 (12) | −0.0050 (11) | −0.0048 (11) |
C37 | 0.0220 (15) | 0.0208 (15) | 0.0263 (17) | 0.0015 (12) | −0.0056 (13) | −0.0045 (13) |
C31 | 0.0162 (14) | 0.0221 (15) | 0.0152 (14) | −0.0005 (12) | −0.0025 (11) | −0.0005 (11) |
C32 | 0.0120 (13) | 0.0239 (15) | 0.0163 (14) | −0.0018 (11) | −0.0036 (10) | −0.0007 (12) |
N32 | 0.0140 (12) | 0.0222 (13) | 0.0235 (13) | 0.0009 (10) | −0.0037 (10) | 0.0021 (11) |
O31 | 0.0215 (12) | 0.0320 (13) | 0.0367 (14) | −0.0072 (10) | −0.0097 (10) | −0.0031 (11) |
O32 | 0.0179 (12) | 0.0384 (15) | 0.0380 (15) | 0.0022 (10) | 0.0017 (10) | −0.0090 (12) |
C33 | 0.0213 (15) | 0.0221 (15) | 0.0184 (15) | −0.0009 (12) | −0.0052 (12) | 0.0004 (12) |
C34 | 0.0241 (16) | 0.0288 (17) | 0.0214 (16) | −0.0077 (13) | −0.0053 (13) | −0.0024 (13) |
C35 | 0.0173 (15) | 0.0350 (18) | 0.0216 (15) | −0.0074 (13) | −0.0056 (12) | 0.0007 (14) |
C36 | 0.0147 (14) | 0.0287 (16) | 0.0198 (15) | 0.0036 (12) | −0.0022 (11) | −0.0030 (13) |
C41 | 0.0198 (14) | 0.0200 (15) | 0.0229 (16) | −0.0045 (12) | −0.0042 (12) | −0.0039 (12) |
C42 | 0.0173 (14) | 0.0207 (15) | 0.0267 (16) | −0.0055 (12) | −0.0043 (12) | −0.0015 (13) |
I42 | 0.03699 (15) | 0.02458 (14) | 0.03448 (16) | 0.00676 (10) | −0.00210 (11) | −0.00978 (10) |
C43 | 0.0210 (16) | 0.0293 (17) | 0.0341 (19) | −0.0097 (14) | −0.0095 (14) | 0.0058 (15) |
C44 | 0.0295 (18) | 0.043 (2) | 0.0264 (18) | −0.0173 (16) | −0.0131 (14) | 0.0054 (16) |
C45 | 0.037 (2) | 0.042 (2) | 0.0212 (17) | −0.0180 (17) | −0.0035 (14) | −0.0057 (15) |
C46 | 0.0306 (18) | 0.0271 (17) | 0.0218 (16) | −0.0073 (14) | −0.0031 (13) | −0.0050 (13) |
N1—C21 | 1.371 (4) | N3—C41 | 1.376 (4) |
N1—C17 | 1.448 (4) | N3—C37 | 1.445 (4) |
N1—H1 | 0.88 | N3—H3 | 0.88 |
C17—C11 | 1.531 (4) | C37—C31 | 1.523 (5) |
C17—H171 | 0.99 | C37—H371 | 0.99 |
C17—H172 | 0.99 | C37—H372 | 0.99 |
C11—C16 | 1.387 (5) | C31—C36 | 1.395 (4) |
C11—C12 | 1.409 (4) | C31—C32 | 1.397 (4) |
C12—C13 | 1.390 (5) | C32—C33 | 1.390 (5) |
C12—N12 | 1.487 (5) | C32—N32 | 1.473 (4) |
N12—O11 | 1.198 (4) | N32—O32 | 1.219 (4) |
N12—O12 | 1.214 (4) | N32—O31 | 1.235 (4) |
C13—C14 | 1.375 (6) | C33—C34 | 1.379 (5) |
C13—H13 | 0.95 | C33—H33 | 0.95 |
C14—C15 | 1.394 (6) | C34—C35 | 1.390 (5) |
C14—H14 | 0.95 | C34—H34 | 0.95 |
C15—C16 | 1.394 (5) | C35—C36 | 1.381 (5) |
C15—H15 | 0.95 | C35—H35 | 0.95 |
C16—H16 | 0.95 | C36—H36 | 0.95 |
C21—C22 | 1.397 (5) | C41—C46 | 1.396 (5) |
C21—C26 | 1.412 (5) | C41—C42 | 1.413 (4) |
C22—C23 | 1.380 (5) | C42—C43 | 1.393 (5) |
C22—I22 | 2.110 (4) | C42—I42 | 2.095 (4) |
C23—C24 | 1.434 (6) | C43—C44 | 1.382 (6) |
C23—H23 | 0.95 | C43—H43 | 0.95 |
C24—C25 | 1.340 (6) | C44—C45 | 1.390 (6) |
C24—H24 | 0.95 | C44—H44 | 0.95 |
C25—C26 | 1.389 (6) | C45—C46 | 1.398 (5) |
C25—H25 | 0.95 | C45—H45 | 0.95 |
C26—H26 | 0.95 | C46—H46 | 0.95 |
C21—N1—C17 | 123.8 (3) | C41—N3—C37 | 123.2 (3) |
C21—N1—H1 | 118.1 | C41—N3—H3 | 118.4 |
C17—N1—H1 | 118.1 | C37—N3—H3 | 118.4 |
N1—C17—C11 | 113.2 (3) | N3—C37—C31 | 114.6 (3) |
N1—C17—H171 | 108.9 | N3—C37—H371 | 108.6 |
C11—C17—H171 | 108.9 | C31—C37—H371 | 108.6 |
N1—C17—H172 | 108.9 | N3—C37—H372 | 108.6 |
C11—C17—H172 | 108.9 | C31—C37—H372 | 108.6 |
H171—C17—H172 | 107.7 | H371—C37—H372 | 107.6 |
C16—C11—C12 | 115.6 (3) | C36—C31—C32 | 115.8 (3) |
C16—C11—C17 | 119.9 (3) | C36—C31—C37 | 121.2 (3) |
C12—C11—C17 | 124.5 (3) | C32—C31—C37 | 123.0 (3) |
C13—C12—C11 | 123.0 (3) | C33—C32—C31 | 123.2 (3) |
C13—C12—N12 | 116.2 (3) | C33—C32—N32 | 116.2 (3) |
C11—C12—N12 | 120.8 (3) | C31—C32—N32 | 120.6 (3) |
O11—N12—O12 | 123.8 (4) | O32—N32—O31 | 124.2 (3) |
O11—N12—C12 | 119.1 (3) | O32—N32—C32 | 117.9 (3) |
O12—N12—C12 | 117.0 (3) | O31—N32—C32 | 117.8 (3) |
C14—C13—C12 | 119.6 (4) | C34—C33—C32 | 119.0 (3) |
C14—C13—H13 | 120.2 | C34—C33—H33 | 120.5 |
C12—C13—H13 | 120.2 | C32—C33—H33 | 120.5 |
C13—C14—C15 | 119.3 (3) | C33—C34—C35 | 119.6 (3) |
C13—C14—H14 | 120.3 | C33—C34—H34 | 120.2 |
C15—C14—H14 | 120.3 | C35—C34—H34 | 120.2 |
C16—C15—C14 | 120.0 (4) | C36—C35—C34 | 120.2 (3) |
C16—C15—H15 | 120.0 | C36—C35—H35 | 119.9 |
C14—C15—H15 | 120.0 | C34—C35—H35 | 119.9 |
C11—C16—C15 | 122.4 (3) | C35—C36—C31 | 122.2 (3) |
C11—C16—H16 | 118.8 | C35—C36—H36 | 118.9 |
C15—C16—H16 | 118.8 | C31—C36—H36 | 118.9 |
N1—C21—C22 | 121.8 (3) | N3—C41—C46 | 121.4 (3) |
N1—C21—C26 | 122.1 (3) | N3—C41—C42 | 121.3 (3) |
C22—C21—C26 | 116.1 (3) | C46—C41—C42 | 117.2 (3) |
C23—C22—C21 | 122.8 (3) | C43—C42—C41 | 121.5 (3) |
C23—C22—I22 | 117.5 (3) | C43—C42—I42 | 118.8 (3) |
C21—C22—I22 | 119.7 (3) | C41—C42—I42 | 119.6 (2) |
C22—C23—C24 | 119.3 (4) | C44—C43—C42 | 120.2 (3) |
C22—C23—H23 | 120.4 | C44—C43—H43 | 119.9 |
C24—C23—H23 | 120.4 | C42—C43—H43 | 119.9 |
C25—C24—C23 | 118.2 (3) | C43—C44—C45 | 119.4 (3) |
C25—C24—H24 | 120.9 | C43—C44—H44 | 120.3 |
C23—C24—H24 | 120.9 | C45—C44—H44 | 120.3 |
C24—C25—C26 | 122.7 (4) | C44—C45—C46 | 120.6 (4) |
C24—C25—H25 | 118.6 | C44—C45—H45 | 119.7 |
C26—C25—H25 | 118.6 | C46—C45—H45 | 119.7 |
C25—C26—C21 | 120.9 (4) | C41—C46—C45 | 121.1 (3) |
C25—C26—H26 | 119.6 | C41—C46—H46 | 119.5 |
C21—C26—H26 | 119.6 | C45—C46—H46 | 119.5 |
C21—N1—C17—C11 | 86.5 (4) | C41—N3—C37—C31 | −81.6 (4) |
N1—C17—C11—C16 | −3.0 (4) | N3—C37—C31—C36 | −13.5 (4) |
N1—C17—C11—C12 | 174.7 (3) | N3—C37—C31—C32 | 166.4 (3) |
C16—C11—C12—C13 | −0.5 (5) | C36—C31—C32—C33 | −1.6 (5) |
C17—C11—C12—C13 | −178.3 (3) | C37—C31—C32—C33 | 178.5 (3) |
C16—C11—C12—N12 | 178.8 (3) | C36—C31—C32—N32 | 178.2 (3) |
C17—C11—C12—N12 | 1.0 (5) | C37—C31—C32—N32 | −1.7 (5) |
C13—C12—N12—O11 | −166.2 (4) | C33—C32—N32—O32 | 35.8 (4) |
C11—C12—N12—O11 | 14.5 (5) | C31—C32—N32—O32 | −144.0 (3) |
C13—C12—N12—O12 | 13.3 (5) | C33—C32—N32—O31 | −143.7 (3) |
C11—C12—N12—O12 | −166.0 (3) | C31—C32—N32—O31 | 36.5 (4) |
C11—C12—C13—C14 | 0.1 (5) | C31—C32—C33—C34 | −1.2 (5) |
N12—C12—C13—C14 | −179.2 (3) | N32—C32—C33—C34 | 179.0 (3) |
C12—C13—C14—C15 | 0.2 (5) | C32—C33—C34—C35 | 2.7 (5) |
C13—C14—C15—C16 | −0.2 (5) | C33—C34—C35—C36 | −1.3 (5) |
C12—C11—C16—C15 | 0.6 (5) | C34—C35—C36—C31 | −1.7 (5) |
C17—C11—C16—C15 | 178.5 (3) | C32—C31—C36—C35 | 3.0 (5) |
C14—C15—C16—C11 | −0.3 (5) | C37—C31—C36—C35 | −177.1 (3) |
C17—N1—C21—C22 | 175.2 (3) | C37—N3—C41—C46 | 12.5 (5) |
C17—N1—C21—C26 | −6.0 (5) | C37—N3—C41—C42 | −168.2 (3) |
N1—C21—C22—C23 | 179.7 (3) | N3—C41—C42—C43 | −178.4 (3) |
C26—C21—C22—C23 | 0.8 (5) | C46—C41—C42—C43 | 1.0 (5) |
N1—C21—C22—I22 | 0.0 (5) | N3—C41—C42—I42 | 2.8 (4) |
C26—C21—C22—I22 | −178.9 (2) | C46—C41—C42—I42 | −177.9 (2) |
C21—C22—C23—C24 | 0.4 (6) | C41—C42—C43—C44 | −0.8 (5) |
I22—C22—C23—C24 | −179.9 (3) | I42—C42—C43—C44 | 178.1 (3) |
C22—C23—C24—C25 | −1.4 (5) | C42—C43—C44—C45 | −0.1 (5) |
C23—C24—C25—C26 | 1.2 (6) | C43—C44—C45—C46 | 0.8 (5) |
C24—C25—C26—C21 | 0.1 (6) | N3—C41—C46—C45 | 179.0 (3) |
N1—C21—C26—C25 | −179.9 (3) | C42—C41—C46—C45 | −0.3 (5) |
C22—C21—C26—C25 | −1.1 (5) | C44—C45—C46—C41 | −0.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O12 | 0.88 | 2.34 | 3.107 (4) | 146 |
C33—H33···O11i | 0.95 | 2.53 | 3.147 (5) | 123 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
(1) | (2) | (6) | (7) | |
Crystal data | ||||
Chemical formula | C13H11IN2O2 | C13H11IN2O2 | C13H11IN2O2 | C13H11IN2O2 |
Mr | 354.14 | 354.14 | 354.14 | 354.14 |
Crystal system, space group | Monoclinic, P21/c | Orthorhombic, P212121 | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 16.1564 (6), 9.3589 (3), 8.3326 (3) | 7.0966 (2), 12.5908 (4), 13.8360 (6) | 21.2778 (15), 8.1809 (5), 7.2793 (4) | 8.1685 (1), 10.8834 (2), 15.4372 (2) |
α, β, γ (°) | 90, 96.333 (1), 90 | 90, 90, 90 | 90, 94.316 (2), 90 | 76.9219 (9), 80.0727 (7), 74.2167 (7) |
V (Å3) | 1252.25 (8) | 1236.27 (8) | 1263.53 (14) | 1277.36 (3) |
Z | 4 | 4 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 2.55 | 2.59 | 2.53 | 2.50 |
Crystal size (mm) | 0.32 × 0.22 × 0.15 | 0.38 × 0.05 × 0.03 | 0.48 × 0.04 × 0.02 | 0.22 × 0.18 × 0.12 |
Data collection | ||||
Diffractometer | Kappa-CCD diffractometer | Kappa-CCD diffractometer | Kappa-CCD diffractometer | Kappa-CCD diffractometer |
Absorption correction | Multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | Multi-scan DENZO-SMN (Otwinowski & Minor, 1997) | Multi-scan SORTAV (Blessing, 1995 & 1997) | Multi-scan DENZO-SMN (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.496, 0.682 | 0.440, 0.927 | 0.377, 0.951 | 0.597, 0.738 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8013, 2850, 2641 | 9541, 2783, 2437 | 12705, 2785, 1934 | 5760, 5760, 5317 |
Rint | 0.050 | 0.050 | 0.064 | 0.046 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 | 0.649 | 0.649 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.067, 1.08 | 0.030, 0.050, 1.01 | 0.035, 0.065, 1.00 | 0.038, 0.106, 1.14 |
No. of reflections | 2850 | 2783 | 2785 | 5760 |
No. of parameters | 163 | 163 | 163 | 325 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.10, −0.74 | 0.54, −0.61 | 1.13, −0.60 | 0.71, −1.65 |
Absolute structure | ? | Flack (1983), 1191 Friedel pairs | ? | ? |
Absolute structure parameter | ? | −0.01 (2) | ? | ? |
Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997b), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997a), OSCAIL and SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O11i | 0.95 | 2.47 | 3.403 (5) | 167 |
C26—H26···O12ii | 0.95 | 2.55 | 3.272 (4) | 132 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O11i | 0.88 | 2.53 | 3.196 (4) | 133 |
C17—H172···O11ii | 0.99 | 2.43 | 3.357 (5) | 156 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1/2, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O11i | 0.95 | 2.48 | 3.416 (5) | 170 |
N1—H1···Cg2ii | 0.88 | 2.87 | 3.563 (4) | 137 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O12 | 0.88 | 2.34 | 3.107 (4) | 146 |
C33—H33···O11i | 0.95 | 2.53 | 3.147 (5) | 123 |
Symmetry code: (i) −x+1, −y, −z+1. |
Footnotes
‡Postal address: School of Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland
§Present address: Fundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041250 Rio de Janeiro, RJ Brazil.
1Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA5018 ). Services for accessing these data are described at the back of the journal.
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England: the authors thank the staff of the Service for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW and SMSVW thank CNPq and FAPERJ for financial support.
References
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972. Web of Science CrossRef Google Scholar
Wardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428–o430. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wilson, A. J. C. (1976). Acta Cryst. A32, 994–996. CrossRef IUCr Journals Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
In full text version