research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structural investigations of phosphorus–nitrogen compounds. 6. Relationships between molecular parameters in per-X-substituted bridged spermine derivatives and basicity constants ΣαR of substituents

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, bSchool of Biological and Chemical Sciences, Birkbeck College (University of London), Gordon House, 29 Gordon Square, London WC1H 0PP, England, and cDepartment of Chemistry, Gebze Institute of Technology, Gebze, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk

(Received 8 July 2004; accepted 13 October 2004)

A systematic study is reported of the products of the nucleophilic substitution reactions of the spermine-bridged cyclotriphosphazene, [N3P3X4(NHCH2CH2CH2N)CH2CH2]2 [where X = Cl (2a)], to give a number of new structures [(2b)–(2g)] in which X = OPh, [spiro-O(CH2)3O]0.5, Ph, NHPh, NC4H8 and NHBut, respectively. A comparison has been made between the sum of the substituent basicity constants, ΣαR, obtained in nitrobenzene solution, and ten molecular parameters of the N3P3 ring (the internal bond angles α, β, γ, δ and θ, and the P—N bond lengths a, b, c, d and e) as well as the difference between the bond lengths a and b, Δ(P—N). It is found that the systematic change in molecular parameters of compounds (2a)–(2g) is in line with changes in αR values, indicating the similarity in relative electron-releasing capacity of substituents X in the solid state and in solution. It is also found that the effect on molecular parameters of (2a)–(2g) with two X substituents in PX2 groups is greater than that for one X substituent in P(OR)X groups in an analogous series of compounds observed previously [Beşli et al. (2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]). Acta Cryst. B58, 1067–1073].

1. Introduction

Changes in molecular parameters of a series of compounds {2,6-di-X-4,4-diphenyl-2,6-(3,6,9-trioxaundecane-1,11-dioxy)cyclotriphosphazene, where X = phenoxy (1a), phenoxy (1b), methoxy (1c), anilino (1d), tert-butylamino (1e); 7,7′-butane-1,4-diylbis(2,2,2′,2′,4,4,4′,4′-octa-X-1,3,5,7,11-pentaaza-2,4,6-triphosphaspiro[5.5]undecane), where X = chloro (2a), phenoxy (2b), kis(3-hydroxypropoxy) (2c), phenyl (2d), anilino (2e), pyridino (2f), tert-butylamino (2g)} should reflect changes in electron distribution resulting from different substituents in the molecules. This expectation was confirmed for a series of molecules in which the two non-geminal Cl atoms adjacent to the cis-ansa macrocycle in the cyclotriphos­phazene N3P3Ph2[O(CH2CH2O)4]X2 (1), X = Cl) were replaced by other groups (X = OCH2CF3, OPh, OMe, NHPh and NHBut), see (I)[link]; the molecular parameters of (1a)–(1e) were related to the sum of the basicity constants, ΣαR, of the substituents (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]). The changes in substituent basicity constants, αR, are indicative of changes in electron distribution (Feakins et al., 1965[Feakins, D., Last, W. A., Neemuchwala, N. & Shaw, R. A. (1965). J. Chem. Soc. pp. 2804-2811.], 1968[Feakins, D., Nabi, S. N., Shaw, R. A. & Watson, P. (1968). J. Chem. Soc. A, pp. 10-15.]; Feakins, Last et al., 1969[Feakins, D., Last, W. A., Nabi, S. N., Shaw, R. A. & Watson, P. (1969). J. Chem. Soc. A, pp. 196-202.]; Feakins, Shaw et al., 1969[Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468-2475.]), which is also reflected in the changes in molecular parameters. An approximate linear relationship was demonstrated between ΣαR and selected bond lengths and angles of compounds (1a)–(1e) in which the substituent X varies in the moiety PX(Om) (m = macrocycle; Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.], Part 5 of the series).

In the present study we report on changes in analogous molecular parameters in the series of tetra-substituted spermine-bridged cyclotriphosphazenes [N3P3X4(NHCH2CH2-CH2N)CH2CH2]2, (2) {where X = Cl, OPh, [spiro-O(CH2)3O]0.5, Ph, NHPh, pyr (pyrrolidino) and NHBut for (2a)–(2g) respectively}, see (I)[link]. For (2a)–(2g) the X substituent varies for the moiety PX2, where two geminal substituents are replaced on one P atom, compared with the replacement of one X substituent on one P atom in (1a)–(1e).

[Scheme 1]

2. Experimental

2.1. Preparation of compounds

Compounds (2b), (2c), (2e) and (2f) were synthesized by reaction of the known compound (2a) (Labarre et al., 1984[Labarre, J. F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75-88.]) with an excess of the appropriate nucleophile (phenol, 1,3-propanediol, aniline and pyrrolidine, respectively), whereas (2d) and (2g) were synthesized by reaction of spermine with the known di-gem, tetra-substituted cyclophosphazene precursors 2,2-dichloro-4,4,6,6-tetraphenylcyclotriphospha­zene (Acock et al., 1964[Acock, K. G., Shaw, R. A. & Wells, F. B. G. (1964). J. Chem. Soc. pp. 121-130.]) and 2,2-dichloro-4,4,6,6-tetra-tert-butylaminocyclotriphosphazene (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]). Full details of the synthetic procedures for (2b)–(2g) are being reported elsewhere (Yenilmez-Çiftçi, 2004[Yenilmez-Çiftçi, G. (2004). In the press.]).

2.2. Crystallography

Data were collected at 120 K on an Nonius KappaCCD area-detector diffractometer located at the window of a Nonius FR591 rotating anode X-ray generator, equipped with a molybdenum target [λ(Mo Kα) = 0.71073 Å]. Structures were solved and refined using the SHELX97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]) suite of programs. Data were corrected for absorption effects by comparing equivalent reflections using the program SORTAV (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]). Non-H atoms were refined anisotropically, whilst H atoms were generally fixed in idealized positions (with the exception of some N—H protons, whose positions were determined from a difference map) with their displacement parameters riding on the values of their parent atoms. The structure of (2e) contains a disordered water molecule split over two sites, neither of which could be assigned reliably with H atoms, and the structure of compound (2d) contains a benzene solvate molecule. There are a number of potentially serious validation errors, mainly for structures (2c), (2e) and (2f), which are discussed below:

  • (i) The crystal of (2c) used in the experiment was a small platelet of the dimensions 0.12 × 0.08 × 0.03 mm, which diffracted weakly and only achieved a data completeness of 93%, despite 40 second exposure times for each image.

  • (ii) The amido H atoms on atoms N4 and N13 of (2e) were somewhat poorly defined in the difference map and had to be restrained in the model to conform to a regular geometry.

  • (iii) The crystal quality of (2f) was extremely poor (fibrous needle 0.24 × 0.05 × 0.03 mm), resulting in a weak diffraction pattern that did not extend to high angles and could only produce a very limited dataset. The structure derived for (2f) from this data is somewhat poor, however, the core N3P3 rings and areas of interest in the molecular structure are defined reasonably well and the structure is considered to be pertinent and important to this study and is therefore included. Pertinent data collection and refinement parameters are collated in Table 1[link].1 The data for (2a) were extracted from the Cambridge Structural Database (Allen et al., 1983[Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.]) as a CIF, with the refcode COPTUW (Labarre et al., 1984[Labarre, J. F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75-88.]).

Table 1
Experimental table

  (2b) (2c) (2d)
Crystal data
Chemical formula C58H62N10O8P6 C22H46N10O8P6 C64H68N10P6
Mr 1213.00 764.51 1163.10
Cell setting, space group Triclinic, [P\bar 1] Monoclinic, P21/c Monoclinic, C2/c
a, b, c (Å) 10.735 (2), 11.067 (3), 14.259 (4) 9.871 (2), 29.741 (6), 11.838 (2) 11.0388 (2), 30.2194 (5), 17.8858 (4)
α, β, γ (°) 75.650 (17), 83.84 (2), 61.096 (19) 90.00, 106.18 (3), 90.00 90.00, 93.0020 (10), 90.00
V3) 1436.6 (6) 3337.5 (12) 5958.3 (2)
Z 1 4 4
Dx (Mg m−3) 1.402 1.521 1.297
Radiation type Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 22 022 25 012 19 360
θ range (°) 2.9–27.5 1.0–27.5 2.9–27.5
μ (mm−1) 0.25 0.38 0.23
Temperature (K) 120 (2) 120 (2) 120 (2)
Crystal form, colour Plate, colourless Plate, colourless Block, colourless
Crystal size (mm) 0.36 × 0.20 × 0.04 0.12 × 0.08 × 0.03 0.10 × 0.08 × 0.04
       
Data collection
Diffractometer Bruker–Nonius KappaCCD area detector Bruker–Nonius KappaCCD area detector Bruker–Nonius KappaCCD area detector
Data collection method φ and ω scans to fill Ewald Sphere φ and ω scans φ and ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.865 0.956 0.977
Tmax 0.992 0.989 0.991
No. of measured, independent and observed reflections 24 237, 6569, 5519 25 591, 7080, 3980 34 191, 6809, 5324
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.107 0.125 0.054
θmax (°) 27.5 27.5 27.5
Range of h, k, l −13 → h → 13 −12 → h → 12 −14 → h → 14
  −14 → k → 14 −38 → k → 38 −38 → k → 39
  −18 → l → 18 −14 → l → 15 −22 → l → 23
       
Refinement
Refinement on F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.07 0.063, 0.154, 0.96 0.042, 0.110, 1.02
No. of reflections 6569 7080 6809
No. of parameters 375 424 366
H-atom treatment Mixture of independent and constrained refinement Mixture of independent and constrained refinement Mixture of independent and constrained refinement
Weighting scheme w = 1/[σ2(Fo2) + (0.0477P)2 + 2.1319P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0701P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0529P)2 + 4.259P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.036 0.012 0.004
Δρmax, Δρmin (e Å−3) 0.59, −0.40 0.43, −0.55 0.26, −0.40
Extinction method None None SHELXL
Extinction coefficient 0.00103 (16)
  (2e) (2f) (2g)
Crystal data
Chemical formula C58H70N18OP6 C42H54N18P6 C42H102N18P6
Mr 1221.14 996.85 1045.24
Cell setting, space group Triclinic, [P\bar 1] Monoclinic, P21/c Triclinic, [P\bar 1]
a, b, c (Å) 13.112 (3), 15.160 (3), 17.546 (4) 30.586 (10), 9.660 (2), 18.449 (5) 13.476 (3), 14.437 (3), 16.340 (3)
α, β, γ (°) 81.67 (3), 74.73 (3), 67.08 (3) 90.00, 94.599 (10), 90.00 111.28 (3), 96.87 (3), 93.69 (3)
V3) 3095.4 (11) 5433 (3) 2921.1 (10)
Z 2 4 2
Dx (Mg m−3) 1.310 1.219 1.188
Radiation type Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 70 927 38 071 68 138
θ range (°) 2.9–27.5 2.9–27.1 2.9–27.5
μ (mm−1) 0.23 0.25 0.23
Temperature (K) 150 (2) 120 (2) 150 (2)
Crystal form, colour Block, colourless Needle, colourless Block, colourless
Crystal size (mm) 0.20 × 0.20 × 0.15 0.24 × 0.05 × 0.03 0.28 × 0.28 × 0.28
       
Data collection
Diffractometer Nonius KappaCCD Bruker–Nonius KappaCCD area detector Bruker–Nonius KappaCCD area detector
Data collection method φ and ω scans φ and ω scans φ and ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.789 0.944 0.886
Tmax 0.975 0.993 0.922
No. of measured, independent and observed reflections 44 336, 13 705, 5294 10 652, 5213, 2316 47 815, 10 292, 7658
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.187 0.129 0.071
θmax (°) 27.5 25.0 25.0
Range of h, k, l −17 → h → 17 −36 → h → 35 −16 → h → 16
  −19 → k → 19 −9 → k → 9 −17 → k → 17
  −22 → l → 22 −20 → l → 21 −19 → l → 19
       
Refinement
Refinement on F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.168, 0.93 0.117, 0.277, 1.10 0.041, 0.110, 1.02
No. of reflections 13 705 5213 10 292
No. of parameters 797 595 659
H-atom treatment Mixture of independent and constrained refinement Mixture of independent and constrained refinement Mixture of independent and constrained refinement
Weighting scheme w = 1/[σ2(Fo2) + (0.0561P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0439P)2 + 22.223P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.4011P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.012 0.254 0.003
Δρmax, Δρmin (e Å−3) 0.68, −0.36 0.35, −0.27 0.28, −0.37
Extinction method None None None
Computer programs used: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]), PLATON (Spek, 1990[Spek, A. L. (1990). Acta Cryst. A46, C34.]).

3. Results

3.1. Molecular structures

Displacement ellipsoid plots for (2b)–(2g) [see (I)[link]] are shown in Figs. 1–6[link][link][link][link][link][link], respectively. The common factors between all seven molecular systems are the facts that the halves of the bridged molecule have the same substitution pattern in each N3P3 ring, and that one P atom in each N3P3 ring has a common pair of substituents consisting of a six-membered spiro ring with one primary and one secondary N atom joined at one end by the P atom and linked at the other by a trimethylene chain, CH2CH2CH2. These spiro rings all adopt a chair configuration. The other two P atoms in (2a)–(2g) have the same substituents (X2) on each P atom in each N3P3 ring, in which X differs from compound to compound. The bridging moiety consists of a five-bond chain, NCH2CH2CH2CH2N, about which rotation can occur and giving, in principle, a range of conformations for the two cyclophosphazene rings with respect to each other. In practice it is found that the two substituted cyclophosphazene rings take up either syn or anti conformations; (2a), (2b), (2d), (2e) and (2g) adopt an anti conformation, whilst (2c) and (2f) are present as syn conformers. In (2b) two non-geminal OPh (O2 and O3) groups adopt a conformation above the N3P3 ring, making them almost parallel. However, with a centroid separation of approximately 4.2 Å this is most likely to be a packing effect. In the anti structures (2a) and (2b) the two N3P3 rings are in almost parallel planes, whilst in the syn structures (2c) and (2f) the two N3P3 rings are slightly tilted towards each other. The tetramethylene chain, CH2CH2CH2CH2, bridging the two cyclophosphazene rings exhibits a near zigzag structure in all compounds, except in the syn conformer (2c), where it is rather distorted. The structures of partially substituted spermine-bridged derivatives have been reported previously: whilst those with Ph groups mirrored the anti conformation of its per-substituted derivative (2d) (Coles et al., 2001[Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Çiftçi, G. Y. (2001). J. Chem. Soc. Dalton Trans. pp. 365-370.]), interestingly those with spiro-[O(CH2)3O] [where spiro = —NH(CH2)3N(CH2)4­N(CH2)3HN—] and NHBut substituents (Beşli et al., 2003[Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A., Çiftçi, G. Y. & Yeşilot, S. (2003). J. Am. Chem. Soc. 125, 4943-4950.]) had the opposite conformation from those of their per-derivatives [(2c), syn] and NHBut [(2g), anti], respectively. From Table 2[link] one can see that these compounds exhibit both syn and anti conformations. Further work to rationalize this observation is currently in progress.

Table 2
Parameters of the molecular frameworks of (2a)–(2g) defined in Fig. 8[link]

ΣαR = sum of substituent basicity constants; Δ(P—N) = ab; ΣNHsp and ΣNCsp are the sums of three internal bond angles for the N atoms of NHsp and NCsp, respectively. The spiro ring puckering amplitude is derived by standard methods (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). Conformation corresponds to the syn or anti conformation of the cyclophosphazene rings about the NCH2CH2CH2CH2N bridge. Values of molecular parameters for (2a) are taken from Labarre et al. (1984[Labarre, J. F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75-88.]).

  (2a) (2b) (2c) (2d) (2e) (2f) (2g)
X Cl OPh O(CH2)3O Ph NHPh NC4H8 NHBut
ΣαR 0 12.4 15 16.8 17.6 23.6 23.6
α 112.98 (2) 116.1 (1) 116.3 (1) 116.2 (1) 116.2 (2) 118.3 (4) 117.5 (1)
β 123.14 (2) 122.0 (1) 122.3 (2) 120.4 (1) 122.3 (1)) 121.5 (4) 121.6 (1)
γ 120.49 (2) 118.1 (1) 118.6 (1) 117.0 (1) 117.8 (1) 117.1 (3) 115.9 (1)
δ 119.24 (2) 121.3 (1) 121.4 (1) 120.7 (1) 121.0 (2) 122.1 (5) 123.2 (1)
θ 104.49 (4) 105.1 (1) 105.0 (1) 103.4 (1) 101.8 (2) 101.6 (4) 101.6 (6)
a 1.613 (1) 1.612 (1) 1.610 (2) 1.600 (1) 1.596 (3) 1.594 (5) 1.589 (1)
b 1.562 (2) 1.580 (1) 1.571 (2) 1.603 (1) 1.597 (2) 1.597 (5) 1.597 (1)
c 1.575 (1) 1.590 (1) 1.583 (2) 1.597 (1) 1.592 (3) 1.593 (5) 1.599 (1)
d 1.635 (2) 1.660 (2) 1.637 (3) 1.653 (2) 1.656 (4) 1.670 (6) 1.660 (1)
e 1.631 (1) 1.674 (2) 1.674 (2) 1.665 (2) 1.664 (3) 1.670 (7) 1.686 (1)
Δ(P—N) 0.051 0.032 0.039 −0.003 −0.001 −0.003 −0.008
ΣNHsp 360.0 (2) 336.2 (3) 340.8 (3) 335.4 (2)   360.0 (1) 335.0 (2)
ΣNCsp 354.59 (7) 336.8 (3) 342.1 (3) 349.6 (2) 340.1 (6) 338.2 (1) 340.4 (4)
Pucker 0.505 0.5646 0.5303 0.5551 0.5715 0.5688 0.5303
 amplitude, Q     0.5403   0.5891 0.5793 0.5766
Conformation anti anti syn anti anti syn anti
[Figure 1]
Figure 1
The molecular structure of (2b).
[Figure 2]
Figure 2
The molecular structure of (2c).
[Figure 3]
Figure 3
The molecular structure of (2d) with the benzene solvate molecule removed for clarity.
[Figure 4]
Figure 4
The molecular structure of compound (2e) with water molecules omitted for clarity.
[Figure 5]
Figure 5
The molecular structure of compound (2f). Ellipsoids are displayed at 20% probability for clarity.
[Figure 6]
Figure 6
The molecular structure of (2g).

3.2. Crystal structures

The hydrogen-bonding schemes for (2a)–(2g) are summarized in Fig. 7[link]. In (2a) and (2c) the N—H of the spiro group bonds to a ring N atom in another molecule. This occurs in both halves of the molecule and leads to infinite ladders linked by single hydrogen bonds, where the rungs are the tetramethylene chains, CH2CH2CH2CH2. In (2b) and (2d) the N—H of the spiro group bonds to a ring N atom in another molecule. In this case, however, the two molecules form eight-membered hydrogen-bonded rings. Again leading through the other half of the molecule to infinite chains, which are held by two hydrogen bonds, in this case there is no ladder arrangement as both hydrogen bonds are involved in the eight-membered rings. The hydrogen bonding in (2e) is complex, involving mainly the N—H parts of the NHPh groups. The strongest of these interactions are two N—H⋯N bonds with a phosphazene ring N atom, which forms a zigzag chain. This chain then interacts through close contacts and weaker hydrogen bonds with other chains and the water molecules to form a sheet-like structure. In (2f) the situation is also complicated. Two molecules bind together as head-to-tail dimers through hydrogen bonding (C18⋯N12 and C25⋯N1). This association facilitates N—H⋯N interactions, where the N13—H of the spiro group of one molecule (A) bonds intramolecularly to the secondary N atom (N4) of the spiro group of another molecule (B). This other molecule (B) in turn forms a bifurcated hydrogen bond from N14B to a ring N atom, N1 in molecule A, as well as to the secondary N atom (N5) of the spiro group of molecule A. In (2g) there are again eight-membered hydrogen-bonded rings, which differ from those in (2b) and (2c) in that the N—H of the spiro group does not bond to a ring N atom in another molecule, but to the secondary N atom of the spiro group forming an infinite zigzag structure. Interestingly, the N—H of the NHBut groups in (2g) do not form any significant hydrogen bonds.

[Figure 7]
Figure 7
Hydrogen-bonding schemes for (2a)–(2g).

4. Discussion

Early crystallographic studies have provided evidence that cyclotriphosphazenes carrying two or more different substituents show significant differences in bond lengths (Mani et al., 1965[Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1965). Acta Cryst. 19, 693-697.], 1966[Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 375-382.]; Allen et al., 1969[Allen, C. W., Faught, J. B., Moeller, T. & Paul, I. C (1969). Inorg. Chem. 8, 1719-1727.]; Ahmed & Pollard, 1972[Ahmed, F. R. & Pollard, D. R. (1972). Acta Cryst. B28, 513-517.]; Ahmed & Gabe, 1975[Ahmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028-1031.]; Ahmed & Fortier, 1980[Ahmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456-1461.]) and later studies revealed trends in both bond lengths and angles, which could be related to a variety of different physical and chemical properties (Contractor et al., 1985[Contractor, S. R., Hursthouse, M. B., Shaw, L. S., Shaw, R. A. & Yılmaz, H. (1985). Acta Cryst. B41, 122-131.]; Fincham et al., 1986[Fincham, J. K., Hursthouse, M. B., Parkes, H. G., Shaw, L. S. & Shaw, R. A. (1986). Acta Cryst. B42, 462-472.]; Alkubaisi et al., 1988[Alkubaisi, A. H., Hursthouse, M. B., Shaw, L. S. & Shaw R. A. (1988). Acta Cryst. B44, 16-22.]). It is known that substituent basicity constants give a reliable indication of the relative electron-releasing capacity of different substituent X groups (Feakins et al., 1965[Feakins, D., Last, W. A., Neemuchwala, N. & Shaw, R. A. (1965). J. Chem. Soc. pp. 2804-2811.]; Feakins, Last et al., 1969[Feakins, D., Last, W. A., Nabi, S. N., Shaw, R. A. & Watson, P. (1969). J. Chem. Soc. A, pp. 196-202.]; Feakins, Shaw et al., 1969[Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468-2475.]) and it was found that changes in bond lengths and angles of the series of cyclophosphazene derivatives (1a)–(1e) varied with the sum of the substituent basicity constants ΣαR (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]). A similar analysis is made for (2b)–(2g) in this work and the results are compared with those for (2a) (Labarre et al., 1984[Labarre, J. F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75-88.]).

The structural parameters considered for (2a)–(2g) are the bond lengths (a, b, c, d and e) and angles (α, β, γ, δ and θ), which are defined in the generalized structure for (2) shown in Fig. 8[link]. The structural data for (2a)–(2g) summarized in Table 2[link] show a small, but moderately consistent, trend of bond lengths and angles in the series of molecules which reflects the electron-releasing capacity of the substituents X = Cl, OPh, [spiro-O(CH2)3O]0.5, Ph, NHPh, pyr and NHBut. The values of the sum of the substituent basicity constants, ΣαR, for (2a)–(2g) are also summarized in Table 2[link]. In general it is found that, with the increasing value of ΣαR, the bond angles α and δ increase, whilst those for β, γ and θ decrease; concomitantly, the bond length a decreases, whilst b, c, d and e increase. Although the present structural data refer to molecules in their unperturbed ground state in the crystalline solid and the basicity measurements were made in nitrobenzene solution (Feakins et al., 1965[Feakins, D., Last, W. A., Neemuchwala, N. & Shaw, R. A. (1965). J. Chem. Soc. pp. 2804-2811.], 1968[Feakins, D., Nabi, S. N., Shaw, R. A. & Watson, P. (1968). J. Chem. Soc. A, pp. 10-15.]; Feakins, Last et al., 1969[Feakins, D., Last, W. A., Nabi, S. N., Shaw, R. A. & Watson, P. (1969). J. Chem. Soc. A, pp. 196-202.]; Feakins, Shaw et al., 1969[Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468-2475.]), where the molecule is perturbed by the approach of a proton (Koppel et al., 2001[Koppel, I. A., Schwesinger, R., Breuer, T., Burk, P., Herodes, K., Koppel, I., Leito, I. & Mishima, M. (2001). J. Phys. Chem. A, 105, 9575-9586.]), there is a definite relationship between the molecular parameters of (2a)–(2g) and the substituent basicity constant, analogous to the effects observed previously (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]). Other molecular parameters, such as Δ(P—N) values and the sum of the bond angles ΣNHsp and ΣNCsp in the series of molecules (2a)–(2g), also decrease as ΣαR increases, indicating a similar trend in increasing electron density provided by the X substituents, from X = Cl through to X = NHBut.

[Figure 8]
Figure 8
Generalized schemes for the definition of the molecular-framework parameters of (2a)—(2g) studied in this work and comparison with previous work on (1) (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]).

The results on the variation of molecular parameters with two substituents in PX2 groups in (2a)–(2g) can be compared with previous work (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]) on the variation of molecular parameters with one substituent X in PX(Om) groups of (1) (Fig. 8[link]). The difference in molecular parameters of (2g), X = NHBut, ΣαR = 23.6, and (2a), X = Cl, ΣαR = 0, is summarized in Table 3[link], together with the values for the analogous compounds (1). It can be seen that for each parameter the sign of the difference is the same in the two series, but the magnitude of the change is greater for (2) than for (1). Given the changes in the basic molecular structure in which a PPh2 moiety in (1) is replaced by a nitrogenous spiro group compound (2) and the presence of the macrocyclic ring in (1), these results are consistent with a larger change in molecular parameters in those of (2) with two substituents in PX2 groups compared with those of (1) having one substituent X in P(OR)X groups.

Table 3
Comparison of the difference (Δ) in the molecular framework parameters of (2g) and (2a) with those for (1e) and (1a)

  Δ(2g)–(2a) Δ(1e)–(1a)
Moiety PX2 P(Om)X
ΣαR 23.6 9.8
α 4.52 3.0
β −1.54 −0.7
γ −4.59 −3.2
δ 3.96 3.8
θ −2.89 −3.7
a −0.024 −0.011
b 0.035 0.026
c 0.024 0.015
d 0.025 0.028
Δ(P—N) −0.059 −0.037
Molecular framework parameters are defined in Fig. 8[link] and in the footnote to Table 2[link]. Values of molecular parameters for (1a) and (1e) taken from (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]).

We have also compared the values of the difference in bond lengths, Δ(P—N), resulting from substitution in the cyclophosphazene ring (Beşli et al., 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]). The choice of the two bond lengths which are subtracted from each other is somewhat arbitrary (other than being adjacent P—N bonds), but Δ(P—N) must be consistent for the set of compounds discussed and compared. In the present context, Δ(P—N) is taken as bond lengths ab, as defined in Fig. 8[link]. Again, it is shown in Table 3[link] that there is a greater change in Δ(P—N) for (2) with two X substituents per P atom compared with those of (1) having one substituent X.

5. Conclusions

Structural investigations of the molecular framework [bond angles α, β, γ, δ and θ, and bond lengths a, b, c, d and e, as well as Δ(P—N) values] of (2a)–(2g) have revealed a fairly consistent trend of changes in molecular parameter, which mirror the electron release of the substituents X, as measured by basicity measurements in nitrobenzene solution. The changes in molecular parameters reported here for two di-geminal substituted X2 groups (i.e. four substituents) are approximately twice those observed in an earlier study, where two non-geminal substituents X (i.e. two substituents) were varied. Ellipsoids are displayed at the 50% level in this and the following five figures, except where noted.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (2b), (2c), (2d), (2e), (2f); DENZO (Otwinowski, 1997) & COLLECT (Hooft, 1998) for (2g). Cell refinement: DENZO, COLLECT for (2b), (2g); DENZO & COLLECT for (2c), (2d), (2e), (2f). Data reduction: DENZO, COLLECT for (2b), (2g); DENZO & COLLECT for (2c), (2d), (2e), (2f). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON (Spek, 1990) for (2b), (2c), (2d), (2e), (2g); PLATON (Spek 1998) for (2f).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 8]
(2b) top
Crystal data top
C58H62N10O8P6Z = 1
Mr = 1213.00F(000) = 634
Triclinic, P1Dx = 1.402 Mg m3
a = 10.735 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.067 (3) ÅCell parameters from 22022 reflections
c = 14.259 (4) Åθ = 2.9–27.5°
α = 75.650 (17)°µ = 0.25 mm1
β = 83.84 (2)°T = 120 K
γ = 61.096 (19)°Plate, colourless
V = 1436.6 (6) Å30.36 × 0.20 × 0.04 mm
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
6569 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5519 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.107
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scans to fill Ewald Sphereh = 1313
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1414
Tmin = 0.865, Tmax = 0.992l = 1818
24237 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0477P)2 + 2.1319P]
where P = (Fo2 + 2Fc2)/3
6569 reflections(Δ/σ)max = 0.036
375 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C58H62N10O8P6γ = 61.096 (19)°
Mr = 1213.00V = 1436.6 (6) Å3
Triclinic, P1Z = 1
a = 10.735 (2) ÅMo Kα radiation
b = 11.067 (3) ŵ = 0.25 mm1
c = 14.259 (4) ÅT = 120 K
α = 75.650 (17)°0.36 × 0.20 × 0.04 mm
β = 83.84 (2)°
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
6569 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
5519 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.992Rint = 0.107
24237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.59 e Å3
6569 reflectionsΔρmin = 0.40 e Å3
375 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8491 (3)0.1776 (3)0.1260 (2)0.0259 (5)
C20.7901 (3)0.0979 (4)0.1111 (2)0.0388 (7)
H20.75720.05030.16430.047*
C30.7789 (4)0.0874 (4)0.0175 (3)0.0464 (8)
H30.73780.03260.00680.056*
C40.8273 (3)0.1563 (4)0.0602 (2)0.0383 (7)
H40.82120.14740.12390.046*
C50.8843 (4)0.2373 (4)0.0447 (2)0.0433 (8)
H50.91650.28540.09810.052*
C60.8952 (4)0.2495 (3)0.0492 (2)0.0380 (7)
H60.93370.30640.05980.046*
C71.2515 (3)0.0003 (3)0.2497 (2)0.0248 (5)
C81.3320 (3)0.0829 (3)0.3334 (2)0.0339 (6)
H81.28960.11150.39050.041*
C91.4776 (3)0.1231 (3)0.3313 (3)0.0388 (7)
H91.53500.17970.38770.047*
C101.5378 (3)0.0814 (3)0.2486 (3)0.0394 (7)
H101.63690.11080.24790.047*
C111.4556 (3)0.0034 (3)0.1656 (2)0.0386 (7)
H111.49800.03330.10900.046*
C121.3107 (3)0.0443 (3)0.1658 (2)0.0314 (6)
H121.25340.10180.10950.038*
C131.2853 (3)0.3621 (3)0.28437 (19)0.0244 (5)
C141.3351 (3)0.2444 (3)0.3608 (2)0.0299 (6)
H141.27280.21000.39370.036*
C151.4781 (3)0.1769 (3)0.3888 (2)0.0326 (6)
H151.51280.09660.44150.039*
C161.5701 (3)0.2255 (3)0.3408 (2)0.0334 (6)
H161.66710.17940.36070.040*
C171.5186 (3)0.3434 (3)0.2627 (2)0.0353 (7)
H171.58110.37690.22890.042*
C181.3764 (3)0.4116 (3)0.2342 (2)0.0297 (6)
H181.34160.49110.18100.036*
C190.7994 (3)0.5915 (3)0.16325 (19)0.0252 (5)
C200.8435 (3)0.6072 (3)0.0685 (2)0.0367 (7)
H200.93590.59760.05380.044*
C210.7508 (4)0.6373 (4)0.0054 (2)0.0484 (8)
H210.78080.64650.07070.058*
C220.6158 (4)0.6540 (4)0.0157 (3)0.0497 (9)
H220.55240.67610.03500.060*
C230.5732 (3)0.6387 (3)0.1101 (3)0.0454 (8)
H230.48020.65010.12460.054*
C240.6654 (3)0.6066 (3)0.1854 (2)0.0329 (6)
H240.63590.59540.25090.039*
C251.1295 (3)0.1745 (3)0.6071 (2)0.0295 (6)
H25A1.15390.25190.58080.035*
H25B1.20990.09610.64860.035*
C260.9958 (3)0.2281 (3)0.6679 (2)0.0289 (6)
H26A1.01250.26300.72030.035*
H26B0.97580.14860.69820.035*
C270.8665 (3)0.3473 (3)0.6071 (2)0.0273 (5)
H27A0.78260.37810.64940.033*
H27B0.88410.42910.58070.033*
C280.7019 (3)0.4208 (3)0.4715 (2)0.0265 (5)
H28A0.69770.40090.40830.032*
H28B0.70650.51070.45870.032*
C290.5664 (3)0.4391 (3)0.5270 (2)0.0344 (7)
H29A0.55990.35040.53800.041*
H29B0.57150.45640.59100.041*
N10.9453 (2)0.1590 (2)0.38482 (16)0.0231 (4)
N21.0212 (2)0.3009 (2)0.22376 (15)0.0225 (4)
N31.0034 (2)0.3700 (2)0.39589 (16)0.0241 (4)
N41.1084 (2)0.1238 (2)0.52586 (17)0.0248 (5)
N50.8334 (2)0.3045 (2)0.52475 (16)0.0228 (4)
O10.85308 (18)0.1878 (2)0.22194 (13)0.0256 (4)
O21.10796 (19)0.03318 (19)0.24744 (14)0.0263 (4)
O31.14386 (19)0.44363 (19)0.25134 (13)0.0260 (4)
O40.8894 (2)0.5649 (2)0.23891 (15)0.0309 (4)
P10.97222 (6)0.24189 (7)0.45201 (5)0.02040 (16)
P20.98388 (6)0.17742 (7)0.27313 (5)0.02070 (16)
P31.01499 (6)0.40848 (7)0.28277 (5)0.02157 (17)
H4N1.103 (3)0.045 (4)0.548 (2)0.029 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (11)0.0320 (13)0.0279 (14)0.0095 (10)0.0020 (10)0.0135 (11)
C20.0444 (17)0.0546 (19)0.0344 (16)0.0348 (16)0.0030 (13)0.0151 (14)
C30.053 (2)0.063 (2)0.0452 (19)0.0373 (18)0.0010 (15)0.0258 (17)
C40.0325 (15)0.0504 (18)0.0324 (16)0.0135 (14)0.0049 (12)0.0208 (14)
C50.0526 (19)0.056 (2)0.0281 (16)0.0318 (17)0.0001 (14)0.0078 (14)
C60.0500 (18)0.0454 (17)0.0319 (16)0.0323 (15)0.0022 (13)0.0089 (13)
C70.0209 (12)0.0210 (12)0.0340 (14)0.0087 (10)0.0020 (10)0.0122 (10)
C80.0295 (14)0.0290 (14)0.0403 (17)0.0124 (12)0.0012 (12)0.0063 (12)
C90.0292 (14)0.0335 (15)0.0477 (19)0.0096 (12)0.0084 (13)0.0069 (14)
C100.0218 (13)0.0409 (17)0.060 (2)0.0140 (12)0.0037 (13)0.0228 (15)
C110.0310 (15)0.0467 (18)0.0438 (18)0.0219 (14)0.0080 (13)0.0152 (14)
C120.0286 (13)0.0370 (15)0.0309 (15)0.0159 (12)0.0015 (11)0.0113 (12)
C130.0219 (12)0.0290 (13)0.0265 (13)0.0135 (10)0.0024 (10)0.0108 (11)
C140.0240 (12)0.0317 (14)0.0347 (15)0.0158 (11)0.0031 (11)0.0044 (12)
C150.0252 (13)0.0323 (14)0.0361 (16)0.0119 (11)0.0006 (11)0.0040 (12)
C160.0196 (12)0.0325 (14)0.0467 (18)0.0102 (11)0.0016 (11)0.0113 (13)
C170.0251 (13)0.0359 (15)0.0479 (18)0.0191 (12)0.0081 (12)0.0080 (13)
C180.0284 (13)0.0293 (13)0.0318 (15)0.0160 (11)0.0049 (11)0.0042 (11)
C190.0241 (12)0.0219 (12)0.0280 (14)0.0092 (10)0.0026 (10)0.0056 (10)
C200.0359 (15)0.0329 (15)0.0337 (16)0.0124 (13)0.0047 (12)0.0053 (12)
C210.060 (2)0.0405 (18)0.0296 (17)0.0120 (16)0.0035 (15)0.0058 (14)
C220.055 (2)0.0392 (18)0.047 (2)0.0138 (16)0.0264 (17)0.0038 (15)
C230.0305 (15)0.0390 (17)0.064 (2)0.0161 (13)0.0143 (15)0.0020 (16)
C240.0270 (13)0.0329 (14)0.0354 (16)0.0143 (12)0.0011 (11)0.0022 (12)
C250.0284 (13)0.0327 (14)0.0298 (14)0.0141 (11)0.0063 (11)0.0089 (11)
C260.0348 (14)0.0341 (14)0.0244 (13)0.0204 (12)0.0000 (11)0.0089 (11)
C270.0284 (13)0.0295 (13)0.0264 (14)0.0133 (11)0.0041 (10)0.0126 (11)
C280.0182 (11)0.0273 (13)0.0285 (14)0.0081 (10)0.0021 (10)0.0036 (11)
C290.0219 (13)0.0355 (15)0.0349 (16)0.0091 (12)0.0046 (11)0.0009 (12)
N10.0226 (10)0.0261 (11)0.0247 (11)0.0141 (9)0.0011 (8)0.0074 (9)
N20.0213 (10)0.0247 (10)0.0228 (11)0.0113 (9)0.0020 (8)0.0071 (8)
N30.0231 (10)0.0301 (11)0.0268 (11)0.0167 (9)0.0046 (8)0.0122 (9)
N40.0218 (10)0.0268 (11)0.0274 (12)0.0110 (9)0.0025 (8)0.0089 (9)
N50.0202 (10)0.0252 (10)0.0236 (11)0.0106 (8)0.0010 (8)0.0075 (9)
O10.0213 (8)0.0348 (10)0.0257 (9)0.0152 (8)0.0005 (7)0.0114 (8)
O20.0267 (9)0.0265 (9)0.0329 (10)0.0161 (8)0.0051 (7)0.0129 (8)
O30.0250 (9)0.0284 (9)0.0276 (10)0.0158 (8)0.0022 (7)0.0037 (8)
O40.0298 (10)0.0247 (9)0.0382 (11)0.0100 (8)0.0093 (8)0.0091 (8)
P10.0170 (3)0.0238 (3)0.0229 (3)0.0102 (2)0.0013 (2)0.0087 (2)
P20.0181 (3)0.0230 (3)0.0239 (3)0.0105 (2)0.0010 (2)0.0086 (2)
P30.0189 (3)0.0225 (3)0.0255 (3)0.0105 (2)0.0002 (2)0.0072 (3)
Geometric parameters (Å, º) top
C1—C21.373 (4)C20—C211.393 (5)
C1—C61.383 (4)C20—H200.9500
C1—O11.406 (3)C21—C221.379 (5)
C2—C31.391 (4)C21—H210.9500
C2—H20.9500C22—C231.372 (5)
C3—C41.386 (5)C22—H220.9500
C3—H30.9500C23—C241.399 (4)
C4—C51.372 (5)C23—H230.9500
C4—H40.9500C24—H240.9500
C5—C61.401 (4)C25—N41.486 (3)
C5—H50.9500C25—C261.526 (4)
C6—H60.9500C25—H25A0.9900
C7—C81.387 (4)C25—H25B0.9900
C7—C121.387 (4)C26—C271.529 (4)
C7—O21.402 (3)C26—H26A0.9900
C8—C91.403 (4)C26—H26B0.9900
C8—H80.9500C27—N51.502 (3)
C9—C101.370 (5)C27—H27A0.9900
C9—H90.9500C27—H27B0.9900
C10—C111.390 (5)C28—N51.488 (3)
C10—H100.9500C28—C291.526 (4)
C11—C121.394 (4)C28—H28A0.9900
C11—H110.9500C28—H28B0.9900
C12—H120.9500C29—C29i1.518 (5)
C13—C141.385 (4)C29—H29A0.9900
C13—C181.393 (4)C29—H29B0.9900
C13—O31.400 (3)N1—P21.590 (2)
C14—C151.397 (4)N1—P11.611 (2)
C14—H140.9500N2—P21.586 (2)
C15—C161.385 (4)N2—P31.593 (2)
C15—H150.9500N3—P31.570 (2)
C16—C171.402 (4)N3—P11.613 (2)
C16—H160.9500N4—P11.660 (2)
C17—C181.390 (4)N4—H4N0.88 (3)
C17—H170.9500N5—P11.674 (2)
C18—H180.9500O1—P21.5938 (18)
C19—C241.376 (4)O2—P21.6082 (19)
C19—C201.381 (4)O3—P31.6021 (18)
C19—O41.406 (3)O4—P31.610 (2)
C2—C1—C6120.9 (3)C22—C23—H23119.7
C2—C1—O1116.8 (3)C24—C23—H23119.7
C6—C1—O1122.2 (2)C19—C24—C23118.9 (3)
C1—C2—C3119.5 (3)C19—C24—H24120.5
C1—C2—H2120.2C23—C24—H24120.5
C3—C2—H2120.2N4—C25—C26111.2 (2)
C4—C3—C2120.3 (3)N4—C25—H25A109.4
C4—C3—H3119.8C26—C25—H25A109.4
C2—C3—H3119.8N4—C25—H25B109.4
C5—C4—C3119.7 (3)C26—C25—H25B109.4
C5—C4—H4120.2H25A—C25—H25B108.0
C3—C4—H4120.2C25—C26—C27111.9 (2)
C4—C5—C6120.5 (3)C25—C26—H26A109.2
C4—C5—H5119.8C27—C26—H26A109.2
C6—C5—H5119.8C25—C26—H26B109.2
C1—C6—C5119.0 (3)C27—C26—H26B109.2
C1—C6—H6120.5H26A—C26—H26B107.9
C5—C6—H6120.5N5—C27—C26113.2 (2)
C8—C7—C12121.9 (2)N5—C27—H27A108.9
C8—C7—O2119.5 (2)C26—C27—H27A108.9
C12—C7—O2118.5 (2)N5—C27—H27B108.9
C7—C8—C9118.2 (3)C26—C27—H27B108.9
C7—C8—H8120.9H27A—C27—H27B107.8
C9—C8—H8120.9N5—C28—C29112.9 (2)
C10—C9—C8120.5 (3)N5—C28—H28A109.0
C10—C9—H9119.7C29—C28—H28A109.0
C8—C9—H9119.7N5—C28—H28B109.0
C9—C10—C11120.8 (3)C29—C28—H28B109.0
C9—C10—H10119.6H28A—C28—H28B107.8
C11—C10—H10119.6C29i—C29—C28112.2 (3)
C10—C11—C12119.7 (3)C29i—C29—H29A109.2
C10—C11—H11120.1C28—C29—H29A109.2
C12—C11—H11120.1C29i—C29—H29B109.2
C7—C12—C11118.9 (3)C28—C29—H29B109.2
C7—C12—H12120.6H29A—C29—H29B107.9
C11—C12—H12120.6P2—N1—P1121.21 (13)
C14—C13—C18120.9 (2)P2—N2—P3121.31 (14)
C14—C13—O3125.3 (2)P3—N3—P1122.75 (14)
C18—C13—O3113.8 (2)C25—N4—P1115.18 (18)
C13—C14—C15119.1 (2)C25—N4—H4N110 (2)
C13—C14—H14120.4P1—N4—H4N111 (2)
C15—C14—H14120.4C28—N5—C27111.1 (2)
C16—C15—C14120.9 (3)C28—N5—P1113.00 (17)
C16—C15—H15119.5C27—N5—P1112.66 (16)
C14—C15—H15119.5C1—O1—P2125.78 (16)
C15—C16—C17119.3 (3)C7—O2—P2121.24 (15)
C15—C16—H16120.4C13—O3—P3127.44 (17)
C17—C16—H16120.4C19—O4—P3121.98 (16)
C18—C17—C16120.4 (3)N1—P1—N3116.07 (12)
C18—C17—H17119.8N1—P1—N4107.65 (12)
C16—C17—H17119.8N3—P1—N4109.03 (12)
C17—C18—C13119.4 (3)N1—P1—N5109.79 (11)
C17—C18—H18120.3N3—P1—N5108.67 (11)
C13—C18—H18120.3N4—P1—N5105.06 (12)
C24—C19—C20121.1 (3)N2—P2—N1118.52 (11)
C24—C19—O4118.7 (2)N2—P2—O1113.05 (11)
C20—C19—O4120.2 (2)N1—P2—O1104.03 (10)
C19—C20—C21119.1 (3)N2—P2—O2107.83 (11)
C19—C20—H20120.5N1—P2—O2112.76 (11)
C21—C20—H20120.5O1—P2—O298.97 (10)
C22—C21—C20120.5 (3)N3—P3—N2117.76 (12)
C22—C21—H21119.8N3—P3—O3111.44 (11)
C20—C21—H21119.8N2—P3—O3109.55 (11)
C23—C22—C21119.7 (3)N3—P3—O4110.17 (12)
C23—C22—H22120.1N2—P3—O4109.40 (11)
C21—C22—H22120.1O3—P3—O496.41 (10)
C22—C23—C24120.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
(2c) top
Crystal data top
C22H46N10O8P6F(000) = 1608
Mr = 764.51Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.871 (2) ÅCell parameters from 25012 reflections
b = 29.741 (6) Åθ = 1.0–27.5°
c = 11.838 (2) ŵ = 0.38 mm1
β = 106.18 (3)°T = 120 K
V = 3337.5 (12) Å3Plate, colourless
Z = 40.12 × 0.08 × 0.03 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
7080 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ & ω scansh = 1212
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 3838
Tmin = 0.956, Tmax = 0.989l = 1415
25591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
7080 reflections(Δ/σ)max = 0.012
424 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C22H46N10O8P6V = 3337.5 (12) Å3
Mr = 764.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.871 (2) ŵ = 0.38 mm1
b = 29.741 (6) ÅT = 120 K
c = 11.838 (2) Å0.12 × 0.08 × 0.03 mm
β = 106.18 (3)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
7080 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
3980 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.989Rint = 0.125
25591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.43 e Å3
7080 reflectionsΔρmin = 0.55 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H4N0.708 (4)0.1407 (11)0.203 (3)0.011 (10)*
H7N0.810 (4)0.1508 (11)0.123 (3)0.012 (11)*
C11.0177 (5)0.28504 (13)0.0547 (4)0.0322 (12)
H1A1.06940.30980.00520.039*
H1B0.92380.29640.09920.039*
C21.0980 (5)0.26986 (14)0.1394 (4)0.0346 (12)
H2A1.19460.26070.09500.042*
H2B1.10560.29510.19180.042*
C31.0233 (5)0.23069 (14)0.2126 (4)0.0316 (11)
H3A0.92890.24040.26060.038*
H3B1.07790.22070.26670.038*
C40.4663 (4)0.26219 (13)0.1713 (4)0.0289 (11)
H4A0.54460.28030.18480.035*
H4B0.40180.28270.14550.035*
C50.3879 (4)0.23888 (13)0.2837 (4)0.0326 (12)
H5A0.30890.22120.27000.039*
H5B0.34780.26160.34500.039*
C60.4848 (5)0.20833 (13)0.3252 (4)0.0317 (12)
H6A0.43200.19310.39870.038*
H6B0.56160.22610.34210.038*
C70.9065 (4)0.11586 (12)0.2850 (4)0.0259 (11)
H7A0.89280.11980.36420.031*
H7B1.00140.12740.28760.031*
C80.8990 (4)0.06623 (12)0.2547 (4)0.0262 (11)
H8A0.97080.04970.31570.031*
H8B0.80500.05440.25390.031*
C90.9240 (4)0.05827 (12)0.1362 (4)0.0250 (11)
H9A1.02130.06760.13960.030*
H9B0.91530.02570.11820.030*
C100.8425 (5)0.07259 (13)0.0759 (4)0.0288 (11)
H10A0.94370.07540.07160.035*
H10B0.78990.09480.13400.035*
C110.7924 (4)0.02552 (13)0.1185 (4)0.0279 (11)
H11A0.80400.02090.19810.033*
H11B0.85180.00310.06520.033*
C120.6392 (4)0.01796 (12)0.1225 (4)0.0264 (11)
H12A0.58250.04370.16290.032*
H12B0.63100.01700.04100.032*
C130.5790 (4)0.02521 (12)0.1854 (4)0.0274 (11)
H13A0.47810.02740.18770.033*
H13B0.58430.02370.26760.033*
C140.6143 (4)0.07850 (13)0.0214 (4)0.0269 (11)
H14A0.51190.08480.04210.032*
H14B0.63340.05250.03300.032*
C150.6938 (4)0.11908 (13)0.0413 (4)0.0279 (11)
H15A0.66040.12630.11070.033*
H15B0.79560.11200.06940.033*
C160.6721 (4)0.15960 (13)0.0400 (4)0.0275 (11)
H16A0.72390.18560.00360.033*
H16B0.57050.16740.06530.033*
C170.2151 (5)0.07237 (14)0.5720 (4)0.0344 (12)
H17A0.27610.06580.62370.041*
H17B0.14690.04740.57940.041*
C180.1364 (4)0.11605 (14)0.6094 (4)0.0326 (12)
H18A0.07080.12130.56090.039*
H18B0.07980.11370.69260.039*
C190.2368 (5)0.15512 (15)0.5957 (4)0.0360 (12)
H19A0.18250.18340.61550.043*
H19B0.29520.15160.65090.043*
C200.6856 (5)0.03224 (14)0.6053 (4)0.0343 (12)
H20A0.70570.00030.61800.041*
H20B0.58530.03810.64660.041*
C210.7777 (5)0.06188 (13)0.6553 (4)0.0293 (11)
H21A0.87800.05440.61850.035*
H21B0.75700.05650.74100.035*
C220.7521 (4)0.11092 (13)0.6332 (4)0.0245 (10)
H22A0.65320.11890.67410.029*
H22B0.81480.13010.66510.029*
N10.9368 (3)0.16550 (10)0.0439 (3)0.0211 (8)
N20.7653 (3)0.21943 (11)0.1200 (3)0.0259 (9)
N30.6507 (3)0.15293 (10)0.0205 (3)0.0220 (8)
N40.7991 (4)0.14214 (10)0.1991 (3)0.0223 (8)
N50.8231 (3)0.08335 (10)0.0404 (3)0.0202 (8)
N60.6528 (3)0.06629 (10)0.1294 (3)0.0204 (8)
N70.7215 (4)0.15098 (10)0.1449 (3)0.0220 (9)
N80.4841 (3)0.11983 (10)0.2902 (3)0.0204 (8)
N90.5231 (3)0.10408 (11)0.5049 (3)0.0288 (9)
N100.7430 (3)0.09495 (10)0.3092 (3)0.0207 (8)
O11.0009 (3)0.24776 (8)0.0200 (2)0.0252 (7)
O21.0085 (3)0.19337 (8)0.1369 (3)0.0253 (7)
O30.5228 (3)0.22828 (8)0.0797 (2)0.0259 (7)
O40.5445 (3)0.17477 (8)0.2346 (2)0.0252 (7)
O50.3014 (3)0.07606 (8)0.4498 (2)0.0276 (7)
O60.3286 (3)0.15773 (8)0.4753 (2)0.0278 (7)
O70.7102 (3)0.04055 (8)0.4798 (2)0.0273 (7)
O80.7792 (3)0.11909 (8)0.5082 (2)0.0230 (7)
P10.80174 (11)0.13809 (3)0.06152 (10)0.0201 (3)
P20.91920 (11)0.20503 (3)0.04693 (10)0.0196 (3)
P30.63011 (11)0.19355 (3)0.10918 (10)0.0214 (3)
P40.64786 (11)0.10816 (3)0.22543 (9)0.0196 (3)
P50.41962 (11)0.11432 (3)0.42650 (10)0.0216 (3)
P60.68274 (11)0.09075 (3)0.44598 (9)0.0206 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.019 (2)0.032 (3)0.011 (2)0.014 (2)0.0022 (19)
C20.028 (2)0.037 (3)0.039 (3)0.001 (2)0.008 (2)0.016 (2)
C30.036 (3)0.042 (3)0.024 (3)0.002 (2)0.019 (2)0.006 (2)
C40.025 (2)0.020 (2)0.044 (3)0.0048 (18)0.011 (2)0.007 (2)
C50.025 (2)0.028 (2)0.039 (3)0.0036 (19)0.000 (2)0.009 (2)
C60.044 (3)0.026 (2)0.020 (3)0.003 (2)0.000 (2)0.0053 (18)
C70.028 (2)0.030 (2)0.019 (3)0.0002 (18)0.005 (2)0.0032 (18)
C80.024 (2)0.028 (2)0.024 (3)0.0009 (18)0.002 (2)0.0060 (18)
C90.029 (2)0.021 (2)0.024 (3)0.0033 (18)0.007 (2)0.0011 (18)
C100.034 (3)0.026 (2)0.028 (3)0.0034 (19)0.012 (2)0.0009 (19)
C110.032 (3)0.026 (2)0.028 (3)0.0003 (19)0.012 (2)0.0038 (18)
C120.028 (2)0.026 (2)0.023 (3)0.0060 (18)0.003 (2)0.0013 (18)
C130.025 (2)0.021 (2)0.032 (3)0.0030 (18)0.001 (2)0.0018 (18)
C140.025 (2)0.032 (2)0.024 (3)0.0007 (19)0.008 (2)0.0052 (19)
C150.026 (2)0.038 (3)0.019 (3)0.0019 (19)0.007 (2)0.0031 (19)
C160.024 (2)0.027 (2)0.030 (3)0.0013 (18)0.005 (2)0.0032 (19)
C170.026 (2)0.046 (3)0.026 (3)0.009 (2)0.001 (2)0.010 (2)
C180.019 (2)0.058 (3)0.018 (3)0.002 (2)0.001 (2)0.000 (2)
C190.023 (2)0.054 (3)0.028 (3)0.004 (2)0.003 (2)0.017 (2)
C200.049 (3)0.025 (2)0.026 (3)0.001 (2)0.006 (2)0.0124 (19)
C210.033 (3)0.037 (3)0.017 (3)0.006 (2)0.006 (2)0.0053 (19)
C220.026 (2)0.031 (2)0.018 (3)0.0048 (18)0.0089 (19)0.0001 (18)
N10.0160 (17)0.0202 (17)0.028 (2)0.0016 (14)0.0068 (16)0.0064 (15)
N20.0184 (19)0.0288 (19)0.031 (2)0.0019 (14)0.0083 (17)0.0109 (16)
N30.0161 (18)0.0213 (17)0.028 (2)0.0020 (13)0.0060 (16)0.0014 (14)
N40.024 (2)0.0226 (19)0.022 (2)0.0004 (15)0.0100 (17)0.0017 (15)
N50.0190 (18)0.0209 (18)0.019 (2)0.0009 (14)0.0032 (15)0.0005 (14)
N60.0237 (18)0.0206 (17)0.017 (2)0.0030 (14)0.0055 (16)0.0022 (14)
N70.019 (2)0.0256 (19)0.021 (2)0.0005 (15)0.0043 (17)0.0008 (14)
N80.0218 (18)0.0220 (17)0.018 (2)0.0021 (14)0.0074 (16)0.0005 (14)
N90.0194 (19)0.051 (2)0.016 (2)0.0038 (16)0.0045 (16)0.0007 (16)
N100.0166 (17)0.0270 (18)0.020 (2)0.0014 (14)0.0076 (15)0.0030 (15)
O10.0327 (17)0.0191 (15)0.0252 (19)0.0074 (12)0.0102 (14)0.0013 (12)
O20.0295 (17)0.0232 (15)0.0267 (18)0.0015 (12)0.0136 (14)0.0002 (13)
O30.0268 (16)0.0215 (15)0.0316 (19)0.0048 (12)0.0120 (14)0.0029 (12)
O40.0279 (16)0.0236 (15)0.0205 (17)0.0021 (12)0.0008 (13)0.0018 (12)
O50.0223 (16)0.0311 (16)0.0275 (19)0.0063 (12)0.0036 (14)0.0007 (12)
O60.0268 (16)0.0287 (16)0.0241 (18)0.0048 (12)0.0008 (14)0.0050 (12)
O70.0343 (17)0.0223 (15)0.0254 (18)0.0029 (12)0.0083 (14)0.0029 (12)
O80.0211 (15)0.0257 (15)0.0221 (18)0.0019 (12)0.0060 (13)0.0004 (12)
P10.0198 (6)0.0181 (5)0.0225 (7)0.0013 (4)0.0059 (5)0.0013 (4)
P20.0184 (6)0.0188 (6)0.0215 (7)0.0019 (4)0.0054 (5)0.0004 (4)
P30.0182 (6)0.0214 (6)0.0240 (7)0.0008 (4)0.0051 (5)0.0009 (5)
P40.0188 (6)0.0199 (5)0.0190 (6)0.0005 (4)0.0035 (5)0.0010 (4)
P50.0172 (6)0.0245 (6)0.0212 (7)0.0002 (4)0.0024 (5)0.0014 (5)
P60.0178 (6)0.0237 (6)0.0199 (7)0.0005 (4)0.0045 (5)0.0002 (5)
Geometric parameters (Å, º) top
C1—O11.456 (5)C16—N71.479 (5)
C1—C21.510 (6)C16—H16A0.9900
C1—H1A0.9900C16—H16B0.9900
C1—H1B0.9900C17—O51.464 (5)
C2—C31.515 (6)C17—C181.515 (6)
C2—H2A0.9900C17—H17A0.9900
C2—H2B0.9900C17—H17B0.9900
C3—O21.459 (5)C18—C191.507 (6)
C3—H3A0.9900C18—H18A0.9900
C3—H3B0.9900C18—H18B0.9900
C4—O31.472 (5)C19—O61.462 (5)
C4—C51.508 (6)C19—H19A0.9900
C4—H4A0.9900C19—H19B0.9900
C4—H4B0.9900C20—O71.458 (5)
C5—C61.498 (6)C20—C211.502 (6)
C5—H5A0.9900C20—H20A0.9900
C5—H5B0.9900C20—H20B0.9900
C6—O41.463 (4)C21—C221.516 (5)
C6—H6A0.9900C21—H21A0.9900
C6—H6B0.9900C21—H21B0.9900
C7—N41.473 (5)C22—O81.449 (5)
C7—C81.516 (5)C22—H22A0.9900
C7—H7A0.9900C22—H22B0.9900
C7—H7B0.9900N1—P21.570 (3)
C8—C91.508 (6)N1—P11.625 (3)
C8—H8A0.9900N2—P31.576 (3)
C8—H8B0.9900N2—P21.583 (3)
C9—N51.485 (5)N3—P31.576 (3)
C9—H9A0.9900N3—P11.598 (3)
C9—H9B0.9900N4—P11.640 (4)
C10—N51.476 (5)N4—H4N0.91 (4)
C10—C111.523 (5)N5—P11.669 (3)
C10—H10A0.9900N6—P41.677 (3)
C10—H10B0.9900N7—P41.635 (3)
C11—C121.516 (6)N7—H7N0.84 (4)
C11—H11A0.9900N8—P51.570 (3)
C11—H11B0.9900N8—P41.621 (3)
C12—C131.520 (5)N9—P61.585 (3)
C12—H12A0.9900N9—P51.590 (4)
C12—H12B0.9900N10—P61.566 (3)
C13—N61.481 (5)N10—P41.594 (3)
C13—H13A0.9900O1—P21.593 (3)
C13—H13B0.9900O2—P21.598 (3)
C14—N61.477 (5)O3—P31.586 (3)
C14—C151.516 (5)O4—P31.591 (3)
C14—H14A0.9900O5—P51.598 (3)
C14—H14B0.9900O6—P51.587 (3)
C15—C161.520 (5)O7—P61.588 (3)
C15—H15A0.9900O8—P61.597 (3)
C15—H15B0.9900
O1—C1—C2110.2 (3)O5—C17—H17A109.8
O1—C1—H1A109.6C18—C17—H17A109.8
C2—C1—H1A109.6O5—C17—H17B109.8
O1—C1—H1B109.6C18—C17—H17B109.8
C2—C1—H1B109.6H17A—C17—H17B108.2
H1A—C1—H1B108.1C19—C18—C17111.2 (3)
C1—C2—C3110.4 (4)C19—C18—H18A109.4
C1—C2—H2A109.6C17—C18—H18A109.4
C3—C2—H2A109.6C19—C18—H18B109.4
C1—C2—H2B109.6C17—C18—H18B109.4
C3—C2—H2B109.6H18A—C18—H18B108.0
H2A—C2—H2B108.1O6—C19—C18110.9 (3)
O2—C3—C2110.5 (4)O6—C19—H19A109.5
O2—C3—H3A109.6C18—C19—H19A109.5
C2—C3—H3A109.6O6—C19—H19B109.5
O2—C3—H3B109.6C18—C19—H19B109.5
C2—C3—H3B109.6H19A—C19—H19B108.1
H3A—C3—H3B108.1O7—C20—C21110.8 (3)
O3—C4—C5109.3 (3)O7—C20—H20A109.5
O3—C4—H4A109.8C21—C20—H20A109.5
C5—C4—H4A109.8O7—C20—H20B109.5
O3—C4—H4B109.8C21—C20—H20B109.5
C5—C4—H4B109.8H20A—C20—H20B108.1
H4A—C4—H4B108.3C20—C21—C22110.4 (4)
C6—C5—C4110.5 (3)C20—C21—H21A109.6
C6—C5—H5A109.5C22—C21—H21A109.6
C4—C5—H5A109.5C20—C21—H21B109.6
C6—C5—H5B109.5C22—C21—H21B109.6
C4—C5—H5B109.5H21A—C21—H21B108.1
H5A—C5—H5B108.1O8—C22—C21110.2 (3)
O4—C6—C5109.7 (4)O8—C22—H22A109.6
O4—C6—H6A109.7C21—C22—H22A109.6
C5—C6—H6A109.7O8—C22—H22B109.6
O4—C6—H6B109.7C21—C22—H22B109.6
C5—C6—H6B109.7H22A—C22—H22B108.1
H6A—C6—H6B108.2P2—N1—P1121.71 (19)
N4—C7—C8112.0 (3)P3—N2—P2121.9 (2)
N4—C7—H7A109.2P3—N3—P1122.8 (2)
C8—C7—H7A109.2C7—N4—P1116.1 (3)
N4—C7—H7B109.2C7—N4—H4N118 (2)
C8—C7—H7B109.2P1—N4—H4N110 (2)
H7A—C7—H7B107.9C10—N5—C9111.7 (3)
C9—C8—C7111.3 (3)C10—N5—P1113.9 (2)
C9—C8—H8A109.4C9—N5—P1117.5 (2)
C7—C8—H8A109.4C14—N6—C13112.1 (3)
C9—C8—H8B109.4C14—N6—P4116.0 (2)
C7—C8—H8B109.4C13—N6—P4113.0 (3)
H8A—C8—H8B108.0C16—N7—P4115.3 (3)
N5—C9—C8112.5 (3)C16—N7—H7N107 (3)
N5—C9—H9A109.1P4—N7—H7N116 (2)
C8—C9—H9A109.1P5—N8—P4121.9 (2)
N5—C9—H9B109.1P6—N9—P5120.8 (2)
C8—C9—H9B109.1P6—N10—P4122.9 (2)
H9A—C9—H9B107.8C1—O1—P2115.7 (3)
N5—C10—C11113.2 (3)C3—O2—P2114.4 (3)
N5—C10—H10A108.9C4—O3—P3115.1 (3)
C11—C10—H10A108.9C6—O4—P3116.4 (2)
N5—C10—H10B108.9C17—O5—P5114.9 (3)
C11—C10—H10B108.9C19—O6—P5116.4 (2)
H10A—C10—H10B107.8C20—O7—P6115.1 (2)
C12—C11—C10112.1 (3)C22—O8—P6114.7 (2)
C12—C11—H11A109.2N3—P1—N1116.31 (17)
C10—C11—H11A109.2N3—P1—N4108.22 (19)
C12—C11—H11B109.2N1—P1—N4109.34 (18)
C10—C11—H11B109.2N3—P1—N5108.29 (16)
H11A—C11—H11B107.9N1—P1—N5109.12 (17)
C11—C12—C13113.0 (3)N4—P1—N5104.96 (17)
C11—C12—H12A109.0N1—P2—N2118.87 (17)
C13—C12—H12A109.0N1—P2—O1108.23 (17)
C11—C12—H12B109.0N2—P2—O1109.38 (16)
C13—C12—H12B109.0N1—P2—O2108.52 (16)
H12A—C12—H12B107.8N2—P2—O2108.56 (18)
N6—C13—C12113.6 (3)O1—P2—O2101.97 (15)
N6—C13—H13A108.8N2—P3—N3118.23 (17)
C12—C13—H13A108.8N2—P3—O3109.40 (17)
N6—C13—H13B108.8N3—P3—O3108.84 (18)
C12—C13—H13B108.8N2—P3—O4109.72 (18)
H13A—C13—H13B107.7N3—P3—O4106.81 (16)
N6—C14—C15113.4 (3)O3—P3—O4102.71 (15)
N6—C14—H14A108.9N10—P4—N8116.17 (18)
C15—C14—H14A108.9N10—P4—N7108.14 (19)
N6—C14—H14B108.9N8—P4—N7109.38 (17)
C15—C14—H14B108.9N10—P4—N6109.11 (17)
H14A—C14—H14B107.7N8—P4—N6108.44 (17)
C14—C15—C16111.0 (3)N7—P4—N6105.03 (17)
C14—C15—H15A109.4N8—P5—O6108.39 (16)
C16—C15—H15A109.4N8—P5—N9118.52 (18)
C14—C15—H15B109.4O6—P5—N9109.53 (17)
C16—C15—H15B109.4N8—P5—O5108.64 (17)
H15A—C15—H15B108.0O6—P5—O5101.79 (15)
N7—C16—C15111.9 (3)N9—P5—O5108.66 (17)
N7—C16—H16A109.2N10—P6—N9118.64 (19)
C15—C16—H16A109.2N10—P6—O7107.05 (16)
N7—C16—H16B109.2N9—P6—O7110.05 (17)
C15—C16—H16B109.2N10—P6—O8109.33 (16)
H16A—C16—H16B107.9N9—P6—O8108.19 (17)
O5—C17—C18109.5 (3)O7—P6—O8102.37 (16)
(2d) top
Crystal data top
C64H68N10P6F(000) = 2448
Mr = 1163.10Dx = 1.297 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.0388 (2) ÅCell parameters from 19360 reflections
b = 30.2194 (5) Åθ = 2.9–27.5°
c = 17.8858 (4) ŵ = 0.23 mm1
β = 93.002 (1)°T = 120 K
V = 5958.3 (2) Å3Block, colourless
Z = 40.10 × 0.08 × 0.04 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
6809 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 1414
Absorption correction: multi-scan
SORTAV Blessing (1997)
k = 3839
Tmin = 0.977, Tmax = 0.991l = 2223
34191 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0529P)2 + 4.259P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
6809 reflectionsΔρmax = 0.26 e Å3
366 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00103 (16)
Crystal data top
C64H68N10P6V = 5958.3 (2) Å3
Mr = 1163.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.0388 (2) ŵ = 0.23 mm1
b = 30.2194 (5) ÅT = 120 K
c = 17.8858 (4) Å0.10 × 0.08 × 0.04 mm
β = 93.002 (1)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
6809 independent reflections
Absorption correction: multi-scan
SORTAV Blessing (1997)
5324 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.991Rint = 0.054
34191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.26 e Å3
6809 reflectionsΔρmin = 0.40 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.41564 (18)0.48689 (7)0.94505 (12)0.0355 (5)
H010.35750.47790.90700.043*
C020.40272 (17)0.47383 (7)1.01821 (12)0.0334 (4)
H020.33600.45591.03060.040*
C030.51272 (18)0.51301 (7)0.92684 (11)0.0335 (4)
H030.52110.52190.87640.040*
H4N0.146 (2)0.3959 (7)0.2688 (13)0.037 (6)*
C10.29167 (16)0.42828 (7)0.25398 (10)0.0285 (4)
H1A0.35400.42610.21630.034*
H1B0.33040.42030.30330.034*
C20.24591 (17)0.47554 (7)0.25662 (10)0.0308 (4)
H2A0.31530.49560.26840.037*
H2B0.18900.47830.29730.037*
C30.18203 (17)0.48999 (6)0.18327 (10)0.0274 (4)
H3A0.14780.52000.18960.033*
H3B0.24220.49170.14420.033*
C40.00201 (16)0.47818 (6)0.10120 (10)0.0243 (4)
H4A0.04170.50410.12330.029*
H4B0.06590.45590.08960.029*
C50.04987 (16)0.49258 (6)0.02809 (10)0.0252 (4)
H5A0.09490.46760.00680.030*
H5B0.10760.51720.03790.030*
C60.13435 (15)0.36534 (6)0.01306 (9)0.0212 (4)
C70.24426 (17)0.38097 (7)0.03682 (11)0.0308 (4)
H70.26290.37790.08780.037*
C80.32700 (18)0.40101 (7)0.01345 (13)0.0388 (5)
H80.40200.41160.00320.047*
C90.30050 (19)0.40557 (6)0.08764 (12)0.0359 (5)
H90.35690.41960.12190.043*
C100.19261 (18)0.38983 (7)0.11205 (11)0.0316 (4)
H100.17470.39290.16320.038*
C110.10984 (16)0.36942 (6)0.06232 (10)0.0263 (4)
H110.03600.35820.07970.032*
C120.09165 (14)0.29404 (5)0.11611 (9)0.0200 (3)
C130.12222 (15)0.29133 (6)0.19036 (10)0.0233 (4)
H130.10950.31600.22270.028*
C140.17128 (17)0.25256 (6)0.21720 (11)0.0297 (4)
H140.19120.25060.26810.036*
C150.19127 (16)0.21691 (6)0.17035 (11)0.0286 (4)
H150.22490.19040.18910.034*
C160.16265 (17)0.21940 (6)0.09595 (11)0.0290 (4)
H160.17770.19490.06360.035*
C170.11205 (16)0.25779 (6)0.06886 (10)0.0265 (4)
H170.09130.25940.01810.032*
C180.27168 (15)0.36375 (6)0.04752 (9)0.0227 (4)
C190.20818 (17)0.39451 (6)0.09239 (10)0.0266 (4)
H190.14170.41000.07310.032*
C200.24093 (18)0.40274 (7)0.16480 (10)0.0308 (4)
H200.19690.42370.19500.037*
C210.33809 (18)0.38030 (7)0.19307 (11)0.0349 (5)
H210.36150.38620.24250.042*
C220.40056 (18)0.34947 (8)0.14957 (11)0.0368 (5)
H220.46610.33370.16930.044*
C230.36805 (17)0.34134 (7)0.07685 (11)0.0306 (4)
H230.41220.32030.04690.037*
C240.32984 (15)0.31574 (6)0.08783 (10)0.0246 (4)
C250.30688 (18)0.27076 (6)0.09097 (10)0.0292 (4)
H250.23150.25940.07130.035*
C260.3936 (2)0.24214 (7)0.12275 (11)0.0384 (5)
H260.37780.21130.12460.046*
C270.50233 (19)0.25870 (8)0.15155 (12)0.0443 (6)
H270.56160.23910.17330.053*
C280.5261 (2)0.30339 (9)0.14916 (14)0.0508 (6)
H280.60140.31450.16920.061*
C290.44010 (18)0.33212 (8)0.11744 (13)0.0407 (5)
H290.45640.36300.11590.049*
N10.00008 (12)0.37757 (5)0.14626 (7)0.0197 (3)
N20.09227 (12)0.32746 (5)0.03423 (8)0.0220 (3)
N30.21525 (12)0.39899 (5)0.08864 (8)0.0220 (3)
N40.19303 (13)0.39675 (5)0.23484 (8)0.0229 (3)
N50.08373 (13)0.45958 (5)0.15790 (8)0.0220 (3)
P10.12131 (4)0.406340 (14)0.15298 (2)0.01893 (12)
P20.02189 (4)0.342458 (14)0.07943 (2)0.01821 (12)
P30.21869 (4)0.352851 (15)0.04495 (2)0.02007 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.0319 (10)0.0357 (12)0.0387 (12)0.0044 (8)0.0002 (8)0.0045 (9)
C020.0269 (9)0.0282 (10)0.0458 (12)0.0053 (8)0.0100 (8)0.0011 (9)
C030.0354 (10)0.0339 (11)0.0321 (11)0.0007 (8)0.0090 (8)0.0040 (9)
C10.0269 (9)0.0358 (11)0.0223 (9)0.0094 (8)0.0023 (7)0.0020 (8)
C20.0346 (10)0.0337 (11)0.0240 (10)0.0116 (8)0.0017 (8)0.0044 (8)
C30.0351 (10)0.0206 (9)0.0268 (10)0.0068 (7)0.0035 (7)0.0039 (7)
C40.0272 (9)0.0203 (9)0.0257 (9)0.0014 (7)0.0044 (7)0.0019 (7)
C50.0278 (9)0.0233 (9)0.0247 (9)0.0009 (7)0.0037 (7)0.0017 (7)
C60.0239 (8)0.0163 (8)0.0230 (9)0.0034 (7)0.0014 (7)0.0015 (7)
C70.0296 (9)0.0335 (11)0.0290 (10)0.0058 (8)0.0011 (7)0.0058 (8)
C80.0320 (10)0.0367 (12)0.0465 (13)0.0129 (9)0.0081 (9)0.0132 (10)
C90.0434 (12)0.0232 (10)0.0390 (12)0.0023 (8)0.0184 (9)0.0005 (8)
C100.0396 (11)0.0290 (10)0.0254 (10)0.0090 (8)0.0070 (8)0.0055 (8)
C110.0279 (9)0.0257 (10)0.0250 (9)0.0065 (7)0.0009 (7)0.0007 (8)
C120.0181 (8)0.0181 (8)0.0236 (9)0.0002 (6)0.0004 (6)0.0006 (7)
C130.0264 (9)0.0213 (9)0.0223 (9)0.0011 (7)0.0030 (7)0.0014 (7)
C140.0350 (10)0.0285 (10)0.0261 (10)0.0032 (8)0.0072 (8)0.0049 (8)
C150.0283 (9)0.0217 (9)0.0360 (11)0.0038 (7)0.0026 (8)0.0062 (8)
C160.0326 (10)0.0219 (9)0.0321 (10)0.0040 (7)0.0014 (8)0.0032 (8)
C170.0309 (9)0.0245 (10)0.0240 (9)0.0038 (7)0.0008 (7)0.0006 (7)
C180.0237 (8)0.0242 (9)0.0204 (9)0.0060 (7)0.0017 (7)0.0011 (7)
C190.0313 (9)0.0256 (10)0.0231 (9)0.0009 (7)0.0033 (7)0.0020 (7)
C200.0423 (11)0.0293 (11)0.0204 (9)0.0029 (8)0.0016 (8)0.0026 (8)
C210.0372 (11)0.0482 (13)0.0197 (9)0.0079 (9)0.0054 (8)0.0004 (9)
C220.0284 (10)0.0578 (14)0.0246 (10)0.0036 (9)0.0066 (8)0.0017 (9)
C230.0261 (9)0.0416 (12)0.0242 (10)0.0024 (8)0.0025 (7)0.0016 (8)
C240.0225 (8)0.0312 (10)0.0204 (9)0.0025 (7)0.0045 (7)0.0018 (7)
C250.0353 (10)0.0291 (10)0.0232 (9)0.0068 (8)0.0003 (7)0.0020 (8)
C260.0507 (13)0.0350 (12)0.0294 (11)0.0155 (10)0.0020 (9)0.0007 (9)
C270.0376 (12)0.0594 (16)0.0361 (12)0.0224 (11)0.0041 (9)0.0109 (11)
C280.0262 (10)0.0673 (18)0.0578 (15)0.0011 (10)0.0076 (10)0.0172 (13)
C290.0276 (10)0.0448 (13)0.0493 (13)0.0041 (9)0.0040 (9)0.0136 (11)
N10.0215 (7)0.0198 (7)0.0181 (7)0.0023 (5)0.0029 (5)0.0008 (6)
N20.0218 (7)0.0222 (8)0.0223 (8)0.0017 (6)0.0032 (6)0.0030 (6)
N30.0225 (7)0.0226 (8)0.0214 (7)0.0042 (6)0.0045 (6)0.0006 (6)
N40.0226 (7)0.0270 (8)0.0192 (8)0.0046 (6)0.0012 (6)0.0023 (6)
N50.0264 (7)0.0194 (7)0.0202 (7)0.0020 (6)0.0005 (6)0.0001 (6)
P10.0214 (2)0.0184 (2)0.0170 (2)0.00262 (16)0.00144 (16)0.00062 (16)
P20.0189 (2)0.0178 (2)0.0179 (2)0.00127 (16)0.00135 (16)0.00057 (17)
P30.0197 (2)0.0219 (2)0.0188 (2)0.00088 (17)0.00291 (16)0.00083 (17)
Geometric parameters (Å, º) top
C01—C021.381 (3)C14—C151.376 (3)
C01—C031.384 (3)C14—H140.9500
C01—H010.9500C15—C161.386 (3)
C02—C03i1.378 (3)C15—H150.9500
C02—H020.9500C16—C171.386 (3)
C03—C02i1.378 (3)C16—H160.9500
C03—H030.9500C17—H170.9500
C1—N41.474 (2)C18—C231.387 (3)
C1—C21.516 (3)C18—C191.393 (3)
C1—H1A0.9900C18—P31.8131 (17)
C1—H1B0.9900C19—C201.385 (3)
C2—C31.521 (3)C19—H190.9500
C2—H2A0.9900C20—C211.387 (3)
C2—H2B0.9900C20—H200.9500
C3—N51.475 (2)C21—C221.376 (3)
C3—H3A0.9900C21—H210.9500
C3—H3B0.9900C22—C231.389 (3)
C4—N51.463 (2)C22—H220.9500
C4—C51.518 (2)C23—H230.9500
C4—H4A0.9900C24—C251.384 (3)
C4—H4B0.9900C24—C291.393 (3)
C5—C5ii1.519 (3)C24—P31.8035 (18)
C5—H5A0.9900C25—C261.389 (3)
C5—H5B0.9900C25—H250.9500
C6—C71.389 (2)C26—C271.376 (3)
C6—C111.394 (2)C26—H260.9500
C6—P21.8096 (18)C27—C281.377 (4)
C7—C81.387 (3)C27—H270.9500
C7—H70.9500C28—C291.386 (3)
C8—C91.381 (3)C28—H280.9500
C8—H80.9500C29—H290.9500
C9—C101.375 (3)N1—P11.5952 (14)
C9—H90.9500N1—P21.6071 (14)
C10—C111.386 (3)N2—P31.5953 (14)
C10—H100.9500N2—P21.5981 (14)
C11—H110.9500N3—P31.5997 (15)
C12—C131.390 (2)N3—P11.6044 (14)
C12—C171.395 (2)N4—P11.6532 (15)
C12—P21.7936 (17)N4—H4N0.82 (2)
C13—C141.387 (2)N5—P11.6649 (15)
C13—H130.9500
C02—C01—C03120.38 (19)C15—C16—C17119.83 (17)
C02—C01—H01119.8C15—C16—H16120.1
C03—C01—H01119.8C17—C16—H16120.1
C03i—C02—C01119.57 (18)C16—C17—C12120.06 (17)
C03i—C02—H02120.2C16—C17—H17120.0
C01—C02—H02120.2C12—C17—H17120.0
C02i—C03—C01120.05 (19)C23—C18—C19118.73 (16)
C02i—C03—H03120.0C23—C18—P3123.15 (14)
C01—C03—H03120.0C19—C18—P3118.04 (13)
N4—C1—C2111.90 (15)C20—C19—C18120.68 (17)
N4—C1—H1A109.2C20—C19—H19119.7
C2—C1—H1A109.2C18—C19—H19119.7
N4—C1—H1B109.2C19—C20—C21119.86 (18)
C2—C1—H1B109.2C19—C20—H20120.1
H1A—C1—H1B107.9C21—C20—H20120.1
C1—C2—C3112.57 (15)C22—C21—C20119.95 (17)
C1—C2—H2A109.1C22—C21—H21120.0
C3—C2—H2A109.1C20—C21—H21120.0
C1—C2—H2B109.1C21—C22—C23120.19 (18)
C3—C2—H2B109.1C21—C22—H22119.9
H2A—C2—H2B107.8C23—C22—H22119.9
N5—C3—C2112.76 (15)C18—C23—C22120.57 (18)
N5—C3—H3A109.0C18—C23—H23119.7
C2—C3—H3A109.0C22—C23—H23119.7
N5—C3—H3B109.0C25—C24—C29119.45 (18)
C2—C3—H3B109.0C25—C24—P3120.39 (14)
H3A—C3—H3B107.8C29—C24—P3120.15 (15)
N5—C4—C5116.59 (14)C24—C25—C26120.28 (19)
N5—C4—H4A108.1C24—C25—H25119.9
C5—C4—H4A108.1C26—C25—H25119.9
N5—C4—H4B108.1C27—C26—C25119.7 (2)
C5—C4—H4B108.1C27—C26—H26120.1
H4A—C4—H4B107.3C25—C26—H26120.1
C4—C5—C5ii111.18 (18)C28—C27—C26120.6 (2)
C4—C5—H5A109.4C28—C27—H27119.7
C5ii—C5—H5A109.4C26—C27—H27119.7
C4—C5—H5B109.4C27—C28—C29120.0 (2)
C5ii—C5—H5B109.4C27—C28—H28120.0
H5A—C5—H5B108.0C29—C28—H28120.0
C7—C6—C11118.86 (17)C28—C29—C24120.0 (2)
C7—C6—P2120.62 (14)C28—C29—H29120.0
C11—C6—P2120.46 (13)C24—C29—H29120.0
C8—C7—C6120.41 (18)P1—N1—P2120.61 (8)
C8—C7—H7119.8P3—N2—P2120.71 (9)
C6—C7—H7119.8P3—N3—P1120.25 (9)
C9—C8—C7120.08 (18)C1—N4—P1113.96 (12)
C9—C8—H8120.0C1—N4—H4N109.8 (16)
C7—C8—H8120.0P1—N4—H4N111.6 (16)
C10—C9—C8120.09 (18)C4—N5—C3114.37 (14)
C10—C9—H9120.0C4—N5—P1119.25 (12)
C8—C9—H9120.0C3—N5—P1115.91 (12)
C9—C10—C11120.21 (18)N1—P1—N3116.21 (7)
C9—C10—H10119.9N1—P1—N4109.39 (7)
C11—C10—H10119.9N3—P1—N4108.27 (8)
C10—C11—C6120.33 (17)N1—P1—N5108.68 (7)
C10—C11—H11119.8N3—P1—N5110.12 (7)
C6—C11—H11119.8N4—P1—N5103.40 (8)
C13—C12—C17119.55 (16)N2—P2—N1118.11 (7)
C13—C12—P2121.87 (13)N2—P2—C12108.58 (8)
C17—C12—P2118.55 (13)N1—P2—C12108.51 (8)
C14—C13—C12119.96 (17)N2—P2—C6107.97 (8)
C14—C13—H13120.0N1—P2—C6107.90 (8)
C12—C13—H13120.0C12—P2—C6105.00 (8)
C15—C14—C13120.25 (17)N2—P3—N3115.78 (7)
C15—C14—H14119.9N2—P3—C24108.87 (8)
C13—C14—H14119.9N3—P3—C24111.54 (8)
C14—C15—C16120.34 (17)N2—P3—C18107.44 (8)
C14—C15—H15119.8N3—P3—C18107.71 (8)
C16—C15—H15119.8C24—P3—C18104.84 (8)
C03—C01—C02—C03i0.0 (3)P3—N3—P1—N5150.66 (10)
C02—C01—C03—C02i0.0 (3)C1—N4—P1—N1167.59 (12)
N4—C1—C2—C357.4 (2)C1—N4—P1—N364.87 (14)
C1—C2—C3—N553.7 (2)C1—N4—P1—N551.94 (14)
N5—C4—C5—C5ii175.01 (18)C4—N5—P1—N151.98 (14)
C11—C6—C7—C81.2 (3)C3—N5—P1—N1165.10 (11)
P2—C6—C7—C8175.93 (15)C4—N5—P1—N376.37 (13)
C6—C7—C8—C90.0 (3)C3—N5—P1—N366.56 (13)
C7—C8—C9—C100.7 (3)C4—N5—P1—N4168.14 (12)
C8—C9—C10—C110.2 (3)C3—N5—P1—N448.94 (13)
C9—C10—C11—C61.1 (3)P3—N2—P2—N110.89 (14)
C7—C6—C11—C101.7 (3)P3—N2—P2—C12134.91 (10)
P2—C6—C11—C10175.39 (14)P3—N2—P2—C6111.76 (11)
C17—C12—C13—C140.8 (3)P1—N1—P2—N216.48 (14)
P2—C12—C13—C14177.25 (14)P1—N1—P2—C12140.53 (10)
C12—C13—C14—C150.8 (3)P1—N1—P2—C6106.21 (10)
C13—C14—C15—C160.0 (3)C13—C12—P2—N2131.74 (14)
C14—C15—C16—C170.9 (3)C17—C12—P2—N246.32 (16)
C15—C16—C17—C120.9 (3)C13—C12—P2—N12.18 (16)
C13—C12—C17—C160.1 (3)C17—C12—P2—N1175.88 (13)
P2—C12—C17—C16178.19 (14)C13—C12—P2—C6112.98 (14)
C23—C18—C19—C200.3 (3)C17—C12—P2—C668.96 (15)
P3—C18—C19—C20177.02 (14)C7—C6—P2—N2179.66 (14)
C18—C19—C20—C210.2 (3)C11—C6—P2—N23.26 (17)
C19—C20—C21—C220.9 (3)C7—C6—P2—N151.63 (16)
C20—C21—C22—C231.2 (3)C11—C6—P2—N1125.44 (14)
C19—C18—C23—C220.0 (3)C7—C6—P2—C1263.96 (16)
P3—C18—C23—C22176.58 (16)C11—C6—P2—C12118.97 (15)
C21—C22—C23—C180.7 (3)P2—N2—P3—N312.42 (14)
C29—C24—C25—C260.6 (3)P2—N2—P3—C24114.16 (11)
P3—C24—C25—C26178.78 (14)P2—N2—P3—C18132.82 (11)
C24—C25—C26—C270.4 (3)P1—N3—P3—N231.87 (13)
C25—C26—C27—C280.0 (3)P1—N3—P3—C2493.35 (11)
C26—C27—C28—C290.1 (4)P1—N3—P3—C18152.12 (10)
C27—C28—C29—C240.2 (4)C25—C24—P3—N214.05 (17)
C25—C24—C29—C280.5 (3)C29—C24—P3—N2166.56 (15)
P3—C24—C29—C28178.87 (17)C25—C24—P3—N3143.04 (14)
C2—C1—N4—P159.23 (18)C29—C24—P3—N337.58 (18)
C5—C4—N5—C360.4 (2)C25—C24—P3—C18100.67 (15)
C5—C4—N5—P183.11 (17)C29—C24—P3—C1878.71 (17)
C2—C3—N5—C4162.91 (15)C23—C18—P3—N2107.43 (16)
C2—C3—N5—P152.36 (18)C19—C18—P3—N269.14 (16)
P2—N1—P1—N31.74 (13)C23—C18—P3—N3127.19 (16)
P2—N1—P1—N4121.19 (10)C19—C18—P3—N356.24 (16)
P2—N1—P1—N5126.57 (10)C23—C18—P3—C248.28 (18)
P3—N3—P1—N126.56 (14)C19—C18—P3—C24175.15 (14)
P3—N3—P1—N496.96 (11)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z.
(2e) top
Crystal data top
C58H70N18OP6Z = 2
Mr = 1221.14F(000) = 1284
Triclinic, P1Dx = 1.310 Mg m3
a = 13.112 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.160 (3) ÅCell parameters from 70927 reflections
c = 17.546 (4) Åθ = 2.9–27.5°
α = 81.67 (3)°µ = 0.23 mm1
β = 74.73 (3)°T = 150 K
γ = 67.08 (3)°Block, colourless
V = 3095.4 (11) Å30.20 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
13705 independent reflections
Radiation source: Nonius FR591 rotating anode5294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.187
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 1717
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1919
Tmin = 0.789, Tmax = 0.975l = 2222
44336 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
13705 reflections(Δ/σ)max = 0.012
797 parametersΔρmax = 0.68 e Å3
8 restraintsΔρmin = 0.37 e Å3
Crystal data top
C58H70N18OP6γ = 67.08 (3)°
Mr = 1221.14V = 3095.4 (11) Å3
Triclinic, P1Z = 2
a = 13.112 (3) ÅMo Kα radiation
b = 15.160 (3) ŵ = 0.23 mm1
c = 17.546 (4) ÅT = 150 K
α = 81.67 (3)°0.20 × 0.20 × 0.15 mm
β = 74.73 (3)°
Data collection top
Nonius KappaCCD
diffractometer
13705 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
5294 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.975Rint = 0.187
44336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0668 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.68 e Å3
13705 reflectionsΔρmin = 0.37 e Å3
797 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3750 (7)0.1117 (6)0.2340 (4)0.175 (3)0.75
O20.0208 (13)0.1707 (9)0.0783 (8)0.080 (5)0.25
H4N0.008 (3)0.338 (3)0.280 (3)0.13 (3)*
H6N0.346 (3)0.175 (3)0.224 (2)0.035 (12)*
H7N0.355 (3)0.157 (3)0.005 (2)0.046 (14)*
H8N0.080 (3)0.074 (3)0.034 (2)0.035 (13)*
H9N0.197 (4)0.022 (3)0.220 (3)0.055 (18)*
H13N0.093 (4)0.176 (3)0.323 (2)0.10 (2)*
H15N0.088 (3)0.447 (3)0.425 (2)0.046 (14)*
H16N0.024 (3)0.435 (3)0.570 (2)0.040 (14)*
H17N0.322 (3)0.385 (2)0.4105 (19)0.014 (11)*
H18N0.231 (3)0.346 (3)0.230 (2)0.026 (12)*
C10.1336 (4)0.3222 (4)0.2760 (3)0.0620 (14)
H1A0.16630.33770.33230.074*
H1B0.14780.26520.26760.074*
C20.1922 (4)0.4067 (4)0.2239 (3)0.0728 (16)
H2A0.27410.41730.23540.087*
H2B0.18550.46530.23690.087*
C30.1411 (4)0.3899 (3)0.1364 (3)0.0622 (15)
H3A0.15660.33620.12220.075*
H3B0.17880.44790.10530.075*
C40.0297 (4)0.3640 (3)0.0279 (3)0.0503 (13)
H4A0.00790.31850.00680.060*
H4B0.11380.33950.01730.060*
C50.0124 (4)0.4625 (3)0.0160 (3)0.0591 (14)
H5A0.02490.45610.07290.071*
H5B0.09540.48370.01080.071*
C60.4782 (4)0.0719 (3)0.1760 (2)0.0387 (11)
C70.4953 (4)0.0217 (3)0.2462 (3)0.0656 (16)
H70.44180.04420.29410.079*
C80.5897 (5)0.0612 (4)0.2475 (3)0.0793 (19)
H80.60030.09480.29660.095*
C90.6688 (4)0.0961 (3)0.1792 (3)0.0520 (13)
H90.73290.15380.18030.062*
C100.6521 (4)0.0454 (3)0.1103 (3)0.0443 (12)
H100.70650.06790.06270.053*
C110.5590 (4)0.0378 (3)0.1068 (2)0.0448 (12)
H110.55000.07170.05760.054*
C120.3792 (4)0.2765 (3)0.0077 (3)0.0439 (12)
C130.3775 (4)0.3458 (3)0.0364 (3)0.0507 (12)
H130.36010.33900.09250.061*
C140.4012 (4)0.4247 (3)0.0007 (3)0.0621 (14)
H140.39920.47200.03030.074*
C150.4274 (4)0.4356 (4)0.0814 (4)0.0722 (16)
H150.44440.48980.10640.087*
C160.4291 (5)0.3682 (5)0.1254 (3)0.0785 (18)
H160.44700.37550.18150.094*
C170.4047 (4)0.2881 (4)0.0889 (3)0.0649 (15)
H170.40560.24150.12030.078*
C180.1812 (4)0.0551 (3)0.0258 (2)0.0377 (11)
C190.2701 (4)0.1256 (3)0.0531 (2)0.0426 (11)
H190.29540.11300.09490.051*
C200.3225 (4)0.2142 (3)0.0202 (3)0.0486 (12)
H200.38420.26170.03920.058*
C210.2868 (4)0.2347 (3)0.0395 (3)0.0556 (13)
H210.32210.29630.06100.067*
C220.1986 (4)0.1643 (3)0.0683 (3)0.0518 (13)
H220.17370.17740.11010.062*
C230.1469 (4)0.0749 (3)0.0361 (2)0.0410 (11)
H230.08730.02660.05660.049*
C240.0580 (4)0.0442 (3)0.2339 (2)0.0392 (11)
C250.0498 (4)0.0013 (3)0.2196 (2)0.0471 (12)
H250.07020.05880.19100.056*
C260.1287 (4)0.0452 (3)0.2466 (3)0.0555 (13)
H260.20170.01600.23480.067*
C270.1023 (5)0.1306 (3)0.2902 (3)0.0556 (13)
H270.15650.16040.30890.067*
C280.0033 (5)0.1721 (3)0.3065 (3)0.0686 (16)
H280.02190.23060.33740.082*
C290.0830 (5)0.1298 (3)0.2784 (3)0.0582 (14)
H290.15620.16010.28980.070*
C300.0701 (5)0.0679 (4)0.3983 (3)0.0697 (16)
H30A0.03480.04860.36360.084*
H30B0.00950.10200.44290.084*
C310.1559 (5)0.0192 (4)0.4292 (3)0.085 (2)
H31A0.21400.05420.38400.102*
H31B0.11730.06230.45940.102*
C320.2139 (4)0.0062 (3)0.4819 (3)0.0721 (17)
H32A0.15650.03740.52900.087*
H32B0.26970.05330.50040.087*
C330.3494 (4)0.0819 (3)0.4830 (3)0.0567 (14)
H33A0.30930.09290.53910.068*
H33B0.36860.13880.46070.068*
C340.4600 (4)0.0066 (3)0.4790 (3)0.0665 (17)
H34A0.44120.06310.50330.080*
H34B0.49880.01930.42290.080*
C350.1810 (4)0.3878 (3)0.4998 (2)0.0409 (11)
C360.1782 (4)0.3039 (3)0.5437 (2)0.0470 (12)
H360.10780.25200.54300.056*
C370.2787 (4)0.2957 (3)0.5888 (3)0.0532 (13)
H370.27640.23790.61900.064*
C380.3817 (4)0.3699 (3)0.5903 (3)0.0568 (13)
H380.45020.36420.62170.068*
C390.3833 (4)0.4524 (3)0.5454 (3)0.0567 (14)
H390.45390.50400.54620.068*
C400.2851 (4)0.4622 (3)0.4993 (3)0.0505 (13)
H400.28850.51920.46740.061*
C410.1069 (4)0.3630 (3)0.6070 (2)0.0380 (11)
C420.0696 (4)0.3969 (3)0.6827 (2)0.0447 (12)
H420.00850.43380.70190.054*
C430.1456 (5)0.3770 (3)0.7303 (3)0.0566 (14)
H430.11900.39960.78230.068*
C440.2600 (4)0.3244 (3)0.7029 (3)0.0532 (13)
H440.31180.31130.73580.064*
C450.2981 (4)0.2913 (3)0.6274 (3)0.0493 (12)
H450.37650.25510.60810.059*
C460.2217 (4)0.3109 (3)0.5797 (2)0.0401 (11)
H460.24850.28830.52770.048*
C470.4586 (4)0.2951 (3)0.3621 (2)0.0402 (11)
C480.5197 (4)0.2891 (3)0.4180 (2)0.0451 (12)
H480.48280.32340.46510.054*
C490.6342 (4)0.2331 (3)0.4047 (3)0.0526 (13)
H490.67600.23010.44240.063*
C500.6885 (4)0.1818 (3)0.3376 (3)0.0602 (14)
H500.76690.14240.32920.072*
C510.6273 (4)0.1885 (3)0.2830 (3)0.0578 (14)
H510.66440.15300.23660.069*
C520.5134 (4)0.2453 (3)0.2934 (3)0.0477 (12)
H520.47310.25020.25430.057*
C530.2321 (4)0.4729 (3)0.2259 (2)0.0369 (11)
C540.2731 (4)0.5295 (3)0.2546 (3)0.0585 (14)
H540.31470.50460.29480.070*
C550.2532 (5)0.6226 (3)0.2245 (3)0.0737 (17)
H550.28080.66150.24490.088*
C560.1944 (5)0.6601 (3)0.1659 (3)0.0643 (15)
H560.18040.72460.14630.077*
C570.1566 (4)0.6037 (3)0.1364 (2)0.0494 (13)
H570.11780.62830.09470.059*
C580.1738 (4)0.5111 (3)0.1664 (2)0.0417 (11)
H580.14520.47310.14590.050*
N10.1839 (3)0.2680 (2)0.15307 (17)0.0354 (9)
N20.2706 (3)0.0788 (2)0.11534 (19)0.0414 (9)
N30.0435 (3)0.1794 (2)0.14485 (18)0.0346 (8)
N40.0101 (3)0.2999 (3)0.2579 (2)0.0493 (10)
N50.0166 (3)0.3674 (2)0.1144 (2)0.0417 (9)
N60.3804 (3)0.1578 (2)0.1759 (2)0.0368 (9)
N70.3556 (3)0.1946 (3)0.0272 (2)0.0431 (10)
N80.1247 (3)0.0363 (2)0.0579 (2)0.0370 (9)
N90.1402 (4)0.0019 (2)0.2054 (2)0.0402 (10)
N100.0988 (3)0.2362 (2)0.47543 (17)0.0366 (9)
N110.1246 (3)0.3998 (2)0.40496 (17)0.0373 (9)
N120.2615 (3)0.2263 (2)0.34190 (17)0.0362 (9)
N130.1281 (4)0.1308 (3)0.3540 (2)0.0516 (11)
N140.2732 (3)0.0717 (2)0.4400 (2)0.0512 (11)
N150.0803 (3)0.3991 (3)0.4524 (2)0.0412 (10)
N160.0267 (3)0.3851 (3)0.56053 (19)0.0384 (10)
N170.3407 (3)0.3504 (3)0.3777 (2)0.0421 (11)
N180.2490 (3)0.3776 (2)0.25397 (19)0.0374 (10)
P10.05663 (10)0.27304 (7)0.16503 (6)0.0379 (3)
P20.29082 (10)0.17453 (8)0.11949 (6)0.0377 (3)
P30.14502 (10)0.07873 (7)0.13146 (6)0.0370 (3)
P40.18863 (10)0.17273 (8)0.40378 (6)0.0413 (3)
P50.05050 (10)0.34970 (7)0.47032 (6)0.0383 (3)
P60.23904 (10)0.33618 (7)0.34718 (6)0.0372 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.174 (3)0.176 (3)0.176 (3)0.0646 (14)0.0418 (12)0.0075 (10)
O20.113 (13)0.032 (8)0.084 (10)0.013 (8)0.025 (9)0.003 (7)
C10.052 (4)0.070 (4)0.063 (3)0.023 (3)0.001 (3)0.027 (3)
C20.040 (3)0.061 (4)0.107 (5)0.008 (3)0.002 (3)0.029 (3)
C30.052 (4)0.032 (3)0.100 (4)0.007 (3)0.028 (3)0.000 (3)
C40.067 (4)0.026 (3)0.064 (3)0.015 (2)0.032 (3)0.006 (2)
C50.078 (4)0.039 (3)0.073 (4)0.022 (3)0.043 (3)0.010 (3)
C60.041 (3)0.032 (3)0.042 (3)0.012 (2)0.010 (2)0.004 (2)
C70.063 (4)0.054 (3)0.037 (3)0.015 (3)0.000 (2)0.001 (2)
C80.082 (4)0.064 (4)0.042 (3)0.019 (3)0.007 (3)0.006 (3)
C90.051 (3)0.036 (3)0.047 (3)0.005 (2)0.008 (2)0.006 (2)
C100.039 (3)0.043 (3)0.045 (3)0.010 (2)0.003 (2)0.010 (2)
C110.051 (3)0.038 (3)0.042 (3)0.013 (3)0.012 (2)0.002 (2)
C120.043 (3)0.043 (3)0.041 (3)0.010 (2)0.015 (2)0.006 (2)
C130.047 (3)0.043 (3)0.053 (3)0.014 (3)0.000 (2)0.006 (3)
C140.054 (4)0.043 (3)0.077 (4)0.015 (3)0.002 (3)0.003 (3)
C150.064 (4)0.063 (4)0.085 (4)0.026 (3)0.019 (3)0.024 (3)
C160.099 (5)0.097 (5)0.051 (3)0.052 (4)0.026 (3)0.023 (3)
C170.082 (4)0.079 (4)0.046 (3)0.041 (3)0.023 (3)0.008 (3)
C180.049 (3)0.029 (3)0.038 (3)0.016 (2)0.009 (2)0.005 (2)
C190.044 (3)0.034 (3)0.044 (3)0.006 (2)0.011 (2)0.008 (2)
C200.046 (3)0.036 (3)0.059 (3)0.006 (2)0.012 (2)0.010 (2)
C210.051 (4)0.040 (3)0.070 (3)0.003 (3)0.012 (3)0.026 (3)
C220.054 (3)0.046 (3)0.054 (3)0.011 (3)0.013 (2)0.020 (2)
C230.046 (3)0.037 (3)0.043 (3)0.015 (2)0.011 (2)0.008 (2)
C240.055 (3)0.026 (2)0.036 (3)0.010 (2)0.015 (2)0.004 (2)
C250.052 (3)0.033 (3)0.051 (3)0.010 (3)0.014 (2)0.004 (2)
C260.054 (4)0.040 (3)0.066 (3)0.013 (3)0.011 (3)0.001 (2)
C270.075 (4)0.042 (3)0.052 (3)0.030 (3)0.010 (3)0.005 (2)
C280.105 (5)0.041 (3)0.078 (4)0.038 (3)0.046 (4)0.021 (3)
C290.079 (4)0.038 (3)0.071 (3)0.024 (3)0.046 (3)0.014 (3)
C300.085 (4)0.054 (4)0.068 (4)0.037 (3)0.010 (3)0.016 (3)
C310.103 (5)0.043 (4)0.092 (4)0.036 (4)0.026 (4)0.016 (3)
C320.070 (4)0.034 (3)0.074 (4)0.002 (3)0.008 (3)0.016 (3)
C330.075 (4)0.029 (3)0.035 (3)0.009 (3)0.005 (2)0.001 (2)
C340.081 (4)0.036 (3)0.043 (3)0.019 (3)0.012 (2)0.003 (2)
C350.049 (3)0.029 (3)0.040 (3)0.005 (2)0.013 (2)0.011 (2)
C360.055 (4)0.032 (3)0.050 (3)0.009 (2)0.017 (2)0.002 (2)
C370.057 (4)0.045 (3)0.059 (3)0.018 (3)0.017 (3)0.003 (2)
C380.044 (3)0.049 (3)0.076 (4)0.009 (3)0.016 (3)0.016 (3)
C390.043 (4)0.040 (3)0.082 (4)0.001 (3)0.024 (3)0.015 (3)
C400.058 (4)0.029 (3)0.063 (3)0.006 (3)0.028 (3)0.005 (2)
C410.054 (3)0.020 (2)0.031 (2)0.006 (2)0.009 (2)0.0010 (19)
C420.050 (3)0.038 (3)0.038 (3)0.005 (2)0.012 (2)0.006 (2)
C430.072 (4)0.048 (3)0.047 (3)0.016 (3)0.016 (3)0.008 (2)
C440.072 (4)0.043 (3)0.048 (3)0.017 (3)0.028 (3)0.004 (2)
C450.053 (3)0.036 (3)0.053 (3)0.010 (2)0.014 (3)0.000 (2)
C460.051 (3)0.030 (2)0.031 (2)0.007 (2)0.009 (2)0.0005 (19)
C470.048 (3)0.029 (3)0.040 (3)0.013 (2)0.007 (2)0.002 (2)
C480.059 (4)0.035 (3)0.038 (3)0.011 (3)0.018 (2)0.001 (2)
C490.056 (4)0.036 (3)0.066 (3)0.013 (3)0.024 (3)0.006 (3)
C500.048 (4)0.047 (3)0.080 (4)0.012 (3)0.006 (3)0.011 (3)
C510.052 (4)0.059 (3)0.059 (3)0.024 (3)0.007 (3)0.018 (3)
C520.049 (3)0.041 (3)0.048 (3)0.014 (3)0.007 (2)0.006 (2)
C530.052 (3)0.028 (2)0.028 (2)0.012 (2)0.007 (2)0.0003 (19)
C540.097 (4)0.043 (3)0.054 (3)0.037 (3)0.033 (3)0.007 (2)
C550.129 (5)0.052 (3)0.071 (4)0.054 (4)0.049 (4)0.014 (3)
C560.118 (5)0.033 (3)0.052 (3)0.039 (3)0.023 (3)0.006 (2)
C570.076 (4)0.030 (3)0.038 (3)0.013 (3)0.017 (2)0.000 (2)
C580.059 (3)0.028 (3)0.041 (3)0.018 (2)0.014 (2)0.002 (2)
N10.035 (2)0.0243 (19)0.044 (2)0.0039 (16)0.0115 (16)0.0086 (16)
N20.036 (2)0.030 (2)0.058 (2)0.0079 (17)0.0107 (18)0.0145 (17)
N30.038 (2)0.0216 (18)0.045 (2)0.0059 (16)0.0152 (16)0.0050 (15)
N40.046 (3)0.053 (3)0.051 (2)0.020 (2)0.0007 (19)0.025 (2)
N50.038 (2)0.026 (2)0.060 (2)0.0072 (18)0.0163 (18)0.0004 (17)
N60.043 (3)0.033 (2)0.031 (2)0.0080 (19)0.0092 (18)0.0064 (17)
N70.055 (3)0.040 (2)0.034 (2)0.014 (2)0.0113 (18)0.0068 (19)
N80.048 (3)0.023 (2)0.038 (2)0.0056 (19)0.0155 (19)0.0047 (17)
N90.045 (3)0.028 (2)0.046 (2)0.008 (2)0.018 (2)0.0029 (17)
N100.046 (2)0.0191 (18)0.0348 (19)0.0033 (17)0.0054 (16)0.0025 (15)
N110.047 (2)0.0217 (19)0.0332 (19)0.0018 (17)0.0074 (16)0.0054 (15)
N120.046 (2)0.0187 (18)0.0325 (19)0.0030 (16)0.0035 (16)0.0034 (15)
N130.077 (3)0.041 (3)0.043 (2)0.034 (2)0.002 (2)0.008 (2)
N140.067 (3)0.026 (2)0.042 (2)0.005 (2)0.003 (2)0.0025 (17)
N150.054 (3)0.024 (2)0.039 (2)0.0044 (19)0.020 (2)0.0060 (18)
N160.049 (3)0.018 (2)0.035 (2)0.002 (2)0.0091 (18)0.0038 (16)
N170.056 (3)0.034 (2)0.036 (2)0.009 (2)0.015 (2)0.0131 (19)
N180.059 (3)0.024 (2)0.029 (2)0.0130 (19)0.0127 (18)0.0015 (16)
P10.0439 (8)0.0252 (6)0.0432 (7)0.0081 (6)0.0131 (6)0.0050 (5)
P20.0430 (8)0.0306 (7)0.0405 (7)0.0111 (6)0.0121 (5)0.0072 (5)
P30.0446 (8)0.0240 (6)0.0422 (7)0.0082 (6)0.0142 (5)0.0053 (5)
P40.0545 (9)0.0220 (6)0.0362 (7)0.0058 (6)0.0037 (6)0.0033 (5)
P50.0504 (8)0.0230 (6)0.0326 (6)0.0030 (6)0.0105 (5)0.0024 (5)
P60.0501 (8)0.0242 (6)0.0325 (6)0.0072 (6)0.0103 (5)0.0036 (5)
Geometric parameters (Å, º) top
C1—N41.473 (6)C35—C361.381 (5)
C1—C21.526 (6)C35—C401.393 (6)
C1—H1A0.9900C35—N151.422 (6)
C1—H1B0.9900C36—C371.389 (6)
C2—C31.520 (6)C36—H360.9500
C2—H2A0.9900C37—C381.377 (6)
C2—H2B0.9900C37—H370.9500
C3—N51.484 (5)C38—C391.374 (6)
C3—H3A0.9900C38—H380.9500
C3—H3B0.9900C39—C401.378 (6)
C4—N51.478 (5)C39—H390.9500
C4—C51.541 (5)C40—H400.9500
C4—H4A0.9900C41—C461.387 (6)
C4—H4B0.9900C41—C421.388 (5)
C5—C5i1.511 (8)C41—N161.407 (5)
C5—H5A0.9900C42—C431.382 (6)
C5—H5B0.9900C42—H420.9500
C6—C71.373 (5)C43—C441.384 (6)
C6—C111.393 (5)C43—H430.9500
C6—N61.428 (5)C44—C451.380 (6)
C7—C81.381 (6)C44—H440.9500
C7—H70.9500C45—C461.389 (6)
C8—C91.376 (6)C45—H450.9500
C8—H80.9500C46—H460.9500
C9—C101.357 (5)C47—C521.386 (6)
C9—H90.9500C47—C481.394 (6)
C10—C111.379 (5)C47—N171.415 (5)
C10—H100.9500C48—C491.382 (6)
C11—H110.9500C48—H480.9500
C12—C171.378 (6)C49—C501.374 (6)
C12—C131.382 (6)C49—H490.9500
C12—N71.410 (5)C50—C511.374 (6)
C13—C141.381 (6)C50—H500.9500
C13—H130.9500C51—C521.380 (6)
C14—C151.368 (6)C51—H510.9500
C14—H140.9500C52—H520.9500
C15—C161.358 (7)C53—C541.381 (6)
C15—H150.9500C53—C581.381 (5)
C16—C171.399 (7)C53—N181.407 (5)
C16—H160.9500C54—C551.382 (6)
C17—H170.9500C54—H540.9500
C18—C191.380 (5)C55—C561.372 (6)
C18—C231.389 (5)C55—H550.9500
C18—N81.412 (5)C56—C571.355 (6)
C19—C201.381 (5)C56—H560.9500
C19—H190.9500C57—C581.379 (5)
C20—C211.371 (6)C57—H570.9500
C20—H200.9500C58—H580.9500
C21—C221.386 (6)N1—P11.599 (3)
C21—H210.9500N1—P21.606 (3)
C22—C231.386 (5)N2—P21.588 (3)
C22—H220.9500N2—P31.596 (3)
C23—H230.9500N3—P31.586 (3)
C24—C251.382 (6)N3—P11.593 (3)
C24—C291.382 (5)N4—P11.659 (4)
C24—N91.408 (6)N4—H4N0.8699 (11)
C25—C261.387 (6)N5—P11.665 (3)
C25—H250.9500N6—P21.653 (3)
C26—C271.373 (6)N6—H6N0.86 (4)
C26—H260.9500N7—P21.665 (4)
C27—C281.368 (7)N7—H7N0.86 (4)
C27—H270.9500N8—P31.645 (4)
C28—C291.380 (7)N8—H8N0.81 (4)
C28—H280.9500N9—P31.656 (4)
C29—H290.9500N9—H9N0.78 (4)
C30—N131.460 (6)N10—P51.583 (3)
C30—C311.502 (7)N10—P41.607 (3)
C30—H30A0.9900N11—P61.602 (3)
C30—H30B0.9900N11—P51.604 (3)
C31—C321.511 (7)N12—P61.586 (3)
C31—H31A0.9900N12—P41.599 (3)
C31—H31B0.9900N13—P41.648 (4)
C32—N141.491 (6)N13—H13N0.8700 (11)
C32—H32A0.9900N14—P41.657 (4)
C32—H32B0.9900N15—P51.678 (4)
C33—N141.463 (6)N15—H15N0.80 (4)
C33—C341.537 (6)N16—P51.658 (3)
C33—H33A0.9900N16—H16N0.80 (4)
C33—H33B0.9900N17—P61.657 (4)
C34—C34ii1.517 (9)N17—H17N0.76 (3)
C34—H34A0.9900N18—P61.656 (3)
C34—H34B0.9900N18—H18N0.81 (3)
N4—C1—C2111.3 (4)C39—C38—C37118.5 (5)
N4—C1—H1A109.4C39—C38—H38120.8
C2—C1—H1A109.4C37—C38—H38120.8
N4—C1—H1B109.4C38—C39—C40121.8 (5)
C2—C1—H1B109.4C38—C39—H39119.1
H1A—C1—H1B108.0C40—C39—H39119.1
C3—C2—C1112.1 (4)C39—C40—C35119.3 (4)
C3—C2—H2A109.2C39—C40—H40120.4
C1—C2—H2A109.2C35—C40—H40120.4
C3—C2—H2B109.2C46—C41—C42118.7 (4)
C1—C2—H2B109.2C46—C41—N16122.8 (4)
H2A—C2—H2B107.9C42—C41—N16118.4 (4)
N5—C3—C2113.1 (4)C43—C42—C41120.3 (4)
N5—C3—H3A109.0C43—C42—H42119.9
C2—C3—H3A109.0C41—C42—H42119.9
N5—C3—H3B109.0C42—C43—C44120.7 (4)
C2—C3—H3B109.0C42—C43—H43119.6
H3A—C3—H3B107.8C44—C43—H43119.6
N5—C4—C5113.1 (4)C45—C44—C43119.4 (4)
N5—C4—H4A109.0C45—C44—H44120.3
C5—C4—H4A108.9C43—C44—H44120.3
N5—C4—H4B109.0C44—C45—C46119.9 (4)
C5—C4—H4B109.0C44—C45—H45120.1
H4A—C4—H4B107.8C46—C45—H45120.1
C5i—C5—C4112.1 (4)C41—C46—C45120.9 (4)
C5i—C5—H5A109.2C41—C46—H46119.5
C4—C5—H5A109.2C45—C46—H46119.5
C5i—C5—H5B109.2C52—C47—C48119.8 (4)
C4—C5—H5B109.2C52—C47—N17121.2 (4)
H5A—C5—H5B107.9C48—C47—N17119.0 (4)
C7—C6—C11118.4 (4)C49—C48—C47119.6 (4)
C7—C6—N6119.7 (4)C49—C48—H48120.2
C11—C6—N6121.9 (4)C47—C48—H48120.2
C6—C7—C8120.5 (4)C50—C49—C48120.9 (5)
C6—C7—H7119.8C50—C49—H49119.5
C8—C7—H7119.8C48—C49—H49119.5
C9—C8—C7121.4 (4)C49—C50—C51118.8 (5)
C9—C8—H8119.3C49—C50—H50120.6
C7—C8—H8119.3C51—C50—H50120.6
C10—C9—C8117.7 (4)C50—C51—C52121.9 (5)
C10—C9—H9121.1C50—C51—H51119.0
C8—C9—H9121.1C52—C51—H51119.0
C9—C10—C11122.4 (4)C51—C52—C47118.9 (4)
C9—C10—H10118.8C51—C52—H52120.5
C11—C10—H10118.8C47—C52—H52120.5
C10—C11—C6119.6 (4)C54—C53—C58118.5 (4)
C10—C11—H11120.2C54—C53—N18122.5 (4)
C6—C11—H11120.2C58—C53—N18119.0 (4)
C17—C12—C13118.6 (4)C53—C54—C55119.5 (4)
C17—C12—N7118.7 (4)C53—C54—H54120.2
C13—C12—N7122.7 (4)C55—C54—H54120.2
C14—C13—C12120.3 (4)C56—C55—C54121.5 (5)
C14—C13—H13119.8C56—C55—H55119.3
C12—C13—H13119.8C54—C55—H55119.3
C15—C14—C13121.0 (5)C57—C56—C55118.9 (4)
C15—C14—H14119.5C57—C56—H56120.6
C13—C14—H14119.5C55—C56—H56120.6
C16—C15—C14119.3 (5)C56—C57—C58120.6 (4)
C16—C15—H15120.4C56—C57—H57119.7
C14—C15—H15120.4C58—C57—H57119.7
C15—C16—C17120.6 (5)C57—C58—C53120.9 (4)
C15—C16—H16119.7C57—C58—H58119.5
C17—C16—H16119.7C53—C58—H58119.5
C12—C17—C16120.1 (5)P1—N1—P2121.0 (2)
C12—C17—H17119.9P2—N2—P3120.9 (2)
C16—C17—H17119.9P3—N3—P1123.7 (2)
C19—C18—C23118.6 (4)C1—N4—P1114.9 (3)
C19—C18—N8122.5 (4)C1—N4—H4N113 (3)
C23—C18—N8118.9 (4)P1—N4—H4N117 (3)
C20—C19—C18120.6 (4)C4—N5—C3112.7 (3)
C20—C19—H19119.7C4—N5—P1113.5 (3)
C18—C19—H19119.7C3—N5—P1113.7 (3)
C21—C20—C19120.9 (4)C6—N6—P2122.4 (3)
C21—C20—H20119.5C6—N6—H6N110 (3)
C19—C20—H20119.5P2—N6—H6N113 (3)
C20—C21—C22119.2 (4)C12—N7—P2129.4 (3)
C20—C21—H21120.4C12—N7—H7N117 (3)
C22—C21—H21120.4P2—N7—H7N111 (3)
C23—C22—C21119.9 (4)C18—N8—P3129.5 (3)
C23—C22—H22120.0C18—N8—H8N115 (3)
C21—C22—H22120.0P3—N8—H8N116 (3)
C22—C23—C18120.7 (4)C24—N9—P3128.2 (3)
C22—C23—H23119.6C24—N9—H9N120 (3)
C18—C23—H23119.6P3—N9—H9N111 (3)
C25—C24—C29118.0 (4)P5—N10—P4122.9 (2)
C25—C24—N9121.5 (4)P6—N11—P5120.46 (19)
C29—C24—N9120.5 (4)P6—N12—P4122.3 (2)
C24—C25—C26120.6 (4)C30—N13—P4116.5 (3)
C24—C25—H25119.7C30—N13—H13N118 (3)
C26—C25—H25119.7P4—N13—H13N110 (4)
C27—C26—C25120.6 (5)C33—N14—C32113.2 (4)
C27—C26—H26119.7C33—N14—P4115.9 (3)
C25—C26—H26119.7C32—N14—P4113.6 (3)
C28—C27—C26119.0 (5)C35—N15—P5127.0 (3)
C28—C27—H27120.5C35—N15—H15N117 (3)
C26—C27—H27120.5P5—N15—H15N112 (3)
C27—C28—C29120.7 (4)C41—N16—P5126.9 (3)
C27—C28—H28119.7C41—N16—H16N113 (3)
C29—C28—H28119.7P5—N16—H16N115 (3)
C28—C29—C24121.0 (5)C47—N17—P6129.0 (3)
C28—C29—H29119.5C47—N17—H17N113 (3)
C24—C29—H29119.5P6—N17—H17N117 (3)
N13—C30—C31108.6 (5)C53—N18—P6126.8 (3)
N13—C30—H30A110.0C53—N18—H18N118 (3)
C31—C30—H30A110.0P6—N18—H18N108 (3)
N13—C30—H30B110.0N3—P1—N1116.11 (17)
C31—C30—H30B110.0N3—P1—N4109.81 (19)
H30A—C30—H30B108.4N1—P1—N4107.77 (19)
C30—C31—C32112.3 (4)N3—P1—N5109.31 (17)
C30—C31—H31A109.1N1—P1—N5110.63 (17)
C32—C31—H31A109.1N4—P1—N5102.29 (19)
C30—C31—H31B109.1N2—P2—N1118.92 (18)
C32—C31—H31B109.1N2—P2—N6111.23 (18)
H31A—C31—H31B107.9N1—P2—N6103.92 (18)
N14—C32—C31111.8 (4)N2—P2—N7103.7 (2)
N14—C32—H32A109.3N1—P2—N7111.68 (18)
C31—C32—H32A109.3N6—P2—N7107.0 (2)
N14—C32—H32B109.3N3—P3—N2116.75 (18)
C31—C32—H32B109.3N3—P3—N8103.90 (18)
H32A—C32—H32B107.9N2—P3—N8112.40 (19)
N14—C33—C34112.9 (4)N3—P3—N9114.65 (19)
N14—C33—H33A109.0N2—P3—N9104.0 (2)
C34—C33—H33A109.0N8—P3—N9104.7 (2)
N14—C33—H33B109.0N12—P4—N10114.73 (17)
C34—C33—H33B109.0N12—P4—N13107.91 (18)
H33A—C33—H33B107.8N10—P4—N13112.4 (2)
C34ii—C34—C33112.3 (5)N12—P4—N14110.64 (19)
C34ii—C34—H34A109.1N10—P4—N14109.37 (17)
C33—C34—H34A109.1N13—P4—N14100.9 (2)
C34ii—C34—H34B109.1N10—P5—N11116.48 (17)
C33—C34—H34B109.1N10—P5—N16107.06 (17)
H34A—C34—H34B107.9N11—P5—N16112.43 (18)
C36—C35—C40119.6 (5)N10—P5—N15113.81 (19)
C36—C35—N15121.6 (4)N11—P5—N15104.68 (19)
C40—C35—N15118.8 (4)N16—P5—N15101.5 (2)
C35—C36—C37119.7 (4)N12—P6—N11118.23 (18)
C35—C36—H36120.1N12—P6—N18103.50 (18)
C37—C36—H36120.1N11—P6—N18112.64 (17)
C38—C37—C36121.1 (5)N12—P6—N17111.87 (19)
C38—C37—H37119.5N11—P6—N17103.59 (19)
C36—C37—H37119.5N18—P6—N17106.7 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
(2f) top
Crystal data top
C42H54N18P6F(000) = 2088
Mr = 996.85Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 30.586 (10) ÅCell parameters from 38071 reflections
b = 9.660 (2) Åθ = 2.9–27.1°
c = 18.449 (5) ŵ = 0.25 mm1
β = 94.599 (10)°T = 120 K
V = 5433 (3) Å3Needle, colourless
Z = 40.24 × 0.05 × 0.03 mm
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5213 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 2.9°
ϕ & ω scansh = 3635
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 99
Tmin = 0.944, Tmax = 0.993l = 2021
10652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.117Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.277H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0439P)2 + 22.223P]
where P = (Fo2 + 2Fc2)/3
5213 reflections(Δ/σ)max = 0.254
595 parametersΔρmax = 0.35 e Å3
444 restraintsΔρmin = 0.27 e Å3
Crystal data top
C42H54N18P6V = 5433 (3) Å3
Mr = 996.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 30.586 (10) ŵ = 0.25 mm1
b = 9.660 (2) ÅT = 120 K
c = 18.449 (5) Å0.24 × 0.05 × 0.03 mm
β = 94.599 (10)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5213 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
2316 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.993Rint = 0.129
10652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.117H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.277 w = 1/[σ2(Fo2) + (0.0439P)2 + 22.223P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.254
5213 reflectionsΔρmax = 0.35 e Å3
595 parametersΔρmin = 0.27 e Å3
444 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3393 (11)0.080 (5)0.1202 (16)0.10 (2)
H10.35370.00200.13870.124*
C20.3101 (16)0.179 (7)0.161 (2)0.15 (3)
H20.30560.18500.21240.178*
C30.2903 (16)0.261 (7)0.112 (3)0.17 (3)
H30.26870.32900.12500.203*
C40.3062 (13)0.230 (6)0.041 (2)0.12 (2)
H40.29610.26730.00190.146*
C50.4066 (14)0.258 (6)0.073 (2)0.11 (2)
H50.41740.27740.02680.127*
C60.4206 (13)0.325 (6)0.139 (2)0.14 (3)
H60.44000.40100.14580.168*
C70.3975 (13)0.247 (6)0.195 (2)0.13 (3)
H70.40130.26310.24550.152*
C80.3693 (12)0.146 (6)0.1616 (17)0.11 (2)
H80.35120.08300.18550.128*
C90.4043 (11)0.255 (5)0.1201 (18)0.089 (19)
H90.39160.17070.13820.106*
C100.406 (2)0.388 (9)0.159 (4)0.20 (3)
H100.39750.40210.20880.237*
C110.421 (2)0.491 (10)0.111 (4)0.25 (3)
H110.41820.58730.11920.305*
C120.4410 (14)0.428 (7)0.046 (3)0.126 (17)
H120.45970.47190.00930.152*
C130.4549 (9)0.215 (5)0.1554 (17)0.096 (19)
H130.43200.24420.18370.115*
C140.4972 (15)0.150 (8)0.183 (3)0.22 (4)
H140.50660.13720.23260.260*
C150.5209 (16)0.110 (8)0.125 (4)0.19 (4)
H150.54710.05720.12860.225*
C160.4987 (10)0.165 (6)0.059 (2)0.13 (3)
H160.50890.16390.01140.158*
C170.3193 (9)0.367 (5)0.1968 (17)0.068 (16)
H17A0.34730.41640.19150.081*
H17B0.31460.36230.24920.081*
C180.2816 (8)0.446 (4)0.1564 (14)0.067 (15)
H18A0.25340.40420.16770.081*
H18B0.28200.54330.17290.081*
C190.2855 (8)0.441 (5)0.0756 (16)0.062 (15)
H19A0.26050.49250.05150.074*
H19B0.31260.49090.06530.074*
C200.2868 (7)0.315 (4)0.0357 (13)0.055 (13)
H20A0.29730.22600.05450.066*
H20B0.30830.38690.04670.066*
C210.2428 (7)0.350 (4)0.0781 (13)0.072 (16)
H21A0.22100.27810.06870.087*
H21B0.23200.43960.06020.087*
C220.2469 (8)0.360 (4)0.1590 (14)0.058 (13)
H22A0.25570.26870.17680.070*
H22B0.27080.42640.16740.070*
C230.2060 (8)0.406 (4)0.2040 (13)0.058 (14)
H23A0.18270.33590.20010.069*
H23B0.19540.49430.18410.069*
C240.2207 (9)0.571 (5)0.2946 (17)0.079 (19)
H24A0.24240.60810.25670.095*
H24B0.19280.62190.29030.095*
C250.2368 (8)0.603 (4)0.3689 (15)0.059 (13)
H25A0.23770.70420.37610.071*
H25B0.26700.56640.37080.071*
C260.2071 (8)0.538 (5)0.4295 (16)0.062 (15)
H26A0.17870.58740.43360.075*
H26B0.22070.54960.47610.075*
C270.0593 (9)0.388 (4)0.2079 (16)0.082 (18)
H270.07660.31800.18350.098*
C280.0331 (13)0.498 (6)0.176 (3)0.129 (16)
H280.02050.49160.13040.154*
C290.0297 (13)0.616 (7)0.224 (3)0.149 (18)
H290.02360.70960.21320.179*
C300.0381 (9)0.556 (5)0.2951 (18)0.069 (10)
H300.03490.60330.34030.083*
C310.0800 (8)0.392 (5)0.4873 (14)0.072 (16)
H310.10500.44730.49330.087*
C320.0557 (10)0.310 (6)0.543 (2)0.14 (3)
H320.06500.28650.58940.169*
C330.0142 (13)0.270 (7)0.514 (2)0.16 (3)
H330.01070.23540.54230.195*
C340.0172 (8)0.292 (5)0.4373 (17)0.081 (17)
H340.00310.26260.40410.098*
C350.1544 (11)0.020 (5)0.4530 (19)0.10 (2)
H350.17060.09980.46400.125*
C360.1454 (12)0.097 (6)0.500 (2)0.12 (2)
H360.16100.12490.54040.139*
C370.1058 (12)0.164 (6)0.472 (2)0.12 (2)
H370.08630.22560.49850.147*
C380.1026 (14)0.121 (6)0.401 (3)0.16 (3)
H380.08340.15640.36740.193*
C390.1760 (15)0.075 (7)0.232 (3)0.17 (3)
H390.20080.08410.25980.210*
C400.1684 (14)0.140 (7)0.164 (3)0.153 (16)
H400.18360.21860.14370.184*
C410.1350 (15)0.069 (7)0.132 (3)0.18 (3)
H410.12630.08320.08390.215*
C420.1164 (13)0.029 (6)0.1826 (19)0.16 (3)
H420.09430.09530.17500.189*
N10.3216 (6)0.052 (4)0.0558 (13)0.056 (11)
N20.4010 (6)0.047 (3)0.0008 (13)0.049 (10)
N30.3737 (6)0.284 (3)0.0653 (13)0.060 (11)
N40.3216 (6)0.231 (4)0.1677 (12)0.056 (12)
H4N0.31920.15850.19600.068*
N50.2868 (6)0.304 (4)0.0417 (11)0.061 (13)
N60.3415 (7)0.129 (4)0.0459 (13)0.070 (13)
N70.3732 (8)0.156 (5)0.0858 (15)0.093 (16)
N80.4265 (8)0.280 (5)0.0482 (15)0.091 (16)
N90.4556 (6)0.224 (4)0.0808 (14)0.062 (11)
N100.1314 (6)0.431 (3)0.3418 (12)0.055 (11)
N110.0904 (6)0.183 (4)0.3179 (12)0.052 (11)
N120.1791 (6)0.193 (4)0.3243 (12)0.050 (7)
N130.2134 (7)0.426 (4)0.2798 (14)0.054 (12)
N140.1991 (6)0.390 (4)0.4178 (12)0.047 (10)
H14N0.20530.32620.44920.056*
N150.0521 (6)0.413 (4)0.2850 (11)0.054 (11)
N160.0582 (6)0.371 (3)0.4200 (11)0.055 (11)
N170.1352 (8)0.006 (4)0.3876 (13)0.073 (13)
N180.1380 (8)0.007 (4)0.2484 (14)0.073 (13)
P10.3286 (2)0.2100 (13)0.0798 (4)0.049 (3)
P20.3600 (2)0.0339 (15)0.0248 (4)0.065 (5)
P30.4115 (2)0.2041 (14)0.0245 (4)0.057 (4)
P40.17744 (19)0.3549 (12)0.3402 (4)0.046 (3)
P50.0862 (2)0.3464 (13)0.3409 (4)0.052 (4)
P60.1353 (2)0.1056 (13)0.3208 (4)0.059 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.13 (3)0.17 (7)0.01 (2)0.03 (3)0.010 (15)0.02 (3)
C20.20 (5)0.17 (8)0.07 (3)0.12 (5)0.02 (3)0.03 (4)
C30.18 (5)0.22 (10)0.10 (4)0.12 (5)0.05 (3)0.02 (5)
C40.17 (4)0.14 (7)0.06 (3)0.11 (4)0.03 (2)0.01 (3)
C50.18 (4)0.06 (7)0.08 (3)0.07 (4)0.02 (3)0.02 (3)
C60.14 (3)0.19 (8)0.09 (4)0.09 (4)0.01 (3)0.01 (4)
C70.16 (4)0.17 (8)0.05 (3)0.08 (4)0.00 (2)0.03 (3)
C80.14 (3)0.16 (7)0.03 (2)0.05 (3)0.016 (17)0.02 (3)
C90.17 (3)0.05 (6)0.05 (2)0.05 (3)0.02 (2)0.01 (3)
C100.24 (3)0.20 (3)0.16 (3)0.000 (2)0.016 (3)0.000 (2)
C110.25 (3)0.25 (3)0.25 (3)0.000 (2)0.020 (4)0.000 (2)
C120.126 (17)0.126 (17)0.126 (17)0.000 (2)0.010 (3)0.000 (2)
C130.07 (2)0.16 (6)0.05 (3)0.00 (2)0.012 (15)0.00 (3)
C140.10 (4)0.39 (12)0.16 (5)0.04 (5)0.05 (3)0.10 (6)
C150.10 (4)0.25 (10)0.22 (7)0.08 (4)0.01 (4)0.05 (6)
C160.06 (2)0.21 (8)0.13 (4)0.04 (3)0.01 (2)0.09 (4)
C170.08 (2)0.09 (6)0.03 (2)0.03 (2)0.013 (14)0.03 (2)
C180.056 (18)0.10 (5)0.05 (2)0.007 (19)0.008 (13)0.01 (2)
C190.043 (16)0.10 (5)0.04 (2)0.000 (18)0.003 (12)0.00 (2)
C200.035 (14)0.08 (4)0.05 (2)0.006 (15)0.005 (11)0.01 (2)
C210.044 (16)0.14 (5)0.03 (2)0.001 (19)0.003 (11)0.01 (2)
C220.061 (18)0.05 (4)0.06 (2)0.009 (17)0.000 (13)0.01 (2)
C230.068 (18)0.09 (5)0.019 (18)0.021 (19)0.000 (11)0.00 (2)
C240.038 (16)0.14 (6)0.06 (2)0.00 (2)0.023 (13)0.05 (3)
C250.058 (18)0.06 (5)0.06 (2)0.004 (18)0.009 (14)0.01 (2)
C260.033 (15)0.10 (5)0.06 (2)0.010 (18)0.003 (12)0.01 (3)
C270.10 (2)0.11 (6)0.04 (2)0.08 (3)0.025 (15)0.03 (2)
C280.131 (16)0.128 (16)0.127 (16)0.000 (2)0.011 (3)0.000 (2)
C290.168 (19)0.149 (19)0.131 (19)0.016 (2)0.012 (3)0.000 (2)
C300.070 (10)0.069 (10)0.069 (10)0.001 (2)0.006 (2)0.000 (2)
C310.065 (18)0.13 (5)0.024 (18)0.03 (2)0.014 (12)0.00 (2)
C320.08 (2)0.26 (8)0.08 (3)0.07 (3)0.04 (2)0.09 (4)
C330.13 (3)0.28 (9)0.07 (3)0.10 (4)0.01 (2)0.04 (4)
C340.046 (17)0.12 (5)0.08 (2)0.04 (2)0.009 (14)0.00 (3)
C350.12 (3)0.11 (7)0.08 (3)0.07 (3)0.06 (2)0.08 (3)
C360.12 (3)0.09 (7)0.14 (4)0.06 (3)0.04 (3)0.05 (4)
C370.12 (3)0.18 (8)0.07 (3)0.06 (3)0.03 (2)0.06 (4)
C380.17 (4)0.15 (8)0.18 (5)0.13 (4)0.11 (4)0.07 (5)
C390.18 (4)0.22 (9)0.14 (5)0.12 (5)0.09 (3)0.12 (5)
C400.154 (17)0.154 (17)0.154 (17)0.090 (2)0.030 (3)0.058 (2)
C410.19 (4)0.23 (9)0.13 (4)0.15 (5)0.07 (3)0.09 (5)
C420.17 (4)0.26 (9)0.04 (3)0.14 (4)0.06 (2)0.06 (4)
N10.052 (14)0.04 (4)0.071 (19)0.012 (14)0.005 (11)0.02 (2)
N20.046 (13)0.02 (3)0.078 (19)0.021 (13)0.001 (10)0.008 (18)
N30.030 (11)0.07 (4)0.09 (2)0.003 (13)0.007 (10)0.037 (19)
N40.072 (16)0.06 (4)0.034 (17)0.007 (16)0.002 (10)0.002 (18)
N50.044 (12)0.13 (5)0.007 (14)0.009 (15)0.003 (8)0.011 (17)
N60.078 (17)0.09 (4)0.040 (18)0.024 (18)0.003 (11)0.003 (19)
N70.09 (2)0.14 (6)0.05 (2)0.03 (2)0.002 (13)0.03 (2)
N80.089 (19)0.12 (5)0.06 (2)0.04 (2)0.027 (14)0.01 (2)
N90.047 (14)0.07 (4)0.07 (2)0.007 (14)0.003 (11)0.006 (18)
N100.036 (12)0.08 (4)0.048 (16)0.001 (13)0.006 (9)0.003 (17)
N110.057 (14)0.04 (4)0.056 (17)0.027 (14)0.009 (10)0.023 (18)
N120.050 (7)0.050 (7)0.050 (7)0.000 (2)0.004 (2)0.000 (2)
N130.040 (13)0.07 (4)0.056 (19)0.007 (15)0.005 (9)0.01 (2)
N140.068 (15)0.04 (4)0.037 (15)0.002 (15)0.017 (10)0.002 (17)
N150.061 (14)0.07 (4)0.027 (15)0.018 (15)0.017 (9)0.004 (16)
N160.036 (12)0.09 (4)0.037 (14)0.002 (13)0.003 (8)0.001 (16)
N170.11 (2)0.08 (4)0.036 (18)0.02 (2)0.038 (13)0.023 (19)
N180.10 (2)0.07 (4)0.06 (2)0.023 (19)0.026 (13)0.03 (2)
P10.042 (4)0.062 (12)0.042 (5)0.000 (4)0.003 (3)0.000 (6)
P20.063 (5)0.089 (15)0.041 (5)0.000 (5)0.002 (3)0.001 (6)
P30.045 (4)0.078 (14)0.048 (6)0.009 (5)0.002 (3)0.005 (6)
P40.036 (4)0.064 (12)0.037 (5)0.006 (4)0.003 (3)0.003 (5)
P50.037 (4)0.087 (13)0.033 (5)0.006 (4)0.001 (3)0.002 (6)
P60.057 (5)0.074 (14)0.047 (6)0.002 (5)0.013 (3)0.001 (6)
Geometric parameters (Å, º) top
C1—N61.44 (4)C26—N141.46 (4)
C1—C21.47 (6)C26—H26A0.9900
C1—H10.9500C26—H26B0.9900
C2—C31.38 (6)C27—N151.44 (3)
C2—H20.9500C27—C281.48 (6)
C3—C41.39 (5)C27—H270.9500
C3—H30.9500C28—C291.45 (7)
C4—N61.46 (4)C28—H280.9500
C4—H40.9500C29—C301.47 (5)
C5—C61.41 (5)C29—H290.9500
C5—N71.46 (5)C30—N151.46 (5)
C5—H50.9500C30—H300.9500
C6—C71.50 (6)C31—C321.45 (5)
C6—H60.9500C31—N161.47 (3)
C7—C81.41 (5)C31—H310.9500
C7—H70.9500C32—C331.46 (5)
C8—N71.42 (4)C32—H320.9500
C8—H80.9500C33—C341.43 (4)
C9—N81.46 (4)C33—H330.9500
C9—C101.47 (8)C34—N161.48 (3)
C9—H90.9500C34—H340.9500
C10—C111.38 (9)C35—N171.41 (4)
C10—H100.9500C35—C361.44 (5)
C11—C121.43 (8)C35—H350.9500
C11—H110.9500C36—C371.50 (5)
C12—N81.50 (6)C36—H360.9500
C12—H120.9500C37—C381.39 (5)
C13—N91.38 (4)C37—H370.9500
C13—C141.49 (5)C38—N171.50 (5)
C13—H130.9500C38—H380.9500
C14—C151.39 (7)C39—N181.42 (5)
C14—H140.9500C39—C401.45 (5)
C15—C161.45 (6)C39—H390.9500
C15—H150.9500C40—C411.40 (6)
C16—N91.52 (4)C40—H400.9500
C16—H160.9500C41—C421.42 (6)
C17—N41.42 (5)C41—H410.9500
C17—C181.52 (4)C42—N181.44 (4)
C17—H17A0.9900C42—H420.9500
C17—H17B0.9900N1—P21.58 (3)
C18—C191.51 (4)N1—P11.60 (3)
C18—H18A0.9900N2—P21.57 (2)
C18—H18B0.9900N2—P31.61 (3)
C19—N51.47 (5)N3—P11.60 (2)
C19—H19A0.9900N3—P31.63 (2)
C19—H19B0.9900N4—P11.67 (2)
C20—N51.43 (3)N4—H4N0.8800
C20—C211.54 (3)N5—P11.67 (3)
C20—H20A0.9900N6—P21.66 (3)
C20—H20B0.9900N7—P21.65 (3)
C21—C221.51 (3)N8—P31.63 (3)
C21—H21A0.9900N9—P31.65 (2)
C21—H21B0.9900N10—P41.59 (2)
C22—C231.51 (3)N10—P51.61 (2)
C22—H22A0.9900N11—P61.57 (2)
C22—H22B0.9900N11—P51.64 (3)
C23—N131.45 (3)N12—P61.59 (3)
C23—H23A0.9900N12—P41.59 (3)
C23—H23B0.9900N13—P41.65 (3)
C24—N131.46 (5)N14—P41.66 (2)
C24—C251.52 (4)N14—H14N0.8800
C24—H24A0.9900N15—P51.65 (2)
C24—H24B0.9900N16—P51.65 (2)
C25—C261.52 (4)N17—P61.64 (3)
C25—H25A0.9900N18—P61.64 (3)
C25—H25B0.9900
N6—C1—C2105 (4)C29—C30—N15109 (4)
N6—C1—H1127.6C29—C30—H30125.2
C2—C1—H1127.7N15—C30—H30125.4
C3—C2—C1109 (4)C32—C31—N16107 (3)
C3—C2—H2125.7C32—C31—H31126.7
C1—C2—H2125.7N16—C31—H31126.7
C2—C3—C4111 (4)C33—C32—C31107 (3)
C2—C3—H3124.7C33—C32—H32126.4
C4—C3—H3124.7C31—C32—H32126.5
C3—C4—N6107 (3)C34—C33—C32109 (3)
C3—C4—H4126.4C34—C33—H33125.3
N6—C4—H4126.5C32—C33—H33125.2
C6—C5—N7109 (4)C33—C34—N16106 (2)
C6—C5—H5125.3C33—C34—H34127.0
N7—C5—H5125.2N16—C34—H34127.1
C5—C6—C7104 (4)N17—C35—C36108 (4)
C5—C6—H6128.1N17—C35—H35125.9
C7—C6—H6128.1C36—C35—H35125.9
C8—C7—C6111 (3)C35—C36—C37104 (3)
C8—C7—H7124.6C35—C36—H36127.9
C6—C7—H7124.6C37—C36—H36127.8
C7—C8—N7106 (4)C38—C37—C36109 (4)
C7—C8—H8126.8C38—C37—H37125.7
N7—C8—H8126.8C36—C37—H37125.7
N8—C9—C10105 (4)C37—C38—N17106 (3)
N8—C9—H9127.3C37—C38—H38126.8
C10—C9—H9127.4N17—C38—H38126.9
C11—C10—C9110 (6)N18—C39—C40104 (3)
C11—C10—H10125.2N18—C39—H39128.1
C9—C10—H10125.0C40—C39—H39128.1
C10—C11—C12109 (8)C41—C40—C39109 (5)
C10—C11—H11125.2C41—C40—H40125.4
C12—C11—H11125.3C39—C40—H40125.4
C11—C12—N8106 (5)C40—C41—C42108 (4)
C11—C12—H12127.1C40—C41—H41125.8
N8—C12—H12127.0C42—C41—H41125.8
N9—C13—C14106 (3)C41—C42—N18106 (4)
N9—C13—H13126.8C41—C42—H42127.0
C14—C13—H13126.8N18—C42—H42127.1
C15—C14—C13111 (5)P2—N1—P1121.1 (15)
C15—C14—H14124.8P2—N2—P3122.7 (17)
C13—C14—H14124.7P1—N3—P3121 (2)
C14—C15—C16108 (5)C17—N4—P1120 (3)
C14—C15—H15126.0C17—N4—H4N120.2
C16—C15—H15126.0P1—N4—H4N120.2
C15—C16—N9105 (4)C20—N5—C19111 (3)
C15—C16—H16127.3C20—N5—P1113.5 (18)
N9—C16—H16127.3C19—N5—P1110.7 (16)
N4—C17—C18109 (3)C1—N6—C4107 (3)
N4—C17—H17A109.8C1—N6—P2124 (3)
C18—C17—H17A109.8C4—N6—P2122 (2)
N4—C17—H17B109.8C8—N7—C5109 (3)
C18—C17—H17B109.7C8—N7—P2126 (4)
H17A—C17—H17B108.2C5—N7—P2120 (2)
C19—C18—C17111 (2)C9—N8—C12107 (4)
C19—C18—H18A109.5C9—N8—P3122 (3)
C17—C18—H18A109.6C12—N8—P3121 (3)
C19—C18—H18B109.5C13—N9—C16109 (3)
C17—C18—H18B109.5C13—N9—P3123.0 (19)
H18A—C18—H18B108.1C16—N9—P3118 (2)
N5—C19—C18117 (3)P4—N10—P5122 (2)
N5—C19—H19A108.0P6—N11—P5120.1 (16)
C18—C19—H19A108.0P6—N12—P4121.1 (16)
N5—C19—H19B108.0C23—N13—C24110 (3)
C18—C19—H19B108.0C23—N13—P4117 (2)
H19A—C19—H19B107.2C24—N13—P4112 (2)
N5—C20—C21117.0 (19)C26—N14—P4114 (2)
N5—C20—H20A108.1C26—N14—H14N122.8
C21—C20—H20A108.0P4—N14—H14N122.9
N5—C20—H20B108.0C27—N15—C30108 (3)
C21—C20—H20B108.1C27—N15—P5120 (2)
H20A—C20—H20B107.3C30—N15—P5119 (2)
C22—C21—C20112 (2)C31—N16—C34109 (2)
C22—C21—H21A109.2C31—N16—P5122.0 (16)
C20—C21—H21A109.2C34—N16—P5119 (2)
C22—C21—H21B109.1C35—N17—C38108 (3)
C20—C21—H21B109.1C35—N17—P6124 (3)
H21A—C21—H21B107.9C38—N17—P6125 (2)
C21—C22—C23116 (2)C39—N18—C42109 (3)
C21—C22—H22A108.4C39—N18—P6119 (2)
C23—C22—H22A108.4C42—N18—P6127 (3)
C21—C22—H22B108.4N3—P1—N1118.7 (13)
C23—C22—H22B108.4N3—P1—N4106.8 (13)
H22A—C22—H22B107.5N1—P1—N4111.2 (17)
N13—C23—C22112 (2)N3—P1—N5109.1 (16)
N13—C23—H23A109.2N1—P1—N5108.6 (14)
C22—C23—H23A109.1N4—P1—N5100.9 (12)
N13—C23—H23B109.1N2—P2—N1118.3 (19)
C22—C23—H23B109.1N2—P2—N6106.4 (13)
H23A—C23—H23B107.9N1—P2—N6111.0 (13)
N13—C24—C25115 (3)N2—P2—N7112.8 (14)
N13—C24—H24A108.5N1—P2—N7106.0 (16)
C25—C24—H24A108.5N6—P2—N7101 (2)
N13—C24—H24B108.5N2—P3—N3116.3 (13)
C25—C24—H24B108.5N2—P3—N9114.5 (16)
H24A—C24—H24B107.5N3—P3—N9103.4 (14)
C26—C25—C24111 (3)N2—P3—N8105.4 (17)
C26—C25—H25A109.4N3—P3—N8115.2 (19)
C24—C25—H25A109.4N9—P3—N8101.4 (14)
C26—C25—H25B109.3N10—P4—N12118.2 (13)
C24—C25—H25B109.4N10—P4—N13111.4 (15)
H25A—C25—H25B108.0N12—P4—N13105.8 (15)
N14—C26—C25113 (3)N10—P4—N14107.7 (13)
N14—C26—H26A109.0N12—P4—N14110.7 (16)
C25—C26—H26A109.0N13—P4—N14101.8 (13)
N14—C26—H26B109.0N10—P5—N11116.1 (13)
C25—C26—H26B109.0N10—P5—N16107.6 (12)
H26A—C26—H26B107.8N11—P5—N16113.2 (16)
N15—C27—C28103 (3)N10—P5—N15113.4 (15)
N15—C27—H27128.1N11—P5—N15104.6 (15)
C28—C27—H27128.4N16—P5—N15100.9 (12)
C29—C28—C27109 (4)N11—P6—N12119.5 (18)
C29—C28—H28125.3N11—P6—N18103.6 (13)
C27—C28—H28125.4N12—P6—N18110.9 (14)
C28—C29—C30103 (5)N11—P6—N17112.8 (14)
C28—C29—H29128.5N12—P6—N17105.8 (13)
C30—C29—H29128.2N18—P6—N17103.1 (19)
N6—C1—C2—C311 (7)P3—N2—P2—N116 (2)
C1—C2—C3—C44 (9)P3—N2—P2—N6141.5 (19)
C2—C3—C4—N65 (8)P3—N2—P2—N7108 (2)
N7—C5—C6—C76 (6)P1—N1—P2—N214 (2)
C5—C6—C7—C84 (7)P1—N1—P2—N6137.6 (19)
C6—C7—C8—N70 (6)P1—N1—P2—N7113 (2)
N8—C9—C10—C119 (7)C1—N6—P2—N240 (3)
C9—C10—C11—C1216 (8)C4—N6—P2—N2173 (3)
C10—C11—C12—N815 (7)C1—N6—P2—N190 (3)
N9—C13—C14—C155 (8)C4—N6—P2—N157 (4)
C13—C14—C15—C168 (9)C1—N6—P2—N7158 (3)
C14—C15—C16—N98 (8)C4—N6—P2—N755 (4)
N4—C17—C18—C1953 (4)C8—N7—P2—N2102 (3)
C17—C18—C19—N558 (4)C5—N7—P2—N252 (4)
N5—C20—C21—C22180 (3)C8—N7—P2—N129 (4)
C20—C21—C22—C23175 (3)C5—N7—P2—N1177 (4)
C21—C22—C23—N13175 (3)C8—N7—P2—N6145 (3)
N13—C24—C25—C2653 (4)C5—N7—P2—N661 (4)
C24—C25—C26—N1451 (4)P2—N2—P3—N39 (3)
N15—C27—C28—C2927 (5)P2—N2—P3—N9112.1 (18)
C27—C28—C29—C3022 (5)P2—N2—P3—N8137.5 (19)
C28—C29—C30—N158 (4)P1—N3—P3—N21 (3)
N16—C31—C32—C3314 (6)P1—N3—P3—N9127 (2)
C31—C32—C33—C3415 (7)P1—N3—P3—N8123 (2)
C32—C33—C34—N1610 (6)C13—N9—P3—N288 (4)
N17—C35—C36—C3722 (6)C16—N9—P3—N255 (4)
C35—C36—C37—C3820 (7)C13—N9—P3—N340 (4)
C36—C37—C38—N1710 (7)C16—N9—P3—N3178 (3)
N18—C39—C40—C4117 (8)C13—N9—P3—N8160 (4)
C39—C40—C41—C428 (9)C16—N9—P3—N858 (4)
C40—C41—C42—N184 (8)C9—N8—P3—N241 (4)
C18—C17—N4—P159 (3)C12—N8—P3—N2177 (3)
C21—C20—N5—C1976 (4)C9—N8—P3—N388 (4)
C21—C20—N5—P1158 (3)C12—N8—P3—N353 (4)
C18—C19—N5—C20175.1 (18)C9—N8—P3—N9161 (3)
C18—C19—N5—P158 (3)C12—N8—P3—N958 (4)
C2—C1—N6—C414 (5)P5—N10—P4—N1210 (2)
C2—C1—N6—P2164 (3)P5—N10—P4—N13132.9 (17)
C3—C4—N6—C112 (6)P5—N10—P4—N14116.2 (18)
C3—C4—N6—P2163 (4)P6—N12—P4—N108 (2)
C7—C8—N7—C54 (6)P6—N12—P4—N13133.8 (16)
C7—C8—N7—P2160 (3)P6—N12—P4—N14116.7 (16)
C6—C5—N7—C86 (6)C23—N13—P4—N1069 (3)
C6—C5—N7—P2164 (4)C24—N13—P4—N1059 (3)
C10—C9—N8—C120 (5)C23—N13—P4—N1261 (3)
C10—C9—N8—P3145 (4)C24—N13—P4—N12171 (2)
C11—C12—N8—C99 (5)C23—N13—P4—N14176 (3)
C11—C12—N8—P3137 (4)C24—N13—P4—N1455 (3)
C14—C13—N9—C160 (6)C26—N14—P4—N1061 (2)
C14—C13—N9—P3145 (4)C26—N14—P4—N12168.2 (18)
C15—C16—N9—C135 (6)C26—N14—P4—N1356 (2)
C15—C16—N9—P3142 (4)P4—N10—P5—N1115 (2)
C22—C23—N13—C2498 (4)P4—N10—P5—N16113.3 (18)
C22—C23—N13—P4132 (3)P4—N10—P5—N15136.0 (16)
C25—C24—N13—C23169.8 (19)P6—N11—P5—N1018 (2)
C25—C24—N13—P458 (3)P6—N11—P5—N16107.2 (17)
C25—C26—N14—P457 (3)P6—N11—P5—N15143.9 (16)
C28—C27—N15—C3021 (4)C31—N16—P5—N1032 (4)
C28—C27—N15—P5161 (3)C34—N16—P5—N10173 (3)
C29—C30—N15—C279 (4)C31—N16—P5—N1198 (3)
C29—C30—N15—P5149 (2)C34—N16—P5—N1143 (3)
C32—C31—N16—C348 (5)C31—N16—P5—N15151 (3)
C32—C31—N16—P5137 (3)C34—N16—P5—N1568 (3)
C33—C34—N16—C312 (5)C27—N15—P5—N1078 (3)
C33—C34—N16—P5148 (3)C30—N15—P5—N1058 (3)
C36—C35—N17—C3816 (6)C27—N15—P5—N1150 (3)
C36—C35—N17—P6176 (3)C30—N15—P5—N11175 (2)
C37—C38—N17—C354 (6)C27—N15—P5—N16167 (3)
C37—C38—N17—P6163 (4)C30—N15—P5—N1657 (3)
C40—C39—N18—C4220 (7)P5—N11—P6—N1217 (2)
C40—C39—N18—P6176 (4)P5—N11—P6—N18140.9 (19)
C41—C42—N18—C3915 (7)P5—N11—P6—N17108 (2)
C41—C42—N18—P6169 (4)P4—N12—P6—N1112 (2)
P3—N3—P1—N12 (3)P4—N12—P6—N18132.2 (19)
P3—N3—P1—N4129 (2)P4—N12—P6—N17117 (2)
P3—N3—P1—N5123.1 (19)C39—N18—P6—N11177 (4)
P2—N1—P1—N36 (3)C42—N18—P6—N1125 (4)
P2—N1—P1—N4119.0 (18)C39—N18—P6—N1248 (5)
P2—N1—P1—N5130.9 (17)C42—N18—P6—N12104 (4)
C17—N4—P1—N359 (2)C39—N18—P6—N1765 (4)
C17—N4—P1—N1170 (2)C42—N18—P6—N17143 (4)
C17—N4—P1—N555 (2)C35—N17—P6—N11102 (3)
C20—N5—P1—N362 (3)C38—N17—P6—N1154 (5)
C19—N5—P1—N363 (2)C35—N17—P6—N1230 (4)
C20—N5—P1—N168 (3)C38—N17—P6—N12173 (4)
C19—N5—P1—N1166 (2)C35—N17—P6—N18147 (3)
C20—N5—P1—N4175 (3)C38—N17—P6—N1857 (4)
C19—N5—P1—N449 (2)
(2g) top
Crystal data top
C42H102N18P6Z = 2
Mr = 1045.24F(000) = 1140
Triclinic, P1Dx = 1.188 Mg m3
a = 13.476 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.437 (3) ÅCell parameters from 68138 reflections
c = 16.340 (3) Åθ = 2.9–27.5°
α = 111.28 (3)°µ = 0.23 mm1
β = 96.87 (3)°T = 150 K
γ = 93.69 (3)°Block, colourless
V = 2921.1 (10) Å30.28 × 0.28 × 0.28 mm
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
10292 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode7658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1717
Tmin = 0.886, Tmax = 0.922l = 1919
47815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.4011P]
where P = (Fo2 + 2Fc2)/3
10292 reflections(Δ/σ)max = 0.003
659 parametersΔρmax = 0.28 e Å3
15 restraintsΔρmin = 0.38 e Å3
Crystal data top
C42H102N18P6γ = 93.69 (3)°
Mr = 1045.24V = 2921.1 (10) Å3
Triclinic, P1Z = 2
a = 13.476 (3) ÅMo Kα radiation
b = 14.437 (3) ŵ = 0.23 mm1
c = 16.340 (3) ÅT = 150 K
α = 111.28 (3)°0.28 × 0.28 × 0.28 mm
β = 96.87 (3)°
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
10292 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
7658 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.922Rint = 0.071
47815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04115 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
10292 reflectionsΔρmin = 0.38 e Å3
659 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.56360 (16)0.19618 (18)0.18308 (16)0.0349 (6)
H4A0.58590.25340.17280.052*
H4B0.60220.13640.14030.052*
H4C0.57270.20140.24190.052*
P40.96160 (4)0.01764 (4)0.15942 (3)0.01833 (14)
P30.56812 (4)0.50142 (4)0.34936 (4)0.01832 (14)
P20.53063 (4)0.50149 (4)0.18504 (4)0.01922 (14)
P60.91113 (4)0.02273 (4)0.32078 (3)0.01945 (14)
P10.41173 (4)0.40229 (4)0.26843 (4)0.01995 (14)
P51.04040 (4)0.11294 (4)0.23391 (4)0.02046 (14)
N140.98080 (13)0.06390 (13)0.31488 (11)0.0227 (4)
N151.03173 (12)0.06655 (13)0.15849 (11)0.0209 (4)
N110.86944 (12)0.03169 (13)0.07038 (11)0.0206 (4)
N10.45942 (12)0.41679 (13)0.18019 (11)0.0215 (4)
N80.56926 (13)0.59780 (13)0.44279 (12)0.0207 (4)
N100.61844 (12)0.45842 (13)0.09385 (11)0.0210 (4)
N121.02366 (13)0.10651 (13)0.13733 (12)0.0216 (4)
N30.47408 (12)0.43880 (13)0.34963 (11)0.0209 (4)
N70.66313 (12)0.42298 (14)0.34839 (12)0.0216 (4)
N90.46581 (14)0.59653 (14)0.17314 (13)0.0247 (4)
N190.94425 (14)0.10242 (14)0.42391 (12)0.0227 (4)
N130.91492 (12)0.07137 (12)0.24714 (11)0.0203 (4)
N20.58280 (12)0.54373 (13)0.27179 (11)0.0205 (4)
C250.87594 (15)0.12734 (16)0.04173 (14)0.0248 (5)
H25A0.90590.10010.01190.030*
H25B0.83360.17670.03480.030*
N160.99586 (14)0.23198 (14)0.19720 (13)0.0250 (4)
N40.39036 (14)0.28439 (14)0.23739 (13)0.0255 (4)
C180.59304 (17)0.61275 (17)0.05869 (15)0.0305 (5)
H18A0.62990.66080.04270.037*
H18B0.55310.58230.01240.037*
C170.52398 (17)0.66619 (17)0.14647 (15)0.0300 (5)
H17A0.56390.69870.19220.036*
H17B0.47810.71750.14100.036*
N171.16171 (13)0.11476 (14)0.26259 (13)0.0254 (4)
C260.95884 (16)0.17831 (16)0.12042 (14)0.0251 (5)
H26A0.99980.22880.10910.030*
H26B0.92880.21170.17300.030*
C240.81142 (15)0.04392 (17)0.05266 (15)0.0256 (5)
H24A0.77410.07280.10130.031*
H24B0.76300.01110.00100.031*
N180.78960 (13)0.01146 (14)0.31236 (13)0.0245 (4)
C210.70317 (15)0.28390 (16)0.01106 (14)0.0251 (5)
H21A0.72270.29910.04130.030*
H21B0.63840.25830.00660.030*
C230.80260 (16)0.11503 (16)0.07357 (14)0.0249 (5)
H23A0.73960.09100.09020.030*
H23B0.83350.13670.11930.030*
C130.51782 (15)0.70036 (16)0.46762 (14)0.0234 (5)
N50.29792 (13)0.46057 (15)0.31263 (12)0.0271 (5)
C271.02326 (16)0.32301 (16)0.13050 (14)0.0247 (5)
C200.69326 (16)0.37915 (16)0.09324 (14)0.0250 (5)
H20A0.67460.36330.14540.030*
H20B0.75820.40430.09730.030*
C220.78075 (15)0.20373 (16)0.01347 (14)0.0261 (5)
H22A0.84270.23250.02710.031*
H22B0.75620.18120.06050.031*
C390.92335 (16)0.20687 (16)0.46564 (14)0.0267 (5)
C90.77133 (14)0.43372 (16)0.35206 (14)0.0232 (5)
C100.80314 (16)0.51383 (18)0.31829 (16)0.0334 (6)
H10A0.78990.49700.25850.050*
H10B0.87380.51820.31950.050*
H10C0.76590.57710.35560.050*
C150.51921 (18)0.75350 (17)0.56650 (14)0.0315 (6)
H15A0.48480.71790.59850.047*
H15B0.48620.82050.58600.047*
H15C0.58760.75570.57740.047*
C291.08000 (19)0.29787 (18)0.06500 (16)0.0375 (6)
H29A1.04000.26150.03730.056*
H29B1.09350.35860.02040.056*
H29C1.14240.25760.09590.056*
C190.66670 (16)0.53268 (17)0.06525 (16)0.0311 (6)
H19A0.70780.49810.00760.037*
H19B0.71100.56480.10700.037*
C20.41639 (19)0.10523 (18)0.19647 (16)0.0374 (6)
H2A0.43170.11110.25390.056*
H2B0.44960.04320.15260.056*
H2C0.34500.10660.19710.056*
C281.08582 (18)0.37914 (19)0.17630 (16)0.0363 (6)
H28A1.14790.33850.20740.054*
H28B1.09990.44030.13270.054*
H28C1.04920.39410.21780.054*
C400.81884 (18)0.22045 (18)0.42804 (17)0.0391 (6)
H40A0.81540.20650.36560.059*
H40B0.80550.28810.45790.059*
H40C0.76960.17530.43690.059*
C50.20500 (15)0.46701 (17)0.27437 (14)0.0260 (5)
C311.24600 (16)0.03533 (18)0.27821 (16)0.0304 (5)
C300.92556 (17)0.38847 (18)0.08043 (16)0.0383 (6)
H30A0.88710.40110.12190.057*
H30B0.94060.45080.03910.057*
H30C0.88740.35480.04870.057*
C30.43752 (19)0.17900 (19)0.07936 (15)0.0390 (6)
H3A0.36790.17320.07360.059*
H3B0.47800.11960.03800.059*
H3C0.45710.23600.06710.059*
C160.57582 (18)0.75616 (17)0.41822 (15)0.0343 (6)
H16A0.64330.75830.43150.051*
H16B0.54330.82320.43650.051*
H16C0.57750.72230.35540.051*
C120.82932 (16)0.33254 (18)0.29372 (16)0.0353 (6)
H12A0.80820.28250.31570.053*
H12B0.90010.33600.29490.053*
H12C0.81630.31530.23380.053*
C10.45275 (17)0.19213 (17)0.17401 (15)0.0287 (5)
C140.40911 (17)0.69905 (18)0.44993 (17)0.0384 (6)
H14A0.40830.66590.38740.058*
H14B0.37730.76650.46950.058*
H14C0.37340.66390.48170.058*
C350.73782 (16)0.07973 (18)0.34668 (15)0.0302 (5)
C411.00164 (19)0.27638 (18)0.44907 (18)0.0414 (7)
H41A1.06750.26890.47390.062*
H41B0.98820.34440.47660.062*
H41C0.99850.25960.38630.062*
C110.79141 (16)0.46145 (18)0.44739 (15)0.0329 (6)
H11A0.75110.52300.48470.049*
H11B0.86130.46960.44950.049*
H11C0.77450.40930.46800.049*
C80.21948 (19)0.4128 (2)0.17529 (17)0.0523 (8)
H8A0.26830.44230.14770.078*
H8B0.15660.41780.15420.078*
H8C0.24280.34360.16060.078*
C360.7943 (2)0.0726 (2)0.43509 (18)0.0589 (9)
H36A0.85980.09360.42710.088*
H36B0.75770.11500.45760.088*
H36C0.80120.00460.47660.088*
C321.27795 (19)0.0448 (2)0.18979 (17)0.0477 (7)
H32A1.29570.11100.16090.072*
H32B1.33500.00340.19980.072*
H32C1.22340.03290.15280.072*
C341.21743 (18)0.06887 (18)0.32540 (18)0.0426 (7)
H34A1.16460.08240.28790.064*
H34B1.27500.11740.33830.064*
H34C1.19460.07270.37990.064*
C331.33262 (17)0.0559 (2)0.33609 (18)0.0432 (7)
H33A1.31300.04920.39240.065*
H33B1.39040.00870.34540.065*
H33C1.34890.12260.30690.065*
C420.9295 (2)0.2296 (2)0.56456 (16)0.0498 (7)
H42A0.87650.18890.57430.075*
H42B0.92260.29900.59490.075*
H42C0.99340.21510.58690.075*
C380.7302 (2)0.18649 (19)0.2803 (2)0.0540 (8)
H38A0.69880.19010.22310.081*
H38B0.69050.22990.29970.081*
H38C0.79630.20700.27600.081*
C370.6330 (2)0.0501 (2)0.3574 (2)0.0685 (10)
H37A0.63750.01800.39800.103*
H37B0.59760.09310.38010.103*
H37C0.59740.05660.30070.103*
C60.1731 (3)0.5760 (2)0.2973 (2)0.0802 (12)
H6A0.16910.61140.36020.120*
H6B0.10830.58400.28020.120*
H6C0.22140.60250.26620.120*
C70.1254 (2)0.4232 (3)0.3173 (2)0.0824 (13)
H7A0.14760.35430.30510.124*
H7B0.06400.42760.29380.124*
H7C0.11380.45990.38040.124*
H8N0.5656 (15)0.5811 (17)0.4865 (15)0.022 (6)*
H12N1.0523 (16)0.0815 (17)0.0934 (15)0.028 (7)*
H18N0.7602 (16)0.0142 (17)0.2649 (15)0.023 (6)*
H19N0.9978 (16)0.0925 (17)0.4416 (15)0.025 (7)*
H7N0.6491 (15)0.3646 (9)0.3423 (14)0.025 (6)*
H4N0.3506 (18)0.2742 (19)0.2732 (16)0.036 (8)*
H5N0.2941 (17)0.5031 (15)0.3656 (9)0.037 (7)*
H9N0.4269 (19)0.575 (2)0.1404 (17)0.043 (9)*
H17N1.1675 (17)0.1511 (15)0.2939 (14)0.039 (8)*
H16N0.9538 (17)0.2422 (18)0.2236 (15)0.029 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0378 (14)0.0230 (13)0.0411 (15)0.0026 (11)0.0030 (11)0.0107 (11)
P40.0220 (3)0.0163 (3)0.0175 (3)0.0018 (2)0.0044 (2)0.0069 (2)
P30.0182 (3)0.0178 (3)0.0201 (3)0.0024 (2)0.0045 (2)0.0079 (2)
P20.0208 (3)0.0179 (3)0.0188 (3)0.0000 (2)0.0026 (2)0.0072 (2)
P60.0244 (3)0.0175 (3)0.0177 (3)0.0036 (2)0.0064 (2)0.0068 (2)
P10.0185 (3)0.0209 (3)0.0220 (3)0.0033 (2)0.0052 (2)0.0090 (2)
P50.0254 (3)0.0178 (3)0.0207 (3)0.0054 (2)0.0069 (2)0.0087 (2)
N140.0330 (10)0.0215 (10)0.0201 (9)0.0092 (8)0.0110 (8)0.0121 (8)
N150.0255 (9)0.0208 (10)0.0199 (9)0.0067 (8)0.0086 (7)0.0096 (8)
N110.0242 (9)0.0176 (10)0.0198 (9)0.0005 (7)0.0023 (7)0.0074 (8)
N10.0220 (9)0.0212 (10)0.0201 (9)0.0035 (7)0.0047 (7)0.0057 (8)
N80.0263 (10)0.0182 (10)0.0198 (10)0.0019 (8)0.0054 (8)0.0093 (9)
N100.0221 (9)0.0197 (10)0.0213 (10)0.0011 (7)0.0013 (7)0.0088 (8)
N120.0240 (10)0.0192 (10)0.0232 (10)0.0012 (8)0.0067 (8)0.0092 (9)
N30.0199 (9)0.0238 (10)0.0223 (10)0.0040 (7)0.0058 (7)0.0116 (8)
N70.0177 (9)0.0166 (10)0.0332 (11)0.0047 (8)0.0074 (7)0.0112 (9)
N90.0262 (10)0.0226 (11)0.0271 (11)0.0022 (8)0.0055 (9)0.0117 (9)
N190.0265 (11)0.0226 (11)0.0190 (10)0.0062 (8)0.0033 (8)0.0073 (8)
N130.0291 (10)0.0165 (10)0.0175 (9)0.0062 (7)0.0063 (7)0.0076 (8)
N20.0236 (9)0.0187 (10)0.0197 (9)0.0051 (7)0.0033 (7)0.0074 (8)
C250.0309 (12)0.0236 (13)0.0255 (12)0.0083 (10)0.0081 (9)0.0136 (10)
N160.0318 (11)0.0188 (10)0.0267 (11)0.0041 (8)0.0146 (9)0.0079 (9)
N40.0262 (10)0.0246 (11)0.0278 (11)0.0072 (8)0.0045 (8)0.0114 (9)
C180.0363 (13)0.0277 (14)0.0329 (14)0.0038 (11)0.0027 (10)0.0184 (11)
C170.0387 (13)0.0217 (13)0.0329 (13)0.0017 (10)0.0042 (10)0.0152 (11)
N170.0270 (10)0.0243 (11)0.0302 (11)0.0033 (8)0.0042 (8)0.0165 (9)
C260.0345 (12)0.0196 (12)0.0257 (12)0.0043 (10)0.0090 (10)0.0121 (10)
C240.0253 (12)0.0295 (13)0.0247 (12)0.0071 (10)0.0037 (9)0.0127 (10)
N180.0252 (10)0.0277 (11)0.0238 (11)0.0003 (8)0.0032 (8)0.0143 (9)
C210.0223 (11)0.0258 (13)0.0269 (12)0.0003 (9)0.0018 (9)0.0103 (10)
C230.0280 (12)0.0229 (13)0.0236 (12)0.0026 (9)0.0037 (9)0.0092 (10)
C130.0287 (12)0.0166 (12)0.0260 (12)0.0007 (9)0.0065 (9)0.0087 (10)
N50.0192 (9)0.0338 (12)0.0231 (11)0.0003 (8)0.0068 (8)0.0041 (9)
C270.0324 (12)0.0169 (12)0.0249 (12)0.0058 (9)0.0080 (9)0.0064 (10)
C200.0277 (12)0.0231 (13)0.0229 (12)0.0000 (9)0.0036 (9)0.0077 (10)
C220.0254 (12)0.0250 (13)0.0269 (13)0.0014 (10)0.0026 (9)0.0096 (10)
C390.0367 (13)0.0191 (12)0.0224 (12)0.0050 (10)0.0085 (10)0.0039 (10)
C90.0172 (10)0.0248 (13)0.0283 (12)0.0035 (9)0.0058 (9)0.0097 (10)
C100.0237 (12)0.0393 (15)0.0442 (15)0.0098 (11)0.0086 (10)0.0215 (12)
C150.0449 (14)0.0211 (13)0.0253 (13)0.0009 (11)0.0035 (10)0.0063 (10)
C290.0580 (16)0.0261 (14)0.0314 (14)0.0072 (12)0.0230 (12)0.0090 (11)
C190.0295 (12)0.0311 (14)0.0340 (14)0.0021 (10)0.0019 (10)0.0161 (11)
C20.0549 (16)0.0240 (14)0.0361 (14)0.0123 (12)0.0142 (12)0.0110 (11)
C280.0448 (15)0.0351 (15)0.0340 (14)0.0181 (12)0.0115 (11)0.0147 (12)
C400.0441 (15)0.0238 (14)0.0468 (16)0.0127 (11)0.0120 (12)0.0071 (12)
C50.0221 (8)0.0287 (9)0.0274 (9)0.0020 (7)0.0065 (7)0.0102 (7)
C310.0283 (12)0.0297 (14)0.0337 (13)0.0008 (10)0.0003 (10)0.0147 (11)
C300.0397 (14)0.0300 (15)0.0373 (15)0.0018 (11)0.0044 (11)0.0042 (12)
C30.0554 (16)0.0324 (15)0.0288 (14)0.0092 (12)0.0097 (12)0.0092 (12)
C160.0518 (15)0.0229 (13)0.0301 (14)0.0050 (11)0.0041 (11)0.0127 (11)
C120.0240 (12)0.0362 (15)0.0396 (15)0.0038 (11)0.0047 (10)0.0083 (12)
C10.0372 (13)0.0224 (13)0.0273 (13)0.0076 (10)0.0087 (10)0.0084 (10)
C140.0329 (13)0.0291 (14)0.0486 (16)0.0057 (11)0.0121 (11)0.0087 (12)
C350.0303 (9)0.0299 (9)0.0329 (9)0.0012 (7)0.0081 (7)0.0141 (7)
C410.0457 (15)0.0269 (14)0.0488 (17)0.0017 (12)0.0069 (12)0.0119 (13)
C110.0284 (12)0.0392 (15)0.0320 (14)0.0043 (11)0.0102 (10)0.0127 (12)
C80.0341 (14)0.075 (2)0.0381 (16)0.0042 (14)0.0182 (12)0.0072 (15)
C360.068 (2)0.073 (2)0.0466 (18)0.0203 (17)0.0053 (14)0.0407 (17)
C320.0419 (15)0.0588 (19)0.0471 (17)0.0117 (13)0.0084 (12)0.0276 (15)
C340.0404 (15)0.0308 (15)0.0493 (17)0.0025 (12)0.0096 (12)0.0125 (13)
C330.0297 (13)0.0484 (17)0.0536 (17)0.0051 (12)0.0032 (12)0.0245 (14)
C420.083 (2)0.0357 (16)0.0278 (14)0.0177 (15)0.0161 (13)0.0037 (12)
C380.0643 (19)0.0335 (16)0.064 (2)0.0100 (14)0.0197 (15)0.0175 (15)
C370.0469 (17)0.067 (2)0.124 (3)0.0174 (16)0.0469 (19)0.062 (2)
C60.103 (3)0.044 (2)0.091 (3)0.0147 (18)0.068 (2)0.0098 (18)
C70.0450 (18)0.168 (4)0.082 (2)0.059 (2)0.0403 (17)0.085 (3)
Geometric parameters (Å, º) top
C4—C11.521 (3)C9—C101.515 (3)
C4—H4A0.9600C9—C111.524 (3)
C4—H4B0.9600C9—C121.522 (3)
C4—H4C0.9600C10—H10A0.9600
P4—N151.5839 (18)C10—H10B0.9600
P4—N131.5885 (18)C10—H10C0.9600
P4—N121.6572 (19)C15—H15A0.9600
P4—N111.6936 (18)C15—H15B0.9600
P3—N21.5926 (18)C15—H15C0.9600
P3—N31.6038 (17)C29—H29A0.9600
P3—N71.6485 (18)C29—H29B0.9600
P3—N81.6533 (19)C29—H29C0.9600
P2—N11.5880 (18)C19—H19A0.9700
P2—N21.5943 (18)C19—H19B0.9700
P2—N91.6624 (19)C2—C11.523 (3)
P2—N101.6787 (18)C2—H2A0.9600
P6—N141.5938 (18)C2—H2B0.9600
P6—N131.6023 (18)C2—H2C0.9600
P6—N191.6459 (19)C28—H28A0.9600
P6—N181.6546 (19)C28—H28B0.9600
P1—N11.5971 (18)C28—H28C0.9600
P1—N31.6001 (18)C40—H40A0.9600
P1—N51.6461 (19)C40—H40B0.9600
P1—N41.646 (2)C40—H40C0.9600
P5—N141.5951 (18)C5—C61.500 (4)
P5—N151.5987 (18)C5—C71.508 (4)
P5—N161.645 (2)C5—C81.502 (3)
P5—N171.6504 (19)C31—C341.520 (3)
N11—C231.476 (3)C31—C321.518 (3)
N11—C241.474 (3)C31—C331.526 (3)
N8—C131.484 (3)C30—H30A0.9600
N8—H8N0.83 (2)C30—H30B0.9600
N10—C201.472 (3)C30—H30C0.9600
N10—C191.474 (3)C3—C11.529 (3)
N12—C261.477 (3)C3—H3A0.9600
N12—H12N0.83 (2)C3—H3B0.9600
N7—C91.482 (3)C3—H3C0.9600
N7—H7N0.848 (9)C16—H16A0.9600
N9—C171.468 (3)C16—H16B0.9600
N9—H9N0.79 (2)C16—H16C0.9600
N19—C391.474 (3)C12—H12A0.9600
N19—H19N0.79 (2)C12—H12B0.9600
C25—C261.519 (3)C12—H12C0.9600
C25—C241.516 (3)C14—H14A0.9600
C25—H25A0.9700C14—H14B0.9600
C25—H25B0.9700C14—H14C0.9600
N16—C271.473 (3)C35—C381.517 (3)
N16—H16N0.79 (2)C35—C361.515 (3)
N4—C11.483 (3)C35—C371.513 (3)
N4—H4N0.81 (2)C41—H41A0.9600
C18—C171.518 (3)C41—H41B0.9600
C18—C191.517 (3)C41—H41C0.9600
C18—H18A0.9700C11—H11A0.9600
C18—H18B0.9700C11—H11B0.9600
C17—H17A0.9700C11—H11C0.9600
C17—H17B0.9700C8—H8A0.9600
N17—C311.490 (3)C8—H8B0.9600
N17—H17N0.856 (10)C8—H8C0.9600
C26—H26A0.9700C36—H36A0.9600
C26—H26B0.9700C36—H36B0.9600
C24—H24A0.9700C36—H36C0.9600
C24—H24B0.9700C32—H32A0.9600
N18—C351.476 (3)C32—H32B0.9600
N18—H18N0.81 (2)C32—H32C0.9600
C21—C201.518 (3)C34—H34A0.9600
C21—C221.524 (3)C34—H34B0.9600
C21—H21A0.9700C34—H34C0.9600
C21—H21B0.9700C33—H33A0.9600
C23—C221.510 (3)C33—H33B0.9600
C23—H23A0.9700C33—H33C0.9600
C23—H23B0.9700C42—H42A0.9600
C13—C161.521 (3)C42—H42B0.9600
C13—C141.527 (3)C42—H42C0.9600
C13—C151.519 (3)C38—H38A0.9600
N5—C51.477 (3)C38—H38B0.9600
N5—H5N0.854 (10)C38—H38C0.9600
C27—C291.518 (3)C37—H37A0.9600
C27—C281.518 (3)C37—H37B0.9600
C27—C301.522 (3)C37—H37C0.9600
C20—H20A0.9700C6—H6A0.9600
C20—H20B0.9700C6—H6B0.9600
C22—H22A0.9700C6—H6C0.9600
C22—H22B0.9700C7—H7A0.9600
C39—C421.519 (3)C7—H7B0.9600
C39—C401.522 (3)C7—H7C0.9600
C39—C411.524 (3)
C1—C4—H4A109.5C9—C10—H10C109.5
C1—C4—H4B109.5H10A—C10—H10C109.5
H4A—C4—H4B109.5H10B—C10—H10C109.5
C1—C4—H4C109.5C13—C15—H15A109.5
H4A—C4—H4C109.5C13—C15—H15B109.5
H4B—C4—H4C109.5H15A—C15—H15B109.5
N15—P4—N13118.02 (9)C13—C15—H15C109.5
N15—P4—N12109.72 (9)H15A—C15—H15C109.5
N13—P4—N12107.11 (10)H15B—C15—H15C109.5
N15—P4—N11107.87 (9)C27—C29—H29A109.5
N13—P4—N11110.45 (9)C27—C29—H29B109.5
N12—P4—N11102.56 (9)H29A—C29—H29B109.5
N2—P3—N3115.37 (9)C27—C29—H29C109.5
N2—P3—N7114.63 (9)H29A—C29—H29C109.5
N3—P3—N7102.70 (9)H29B—C29—H29C109.5
N2—P3—N8106.06 (10)N10—C19—C18113.99 (18)
N3—P3—N8114.93 (10)N10—C19—H19A108.8
N7—P3—N8102.66 (10)C18—C19—H19A108.8
N1—P2—N2116.98 (10)N10—C19—H19B108.8
N1—P2—N9108.93 (10)C18—C19—H19B108.8
N2—P2—N9108.77 (10)H19A—C19—H19B107.7
N1—P2—N10108.17 (9)C1—C2—H2A109.5
N2—P2—N10110.01 (9)C1—C2—H2B109.5
N9—P2—N10103.08 (10)H2A—C2—H2B109.5
N14—P6—N13116.47 (9)C1—C2—H2C109.5
N14—P6—N19103.11 (10)H2A—C2—H2C109.5
N13—P6—N19114.51 (10)H2B—C2—H2C109.5
N14—P6—N18114.47 (10)C27—C28—H28A109.5
N13—P6—N18103.17 (10)C27—C28—H28B109.5
N19—P6—N18104.86 (10)H28A—C28—H28B109.5
N1—P1—N3115.43 (9)C27—C28—H28C109.5
N1—P1—N5115.49 (10)H28A—C28—H28C109.5
N3—P1—N5103.34 (9)H28B—C28—H28C109.5
N1—P1—N4106.03 (10)C39—C40—H40A109.5
N3—P1—N4114.55 (10)C39—C40—H40B109.5
N5—P1—N4101.39 (10)H40A—C40—H40B109.5
N14—P5—N15116.24 (9)C39—C40—H40C109.5
N14—P5—N16102.61 (10)H40A—C40—H40C109.5
N15—P5—N16113.49 (10)H40B—C40—H40C109.5
N14—P5—N17114.91 (10)N5—C5—C6106.8 (2)
N15—P5—N17106.17 (10)N5—C5—C7108.3 (2)
N16—P5—N17102.77 (10)C6—C5—C7109.7 (3)
P6—N14—P5123.61 (11)N5—C5—C8112.92 (18)
P4—N15—P5122.39 (11)C6—C5—C8109.7 (2)
C23—N11—C24111.43 (16)C7—C5—C8109.4 (2)
C23—N11—P4113.36 (14)N17—C31—C34112.03 (19)
C24—N11—P4113.34 (14)N17—C31—C32109.05 (19)
P2—N1—P1120.75 (11)C34—C31—C32110.6 (2)
C13—N8—P3126.43 (15)N17—C31—C33106.16 (19)
C13—N8—H8N110.8 (15)C34—C31—C33109.8 (2)
P3—N8—H8N112.0 (16)C32—C31—C33109.2 (2)
C20—N10—C19111.42 (16)C27—C30—H30A109.5
C20—N10—P2113.62 (14)C27—C30—H30B109.5
C19—N10—P2117.63 (14)H30A—C30—H30B109.5
C26—N12—P4113.34 (14)C27—C30—H30C109.5
C26—N12—H12N108.4 (16)H30A—C30—H30C109.5
P4—N12—H12N110.5 (16)H30B—C30—H30C109.5
P1—N3—P3122.89 (11)C1—C3—H3A109.5
C9—N7—P3131.81 (15)C1—C3—H3B109.5
C9—N7—H7N112.8 (15)H3A—C3—H3B109.5
P3—N7—H7N115.3 (15)C1—C3—H3C109.5
C17—N9—P2117.01 (15)H3A—C3—H3C109.5
C17—N9—H9N111 (2)H3B—C3—H3C109.5
P2—N9—H9N109 (2)C13—C16—H16A109.5
C39—N19—P6129.69 (16)C13—C16—H16B109.5
C39—N19—H19N113.7 (17)H16A—C16—H16B109.5
P6—N19—H19N108.0 (16)C13—C16—H16C109.5
P4—N13—P6121.04 (11)H16A—C16—H16C109.5
P2—N2—P3122.29 (11)H16B—C16—H16C109.5
C26—C25—C24112.37 (18)C9—C12—H12A109.5
C26—C25—H25A109.1C9—C12—H12B109.5
C24—C25—H25A109.1H12A—C12—H12B109.5
C26—C25—H25B109.1C9—C12—H12C109.5
C24—C25—H25B109.1H12A—C12—H12C109.5
H25A—C25—H25B107.9H12B—C12—H12C109.5
C27—N16—P5133.33 (16)N4—C1—C4111.39 (18)
C27—N16—H16N114.1 (17)N4—C1—C2106.90 (18)
P5—N16—H16N112.4 (17)C4—C1—C2109.1 (2)
C1—N4—P1130.41 (16)N4—C1—C3109.04 (19)
C1—N4—H4N113.1 (18)C4—C1—C3110.19 (19)
P1—N4—H4N112.9 (18)C2—C1—C3110.19 (19)
C17—C18—C19110.69 (19)C13—C14—H14A109.5
C17—C18—H18A109.5C13—C14—H14B109.5
C19—C18—H18A109.5H14A—C14—H14B109.5
C17—C18—H18B109.5C13—C14—H14C109.5
C19—C18—H18B109.5H14A—C14—H14C109.5
H18A—C18—H18B108.1H14B—C14—H14C109.5
N9—C17—C18111.56 (19)N18—C35—C38109.52 (19)
N9—C17—H17A109.3N18—C35—C36110.82 (19)
C18—C17—H17A109.3C38—C35—C36109.4 (2)
N9—C17—H17B109.3N18—C35—C37107.6 (2)
C18—C17—H17B109.3C38—C35—C37109.2 (2)
H17A—C17—H17B108.0C36—C35—C37110.2 (2)
C31—N17—P5128.23 (16)C39—C41—H41A109.5
C31—N17—H17N117.3 (16)C39—C41—H41B109.5
P5—N17—H17N107.5 (16)H41A—C41—H41B109.5
N12—C26—C25112.01 (17)C39—C41—H41C109.5
N12—C26—H26A109.2H41A—C41—H41C109.5
C25—C26—H26A109.2H41B—C41—H41C109.5
N12—C26—H26B109.2C9—C11—H11A109.5
C25—C26—H26B109.2C9—C11—H11B109.5
H26A—C26—H26B107.9H11A—C11—H11B109.5
N11—C24—C25113.68 (17)C9—C11—H11C109.5
N11—C24—H24A108.8H11A—C11—H11C109.5
C25—C24—H24A108.8H11B—C11—H11C109.5
N11—C24—H24B108.8C5—C8—H8A109.5
C25—C24—H24B108.8C5—C8—H8B109.5
H24A—C24—H24B107.7H8A—C8—H8B109.5
C35—N18—P6130.17 (16)C5—C8—H8C109.5
C35—N18—H18N112.2 (16)H8A—C8—H8C109.5
P6—N18—H18N109.9 (16)H8B—C8—H8C109.5
C20—C21—C22111.93 (18)C35—C36—H36A109.5
C20—C21—H21A109.2C35—C36—H36B109.5
C22—C21—H21A109.2H36A—C36—H36B109.5
C20—C21—H21B109.2C35—C36—H36C109.5
C22—C21—H21B109.2H36A—C36—H36C109.5
H21A—C21—H21B107.9H36B—C36—H36C109.5
N11—C23—C22113.43 (18)C31—C32—H32A109.5
N11—C23—H23A108.9C31—C32—H32B109.5
C22—C23—H23A108.9H32A—C32—H32B109.5
N11—C23—H23B108.9C31—C32—H32C109.5
C22—C23—H23B108.9H32A—C32—H32C109.5
H23A—C23—H23B107.7H32B—C32—H32C109.5
N8—C13—C16110.27 (18)C31—C34—H34A109.5
N8—C13—C14111.83 (18)C31—C34—H34B109.5
C16—C13—C14110.4 (2)H34A—C34—H34B109.5
N8—C13—C15106.26 (18)C31—C34—H34C109.5
C16—C13—C15108.42 (18)H34A—C34—H34C109.5
C14—C13—C15109.49 (18)H34B—C34—H34C109.5
C5—N5—P1132.52 (15)C31—C33—H33A109.5
C5—N5—H5N112.6 (16)C31—C33—H33B109.5
P1—N5—H5N113.9 (16)H33A—C33—H33B109.5
N16—C27—C29111.18 (19)C31—C33—H33C109.5
N16—C27—C28109.98 (18)H33A—C33—H33C109.5
C29—C27—C28110.43 (19)H33B—C33—H33C109.5
N16—C27—C30107.09 (18)C39—C42—H42A109.5
C29—C27—C30108.94 (19)C39—C42—H42B109.5
C28—C27—C30109.1 (2)H42A—C42—H42B109.5
N10—C20—C21113.68 (17)C39—C42—H42C109.5
N10—C20—H20A108.8H42A—C42—H42C109.5
C21—C20—H20A108.8H42B—C42—H42C109.5
N10—C20—H20B108.8C35—C38—H38A109.5
C21—C20—H20B108.8C35—C38—H38B109.5
H20A—C20—H20B107.7H38A—C38—H38B109.5
C23—C22—C21112.22 (18)C35—C38—H38C109.5
C23—C22—H22A109.2H38A—C38—H38C109.5
C21—C22—H22A109.2H38B—C38—H38C109.5
C23—C22—H22B109.2C35—C37—H37A109.5
C21—C22—H22B109.2C35—C37—H37B109.5
H22A—C22—H22B107.9H37A—C37—H37B109.5
N19—C39—C42106.96 (19)C35—C37—H37C109.5
N19—C39—C40110.77 (18)H37A—C37—H37C109.5
C42—C39—C40109.8 (2)H37B—C37—H37C109.5
N19—C39—C41109.56 (18)C5—C6—H6A109.5
C42—C39—C41110.4 (2)C5—C6—H6B109.5
C40—C39—C41109.4 (2)H6A—C6—H6B109.5
N7—C9—C10110.78 (18)C5—C6—H6C109.5
N7—C9—C11109.87 (17)H6A—C6—H6C109.5
C10—C9—C11109.25 (19)H6B—C6—H6C109.5
N7—C9—C12106.78 (17)C5—C7—H7A109.5
C10—C9—C12110.38 (18)C5—C7—H7B109.5
C11—C9—C12109.76 (19)H7A—C7—H7B109.5
C9—C10—H10A109.5C5—C7—H7C109.5
C9—C10—H10B109.5H7A—C7—H7C109.5
H10A—C10—H10B109.5H7B—C7—H7C109.5

Experimental details

(2b)(2c)(2d)(2e)
Crystal data
Chemical formulaC58H62N10O8P6C22H46N10O8P6C64H68N10P6C58H70N18OP6
Mr1213.00764.511163.101221.14
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, C2/cTriclinic, P1
Temperature (K)120120120150
a, b, c (Å)10.735 (2), 11.067 (3), 14.259 (4)9.871 (2), 29.741 (6), 11.838 (2)11.0388 (2), 30.2194 (5), 17.8858 (4)13.112 (3), 15.160 (3), 17.546 (4)
α, β, γ (°)75.650 (17), 83.84 (2), 61.096 (19)90, 106.18 (3), 9090, 93.002 (1), 9081.67 (3), 74.73 (3), 67.08 (3)
V3)1436.6 (6)3337.5 (12)5958.3 (2)3095.4 (11)
Z1442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.250.380.230.23
Crystal size (mm)0.36 × 0.20 × 0.040.12 × 0.08 × 0.030.10 × 0.08 × 0.040.20 × 0.20 × 0.15
Data collection
DiffractometerBruker-Nonius KappaCCD Area Detector
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1997)
Multi-scan
SORTAV (Blessing, 1997)
Multi-scan
SORTAV Blessing (1997)
Multi-scan
SORTAV (Blessing, 1997)
Tmin, Tmax0.865, 0.9920.956, 0.9890.977, 0.9910.789, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
24237, 6569, 5519 25591, 7080, 3980 34191, 6809, 5324 44336, 13705, 5294
Rint0.1070.1250.0540.187
(sin θ/λ)max1)0.6500.6490.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.152, 1.07 0.063, 0.154, 0.96 0.042, 0.110, 1.02 0.066, 0.168, 0.93
No. of reflections65697080680913705
No. of parameters375424366797
No. of restraints0008
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0477P)2 + 2.1319P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0529P)2 + 4.259P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max0.0360.0120.0040.012
Δρmax, Δρmin (e Å3)0.59, 0.400.43, 0.550.26, 0.400.68, 0.37


(2f)(2g)
Crystal data
Chemical formulaC42H54N18P6C42H102N18P6
Mr996.851045.24
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)120150
a, b, c (Å)30.586 (10), 9.660 (2), 18.449 (5)13.476 (3), 14.437 (3), 16.340 (3)
α, β, γ (°)90, 94.599 (10), 90111.28 (3), 96.87 (3), 93.69 (3)
V3)5433 (3)2921.1 (10)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.250.23
Crystal size (mm)0.24 × 0.05 × 0.030.28 × 0.28 × 0.28
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD Area Detector
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1997)
Multi-scan
SORTAV (Blessing, 1997)
Tmin, Tmax0.944, 0.9930.886, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
10652, 5213, 2316 47815, 10292, 7658
Rint0.1290.071
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.117, 0.277, 1.10 0.041, 0.110, 1.02
No. of reflections521310292
No. of parameters595659
No. of restraints44415
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0439P)2 + 22.223P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0585P)2 + 0.4011P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max0.2540.003
Δρmax, Δρmin (e Å3)0.35, 0.270.28, 0.38

Computer programs: DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998), DENZO (Otwinowski, 1997) & COLLECT (Hooft, 1998), DENZO, COLLECT, DENZO & COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), PLATON (Spek 1998).

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5015 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

The authors would like to thank the EPSRC for funding the National Crystallographic Service (Southampton, England), the Shin Nisso Kako Co Ltd for gifts of N3P3Cl6, the Gebze Institute of Technology (GIT) Research Fund for partial support (GYÇ and AK).

References

First citationAcock, K. G., Shaw, R. A. & Wells, F. B. G. (1964). J. Chem. Soc. pp. 121–130.  CrossRef Web of Science Google Scholar
First citationAhmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456–1461.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAhmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028–1031.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAhmed, F. R. & Pollard, D. R. (1972). Acta Cryst. B28, 513–517.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationAlkubaisi, A. H., Hursthouse, M. B., Shaw, L. S. & Shaw R. A. (1988). Acta Cryst. B44, 16–22.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, C. W., Faught, J. B., Moeller, T. & Paul, I. C (1969). Inorg. Chem. 8, 1719–1727.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146–153.  CrossRef CAS Web of Science Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A., Çiftçi, G. Y. & Yeşilot, S. (2003). J. Am. Chem. Soc. 125, 4943–4950.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067–1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationColes, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Çiftçi, G. Y. (2001). J. Chem. Soc. Dalton Trans. pp. 365–370.  Google Scholar
First citationContractor, S. R., Hursthouse, M. B., Shaw, L. S., Shaw, R. A. & Yılmaz, H. (1985). Acta Cryst. B41, 122–131.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDas, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032–5036.  CrossRef Web of Science Google Scholar
First citationFeakins, D., Last, W. A., Neemuchwala, N. & Shaw, R. A. (1965). J. Chem. Soc. pp. 2804–2811.  CrossRef Web of Science Google Scholar
First citationFeakins, D., Last, W. A., Nabi, S. N., Shaw, R. A. & Watson, P. (1969). J. Chem. Soc. A, pp. 196–202.  CrossRef Google Scholar
First citationFeakins, D., Nabi, S. N., Shaw, R. A. & Watson, P. (1968). J. Chem. Soc. A, pp. 10–15.  CrossRef Google Scholar
First citationFeakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468–2475.  CrossRef Google Scholar
First citationFincham, J. K., Hursthouse, M. B., Parkes, H. G., Shaw, L. S. & Shaw, R. A. (1986). Acta Cryst. B42, 462–472.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKoppel, I. A., Schwesinger, R., Breuer, T., Burk, P., Herodes, K., Koppel, I., Leito, I. & Mishima, M. (2001). J. Phys. Chem. A, 105, 9575–9586.  Web of Science CrossRef CAS Google Scholar
First citationLabarre, J. F., Guerch, G., Sournies, F., Lahana, R., Enjalbert, R. & Galy, J. (1984). J. Mol. Struct. 116, 75–88.  CSD CrossRef CAS Web of Science Google Scholar
First citationMani, N. V., Ahmed, F. R. & Barnes, W. H. (1965). Acta Cryst. 19, 693–697.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMani, N. V., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 375–382.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (1990). Acta Cryst. A46, C34.  CrossRef IUCr Journals Google Scholar
First citationYenilmez-Çiftçi, G. (2004). In the press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds