research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Isomeric iodo-N-(nitro­benzyl)anilines: interplay of hard and soft hydrogen bonds, iodo⋯nitro interactions and aromatic ππ stacking interactions

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, cInstituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, 24020-150 Niterói, Rio de Janeiro-RJ, Brazil, and dInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 28 April 2004; accepted 17 May 2004)

Molecules of 2-iodo-N-(4-nitrobenzyl)aniline, 4-O2NC6H4CH2NHC6H4I-2′ (1) are linked into chains by C—H⋯O hydrogen bonds. In the isomeric compound 3-iodo-N-(4-nitrobenzyl)aniline (2) a combination of N—H⋯O and C—H⋯O hydrogen bonds and iodo⋯nitro and aromatic ππ stacking interactions links the molecules into a three-dimensional framework structure. The two-dimensional supramolecular structure of 4-iodo-N-(4-nitrobenzyl)aniline (6) is built from a combination of C—H⋯O and N—H⋯π(arene) hydrogen bonds and aromatic ππ stacking interactions. 2-Iodo-N-(2-nitrobenzyl)aniline (7) crystallizes with two molecules in the asymmetric unit and these molecules are linked into ladders by a combination of N—H⋯O and C—H⋯O hydrogen bonds and iodo⋯nitro and aromatic ππ stacking interactions. Comparisons are made between the supramolecular structures of these compounds and those of other isomers, in terms both of the types of direction-specific intermolecular interactions exhibited and the dimensionality of the resulting supramolecular structures.

1. Introduction

As part of a general study of the interplay of hydrogen bonds, iodo⋯nitro interactions and aromatic ππ stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species [see (I)[link]] containing a variety of X spacer units, including arenesulfon­amides (A) and (B) (Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]) and Schiff-base imines (C) (Wardell et al., 2002[Wardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428-o430.]) and (D) (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]), together with some benzylanilines (E) (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]).

[Scheme 1]

In the case of the Schiff-base imines of type (D), we were able to study the supramolecular aggregation modes in eight of the possible nine isomers (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]), although the structure of the 4,4′-isomer, which crystallizes with Z′ = 2 in space group Fdd2, proved to be elusive because of the intractable disorder. In this series the interplay of the various weak intermolecular interactions is such that neither the supramolecular structure nor even the range of interactions involved can readily be predicted for any single example from a detailed knowledge of all the rest of the series. With this in mind, we have now expanded our preliminary study (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]) of the benzylanilines (E) to incorporate a total of six isomers of this series, (1), (2) and (4)–(7) [see (II)[link]].

[Scheme 2]

2. Experimental

2.1. Synthesis

Nitrobenzylidene-iodoanilines were prepared as previously described (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]) and subsequently reduced using a fivefold molar excess of sodium borohydride in refluxing methanol. After work-up, crystals of (1), (2), (6) and (7) suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethanol. Compound (8) is an oil at ambient temperature and we have not been able to induce crystallization, even at reduced temperatures: (3) and (4) are solids at ambient temperature but, despite repeated efforts, we have so far been unable to obtain any crystals of either compound which are suitable for single-crystal X-ray diffraction.

2.2. Data collection, structure solution and refinement

Diffraction data for (1), (2), (6) and (7) were collected at 120 (2) K using a Nonius Kappa-CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Other details of the cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]; Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.],b[Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.]; McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]).1

Table 1
Experimental details

  (1) (2) (6) (7)
Crystal data
Chemical formula C13H11IN2O2 C13H11IN2O2 C13H11IN2O2 C13H11IN2O2
Mr 354.14 354.14 354.14 354.14
Cell setting, space group Monoclinic, P21/c Orthorhombic, P212121 Monoclinic, P21/c Triclinic, P[\bar 1]
a, b, c (Å) 16.1564 (6), 9.3589 (3), 8.3326 (3) 7.0966 (2), 12.5908 (4), 13.8360 (6) 21.2778 (15), 8.1809 (5), 7.2793 (4) 8.16850 (10), 10.8834 (2), 15.4372 (2)
α, β, γ (°) 90.00, 96.3330 (10), 90.00 90.00, 90.00, 90.00 90.00, 94.316 (2), 90.00 76.9219 (9), 80.0727 (7), 74.2167 (7)
V3) 1252.25 (8) 1236.27 (8) 1263.53 (14) 1277.36 (3)
Z 4 4 4 4
Dx (Mg m−3) 1.878 1.903 1.862 1.841
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 2850 2783 2785 5760
θ range (°) 3.3–27.5 2.9–27.5 3.1–27.5 3.1–27.5
μ (mm−1) 2.55 2.59 2.53 2.50
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2)
Crystal form, colour Block, red Needle, orange Needle, yellow Block, orange
Crystal size (mm) 0.32 × 0.22 × 0.15 0.38 × 0.05 × 0.03 0.48 × 0.04 × 0.02 0.22 × 0.18 × 0.12
         
Data collection
Diffractometer Kappa-CCD Kappa-CCD Kappa-CCD Kappa-CCD
Data collection method φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets φ scans, and ω scans with κ offsets
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.496 0.440 0.377 0.597
Tmax 0.682 0.927 0.951 0.738
No. of measured, independent and observed reflections 8013, 2850, 2641 9541, 2783, 2437 12 705, 2785, 1934 5760, 5760, 5317
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.050 0.050 0.064 0.046
θmax (°) 27.5 27.5 27.5 27.5
Range of h, k, l −20 → h → 20 −8 → h → 9 −27 → h → 27 −10 → h → 10
  −11 → k → 12 −16 → k → 16 −10 → k → 10 −14 → k → 13
  −7 → l → 10 −15 → l → 17 −9 → l → 9 −20 → l → 20
         
Refinement
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.08 0.030, 0.050, 1.01 0.035, 0.065, 1.00 0.038, 0.106, 1.14
No. of reflections 2850 2783 2785 5760
No. of parameters 163 163 163 325
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme = 1/[σ2(Fo2) + (0.0212P)2 + 2.0006P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0137P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0209P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0523P)2 + 2.2937P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.001 0.001 0.003
Δρmax, Δρmin (e Å−3) 1.10, −0.74 0.54, −0.61 1.13, −0.60 0.71, −1.65
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1191 Friedel pairs
Flack parameter −0.01 (2)
Computer programs used : Kappa-CCD server software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), SHELXS97 (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.]), OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]), SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

For (1) and (6) the space group P21/c was uniquely assigned from the systematic absences: likewise, the space group P212121 was uniquely assigned for (2). Compound (7) is triclinic, and the space group [P\bar 1] was selected and confirmed by the subsequent analysis. The structures were solved by direct methods and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and they were included in the refinements as riding atoms with the bond distances C—H 0.95 (aromatic) or 0.99 Å (CH2) and N—H 0.88 Å. The absolute configuration of (2) in the crystal selected for study was established by the use of the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), whose final value was −0.01 (2) with 1191 Friedel pairs present.

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Details of molecular conformations are given in Table 2[link]. Details of hydrogen-bond dimensions and short intramolecular contacts, and iodo⋯nitro interactions are given in Tables 3[link] and 4[link]. Figs. 1–13[link][link][link][link][link][link][link][link][link][link][link][link][link] show the molecular components, with the atom-labelling schemes, and aspects of the supramolecular structures.

Table 2
Selected torsional angles (°)

C11—C17—N1—C21 C12—C11—C17—N1 C17—N1—C21—C22 C—C—N—O11
(1)      
79.3 (3) 37.1 (4) 165.7 (2) −9.2 (5)i
(2)      
−176.0 (3) −175.9 (3) 17.7 (6) 4.2 (5)i
(4)      
−84.4 (3) −167.5 (2) 162.8 (2) −0.9 (3)ii
(5)      
63.7 (3) 45.5 (3) 18.2 (3) −169.3 (2)ii
(6)      
87.8 (4) 43.3 (4) −16.5 (5) −5.8 (5)ii
(7) Molecule 1      
86.5 (4) 174.7 (3) 175.2 (3) 14.5 (5)iii
(7) molecule 2      
−81.6 (4) 166.4 (3) −168.2 (3) 36.5 (4)iv
(i) C13—C14—N14—O11; (ii) C12—C13—N13—O11; (iii) C11—C12—N12—O11; (iv) C31—C32—N32—O31
†Atoms labelled as for (1), (2), (6) and (7): for the original labelling scheme see Glidewell, Low et al. (2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]).
‡For the atom labels in the two independent molecules, see Fig. 11[link].

Table 3
Parameters (Å, °) for hydrogen bonds and short intramolecular contacts

D—H⋯A H⋯A DA D—H⋯A Motif Direction
(1)          
C13—H13⋯O11i 2.47 3.403 (5) 167 R22(10)
C26—H26⋯O12ii 2.55 3.272 (4) 132 R22(22)
N1—H1⋯I22 2.77 3.238 (2) 114 S(5)
C13—H13⋯O11 2.46 2.731 (4) 96 S(5)
C15—H15⋯O12 2.46 2.729 (5) 96 S(5)
(2)          
N1—H1⋯O11iii 2.53 3.195 (4) 133 C(9) [010]
C17—H172⋯O11iv 2.43 3.357 (5) 156 C(8) [001]
C13—H13⋯O11 2.44 2.718 (5) 97 S(5) -
C15—H15⋯O12 2.43 2.721 (5) 98 S(5)
(6)          
C16—H16⋯O11v 2.48 3.416 (5) 170 C(7) [010]
N1—H1⋯Cg2vi 2.87 3.563 (4) 137 [001]
C12—H12⋯O11 2.40 2.704 (5) 98 S(5)
C14—H14⋯O12 2.45 2.737 (5) 97 S(5)
(7)          
N3—H3⋯O12 2.34 3.107 (4) 146 D
C33—H33⋯O11vii 2.53 3.147 (5) 123 R44(20)
N1—H1⋯I22 2.73 3.234 (3) 118 S(5)
C13—H13⋯O12 2.36 2.672 (5) 99 S(5)
C17—H171⋯O11 2.43 2.688 (5) 94 S(6)
C17—H172⋯O11 2.47 2.688 (5) 92 S(6)
N3—H3⋯I42 2.75 3.231 (3) 116 S(5)
C33—H33⋯O32 2.51 2.758 (4) 95 S(5)
C37—H371⋯O31 2.52 2.753 (4) 93 S(6)
C37—H372⋯O31 2.49 2.753 (4) 95 S(6)
Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, 2 - y, 1 - z; (iii) [1 - x, {1\over 2}+ y, {3\over 2} - z]; (iv) [{1\over 2} - x, -y, -{1\over 2} + z]; (v) x, -1 + y, z; (vi) [x, {3\over 2} - y, -{1\over 2} + z]; (vii) 1 - x, -y, 1 - z.
†Cg2 is the centroid of the ring C21–C26.

Table 4
Parameters for iodo⋯nitro interactions (Å, °)

C—I⋯O—N I⋯O C—I⋯O I⋯O—N Motifa Direction
(2)          
C23—I23⋯O12i—N14i 3.249 (3) 163.2 (2) 161.6 (2) C(12) [001]
(4)          
C2—I2⋯O131i—N13i 3.517 (2) 158.12 (7) 101.4 (2) C(10) [001]
(7)          
C42—I42⋯O32ii—N32ii 3.523 (3) 103.3 (2) 117.1 (2) C(9) [1[\bar 1]0]
Reference: (a) Starbuck et al. (1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]).
Symmetry codes: (i) x, y, -1 + z; (ii) -1 + x, 1 + y, z.
†Original atom-labelling (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]).
[Figure 1]
Figure 1
A molecule of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (1) showing the formation of a chain of R22(10) and R22(22) rings along [010]. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (-x, 1 - y, 1 - z), (-x, 2 - y, 1 - z) and (x, -1 + y, z), respectively.
[Figure 3]
Figure 3
A molecule of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of (2) showing the formation of a C(9) chain along [010]. For the sake of clarity, H atoms bonded to C atoms are omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions ([1 - x, {1\over 2}+ y, {3\over 2} - z]), (x, 1 + y, z) and ([1 - x, -{1\over 2} + y, {3\over 2} - z]), respectively.
[Figure 5]
Figure 5
Part of the crystal structure of (2) showing the formation of a [001] chain built from C—H⋯O hydrogen bonds and iodo⋯nitro interactions. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions ([{1\over 2} - x, -y, -{1\over 2} + z]), (x, y, -1 + z), ([{1\over 2} - x, -y, {1\over 2} + z]) and (x, y, 1 + z), respectively.
[Figure 6]
Figure 6
Stereoview of part of the crystal structure of (2) showing the formation of a [100] chain built from N—H⋯O and C—H⋯O hydrogen bonds.
[Figure 7]
Figure 7
Stereoview of part of the crystal structure of (2) showing the aromatic ππ stacking along [100]. For the sake of clarity, H atoms bonded to C atoms are omitted.
[Figure 8]
Figure 8
A molecule of (6), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 9]
Figure 9
Part of the crystal structure of (6) showing the formation of a C(7) chain along [010]. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 + y, z) and (x, -1 + y, z), respectively.
[Figure 10]
Figure 10
Stereoview of part of the crystal structure of (6) showing the formation of a chain along [001] by means of N—H⋯π(arene) hydrogen bonds and ππ stacking interactions.
[Figure 11]
Figure 11
The two independent molecules of (7), showing the atom-labelling scheme: (a) molecule 1 and (b) molecule 2. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 12]
Figure 12
Part of the crystal structure of (7) showing the formation of a four-molecule aggregate containing an R44(20) ring. For the sake of clarity the unit-cell box has been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, 1 - z).
[Figure 13]
Figure 13
Stereoview of part of the crystal structure of (7) showing the iodo⋯nitro and ππ stacking interactions which link the R44(20) aggregates into a ladder along [[\bar 1]10]. For the sake of clarity, H atoms bonded to C atoms are omitted.

3. Results and discussion

3.1. Molecular conformations

The molecular conformations of iodo-(N-benzyl)anilines can be defined in terms of just four torsional angles and these are given in Table 2[link] for (1), (2) and (4)–(7). For the central spacer unit, the torsional angle C11—C17—N1—C21 shows that for (2) this unit is essentially trans planar, whereas for all other examples discussed here this torsional angle is close to ±90°, indicative of a markedly non-planar unit. The iodinated ring C21–C26 is generally nearly co-planar with the fragment C21—N1—C17. Since the labelling of the iodinated ring is determined by the location of the I substituent, the values show, for example, that in (1) and (2) the I substituent lies off different edges of the molecule: thus in (1) the I is on the same edge as the N—H bond, while in (2) it is on the opposite edge (Figs. 1[link] and 3[link]). It seems possible that the short intramolecular N—H⋯I contacts in (1) (Table 3[link]) play a significant role in controlling the overall conformation of (I). Likewise in the 2-iodo derivative (7), there is a short intramolecular N—H⋯I contact which may be significant in controlling the orientation of the iodinated ring. A similar difference occurs between (4) and (5) (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]). In (2) and (7), as well as in (4), the nitrated ring is nearly co-planar with the adjacent C11—C17—N1 fragment, but this is far from the case in (1), (5) and (6). In all cases there are some fairly short intramolecular C—H⋯O contacts (Table 3[link]). The biggest deviation of the nitro group from co-planarity with the adjacent aryl ring occurs in (7), where moreover the two molecules show a marked difference: apart from this, the molecules in the selected asymmetric unit are close to being mirror images (see Fig. 11[link]). It will be noted (see §3.2[link]) that the structures of all these compounds exhibit direction-specific intermolecular interactions and it is thus probable that the energies associated with these intermolecular interactions are of similar magnitudes to the potential-energy barriers associated with rotation about the single bonds specified in Table 2[link].

One consequence of the conformational behaviour revealed by the torsional angles is that each molecule is chiral in the solid state, having no internal symmetry whatsoever. Compounds (1), (6) and (7) all crystallize in centrosymmetric space groups containing equal numbers of the two enantiomeric forms, as do (4) and (5) [P21/n and Pbca, respectively (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.])]: however, (2) crystallizes in the chiral space group P212121 where each crystal can contain only one enantiomer. Since (2) is almost certainly racemic in solution, its crystallization is as a conglomerate: while the absolute configuration of the molecules in the crystal selected for study was readily determined, this configuration has no chemical significance.

The bond lengths and inter-bond angles show no unusual values.

3.2. Supramolecular structures

3.2.1. Compound (1)

In (1) (Fig. 1[link]) there are neither N—H⋯O or X—H⋯π(arene) hydrogen bonds (where X = C or N) nor iodo⋯nitro or aromatic ππ stacking interactions. The only direction-specific interactions between the molecules are two independent C—H⋯O hydrogen bonds (Table 2[link]), which combine to link the molecules into chains.

Atom C13 in the nitrated ring of the molecule at (x, y, z) acts as a hydrogen-bond donor to nitro O11 in the molecule at (-x, 1 - y, 1 - z), so generating by inversion an R22(10) ring centred at (0, ½, ½): atom C26 in the iodinated ring at (x, y, z) similarly acts as a hydrogen-bond donor to O12 at (-x, 2 - y, 1 - z), producing an R22(22) ring centred at (0, 1, ½). The propagation by inversion of these two motifs thus generates a chain of rings running parallel to the [010] direction (Fig. 2[link]).

3.2.2. Compound (2)

The supramolecular structure of (2) (Fig. 3[link]), in contrast to that of (1), contains both N—H⋯O and C—H⋯O hydrogen bonds (Table 2[link]) as well as both iodo⋯nitro interactions (Table 3[link]) and aromatic ππ stacking interactions: as a result, this structure is three-dimensional, as opposed to the one-dimensional aggregation in (1). It is convenient to analyse the formation of the three-dimensional supramolecular network in (2) in terms of chains running parallel to the [100], [010] and [001] directions. There is an N—H⋯O hydrogen bond, albeit rather weak, which generates a C(9) chain running parallel to the [010] direction: N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to O11 in the molecule at ([1 - x, {1\over 2}+ y, {3\over 2}- z]), thereby producing a chain generated by the 21 screw axis along (½, y, ¾) (Fig. 4[link]).

The [001] chain formation involves both the iodo⋯nitro interaction and the C—H⋯O hydrogen bond. The C17 atom at (x, y, z) acts as a hydrogen-bond donor, via H172, to O11 at ([{1\over 2}- x, -y, -{1\over 2}+ z]), so producing a C(8) chain generated by the 21 screw axis along (¼, 0, z). At the same time, there is a fairly short two-centre iodo⋯nitro interaction between I23 in the molecule at (x, y, z) and O12 in that at (x, y, -1 + z), which generates by translation a C(12) chain along [001]. The combination of the two [001] motifs generates a chain of edge-fused R33(18) rings (Fig. 5[link]).

These two chain types, parallel to [010] and [001], combine to form sheets parallel to (100) and these are linked by a combination of the two types of hydrogen bond. Atom N1 in the molecule at ([{1\over 2} + x, {1\over 2} - y, 1 - z]), which lies in the (100) sheet in the domain 0.07 < x < 0.93, acts as a hydrogen-bond donor to O11 in the molecule at ([{3\over 2} - x, -y, -{1\over 2} + z]), which forms part of the (100) sheet in the domain 1.07 < x < 1.93, and the resulting [100] chain (Fig. 6[link]) links all of the (100) sheets into a three-dimensional framework. This linking of the (100) sheets is reinforced by ππ stacking interactions. The nitrated ring in the molecule at (x, y, z) makes an angle of only 4.1° with the iodinated rings of the two molecules at ([-{1\over 2} + x, {1\over 2} - y, 1 - z]) and ([{1\over 2} + x, {1\over 2} - y, 1 - z]): the interplanar spacings are both ca 3.45 Å with ring-centroid separations of 3.674 (5) and 3.760 (5) Å, respectively (Fig. 7[link]).

3.2.3. Compound (6)

The supramolecular aggregation in (6) (Fig. 8[link]) exhibits neither N—H⋯O hydrogen bonds nor iodo⋯nitro interactions: instead, the C—H⋯O hydrogen bond and the aromatic ππ stacking interaction are augmented by an N—H⋯π(arene) hydrogen bond, which forms in preference to the N—H⋯O hydrogen bond which might have been expected here. A single C—H⋯O hydrogen bond which involves a nitro O atom as an acceptor generates a simple chain running parallel to the [010] direction. Atom C16 in the nitrated ring of the molecule at (x, y, z) acts as a hydrogen-bond donor to O11 in the molecule at (x, 1 + y, z), so generating by translation a C(7) chain along [010] (Fig. 9[link]).

The N—H⋯π(arene) hydrogen bond combines with the ππ stacking interactions to generate chains running parallel to the [001] direction. Amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the iodinated ring C21–C26, centroid Cg2 (Table 2[link]), of the molecule at ([x, {3\over 2} - y, -{1\over 2} + z]). At the same time, the nitrated ring of the molecule at (x, y, z) forms ππ stacking interactions with the corresponding rings of the molecules at ([x, {3\over 2} - y, {1\over 2} + z]) and ([x, {3\over 2} - y, -{1\over 2} + z]): the angle between the adjacent rings is only ca 1.6°, and the centroid separation and the interplanar spacing are 3.844 (5) and ca 3.45 Å, respectively, corresponding to a centroid offset of ca 1.74 Å. Propagation of the mutually cooperative and mutually reinforcing N—H⋯π and ππ interactions thus produces a chain along [001] generated by the c-glide plane at y = 0.75 (Fig. 10[link]). The combination of [010] and [001] chains generates a sheet parallel to (100), but there are no direction-specific interactions between adjacent sheets.

3.2.4. Compound (7)

Compound (7) (Fig. 11[link]) crystallizes with Z′ = 2 in space group [P\bar 1]: within the selected asymmetric unit, N3 in molecule 2 (containing N3 and I42) acts as a hydrogen-bond donor to O12 in molecule 1 (containing N1 and I22), but N1 does not participate in any intermolecular hydrogen bonding. This difference in behaviour between N1 and N3 suffices to preclude any possibility of additional symmetry. In addition to the single N—H⋯O hydrogen bond within the asymmetric unit, the molecules are further linked into molecular ladders by a single, rather weak C—H⋯O hydrogen bond and a single, rather weak iodo⋯nitro interaction, whose action is reinforced by two independent aromatic ππ stacking interactions.

Atom C33 in the nitrated ring of molecule 2 at (x, y, z) acts as a hydrogen-bond donor to O11 in molecule 1 at (1 - x, -y, 1 - z): in combination with the N—H⋯O hydrogen bond within the asymmetric unit, this C—H⋯O hydrogen bond generates a centrosymmetric cyclic four-molecule aggregate, centred at (½, 0, ½) and characterized by an R44(20) ring (Fig. 12[link]). The formation of this aggregate is reinforced by one of the ππ interactions. The nitrated rings C31–C36 of the type 2 molecules at (x, y, z) and (1 - x, -y, 1 - z) are parallel with an interplanar spacing of 3.385 (9) Å; the centroid separation is 3.685 (4) Å, corresponding to a near-ideal centroid offset of 1.46 (9) Å (Fig. 12[link]).

These four-molecule aggregates are further linked by a combination of iodo⋯nitro and aromatic ππ stacking interactions to form the molecular ladder. Atom I42 in the type 2 molecule at (x, y, z) forms part of the cyclic aggregate centred at (½, 0, ½): this I atom forms a weak two-centre iodo⋯nitro interaction with O32 in the type 2 molecule at (-1 + x, 1 + y, z), which lies in the cyclic aggregate centred at (−½, 1, ½). At the same time, the nitrated ring C11–C16 of molecule 1 at (x, y, z) forms a ππ stacking interaction with the iodinated ring C41–C46 of molecule 2 at (-x, 1 - y, 1 - z), which is also a part of the cyclic aggregate centred at (−½, 1, ½) (Fig. 13[link]). In this manner the molecules are linked by the cooperative combination of four types of intermolecular interactions into ladders running parallel to the [[\bar 1]10] direction.

3.3. General comments on the supramolecular structures

The molecular constitutions of (1)–(9) [see (II)[link]] allow the possibility of six different types of direction-specific intermolecular interaction. These are N—H⋯O and C—H⋯O, hydrogen bonds, iodo⋯nitro interactions, and aromatic ππ stacking interactions. In the event, no single compound in this series whose structure has been determined to date exhibits more than four of these types, while (1) exhibits only one type, namely C—H⋯O hydrogen bonds. Compounds (4)–(6) all exhibit three types of direction-specific intermolecular interaction, but the selection is, in fact, different for each: while the structures of all three of these compounds contain C—H⋯O hydrogen bonds, only that of (5) contains N—H⋯O and C—H⋯π(arene) hydrogen bonds, only that of (6) contains N—H⋯π(arene) hydrogen bonds, and only that of (4) contains iodo⋯nitro interactions. In addition, while the structures of both (4) and (6) contain aromatic ππ stacking interactions, these are absent from the structure of (5).

Not only do the number and identity of the types of intermolecular interactions vary, but the structural consequences of these interactions also show a wide range of behaviour. Thus, while (2) and (7) both contain the same four types of intermolecular interactions, namely N—H⋯O and C—H⋯O hydrogen bonds, and iodo⋯nitro and ππ stacking interactions, the consequences of these are entirely different in that the overall supramolecular structures of (2) and (7) are three- and one-dimensional, respectively. Compounds (1) and (7), exhibiting one and four types, respectively, in the intermolecular interactions, both have one-dimensional supra­molecular structures; (5) and (6) both have two-dimensional supramolecular structures; (2) and (4), exhibiting four and three types, respectively, of intermolecular interaction, both have three-dimensional supramolecular structures.

4. Concluding comments

The molecular conformations of the isomeric iodo-N-(nitrobenzyl)anilines (see §3.1[link]) and the patterns in their supramolecular aggregation (see §3.3[link]) point to a subtle interplay of the weak direction-specific intermolecular forces. Weak forces of the types manifest here, dependent upon molecular polarizability and polarization, are not easy to model computationally. The variations in the supramolecular aggregation behaviour within an extended series of isomeric compounds, such as those described here, provide a keen test of computational methods for crystal-structure prediction (Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]; Motherwell et al., 2002[Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647-761.]): the accurate prediction of behaviour across such a series of isomeric species would generate real confidence in the efficacy of the predictive methods employed.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

For all compounds, data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b) for (1), (2), (7); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (6). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a) for (1), (2), (7); OSCAIL and SHELXS97 (Sheldrick, 1997) for (6). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
In full text version
(1) 2-Iodo-N-(4-nitrobenzyl)aniline top
Crystal data top
C13H11IN2O2F(000) = 688
Mr = 354.14Dx = 1.878 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2850 reflections
a = 16.1564 (6) Åθ = 3.3–27.5°
b = 9.3589 (3) ŵ = 2.55 mm1
c = 8.3326 (3) ÅT = 120 K
β = 96.333 (1)°Block, red
V = 1252.25 (8) Å30.32 × 0.22 × 0.15 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
2850 independent reflections
Radiation source: frotating anode2641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 2020
Tmin = 0.496, Tmax = 0.682k = 1112
8013 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.0006P]
where P = (Fo2 + 2Fc2)/3
2850 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C13H11IN2O2V = 1252.25 (8) Å3
Mr = 354.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1564 (6) ŵ = 2.55 mm1
b = 9.3589 (3) ÅT = 120 K
c = 8.3326 (3) Å0.32 × 0.22 × 0.15 mm
β = 96.333 (1)°
Data collection top
Kappa-CCD
diffractometer
2850 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2641 reflections with I > 2σ(I)
Tmin = 0.496, Tmax = 0.682Rint = 0.050
8013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.08Δρmax = 1.10 e Å3
2850 reflectionsΔρmin = 0.74 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34831 (15)0.8976 (3)0.5028 (3)0.0208 (5)
C110.21295 (17)0.8913 (3)0.6217 (3)0.0192 (5)
C120.19261 (19)0.7557 (3)0.5640 (4)0.0281 (6)
C130.1112 (2)0.7071 (4)0.5551 (5)0.0318 (7)
C140.0509 (2)0.7958 (3)0.6038 (4)0.0245 (6)
N140.03558 (17)0.7472 (3)0.5918 (3)0.0297 (6)
O110.05405 (19)0.6383 (4)0.5214 (5)0.0834 (13)
O120.0862 (2)0.8140 (4)0.6529 (6)0.0817 (14)
C150.0693 (2)0.9301 (4)0.6644 (5)0.0389 (8)
C160.1511 (2)0.9776 (4)0.6731 (5)0.0369 (8)
C170.30204 (17)0.9441 (3)0.6341 (3)0.0221 (6)
C210.33837 (17)0.9641 (3)0.3538 (3)0.0175 (5)
C220.39526 (16)0.9418 (3)0.2390 (3)0.0169 (5)
I220.499804 (10)0.810111 (19)0.29835 (2)0.01968 (8)
C230.38454 (17)1.0054 (3)0.0883 (3)0.0201 (5)
C240.31735 (19)1.0959 (3)0.0458 (3)0.0223 (6)
C250.26030 (18)1.1191 (3)0.1566 (4)0.0233 (6)
C260.27045 (18)1.0544 (3)0.3076 (3)0.0215 (6)
H10.38330.82560.51870.08 (2)*
H120.23480.69550.53020.034 (11)*
H130.09720.61380.51590.064 (14)*
H150.02700.98910.69960.056 (13)*
H160.16491.07010.71460.051 (12)*
H1710.30171.04990.63680.025 (9)*
H1720.33170.91050.73750.022 (8)*
H230.42340.98720.01310.042 (11)*
H240.31061.14110.05690.023 (8)*
H250.21391.17990.12860.023 (9)*
H260.23061.07160.38110.032 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (12)0.0234 (12)0.0190 (11)0.0033 (9)0.0087 (9)0.0018 (9)
C110.0212 (13)0.0211 (14)0.0167 (12)0.0015 (10)0.0078 (10)0.0007 (10)
C120.0241 (15)0.0264 (16)0.0340 (17)0.0023 (12)0.0044 (12)0.0099 (13)
C130.0242 (16)0.0283 (17)0.0430 (19)0.0015 (12)0.0041 (14)0.0113 (14)
C140.0224 (15)0.0295 (16)0.0225 (14)0.0011 (11)0.0061 (12)0.0055 (11)
N140.0252 (13)0.0325 (15)0.0321 (14)0.0023 (11)0.0068 (11)0.0080 (12)
O110.0298 (16)0.095 (3)0.127 (3)0.0225 (17)0.0141 (18)0.067 (3)
O120.0360 (18)0.065 (2)0.154 (4)0.0124 (14)0.054 (2)0.037 (2)
C150.0291 (17)0.0275 (17)0.066 (2)0.0020 (13)0.0302 (16)0.0096 (17)
C160.0343 (18)0.0243 (16)0.057 (2)0.0061 (13)0.0264 (16)0.0138 (15)
C170.0220 (14)0.0272 (15)0.0187 (13)0.0028 (11)0.0094 (10)0.0035 (12)
C210.0198 (12)0.0140 (12)0.0197 (12)0.0017 (10)0.0065 (10)0.0030 (10)
C220.0170 (12)0.0135 (12)0.0208 (13)0.0008 (10)0.0047 (9)0.0029 (10)
I220.01576 (11)0.02505 (12)0.01885 (11)0.00215 (6)0.00468 (7)0.00052 (7)
C230.0207 (13)0.0200 (13)0.0203 (13)0.0030 (10)0.0055 (10)0.0018 (11)
C240.0274 (15)0.0191 (14)0.0205 (13)0.0008 (11)0.0033 (11)0.0026 (11)
C250.0237 (14)0.0177 (14)0.0285 (15)0.0024 (11)0.0028 (12)0.0002 (11)
C260.0227 (13)0.0180 (13)0.0250 (14)0.0003 (11)0.0088 (11)0.0021 (11)
Geometric parameters (Å, º) top
N1—C211.382 (4)C15—H150.95
N1—C171.458 (3)C16—H160.95
N1—H10.88C17—H1710.99
C11—C121.383 (4)C17—H1720.99
C11—C161.388 (4)C21—C261.405 (4)
C11—C171.515 (4)C21—C221.413 (4)
C12—C131.386 (4)C22—C231.383 (4)
C12—H120.95C22—I222.105 (3)
C13—C141.375 (4)C23—C241.392 (4)
C13—H130.95C23—H230.95
C14—C151.374 (4)C24—C251.392 (4)
C14—N141.463 (4)C24—H240.95
N14—O121.188 (4)C25—C261.390 (4)
N14—O111.197 (4)C25—H250.95
C15—C161.389 (5)C26—H260.95
C21—N1—C17121.4 (2)N1—C17—C11114.4 (2)
C21—N1—H1119.3N1—C17—H171108.7
C17—N1—H1119.3C11—C17—H171108.7
C12—C11—C16119.3 (3)N1—C17—H172108.6
C12—C11—C17120.7 (3)C11—C17—H172108.7
C16—C11—C17120.0 (3)H171—C17—H172107.6
C11—C12—C13120.5 (3)N1—C21—C26121.8 (2)
C11—C12—H12119.8N1—C21—C22121.4 (2)
C13—C12—H12119.8C26—C21—C22116.7 (2)
C14—C13—C12119.0 (3)C23—C22—C21121.7 (2)
C14—C13—H13120.5C23—C22—I22118.84 (19)
C12—C13—H13120.5C21—C22—I22119.50 (19)
C15—C14—C13122.0 (3)C22—C23—C24120.6 (3)
C15—C14—N14118.4 (3)C22—C23—H23119.7
C13—C14—N14119.6 (3)C24—C23—H23119.7
O12—N14—O11120.8 (3)C23—C24—C25118.8 (3)
O12—N14—C14120.3 (3)C23—C24—H24120.6
O11—N14—C14118.9 (3)C25—C24—H24120.6
C14—C15—C16118.5 (3)C26—C25—C24120.8 (3)
C14—C15—H15120.8C26—C25—H25119.6
C16—C15—H15120.8C24—C25—H25119.6
C11—C16—C15120.7 (3)C25—C26—C21121.4 (3)
C11—C16—H16119.6C25—C26—H26119.3
C15—C16—H16119.6C21—C26—H26119.3
C16—C11—C12—C131.0 (5)C12—C11—C17—N137.1 (4)
C17—C11—C12—C13179.1 (3)C16—C11—C17—N1144.8 (3)
C11—C12—C13—C140.3 (5)C17—N1—C21—C2615.7 (4)
C12—C13—C14—C151.5 (5)C17—N1—C21—C22165.7 (2)
C12—C13—C14—N14178.7 (3)N1—C21—C22—C23178.5 (3)
C15—C14—N14—O1210.0 (5)C26—C21—C22—C230.1 (4)
C13—C14—N14—O12169.8 (4)N1—C21—C22—I222.2 (3)
C15—C14—N14—O11171.0 (4)C26—C21—C22—I22179.25 (19)
C13—C14—N14—O119.2 (5)C21—C22—C23—C240.9 (4)
C13—C14—C15—C161.3 (6)I22—C22—C23—C24178.4 (2)
N14—C14—C15—C16178.8 (3)C22—C23—C24—C251.2 (4)
C12—C11—C16—C151.1 (5)C23—C24—C25—C260.6 (4)
C17—C11—C16—C15179.2 (3)C24—C25—C26—C210.2 (4)
C14—C15—C16—C110.0 (6)N1—C21—C26—C25179.0 (3)
C21—N1—C17—C1179.3 (3)C22—C21—C26—C250.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O11i0.952.473.403 (5)167
C26—H26···O12ii0.952.553.272 (4)132
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
(2) 3-Iodo-N-(4-nitrobenzyl))aniline top
Crystal data top
C13H11IN2O2F(000) = 688
Mr = 354.14Dx = 1.903 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2783 reflections
a = 7.0966 (2) Åθ = 2.9–27.5°
b = 12.5908 (4) ŵ = 2.59 mm1
c = 13.8360 (6) ÅT = 120 K
V = 1236.27 (8) Å3Needle, orange
Z = 40.38 × 0.05 × 0.03 mm
Data collection top
Kappa-CCD
diffractometer
2783 independent reflections
Radiation source: rotating anode2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 89
Tmin = 0.440, Tmax = 0.927k = 1616
9541 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0137P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2783 reflectionsΔρmax = 0.54 e Å3
163 parametersΔρmin = 0.61 e Å3
0 restraintsAbsolute structure: Flack (1983), 1191 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C13H11IN2O2V = 1236.27 (8) Å3
Mr = 354.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0966 (2) ŵ = 2.59 mm1
b = 12.5908 (4) ÅT = 120 K
c = 13.8360 (6) Å0.38 × 0.05 × 0.03 mm
Data collection top
Kappa-CCD
diffractometer
2783 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
2437 reflections with I > 2σ(I)
Tmin = 0.440, Tmax = 0.927Rint = 0.050
9541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.54 e Å3
S = 1.01Δρmin = 0.61 e Å3
2783 reflectionsAbsolute structure: Flack (1983), 1191 Friedel pairs
163 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3919 (5)0.3395 (3)0.4693 (2)0.0218 (8)
C170.4045 (5)0.2280 (3)0.4779 (3)0.0207 (9)
C110.3936 (4)0.1839 (2)0.5785 (3)0.0168 (7)
C120.4180 (4)0.0752 (3)0.5892 (3)0.0206 (8)
C130.4024 (5)0.0272 (3)0.6789 (3)0.0204 (9)
C140.3602 (4)0.0912 (3)0.7580 (3)0.0164 (8)
N140.3393 (4)0.0413 (3)0.8530 (2)0.0236 (8)
O110.3704 (4)0.0537 (2)0.86032 (19)0.0325 (7)
O120.2921 (4)0.09823 (19)0.92151 (19)0.0302 (6)
C150.3389 (4)0.1994 (3)0.7494 (3)0.0181 (8)
C160.3554 (5)0.2455 (3)0.6593 (2)0.0176 (9)
C210.3891 (5)0.3868 (3)0.3778 (3)0.0177 (8)
C220.3470 (5)0.3278 (3)0.2944 (3)0.0183 (8)
C230.3437 (5)0.3795 (3)0.2056 (2)0.0182 (8)
I230.28995 (3)0.28735 (2)0.081314 (17)0.02517 (8)
C240.3805 (5)0.4864 (3)0.1961 (3)0.0196 (8)
C250.4207 (5)0.5439 (3)0.2803 (3)0.0217 (9)
C260.4255 (5)0.4944 (3)0.3688 (3)0.0188 (8)
H10.38580.37930.52140.026*
H1710.52530.20490.44890.025*
H1720.30190.19600.43920.025*
H120.44580.03300.53410.025*
H130.42010.04720.68630.024*
H150.31320.24170.80470.022*
H170.34050.32010.65260.021*
H220.32120.25390.29860.022*
H240.37860.52000.13460.024*
H250.44510.61790.27610.026*
H260.45420.53480.42490.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0356 (19)0.021 (2)0.0086 (16)0.0022 (16)0.0016 (14)0.0001 (14)
C170.0159 (19)0.027 (3)0.019 (2)0.0013 (18)0.0020 (15)0.0058 (19)
C110.0110 (17)0.022 (2)0.0170 (18)0.0032 (12)0.0049 (16)0.0027 (18)
C120.021 (2)0.022 (2)0.019 (2)0.0022 (14)0.0004 (18)0.0040 (19)
C130.016 (2)0.021 (2)0.024 (2)0.0020 (15)0.0018 (15)0.0027 (17)
C140.0115 (17)0.026 (2)0.0120 (19)0.0078 (14)0.0025 (15)0.0044 (16)
N140.021 (2)0.032 (2)0.0178 (18)0.0032 (14)0.0028 (13)0.0064 (16)
O110.0441 (18)0.0251 (18)0.0282 (16)0.0076 (13)0.0026 (13)0.0123 (13)
O120.0436 (15)0.0319 (15)0.0149 (13)0.0030 (12)0.0024 (17)0.0032 (13)
C150.0173 (18)0.023 (2)0.0136 (17)0.0000 (15)0.0001 (13)0.0005 (18)
C160.0169 (19)0.016 (2)0.020 (2)0.0009 (13)0.0003 (15)0.0030 (15)
C210.0127 (19)0.025 (2)0.0149 (19)0.0034 (16)0.0007 (14)0.0002 (16)
C220.019 (2)0.018 (2)0.018 (2)0.0028 (14)0.0009 (14)0.0014 (15)
C230.016 (2)0.023 (2)0.015 (2)0.0015 (15)0.0023 (14)0.0029 (16)
I230.03187 (13)0.02975 (13)0.01389 (12)0.00336 (12)0.00212 (10)0.00242 (13)
C240.0205 (19)0.024 (2)0.0148 (19)0.0040 (16)0.0036 (16)0.0076 (17)
C250.019 (2)0.018 (2)0.028 (2)0.0029 (15)0.0036 (15)0.0041 (17)
C260.018 (2)0.021 (2)0.0182 (19)0.0008 (16)0.0020 (15)0.0003 (17)
Geometric parameters (Å, º) top
N1—C211.399 (4)N14—O121.235 (4)
N1—C171.412 (4)C15—C161.380 (5)
N1—H10.88C15—H150.95
C17—C111.501 (5)C16—H170.95
C17—H1710.99C21—C261.384 (5)
C17—H1720.99C21—C221.404 (5)
C11—C121.387 (4)C22—C231.391 (5)
C11—C161.388 (5)C22—H220.95
C12—C131.385 (5)C23—C241.378 (5)
C12—H120.95C23—I232.109 (3)
C13—C141.391 (5)C24—C251.400 (5)
C13—H130.95C24—H240.95
C14—C151.375 (5)C25—C261.375 (5)
C14—N141.464 (4)C25—H250.95
N14—O111.220 (4)C26—H260.95
C21—N1—C17120.1 (3)C14—C15—C16119.1 (3)
C21—N1—H1120.0C14—C15—H15120.5
C17—N1—H1120.0C16—C15—H15120.5
N1—C17—C11116.3 (3)C15—C16—C11120.6 (3)
N1—C17—H171108.2C15—C16—H17119.7
C11—C17—H171108.2C11—C16—H17119.7
N1—C17—H172108.2C26—C21—N1119.6 (3)
C11—C17—H172108.2C26—C21—C22119.0 (3)
H171—C17—H172107.4N1—C21—C22121.4 (3)
C12—C11—C16119.3 (4)C23—C22—C21118.8 (3)
C12—C11—C17117.3 (4)C23—C22—H22120.6
C16—C11—C17123.4 (3)C21—C22—H22120.6
C13—C12—C11121.1 (4)C24—C23—C22122.6 (3)
C13—C12—H12119.5C24—C23—I23119.6 (3)
C11—C12—H12119.5C22—C23—I23117.8 (3)
C12—C13—C14118.0 (4)C23—C24—C25117.7 (3)
C12—C13—H13121.0C23—C24—H24121.2
C14—C13—H13121.0C25—C24—H24121.2
C15—C14—C13121.9 (3)C26—C25—C24120.8 (4)
C15—C14—N14119.4 (3)C26—C25—H25119.6
C13—C14—N14118.6 (3)C24—C25—H25119.6
O11—N14—O12123.6 (3)C25—C26—C21121.2 (4)
O11—N14—C14118.5 (3)C25—C26—H26119.4
O12—N14—C14117.9 (3)C21—C26—H26119.4
C21—N1—C17—C11176.0 (3)C12—C11—C16—C151.0 (4)
N1—C17—C11—C12175.9 (3)C17—C11—C16—C15177.1 (3)
N1—C17—C11—C166.0 (5)C17—N1—C21—C26163.4 (3)
C16—C11—C12—C130.9 (5)C17—N1—C21—C2217.7 (6)
C17—C11—C12—C13177.3 (3)C26—C21—C22—C230.2 (5)
C11—C12—C13—C140.4 (5)N1—C21—C22—C23179.1 (3)
C12—C13—C14—C151.7 (5)C21—C22—C23—C240.1 (5)
C12—C13—C14—N14178.7 (3)C21—C22—C23—I23177.8 (2)
C15—C14—N14—O11175.4 (3)C22—C23—C24—C250.6 (5)
C13—C14—N14—O114.2 (5)I23—C23—C24—C25178.2 (2)
C15—C14—N14—O124.1 (4)C23—C24—C25—C260.8 (5)
C13—C14—N14—O12176.2 (3)C24—C25—C26—C210.6 (5)
C13—C14—C15—C161.6 (5)N1—C21—C26—C25178.9 (3)
N14—C14—C15—C16178.8 (3)C22—C21—C26—C250.1 (5)
C14—C15—C16—C110.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.882.533.196 (4)133
C17—H172···O11ii0.992.433.357 (5)156
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y, z1/2.
(6) 4-Iodo-N-(3-nitrobenzyl))aniline top
Crystal data top
C13H11IN2O2F(000) = 688
Mr = 354.14Dx = 1.862 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2785 reflections
a = 21.2778 (15) Åθ = 3.1–27.5°
b = 8.1809 (5) ŵ = 2.53 mm1
c = 7.2793 (4) ÅT = 120 K
β = 94.316 (2)°Needle, yellow
V = 1263.53 (14) Å30.48 × 0.04 × 0.02 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
2785 independent reflections
Radiation source: rotating anode1934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
SORTAV (Blessing, 1995 & 1997)
h = 2727
Tmin = 0.377, Tmax = 0.951k = 1010
12705 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0209P)2]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C13H11IN2O2V = 1263.53 (14) Å3
Mr = 354.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.2778 (15) ŵ = 2.53 mm1
b = 8.1809 (5) ÅT = 120 K
c = 7.2793 (4) Å0.48 × 0.04 × 0.02 mm
β = 94.316 (2)°
Data collection top
Kappa-CCD
diffractometer
2785 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995 & 1997)
1934 reflections with I > 2σ(I)
Tmin = 0.377, Tmax = 0.951Rint = 0.064
12705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.00Δρmax = 1.13 e Å3
2785 reflectionsΔρmin = 0.60 e Å3
163 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29471 (14)0.6052 (4)0.0718 (4)0.0251 (8)
C110.17805 (17)0.6034 (5)0.0486 (4)0.0174 (8)
C120.17247 (16)0.7717 (5)0.0569 (4)0.0178 (8)
C130.11592 (18)0.8393 (5)0.1011 (5)0.0179 (9)
N130.11125 (17)1.0189 (4)0.1087 (4)0.0244 (8)
O110.15922 (13)1.0989 (3)0.0901 (4)0.0360 (7)
O120.05994 (13)1.0807 (3)0.1341 (4)0.0360 (7)
C140.06417 (18)0.7463 (5)0.1383 (4)0.0227 (9)
C150.07033 (18)0.5784 (5)0.1321 (5)0.0255 (9)
C160.12658 (19)0.5077 (5)0.0873 (5)0.0246 (9)
C170.23833 (19)0.5273 (5)0.0108 (5)0.0266 (10)
C210.32330 (17)0.5586 (4)0.2411 (5)0.0178 (8)
C220.29209 (17)0.4628 (5)0.3662 (5)0.0201 (9)
C230.32217 (17)0.4212 (5)0.5346 (5)0.0200 (8)
C240.38304 (17)0.4743 (4)0.5817 (4)0.0190 (8)
I240.429933 (12)0.40696 (3)0.83507 (3)0.02594 (10)
C250.41432 (17)0.5698 (4)0.4606 (5)0.0185 (8)
C260.38440 (17)0.6114 (4)0.2919 (5)0.0196 (9)
H10.31970.65370.00230.030*
H120.20700.83990.03270.021*
H140.02580.79600.16710.027*
H150.03590.51070.15850.031*
H160.13000.39200.08310.029*
H17A0.23910.41010.02310.032*
H17B0.23840.53450.14660.032*
H220.25020.42660.33490.024*
H230.30100.35580.61850.024*
H250.45600.60640.49320.022*
H260.40590.67720.20910.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0207 (18)0.031 (2)0.0245 (18)0.0029 (16)0.0050 (14)0.0043 (15)
C110.020 (2)0.018 (2)0.0131 (18)0.0020 (18)0.0044 (14)0.0005 (15)
C120.016 (2)0.021 (2)0.0156 (18)0.0060 (17)0.0028 (14)0.0003 (16)
C130.023 (2)0.016 (2)0.0146 (19)0.0032 (18)0.0012 (15)0.0008 (15)
N130.027 (2)0.022 (2)0.0238 (18)0.0045 (18)0.0003 (14)0.0009 (14)
O110.0300 (18)0.0174 (17)0.062 (2)0.0029 (15)0.0091 (14)0.0015 (14)
O120.0288 (18)0.0281 (18)0.0516 (19)0.0147 (15)0.0068 (13)0.0023 (14)
C140.020 (2)0.030 (3)0.018 (2)0.0019 (19)0.0020 (15)0.0001 (17)
C150.025 (2)0.030 (3)0.022 (2)0.007 (2)0.0024 (16)0.0038 (17)
C160.036 (3)0.012 (2)0.024 (2)0.000 (2)0.0043 (17)0.0021 (16)
C170.035 (3)0.023 (2)0.020 (2)0.009 (2)0.0011 (17)0.0019 (17)
C210.020 (2)0.018 (2)0.0163 (19)0.0089 (16)0.0025 (15)0.0007 (15)
C220.017 (2)0.020 (2)0.023 (2)0.0005 (17)0.0021 (16)0.0037 (16)
C230.023 (2)0.016 (2)0.022 (2)0.0040 (18)0.0060 (15)0.0008 (16)
C240.026 (2)0.012 (2)0.019 (2)0.0034 (17)0.0013 (16)0.0019 (15)
I240.02652 (16)0.03048 (18)0.02068 (15)0.00257 (14)0.00091 (10)0.00406 (12)
C250.016 (2)0.016 (2)0.024 (2)0.0023 (17)0.0035 (15)0.0034 (16)
C260.022 (2)0.017 (2)0.021 (2)0.0019 (18)0.0086 (15)0.0022 (16)
Geometric parameters (Å, º) top
N1—C211.386 (4)C14—H140.95
N1—C171.449 (5)C15—C161.390 (5)
N1—H10.8799C15—H150.95
C17—C111.518 (5)C16—H160.95
C17—H17A0.99C21—C261.393 (5)
C17—H17B0.99C21—C221.406 (5)
C11—C121.384 (5)C22—C231.382 (5)
C11—C161.392 (5)C22—H220.95
C12—C131.384 (5)C23—C241.385 (5)
C12—H120.95C23—H230.95
C13—C141.382 (5)C24—C251.385 (5)
C13—N131.474 (5)C24—I242.104 (3)
N13—O111.229 (4)C25—C261.383 (5)
N13—O121.230 (4)C25—H250.95
C14—C151.381 (5)C26—H260.95
C21—N1—C17122.9 (3)C14—C15—C16120.5 (4)
C21—N1—H1115.0C14—C15—H15119.8
C17—N1—H1117.6C16—C15—H15119.8
N1—C17—C11113.1 (3)C15—C16—C11121.2 (4)
N1—C17—H17A109.0C15—C16—H16119.4
C11—C17—H17A109.0C11—C16—H16119.4
N1—C17—H17B109.0N1—C21—C26119.3 (3)
C11—C17—H17B109.0N1—C21—C22122.1 (3)
H17A—C17—H17B107.8C26—C21—C22118.5 (3)
C12—C11—C16118.6 (3)C23—C22—C21120.1 (3)
C12—C11—C17119.9 (3)C23—C22—H22119.9
C16—C11—C17121.4 (3)C21—C22—H22119.9
C11—C12—C13119.1 (3)C22—C23—C24120.3 (3)
C11—C12—H12120.4C22—C23—H23119.9
C13—C12—H12120.4C24—C23—H23119.9
C14—C13—C12123.0 (3)C23—C24—C25120.3 (3)
C14—C13—N13119.0 (3)C23—C24—I24120.5 (3)
C12—C13—N13118.0 (3)C25—C24—I24119.1 (3)
O11—N13—O12123.5 (3)C26—C25—C24119.5 (3)
O11—N13—C13117.9 (3)C26—C25—H25120.2
O12—N13—C13118.6 (3)C24—C25—H25120.2
C15—C14—C13117.5 (4)C25—C26—C21121.2 (3)
C15—C14—H14121.2C25—C26—H26119.4
C13—C14—H14121.2C21—C26—H26119.4
C21—N1—C17—C1187.8 (4)C12—C11—C16—C150.6 (5)
N1—C17—C11—C1243.3 (4)C17—C11—C16—C15176.5 (3)
N1—C17—C11—C16139.7 (3)C17—N1—C21—C26165.2 (3)
C16—C11—C12—C130.8 (5)C17—N1—C21—C2216.5 (5)
C17—C11—C12—C13176.3 (3)N1—C21—C22—C23179.1 (3)
C11—C12—C13—C140.2 (5)C26—C21—C22—C230.7 (5)
C11—C12—C13—N13179.9 (3)C21—C22—C23—C240.4 (5)
C14—C13—N13—O11174.2 (3)C22—C23—C24—C250.1 (5)
C12—C13—N13—O115.8 (4)C22—C23—C24—I24178.6 (3)
C14—C13—N13—O125.4 (5)C23—C24—C25—C260.2 (5)
C12—C13—N13—O12174.6 (3)I24—C24—C25—C26178.5 (3)
C12—C13—C14—C150.6 (5)C24—C25—C26—C210.2 (5)
N13—C13—C14—C15179.3 (3)N1—C21—C26—C25179.0 (3)
C13—C14—C15—C160.8 (5)C22—C21—C26—C250.6 (5)
C14—C15—C16—C110.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O11i0.952.483.416 (5)170
N1—H1···Cg2ii0.882.873.563 (4)137
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z3/2.
(7) 2-Iodo-N-(2-nitrobenzyl))aniline top
Crystal data top
C13H11IN2O2Z = 4
Mr = 354.14F(000) = 688
Triclinic, P1Dx = 1.841 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1685 (1) ÅCell parameters from 5760 reflections
b = 10.8834 (2) Åθ = 3.1–27.5°
c = 15.4372 (2) ŵ = 2.50 mm1
α = 76.9219 (9)°T = 120 K
β = 80.0727 (7)°Block, orange
γ = 74.2167 (7)°0.22 × 0.18 × 0.12 mm
V = 1277.36 (3) Å3
Data collection top
Kappa-CCD
diffractometer
5760 independent reflections
Radiation source: rotating anode5317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.597, Tmax = 0.738k = 1413
5760 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0523P)2 + 2.2937P]
where P = (Fo2 + 2Fc2)/3
5760 reflections(Δ/σ)max = 0.003
325 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 1.65 e Å3
Crystal data top
C13H11IN2O2γ = 74.2167 (7)°
Mr = 354.14V = 1277.36 (3) Å3
Triclinic, P1Z = 4
a = 8.1685 (1) ÅMo Kα radiation
b = 10.8834 (2) ŵ = 2.50 mm1
c = 15.4372 (2) ÅT = 120 K
α = 76.9219 (9)°0.22 × 0.18 × 0.12 mm
β = 80.0727 (7)°
Data collection top
Kappa-CCD
diffractometer
5760 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
5317 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.738Rint = 0.046
5760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.14Δρmax = 0.71 e Å3
5760 reflectionsΔρmin = 1.65 e Å3
325 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4705 (4)0.2423 (3)0.9345 (2)0.0285 (6)
C170.4270 (4)0.2768 (3)0.8436 (2)0.0243 (7)
C110.2877 (4)0.4032 (3)0.8265 (2)0.0201 (6)
C120.2322 (4)0.4634 (3)0.7422 (2)0.0210 (6)
N120.3066 (4)0.4045 (3)0.6618 (2)0.0292 (7)
O110.3889 (5)0.2939 (3)0.6714 (2)0.0500 (8)
O120.2783 (6)0.4727 (3)0.5893 (2)0.0536 (9)
C130.1083 (5)0.5799 (4)0.7286 (3)0.0295 (8)
C140.0350 (5)0.6411 (4)0.7996 (3)0.0340 (9)
C150.0868 (5)0.5853 (4)0.8841 (3)0.0326 (8)
C160.2114 (4)0.4685 (4)0.8962 (2)0.0255 (7)
C210.3852 (4)0.1721 (3)1.0040 (2)0.0225 (6)
C220.4396 (4)0.1328 (3)1.0891 (2)0.0244 (7)
I220.65858 (3)0.18196 (3)1.112805 (16)0.03433 (10)
C230.3554 (5)0.0627 (4)1.1602 (3)0.0335 (8)
C240.2062 (5)0.0271 (3)1.1469 (3)0.0350 (9)
C250.1520 (5)0.0662 (4)1.0658 (3)0.0348 (9)
C260.2359 (4)0.1373 (4)0.9942 (3)0.0293 (7)
N30.3333 (4)0.4467 (3)0.3894 (2)0.0269 (6)
C370.4815 (4)0.3380 (3)0.3986 (2)0.0241 (7)
C310.4493 (4)0.2081 (3)0.3948 (2)0.0191 (6)
C320.5812 (4)0.0980 (3)0.3838 (2)0.0182 (6)
N320.7619 (3)0.1039 (3)0.37277 (19)0.0218 (6)
O310.8008 (3)0.1726 (3)0.41571 (18)0.0297 (5)
O320.8636 (3)0.0400 (3)0.32235 (19)0.0336 (6)
C330.5523 (4)0.0216 (3)0.3823 (2)0.0218 (6)
C340.3859 (4)0.0339 (4)0.3937 (2)0.0246 (7)
C350.2509 (4)0.0741 (4)0.4027 (2)0.0250 (7)
C360.2832 (4)0.1924 (3)0.4020 (2)0.0231 (7)
C410.2796 (4)0.5121 (3)0.3080 (2)0.0208 (6)
C420.1545 (4)0.6315 (3)0.3003 (2)0.0217 (6)
I420.05593 (3)0.71566 (2)0.413668 (17)0.03445 (9)
C430.0967 (4)0.6963 (4)0.2184 (3)0.0286 (7)
C440.1630 (5)0.6451 (4)0.1420 (3)0.0320 (8)
C450.2878 (5)0.5286 (4)0.1476 (2)0.0316 (8)
C460.3450 (5)0.4626 (3)0.2298 (2)0.0263 (7)
H10.55670.26790.94580.034*
H1710.38750.20530.83070.029*
H1720.53130.28610.80180.029*
H130.07450.61710.67060.035*
H140.05010.72070.79110.041*
H150.03710.62700.93360.039*
H160.24540.43220.95430.031*
H230.39590.03831.21730.040*
H240.14750.02281.19440.042*
H250.05200.04441.05680.042*
H260.19220.16280.93790.035*
H30.27450.47230.43830.032*
H3710.52360.33040.45650.029*
H3720.57340.35660.35040.029*
H330.64570.09360.37350.026*
H340.36370.11580.39540.030*
H350.13610.06650.40930.030*
H360.18930.26560.40660.028*
H430.01140.77590.21510.034*
H440.12360.68910.08610.038*
H450.33480.49360.09510.038*
H460.42970.38270.23250.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0193 (13)0.0414 (17)0.0235 (14)0.0077 (12)0.0080 (11)0.0012 (13)
C170.0230 (16)0.0265 (16)0.0205 (16)0.0006 (13)0.0066 (12)0.0024 (13)
C110.0189 (14)0.0200 (14)0.0232 (16)0.0051 (12)0.0058 (12)0.0049 (12)
C120.0213 (15)0.0209 (15)0.0231 (16)0.0073 (12)0.0061 (12)0.0035 (12)
N120.0417 (18)0.0287 (15)0.0229 (15)0.0172 (14)0.0128 (13)0.0009 (12)
O110.070 (2)0.0406 (17)0.0346 (16)0.0090 (16)0.0134 (15)0.0205 (14)
O120.098 (3)0.0430 (18)0.0224 (14)0.0192 (18)0.0194 (16)0.0001 (13)
C130.0209 (16)0.0243 (16)0.042 (2)0.0069 (13)0.0117 (14)0.0045 (15)
C140.0198 (16)0.0217 (16)0.057 (3)0.0005 (13)0.0024 (16)0.0069 (17)
C150.0274 (18)0.0295 (18)0.044 (2)0.0101 (15)0.0090 (16)0.0193 (17)
C160.0236 (16)0.0302 (17)0.0247 (16)0.0074 (14)0.0013 (13)0.0091 (14)
C210.0153 (14)0.0238 (16)0.0247 (16)0.0005 (12)0.0037 (12)0.0028 (13)
C220.0210 (15)0.0258 (16)0.0230 (16)0.0014 (13)0.0012 (12)0.0075 (13)
I220.02431 (14)0.05411 (18)0.02607 (14)0.00191 (11)0.00718 (9)0.01675 (11)
C230.038 (2)0.0326 (19)0.0234 (17)0.0010 (16)0.0017 (15)0.0045 (15)
C240.0334 (19)0.0206 (16)0.036 (2)0.0016 (14)0.0201 (16)0.0017 (15)
C250.0237 (17)0.0289 (18)0.051 (2)0.0054 (14)0.0058 (16)0.0146 (17)
C260.0204 (16)0.0335 (19)0.0340 (19)0.0045 (14)0.0046 (14)0.0080 (15)
N30.0313 (15)0.0228 (14)0.0195 (14)0.0071 (12)0.0050 (11)0.0048 (11)
C370.0220 (15)0.0208 (15)0.0263 (17)0.0015 (12)0.0056 (13)0.0045 (13)
C310.0162 (14)0.0221 (15)0.0152 (14)0.0005 (12)0.0025 (11)0.0005 (11)
C320.0120 (13)0.0239 (15)0.0163 (14)0.0018 (11)0.0036 (10)0.0007 (12)
N320.0140 (12)0.0222 (13)0.0235 (13)0.0009 (10)0.0037 (10)0.0021 (11)
O310.0215 (12)0.0320 (13)0.0367 (14)0.0072 (10)0.0097 (10)0.0031 (11)
O320.0179 (12)0.0384 (15)0.0380 (15)0.0022 (10)0.0017 (10)0.0090 (12)
C330.0213 (15)0.0221 (15)0.0184 (15)0.0009 (12)0.0052 (12)0.0004 (12)
C340.0241 (16)0.0288 (17)0.0214 (16)0.0077 (13)0.0053 (13)0.0024 (13)
C350.0173 (15)0.0350 (18)0.0216 (15)0.0074 (13)0.0056 (12)0.0007 (14)
C360.0147 (14)0.0287 (16)0.0198 (15)0.0036 (12)0.0022 (11)0.0030 (13)
C410.0198 (14)0.0200 (15)0.0229 (16)0.0045 (12)0.0042 (12)0.0039 (12)
C420.0173 (14)0.0207 (15)0.0267 (16)0.0055 (12)0.0043 (12)0.0015 (13)
I420.03699 (15)0.02458 (14)0.03448 (16)0.00676 (10)0.00210 (11)0.00978 (10)
C430.0210 (16)0.0293 (17)0.0341 (19)0.0097 (14)0.0095 (14)0.0058 (15)
C440.0295 (18)0.043 (2)0.0264 (18)0.0173 (16)0.0131 (14)0.0054 (16)
C450.037 (2)0.042 (2)0.0212 (17)0.0180 (17)0.0035 (14)0.0057 (15)
C460.0306 (18)0.0271 (17)0.0218 (16)0.0073 (14)0.0031 (13)0.0050 (13)
Geometric parameters (Å, º) top
N1—C211.371 (4)N3—C411.376 (4)
N1—C171.448 (4)N3—C371.445 (4)
N1—H10.88N3—H30.88
C17—C111.531 (4)C37—C311.523 (5)
C17—H1710.99C37—H3710.99
C17—H1720.99C37—H3720.99
C11—C161.387 (5)C31—C361.395 (4)
C11—C121.409 (4)C31—C321.397 (4)
C12—C131.390 (5)C32—C331.390 (5)
C12—N121.487 (5)C32—N321.473 (4)
N12—O111.198 (4)N32—O321.219 (4)
N12—O121.214 (4)N32—O311.235 (4)
C13—C141.375 (6)C33—C341.379 (5)
C13—H130.95C33—H330.95
C14—C151.394 (6)C34—C351.390 (5)
C14—H140.95C34—H340.95
C15—C161.394 (5)C35—C361.381 (5)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C21—C221.397 (5)C41—C461.396 (5)
C21—C261.412 (5)C41—C421.413 (4)
C22—C231.380 (5)C42—C431.393 (5)
C22—I222.110 (4)C42—I422.095 (4)
C23—C241.434 (6)C43—C441.382 (6)
C23—H230.95C43—H430.95
C24—C251.340 (6)C44—C451.390 (6)
C24—H240.95C44—H440.95
C25—C261.389 (6)C45—C461.398 (5)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C21—N1—C17123.8 (3)C41—N3—C37123.2 (3)
C21—N1—H1118.1C41—N3—H3118.4
C17—N1—H1118.1C37—N3—H3118.4
N1—C17—C11113.2 (3)N3—C37—C31114.6 (3)
N1—C17—H171108.9N3—C37—H371108.6
C11—C17—H171108.9C31—C37—H371108.6
N1—C17—H172108.9N3—C37—H372108.6
C11—C17—H172108.9C31—C37—H372108.6
H171—C17—H172107.7H371—C37—H372107.6
C16—C11—C12115.6 (3)C36—C31—C32115.8 (3)
C16—C11—C17119.9 (3)C36—C31—C37121.2 (3)
C12—C11—C17124.5 (3)C32—C31—C37123.0 (3)
C13—C12—C11123.0 (3)C33—C32—C31123.2 (3)
C13—C12—N12116.2 (3)C33—C32—N32116.2 (3)
C11—C12—N12120.8 (3)C31—C32—N32120.6 (3)
O11—N12—O12123.8 (4)O32—N32—O31124.2 (3)
O11—N12—C12119.1 (3)O32—N32—C32117.9 (3)
O12—N12—C12117.0 (3)O31—N32—C32117.8 (3)
C14—C13—C12119.6 (4)C34—C33—C32119.0 (3)
C14—C13—H13120.2C34—C33—H33120.5
C12—C13—H13120.2C32—C33—H33120.5
C13—C14—C15119.3 (3)C33—C34—C35119.6 (3)
C13—C14—H14120.3C33—C34—H34120.2
C15—C14—H14120.3C35—C34—H34120.2
C16—C15—C14120.0 (4)C36—C35—C34120.2 (3)
C16—C15—H15120.0C36—C35—H35119.9
C14—C15—H15120.0C34—C35—H35119.9
C11—C16—C15122.4 (3)C35—C36—C31122.2 (3)
C11—C16—H16118.8C35—C36—H36118.9
C15—C16—H16118.8C31—C36—H36118.9
N1—C21—C22121.8 (3)N3—C41—C46121.4 (3)
N1—C21—C26122.1 (3)N3—C41—C42121.3 (3)
C22—C21—C26116.1 (3)C46—C41—C42117.2 (3)
C23—C22—C21122.8 (3)C43—C42—C41121.5 (3)
C23—C22—I22117.5 (3)C43—C42—I42118.8 (3)
C21—C22—I22119.7 (3)C41—C42—I42119.6 (2)
C22—C23—C24119.3 (4)C44—C43—C42120.2 (3)
C22—C23—H23120.4C44—C43—H43119.9
C24—C23—H23120.4C42—C43—H43119.9
C25—C24—C23118.2 (3)C43—C44—C45119.4 (3)
C25—C24—H24120.9C43—C44—H44120.3
C23—C24—H24120.9C45—C44—H44120.3
C24—C25—C26122.7 (4)C44—C45—C46120.6 (4)
C24—C25—H25118.6C44—C45—H45119.7
C26—C25—H25118.6C46—C45—H45119.7
C25—C26—C21120.9 (4)C41—C46—C45121.1 (3)
C25—C26—H26119.6C41—C46—H46119.5
C21—C26—H26119.6C45—C46—H46119.5
C21—N1—C17—C1186.5 (4)C41—N3—C37—C3181.6 (4)
N1—C17—C11—C163.0 (4)N3—C37—C31—C3613.5 (4)
N1—C17—C11—C12174.7 (3)N3—C37—C31—C32166.4 (3)
C16—C11—C12—C130.5 (5)C36—C31—C32—C331.6 (5)
C17—C11—C12—C13178.3 (3)C37—C31—C32—C33178.5 (3)
C16—C11—C12—N12178.8 (3)C36—C31—C32—N32178.2 (3)
C17—C11—C12—N121.0 (5)C37—C31—C32—N321.7 (5)
C13—C12—N12—O11166.2 (4)C33—C32—N32—O3235.8 (4)
C11—C12—N12—O1114.5 (5)C31—C32—N32—O32144.0 (3)
C13—C12—N12—O1213.3 (5)C33—C32—N32—O31143.7 (3)
C11—C12—N12—O12166.0 (3)C31—C32—N32—O3136.5 (4)
C11—C12—C13—C140.1 (5)C31—C32—C33—C341.2 (5)
N12—C12—C13—C14179.2 (3)N32—C32—C33—C34179.0 (3)
C12—C13—C14—C150.2 (5)C32—C33—C34—C352.7 (5)
C13—C14—C15—C160.2 (5)C33—C34—C35—C361.3 (5)
C12—C11—C16—C150.6 (5)C34—C35—C36—C311.7 (5)
C17—C11—C16—C15178.5 (3)C32—C31—C36—C353.0 (5)
C14—C15—C16—C110.3 (5)C37—C31—C36—C35177.1 (3)
C17—N1—C21—C22175.2 (3)C37—N3—C41—C4612.5 (5)
C17—N1—C21—C266.0 (5)C37—N3—C41—C42168.2 (3)
N1—C21—C22—C23179.7 (3)N3—C41—C42—C43178.4 (3)
C26—C21—C22—C230.8 (5)C46—C41—C42—C431.0 (5)
N1—C21—C22—I220.0 (5)N3—C41—C42—I422.8 (4)
C26—C21—C22—I22178.9 (2)C46—C41—C42—I42177.9 (2)
C21—C22—C23—C240.4 (6)C41—C42—C43—C440.8 (5)
I22—C22—C23—C24179.9 (3)I42—C42—C43—C44178.1 (3)
C22—C23—C24—C251.4 (5)C42—C43—C44—C450.1 (5)
C23—C24—C25—C261.2 (6)C43—C44—C45—C460.8 (5)
C24—C25—C26—C210.1 (6)N3—C41—C46—C45179.0 (3)
N1—C21—C26—C25179.9 (3)C42—C41—C46—C450.3 (5)
C22—C21—C26—C251.1 (5)C44—C45—C46—C410.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O120.882.343.107 (4)146
C33—H33···O11i0.952.533.147 (5)123
Symmetry code: (i) x+1, y, z+1.

Experimental details

(1)(2)(6)(7)
Crystal data
Chemical formulaC13H11IN2O2C13H11IN2O2C13H11IN2O2C13H11IN2O2
Mr354.14354.14354.14354.14
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121Monoclinic, P21/cTriclinic, P1
Temperature (K)120120120120
a, b, c (Å)16.1564 (6), 9.3589 (3), 8.3326 (3)7.0966 (2), 12.5908 (4), 13.8360 (6)21.2778 (15), 8.1809 (5), 7.2793 (4)8.1685 (1), 10.8834 (2), 15.4372 (2)
α, β, γ (°)90, 96.333 (1), 9090, 90, 9090, 94.316 (2), 9076.9219 (9), 80.0727 (7), 74.2167 (7)
V3)1252.25 (8)1236.27 (8)1263.53 (14)1277.36 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.552.592.532.50
Crystal size (mm)0.32 × 0.22 × 0.150.38 × 0.05 × 0.030.48 × 0.04 × 0.020.22 × 0.18 × 0.12
Data collection
DiffractometerKappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Kappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Multi-scan
SORTAV (Blessing, 1995 & 1997)
Multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.496, 0.6820.440, 0.9270.377, 0.9510.597, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
8013, 2850, 2641 9541, 2783, 2437 12705, 2785, 1934 5760, 5760, 5317
Rint0.0500.0500.0640.046
(sin θ/λ)max1)0.6490.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.08 0.030, 0.050, 1.01 0.035, 0.065, 1.00 0.038, 0.106, 1.14
No. of reflections2850278327855760
No. of parameters163163163325
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.740.54, 0.611.13, 0.600.71, 1.65
Absolute structure?Flack (1983), 1191 Friedel pairs??
Absolute structure parameter?0.01 (2)??

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997b), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997a), OSCAIL and SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O11i0.952.473.403 (5)167
C26—H26···O12ii0.952.553.272 (4)132
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.882.533.196 (4)133
C17—H172···O11ii0.992.433.357 (5)156
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) for (6) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O11i0.952.483.416 (5)170
N1—H1···Cg2ii0.882.873.563 (4)137
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) for (7) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O120.882.343.107 (4)146
C33—H33···O11i0.952.533.147 (5)123
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Postal address: School of Engineering and Physics, University of Dundee, Dundee DD1 4HN, Scotland

§Present address: Fundação Oswaldo Cruz, Far Manguinhos, Rua Sizenando Nabuco, 100 Manguinhos, 21041250 Rio de Janeiro, RJ Brazil.

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA5018 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England: the authors thank the staff of the Service for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW and SMSVW thank CNPq and FAPERJ for financial support.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMotherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). Kappa-CCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428–o430.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds