research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structure of toluene6.4-ZSM-5 and the toluene disproportionation reaction on ZSM-5

aNational Defense Academy, Hashirimizu, Yokosuka 239-8686, Japan
*Correspondence e-mail: yokomori@nda.ac.jp

(Received 14 July 2004; accepted 28 January 2005)

The structure of a high-loading complex of ZSM-5 with 6.4 toluene molecules per unit cell has been determined by single-crystal X-ray diffraction. At least three kinds of toluene molecules were identified in the unit cell. Two disordered toluene molecules were located at the intersection of the straight and sinusoidal channels, the third in the sinusoidal channel. One (TOL1) of the two toluene orientations at the intersection was similar to that of p-dichlorobenzene at the intersection in high-loaded H-ZSM-5/p-xylene (hereafter 8PARA) and high-loaded H-ZSM-5/p-dichlorobenzene (hereafter 8PDCB) complexes, respectively. The other toluene orientation (TOL2) at the intersection was similar to those of p-xylene or p-dichlorobenzene at the intersection in the low-loaded p-dichlorobenzene complex (hereafter 2.6PDCB). A third toluene orientation (TOL3) existed in the sinusoidal channel; its orientation was similar to those of p-xylene and p-dichlorobenzene in the sinusoidal channels in 8PARA and 8PDCB complexes, respectively. If the occupancy of TOL2 at the intersection increases with temperature, TOL2 will connect with TOL3 in the sinusoidal channel and form the intermediate diphenylmethane

1. Introduction

The aluminosilicate ZSM-5 has been of interest due to its wide applicability as a shape-selective catalyst (Eylem et al., 1996[Eylem, C., Hriljac, J. A., Ramamurthy, V., Corbin, D. R. & Parise, J. B. (1996). Chem. Mater. 8, 844-849.]). The sorbate-ZSM-5 structure has been investigated by X-ray single-crystal diffraction and X-ray powder diffraction (Olson et al., 1981[Olson, D. H., Kokotailo, G. T., Lawton S. L. & Meier, W. M. (1981). J. Phys. Chem. 85, 2238-2243.]; Price et al., 1982[Price, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. (1982). J. Am. Chem. Soc. 104, 5971-5977.]; van Koningsveld, 1987[Koningsveld, H. van (1987). Acta Cryst. B43, 127-132.]; Yokomori & Idaka, 1999[Yokomori, Y. & Idaka, S. (1999). Micropor. Mesopor. Mater. 28, 405-413.]; van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., Bekkum, H. van & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.], 1996[Koningsveld, H. van, Jansen, J. C. & Bekkum, H. van (1996). Acta Cryst. B52, 140-144.]; van Koningsveld & Jansen, 1996[Koningsveld, H. van & Jansen, J. C. (1996). Micropor. Mesopor. Mater. 6, 159-167.]; Reck et al., 1996[Reck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698-1704.]; Mentzen, 1989[Mentzen, B. F. (1989). J. Appl. Cryst. 22, 100-104.]). At present, aromatic sorbate-ZSM-5 structures may be grouped into two classes:

  • (i) Low-loading group (4 or less sorbate per unit cell), space group Pnma or Pn21a; α2 (the angle between the positive a axis and the normal to the benzene ring plane) ≃ 45°. Structures that fall into this category include 2.6PDCB (van Koningsveld, Jansen & Man, 1996[Koningsveld, H. van, Jansen, J. C. & Man, H. de (1996). Acta Cryst. B52, 131-139.]), p-nitroaniline3.7-ZSM-5 (Reck et al., 1996[Reck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698-1704.]), naphthalene3.7-ZSM-5 (Klein et al., 1994[Klein, H., Fuess, H., Ernst, S. & Weitkamps, K. (1994). Micropor. Mater. 3, 291-304.]; van Koningsveld & Jansen, 1996[Koningsveld, H. van & Jansen, J. C. (1996). Micropor. Mesopor. Mater. 6, 159-167.]).

  • (ii) High-loading group (over 4 sorbate per unit cell); space group P212121; α2 ≃ 150°. This category includes 8PARA (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., Bekkum, H. van & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]) and 8PDCB (van Koningsveld, Jansen & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & Bekkum, H. van (1996). Acta Cryst. B52, 140-144.]).

The acid-catalyzed disproportionation of toluene to benzene and xylenes has been extensively investigated in ZSM-5 zeolite (Chen et al., 1979[Chen, N. Y., Kaeding, W. W. & Dwyer, F. G. (1979). J. Am. Chem. Soc. 101, 6783-6784.]; Kaeding, 1985[Kaeding, W. W. (1985). J. Catal. 95, 512-519.]; Kaeding et al., 1981[Kaeding, W. W., Chu, C., Young, L. B. & Butter, S. A. (1981). J. Catal. 69, 392-398.]; Young et al., 1982[Young, L. B., Butter, S. A. & Kaeding, W. W. (1982). J. Catal. 76, 418-432.]; Meshram, 1987[Meshram, N. R. (1987). J. Chem. Tech. Biotechnol. 37, 111-122.]). At present, the two widely accepted mechanisms for toluene disproportionation on ZSM-5 are:
  • (i) intermolecular methyl transfer and

  • (ii) a bimolecular reaction invoking a diphenylmethane-type intermediate.

However, these mechanisms are poorly understood and have been the subject of continuing speculation (Xiong et al., 1995[Xiong, Y., Rodewald, P. G. & Chang, C. D. (1995). J. Am. Chem. Soc. 117, 9427-9431.]). We have investigated the toluene-ZSM-5 structure by X-ray single-crystal diffraction. In the process we have determined the new high-loaded toluene6.4-ZSM-5 structure and shown three distinct locations of toluene in the crystal with different occupancies and have begun to understand the toluene disproportionation mechanism in the ZSM-5 crystal field. Here we report, for the first time, the new high-loaded toluene6.4-ZSM-5 structure and show the toluene disproportionation reaction in ZSM-5 zeolite.

2. Experimental

2.1. Preparation of ZSM-5

The ZSM-5 crystals were synthesized by Lermer's method (Lermer et al., 1985[Lermer, H., Draeger, M., Steffen, J. & Unger, K. K. (1985). Zeolites, 5, 131-134.]). The formal molar composition of the reaction mixture was SiO2:NaAlO2:NaOH:TPABr:H2O = 12:1:40:40:2000. The samples were cooled, washed and dried at 388 K for 1 d. Cubic crystals were obtained. The Si/Al ratio was found to be over 183 by EDX (Horiba Co. Ltd, EMAX-5770W) and Na+ content was not measured. The crystals were treated by NaClO4 and calcined at 823 K for 12 h. Calcination started at room temperature; the temperature was raised to 823 K at a rate of 2 K min−1 and after a 12 h hold, lowered down to room temperature at the same rate.

2.2. Preparation of toluene6.4-ZSM-5

A freshly prepared ZSM-5 was exposed in a closed vacuum vessel to saturated toluene vapour at room temperature for 2 d. The crystal selected for X-ray analysis measured 0.10 × 0.07 × 0.05 mm.

2.3. Analysis of toluene6.4-ZSM-5

Cell constants were obtained at 293 K on a DIP-3200 X-ray diffractometer (Bruker AXS Co. Ltd) with an imaging plate, Cu Kα radiation and an Ni filter. Full experimental details are given in Table 1[link].1 The chemical composition of the toluene 6.4-ZSM-5 sample was (CH3C6H5)6.432[Si96O192], Z = 4. The 17 509 reflections were collected with an imaging plate from the sphere of reflection (−24 → h → 24, −23 → k → 24, −16 → l → 16), and was corrected for Lorentz polarization and absorption effects but not for the extinction effect. The structure was solved with direct methods (SIR97; Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) in the space group P212121 (No. 19) and later refined the structure. It is necessary to shift the origin in the standard P212121 setting to (0, 0, [1\over 4])2 for easy comparison with the high-loading groups 8PARA (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., Bekkum, H. van & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]) and 8PDCB (van Koningsveld, Jansen & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & Bekkum, H. van (1996). Acta Cryst. B52, 140-144.]). The structure was refined by the full-matrix least-squares method (SHELXL97; Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.]) using 8477 observations with |I| ≥ 2σ(I). Σw||Fo| − |Fc||2 was minimized; w = 1/[σ2(Fo2) + (0.1099P)2 + 4.6477P], where P = (Fo2 + 2Fc2)/3. All T (T = Si, Al) atoms were treated as silicon and H atoms were included in the calculations. In the final few cycles, three independent toluene molecules were restrained to avoid deformation, i.e. all seven C atoms of toluene were located in a plane and each methyl carbon of toluene was located the same distance from the attached carbon and the two nearest C atoms of the benzene ring. The final difference map showed a peak height of +0.81 (3) e Å−3. The final R value was 0.058 and the final goodness-of-fit parameter (S) was 1.048 with anisotropic displacement factors. All calculations were performed on the computer system of the National Defense Academy.

Table 1
Experimental details

Crystal data
Chemical formula O48Si24·C7·0.614C7H12.80
Mr 1590.25
Cell setting, space group Orthorhombic, P212121
a, b, c (Å) 20.0990 (4), 19.8440 (3), 13.4240 (2)
V3) 5354.1 (2)
Z 4
Dx (Mg m−3) 1.973
Radiation type Cu Kα
No. of reflections for cell parameters 5636
θ range (°) 0.6–0.7
μ (mm−1) 6.49
Temperature (K) 293
Crystal form, colour Cube, colourless
Crystal size (mm) 0.10 × 0.07 × 0.05
   
Data collection
Diffractometer DIP Image plate
Data collection method Image plate
Absorption correction Empirical (using intensity measurements)
Tmin 0.609
Tmax 0.723
No. of measured, independent and observed reflections 17 530, 9878, 8477
Criterion for observed reflections I > 2σ(I)
Rint 0.033
θmax (°) 70.2
Range of h, k, l −24 → h → 24
  −23 → k → 24
  −16 → l → 16
   
Refinement
Refinement on F2
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.05
No. of reflections 9878
No. of parameters 737
H-atom treatment Only coordinates refined
Weighting scheme w = 1/[σ2(Fo2) + (0.1099P)2 + 4.6477P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.041
Δρmax, Δρmin (e Å−3) 0.62, −0.72
Computer programs: DIP Image plate, Scalepack (HKL), maXus (Mackay et al., 1999[Mackay, S., Edwards, C., Henderson, A., Gilmore, C., Stewart, N., Shankland, K. & Donald, A. (1999). maXus. Chemistry Department, The University of Glasgow, Scotland.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.]).

3. Results and discussion

3.1. Results

Final positional and equivalent isotropic displacement parameters of high-loaded toluene 6.4-ZSM-5 have been deposited. Figs. 1[link](a) and (b) show the ZSM-5 zeolite framework and adsorbed toluene molecules at 293 K. Fig. 2[link] shows an ORTEP3 (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEP3. Report ORNL-6895. Oak Ridge National Laboratory, Tenessee, USA.]) drawing in which the three types of toluene molecules in the ZSM-5 framework are highlighted in colour. Two kinds of toluene molecule (TOL1 and TOL2) are located at the intersection of straight and sinusoidal channels, and the other toluene molecule (TOL3) is located in the sinusoidal channel of ZSM-5. In the case of 8PARA or 8PDCB, an additional adsorbed molecule is located at the intersection, while another molecule is located in the sinusoidal channel of ZSM-5. However, the toluene molecule is smaller than the p-xylene or p-dichlorobenzene molecule, thus two kinds of toluene molecules (TOL1, TOL2) are located in disorder around the intersection. The occupancy factors of TOL1, TOL2 and TOL3 were 0.65 (1), 0.33 (1) and 0.62 (1), respectively, as shown in Fig. 1[link](a). TOL2 and TOL3 do not form a bond because the shortest distance between the two C atoms is 2.00 Å.

[Figure 1]
Figure 1
ORTEP3 drawings (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEP3. Report ORNL-6895. Oak Ridge National Laboratory, Tenessee, USA.]) of Tol6.4-ZSM-5. (a) View down the straight channel axis. Tol1 and Tol2 are at the intersection of the channels; Tol3 is in the sinusoidal channel. The occupancy factors are 0.65, 0.33 and 0.62, respectively. (b) View approximately along [001]. H atoms are not shown. The ellipsoids are drawn at 50% probability.
[Figure 2]
Figure 2
ORTEP (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEP3. Report ORNL-6895. Oak Ridge National Laboratory, Tenessee, USA.]) drawing of three kinds of toluene molecule in ZSM-5.

3.2. Disordering of toluene

Two kinds of toluene molecules (TOL1 and TOL2) are located in disorder around the intersection. The occupancy factors of TOL1 and TOL2 are 0.65 and 0.33, respectively, as shown in Fig. 1[link](a). The TOL1 orientation at the intersection is similar to that of p-dichlorobenzene at the intersection in 2.6PDCB. The angle with the positive a axis and the normal on the toluene ring plane (α2) is 52.7°. The α2 values for 2.6PDCB (van Koningsveld, Jansen & Man, 1996[Koningsveld, H. van, Jansen, J. C. & Man, H. de (1996). Acta Cryst. B52, 131-139.]), p-nitroaniline3.7-ZSM-5 (Reck et al., 1996[Reck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698-1704.]) and naphthalene3.7-ZSM-5 (van Koningsveld & Jansen, 1996[Koningsveld, H. van & Jansen, J. C. (1996). Micropor. Mesopor. Mater. 6, 159-167.]) are 47.1, 44.3 and 40.5°, respectively. The TOL1 orientation with a high occupancy factor (0.65) is the first example in the high-loaded group. The TOL2 orientation at the intersection is formally similar to those of p-xylene or p-dichlorobenzene at the intersection in 8PARA (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., Bekkum, H. van & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]) and 8PDCB (van Koningsveld, Jansen & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & Bekkum, H. van (1996). Acta Cryst. B52, 140-144.]), respectively. The α2 angle of TOL2, 8PARA and 8PDCB is 171.4, 149.0 and 153.8°, respectively. However, the occupancy factor of the TOL2 orientation is only 0.33 in the present high-loaded toluene/ZSM-5. Table 2[link] gives the fractional coordinates (x, y, z) and the corresponding α2 of TOL1 and TOL2 at the intersection, together with those of 2.6PDCB, 8PARA and 8PDCB. The TOL2 orientation has a high α2 value (171.4) and a very low z value (−0.0560). This means that TOL2 approaches TOL3 in the sinusoidal channel. However, we question whether or not TOL2 and TOL3 can be occupied simultaneously. The answer is no because the occupancy factor of TOL3 located in the sinusoidal channel is 0.62. That is, the contribution of the TOL1 and TOL3 orientations is ca 65%, while that of TOL2 and the vacant TOL3 space is ca 33%. The shortest bond distance between the two C atoms of TOL2 and TOL3 is 2.00 Å. This is too long for TOL2 and TOL3 to bond with each other.

Table 2
Orientation of molecules at the intersection of channels in MFI

  TOL1 TOL2 2.6PDCB 8PARA 8PDCB
x 0.4742 0.5081 0.4860 0.5105 0.5113
y 0.2465 0.2495 0.2400 0.2390 0.2419
z −0.0370 −0.0560 −0.0188 −0.0188 −0.0253
α2 (°) 52.7 171.4 47.1 149.0 153.8

3.3. Toluene disproportionation

It is tempting to speculate on the dynamics of the toluene disproportionation reaction in the ZSM-5 framework. The reaction consists of four steps.

  • (i) Toluene molecules are adsorbed on ZSM-5, diffuse into the straight channel and are confined at the intersection. This is TOL1 in Figs. 1[link](a) and (b).

  • (ii) Toluene molecules diffuse into the sinusoidal channel and are confined there. This is TOL3.

  • (iii) TOL1 partially transforms into TOL2.

  • (iv) If the reaction temperature increases, the proportion of TOL2 increases above 33%. TOL2 and TOL3 become occupied simultaneously and bond with each other.

The combined molecule (TOL2–TOL3) is a diphenylmethane- or diphenylmethane-type cation (Chen et al., 1989[Chen, F., Coudurier, G. & Naccache, C. (1989). Stud. Surf. Sci. Catal. B, 49, 1387-1396.]). Wu et al. (1998[Wu, P., Komatsu, T. & Yashima, T. (1998). Micropor. Mesopor. Mater. 22, 343-356.]) varied contact time over a wide range to determine which isomer of xylene is the primary product of toluene disproportionation on ZSM-5 and other zeolites. Unfortunately, the results for only ZSM-5 did not reveal which m- or p-xylene isomer is preferred. Fig. 2[link] shows that m-xylene is a primary product of toluene disproportionation on ZSM-5.

Supporting information


Computing details top

Data collection: Bruker FRAMBO; cell refinement: Bruker FRAMBO; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1]
[Figure 2]
(tol_zsm5) top
Crystal data top
C11.33H12.95O48Si24F(000) = 3203.8
Mr = 1591.33Dx = 2.018 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 20.0990 (4) ŵ = 6.49 mm1
b = 19.8440 (3) ÅT = 293 K
c = 13.4240 (2) ÅCubic, colorless
V = 5354.09 (16) Å30.10 × 0.07 × 0.05 mm
Z = 4
Data collection top
DIP Image plate
diffractometer
10206 independent reflections
Radiation source: roter5636 reflections with I > 2σ(I)
Ni filter monochromatorRint = 0.044
phi and ω scansθmax = 70.2°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
?
h = 2424
Tmin = 0.609, Tmax = 0.723k = 2324
17509 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058Ride
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1099P)2 + 4.6477P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.060
5636 reflectionsΔρmax = 0.79 e Å3
700 parametersΔρmin = 0.72 e Å3
15 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (4)
Crystal data top
C11.33H12.95O48Si24V = 5354.09 (16) Å3
Mr = 1591.33Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 20.0990 (4) ŵ = 6.49 mm1
b = 19.8440 (3) ÅT = 293 K
c = 13.4240 (2) Å0.10 × 0.07 × 0.05 mm
Data collection top
DIP Image plate
diffractometer
10206 independent reflections
Absorption correction: empirical (using intensity measurements)
?
5636 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.723Rint = 0.044
17509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058Ride
wR(F2) = 0.172Δρmax = 0.79 e Å3
S = 1.05Δρmin = 0.72 e Å3
5636 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
700 parametersAbsolute structure parameter: 0.43 (4)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.0110 (10)0.6854 (7)0.2209 (16)0.158 (13)*0.607 (12)
C120.0634 (9)0.7062 (9)0.1608 (14)0.184 (13)*0.607 (12)
H120.08810.67460.12560.221*0.607 (12)
C130.0789 (9)0.7743 (11)0.1533 (14)0.186 (13)*0.607 (12)
H130.11390.78820.11300.223*0.607 (12)
C140.0419 (10)0.8216 (8)0.2059 (17)0.160 (11)*0.607 (12)
H140.05220.86710.20090.192*0.607 (12)
C150.0105 (10)0.8008 (8)0.2661 (16)0.176 (14)*0.607 (12)
H150.03520.83240.30130.212*0.607 (12)
C160.0260 (9)0.7327 (9)0.2736 (15)0.136 (9)*0.607 (12)
H160.06100.71880.31380.163*0.607 (12)
C170.0016 (15)0.6124 (14)0.239 (3)0.219 (18)*0.607 (12)
H17A0.01150.59060.17850.263*0.607 (12)
H17B0.03230.60600.28870.263*0.607 (12)
H17C0.04260.59320.26250.263*0.607 (12)
C210.0031 (9)0.8150 (13)0.2296 (19)0.18 (2)*0.378 (12)
C220.0015 (13)0.7606 (15)0.294 (2)0.18 (2)*0.378 (12)
H220.00730.76780.36220.215*0.378 (12)
C230.0026 (15)0.6952 (14)0.258 (3)0.128 (14)*0.378 (12)
H230.00040.65880.30090.154*0.378 (12)
C240.0112 (15)0.6843 (15)0.156 (3)0.28 (4)*0.378 (12)
H240.01400.64060.13150.336*0.378 (12)
C250.0158 (18)0.739 (2)0.091 (2)0.29 (4)*0.378 (12)
H250.02160.73150.02350.342*0.378 (12)
C260.0117 (15)0.8042 (17)0.1281 (19)0.23 (3)*0.378 (12)
H260.01470.84060.08480.278*0.378 (12)
C270.0011 (14)0.8790 (16)0.264 (3)0.125 (14)*0.378 (12)
H27A0.00010.90990.20930.150*0.378 (12)
H27B0.04210.88460.30010.150*0.378 (12)
H27C0.03570.88790.30790.150*0.378 (12)
C310.1164 (6)0.7546 (6)0.0757 (10)0.221 (15)*0.634 (9)
C320.1694 (8)0.7759 (6)0.0171 (9)0.123 (8)*0.634 (9)
H320.16160.79300.04640.148*0.634 (9)
C330.2340 (7)0.7718 (7)0.0534 (12)0.186 (12)*0.634 (9)
H330.26950.78610.01420.223*0.634 (9)
C340.2457 (6)0.7464 (6)0.1483 (13)0.140 (8)*0.634 (9)
H340.28890.74360.17260.168*0.634 (9)
C350.1927 (8)0.7251 (6)0.2069 (9)0.132 (8)*0.634 (9)
H350.20050.70810.27040.158*0.634 (9)
C360.1280 (7)0.7292 (6)0.1706 (10)0.123 (8)*0.634 (9)
H360.09260.71490.20980.148*0.634 (9)
C370.0556 (13)0.7563 (11)0.0428 (18)0.204 (14)*0.634 (9)
H37A0.02610.73890.09280.245*0.634 (9)
H37B0.05230.72930.01630.245*0.634 (9)
H37C0.04360.80200.02760.245*0.634 (9)
O10.3729 (2)1.0609 (2)0.5190 (3)0.0381 (11)
O20.3104 (2)1.0524 (2)0.6866 (3)0.0349 (9)
O30.2017 (2)1.0557 (2)0.7910 (4)0.0512 (12)
O40.0976 (2)1.0572 (2)0.6793 (3)0.0416 (11)
O50.11524 (19)1.0632 (2)0.4875 (3)0.0289 (9)
O60.2434 (2)1.0601 (2)0.5216 (3)0.0408 (11)
O70.3717 (2)0.8385 (2)0.5249 (4)0.0425 (12)
O80.3071 (3)0.8521 (2)0.6885 (3)0.0379 (10)
O90.1953 (2)0.84545 (18)0.7864 (3)0.0372 (10)
O100.0870 (3)0.8440 (3)0.6827 (4)0.0524 (14)
O110.1152 (2)0.8358 (2)0.4936 (4)0.0408 (12)
O120.2421 (2)0.8416 (3)0.5221 (4)0.0443 (12)
O130.3093 (3)0.9508 (2)0.5591 (3)0.0535 (13)
O140.0823 (2)0.9500 (2)0.5708 (4)0.0420 (11)
O150.4181 (2)1.13557 (18)0.3739 (4)0.0355 (11)
O160.4052 (2)1.0060 (2)0.3475 (4)0.0433 (12)
O170.4022 (2)0.8747 (2)0.3425 (3)0.0390 (11)
O180.1934 (2)1.13676 (17)0.3822 (3)0.0320 (9)
O190.1943 (3)1.00733 (18)0.3569 (3)0.0430 (11)
O200.1933 (3)0.87689 (18)0.3481 (3)0.0416 (11)
O210.00340 (18)1.0484 (2)0.5553 (3)0.0310 (9)
O220.0059 (2)0.8535 (2)0.5512 (4)0.0346 (11)
O230.4250 (2)0.7529 (2)0.3998 (3)0.0401 (11)
O240.1921 (2)0.75217 (17)0.4010 (3)0.0360 (10)
O250.2826 (2)0.74721 (18)0.8004 (3)0.0334 (10)
O260.10991 (19)0.74639 (18)0.8060 (3)0.0295 (9)
O270.8708 (2)1.0555 (3)0.5119 (3)0.0463 (12)
O280.8033 (2)1.06653 (17)0.3503 (3)0.0310 (9)
O290.7001 (2)1.0621 (2)0.2294 (3)0.0474 (11)
O300.5988 (2)1.06642 (19)0.3496 (3)0.0322 (10)
O310.61457 (19)1.0509 (2)0.5421 (3)0.0309 (9)
O320.7428 (2)1.0466 (3)0.5184 (4)0.0505 (13)
O330.8712 (2)0.8446 (3)0.5022 (4)0.0472 (13)
O340.8052 (3)0.8389 (2)0.3400 (3)0.0477 (12)
O350.6968 (2)0.84893 (18)0.2369 (3)0.0390 (10)
O360.5905 (2)0.8330 (2)0.3465 (4)0.0435 (12)
O370.6155 (2)0.8463 (2)0.5359 (4)0.0370 (12)
O380.7424 (3)0.8526 (3)0.5067 (4)0.0595 (16)
O390.8112 (3)0.9506 (2)0.4366 (4)0.0654 (15)
O400.5771 (2)0.9499 (2)0.4296 (3)0.0378 (10)
O410.9191 (2)1.1211 (2)0.6641 (4)0.0407 (12)
O420.9110 (2)0.9913 (2)0.6741 (3)0.0406 (11)
O430.9017 (2)0.86075 (18)0.6896 (3)0.0325 (10)
O440.6898 (2)1.12399 (19)0.6541 (3)0.0401 (11)
O450.6886 (2)0.99435 (18)0.6782 (3)0.0347 (10)
O460.6953 (3)0.86324 (17)0.6878 (3)0.0359 (10)
O470.49674 (18)1.0519 (2)0.4676 (3)0.0290 (9)
O480.4953 (2)0.8517 (2)0.4736 (3)0.0341 (11)
Si10.42311 (7)1.06305 (7)0.42713 (11)0.0192 (3)
Si20.30852 (8)1.03054 (6)0.57164 (11)0.0212 (3)
Si30.28056 (7)1.05625 (7)0.79564 (11)0.0214 (3)
Si40.12313 (7)1.05806 (7)0.79019 (10)0.0189 (3)
Si50.07261 (7)1.02917 (7)0.57396 (11)0.0181 (3)
Si60.18717 (8)1.06630 (7)0.43703 (11)0.0209 (3)
Si70.42334 (7)0.82965 (7)0.43516 (11)0.0191 (3)
Si80.30749 (9)0.87135 (7)0.57311 (11)0.0205 (3)
Si90.27272 (7)0.82642 (7)0.78820 (11)0.0195 (3)
Si100.11852 (8)0.82536 (7)0.78673 (11)0.0199 (3)
Si110.06951 (8)0.87090 (7)0.57441 (11)0.0191 (3)
Si120.18594 (8)0.82715 (6)0.44067 (10)0.0199 (3)
Si130.92364 (7)1.05334 (7)0.60133 (10)0.0186 (3)
Si140.80721 (8)1.02965 (6)0.45506 (11)0.0218 (3)
Si150.77953 (7)1.06781 (6)0.23623 (11)0.0196 (3)
Si160.62220 (7)1.06911 (7)0.23581 (11)0.0194 (3)
Si170.57204 (7)1.02937 (7)0.44683 (11)0.0173 (3)
Si180.68470 (7)1.05379 (7)0.59752 (10)0.0205 (3)
Si190.92315 (7)0.82630 (7)0.58549 (11)0.0194 (3)
Si200.80734 (9)0.87189 (6)0.44695 (11)0.0216 (3)
Si210.77343 (7)0.82920 (7)0.23258 (12)0.0209 (3)
Si220.61928 (8)0.82846 (7)0.23530 (12)0.0202 (3)
Si230.56992 (8)0.87071 (7)0.44605 (11)0.0195 (3)
Si240.68649 (8)0.82708 (6)0.58150 (11)0.0209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.024 (2)0.048 (3)0.042 (3)0.007 (2)0.0121 (19)0.003 (2)
O20.033 (2)0.047 (2)0.0246 (19)0.005 (2)0.0049 (19)0.0030 (18)
O30.011 (2)0.078 (3)0.065 (3)0.002 (2)0.001 (2)0.002 (3)
O40.053 (3)0.047 (3)0.025 (2)0.002 (2)0.008 (2)0.006 (2)
O50.021 (2)0.036 (2)0.030 (2)0.0007 (17)0.0065 (16)0.0143 (18)
O60.026 (2)0.056 (3)0.040 (3)0.007 (2)0.0101 (19)0.009 (2)
O70.028 (3)0.053 (3)0.046 (3)0.005 (2)0.017 (2)0.001 (2)
O80.041 (3)0.047 (2)0.026 (2)0.004 (2)0.002 (2)0.0113 (17)
O90.019 (2)0.033 (2)0.060 (3)0.0001 (18)0.001 (2)0.0059 (19)
O100.059 (4)0.058 (3)0.040 (3)0.006 (2)0.020 (3)0.018 (2)
O110.029 (3)0.039 (3)0.054 (3)0.0013 (19)0.014 (2)0.020 (2)
O120.033 (3)0.053 (3)0.046 (3)0.009 (2)0.007 (2)0.009 (2)
O130.088 (4)0.019 (2)0.053 (3)0.003 (3)0.003 (3)0.003 (2)
O140.039 (3)0.019 (2)0.068 (3)0.0008 (19)0.001 (2)0.004 (2)
O150.042 (3)0.017 (2)0.048 (3)0.0002 (16)0.019 (2)0.0088 (18)
O160.059 (3)0.031 (2)0.040 (3)0.011 (2)0.010 (2)0.008 (2)
O170.054 (3)0.027 (2)0.036 (3)0.009 (2)0.008 (2)0.0113 (19)
O180.042 (2)0.0191 (18)0.035 (2)0.0032 (18)0.010 (2)0.0062 (15)
O190.064 (3)0.0218 (19)0.044 (2)0.006 (2)0.010 (3)0.0102 (18)
O200.063 (3)0.0230 (18)0.039 (2)0.010 (2)0.001 (3)0.0087 (18)
O210.019 (2)0.041 (2)0.033 (2)0.0033 (18)0.0056 (16)0.003 (2)
O220.018 (2)0.046 (3)0.040 (3)0.0071 (18)0.0002 (19)0.000 (2)
O230.064 (3)0.0164 (19)0.040 (3)0.003 (2)0.012 (2)0.0055 (18)
O240.055 (3)0.0141 (17)0.039 (2)0.000 (2)0.019 (2)0.0038 (16)
O250.044 (2)0.0148 (17)0.041 (2)0.0007 (17)0.0062 (19)0.0054 (17)
O260.044 (2)0.0135 (17)0.031 (2)0.0005 (17)0.0027 (18)0.0003 (16)
O270.026 (2)0.069 (3)0.043 (3)0.008 (2)0.012 (2)0.010 (3)
O280.043 (2)0.0276 (19)0.0225 (19)0.0063 (19)0.0039 (19)0.0052 (15)
O290.025 (2)0.066 (3)0.051 (3)0.002 (2)0.000 (2)0.008 (2)
O300.043 (2)0.030 (2)0.024 (2)0.0014 (18)0.0093 (18)0.0054 (17)
O310.022 (2)0.039 (2)0.032 (2)0.0023 (18)0.0100 (16)0.009 (2)
O320.025 (2)0.082 (4)0.044 (3)0.010 (3)0.015 (2)0.011 (3)
O330.037 (3)0.062 (3)0.043 (3)0.009 (2)0.016 (2)0.003 (2)
O340.048 (3)0.063 (3)0.032 (2)0.007 (3)0.012 (2)0.022 (2)
O350.021 (2)0.0329 (19)0.063 (3)0.0013 (18)0.001 (2)0.0049 (19)
O360.062 (3)0.030 (2)0.039 (3)0.001 (2)0.014 (2)0.013 (2)
O370.025 (3)0.038 (2)0.049 (3)0.0056 (18)0.014 (2)0.004 (2)
O380.039 (3)0.088 (4)0.052 (3)0.015 (3)0.013 (3)0.012 (3)
O390.103 (4)0.016 (2)0.077 (4)0.003 (3)0.007 (4)0.004 (2)
O400.047 (3)0.023 (2)0.043 (2)0.002 (2)0.003 (2)0.001 (2)
O410.044 (3)0.024 (2)0.054 (3)0.0023 (19)0.016 (2)0.012 (2)
O420.052 (3)0.027 (2)0.042 (3)0.0030 (19)0.011 (2)0.0074 (19)
O430.040 (3)0.018 (2)0.039 (3)0.0010 (16)0.006 (2)0.0025 (17)
O440.047 (3)0.0233 (19)0.050 (3)0.004 (2)0.016 (2)0.0100 (18)
O450.042 (3)0.0229 (18)0.039 (2)0.0065 (19)0.005 (2)0.0082 (16)
O460.053 (3)0.0198 (18)0.036 (2)0.0058 (19)0.008 (3)0.0101 (16)
O470.0153 (19)0.037 (2)0.035 (2)0.0055 (17)0.0004 (16)0.000 (2)
O480.021 (2)0.047 (3)0.034 (3)0.0085 (19)0.0039 (18)0.0023 (19)
Si10.0178 (7)0.0141 (7)0.0258 (7)0.0005 (5)0.0010 (6)0.0034 (6)
Si20.0203 (8)0.0185 (6)0.0249 (7)0.0010 (6)0.0021 (7)0.0013 (5)
Si30.0212 (7)0.0170 (6)0.0258 (7)0.0004 (5)0.0000 (5)0.0031 (6)
Si40.0183 (7)0.0163 (6)0.0222 (7)0.0009 (6)0.0001 (5)0.0032 (6)
Si50.0168 (7)0.0158 (6)0.0215 (7)0.0000 (5)0.0011 (6)0.0013 (5)
Si60.0195 (7)0.0174 (6)0.0258 (7)0.0009 (5)0.0049 (6)0.0041 (5)
Si70.0190 (8)0.0120 (6)0.0265 (7)0.0008 (5)0.0009 (6)0.0005 (5)
Si80.0215 (8)0.0165 (6)0.0235 (7)0.0001 (6)0.0024 (7)0.0008 (5)
Si90.0219 (8)0.0129 (6)0.0237 (7)0.0018 (5)0.0001 (6)0.0011 (6)
Si100.0238 (8)0.0115 (6)0.0244 (7)0.0011 (6)0.0003 (6)0.0006 (6)
Si110.0180 (8)0.0161 (6)0.0233 (7)0.0007 (5)0.0005 (6)0.0005 (5)
Si120.0210 (8)0.0122 (6)0.0265 (7)0.0014 (6)0.0033 (6)0.0021 (5)
Si130.0159 (7)0.0156 (6)0.0242 (7)0.0006 (6)0.0012 (5)0.0000 (6)
Si140.0214 (8)0.0188 (6)0.0251 (7)0.0010 (6)0.0008 (7)0.0023 (5)
Si150.0208 (7)0.0155 (7)0.0225 (7)0.0006 (5)0.0008 (6)0.0035 (5)
Si160.0195 (7)0.0168 (7)0.0218 (7)0.0002 (5)0.0008 (6)0.0013 (5)
Si170.0171 (7)0.0155 (6)0.0194 (7)0.0001 (5)0.0021 (6)0.0005 (5)
Si180.0190 (7)0.0185 (6)0.0239 (7)0.0003 (6)0.0031 (6)0.0033 (6)
Si190.0177 (8)0.0132 (6)0.0273 (7)0.0021 (5)0.0023 (6)0.0026 (6)
Si200.0235 (8)0.0158 (6)0.0254 (7)0.0018 (6)0.0033 (7)0.0010 (5)
Si210.0245 (8)0.0119 (6)0.0263 (8)0.0009 (5)0.0000 (6)0.0008 (6)
Si220.0215 (8)0.0108 (6)0.0281 (8)0.0019 (5)0.0007 (6)0.0012 (6)
Si230.0179 (8)0.0153 (6)0.0252 (7)0.0003 (5)0.0002 (6)0.0020 (5)
Si240.0233 (8)0.0142 (6)0.0251 (7)0.0003 (6)0.0050 (7)0.0003 (5)
Geometric parameters (Å, º) top
C11—C121.3900O18—Si9i1.609 (4)
C11—C161.3900O19—Si3i1.589 (4)
C11—C171.48 (3)O19—Si61.596 (4)
C12—C131.3900O20—Si3i1.591 (4)
C12—H120.9300O20—Si121.594 (4)
C13—C141.3900O21—Si13ii1.594 (4)
C13—H130.9300O21—Si51.594 (4)
C14—C151.3900O22—Si111.585 (4)
C14—H140.9300O22—Si19ii1.593 (4)
C15—C161.3900O23—Si19iii1.585 (4)
C15—H150.9300O23—Si71.595 (4)
C16—H160.9300O24—Si121.585 (3)
C17—H17A0.9600O24—Si24iii1.594 (3)
C17—H17B0.9600O25—Si21iii1.590 (4)
C17—H17C0.9600O25—Si91.593 (4)
C21—C271.35 (4)O26—Si22iii1.596 (4)
C21—C221.3900O26—Si101.598 (4)
C21—C261.3900O27—Si141.575 (4)
C22—C231.3900O27—Si131.603 (4)
C22—H220.9300O28—Si141.587 (4)
C23—C241.3900O28—Si151.605 (4)
C23—H230.9300O29—Si161.575 (5)
C24—C251.3900O29—Si151.603 (5)
C24—H240.9300O30—Si171.592 (4)
C25—C261.3900O30—Si161.599 (4)
C25—H250.9300O31—Si181.595 (4)
C26—H260.9300O31—Si171.597 (4)
C27—H27A0.9600O32—Si181.585 (4)
C27—H27B0.9600O32—Si141.585 (4)
C27—H27C0.9600O33—Si191.572 (5)
C31—C371.30 (3)O33—Si201.579 (5)
C31—C321.3900O34—Si201.579 (4)
C31—C361.3900O34—Si211.589 (4)
C32—C331.3900O35—Si211.591 (5)
C32—H320.9300O35—Si221.610 (5)
C33—C341.3900O36—Si231.586 (4)
C33—H330.9300O36—Si221.604 (5)
C34—C351.3900O37—Si231.590 (5)
C34—H340.9300O37—Si241.599 (4)
C35—C361.3900O38—Si201.580 (5)
C35—H350.9300O38—Si241.589 (5)
C36—H360.9300O39—Si201.570 (4)
C37—H37A0.9600O39—Si141.590 (4)
C37—H37B0.9600O40—Si231.593 (4)
C37—H37C0.9600O40—Si171.598 (4)
O1—Si21.593 (4)O41—Si22iv1.584 (4)
O1—Si11.594 (4)O41—Si131.590 (4)
O2—Si31.584 (4)O42—Si131.591 (4)
O2—Si21.603 (4)O42—Si16iv1.604 (4)
O3—Si41.579 (4)O43—Si16iv1.598 (4)
O3—Si31.587 (4)O43—Si191.614 (4)
O4—Si41.575 (4)O44—Si21iv1.588 (4)
O4—Si51.600 (4)O44—Si181.590 (4)
O5—Si51.593 (4)O45—Si15iv1.594 (4)
O5—Si61.598 (4)O45—Si181.603 (4)
O6—Si21.584 (4)O46—Si15iv1.597 (4)
O6—Si61.606 (4)O46—Si241.607 (4)
O7—Si81.585 (5)O47—Si11.592 (4)
O7—Si71.599 (5)O47—Si171.602 (4)
O8—Si91.591 (4)O48—Si231.590 (4)
O8—Si81.595 (4)O48—Si71.596 (4)
O9—Si101.593 (5)Si3—O19v1.589 (4)
O9—Si91.602 (5)Si3—O20v1.591 (4)
O10—Si101.578 (5)Si4—O16v1.592 (4)
O10—Si111.588 (5)Si4—O17v1.592 (4)
O11—Si111.583 (4)Si9—O18v1.609 (4)
O11—Si121.599 (4)Si10—O15v1.585 (4)
O12—Si81.595 (5)Si13—O21vi1.594 (4)
O12—Si121.597 (5)Si15—O45vii1.594 (4)
O13—Si81.588 (4)Si15—O46vii1.597 (4)
O13—Si21.592 (4)Si16—O43vii1.598 (4)
O14—Si51.583 (4)Si16—O42vii1.604 (4)
O14—Si111.591 (4)Si19—O23viii1.585 (4)
O15—Si10i1.585 (4)Si19—O22vi1.593 (4)
O15—Si11.610 (4)Si21—O44vii1.588 (4)
O16—Si4i1.592 (4)Si21—O25viii1.590 (4)
O16—Si11.598 (4)Si22—O41vii1.584 (4)
O17—Si71.589 (4)Si22—O26viii1.596 (4)
O17—Si4i1.592 (4)Si24—O24viii1.594 (3)
O18—Si61.585 (4)
C12—C11—C16120.0O2—Si3—O3110.0 (3)
C12—C11—C17118.9 (8)O2—Si3—O19v108.6 (2)
C16—C11—C17120.5 (8)O3—Si3—O19v109.5 (3)
C13—C12—C11120.0O2—Si3—O20v108.9 (2)
C13—C12—H12120.0O3—Si3—O20v110.6 (3)
C11—C12—H12120.0O19v—Si3—O20v109.1 (2)
C12—C13—C14120.0O4—Si4—O3109.4 (3)
C12—C13—H13120.0O4—Si4—O16v109.4 (3)
C14—C13—H13120.0O3—Si4—O16v109.3 (3)
C15—C14—C13120.0O4—Si4—O17v108.8 (3)
C15—C14—H14120.0O3—Si4—O17v109.9 (3)
C13—C14—H14120.0O16v—Si4—O17v110.0 (2)
C14—C15—C16120.0O14—Si5—O5109.6 (2)
C14—C15—H15120.0O14—Si5—O21110.5 (2)
C16—C15—H15120.0O5—Si5—O21107.4 (2)
C15—C16—C11120.0O14—Si5—O4109.3 (3)
C15—C16—H16120.0O5—Si5—O4109.1 (2)
C11—C16—H16120.0O21—Si5—O4110.9 (2)
C11—C17—H17A109.5O18—Si6—O19109.1 (2)
C11—C17—H17B109.5O18—Si6—O5107.6 (2)
H17A—C17—H17B109.5O19—Si6—O5109.8 (3)
C11—C17—H17C109.5O18—Si6—O6109.9 (3)
H17A—C17—H17C109.5O19—Si6—O6110.9 (3)
H17B—C17—H17C109.5O5—Si6—O6109.5 (2)
C27—C21—C22120.7 (9)O17—Si7—O23108.0 (2)
C27—C21—C26119.3 (8)O17—Si7—O48110.0 (3)
C22—C21—C26120.0O23—Si7—O48109.7 (2)
C21—C22—C23120.0O17—Si7—O7110.7 (3)
C21—C22—H22120.0O23—Si7—O7110.0 (3)
C23—C22—H22120.0O48—Si7—O7108.4 (3)
C24—C23—C22120.0O7—Si8—O13110.0 (3)
C24—C23—H23120.0O7—Si8—O12110.0 (3)
C22—C23—H23120.0O13—Si8—O12109.6 (3)
C25—C24—C23120.0O7—Si8—O8107.6 (3)
C25—C24—H24120.0O13—Si8—O8110.6 (2)
C23—C24—H24120.0O12—Si8—O8109.0 (3)
C26—C25—C24120.0O8—Si9—O25110.4 (2)
C26—C25—H25120.0O8—Si9—O9109.5 (3)
C24—C25—H25120.0O25—Si9—O9110.8 (2)
C25—C26—C21120.0O8—Si9—O18v109.3 (2)
C25—C26—H26120.0O25—Si9—O18v108.4 (2)
C21—C26—H26120.0O9—Si9—O18v108.4 (2)
C21—C27—H27A109.5O10—Si10—O15v110.6 (3)
C21—C27—H27B109.5O10—Si10—O9109.1 (3)
H27A—C27—H27B109.5O15v—Si10—O9109.2 (2)
C21—C27—H27C109.5O10—Si10—O26109.3 (3)
H27A—C27—H27C109.5O15v—Si10—O26108.1 (2)
H27B—C27—H27C109.5O9—Si10—O26110.5 (2)
C37—C31—C32121.3 (8)O11—Si11—O22108.9 (3)
C37—C31—C36118.6 (8)O11—Si11—O10110.6 (3)
C32—C31—C36120.0O22—Si11—O10108.6 (3)
C33—C32—C31120.0O11—Si11—O14108.6 (3)
C33—C32—H32120.0O22—Si11—O14111.3 (2)
C31—C32—H32120.0O10—Si11—O14108.9 (3)
C32—C33—C34120.0O24—Si12—O20108.2 (2)
C32—C33—H33120.0O24—Si12—O12110.0 (3)
C34—C33—H33120.0O20—Si12—O12110.9 (3)
C33—C34—C35120.0O24—Si12—O11108.7 (2)
C33—C34—H34120.0O20—Si12—O11111.2 (3)
C35—C34—H34120.0O12—Si12—O11107.8 (3)
C36—C35—C34120.0O41—Si13—O42108.7 (2)
C36—C35—H35120.0O41—Si13—O21vi108.1 (2)
C34—C35—H35120.0O42—Si13—O21vi109.7 (2)
C35—C36—C31120.0O41—Si13—O27109.7 (3)
C35—C36—H36120.0O42—Si13—O27112.0 (3)
C31—C36—H36120.0O21vi—Si13—O27108.7 (2)
C31—C37—H37A109.5O27—Si14—O32109.5 (3)
C31—C37—H37B109.5O27—Si14—O28108.6 (2)
H37A—C37—H37B109.5O32—Si14—O28109.7 (3)
C31—C37—H37C109.5O27—Si14—O39110.8 (3)
H37A—C37—H37C109.5O32—Si14—O39109.5 (3)
H37B—C37—H37C109.5O28—Si14—O39108.6 (2)
Si2—O1—Si1150.1 (3)O45vii—Si15—O46vii109.7 (2)
Si3—O2—Si2153.4 (3)O45vii—Si15—O29108.5 (2)
Si4—O3—Si3177.3 (4)O46vii—Si15—O29110.6 (3)
Si4—O4—Si5160.3 (3)O45vii—Si15—O28109.5 (2)
Si5—O5—Si6144.3 (3)O46vii—Si15—O28107.9 (2)
Si2—O6—Si6155.5 (3)O29—Si15—O28110.5 (2)
Si8—O7—Si7151.8 (4)O29—Si16—O43vii110.8 (2)
Si9—O8—Si8153.6 (4)O29—Si16—O30110.0 (2)
Si10—O9—Si9151.9 (3)O43vii—Si16—O30108.2 (2)
Si10—O10—Si11168.0 (4)O29—Si16—O42vii108.7 (3)
Si11—O11—Si12150.2 (3)O43vii—Si16—O42vii109.0 (2)
Si8—O12—Si12160.5 (4)O30—Si16—O42vii110.2 (2)
Si8—O13—Si2167.0 (3)O30—Si17—O31110.6 (2)
Si5—O14—Si11163.4 (3)O30—Si17—O40108.4 (2)
Si10i—O15—Si1142.6 (3)O31—Si17—O40110.3 (2)
Si4i—O16—Si1165.9 (4)O30—Si17—O47109.4 (2)
Si7—O17—Si4i154.5 (3)O31—Si17—O47107.0 (2)
Si6—O18—Si9i142.9 (3)O40—Si17—O47111.1 (2)
Si3i—O19—Si6163.7 (4)O32—Si18—O44110.6 (3)
Si3i—O20—Si12153.1 (3)O32—Si18—O31109.6 (3)
Si13ii—O21—Si5146.6 (3)O44—Si18—O31108.1 (2)
Si11—O22—Si19ii150.8 (4)O32—Si18—O45110.5 (2)
Si19iii—O23—Si7155.4 (3)O44—Si18—O45108.6 (2)
Si12—O24—Si24iii150.6 (3)O31—Si18—O45109.4 (2)
Si21iii—O25—Si9153.9 (3)O33—Si19—O23viii109.5 (3)
Si22iii—O26—Si10147.5 (3)O33—Si19—O22vi108.1 (3)
Si14—O27—Si13153.1 (3)O23viii—Si19—O22vi110.5 (2)
Si14—O28—Si15150.2 (3)O33—Si19—O43109.9 (3)
Si16—O29—Si15168.8 (3)O23viii—Si19—O43108.6 (2)
Si17—O30—Si16153.9 (3)O22vi—Si19—O43110.2 (2)
Si18—O31—Si17148.9 (3)O39—Si20—O33110.0 (3)
Si18—O32—Si14168.6 (4)O39—Si20—O34109.4 (3)
Si19—O33—Si20162.4 (4)O33—Si20—O34107.9 (3)
Si20—O34—Si21152.4 (4)O39—Si20—O38109.1 (3)
Si21—O35—Si22151.0 (3)O33—Si20—O38110.5 (3)
Si23—O36—Si22154.8 (3)O34—Si20—O38109.9 (3)
Si23—O37—Si24151.3 (4)O44vii—Si21—O34110.1 (3)
Si20—O38—Si24169.2 (5)O44vii—Si21—O25viii108.6 (2)
Si20—O39—Si14164.8 (4)O34—Si21—O25viii108.8 (2)
Si23—O40—Si17161.4 (3)O44vii—Si21—O35109.4 (2)
Si22iv—O41—Si13151.9 (3)O34—Si21—O35109.1 (3)
Si13—O42—Si16iv164.1 (3)O25viii—Si21—O35110.9 (2)
Si16iv—O43—Si19141.8 (3)O41vii—Si22—O26viii108.7 (2)
Si21iv—O44—Si18149.3 (3)O41vii—Si22—O36110.5 (3)
Si15iv—O45—Si18156.8 (3)O26viii—Si22—O36109.5 (2)
Si15iv—O46—Si24141.1 (3)O41vii—Si22—O35108.7 (2)
Si1—O47—Si17149.0 (3)O26viii—Si22—O35110.7 (2)
Si23—O48—Si7147.6 (3)O36—Si22—O35108.8 (3)
O47—Si1—O1108.7 (2)O36—Si23—O37110.2 (3)
O47—Si1—O16109.8 (2)O36—Si23—O48109.2 (3)
O1—Si1—O16110.9 (2)O37—Si23—O48107.1 (3)
O47—Si1—O15109.5 (2)O36—Si23—O40108.9 (2)
O1—Si1—O15109.1 (3)O37—Si23—O40110.7 (2)
O16—Si1—O15108.8 (2)O48—Si23—O40110.6 (2)
O6—Si2—O13109.3 (3)O38—Si24—O24viii110.9 (3)
O6—Si2—O1110.1 (2)O38—Si24—O37108.2 (3)
O13—Si2—O1108.8 (3)O24viii—Si24—O37110.8 (2)
O6—Si2—O2109.1 (2)O38—Si24—O46109.9 (3)
O13—Si2—O2111.8 (2)O24viii—Si24—O46107.6 (2)
O1—Si2—O2107.8 (2)O37—Si24—O46109.4 (3)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x1, y, z; (iii) x1/2, y+3/2, z+1; (iv) x+3/2, y+2, z+1/2; (v) x+1/2, y+2, z+1/2; (vi) x+1, y, z; (vii) x+3/2, y+2, z1/2; (viii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11.33H12.95O48Si24
Mr1591.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)20.0990 (4), 19.8440 (3), 13.4240 (2)
V3)5354.09 (16)
Z4
Radiation typeCu Kα
µ (mm1)6.49
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerDIP Image plate
diffractometer
Absorption correctionEmpirical (using intensity measurements)
Tmin, Tmax0.609, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
17509, 10206, 5636
Rint0.044
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.05
No. of reflections5636
No. of parameters700
No. of restraints15
H-atom treatmentRide
Δρmax, Δρmin (e Å3)0.79, 0.72
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.43 (4)

Computer programs: Bruker FRAMBO, Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL.

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BS5009 ). Services for accessing these data are described at the back of the journal.

2The symmetry operations in P212121 become: x, y, z; [{1\over 2}+x, {1\over 2}-y, {1\over 2}-z]; [-x, {1\over 2}+y, -z]; [{1\over 2}-x, -y, {1\over 2}+z].

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEP3. Report ORNL-6895. Oak Ridge National Laboratory, Tenessee, USA.  Google Scholar
First citationChen, F., Coudurier, G. & Naccache, C. (1989). Stud. Surf. Sci. Catal. B, 49, 1387–1396.  CrossRef Google Scholar
First citationChen, N. Y., Kaeding, W. W. & Dwyer, F. G. (1979). J. Am. Chem. Soc. 101, 6783–6784.  CrossRef CAS Web of Science Google Scholar
First citationEylem, C., Hriljac, J. A., Ramamurthy, V., Corbin, D. R. & Parise, J. B. (1996). Chem. Mater. 8, 844–849.  CSD CrossRef CAS Web of Science Google Scholar
First citationKaeding, W. W. (1985). J. Catal. 95, 512–519.  CrossRef CAS Web of Science Google Scholar
First citationKaeding, W. W., Chu, C., Young, L. B. & Butter, S. A. (1981). J. Catal. 69, 392–398.  CrossRef CAS Web of Science Google Scholar
First citationKlein, H., Fuess, H., Ernst, S. & Weitkamps, K. (1994). Micropor. Mater. 3, 291–304.  CrossRef CAS Web of Science Google Scholar
First citationKoningsveld, H. van (1987). Acta Cryst. B43, 127–132.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & Bekkum, H. van (1996). Acta Cryst. B52, 140–144.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & Man, H. de (1996). Acta Cryst. B52, 131–139.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van & Jansen, J. C. (1996). Micropor. Mesopor. Mater. 6, 159–167.  Google Scholar
First citationKoningsveld, H. van, Tuinstra, F., Bekkum, H. van & Jansen, J. C. (1989). Acta Cryst. B45, 423–431.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationLermer, H., Draeger, M., Steffen, J. & Unger, K. K. (1985). Zeolites, 5, 131–134.  CrossRef CAS Web of Science Google Scholar
First citationMackay, S., Edwards, C., Henderson, A., Gilmore, C., Stewart, N., Shankland, K. & Donald, A. (1999). maXus. Chemistry Department, The University of Glasgow, Scotland.  Google Scholar
First citationMentzen, B. F. (1989). J. Appl. Cryst. 22, 100–104.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeshram, N. R. (1987). J. Chem. Tech. Biotechnol. 37, 111–122.  CrossRef CAS Google Scholar
First citationOlson, D. H., Kokotailo, G. T., Lawton S. L. & Meier, W. M. (1981). J. Phys. Chem. 85, 2238–2243.  Google Scholar
First citationPrice, G. D., Pluth, J. J., Smith, J. V., Bennett, J. M. & Patton, R. L. (1982). J. Am. Chem. Soc. 104, 5971–5977.  CSD CrossRef CAS Web of Science Google Scholar
First citationReck, G., Marlow, F., Kornatowski, J., Hill, W. & Caro, J. (1996). J. Phys. Chem. 100, 1698–1704.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationXiong, Y., Rodewald, P. G. & Chang, C. D. (1995). J. Am. Chem. Soc. 117, 9427–9431.  CrossRef CAS Web of Science Google Scholar
First citationYokomori, Y. & Idaka, S. (1999). Micropor. Mesopor. Mater. 28, 405–413.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoung, L. B., Butter, S. A. & Kaeding, W. W. (1982). J. Catal. 76, 418–432.  CrossRef CAS Web of Science Google Scholar
First citationWu, P., Komatsu, T. & Yashima, T. (1998). Micropor. Mesopor. Mater. 22, 343–356.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds