research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Hypothetical binodal zeolitic frameworks

CROSSMARK_Color_square_no_text.svg

aDavy–Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS, England, bDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA, cDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and dDepartment of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
*Correspondence e-mail: jk18@cam.ac.uk

(Received 19 April 2005; accepted 27 April 2005)

Hypothetical binodal zeolitic structures (structures containing two kinds of tetrahedral sites) were systematically enumerated using tiling theory and characterized by computational chemistry methods. Each of the 109 refineable topologies based on `simple tilings' was converted into a silica polymorph and its energy minimized using the GULP program with the Sanders–Catlow silica potential. Optimized structural parameters, framework energies relative to α-quartz and volumes accessible to sorption have been calculated. Eleven of the 30 known binodal topologies listed in the Atlas of Zeolite Framework Types were found, leaving 98 topologies that were unknown previously. The chemical feasibility of each structure as a zeolite was evaluated by means of a feasibility factor derived from the correlation between lattice energy and framework density. Structures are divided into 15 families, based on common structural features. Many `feasible' structures contain only small pores. Several very open structures were also enumerated, although they contain three-membered rings which are thermodynamically dis­favoured and not found in conventional zeolites. We believe that such topologies may be realizable as framework materials, but with different elemental compositions to those normally associated with zeolites.

1. Introduction

Zeolites find many important applications in science and technology in areas as diverse as catalysis, chemical separation, water softening, agriculture, refrigeration and opto-electronics. There are 152 distinct structural types of zeolites which have now been identified (Baerlocher et al., 2001[Baerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at https://www.iza-structure.org/ ), 5th ed. London: Elsevier.]). The definition of a zeolite is based not on chemical composition or function, but rather on atomic scale geometry. In order to qualify as a zeolite or zeolite-type material (zeotype), a mineral or synthetic material must possess a framework composed of corner-sharing tetrahedra. There is an additional requirement of `openness', simultaneously dependent on density and smallest ring size, thus excluding denser minerals. Another way of expressing this is in terms of a four-connected net in which each vertex (in chemical terms the central atom of a tetrahedron) is connected to its four closest neighbours, normally via an oxygen bridge.

The enumeration of hypothetical zeolitic framework structures (Klinowski, 1998[Klinowski, J. (1998). Curr. Opin. Solid State Mater. Sci. 3, 79-85.]) is of considerable scientific and practical interest in terms of generating new nanoporous architectures. Enumeration originates with the work of Wells (1977[Wells, A. F. (1977). Three-Dimensional Nets and Polyhedra. New York: Wiley.], 1979[Wells, A. F. (1979). Further Studies of Three-Dimensional Nets, American Crystallographic Association Monograph No. 8, Vol. 9. Pittsburgh, PA: Polycrystal Book Service.], 1984[Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.]) on three-dimensional nets and polyhedra. Smith and collaborators (Smith, 1988[Smith, J. V. (1988). Chem. Rev. 88, 149-182.], 1993[Smith, J. V. (1993). ACS Abstr. 205, 157-IEC.]; Alberti, 1979[Alberti, A. (1979). Am. Mineral. 64, 1188-1198.]; Sato, 1984[Sato, M. (1984). Framework Topology and Systematic Derivation of Zeolite Structures, edited by D. H. Olson and A. Bisio. In Proc. of the 6th Intl Zeolite Conference, Reno, USA, 10-15 July. Guildford: Butterworths.], 1987[Sato, M. J. (1987). Phys. Chem. 91, 4675-4681.]; Sherman & Bennett, 1973[Sherman, J. D. & Bennett, J. M. (1973). Molecular Sieves, edited by W. M. Meier and J. B. Uytterhoeven, Vol. 121, p. 52. Washington, DC: American Chemical Society.]; Barrer & Villiger, 1969[Barrer, R. M. & Villiger, H. (1969). Z. Kristallogr. 128, 352-370.]), O'Keeffe and collaborators (O'Keeffe & Hyde, 1996a[O'Keeffe, M. & Hyde, S. T. (1996a). Z. Kristallogr. 211, 73-78.],b[O'Keeffe, M. & Hyde, B. G. (1996b). Crystal Structures I: Patterns and Symmetry. Mineralogical Association of America Monograph, Washington, DC.]) and Akporiaye & Price (1989[Akporiaye, D. E. & Price, G. D. (1989). Zeolites, 9, 23-32.]) found many possible new structures by combining various structural subunits. More recent work involves computer search algorithms (Boisen et al., 1999[Boisen, M. B., Gibbs, G. V., O'Keeffe, M. & Bartelmehs, K. L. (1999). Micropor. Mesopor. Mater. 29, 219-266.]; Treacy et al., 1997[Treacy, M. M. J., Randall, K. H., Rao, S., Perry, J. A. & Chadi, D. J. (1997). Z. Kristallogr. 212, 768.]; Foster & Treacy, 2004[Foster, M. D. & Treacy, M. M. J. (2004). Hypothetical Zeolites: Enumeration Research; https://www.hypotheticalzeolites.net/ 2004 .]; Mellot-Draznieks et al., 2000[Mellot-Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M. & Férey, G. (2000). Angew. Chem. Int. Ed. 39, 2270-2275.]).

Our work is based on advances in combinatorial tiling theory (Dress et al., 1993[Dress, A. W. M., Huson, D. H. & Molnár, E. (1993). Acta Cryst. A49, 806-817.]). A tiling is a periodic subdivision of three-dimensional space into connected regions, which we call tiles. If two tiles meet along a surface, the surface is called a face. If three or more faces meet along a curve, we call the curve an edge. If at least three edges meet at a point, we call that point a vertex. A network is thus formed by the vertices and edges. The configuration of edges, faces and tiles around a given vertex can be described via the so-called vertex figure, obtained by placing the centre of a small notational sphere at the vertex and considering the tiling of that sphere formed by the intersections with the different tiles touching that vertex. We have already enumerated all possible Euclidean uni-, bi- and trinodal tilings based on simple vertex figures and all uninodal tilings with vertex figures containing up to six extra edges (Delgado Friedrichs, 2001[Delgado Friedrichs, O. (2001). Discret. Comput. Geom. 26, 549-571.]), and the computer program used for this task is available from the authors upon request (olaf.delgado@asu.edu).

The tiling approach identified networks with one, two and three types of inequivalent vertices, which we call uninodal, binodal and trinodal (Delgado Friedrichs et al., 1999[Delgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. (1999). Nature, 400, 644-647.]). We have shown that there are exactly 9, 117 and over 1300 topological types of four-connected uninodal, binodal and trinodal nets, respectively, which are based on `simple' periodic tilings (as explained in Delgado Friedrichs et al., 1999[Delgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. (1999). Nature, 400, 644-647.]). The previously reported number of 926 for the trinodal simple tilings included, due to an error in the manual processing of the data files, only those nets for which the tiles have non-trivial site symmetry. In addition, there are at least 157 additional uninodal nets derived from `quasi-simple' tilings (the vertex figures of which are derived from tetrahedra, but contain double edges; Delgado Friedrichs et al., 1999[Delgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. (1999). Nature, 400, 644-647.]) and which have already been discussed elsewhere (Foster et al., 2001[Foster, M. D., Bell, R. G. & Klinowski, J. (2001). Stud. Surf. Sci. Catal. 136, 266.], 2003[Foster, M. D., Delgado Friedrichs, O., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. (2003). Angew. Chem. Int. Ed. 42, 3896-3899.]; Foster, Friedrichs et al., 2004[Foster, M. D., Friedrichs, O. D., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. J. (2004). Am. Chem. Soc. 126, 9769-9775.]; Foster, Simperler et al., 2004[Foster, M. D., Simperler, A., Bell, R. G., Delgado Friedrichs, O., Almeida Paz, F. A. & Klinowski, J. (2004). Nature Mater. 3, 234-238.]; Simperler et al., 2004[Simperler, A., Foster, M. D., Bell, R. G. & Klinowski, J. (2004). J. Phys. Chem. B, 108, 869-879.];). For example, zeolitic structure types SOD, LTA, RHO, FAU, KFI and CHA are all based on quasi-simple tilings. An example of a non-simple tiling is that of GIS, where the tile has some two-connected vertices.

Here we focus our attention on the binodal structures, i.e. those with two topologically inequivalent types of tetrahedral vertex (T-atom sites) derived only from simple tilings, meaning that they can be readily described by the packing of convex polyhedra, the vertices of which are all three-connected. Structures containing cages are thus found in abundance, while those with, for instance, more `cylindrical' channels are less common and tend to have lower framework density than the `quasi-simple' structures, with a greater proportion lying in the range of density where most known zeolites are found, as opposed to denser minerals. On the other hand, many of the known zeolite structure types cannot be constructed from simple tilings. Thus, simple tilings cannot generate the complete set of binodal zeolites. Seven of the 21 known uninodal zeolites correspond to simple tilings, and the remaining 14, together with several mineral structures (although not quartz) are constructed using quasi-simple tilings. We have found 11 of the 30 known binodal zeolite types, and the remaining 19 will be found by considering quasi-simple tilings, just as with the uninodal structures. The number of potential binodal networks thus generated will be enormous, and their enumeration will require the use of state-of-the-art computational facilities. However, only very few binodal structures have previously been enumerated, while nearly all uninodal structures derived from the tilings were previously known, either as crystal structures or as hypothetical nets. It is therefore of interest to describe the binodal structures derived only from simple tilings.

To characterize the structures, we follow procedures identical to those used in our previous work (Foster et al., 2003[Foster, M. D., Delgado Friedrichs, O., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. (2003). Angew. Chem. Int. Ed. 42, 3896-3899.]; Foster, Simperler et al., 2004[Foster, M. D., Simperler, A., Bell, R. G., Delgado Friedrichs, O., Almeida Paz, F. A. & Klinowski, J. (2004). Nature Mater. 3, 234-238.]). These involve generating model SiO2 polymorphs from the tiling nets and optimizing them using lattice energy minimization. Apart from obtaining an optimized structure for each topology, we also calculate a lattice energy, which provides an accurate guide to the thermodynamic stability that such a phase might have. A `feasibility factor', ϑ, derived from the correlation between lattice energy and density calculated for known zeolite structure types, serves as a further measure of thermodynamic feasibility. We have also calculated the accessible volume for each pore system using a standard definition (Molecular Simulations Inc., 1999[Molecular Simulations Inc. (1999). Cerius2, Version 4.0. Molecular Simulations Inc., San Diego, USA.]).

In describing the structural characteristics of each framework, we have resorted to the `model building' approach (Baerlocher et al., 2001[Baerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at https://www.iza-structure.org/ ), 5th ed. London: Elsevier.]; Smith, 1988[Smith, J. V. (1988). Chem. Rev. 88, 149-182.]; Meier, 1986[Meier, W. M. (1986). Zeolites and Zeolite-Like Materials. 7th Int. Zeolite Conference, Tokyo, 17-22 August.]; Liebau et al., 1986[Liebau, F., Gies, H., Gunawardane, R. P. & Marler, B. (1986). Zeolites, 6, 373-377.]), which is consistent with descriptions found in the online zeolite database and allows structures to be classified into `families' if they share certain structural motifs. As part of this analysis we define as a composite building unit (CBU) every small finite unit from which a structure may be generated. These units can be corner-, edge- or face-sharing, or joined to one another by single linkages. The automated assembly of such units is also a potential method of structural enumeration, as demonstrated by Mellot-Draznieks (Mellot-Draznieks et al., 2000[Mellot-Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M. & Férey, G. (2000). Angew. Chem. Int. Ed. 39, 2270-2275.], 2002[Mellot-Draznieks, C., Girard, S., Férey, G., Schön, J. C., Cancarevic, Z. & Jansen, M. (2002). Chem. Eur. J. 8, 4103-4113.]). Zeolite structures may also be described in terms of the strictly defined secondary building units (SBUs), one type of which may be used to build a unit cell of the zeolite, without sharing T atoms. Here, we have not used the SBU approach, finding it more informative to use alternative descriptions (in general, our building units tend to be larger). However, the SBUs involved may be readily identified, as may the infinite periodic building units (PerBUs). We note that none of the units discussed are intended to represent the precursors from which zeolite crystals grow; neither do they necessarily correspond to the tiles of the original nets.

We discuss the structures in terms of the component units, and relate these to the calculated stability and feasibility. Taken together, thermodynamic feasibilty and the nature of the building units can provide a good initial guide as to which of these structures could be most readily synthesized.

2. Energy minimization

The systematically enumerated nets (Delgado Friedrichs et al., 1999[Delgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. (1999). Nature, 400, 644-647.]) were first converted into atomistic models. This was done by inserting an Si atom at each vertex point in the network and placing a bridging oxygen between each pair of adjacent Si atoms. Each net was scaled such that the vertices were separated by ca 3.1 Å, a typical Si—Si distance. The resulting structure was then pre-optimized using the DLS (distance least squares) method (Meier & Villiger, 1969[Meier, W. M. & Villiger, H. (1969). Z. Kristallogr. 128, 352-370.]), which performs geometric refinement of the structure by fitting bond lengths and angles to the prescribed values, and reduces the amount of computer time needed for the subsequent minimization of lattice energy. This procedure was found to have no influence on the final result: using lattice energy minimization from the outset gives the same structure, but at greater computational expense. The lattice energy and crystallographic data are those extracted from the GULP minimizations, whereas coordination sequences, bond distances and angles were calculated with zeoTsites (Version 1.2; Sastre & Gale, 2001[Sastre, G. & Gale, J. D. (2001). Micropor. Mesopor. Mater. 43, 27-40.]). The connectivity was additionally checked with the software tool KRIBER (Version 1.1; Bialek, 1995[Bialek, R. (1995). KRIBER, Version 1.1. Institut für Kristallographie und Petrographie, ETH, Zürich, Switzerland.]). Additional calculations were carried out using Cerius2 software (Molecular Simulations Inc., 1999[Molecular Simulations Inc. (1999). Cerius2, Version 4.0. Molecular Simulations Inc., San Diego, USA.]). Structural figures were prepared using GDIS (SourceForge, 2004[SourceForge (2004). GDIS, Version 0.84. SourceForge.]) and POV-Ray (Persistence of Vision Raytracer Pty. Ltd, 2004[Persistence of Vision Raytracer Pty. Ltd (2004). POV-Ray, Version 3.6. Persistence of Vision Raytracer Pty Ltd.]; Henson et al., 1994[Henson, N. J., Cheetham, A. K. & Gale, J. D. (1994). Chem. Mater. 6, 1647-1650.]). The lattice energy, ΔEquartz, given in Table 1[link], is relative to that of α-quartz, calculated using the same potential model, and is thus analogous to the heat of transition reported for several high-silica zeolites (Henson et al., 1994[Henson, N. J., Cheetham, A. K. & Gale, J. D. (1994). Chem. Mater. 6, 1647-1650.]; Petrovic et al., 1993[Petrovic, I., Navrotsky, A., Davis, M. E., Zones, S. I. (1993). Chem. Mater. 5, 1805-1813.]; Navrotsky et al., 1995[Navrotsky, A., Petrovic, I., Hu, Y. T., Chen, C.-Y. & Davis, M. E. (1995). Micropor. Mater. 4, 95-98.]; Hu et al., 1995[Hu, Y. T., Navrotsky, A., Chen, C. Y. & Davis, M. E. (1995). Chem. Mater. 7, 1816-1823.]; Piccione et al., 2000[Piccione, P. M., Laberty, C., Yang, S. Y., Camblor, M. A., Navrotsky, A. & Davis, M. E. (2000). J. Phys. Chem. B, 104, 10001-10011.], 2001[Piccione, P. M., Woodfield, B. F., Boerio-Goates, J., Navrotsky, A. & Davis, M. E. (2001). J. Phys. Chem. B, 105, 6025-6030.], 2002[Piccione, P. M., Yang, S. Y., Navrotsky, A. & Davis, M. E. (2002). J. Phys. Chem. B, 106, 3629-3638.]; Moloy et al., 2002[Moloy, E. C., Davila, L. P., Shackelford, J. F. & Navrotsky, A. (2002). Micropor. Mesopor. Mater. 54, 1-13.]).

Table 1
Chemical feasibility factor, relative lattice energy, framework density and coordination sequences for 109 hypothetical binodal zeolites, optimized as purely siliceous structures

Structures are listed in order of increasing value of ϑ.

Structure ϑ ΔEquartz (kJ mol−1) FD (T sites per 1000 Å3) Coordination sequence
2_87 0.10 15.91 16.86 4 9 17 30 49 72 96 121 150 187
        4 10 20 33 49 69 94 125 160 197
2_89 (ERI) 0.12 16.39 16.51 4 9 17 30 50 75 98 118 144 185
        4 10 20 32 46 64 90 126 164 196
2_84 (EAB) 0.12 16.41 16.49 4 9 17 30 49 71 92 115 147 190
        4 10 20 32 46 66 94 128 162 192
2_90 (SAT) 0.18 15.72 16.91 4 9 17 30 50 75 100 126 157 194
        4 10 20 33 50 71 95 124 158 197
2_103 0.30 16.80 16.04 4 10 17 30 52 70 107 128 166 208
        4 11 20 33 51 73 103 136 169 207
2_88 (AWW) 0.32 15.03 17.25 4 9 17 30 50 74 97 123 158 198
        4 10 20 33 50 72 98 128 162 200
2_86 0.37 15.54 16.85 4 9 17 30 49 72 96 121 150 186
        4 10 20 33 49 68 92 122 155 191
2_83 (LEV) 0.42 16.00 16.48 4 9 17 30 49 71 92 114 143 183
        4 10 20 32 46 64 90 124 156 184
2_85 0.69 16.03 17.57 4 9 17 30 49 71 95 125 161 201
        4 10 20 33 50 73 100 131 168 208
2_107 (LOS) 0.91 13.86 17.47 4 10 20 34 52 74 102 136 172 210
        4 10 20 34 54 78 104 134 168 210
2_74 (TSC) 0.94 19.47 13.55 4 9 16 25 37 53 74 99 125 151
        4 9 17 28 41 56 73 93 117 146
2_110 0.94 13.82 17.47 4 9 17 30 50 74 97 123 158 198
        4 10 20 33 50 72 98 128 162 200
2_106 0.97 13.79 17.46 4 10 20 34 52 74 100 130 166 208
        4 10 20 34 53 76 103 135 170 209
2_95 0.93 17.49 16.80 4 9 18 32 52 75 99 133 171 207
        4 10 19 32 52 76 103 136 172 213
2_108 0.97 13.77 17.47 4 10 20 34 53 76 102 132 167 208
        4 10 20 34 53 76 103 135 170 208
2_81 (SAS) 0.98 15.88 16.00 4 9 17 30 48 68 87 109 142 184
        4 10 19 30 45 65 90 118 145 175
2_91 0.95 17.12 17.07 4 9 17 31 54 82 108 137 176 223
        4 11 22 35 55 81 107 143 184 222
2_78 (AFX) 1.00 16.41 15.61 4 9 17 29 45 64 85 110 141 178
        4 9 17 29 45 65 89 116 144 175
2_101 (AST) 0.99 18.14 16.41 4 9 19 34 48 66 96 127 151 183
        4 12 18 28 52 78 88 112 162 204
2_117 1.22 11.58 18.74 4 11 24 41 64 93 127 163 205 255
        4 12 22 44 64 94 124 164 206 252
2_114 2.17 11.15 18.09 4 11 21 36 64 93 120 156 202 255
        4 11 23 40 62 88 123 162 202 249
2_47 3.02 24.55 14.00 4 9 17 28 41 56 74 97 125 158
        4 8 14 24 37 54 75 97 121 148
2_54 3.18 24.09 14.47 4 8 14 25 40 57 76 96 119 150
        4 9 17 27 38 54 76 101 128 154
2_112 4.66 20.19 18.66 4 10 22 40 60 95 121 165 212 258
        4 12 21 41 67 90 128 168 211 263
2_50 (AFY) 5.03 27.27 14.12 4 8 14 25 39 53 71 96 124 152
        4 9 16 23 34 57 82 98 115 141
2_53 5.11 26.05 15.05 4 7 12 24 39 60 79 110 168 250
        4 10 19 27 39 62 92 137 202 275
2_51 5.18 27.49 14.12 4 8 14 25 39 53 72 100 130 157
        4 9 16 23 34 57 82 98 118 153
2_59 5.25 23.49 16.96 4 9 18 32 52 75 99 133 171 207
        4 10 19 32 52 76 103 136 172 213
2_113 5.32 18.94 20.19 4 10 23 38 60 86 118 154 195 244
        4 11 21 39 61 86 118 154 195 243
2_96 5.45 24.88 16.21 4 9 18 32 52 75 105 144 181 217
        4 11 21 35 54 80 113 145 182 228
2_57 5.51 25.91 15.54 4 8 14 26 44 63 80 97 122 164
        4 10 19 28 39 57 82 112 139 159
2_109 5.67 21.61 18.68 4 10 20 34 53 76 102 133 170 212
        4 10 20 34 53 77 106 139 174 212
2_58 6.04 24.64 16.95 4 8 14 26 45 67 89 115 149 188
        4 10 20 32 47 68 93 122 157 196
2_102 6.08 26.50 15.70 4 9 19 34 48 73 98 125 167 197
        4 11 18 31 54 72 96 128 160 204
2_55 7.61 29.43 15.20 4 8 14 26 44 62 91 121 144 181
        4 11 19 29 47 67 91 121 153 188
2_82 9.41 27.74 18.17 4 9 17 30 48 69 92 119 153 192
        4 10 20 32 46 66 94 126 158 194
2_67 10.27 33.41 15.11 4 8 16 28 42 60 84 108 136 170
        4 9 16 27 43 62 83 109 139 171
2_99 10.53 30.91 17.10 4 9 18 34 55 76 103 144 187 229
        4 9 20 34 54 81 110 144 185 229
2_35 10.69 41.65 9.82 4 8 13 20 28 36 46 62 83 104
        4 9 15 21 28 37 49 65 85 108
2_62 10.97 33.96 15.43 4 8 14 27 48 70 91 116 146 185
        4 9 19 32 45 67 92 124 165 209
2_43 11.62 41.22 11.05 4 8 14 21 34 53 71 90 108 133
        4 8 16 27 35 48 66 83 113 146
2_64 12.15 41.09 11.67 4 8 15 25 37 52 71 95 120 148
        4 8 16 27 37 53 71 89 116 144
2_45 12.91 40.22 13.03 4 8 14 23 34 49 67 87 111 139
        4 9 16 25 37 52 70 91 114 140
2_31 13.16 48.71 7.40 4 8 12 17 24 31 36 42 54 72
        4 9 15 20 24 29 37 48 60 73
2_24 13.28 43.16 11.36 4 7 12 22 32 41 56 80 106 125
        4 9 15 22 32 46 63 81 100 122
2_19 13.39 47.93 8.17 4 7 10 16 22 26 34 48 63 76
        4 8 12 16 21 28 37 49 64 80
2_73 13.62 38.71 14.78 4 9 15 21 37 59 104 138 182 199
        4 11 20 36 52 77 121 155 192 236
2_68 13.82 41.46 13.08 4 8 17 28 45 66 88 114 141 182
        4 9 16 28 48 66 84 115 150 178
2_39 13.86 39.83 14.25 4 8 13 22 36 53 72 94 122 156
        4 9 16 25 38 56 78 103 129 157
2_17 13.96 51.80 6.05 4 7 9 13 19 23 25 30 41 55
        4 8 12 15 17 21 28 36 44 53
2_70 14.33 41.70 13.42 4 8 17 32 46 71 95 129 166 199
        4 9 18 32 50 70 95 128 166 212
2_40 14.97 40.32 15.02 4 8 13 22 37 56 76 98 126 158
        4 9 16 26 41 60 80 101 126 158
2_27 15.42 42.76 13.78 4 7 12 24 38 50 68 94 122 153
        4 9 16 26 40 57 78 103 130 159
2_23 15.97 51.69 8.14 4 7 12 20 26 32 44 68 90 108
        4 8 13 17 24 34 49 67 82 101
2_20 16.11 50.76 8.93 4 7 10 17 27 35 41 52 73 100
        4 9 15 20 25 33 47 66 84 98
2_97 16.99 40.46 16.94 4 9 18 32 52 76 106 147 188 229
        4 11 21 35 55 81 117 152 188 238
2_71 17.07 39.95 17.38 4 8 19 39 58 83 118 160 193 232
        4 10 21 38 58 91 117 158 195 244
2_26 17.51 50.60 10.44 4 7 12 22 34 46 58 76 107 139
        4 8 14 21 32 48 65 86 111 138
2_25 17.56 50.63 10.47 4 7 12 22 33 44 58 80 104 125
        4 8 14 21 32 48 65 85 106 132
2_37 18.50 48.93 12.58 4 8 12 17 24 31 36 42 54 72
        4 9 15 20 24 29 37 48 60 73
2_21 18.85 49.90 12.26 4 7 10 18 32 47 59 71 91 121
        4 9 16 24 34 48 66 89 117 149
2_32 19.04 49.98 12.40 4 8 12 18 29 44 60 77 98 125
        4 9 16 24 33 45 62 85 113 143
2_48 19.09 45.87 15.29 4 8 14 25 38 50 70 100 125 147
        4 9 16 24 36 56 76 92 120 159
2_41 19.44 55.48 8.99 4 8 14 19 26 40 52 70 88 100
        4 8 14 20 29 42 52 68 89 109
2_69 20.57 49.50 14.25 4 8 17 29 46 68 91 117 154 184
        4 9 17 28 49 69 92 119 151 184
2_65 20.64 52.45 12.28 4 8 15 28 47 66 86 118 155 181
        4 8 16 26 48 66 88 120 142 200
2_33 20.83 49.10 14.80 4 8 12 18 30 49 71 92 114 143
        4 9 16 25 38 56 77 99 121 147
2_52 20.93 48.51 15.30 4 7 10 16 25 34 43 58 75 90
        4 7 11 16 24 35 46 59 75 93
2_100 22.42 45.32 19.00 4 9 18 34 58 86 113 146 194 248
        4 11 22 38 61 88 120 157 199 246
2_79 23.48 45.37 20.03 4 9 17 29 46 69 98 133 174 221
        4 10 21 37 58 84 114 148 186 229
2_77 24.27 47.94 19.04 4 9 16 26 41 61 84 110 140 175
        4 9 17 28 42 61 85 114 146 179
2_44 24.31 60.53 10.36 4 8 14 21 36 55 75 94 120 154
        4 8 16 20 34 64 72 96 128 146
2_46 24.45 57.04 12.91 4 8 14 24 36 48 64 90 118 136
        4 9 15 22 34 52 71 87 106 136
2_61 25.45 53.55 16.33 4 8 14 26 46 70 91 113 149 197
        4 10 19 30 45 68 94 122 152 186
2_22 26.31 64.37 9.70 4 7 11 18 28 42 56 68 85 111
        4 8 14 21 29 41 57 77 99 121
2_92 26.57 53.08 17.78 4 9 17 31 54 82 109 139 182 233
        4 11 22 35 55 82 110 146 188 230
2_13 26.62 61.44 12.04 4 6 15 28 34 60 69 96 126 142
        4 9 16 25 39 57 75 96 120 150
2_93 28.25 60.99 13.98 4 10 20 31 50 71 104 134 176 210
        4 9 18 30 48 70 94 134 180 213
2_12 29.67 65.74 12.11 4 6 15 20 30 50 67 90 115 126
        4 8 13 22 32 47 71 91 108 132
2_30 33.21 64.55 16.47 4 8 12 16 26 42 56 72 102 140
        4 8 13 20 30 41 56 80 111 138
2_94 33.62 58.11 21.34 4 9 18 31 55 88 121 157 194 236
        4 11 23 41 63 88 123 162 207 262
2_16 36.19 72.38 14.02 4 6 17 32 49 65 92 135 167 183
        4 11 20 28 50 81 102 117 159 222
2_34 36.28 76.83 11.03 4 8 13 19 26 38 55 74 95 115
        4 9 16 24 34 47 61 78 100 126
2_14 36.36 72.96 13.79 4 6 16 31 48 57 77 116 154 161
        4 11 19 26 42 70 93 103 128 182
2_98 37.01 63.95 20.69 4 9 18 33 51 72 105 147 184 230
        4 9 18 33 53 78 108 143 184 232
2_56 38.29 72.66 15.93 4 8 14 26 44 62 93 122 145 182
        4 11 19 29 47 68 94 123 155 193
2_116 43.29 71.75 21.56 4 11 22 39 65 96 134 175 223 280
        4 11 23 41 65 94 133 177 230 284
2_111 43.36 69.96 22.87 4 10 20 46 70 94 140 206 264 308
        4 12 25 47 74 108 155 203 262 334
2_18 44.29 89.79 10.06 4 7 10 14 17 24 37 48 57 70
        4 8 8 10 20 24 28 50 64 64
2_28 45.34 88.96 11.69 4 7 13 18 33 44 66 72 110 118
        4 8 12 21 30 50 58 82 98 138
2_15 46.13 89.89 11.83 4 12 10 28 52 34 84 124 74 172
        4 6 17 27 31 64 75 81 143 146
2_75 50.08 80.91 22.01 4 7 13 25 39 56 87 107 148 182
        4 8 14 25 40 59 84 110 147 180
2_29 50.83 93.06 14.34 4 10 18 30 45 59 103 165 219 314
        4 10 20 31 49 80 103 164 269 289
2_10 51.21 104.88 6.53 4 6 12 16 24 32 44 55 68 80
        4 6 12 17 24 31 44 55 68 82
2_5 52.01 104.95 7.28 4 5 9 14 13 16 26 34 36 44
        4 8 10 11 16 22 24 28 42 60
2_115 52.70 88.37 19.46 4 11 21 36 64 94 123 165 214 272
        4 11 23 40 63 91 126 167 213 265
2_7 53.66 105.42 8.60 4 5 10 20 26 24 44 80 98 93
        4 9 14 16 22 40 58 72 83 109
2_8 54.06 110.45 5.39 4 6 7 12 19 21 22 30 46 58
        4 8 12 13 16 22 30 36 44 56
2_6 56.38 102.26 13.51 4 5 10 19 22 25 40 62 80 90
        4 9 13 16 23 36 50 58 68 94
2_104 64.22 107.73 17.56 4 10 17 30 52 72 108 130 167 208
        4 11 20 33 52 76 105 138 173 213
2_105 65.06 106.55 19.22 4 6 9 15 28 43 65 92 134 172
        4 7 11 20 31 47 74 99 133 196
2_76 68.64 110.29 20.21 4 9 16 25 38 58 87 124 165 209
        4 10 20 34 53 78 109 146 191 245
2_63 73.83 116.23 21.28 4 8 14 27 50 80 114 153 200 258
        4 11 23 39 62 93 130 174 223 275
2_9 73.85 127.41 13.56 4 6 8 14 20 30 45 54 73 98
        4 7 10 14 22 34 42 58 78 94
2_60 79.89 131.67 16.65 4 8 14 26 45 68 93 125 171 223
        4 11 22 35 52 76 109 148 189 232
2_80 87.12 142.73 16.21 4 9 17 29 48 70 100 138 175 222
        4 11 20 36 58 81 112 146 189 240
2_42 104.27 164.99 17.94 4 8 14 21 32 48 67 91 117 149
        4 10 18 28 42 59 80 105 134 168
2_4 107.62 186.37 6.48 4 5 8 16 18 24 36 48 63 72
        4 8 10 15 22 26 38 54 64 80
2_36 166.29 262.64 12.30 4 8 13 20 29 41 56 72 89 110
        4 9 16 24 33 44 58 76 97 120
2_69 189.35 292.92 14.38 4 8 17 29 46 68 91 117 154 184
        4 9 17 28 49 69 92 119 151 184

2.1. The feasibility factor

The well established relationship between framework density and calculated lattice energy (Foster et al., 2001[Foster, M. D., Bell, R. G. & Klinowski, J. (2001). Stud. Surf. Sci. Catal. 136, 266.], 2003[Foster, M. D., Delgado Friedrichs, O., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. (2003). Angew. Chem. Int. Ed. 42, 3896-3899.]; Foster, Friedrichs et al., 2004[Foster, M. D., Friedrichs, O. D., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. J. (2004). Am. Chem. Soc. 126, 9769-9775.]; Foster, Simperler et al., 2004[Foster, M. D., Simperler, A., Bell, R. G., Delgado Friedrichs, O., Almeida Paz, F. A. & Klinowski, J. (2004). Nature Mater. 3, 234-238.]; Simperler et al., 2004[Simperler, A., Foster, M. D., Bell, R. G. & Klinowski, J. (2004). J. Phys. Chem. B, 108, 869-879.]) was confirmed experimentally (Henson et al., 1994[Henson, N. J., Cheetham, A. K. & Gale, J. D. (1994). Chem. Mater. 6, 1647-1650.]) for known zeolites. Using the standard least-squares technique, a straight line was fitted to 145 data points obtained from minimizing quartz and all the known zeolite topologies in a purely siliceous form (Fig. 1[link]). We excluded the four non-silicate structure types which substantially deviate from the rest: WEI (calcium beryllophosphate), CZP (sodium zincophosphate), OSO (potassium berylosilicate) and RWY (gallium germanium sulfide). The line of best fit has the formula y = −1.4433x + 40.3904, where x is the framework density (FD) and y is ΔEquartz. The feasibility factor, ϑ, is then simply the dimensionless deviation of a data point (x1, y1) from the line of best fit, given by the vertical offset [\vartheta = \left| {1.4433x_1 + y_1 + 40.3904} \right| / 1.4433]. Being formally independent of the framework density, the feasibility factor ϑ is thus a convenient way of discriminating between candidate structures and can be compared with the values obtained from known zeolite structures. We minimized all the known zeolite topologies as silica polymorphs, regardless of the actual composition in which they occur. We believe that ϑ is a better gauge of the feasibility of the structure than ΔEquartz alone, as evidenced by the fact that seven of the ten lowest ϑ values in Table 1[link] belong to structures with known zeolite topologies. A ranking in order of ascending ΔEquartz would, in contrast, produce only four values. Virtually all of the topologies which are known in the form of silicates, aluminosilicates or aluminophosphates, including those with low levels of heteroatom substitution, have ϑ < 5. This reflects the similarity of the preferred geometry between (alumino)silicates and AlPOs. The highest values of ϑ are 5.03 for AFY (Co-AlPO-50), which has 19% framework cobalt, and 5.18 for AHT, only known as the thermally unstable material AlPO-H2. By analogy, we define structures with ϑ < 5 as feasible `conventional' zeolites, i.e. those for which natural zeolites along with high-silica and AlPO forms are known. Framework types with more `exotic' compositions have ϑ > 5. For example, the zincosilicates VNI, VSV and RSN have ϑ of 5.75, 6.07 and 6.09, respectively. Beryllosilicates, generally containing three rings, also have higher ϑ, e.g. LOV (6.51), NAB (10.99) and OSO (23.30), while the beryllophosphate weinebeneite has ϑ = 12.24 and the zincophosphate CZP ϑ = 20.92. We therefore propose that ϑ values up to 25 indicate that the topology may be feasible in the form of an `oxide' material. Above this, we note that for RWY, the only zeotype structure known solely as a framework sulfide, ϑ = 51.69. Many other compositions, such as metal-organic frameworks, are of course possible. This means that although a structure may be deemed highly unfeasible as a zeolite, it may exist in other chemical forms. Also, the precise value of ϑ will be an unreliable guide in the high region, since it is based only on a silica model. In order to gauge the feasibility of a particular topology in a different composition, it would be necessary to carry out separate series of computations, taking into account the actual composition.

[Figure 1]
Figure 1
Framework energy, EF (kJ mol−1), with respect to α-quartz, versus framework density, FD (Si atoms per 1000 Å3), for (a) and (b) all known zeolitic structure types; (c) and (d) hypothetical binodal zeolitic structures.

The Cerius2 software suite (Molecular Simulations Inc., 1999[Molecular Simulations Inc. (1999). Cerius2, Version 4.0. Molecular Simulations Inc., San Diego, USA.]) was used for visualizing and manipulating the structures and for calculating free volumes, space-group symmetry and other parameters. In addition to calculating the energetics of the hypothetical structures, it is important to compare the calculated values with the values for all known zeolite frameworks. Thus, all relevant properties were also calculated for the purely siliceous forms of all known zeolite topologies. Lattice energies were calculated relative to α-quartz, the most stable form of the mineral at ambient temperature.

The `available volume', defined as the difference between the volume of the unit cell and the effective volume of all the atoms, depends on the van der Waals radius used for each atom. `Occupiable volume' is the volume which can be occupied by a probe molecule with a given radius as it probes the surface of the structure. The `accessible volume' is determined by tracing out the volume by the centre of the probe molecule as it follows the structure contours, but with the extra requirement that the probe must enter the unit cell from the outside via sufficiently wide pores or channels. The accessible volume gives an indication of the space available within each structure for applications in molecular sieving and catalysis. The calculations of the accessible volume were performed using the Free Volume module of the Cerius2 package, which applies the Connolly (1985[Connolly, M. L. (1985). J. Am. Chem. Soc. 107, 1118-1124.]) method consisting of `rolling' a probe molecule with a given radius over the van der Waals surface of the framework atoms. We have used a probe molecule with a radius of 1.4 Å (such as water) and 1.32 and 0.9 Å for the radii of O and Si atoms, respectively. The void volume, enclosed within the Connolly surface, was calculated first. The accessible volume was then calculated by requiring the probe molecule to enter the unit cell from the outside.

3. Results and discussion

Of the 117 structures, eight could not be optimized, either because refinement was not possible or because of failure during minimization, usually resulting in loss of the original network topology. The remaining 109 structures are described below. For the most part, these minimized smoothly without any loss of symmetry, although there are a few whose low-energy symmetry is lower than that of the original space group. In these instances, the original space group is shown in parentheses in Table 2[link].

Table 2
Space groups and unit-cell dimensions of 109 hypothetical binodal zeolites, optimized as purely siliceous structures

Structure Space-group symbol Space-group number a (Å) b (Å) c (Å) α (°) β (°) γ (°)
2_4 Im[\bar 3]m 229 24.5550 24.5550 24.5550 90 90 90
2_5 Im[\bar 3]m 229 23.6252 23.6252 23.6252 90 90 90
2_6 Pn[\bar 3]m 224 19.2265 19.2265 19.2265 90 90 90
2_7 P[\bar 4]3m 215 14.0784 14.0785 14.0785 90 90 90
2_8 Im[\bar 3]m 229 29.9045 29.9046 29.9046 90 90 90
2_9 R[\bar 3]m 166 20.6871 20.6871 10.7470 90 90 120
2_10 Im[\bar 3]m 229 30.8610 30.8610 30.8610 90 90 90
2_12 I41/amd 141 15.1769 15.1769 17.2033 90 90 90
2_13 Fm/m 225 17.4521 17.4521 17.4521 90 90 90
2_14 I4/mmm 139 11.5929 11.5929 12.9540 90 90 90
2_15 Pm/n 223 13.6367 13.6367 13.6367 90 90 90
2_16 P42/mnm 136 10.2171 10.2171 16.3964 90 90 90
2_17 Im[\bar 3]m 229 31.6666 31.6666 31.6666 90 90 90
2_18 Im[\bar 3]m 229 18.1332 18.1332 18.1332 90 90 90
2_19 Im[\bar 3]m 229 26.0211 26.0211 26.0211 90 90 90
2_20 Pm[\bar 3]m 221 17.5191 17.5191 17.5191 90 90 90
2_21 Fm[\bar 3]m 225 31.5256 31.5256 31.5256 90 90 90
2_22 Pm[\bar 3]m 221 19.5087 19.5087 19.5087 90 90 90
2_23 Fm[\bar 3]m 225 32.8255 32.8255 32.8255 90 90 90
2_24 Pm[\bar 3]m 221 14.6896 14.6986 14.6896 90 90 90
2_25 Fm[\bar 3]m 225 30.1897 30.1897 30.1897 90 90 90
2_26 Fm[\bar 3]m 225 30.2151 30.2151 30.2151 90 90 90
2_27 Fm[\bar 3]m 225 27.5480 27.548 27.5480 90 90 90
2_28 Im[\bar 3] 204 16.0155 16.0155 16.0155 90 90 90
2_29 Fd[\bar 3]c 228 29.9172 29.9172 29.9172 90 90 90
2_30 Pn[\bar 3]m 224 15.3879 15.3879 15.3879 90 90 90
2_31 R[\bar 3]m (Fd[\bar 3]m) 166 (227) 26.3028 26.3028 64.9314 90 90 120
2_32 Im[\bar 3]m 229 24.9270 24.9270 24.9270 90 90 90
2_33 R[\bar 3]m 166 13.1741 13.1741 32.3570 90 90 120
2_34 Im[\bar 3]m 229 25.9183 25.9183 25.9183 90 90 90
2_35 Fd[\bar 3]m 227 30.8413 30.8416 30.8413 90 90 90
2_36 Pm[\bar 3]m 221 19.8342 19.8342 19.8342 90 90 90
2_37 Pn[\bar 3]m 224 19.6887 19.6887 19.6887 90 90 90
2_39 P1 (Im[\bar 3]m) 1 (229) 21.5940 21.6260 21.6370 90.1262 89.9558 90.0775
2_40 R[\bar 3]m 166 13.2084 13.2084 23.8034 90 90 120
2_41 Im[\bar 3]m 229 25.2127 25.2127 25.2127 90 90 90
2_42 Im[\bar 3]m 229 20.0209 20.0209 20.0209 90 90 90
2_43 Fm[\bar 3]m 225 25.9040 25.9040 25.9040 90 90 90
2_44 P[\bar 4]3m 215 11.3123 11.3124 11.3124 90 90 90
2_45 Pm[\bar 3]m 221 17.6786 17.6786 17.6786 90 90 90
2_46 Pn[\bar 3]m 224 15.4919 15.4919 15.4919 90 90 90
2_47 Pm[\bar 3]m 221 19.0003 19.0003 19.0003 90 90 90
2_48 Pm[\bar 3]n 223 16.7613 16.7613 16.7613 90 90 90
2_50 P[\bar 3]1m 162 12.3351 12.3351 8.6007 90 90 120
2_51 P63/mcm 193 12.3340 12.3340 17.2043 90 90 120
2_52 Pn[\bar 3]m 224 16.7584 16.7584 16.7584 90 90 90
2_53 Pn[\bar 3]m 224 18.5448 18.5448 18.5448 90 90 90
2_54 I4/mmm 139 14.8438 14.8438 20.0782 90 90 90
2_55 P63/mcm 193 13.7562 13.7562 19.2727 90 90 120
2_56 P[\bar 3]1m 162 13.7003 13.7003 9.2686 90 90 120
2_57 I4/mmm 139 14.0993 14.0993 15.5435 90 90 90
2_58 I4/mmm 139 13.5265 13.5265 20.6385 90 90 90
2_59 P4/nmm 129 13.5133 13.5133 10.3319 90 90 90
2_60 Im[\bar 3]m 229 17.9320 17.9320 17.9320 90 90 90
2_61 I41/amd 141 16.3875 16.3875 10.9441 90 90 90
2_62 Pm[\bar 3]m 221 14.5985 14.5985 14.5985 90 90 90
2_63 I[\bar 4]m2 119 12.6142 12.6142 9.4486 90 90 90
2_64 Pm[\bar 3]m 221 18.3419 18.3419 18.3419 90 90 90
2_65 Ia[\bar 3] 206 18.0311 18.0311 18.0311 90 90 90
2_67 Ia[\bar 3]d 230 19.9520 19.9520 19.9520 90 90 90
2_68 I41/amd 141 15.1043 15.1043 10.7274 90 90 90
2_69 R[\bar 3]m 166 16.6853 16.6853 20.9554 90 90 120
2_70 Pm[\bar 3]m 221 13.8940 13.8940 13.8940 90 90 90
2_71 P213 198 14.0298 14.0298 14.0298 90 90 90
2_73 Fd[\bar 3]m 227 29.6184 29.6184 29.6184 90 90 90
2_74 Fm[\bar 3]m 225 30.4872 30.4872 30.4872 90 90 90
2_75 Fd[\bar 3]m 227 25.9368 25.9368 25.9368 90 90 90
2_76 P[\bar 4]3m 215 13.3418 13.3418 13.3418 90 90 90
2_77 Pn[\bar 3]m 224 15.5787 15.5787 15.5787 90 90 90
2_78 P63/mmc 194 13.5479 13.5479 19.3503 90 90 120
2_79 Im[\bar 3]m 229 21.2424 21.2424 21.2424 90 90 90
2_80 Im[\bar 3]m 229 18.0938 18.0938 18.0938 90 90 90
2_81 I4/mmm 139 13.9993 13.9993 10.2051 90 90 90
2_82 Pn[\bar 3]m 224 15.8240 15.8240 15.8240 90 90 90
2_83 R[\bar 3]m 166 12.9786 12.9786 22.4610 90 90 120
2_84 P63/mmc 194 12.9887 12.9887 14.9436 90 90 120
2_85 I4/mmm 139 13.2812 13.2812 15.4875 90 90 90
2_86 P[\bar 3]m1 164 12.7931 12.7931 10.0490 90 90 120
2_87 P63/mmc 194 12.7982 12.7982 20.0706 90 90 120
2_88 P4/nmm 129 13.5200 13.5199 7.6115 90 90 90
2_89 P63/mmc 194 12.9122 12.9122 15.1051 90 90 120
2_90 R[\bar 3]m 166 12.7260 12.7259 30.3678 90 90 120
2_91 I4/mcm 140 13.9768 13.9768 19.1953 90 90 90
2_92 P4/nbm 125 13.9490 13.9490 9.2497 90 90 90
2_93 Im3m 229 17.2697 17.2697 17.2697 90 90 90
2_94 C2 (Fd[\bar 3]m) 5 (227) 29.4382 29.3841 20.7989 90 90 90
2_95 I4/mmm 139 12.2058 12.2058 19.1794 90 90 90
2_96 Im[\bar 3] 204 16.4413 16.4413 16.4413 90 90 90
2_97 Pm3n 223 16.1973 16.1973 16.1973 90 90 90
2_98 P4132 213 11.5642 11.5642 11.5642 90 90 90
2_99 Pm3 200 12.8171 12.8171 12.8171 90 90 90
2_100 I[\bar 4]m2 119 12.8690 12.8691 7.6292 90 90 90
2_101 Fm3m 225 13.4592 13.4592 13.4592 90 90 90
2_102 R[\bar 3]m 166 12.6141 12.6141 16.6417 90 90 120
2_103 P63/mcm 193 13.6152 13.6152 13.9813 90 90 120
2_104 P[\bar 3]1m 162 13.4810 13.4810 6.5129 90 90 120
2_105 P1 (R[\bar 3]c) 1 (167) 10.6747 16.8789 16.9018 67.8079 86.0781 86.1532
2_106 P63/mmc 194 12.4093 12.4093 15.4571 90 90 120
2_107 P63/mmc 194 12.3972 12.3972 10.3205 90 90 120
2_108 R[\bar 3]m 166 12.4186 12.4186 30.8573 90 90 120
2_109 Pn[\bar 3]m 224 17.2562 17.2562 17.2562 90 90 90
2_110 R[\bar 3]m 166 12.4060 12.4060 23.1948 90 90 120
2_111 P4132 213 11.6324 11.6324 11.6324 90 90 90
2_112 P213 198 13.7019 13.7019 13.7019 90 90 90
2_113 Fddd 70 7.4170 13.5469 23.6645 90 90 90
2_114 I4/mcm 140 13.7055 13.7055 14.1225 90 90 90
2_115 P4/nbm 125 13.4128 13.4128 6.8567 90 90 90
2_116 I432 211 16.4510 16.4519 16.4510 90 90 90
2_117 P42/mnm 136 7.1839 7.1839 12.4079 90 90 90

Figs. 1[link](a) and (b) show plots of framework energy relative to α-quartz, EF, versus the framework density, FD, for all known zeolites. Relative framework energies of the hypothetical binodal frameworks range from 11.15 kJ mol−1 (structure 2_114) to as much as 515.43 kJ mol−1 (structure 2_72) (Fig. 1[link]c). Fig. 1[link](d) plots the framework energy versus the framework density for the hypothetical binodal structures with energies below 30 kJ mol−1, the range considered as the most `desirable', and with framework densities typical of the known zeolites.

Fig. 2[link](a) shows a plot of accessible volume versus framework density for the known structural types and Figs. 2[link](b) and (c) the corresponding plot for hypothetical binodal zeolites. Low framework density structures are of particular interest as they have very high accessible free volumes. Of the structures with framework densities below 18 Si atoms/1000 Å3, structures 2_57, 2_58, 2_59, 2_82, 2_85, 2_86, 2_87, 2_91, 2_95, 2_96, 2_102, 2_103, 2_106, 2_108, 2_109, 2_110, 2_112, 2_113, 2_114 and 2_117 are energetically stable (Fig. 1[link]c). Many hypothetical structures have dense frameworks, which are largely inaccessible. However, as many known zeolite topologies have low accessible volumes (Fig. 2[link]a), a structure cannot be ruled out as a feasible topology on the basis of a low accessible free volume, even though it may be of no interest to scientists studying sorption, ion exchange or catalysis. A plot of framework density for known zeolites and for dense silicate frameworks against the size of the smallest ring in the structure (Brunner & Meier, 1989[Brunner, G. O. & Meier, W. M. (1989). Nature, 337, 146-147.]) shows that very open frameworks with low FD have the largest number of four- and three-membered rings and that there is a gap in FD between compact minerals, such as quartz and tridymite, and the zeolite frameworks. The lower boundary of FD for known zeolites is from about 11 tetrahedral atoms per 1000 Å3 in materials with four-membered rings to about 17 tetrahedral atoms in materials with 5+ rings, where the plus sign signifies that some tetrahedral atoms are associated only with the larger rings.

[Figure 2]
Figure 2
Accessible volume (Å3 per Si atom) versus framework density for (a) all known zeolitic structure types; (b) hypothetical binodal zeolitic structures; (c) structures with accessible volumes below 40 Å3 per Si atom.

Fig. 3[link] plots the framework energy with respect to α-quartz for the known zeolitic structures and the hypothetical binodal structures versus the accessible volume, thus combining information contained in Figs. 1[link] and 2[link]. Structures of the greatest practical interest are those with low energies and large volumes (see inset in Fig. 3[link]b). Full details of all the structures have recently been published elsewhere (Foster, Simperler et al., 2004[Foster, M. D., Simperler, A., Bell, R. G., Delgado Friedrichs, O., Almeida Paz, F. A. & Klinowski, J. (2004). Nature Mater. 3, 234-238.]). Crystallographic CIF files from which powder X-ray diffraction patterns can be easily calculated are given as supplementary information.1

[Figure 3]
Figure 3
Framework energy with respect to α-quartz versus accessible volume (Å3 per Si atom) for (a) all known zeolitic structure types; (b) hypothetical binodal zeolitic structures. Hypothetical structures of particular chemical interest are identified in the inset.

The structures have been divided into 15 families, the members of which share a common building scheme or structural unit. As explained above, the building units used do not necessarily equate to SBUs or PerBUs in the strict sense. We also note that the allocation of a structure to a certain family is not unequivocal: there are several structures which could equally well be assigned to more than one family. The order in which the various families are discussed is dictated by the feasibility factor of the most feasible structure in that family. Selected members of a particular family are shown in Figs. 4–9[link][link][link][link][link][link] in the same order, whereas a full description of all members is available in the electronic supplement. The more feasible structures will thus be encountered earlier in the following sections, with the exception of the `orphan family' which contains several chemically feasible members. In describing the various structures, we use standard nomenclature from the zeolite literature. For instance, `D6R' refers to a double six-ring unit. In describing polyhedral cages or units, the [MxNy] system adopted by Smith (1988[Smith, J. V. (1988). Chem. Rev. 88, 149-182.]) is also used, where (M, N) is the number of edges defining a given face and (x, y) is the number of times that face appears in the polyhedron. Results are also tabulated in Table 1[link] (in order of ϑ) and Table 2[link] (in numerical order of the structures). Table 1[link] gives ϑ, ΔEquartz, the framework density and the coordination sequences of the T sites. Table 2[link] gives the crystallographic data.

[Figure 4]
Figure 4
Molecular graphic illustrations of some structures from the ABC-6 and [3256] families.
[Figure 5]
Figure 5
Molecular graphic illustrations of some structures from the AWW and supercage families.
[Figure 6]
Figure 6
Molecular graphic illustrations of structures from the SAS, [4258] and AST families.
[Figure 7]
Figure 7
Molecular graphic illustrations of some structures from the D8R family, AFY structures and the D6R family.
[Figure 8]
Figure 8
Molecular graphic illustrations of structures from the three- and four-ring family, the D3R family and the three-ring family.
[Figure 9]
Figure 9
Molecular graphic illustrations of structures from the [34] family and of some of the orphan structures.

3.1. ABC-6 family

Of the 109 refinable binodal structures, 13 can be described using the building scheme for the ABC-6 family (van Koningsveld, 2004[Koningsveld, H. van (2004). Schemes for Building Zeolite Structure Models, in Database of Zeolite Structures; https://topaz.ethz.ch/IZA-SC/ModelBuilding.htm .]). Six of these are known frameworks: 2_89 = ERI, 2_84 = EAB, 2_90 = SAT, 2_83 = LEV, 2_107 = LOS and 2_78 = AFX. The PerBU of the family consists of a hexagonal array of isolated six-membered rings, which are related by pure translations along [100] and [010]. A three letter code (A, B and C) gives the connection mode of the layers along [001]. The six-membered rings of A are centred at (0,0), while layer B is shifted by (+2/3a,+1/3b) and layer C by (+1/3a,+2/3b). The connection between six-rings in adjacent layers is invariably via four-rings. In the (001) projection, there is a close similarity between all the structures of this family, epitomized by that of 2_106 (Fig. 4[link]a), where the hexagonal array of six-rings, interspersed by four-rings, is clearly evident. Each structure is uniquely characterized by its [001] stacking sequence and the stacking sequences of the 13 structures (in order of their `thermodynamic feasibility') are ABBACBBC(A) for 2_87, ACAABA(A) for 2_89 (ERI), ACCABB(A) for 2_84 (EAB), AABABBCBCCAC(A) for 2_90 (SAT), ABBC(A) for 2_86, AACBBACCB(A) for 2_83 (LEV), ABAC(A) for 2_107 (LOS), ACABABCBC(A) for 2_110, ACABCB(A) for 2_106, ACACBABACBCB(A) for 2_108, ACCAABBA(A) for 2_78 (AFX), ACCCBBBAA(A) for 2_40, and AAAACCCCBBBB(A) for 2_33. 2_87, 2_89, 2_84, 2_107, 2_106 and 2_78, which have hexagonal symmetry, space group P63/mmc, while 2_90, 2_83, 2_110, 2_108, 2_40 and 2_33 (all R[\bar 3]m) and 2_86 (P[\bar 3]m1) are trigonal. The ABC-6 structures, both known and hypothetical, are among the most thermodynamically favoured as silica polymorphs and, as can be seen from Table 1[link], have high chemical feasibilities (0.08 < ϑ < 0.98), except for 2_40 and 2_33 which have ϑ of 14.97 and 20.83, respectively. The ABC-6 structures may also be thought of in terms of stacks, or chains, of cages linked parallel to the [001] direction through six-rings and, depending on symmetry, there are either one or two distinct types of stack. For example, the most feasible structure 2_87 (Figs. 4[link]b and c) contains both the [496283] gmelinite cages and [496883] EAB cages, which alternate along (001) (Fig. 4[link]c). Parallel to these are stacks of alternating sodalite cages and double six-rings (D6R). The structure 2_40, which is less dense, is quite interesting as it has large cages linked through elongated 10- and 12-rings, respectively (Fig. 4[link]d and e).

3.2. [3256] family

Four structures (2_103, 2_55, 2_56 and 2_104) are built up from columns of [3256] polyhedral units (Fig. 4[link]g) arranged hexagonally so as to give 12-membered ring channels along the c direction (Fig. 4[link]f). The [3256] units are linked by sharing their `terminal' three-membered ring windows (Fig. 4[link]h) in structures 2_103 and 2_104, while in structures 2_55 and 2_56 these small cage units are separated by a [3243] unit (i.e. a trigonal prism or D3R; Fig. 4[link]i). None of these four are known structures, although 2_103 is expected to be highly chemically feasible (ϑ = 0.30). Three further members of this family, 2_112, 2_102 and 2_80, also contain the [3256] unit (Fig. 4[link]g), but with different building patterns. For example, in 2_112 the [3256] units are linked via single oxygen bridges, while in 2_102 and 2_80 the units are linked via double oxygen bridges (Fig. 4[link]j). Both 2_112 and 2_102 are highly feasible, with ϑ = 4.66 and 6.08, respectively, as opposed to 2_80 which has ϑ = 87.12.

3.3. AWW family

The nine structures which we describe as members of the `AWW family' share a small [4664] cage as the common building unit (Fig. 5[link]a). Six of these structures, 2_88 (which has the actual AWW topology), 2_85, 2_59, 2_58, 2_100 and 2_63, are tetragonal, with columns of larger cages parallel to [001] and having eight-ring windows as the maximum pore diameter in that direction. The archetypal example is the AWW [486882] cage (Fig. 5[link]b), which stacks through shared eight-rings. Fig. 5[link](c) shows the [001] projection of 2_85, which is typical of this series.

Depending on the linkage pattern of the [4664] building units along [001], different types of large cage are defined. AWW, 2_59, 2_100 and 2_63 have only one type of eight-ring channel cage each, whilst in 2_85 two alternating types of larger cage are thus defined, [4861282] and [486482] (also found in the structures SAS and ATN respectively). Structures AWW, 2_58, 2_59 and 2_85 fall within the feasible range, with ϑ = 0.32–6.04, while 2_100 (ϑ = 22.42) and 2_63 (ϑ = 73.83) are less feasible.

There are also three cubic structures, which contain the same building unit (2_109, 2_97 and 2_60), with 2_109 being by far the most feasible of the three (ϑ = 5.67). For these three structures, the [4664] units alternate with sodalite or beta cages in a chain along [100]. Structure 2_97 (ϑ = 16.99) falls within the extended range of oxide feasibility, whereas 2_60 (ϑ = 80.04) does not.

3.4. Supercage family

There are 11 structures which contain sodalite or LTA (alpha) cages linked by smaller prismatic units in such a way that it also generates much larger cages. All the structures have cubic or pseudo-cubic symmetry, as can be seen in the [100] view of 2_45 (Fig. 5[link]e). Structure 2_74 has the framework of the mineral tschörtnerite (TSC) with both sodalite and alpha cages linked via D6R (Fig. 5[link]f), thus defining the large TSC cage (Fig. 5[link]g). The remaining structures will be discussed with respect to structural similarities and not by their chemical feasibility factor, ϑ.

Structures 2_35 (Fig. 5[link]h) and 2_31 are composed of sodalite cages linked tetrahedrally via D6R and thus form a series together with the FAU structure. 2_35 and 2_31 are both feasible as oxide materials, with ϑ of 10.69 and 13.16, respectively. 2_45 (Fig. 5[link]i) and 2_36 can similarly be imagined as belonging to a series with RHO, a structure formed by alpha cages linked octahedrally via D8R. Both have Pm[\bar 3]m symmetry and 2_45 is relatively feasible (ϑ = 12.91). 2_24 (Fig. 5[link]j) and 2_20 are related to the LTA structure, since they can be generated by linking sodalite cages and D4R. They also have the same supercages as 2_45 and 2_36 and similar ϑ of 13.28 and 16.11, respectively. Structures 2_27 (Fig. 7[link]k) and 2_21 can also be considered part of a series with LTA, except in this case it is the alpha cages which are retained and the linkages between them expanded. The final pair, 2_39 (Fig. 5[link]l) and 2_32, form a series derived from KFI, containing alpha cages which are connected via shared D6R and are replaced by stacks of two and three D6R.

3.5. SAS family

These structures are analogous to the AWW family as they contain stacks of large cages linked unidirectionally by eight-rings. Fig. 6[link](a) shows the [001] projection of structure 2_54, typical of all four tetragonal structures belonging to this family and having I4/mmm space-group symmetry [2_54, 2_57, 2_81 (SAS) and 2_95]. The basic building units may be thought of as smaller polyhedra arranged in parallel chains: in the case of 2_81 the basic units are D6R hexagonal prisms, which form a chain by sharing four-rings, 2_95 is a highly feasible (ϑ = 0.93) structure in which [4454] units are linked into chains via four-rings (Fig. 6[link]b); in 2_57 an additional D4R is interposed between the alternating D6R and 2_54 is built analogously from chains of alternating D8R and D4R. Aside from SAS and 2_95, both 2_54 and 2_57 are also quite feasible as zeolites (ϑ = 3.18 and 5.51, respectively).

3.6. [4258] family

These structures have a small [4258] cage as the building unit (Fig. 6[link]d). In four of the structures, these units are linked into chains through the four-rings which cap the cages. The structures are tetragonal with [4258] chains running along [001] and have large cages accessible through eight-rings. The projection of 2_91 along [001] is typical of this family (Fig. 6[link]c). Structure 2_91 is the most feasible of these structures (ϑ = 0.95) and has [4258] cages linked through D4R, with a chain repeat motif of two cages and two D4R. In 2_114, another highly feasible structure with ϑ = 2.17, the cages are directly linked through a shared four-ring. Structures 2_92 and 2_115 are analogous to structures 2_91 and 2_114, respectively, but with only half the chain repeat distance. Both structures are far less feasible, as is a fifth structure, 2_116 (Figs. 6[link]e and f), in which the [4258] units are linked into chains via pairs of T—O—T linkages (Fig. 6[link]f). In the latter, the chains are interconnected so as to run in all three directions of the cubic lattice and the structure also contains sodalite cages, each of which shares its four-ring windows with [4258] units.

3.7. AST family

Structure 2_101 (Fig. 6[link]gi) is topologically identical to the known zeolite AST (AlPO-16).33,34 The structure contains the characteristic [46610] cages (Fig. 6[link]i), but may also be thought of in terms of D4R units connected through O—T—O bridges (Fig. 6[link]h). In 2_73 the D4R connect through single oxygen bridges and, apart from containing sodalite cages, the structure also possesses large tetrahedral cages with 12-ring apertures. Structure 2_61 is tetragonal containing cages with oval-shaped ten-rings as their largest apertures. Topologically, 2_13 (Figs. 6[link]j and l) is a variation of the AST structure in which those T atoms which do not form part of D4R are replaced by the [34] tetrahedra of T sites, a structural feature not found in aluminosilicate zeolites, although present, for instance, in the zeotypic sulfide RWY.

3.8. D8R family

This family is formed by four structures which contain the double eight-ring (D8R) as a structural unit. Structure 2_47 has a cubic structure in which the building unit may be thought of as a D8R with four D4R attached to alternate four-ring faces (Fig. 7[link]a). The units do not link directly to one another, but are arranged so as to define the large [42468818] (TSC) cages (Fig. 7[link]b). Structures 2_19 and 2_17 form part of a homologous series of structures, together with the uninodal structure 1_11 (Foster et al., 2003[Foster, M. D., Delgado Friedrichs, O., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. (2003). Angew. Chem. Int. Ed. 42, 3896-3899.]), one of the nine simple uninodal tilings. The latter structure has a body-centered cubic framework based on chains of D8R and D4R, and 2_19 has the same structure, except that the D4R in 1_11 are replaced in 2_19 by pairs of face-sharing D4R (Fig. 7[link]c) and in 2_17 by groups of three D4R. The more complex 2_34 structure also contains the D8R/D4R units, but with the addition of [4664] AWW cages forming large cages with 12-rings as the maximum aperture (Fig. 7[link]d). Topologically, the tile which corresponds to this cage is the largest among this set of binodal frameworks, with 74 faces, 144 vertices and 216 edges. Structure 2_34 shares the space group Im[\bar 3]m with both 2_19 and 2_17. Structure 2_47 is thermodynamically feasible (ϑ = 3.02), while 2_17 and 2_19 have ϑ = 13.96 and 13.39, respectively, despite having extremely low framework densities of 8.17 and 6.05T per 1000 Å3, respectively.

3.9. AFY family

Structure 2_50 is topologically identical to the known structural type AFY (AlPO-50). The secondary building unit of this family is a D4R, which in AFY form hexagonal layers (Fig. 7[link]e) and are tilted with respect to the (001) plane. These layers then repeat through simple translation along c, most clearly seen in the (120) projection (Fig. 7[link]f; van Koningsveld, 2004[Koningsveld, H. van (2004). Schemes for Building Zeolite Structure Models, in Database of Zeolite Structures; https://topaz.ethz.ch/IZA-SC/ModelBuilding.htm .]; Baelocher & McCusker, 2004[Baerlocher, C. & McCusker, L. B. (2004). https://www.iza-structure.org/databases .]). If, instead, the layers alternate in orientation by means of a mirror plane (i.e. ABA rather than AA), the hypothetical framework 2_51 is formed. Both have low ϑ values: 5.03 and 5.18 for 2_50 and 2_51, respectively, making 2_51 virtually as feasible as AFY.

3.10. D6R family

This family comprises seven structures (2_6, 2_30, 2_53, 2_75, 2_76, 2_77 and 2_82) which have in common D6R hexagonal prisms as building units. These structures are all cubic, space group Pn[\bar 3]m, with the exception of 2_76 and 2_75, for which D6R (i.e. 6–6) may be strictly defined as a secondary building unit. The first five members of the group may be thought of in terms of chains running along [110] in which the D6R are linked by various combinations of rings. In the most feasible member of the family, 2_53 (ϑ = 5.11), the link unit includes D4R, giving rise to the characteristic motif shown in Fig. 7[link](g), where four D6R are connected to a single D4R. This structure also contains FAU supercages linked via the [41886122] cages (Fig. 7[link]h). Structure 2_82 is quite similar to 2_53, whereas in 2_77 the D6R chains are linked by units of three four-rings and in 2_30 a spiro-5 unit links the D6R into chains. Structure 2_6 also contains three-rings linked into [34] tetrahedra which connect the D6R. Finally, structures 2_75 and 2_76 are the `odd ones' of the family since it is not possible to describe them using the D6R chain model. Structure 2_75 is very unusual as it contains both `regular' and flattened sodalite cages connected through six-rings (Fig. 7[link]i). Structure 2_76 contains (differently) distorted beta cages as well as larger cages accessible through both approximately planar six-rings and highly curved eight-rings. Structures 2_75, 2_6 or 2_76 are not expected to be chemically feasible.

3.11. Three- and four-ring family

These eight structures are grouped together because they contain both three- and four-membered rings, although in other ways they are fairly different. Seven structures are cubic and five have framework densities lower than 14 T per 1000 Å3. Structure 2_99, the most feasible structure of this family with ϑ = 10.53, can be described as a network of corner-sharing three- and four-rings, part of which is the unit shown in Fig. 8[link](a). Three types of cages are found, one of which is the [3886] (truncated cube, Fig. 8[link]b). The somewhat similar 2_62, which has ϑ = 10.97, also exhibits the truncated cube cage. Structure 2_68 has a low framework density of 13.08 T per 1000 Å3 and ϑ = 13.82. Structures 2_70 and 2_93 have similar framework densities to that of 2_68 (13.42 and 13.98, respectively) and ϑ = 14.33 and 28.25, making these three structures interesting candidates as zeotypes. Structure 2_93 contains [3464] cages, i.e. truncated tetrahedra (Fig. 8[link]c), which link through shared three-rings to form a body-centred cubic structure. Structures 2_18, 2_28 and 2_5 have much lower framework densities (10.06, 11.69 and 7.28, respectively) than conventional zeolites, and are thus much less feasible as zeotype materials.

3.12. [3243] D3R family

The common feature is a trigonal prism (a [3243] unit) and we have assigned nine structures to this family. As in the previous family, many are of interest due to their low density, with the presence of small polyhedra being compensated by large supercages. While we believe that none is feasible in a traditional zeolite or AlPO composition, they may be of interest in several areas of chemistry, for instance if it were possible to form the D3R unit as a precursor. All the structures are cubic and have at least m[\bar 3]m symmetry. Structure 2_43 (Figs. 8[link]df) is the most feasible (ϑ = 11.62) and has D3R units attached to [3464] truncated tetrahedra to form tetrahedral units (Fig. 8[link]e). `Truncated cube' cages are present, as are the large [42468818] cages shown in Fig. 8[link](f). In 2_64 the D3R are also attached to truncated cube cages, but the structure additionally contains alpha and [42468818] tschörtnerite (TSC) cages. Structure 2_23 has beta cages linked via D3R–four-ring–D3R bridging units and 2_26 also has the same unit of two D3R linked though a four-ring (as do 2_25 and 2_22), with alpha cages present. Structure 2_25 has a pore system connected through 12-ring apertures and contains, besides FAU supercages and LTA alpha cages, the large [42486128] cages found in the RWY structure. Structure 2_41 is similar to 2_43, as the D3R form an alternating network with truncated tetrahedra (as in Fig. 8[link]e). Structure 2_22 is also of very low density (FD = 9.70 T per 1000 Å3) and has the D3R connected so as to define D8R. Finally, 2_4 and 2_8 are among the least dense of all the binodal simple tile structures, with FD of 5.39 and 6.48 T per 1000 Å3, respectively. The basic building unit of 2_8 is two D3R stacked with an intervening D4R (Fig. 8[link]g). In 2_4 the intermediate unit is absent and D3R units join directly through a shared four-ring. In both cases, very open cavity systems are constructed by connection of these units (Fig. 8[link]h).

3.13. Three-ring family

This family of eight structures is characterized by the presence of three-rings. Five structures contain pairs, or longer chains, of three-rings which share one T atom and therefore contain the spiro-5 unit (Baerlocher et al., 2001[Baerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at https://www.iza-structure.org/ ), 5th ed. London: Elsevier.]). Two of the structures also contain four-rings. As expected, several of the structures are of low density, but none would be expected to be realisable as a conventional zeolite. In 2_71, the most feasible with ϑ = 17.07, three-rings themselves form rings of six (Fig. 8[link]i), with the structure also containing elongated cages having eight-rings as their largest pore. The basic unit of 2_69 is a pair of edge-sharing three-rings (or bridged four-ring, Fig. 8[link]j). These larger units then connect to define a hexagonal channel system. Structure 2_65 also contains loops of six three-rings, virtually identical in structure to those in 2_71. However, the structure is much more open (FD = 12.28, compared with 17.38 for 2_71), containing a three-dimensional network of 10- and 12-ring pores. Structure 2_44 is another very open structure (FD = 10.36), with a three-dimensional network of corner-sharing three-rings defining the small [3464] cages shown in Fig. 8[link](k), as well as large cavities linked through 12-rings. Structure 2_12 has unusual chains built up from pairs of edge-sharing three-rings and has large cross-linked channels extending in two dimensions, delineated by puckered 14-membered rings (Fig. 8[link]l). Structure 2_29 is an unusually complex cubic structure, with three- and four-rings linked together (Fig. 8[link]m): pairs of edge-sharing three-rings are formed (there are no spiro-5 units) and these pairs are further connected by distorted four-rings. Uniquely for this family, in 2_105 the three-rings do not directly link into chains or pairs through the sharing of T atoms, but rather connect through oxygen bridges to define five-rings. Finally, 2_9 has H-shaped building units in which four-rings share edges with pairs of three-rings (Fig. 8[link]n).

3.14. [34] family

The common feature of this family is a [34] unit, sometimes known as the `supertetrahedron' or `tetrahedron of tetrahedra'. This unit is unknown in zeolitic oxide materials, but is present in some sulfides, including the zeotypic RWY structure and the compound Na2Si2S5. Structure 2_16 (Figs. 9[link]a and b), one of the few structures containing seven-rings, is characterized by its [38427884] cage (Fig. 9[link]b). Each of the eight three-rings forms part of a [34] unit, shared with three other cages. This structure is the most feasible of this family, with ϑ = 36.19. Similarly, 2_14 has only one type of `larger' cage, [38426488], and the whole structure can be thought of in terms of the sodalite framework, but with one third of the T sites replaced by [34] supertetrahedra. Structure 2_15 is also related to the sodalite structure, although now with half of the original T sites replaced by the [34] units, creating [3126698] cages. Structure 2_10 can be derived from the RHO zeolite structure by replacement of all T sites by [34] tetrahedra. As a result, it possesses very large cages linked via double 16-membered rings (Fig. 9[link]c). Finally, structure 2_7, being the least dense of this family (FD = 8.60), has [3464] units (`truncated tetrahedra') linked via chains of four-rings and [34] units (Fig. 9[link]d). This very open cubic structure has 16-MR pores in all three dimensions.

3.15. Orphan structures

We show three selected structures out of the 12 which cannot be categorized in our `family' system.

  • Structure 2_96, a feasible zeolite structure (ϑ = 5.45), is unusual as it contains small [455262] cage units (Fig. 9[link]e) interconnected through shared four-rings to form a three-dimensional network (Fig. 9[link]f), thereby defining the [512620] cage which also appears in structure 2_97.

  • Structure 2_37 (Figs. 9[link]hj): the basic building unit is the D4R, which links via four-rings to create double 12-membered rings (Fig. 9[link]i), which are in turn linked into large [43684128] supercages with tetrahedral symmetry, with four puckered 12-rings and four 12-rings which are almost planar (Fig. 9[link]j). This cubic structure is quite open with FD = 12.58 T per 1000 Å3, but is of intermediate feasibility (ϑ = 18.50).

  • Structure 2_94 (Figs. 9[link]k and l) contains [3464] truncated tetrahedra, distorted sodalite cages, and larger cages with three- and six-rings (Fig. 9[link]l). The ideal symmetry of the structure is Fd[\bar 3]m. However, in silica form it appears highly strained in this symmetry, preferring to minimize in space group C2, giving rise to its somewhat distorted appearance.

4. Conclusions

We have evaluated and characterized 109 hypothetical zeolite structures, of which 98 do not correspond to known zeotype frameworks. Among these are many promising candidates for zeolite synthesis. Some of the most feasible as conventional aluminosilicates or AlPOs are those in the ABC-6 family, composed principally of four- and six-rings, although from the point of view of porosity, the more likely structures will be at best small-pore zeolites, having no aperture larger than the eight-ring. Other promising candidates come from structures which similarly have features in common with known zeolites, such as those in the AWW and SAS families (Figs. 5[link] and 6[link]), where cages stack through shared eight-rings. Again, four- and six-rings predominate, with the eight-ring being the limiting aperture in all cases, as it is for the more feasible structures in the [4256] family. At the other end of the scale, many very open structures also exist. These illustrate well the principle (Brunner & Meier, 1989[Brunner, G. O. & Meier, W. M. (1989). Nature, 337, 146-147.]) that less dense structures require a greater proportion of small (three- or four-membered) rings. Here, we can extend this to state that larger cavities also require the presence of much smaller cages. Hence, we find large-pore structures containing [34] units (Fig. 9[link]), double three-rings (Fig. 8[link]) and three-rings, as well as pairs and chains of three- and four-rings. In terms of aluminosilicate and aluminophosphate zeolites, these structural units, particularly those containing three-rings, are by and large disfavoured due to the strain imposed on the TO4 tetrahedra. In fact, it is apparent that feasibility decreases markedly as more three-rings are connected together with, for example, structures containing [34] units having higher values than those containing only spiro-5 units. The most viable three-ring structures are those in which the three-rings are isolated from one another. The best example is 2_103 which contains the [3256] unit (Fig. 4[link]g), reminiscent of the [314353] units in the MEI structure. Structure 2_103 is the most feasible large-pore zeolite among our 109 structures. Similarly, although four-rings are found in the most feasible structures, agglomerations of these units, obtained by stacking prismatic units such as D4R and D6R, result in decreasing likelihood (although individual D4R and D6R are tolerated, unlike D3R).

Having discounted many of the more open structures as potential zeolites on account of the presence of these small units, we do not exclude the possibility that these topologies could be possible in other chemical compositions where the local coordination environments are less constrained. Indeed, if we could construct units such as the D3R or the supertetrahedron as precursor species, many open framework architectures could be synthesized.

Supporting information


Computing details top

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(2_10) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 30.86100 ÅZ = ?
b = 30.86100 Å? radiation, λ = ? Å
c = 30.86100 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 30.86100 ÅZ = ?
b = 30.86100 Å? radiation, λ = ? Å
c = 30.86100 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.388740.950490.23571
Si20.364020.883620.29377
O10.359170.934280.27725
O20.618730.000000.77745
O30.561000.061000.25000
O40.377070.916310.19606
O50.645720.145720.25000
O60.666000.128760.66600
(2_100) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4m2V = ? Å3
a = 12.86907 ÅZ = ?
b = 12.86907 Å? radiation, λ = ? Å
c = 7.62915 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4m2V = ? Å3
a = 12.86907 ÅZ = ?
b = 12.86907 Å? radiation, λ = ? Å
c = 7.62915 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.268430.375730.66505
Si20.381440.618560.00000
O10.655640.844360.25000
O20.343340.333210.81858
O30.692260.692260.50000
O40.272320.500000.62435
O50.353130.500000.98438
(2_101) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 13.45924 ÅZ = ?
b = 13.45924 Å? radiation, λ = ? Å
c = 13.45924 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 13.45924 ÅZ = ?
b = 13.45924 Å? radiation, λ = ? Å
c = 13.45924 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.250000.250000.25000
Si20.385580.114420.11442
O10.317930.182070.18207
O20.500000.138100.86190
(2_102) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.61409 ÅZ = ?
b = 12.61409 Å? radiation, λ = ? Å
c = 16.64170 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.61409 ÅZ = ?
b = 12.61409 Å? radiation, λ = ? Å
c = 16.64170 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.793050.206950.78819
Si20.589180.178350.05806
O10.791470.791470.50000
O20.533590.466410.12084
O30.767500.232500.69912
O40.527250.263630.07142
(2_103) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 13.61516 ÅZ = ?
b = 13.61516 Å? radiation, λ = ? Å
c = 13.98130 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 13.61516 ÅZ = ?
b = 13.61516 Å? radiation, λ = ? Å
c = 13.98130 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.461180.790850.75000
Si20.668300.539100.04416
O10.468540.140330.15828
O20.336480.780090.75000
O30.415560.584440.50000
O40.585190.792600.50000
O50.372540.372540.98395
(2_104) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 13.48100 ÅZ = ?
b = 13.48100 Å? radiation, λ = ? Å
c = 6.51286 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 13.48100 ÅZ = ?
b = 13.48100 Å? radiation, λ = ? Å
c = 6.51286 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.407080.814160.00000
Si20.533170.661090.59486
O10.461640.730820.00000
O20.395680.504940.17752
O30.579310.789660.50000
O40.408040.816080.50000
O50.371740.371740.47879
(2_105) top
Crystal data top
O2Siβ = 86.07812°
Mr = ?γ = 86.15317°
?, P1V = ? Å3
a = 10.67472 ÅZ = ?
b = 16.87892 Å? radiation, λ = ? Å
c = 16.90175 Å × × mm
α = 67.80785°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 86.07812°
Mr = ?γ = 86.15317°
?, P1V = ? Å3
a = 10.67472 ÅZ = ?
b = 16.87892 Å? radiation, λ = ? Å
c = 16.90175 Å × × mm
α = 67.80785°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.416670.666670.16998
Si20.105280.301890.83346
Si30.766320.966910.50123
Si40.420890.204150.14625
Si50.086830.870660.81340
Si60.749850.541060.48475
Si70.410700.189030.69840
Si80.072700.855950.36965
Si90.738960.521540.02869
Si100.579570.388220.82629
Si110.240850.062940.49218
Si120.902260.725670.16157
Si130.585750.847670.84833
Si140.255280.508380.51358
Si150.918500.176860.18045
Si160.597020.861130.28038
Si170.266170.526680.95119
Si180.935920.192690.60669
Si190.374950.323830.75045
Si200.033910.991070.42082
Si210.699540.653050.08896
Si220.371420.780770.99420
Si230.048230.424300.66098
Si240.712730.094140.33007
Si250.405750.018480.22854
Si260.075670.684760.89746
Si270.743370.351730.55674
Si280.465650.361830.58207
Si290.127900.030510.25386
Si300.794470.698830.92022
Si310.434960.113150.33385
Si320.096140.781480.00173
Si330.770130.440280.66814
Si340.445410.610620.02919
Si350.141840.259230.69030
Si360.804110.929180.35612
Si370.632440.717020.24162
Si380.306820.384850.90275
Si390.971240.047700.56792
Si400.632870.268160.99883
Si410.294810.946970.66639
Si420.956650.616170.33763
Si430.604220.031560.74757
Si440.265100.697080.42484
Si450.930190.362040.07948
Si460.541890.689280.40802
Si470.210050.351070.06841
Si480.881560.020280.73264
Si490.574040.919590.65964
Si500.233840.593350.32897
Si510.909890.249170.99130
Si520.554360.437050.96277
Si530.202640.114840.62711
Si540.868130.784600.29320
O10.410590.588670.12925
O20.107280.225840.79277
O30.766170.893160.45848
O40.400380.192710.24700
O50.058580.858130.91382
O60.727300.523500.58671
O70.416520.265660.60282
O80.084320.932800.27438
O90.746850.603490.93701
O100.437560.105510.14921
O110.106480.771930.81651
O120.768590.444440.48190
O130.405070.760010.09504
O140.078700.398420.76168
O150.744280.064940.43132
O160.411560.221190.77915
O170.070110.889140.44975
O180.735840.550760.11281
O190.583540.468500.85935
O200.241420.143470.52514
O210.901370.809510.19142
O220.597440.843350.75214
O230.272900.513120.41387
O240.935930.174420.08383
O250.582320.789150.37783
O260.246760.449790.04520
O270.915510.121460.70402
O280.564030.949910.83004
O290.231140.608900.50329
O300.889990.279050.16225
O310.584120.291930.90266
O320.251410.967760.56892
O330.919680.632490.23997
O340.595760.819990.20660
O350.275840.487920.87311
O360.934280.150370.53305
O370.570930.664310.18736
O380.254620.323490.84718
O390.918820.983600.51538
O400.545460.230450.08568
O410.211430.901260.75364
O420.871830.574850.42461
O430.522680.120310.72160
O440.179130.783800.40127
O450.854250.453440.05240
O460.301660.269890.11850
O470.970330.938770.78484
O480.631610.608240.46041
O490.311630.617740.23921
O500.004770.258690.90973
O510.666800.924970.57795
O520.258080.170630.68764
O530.921250.840600.35318
O540.596560.496940.01328
O550.428420.380650.80673
O560.087550.050040.47620
O570.752350.706610.14844
O580.467360.829290.91667
O590.139000.475880.58058
O600.803810.147450.25015
O610.492120.933650.24025
O620.155260.596210.91163
O630.836210.269520.56499
O640.709840.787040.87867
O650.382150.449520.53919
O660.045290.118550.20966
O670.692520.412200.75813
O680.348840.091190.42039
O690.008420.755640.08837
O700.750780.876880.29192
O710.402620.552860.97403
O720.088330.206670.62453
O730.484960.366260.67522
O740.145020.034800.34746
O750.808560.699920.01529
O760.355790.693290.97732
O770.034910.334370.64638
O780.697600.005520.31288
O790.425940.024390.31990
O800.099650.691820.98788
O810.760550.353610.65008
O820.526460.673870.31973
O830.200560.338830.97773
O840.865960.003260.64450
O850.659190.360100.00409
O860.312220.040630.67185
O870.977290.711240.33957
O880.594470.013060.66116
O890.258570.684320.33560
O900.921440.343280.99324
O910.254630.329150.68876
O920.916780.996780.35553
O930.579080.660230.02833
O940.232360.818890.00145
O950.912180.469120.66284
O960.577160.139350.33466
O970.260220.021590.20705
O980.929120.692780.87545
O990.598080.351120.53539
O1000.755250.714130.30048
O1010.427240.380930.96586
O1020.087660.047350.63288
O1030.766640.222410.98998
O1040.428160.900580.65815
O1050.089270.567650.33657
O1060.746360.027100.77664
O1070.406980.698490.45196
O1080.072380.355640.10992
(2_106) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.40926 ÅZ = ?
b = 12.40926 Å? radiation, λ = ? Å
c = 15.45706 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.40926 ÅZ = ?
b = 12.40926 Å? radiation, λ = ? Å
c = 15.45706 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.586640.919650.58300
Si20.252800.001530.25000
O10.546700.093410.40593
O20.000000.659190.50000
O30.667630.988990.66630
O40.433720.216860.42777
O50.107420.214830.75000
O60.869980.130020.75000
(2_107) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.39718 ÅZ = ?
b = 12.39718 Å? radiation, λ = ? Å
c = 10.32054 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.39718 ÅZ = ?
b = 12.39718 Å? radiation, λ = ? Å
c = 10.32054 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.918920.332060.25000
Si20.746560.000000.50000
O10.009640.675720.62471
O20.224170.775830.75000
O30.462290.924590.75000
O40.118110.236230.48402
(2_108) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.41855 ÅZ = ?
b = 12.41855 Å? radiation, λ = ? Å
c = 30.85728 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.41855 ÅZ = ?
b = 12.41855 Å? radiation, λ = ? Å
c = 30.85728 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.666100.584800.62520
Si20.665050.080820.45895
O10.545970.091930.04936
O20.780890.219110.03414
O30.646890.650350.58397
O40.655680.655680.00000
O50.774020.548030.20409
O60.672630.005960.16667
O70.537120.462880.20898
(2_109) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 17.25621 ÅZ = ?
b = 17.25621 Å? radiation, λ = ? Å
c = 17.25621 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 17.25621 ÅZ = ?
b = 17.25621 Å? radiation, λ = ? Å
c = 17.25621 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.077140.663000.45976
Si20.756120.501630.37322
O10.750000.437510.06249
O20.406990.880500.11950
O30.154290.653840.51213
O40.500000.000000.37170
O50.766750.923160.07684
O60.754950.075420.07542
O70.798490.003800.20151
(2_110) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.40595 ÅZ = ?
b = 12.40595 Å? radiation, λ = ? Å
c = 23.19481 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.40595 ÅZ = ?
b = 12.40595 Å? radiation, λ = ? Å
c = 23.19481 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.748070.748070.00000
Si20.748400.746940.22165
O10.783890.216110.34379
O20.682750.668820.27831
O30.774750.549490.11515
O40.592080.796040.44379
O50.673390.666670.16667
(2_111) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4132V = ? Å3
a = 11.63239 ÅZ = ?
b = 11.63239 Å? radiation, λ = ? Å
c = 11.63239 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4132V = ? Å3
a = 11.63239 ÅZ = ?
b = 11.63239 Å? radiation, λ = ? Å
c = 11.63239 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.875000.772520.97748
Si20.827500.177260.02147
O10.962110.838280.64201
O20.782580.875000.96742
O30.966010.216790.01311
O40.664220.914220.62500
(2_112) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P213V = ? Å3
a = 13.70190 ÅZ = ?
b = 13.70190 Å? radiation, λ = ? Å
c = 13.70190 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P213V = ? Å3
a = 13.70190 ÅZ = ?
b = 13.70190 Å? radiation, λ = ? Å
c = 13.70190 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.037700.066170.20272
Si20.208550.868400.91167
Si30.566160.797280.03769
Si40.291450.631600.58833
O10.007920.154930.12940
O20.066950.111570.30639
O30.950470.992600.22009
O40.199160.915360.80436
O50.304350.800840.91536
O60.111570.806390.93305
O70.654930.870590.00792
O80.492610.779910.95047
(2_113) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, FdddV = ? Å3
a = 7.41702 ÅZ = ?
b = 13.54690 Å? radiation, λ = ? Å
c = 23.66447 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, FdddV = ? Å3
a = 7.41702 ÅZ = ?
b = 13.54690 Å? radiation, λ = ? Å
c = 23.66447 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.698520.462530.68821
Si20.500000.500000.10086
O10.824810.507080.64016
O20.231940.344880.18906
O30.750000.995860.75000
O40.500000.500000.67290
(2_114) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mcmV = ? Å3
a = 13.70551 ÅZ = ?
b = 13.70551 Å? radiation, λ = ? Å
c = 14.12245 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mcmV = ? Å3
a = 13.70551 ÅZ = ?
b = 13.70551 Å? radiation, λ = ? Å
c = 14.12245 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.348700.557280.00000
Si20.400590.261510.80067
O10.556020.624330.50000
O20.418450.282970.91017
O30.500000.231330.75000
O40.642320.642320.75000
O50.671410.828590.21090
(2_115) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nbmV = ? Å3
a = 13.41282 ÅZ = ?
b = 13.41282 Å? radiation, λ = ? Å
c = 6.85666 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nbmV = ? Å3
a = 13.41282 ÅZ = ?
b = 13.41282 Å? radiation, λ = ? Å
c = 6.85666 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.115650.115650.00000
Si20.393920.257230.38273
O10.866550.811690.81976
O20.000000.863400.00000
O30.139760.360240.63353
O40.687270.687270.50000
O50.500000.267190.50000
(2_116) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I432V = ? Å3
a = 16.45100 ÅZ = ?
b = 16.45100 Å? radiation, λ = ? Å
c = 16.45100 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I432V = ? Å3
a = 16.45100 ÅZ = ?
b = 16.45100 Å? radiation, λ = ? Å
c = 16.45100 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.506610.371410.76034
Si20.561920.333980.93621
O10.084320.923660.23154
O20.717750.500000.28225
O30.516190.374250.85891
O40.500001.000000.19981
O50.250000.898450.60155
O60.116030.883970.50000
(2_117) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P42/mnmV = ? Å3
a = 7.18391 ÅZ = ?
b = 7.18391 Å? radiation, λ = ? Å
c = 12.40787 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P42/mnmV = ? Å3
a = 7.18391 ÅZ = ?
b = 7.18391 Å? radiation, λ = ? Å
c = 12.40787 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.847540.847540.62703
Si21.000000.500000.75000
O11.000001.000000.66022
O20.351090.096600.32664
O30.171450.171450.50000
(2_12) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 15.17688 ÅZ = ?
b = 15.17688 Å? radiation, λ = ? Å
c = 17.20330 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 15.17688 ÅZ = ?
b = 15.17688 Å? radiation, λ = ? Å
c = 17.20330 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.250000.688900.37500
Si20.273170.600580.52420
O10.283640.627150.30268
O20.666960.249690.84646
O30.240570.500000.20104
O40.375700.875700.75000
(2_13) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 17.45206 ÅZ = ?
b = 17.45206 Å? radiation, λ = ? Å
c = 17.45206 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 17.45206 ÅZ = ?
b = 17.45206 Å? radiation, λ = ? Å
c = 17.45206 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.307430.692570.80743
Si20.588120.911880.58812
O10.356280.750000.75000
O20.359470.640530.85947
O30.393590.893590.50000
(2_14) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 11.59288 ÅZ = ?
b = 11.59288 Å? radiation, λ = ? Å
c = 12.95395 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 11.59288 ÅZ = ?
b = 11.59288 Å? radiation, λ = ? Å
c = 12.95395 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.309820.500000.00000
Si20.377630.000000.67290
O10.385810.385810.00000
O20.265760.000000.39701
O30.613560.886440.25000
O40.500000.000000.39214
(2_15) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 13.63666 ÅZ = ?
b = 13.63666 Å? radiation, λ = ? Å
c = 13.63666 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 13.63666 ÅZ = ?
b = 13.63666 Å? radiation, λ = ? Å
c = 13.63666 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.750000.500000.00000
Si20.396630.675830.00000
O10.307530.601780.00000
O20.903630.403630.25000
O30.500000.614460.00000
(2_16) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P42/mnmV = ? Å3
a = 10.21713 ÅZ = ?
b = 10.21713 Å? radiation, λ = ? Å
c = 16.39642 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P42/mnmV = ? Å3
a = 10.21713 ÅZ = ?
b = 10.21713 Å? radiation, λ = ? Å
c = 16.39642 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.892610.892610.90445
Si20.365460.033210.18878
O10.244480.062190.13189
O20.125110.125110.00000
O31.000000.000000.88229
O40.500000.000000.13664
O50.406300.155300.24995
(2_17) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 31.66657 ÅZ = ?
b = 31.66657 Å? radiation, λ = ? Å
c = 31.66657 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 31.66657 ÅZ = ?
b = 31.66657 Å? radiation, λ = ? Å
c = 31.66657 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.452500.949380.61453
Si20.453340.949640.79440
O10.500000.065700.39671
O20.548520.000000.38400
O30.438410.930760.66085
O40.579240.068680.42076
O50.567690.067690.75000
O60.544000.000000.20923
O70.500000.069980.20292
(2_18) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 18.13320 ÅZ = ?
b = 18.13320 Å? radiation, λ = ? Å
c = 18.13320 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 18.13320 ÅZ = ?
b = 18.13320 Å? radiation, λ = ? Å
c = 18.13320 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.250000.00000
Si20.583370.000000.88793
O10.500000.922810.29804
O20.500000.585840.00000
O30.574310.574310.88011
(2_19) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 26.02111 ÅZ = ?
b = 26.02111 Å? radiation, λ = ? Å
c = 26.02111 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 26.02111 ÅZ = ?
b = 26.02111 Å? radiation, λ = ? Å
c = 26.02111 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.440360.250000.05964
Si20.639540.558240.93847
O10.745990.928940.50000
O20.304760.080830.41868
O30.360620.442000.00000
O40.370070.500000.08145
O50.405240.405240.08371
(2_20) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 17.51913 ÅZ = ?
b = 17.51913 Å? radiation, λ = ? Å
c = 17.51913 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 17.51913 ÅZ = ?
b = 17.51913 Å? radiation, λ = ? Å
c = 17.51913 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.000000.419520.87393
Si20.000000.254180.87321
O10.000000.500000.82472
O20.000000.337790.83046
O30.074530.420340.92547
O40.809000.000000.19100
O50.925080.244640.92508
(2_21) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 31.52555 ÅZ = ?
b = 31.52555 Å? radiation, λ = ? Å
c = 31.52555 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 31.52555 ÅZ = ?
b = 31.52555 Å? radiation, λ = ? Å
c = 31.52555 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.328950.232310.50000
O20.390830.308490.50000
O30.570530.795920.29592
O40.545770.782480.21752
O50.559880.851990.14801
O60.574130.925870.18239
Si10.452440.182760.74611
Si20.449980.118360.81176
O70.432460.140820.76800
(2_22) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.50871 ÅZ = ?
b = 19.50871 Å? radiation, λ = ? Å
c = 19.50871 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.50871 ÅZ = ?
b = 19.50871 Å? radiation, λ = ? Å
c = 19.50871 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.000000.420240.69219
Si20.926440.580510.17848
O10.000000.500000.67062
O20.623690.000000.37631
O30.932400.597400.26043
O40.000000.398060.85557
O50.082570.500000.82833
O60.137290.383760.86271
(2_23) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 32.82548 ÅZ = ?
b = 32.82548 Å? radiation, λ = ? Å
c = 32.82548 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 32.82548 ÅZ = ?
b = 32.82548 Å? radiation, λ = ? Å
c = 32.82548 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.716000.044630.21600
Si20.249650.880260.68540
O10.263390.928200.82038
O20.250000.750000.46121
O30.500000.799250.79925
O40.250800.642070.35793
O50.283370.639650.28337
O60.705520.123280.29448
(2_24) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 14.68960 ÅZ = ?
b = 14.68960 Å? radiation, λ = ? Å
c = 14.68960 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 14.68960 ÅZ = ?
b = 14.68960 Å? radiation, λ = ? Å
c = 14.68960 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.350470.500000.00000
Si20.348670.500000.80326
O10.297430.500000.09704
O20.411180.588820.00000
O30.410640.589360.79210
O40.500000.727630.27237
(2_25) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.18974 ÅZ = ?
b = 30.18974 Å? radiation, λ = ? Å
c = 30.18974 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.18974 ÅZ = ?
b = 30.18974 Å? radiation, λ = ? Å
c = 30.18974 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.321000.000000.25257
Si20.622300.950730.80686
O10.500000.196260.69626
O20.500000.221090.77891
O30.649790.956280.76031
O40.320600.895040.00000
O50.418400.081600.20089
O60.345550.067740.15445
(2_26) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.21510 ÅZ = ?
b = 30.21510 Å? radiation, λ = ? Å
c = 30.21510 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.21510 ÅZ = ?
b = 30.21510 Å? radiation, λ = ? Å
c = 30.21510 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.447960.715790.78421
Si20.449880.877020.69266
O10.279100.000000.72089
O20.563810.836070.72564
O30.424100.750000.75000
O40.581960.081960.29948
O50.553310.142340.35766
O60.500000.107060.29781
(2_27) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 27.54800 ÅZ = ?
b = 27.54800 Å? radiation, λ = ? Å
c = 27.54800 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 27.54800 ÅZ = ?
b = 27.54800 Å? radiation, λ = ? Å
c = 27.54800 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.289930.710070.44380
Si20.716200.135220.55678
O10.298090.701910.50000
O20.732760.340450.57626
O30.250000.750000.43396
O40.328230.828230.43395
O50.280270.877800.50000
O60.292990.914020.41402
(2_28) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3V = ? Å3
a = 16.01550 ÅZ = ?
b = 16.01550 Å? radiation, λ = ? Å
c = 16.01550 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3V = ? Å3
a = 16.01550 ÅZ = ?
b = 16.01550 Å? radiation, λ = ? Å
c = 16.01550 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.088570.30971
Si20.500000.098880.13107
O10.500000.760500.00000
O20.583850.914690.63261
O30.500000.143430.22451
O40.500000.620590.00000
(2_29) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3cV = ? Å3
a = 29.91716 ÅZ = ?
b = 29.91716 Å? radiation, λ = ? Å
c = 29.91716 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3cV = ? Å3
a = 29.91716 ÅZ = ?
b = 29.91716 Å? radiation, λ = ? Å
c = 29.91716 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.625000.256760.99324
O20.625000.201370.04863
Si10.550900.843780.25001
Si20.432840.913920.23297
O30.592680.878900.25568
O40.534090.825720.20198
O50.548580.808880.29155
(2_30) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.38789 ÅZ = ?
b = 15.38789 Å? radiation, λ = ? Å
c = 15.38789 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.38789 ÅZ = ?
b = 15.38789 Å? radiation, λ = ? Å
c = 15.38789 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.000000.25000
Si20.327610.060390.19335
O10.504310.088220.30917
O20.195920.403830.40383
O30.258120.480380.25812
O40.357540.142460.25000
(2_31) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 26.30283 ÅZ = ?
b = 26.30283 Å? radiation, λ = ? Å
c = 64.93137 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 26.30283 ÅZ = ?
b = 26.30283 Å? radiation, λ = ? Å
c = 64.93137 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.193500.039500.35480
Si20.118880.000720.43381
Si30.883560.002260.31464
Si40.806230.963680.39493
Si50.295270.902520.32623
Si60.118370.000460.52173
Si70.647990.881900.28469
Si80.567780.841970.36792
O10.210980.605490.23572
O20.444990.722490.35244
O30.491450.657570.28995
O40.113750.556870.30991
O50.389860.610140.36039
O60.499020.673140.25008
O70.281990.718010.23551
O80.461920.653820.32858
O90.525050.762520.27566
O100.244910.025800.34720
O110.143640.992360.45636
O120.832010.996410.29874
O130.737640.948860.39638
O140.897130.948560.48092
O150.675050.837530.38802
O160.745180.811120.32232
O170.941300.058700.47545
O180.711190.794200.35906
O190.769150.884570.29208
O200.036770.333330.33333
O210.849000.849000.50000
O220.713970.941310.28429
(2_32) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 24.92704 ÅZ = ?
b = 24.92704 Å? radiation, λ = ? Å
c = 24.92704 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 24.92704 ÅZ = ?
b = 24.92704 Å? radiation, λ = ? Å
c = 24.92704 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.260880.650650.56079
Si20.629210.282290.19484
O10.737210.401290.40129
O20.684770.315220.43064
O30.708890.190030.07205
O40.744390.369740.50000
O50.330850.669150.80035
O60.354780.759980.75998
O70.750000.362620.86262
(2_33) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 13.17414 ÅZ = ?
b = 13.17414 Å? radiation, λ = ? Å
c = 32.35697 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 13.17414 ÅZ = ?
b = 13.17414 Å? radiation, λ = ? Å
c = 32.35697 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.553570.446430.87775
O20.786000.893000.54223
O30.781620.890810.36304
O40.549260.098520.69147
O50.697000.697000.50000
O60.658730.000000.00000
Si10.570670.666990.12306
Si20.573120.906940.29992
O70.631600.671510.07896
(2_34) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 25.91834 ÅZ = ?
b = 25.91834 Å? radiation, λ = ? Å
c = 25.91834 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 25.91834 ÅZ = ?
b = 25.91834 Å? radiation, λ = ? Å
c = 25.91834 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.717860.631470.94078
Si20.369720.942210.55395
O10.683810.581610.94681
O20.743080.638960.00000
O30.683510.683510.92787
O40.750000.610770.88923
O50.411570.911490.58843
O60.363360.912050.50000
O70.389640.000000.54415
(2_35) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 30.84125 ÅZ = ?
b = 30.84125 Å? radiation, λ = ? Å
c = 30.84125 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 30.84125 ÅZ = ?
b = 30.84125 Å? radiation, λ = ? Å
c = 30.84125 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.445700.304300.62500
Si20.501020.570710.35681
O10.346730.444140.65327
O20.489030.311060.59565
O30.742180.146770.35323
O40.704270.204270.40198
O50.287460.712540.38092
(2_36) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.83415 ÅZ = ?
b = 19.83415 Å? radiation, λ = ? Å
c = 19.83415 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.83415 ÅZ = ?
b = 19.83415 Å? radiation, λ = ? Å
c = 19.83415 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.927890.571380.32779
Si20.773640.570480.32817
O10.070890.500000.72246
O20.070670.342480.65752
O30.000000.443800.63550
O40.851650.563150.34868
O50.259080.500000.64883
O60.260370.369790.63021
O70.248590.417170.75141
(2_37) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 19.68871 ÅZ = ?
b = 19.68871 Å? radiation, λ = ? Å
c = 19.68871 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 19.68871 ÅZ = ?
b = 19.68871 Å? radiation, λ = ? Å
c = 19.68871 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.636350.028300.74494
Si20.561910.955450.85173
O10.592800.976310.70117
O20.396270.896270.75000
O30.626900.996320.82045
O40.786770.467010.78677
O50.500000.000000.88108
O60.905230.587340.58734
(2_39) top
Crystal data top
O2Siβ = 89.95583°
Mr = ?γ = 90.07754°
?, P1V = ? Å3
a = 21.59403 ÅZ = ?
b = 21.62598 Å? radiation, λ = ? Å
c = 21.63699 Å × × mm
α = 90.12618°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 89.95583°
Mr = ?γ = 90.07754°
?, P1V = ? Å3
a = 21.59403 ÅZ = ?
b = 21.62598 Å? radiation, λ = ? Å
c = 21.63699 Å × × mm
α = 90.12618°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.847640.284570.00006
Si10.250000.150940.65094
Si20.747460.675130.17172
Si30.251790.659940.84291
Si40.750450.154650.35009
Si50.241280.362730.14901
Si60.751820.853840.64886
Si70.248180.831980.32722
Si80.748460.354270.85005
Si90.358310.758040.15001
Si100.850420.252700.65041
Si110.849130.654220.75331
Si120.353220.148820.25359
Si130.644820.753540.84708
Si140.169220.250270.32776
Si150.356150.856750.74885
Si160.843850.343250.25161
Si170.145810.751340.65522
Si180.643060.256790.14641
Si190.647610.153400.74883
Si200.138960.652540.25339
Si210.858160.748850.34913
Si220.349310.256740.84951
Si230.147190.352710.74768
Si240.639740.855530.24619
Si250.247900.356060.84795
Si260.749790.832560.32760
Si270.249540.848400.65912
Si280.745980.354050.14835
Si290.256300.144680.34978
Si300.745710.653320.85051
Si310.248870.675640.17192
Si320.749270.152680.64945
Si330.138790.749550.34903
Si340.647380.254220.84916
Si350.648640.852970.74616
Si360.144480.358590.24532
Si370.852820.753520.65229
Si380.328230.257000.17103
Si390.142390.647420.75173
Si400.655740.161320.25168
Si410.351100.754150.84364
Si420.852000.250050.35302
Si430.850130.353590.75044
Si440.358200.854970.24576
Si450.638940.758660.15015
Si460.148400.250300.64941
Si470.350530.154150.75139
Si480.857380.651960.25315
Si490.325430.225620.56954
Si500.822310.736130.07439
Si510.177110.728260.93179
Si520.671940.228940.42891
Si530.170300.281630.06832
Si540.677210.779900.56594
Si550.321990.773140.42624
Si560.824430.278710.92997
Si570.428250.675230.22741
Si580.929210.175580.72572
Si590.776670.574180.67371
Si600.279560.074270.17025
Si610.568170.676960.76840
Si620.073960.171420.26750
Si630.278900.935020.82723
Si640.772820.430600.32746
Si650.069460.829690.73198
Si660.564800.335430.22136
Si670.721170.073400.82638
Si680.216690.572370.32824
Si690.928570.832560.27309
Si700.428380.332940.77312
Si710.221010.431150.66813
Si720.717710.936650.17227
Si730.068880.278500.82650
Si740.568870.779840.33021
Si750.429140.782080.66512
Si760.927180.273740.17307
Si770.568940.228560.67150
Si780.068910.727520.16836
Si790.927520.728170.83341
Si800.431580.230210.32688
Si810.717840.830280.92912
Si820.228280.327990.42459
Si830.173700.928630.26517
Si840.672660.433770.77412
Si850.280990.830280.06749
Si860.776660.330110.57024
Si870.325840.575710.76765
Si880.825120.071080.27400
Si890.217860.676540.57035
Si900.719550.178250.06927
Si910.322470.438190.22375
Si920.826170.933230.72661
Si930.780200.674810.43053
Si940.277100.180480.93283
Si950.173970.072460.72833
Si960.672410.577960.23231
Si970.172530.281250.92931
Si980.675080.771100.42485
Si990.321940.778280.56817
Si1000.823490.278660.06981
Si1010.327600.225560.43050
Si1020.820480.727320.93335
Si1030.174930.734240.07280
Si1040.673390.228270.56943
Si1050.068740.832500.27202
Si1060.568680.331350.77366
Si1070.720940.933020.82573
Si1080.217830.433130.32883
Si1090.929390.830120.73099
Si1100.422850.336170.23169
Si1110.216160.571470.67075
Si1120.723740.075650.17381
Si1130.427400.675360.76644
Si1140.932240.173470.27505
Si1150.776650.433720.67304
Si1160.280300.934880.17053
Si1170.568380.675210.22628
Si1180.069410.174290.72610
Si1190.277140.075040.83086
Si1200.779220.570720.32686
Si1210.428760.228740.67266
Si1220.928310.727800.16925
Si1230.068540.725760.83247
Si1240.571690.234990.32817
Si1250.928830.278350.82776
Si1260.428300.780340.33096
Si1270.570490.778840.66608
Si1280.066170.277450.17188
Si1290.779820.676770.57021
Si1300.269590.179130.07414
Si1310.323470.578960.23378
Si1320.825060.073240.72538
Si1330.216460.677110.43099
Si1340.721040.176810.92945
Si1350.173320.932490.73034
Si1360.670710.436620.22285
Si1370.278040.828830.92870
Si1380.778590.330960.42989
Si1390.174720.069520.27513
Si1400.671360.573850.77290
Si1410.717110.832370.06873
Si1420.220580.326230.56588
Si1430.323760.434610.77048
Si1440.824630.930120.26724
O20.282430.164340.58450
O30.781620.680890.10518
O40.226410.674090.91221
O50.701190.162250.40658
O60.217850.339820.08156
O70.720150.840800.58214
O80.281530.827690.39430
O90.780720.339730.91623
O100.410420.704770.15953
O110.916370.219750.66492
O120.836110.588240.71956
O130.346190.095980.20057
O140.579070.721290.82969
O150.103750.213320.32265
O160.337030.923110.77890
O170.834140.406950.28979
O180.081250.786660.67001
O190.579080.294480.15852
O200.660830.087410.78187
O210.160920.585010.27775
O220.911060.801880.34073
O230.414900.290320.83476
O240.160400.417620.71254
O250.661250.923100.22178
O260.081220.338390.78087
O270.587560.847270.29985
O280.413500.848070.70052
O290.911490.330290.22138
O300.581970.167580.71524
O310.086940.660300.19961
O320.914170.667670.78866
O330.420320.173200.27736
O340.657000.786770.91338
O350.174020.285560.39402
O360.213720.898280.32091
O370.715610.420300.83574
O380.337320.781040.08191
O390.837000.285650.58437
O400.295420.599730.83282
O410.776830.087280.33041
O420.158320.720710.58785
O430.659210.223810.08086
O440.292330.417400.15691
O450.783560.919970.66476
O460.836330.724660.41668
O470.336720.225040.91625
O480.217530.085190.66698
O490.712740.608620.17671
O500.215980.342310.91455
O510.715760.826380.39419
O520.282650.838170.59270
O530.779460.339780.08268
O540.279780.167620.41722
O550.777100.666660.91729
O560.215030.679660.10515
O570.717060.167250.58319
O580.086590.802790.33987
O590.581630.287660.83475
O600.661680.919100.77957
O610.151310.411290.29852
O620.918490.785790.66971
O630.393580.294130.17641
O640.153330.583610.71293
O650.669470.092780.22410
O660.407370.705380.83341
O670.918350.221010.33302
O680.837280.419510.71708
O690.335970.922300.22115
O700.586090.705580.15858
O710.082810.216870.66441
O720.337600.089110.78641
O730.835600.584210.27721
O740.416370.168690.71801
O750.909650.660300.19961
O760.078220.664890.78699
O770.595030.171270.29455
O780.915860.339080.78367
O790.410340.847480.29949
O800.583630.839380.71078
O810.077560.334450.22130
O820.840910.719810.58615
O830.323840.221580.10481
O840.283600.609460.17808
O850.781630.086490.66401
O860.160260.726660.41708
O870.660720.221310.91522
O880.217710.915380.67103
O890.712980.420070.16168
O900.333680.779750.91205
O910.844970.298690.41023
O920.205250.089980.34191
O930.713780.587220.83485
O940.660800.782700.08258
O950.160680.282160.58268
O960.280210.421990.83190
O970.784520.899070.32285
O980.196930.198570.66517
O990.699490.730230.18282
O1000.289680.719530.81781
O1010.810360.192140.36885
O1020.805540.807380.66401
O1030.271630.303220.18150
O1040.200170.776700.31651
O1050.695660.306640.83400
O1060.381720.818390.18596
O1070.834480.305680.69779
O1080.799730.669860.80449
O1090.317380.124440.31334
O1100.662180.805980.79986
O1110.178510.298470.27272
O1120.297760.830780.71190
O1130.799610.340040.19477
O1140.159890.697620.70208
O1150.648950.201130.19206
O1160.199930.685760.22639
O1170.695850.168430.69636
O1180.334190.202770.80306
O1190.880870.688450.31299
O1200.194140.340100.80167
O1210.701020.822940.27297
O1220.616110.818830.18649
O1230.163850.303900.69626
O1240.369260.814180.80647
O1250.824060.286310.29469
O1260.662470.200910.80195
O1270.115430.689080.31326
O1280.835130.701650.70007
O1290.319110.208850.22615
O1300.225770.203980.31714
O1310.692220.699890.83455
O1320.802180.339430.80327
O1330.297510.821580.27320
O1340.296690.731140.18230
O1350.802730.199650.66504
O1360.190330.651690.80582
O1370.715710.183600.29053
O1380.195930.801280.67171
O1390.694310.305300.16531
O1400.180450.383150.18571
O1410.698210.836780.69525
O1420.797740.777410.31639
O1430.300910.308490.83303
O1440.303190.167140.69783
O1450.796180.684690.22642
O1460.283290.286980.57622
O1470.783530.799700.07746
O1480.211450.794530.92452
O1490.723620.281750.42030
O1500.717970.718280.57718
O1510.205240.216520.07657
O1520.283290.709380.42294
O1530.783340.217080.91971
O1540.418120.727110.27987
O1550.918800.216490.78723
O1560.713620.584260.71234
O1570.225460.080160.22138
O1580.580680.717070.70669
O1590.075970.211180.20449
O1600.213890.925810.79228
O1610.711940.424950.28420
O1620.080340.787500.79241
O1630.577500.292770.28127
O1640.283620.580650.29667
O1650.783480.083780.78650
O1660.418300.291060.71225
O1670.918480.780580.22077
O1680.283140.422030.70890
O1690.784190.928130.20475
O1700.578510.727130.27860
O1710.079180.216160.78698
O1720.417370.725820.71254
O1730.922610.209030.21021
O1740.579230.290170.71235
O1750.078940.780570.21966
O1760.917240.789820.79267
O1770.420850.296550.29478
O1780.292770.290750.42215
O1790.779950.789110.92214
O1800.714570.423300.71323
O1810.213380.926460.20218
O1820.214320.797630.07531
O1830.714220.290040.57987
O1840.276140.583910.71302
O1850.790320.079500.20827
O1860.281060.716260.57747
O1870.781910.217700.07911
O1880.271770.427690.27750
O1890.784080.922920.78728
O1900.713750.707400.42169
O1910.214260.219590.92248
O1920.215010.083630.78996
O1930.712570.579890.29498
O1940.385030.231490.61305
O1950.886710.744860.11050
O1960.114500.727600.89103
O1970.612290.248390.38895
O1980.111900.282500.11385
O1990.614490.775840.60611
O2000.885330.275070.88771
O2010.386840.764680.39052
O2020.386860.616240.24460
O2030.885570.115850.72909
O2040.774310.616810.61322
O2050.261430.115350.11138
O2060.113410.108640.25894
O2070.610960.616490.76739
O2080.279010.887780.88409
O2090.762720.390830.38909
O2100.112940.889630.73578
O2110.607470.396750.22646
O2120.724180.116000.88705
O2130.212400.618640.38580
O2140.887490.891840.25656
O2150.385180.393020.76823
O2160.713790.891230.11370
O2170.224250.388270.60726
O2180.112840.275850.88591
O2190.610570.762550.38887
O2200.386430.771580.60495
O2210.882800.272590.11379
O2220.110380.743590.10897
O2230.612330.231900.61145
O2240.883330.731090.89331
O2250.386190.224450.38512
O2260.723030.890240.88610
O2270.236330.391910.38751
O2280.110150.891470.25488
O2290.612190.391160.76999
O2300.284540.888860.11274
O2310.773400.391060.61242
O2320.386730.615060.75061
O2330.886450.114180.27521
O2340.221270.615210.61131
O2350.723390.119710.11434
O2360.886410.890430.73210
O2370.383590.398960.24026
O2380.273690.118270.89157
O2390.783730.615760.38569
O2400.113040.114650.73130
O2410.609490.615980.24293
O2420.350830.217720.50028
O2430.839080.718690.00437
O2440.159230.715240.00273
O2450.650510.222240.49932
O2460.147100.289310.99852
O2470.658480.788390.49496
O2480.336600.791340.49670
O2490.498250.651900.22365
O2500.000920.151170.72056
O2510.783180.504000.65069
O2520.288290.004500.14664
O2530.497930.653650.77124
O2540.003370.152620.28376
O2550.284920.004520.85307
O2560.786410.500430.34861
O2570.000440.853810.72810
O2580.493300.355130.21585
O2590.714470.003160.84881
O2600.208780.502860.35250
O2610.998740.855830.27576
O2620.498790.355720.77859
O2630.214070.501560.64601
O2640.709840.006670.14965
O2650.000950.284080.85099
O2660.498690.783950.35364
O2670.500040.784410.64278
O2680.996360.284440.14805
O2690.498670.223230.64836
O2700.998470.723770.14583
O2710.998120.722810.85674
O2720.501630.224350.35013
O2730.708870.854620.99867
O2740.210810.344950.49484
O2750.155800.998420.28257
O2760.648660.503640.77858
O2770.290500.853110.99778
O2780.783850.353020.50027
O2790.345970.505040.77542
O2800.843780.000070.28472
O2810.207540.654060.50054
O2820.714200.153730.00047
O2830.341530.509240.21614
O2840.849040.003380.72087
O2850.788580.652540.50058
O2860.287000.161950.00393
O2870.150560.002440.72221
O2880.653410.508220.21502
(2_4) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 24.55503 ÅZ = ?
b = 24.55503 Å? radiation, λ = ? Å
c = 24.55503 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 24.55503 ÅZ = ?
b = 24.55503 Å? radiation, λ = ? Å
c = 24.55503 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.653440.433780.00000
Si20.558480.750000.94152
O10.309210.589420.94614
O20.642850.500000.00000
O30.595310.404690.00000
O40.722330.500000.93400
(2_40) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 13.20840 ÅZ = ?
b = 13.20840 Å? radiation, λ = ? Å
c = 23.80341 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 13.20840 ÅZ = ?
b = 13.20840 Å? radiation, λ = ? Å
c = 23.80341 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.761080.000760.87847
Si20.767130.767130.00000
O10.788550.211450.46472
O20.542170.771090.79541
O30.701410.988850.94067
O40.677750.011080.16667
O50.559900.119790.32304
(2_41) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 25.21274 ÅZ = ?
b = 25.21274 Å? radiation, λ = ? Å
c = 25.21274 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 25.21274 ÅZ = ?
b = 25.21274 Å? radiation, λ = ? Å
c = 25.21274 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.713620.059400.37059
Si20.359830.000000.56099
O10.668120.052460.41513
O20.392440.750000.10755
O30.758950.500000.13600
O40.314520.924310.68549
O50.500000.078430.92157
O60.352860.000000.50000
(2_42) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 20.02090 ÅZ = ?
b = 20.02090 Å? radiation, λ = ? Å
c = 20.02090 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 20.02090 ÅZ = ?
b = 20.02090 Å? radiation, λ = ? Å
c = 20.02090 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.690920.420990.14077
Si20.661980.000000.56397
O10.702640.443400.06613
O20.638480.250000.86152
O30.380370.619630.84160
O40.303840.500000.82429
O50.500000.862690.86269
O60.610200.000000.50000
(2_43) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 25.90396 ÅZ = ?
b = 25.90396 Å? radiation, λ = ? Å
c = 25.90396 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 25.90396 ÅZ = ?
b = 25.90396 Å? radiation, λ = ? Å
c = 25.90396 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.372900.207910.29209
Si20.439500.141180.35882
O10.388320.250000.25000
O20.338400.233020.33840
O30.425510.184230.31577
O40.364980.000000.63502
O50.413700.086300.34205
(2_44) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 11.31235 ÅZ = ?
b = 11.31235 Å? radiation, λ = ? Å
c = 11.31235 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 11.31235 ÅZ = ?
b = 11.31235 Å? radiation, λ = ? Å
c = 11.31235 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.000000.00000
O10.779850.000000.00000
Si20.093100.725110.90690
O20.418210.084120.08412
O30.060260.775310.77531
(2_45) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 17.67861 ÅZ = ?
b = 17.67861 Å? radiation, λ = ? Å
c = 17.67861 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 17.67861 ÅZ = ?
b = 17.67861 Å? radiation, λ = ? Å
c = 17.67861 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.085330.79440
Si20.664330.911580.21328
O10.873570.500000.12643
O20.500000.000000.81970
O30.579440.896380.24838
O40.277390.114490.72261
O50.324690.000000.80758
O60.321550.137940.86206
(2_46) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.49191 ÅZ = ?
b = 15.49191 Å? radiation, λ = ? Å
c = 15.49191 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.49191 ÅZ = ?
b = 15.49191 Å? radiation, λ = ? Å
c = 15.49191 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.000000.86534
Si20.392030.892030.75000
O10.035700.421140.57886
O20.588160.028690.81548
O30.898450.299330.70067
(2_47) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.00033 ÅZ = ?
b = 19.00033 Å? radiation, λ = ? Å
c = 19.00033 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 19.00033 ÅZ = ?
b = 19.00033 Å? radiation, λ = ? Å
c = 19.00033 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.578550.083740.31104
Si20.687890.080930.19618
O10.424010.000000.68596
O20.500000.883930.68992
O30.380010.888060.61999
O40.620170.106570.24086
O50.320670.000000.82648
O60.242250.908690.75775
O70.306090.874210.87421
(2_48) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 16.76131 ÅZ = ?
b = 16.76131 Å? radiation, λ = ? Å
c = 16.76131 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 16.76131 ÅZ = ?
b = 16.76131 Å? radiation, λ = ? Å
c = 16.76131 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.592380.250000.09238
Si20.413420.909420.34388
O10.332990.866300.37733
O20.744540.000000.61266
O30.500000.129680.63039
O40.593080.093080.25000
O50.585310.000000.62433
(2_5) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 23.62521 ÅZ = ?
b = 23.62521 Å? radiation, λ = ? Å
c = 23.62521 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 23.62521 ÅZ = ?
b = 23.62521 Å? radiation, λ = ? Å
c = 23.62521 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.932570.58876
Si20.500000.938430.70997
O10.443850.910400.55615
O20.500000.901640.65234
O30.500000.000000.58677
O40.441700.941700.25000
O50.500000.000000.68027
(2_50) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 12.33507 ÅZ = ?
b = 12.33507 Å? radiation, λ = ? Å
c = 8.60067 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 12.33507 ÅZ = ?
b = 12.33507 Å? radiation, λ = ? Å
c = 8.60067 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.333330.666670.18338
Si20.324600.464500.39349
O10.333330.666670.00000
O20.223290.692260.24154
O30.430110.860220.50000
O40.199270.800730.50000
O50.638950.638950.65837
(2_51) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 12.33404 ÅZ = ?
b = 12.33404 Å? radiation, λ = ? Å
c = 17.20428 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 12.33404 ÅZ = ?
b = 12.33404 Å? radiation, λ = ? Å
c = 17.20428 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.860080.324560.05325
Si20.666670.333330.15828
O10.199210.800790.50000
O20.776490.307460.12916
O30.430060.860130.50000
O40.000000.638880.92086
O50.333330.666670.75000
(2_52) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 16.75835 ÅZ = ?
b = 16.75835 Å? radiation, λ = ? Å
c = 16.75835 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 16.75835 ÅZ = ?
b = 16.75835 Å? radiation, λ = ? Å
c = 16.75835 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.383450.116550.75000
Si20.405690.996680.87587
O10.125190.314810.68519
O20.373070.028040.79036
O30.125920.441780.55822
O40.500000.000000.87102
O50.120430.593090.59309
(2_53) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 18.54480 ÅZ = ?
b = 18.54480 Å? radiation, λ = ? Å
c = 18.54480 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 18.54480 ÅZ = ?
b = 18.54480 Å? radiation, λ = ? Å
c = 18.54480 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.315690.914830.79909
Si20.579640.995990.88253
O10.632310.132310.75000
O20.358790.986460.82385
O30.209840.632400.63240
O40.254600.560330.74540
O50.918720.444460.55554
O60.905220.582700.58270
O70.500000.000000.84643
(2_54) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 14.84377 ÅZ = ?
b = 14.84377 Å? radiation, λ = ? Å
c = 20.07815 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 14.84377 ÅZ = ?
b = 14.84377 Å? radiation, λ = ? Å
c = 20.07815 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.603650.250580.42367
Si20.606840.099720.32397
O10.341210.658790.59102
O20.385940.780360.50000
O30.500000.728170.59399
O40.643490.169990.37848
O50.366220.866220.25000
O60.352280.000000.66179
O70.500000.906860.67140
(2_55) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 13.75624 ÅZ = ?
b = 13.75624 Å? radiation, λ = ? Å
c = 19.27269 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mcmV = ? Å3
a = 13.75624 ÅZ = ?
b = 13.75624 Å? radiation, λ = ? Å
c = 19.27269 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.459010.126700.52956
Si20.541240.209480.67392
O10.628870.000000.49373
O20.461480.130530.61334
O30.208590.417180.00000
O40.165650.582830.00000
O50.665350.222530.66733
O60.510170.841670.25000
(2_56) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 13.70028 ÅZ = ?
b = 13.70028 Å? radiation, λ = ? Å
c = 9.26856 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P31mV = ? Å3
a = 13.70028 ÅZ = ?
b = 13.70028 Å? radiation, λ = ? Å
c = 9.26856 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.874480.538460.05983
Si20.808680.429330.34732
O10.790490.209510.00000
O20.826120.413060.00000
O30.000000.371200.99675
O40.890630.518360.22931
O50.871040.435520.50000
O60.706570.457260.33166
(2_57) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 14.09929 ÅZ = ?
b = 14.09929 Å? radiation, λ = ? Å
c = 15.54349 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 14.09929 ÅZ = ?
b = 14.09929 Å? radiation, λ = ? Å
c = 15.54349 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.612530.764300.50000
Si20.394670.887470.15518
O10.351350.177960.58327
O20.500000.747860.50000
O30.338160.338160.50000
O40.642760.142760.25000
O50.500000.154950.86256
O60.597960.000000.84858
(2_58) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.52645 ÅZ = ?
b = 13.52645 Å? radiation, λ = ? Å
c = 20.63851 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.52645 ÅZ = ?
b = 13.52645 Å? radiation, λ = ? Å
c = 20.63851 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.383640.774920.30397
Si20.389830.117180.92858
O10.671910.328090.71006
O20.500000.245670.69748
O30.345520.815540.37331
O40.643840.143830.25000
O50.647950.849110.00000
O60.604370.000000.07470
O70.500000.839760.08373
(2_59) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nmmV = ? Å3
a = 13.51327 ÅZ = ?
b = 13.51327 Å? radiation, λ = ? Å
c = 10.33188 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nmmV = ? Å3
a = 13.51327 ÅZ = ?
b = 13.51327 Å? radiation, λ = ? Å
c = 10.33188 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.616320.724740.89182
Si20.609700.617510.35858
O10.653150.683400.75337
O20.827640.672360.08081
O30.000000.754250.10473
O40.356300.356300.00000
O50.349200.349200.50000
O60.898550.000000.64271
O70.000000.837530.66634
(2_6) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 19.22650 ÅZ = ?
b = 19.22650 Å? radiation, λ = ? Å
c = 19.22650 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 19.22650 ÅZ = ?
b = 19.22650 Å? radiation, λ = ? Å
c = 19.22650 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.312030.907650.20195
Si20.573050.802900.00284
O10.643400.143400.25000
O20.214180.634830.36517
O30.254370.564770.25437
O40.352580.977350.16847
O50.750000.938630.56137
O60.750000.928580.42858
O70.000000.500000.14927
(2_60) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 17.93196 ÅZ = ?
b = 17.93196 Å? radiation, λ = ? Å
c = 17.93196 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 17.93196 ÅZ = ?
b = 17.93196 Å? radiation, λ = ? Å
c = 17.93196 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.305160.694840.90869
Si20.423180.576820.91767
O10.363640.636360.92835
O20.250000.852150.35214
O30.280560.719440.00000
O40.445670.554330.00000
O50.395220.500000.87684
(2_61) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 16.38749 ÅZ = ?
b = 16.38749 Å? radiation, λ = ? Å
c = 10.94409 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 16.38749 ÅZ = ?
b = 16.38749 Å? radiation, λ = ? Å
c = 10.94409 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.811480.250000.62500
Si20.910610.088370.64252
O10.238150.761850.50000
O20.139940.830280.66800
O30.126660.500000.56012
O40.000000.399900.54697
O50.920520.079480.50000
(2_62) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 14.59852 ÅZ = ?
b = 14.59852 Å? radiation, λ = ? Å
c = 14.59852 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 14.59852 ÅZ = ?
b = 14.59852 Å? radiation, λ = ? Å
c = 14.59852 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.391380.101800.89820
Si20.391490.249350.75065
O10.355640.128310.00000
O20.898500.500000.10150
O30.357180.175310.82469
O40.741980.500000.25802
O50.347830.220090.65217
(2_63) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4m2V = ? Å3
a = 12.61418 ÅZ = ?
b = 12.61418 Å? radiation, λ = ? Å
c = 9.44863 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4m2V = ? Å3
a = 12.61418 ÅZ = ?
b = 12.61418 Å? radiation, λ = ? Å
c = 9.44863 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.098550.000000.59480
O20.782600.500000.42666
O30.185730.000000.34686
O40.786110.786110.00000
O50.833420.666580.25000
O60.171770.828230.50000
Si10.874320.253190.11897
Si20.109470.122260.64046
O70.874870.145890.20185
(2_64) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 18.34185 ÅZ = ?
b = 18.34185 Å? radiation, λ = ? Å
c = 18.34185 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 18.34185 ÅZ = ?
b = 18.34185 Å? radiation, λ = ? Å
c = 18.34185 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.585830.000000.29829
Si20.315510.919490.80022
O10.385460.071500.74618
O20.000000.378940.62106
O30.500000.000000.30584
O40.833130.702920.00000
O50.664950.135790.13579
O60.753770.108970.24623
(2_65) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Ia3V = ? Å3
a = 18.03111 ÅZ = ?
b = 18.03111 Å? radiation, λ = ? Å
c = 18.03111 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Ia3V = ? Å3
a = 18.03111 ÅZ = ?
b = 18.03111 Å? radiation, λ = ? Å
c = 18.03111 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.500000.250000.07537
Si20.371390.476660.90267
O10.372870.537900.68644
O20.476570.436330.71220
O30.417950.411210.94405
(2_67) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Ia3dV = ? Å3
a = 19.95204 ÅZ = ?
b = 19.95204 Å? radiation, λ = ? Å
c = 19.95204 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Ia3dV = ? Å3
a = 19.95204 ÅZ = ?
b = 19.95204 Å? radiation, λ = ? Å
c = 19.95204 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.559610.122710.07442
Si20.500000.750000.87500
O10.573770.103320.99745
O20.624110.125000.62589
O30.531860.197860.07314
(2_68) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 15.10434 ÅZ = ?
b = 15.10434 Å? radiation, λ = ? Å
c = 10.72743 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I41/amdV = ? Å3
a = 15.10434 ÅZ = ?
b = 15.10434 Å? radiation, λ = ? Å
c = 10.72743 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.398460.898460.75000
Si20.750000.307060.37500
O10.630590.162280.63166
O20.618510.500000.53613
O30.253890.753890.25000
(2_69) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 16.68529 ÅZ = ?
b = 16.68529 Å? radiation, λ = ? Å
c = 20.95542 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 16.68529 ÅZ = ?
b = 16.68529 Å? radiation, λ = ? Å
c = 20.95542 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.058190.756040.43672
Si20.709920.947800.68040
O10.996720.772520.38285
O20.087710.682970.40831
O30.851880.148120.54627
O40.286180.286180.50000
O50.666670.056250.33333
O60.303170.151590.30505
(2_7) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 14.07848 ÅZ = ?
b = 14.07848 Å? radiation, λ = ? Å
c = 14.07848 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 14.07848 ÅZ = ?
b = 14.07848 Å? radiation, λ = ? Å
c = 14.07848 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.771780.079850.07985
Si20.567710.072820.07282
O10.664370.115740.11574
O20.000000.000000.21891
O30.824950.042180.17505
O40.000000.500000.13766
O50.000000.000000.38119
(2_70) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 13.89397 ÅZ = ?
b = 13.89397 Å? radiation, λ = ? Å
c = 13.89397 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3mV = ? Å3
a = 13.89397 ÅZ = ?
b = 13.89397 Å? radiation, λ = ? Å
c = 13.89397 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.612330.000000.38767
Si20.106630.257240.74276
O10.095340.339510.66049
O20.500000.000000.63478
O30.776530.000000.22347
O40.165270.299650.83473
(2_71) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P213V = ? Å3
a = 14.02981 ÅZ = ?
b = 14.02981 Å? radiation, λ = ? Å
c = 14.02981 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P213V = ? Å3
a = 14.02981 ÅZ = ?
b = 14.02981 Å? radiation, λ = ? Å
c = 14.02981 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.735390.343650.56740
Si20.343650.067400.26461
Si30.916470.628170.71224
Si40.128170.287760.91647
O10.828890.289350.52391
O20.763820.404800.65886
O30.658860.263820.59521
O40.690040.413010.48570
O50.289350.023910.17111
O60.413010.985700.30996
O70.868450.645470.81606
O80.854530.683940.63155
(2_73) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 29.61840 ÅZ = ?
b = 29.61840 Å? radiation, λ = ? Å
c = 29.61840 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 29.61840 ÅZ = ?
b = 29.61840 Å? radiation, λ = ? Å
c = 29.61840 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.207390.292610.98985
O20.203370.203370.98428
O30.130130.247810.13013
O40.201570.298430.11918
O50.210910.210910.12927
O60.239580.375000.98958
Si10.070640.500030.35863
Si20.072860.500870.74660
O70.075630.507600.69375
(2_74) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.48719 ÅZ = ?
b = 30.48719 Å? radiation, λ = ? Å
c = 30.48719 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fm3mV = ? Å3
a = 30.48719 ÅZ = ?
b = 30.48719 Å? radiation, λ = ? Å
c = 30.48719 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.391620.250730.17942
Si20.449970.193830.12162
O10.432110.235080.14947
O20.650160.737100.84984
O30.622880.788090.78809
O40.593210.706450.79355
O50.577100.812470.92290
O60.554440.850570.85057
O70.500000.796170.89090
(2_75) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 25.93681 ÅZ = ?
b = 25.93681 Å? radiation, λ = ? Å
c = 25.93681 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Fd3mV = ? Å3
a = 25.93681 ÅZ = ?
b = 25.93681 Å? radiation, λ = ? Å
c = 25.93681 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.635040.364960.02740
O20.683640.955660.54434
O30.311270.811270.07555
O40.255050.848850.15115
O50.716770.283230.08600
O60.625000.286240.96376
Si10.559560.855630.22913
Si20.495880.919700.15787
O70.514360.874220.19319
(2_76) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 13.34184 ÅZ = ?
b = 13.34184 Å? radiation, λ = ? Å
c = 13.34184 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P43mV = ? Å3
a = 13.34184 ÅZ = ?
b = 13.34184 Å? radiation, λ = ? Å
c = 13.34184 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.560800.276490.89051
Si20.705610.146340.00274
O10.647120.205370.92126
O20.386360.613640.86116
O30.000000.500000.71125
O40.211050.516060.78895
O50.215450.784550.06050
O60.090690.640470.09069
O70.061500.762590.93850
(2_77) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.57873 ÅZ = ?
b = 15.57873 Å? radiation, λ = ? Å
c = 15.57873 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.57873 ÅZ = ?
b = 15.57873 Å? radiation, λ = ? Å
c = 15.57873 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.672460.062400.80522
Si20.500000.000000.85925
O10.743730.478700.74373
O20.802810.401020.59898
O30.356600.856600.75000
O40.590430.996370.80650
O50.005480.585970.58597
(2_78) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 13.54790 ÅZ = ?
b = 13.54790 Å? radiation, λ = ? Å
c = 19.35029 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 13.54790 ÅZ = ?
b = 13.54790 Å? radiation, λ = ? Å
c = 19.35029 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.333730.439620.82999
Si20.227170.227490.07986
O10.317550.333020.87475
O20.548500.451500.14753
O30.766230.532460.15443
O40.665350.590520.25000
O50.258770.258770.00000
O60.801840.900920.90490
O70.881420.762830.89812
(2_79) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 21.24240 ÅZ = ?
b = 21.24240 Å? radiation, λ = ? Å
c = 21.24240 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 21.24240 ÅZ = ?
b = 21.24240 Å? radiation, λ = ? Å
c = 21.24240 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.675380.091210.57163
Si20.665730.236850.43068
O10.672710.164340.58179
O20.425660.750000.92566
O30.373290.937280.37329
O40.347450.927730.50000
O50.359620.748440.50000
O60.265820.734180.58122
O70.383930.731680.61607
(2_8) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 29.90458 ÅZ = ?
b = 29.90458 Å? radiation, λ = ? Å
c = 29.90458 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 29.90458 ÅZ = ?
b = 29.90458 Å? radiation, λ = ? Å
c = 29.90458 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
O10.619680.000000.50000
O20.422010.577990.00000
Si10.554220.374090.00000
O30.423530.196500.00000
O40.719740.540270.00000
O50.572240.927760.75000
Si20.452480.051500.70444
O60.544970.930050.84525
(2_80) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 18.09381 ÅZ = ?
b = 18.09381 Å? radiation, λ = ? Å
c = 18.09381 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 18.09381 ÅZ = ?
b = 18.09381 Å? radiation, λ = ? Å
c = 18.09381 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.702470.905880.29753
Si20.313320.420330.68668
O10.260810.375910.73919
O20.370410.250000.87041
O30.500000.807170.19283
O40.500000.706310.29369
O50.398450.398450.70417
(2_81) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.99930 ÅZ = ?
b = 13.99930 Å? radiation, λ = ? Å
c = 10.20513 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.99930 ÅZ = ?
b = 13.99930 Å? radiation, λ = ? Å
c = 10.20513 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.388350.766660.00000
Si20.389980.889980.25000
O10.641490.172710.12665
O20.500000.742710.00000
O30.333100.666900.00000
O40.500000.872510.71257
(2_82) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.82403 ÅZ = ?
b = 15.82403 Å? radiation, λ = ? Å
c = 15.82403 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pn3mV = ? Å3
a = 15.82403 ÅZ = ?
b = 15.82403 Å? radiation, λ = ? Å
c = 15.82403 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.390000.110000.25000
Si20.560260.174100.30696
O10.113790.311980.31198
O20.383330.024310.19465
O30.370540.870540.25000
O40.956860.232480.23248
O50.902620.317620.09738
(2_83) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.97857 ÅZ = ?
b = 12.97857 Å? radiation, λ = ? Å
c = 22.46097 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.97857 ÅZ = ?
b = 12.97857 Å? radiation, λ = ? Å
c = 22.46097 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.758790.000000.00000
Si20.763600.763620.56798
O10.779670.220330.32312
O20.693760.012240.94195
O30.792970.585940.74662
O40.530310.765160.08966
O50.608570.666670.16667
(2_84) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.98872 ÅZ = ?
b = 12.98872 Å? radiation, λ = ? Å
c = 14.94361 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.98872 ÅZ = ?
b = 12.98872 Å? radiation, λ = ? Å
c = 14.94361 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.000000.758670.00000
Si20.569640.903080.14748
O10.226060.113030.01427
O20.692850.010780.91260
O30.467500.233750.86736
O40.541430.082860.88135
O50.394080.058430.75000
(2_85) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.28124 ÅZ = ?
b = 13.28124 Å? radiation, λ = ? Å
c = 15.48753 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 13.28124 ÅZ = ?
b = 13.28124 Å? radiation, λ = ? Å
c = 15.48753 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.280270.117710.17368
Si20.380670.112250.50000
O10.744410.000000.82855
O20.358890.141110.25000
O30.328970.156290.08457
O40.324290.324290.31060
O50.500000.104250.50000
O60.666310.000000.50000
(2_86) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P3m1V = ? Å3
a = 12.79309 ÅZ = ?
b = 12.79309 Å? radiation, λ = ? Å
c = 10.04903 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P3m1V = ? Å3
a = 12.79309 ÅZ = ?
b = 12.79309 Å? radiation, λ = ? Å
c = 10.04903 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.089450.666370.12028
Si20.000080.760230.65141
O10.028990.676280.25608
O20.354280.354280.00000
O30.786320.213680.91119
O40.883940.441970.86263
O50.099210.198410.33077
O60.280790.280790.50000
O70.871730.128270.30697
(2_87) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.79818 ÅZ = ?
b = 12.79818 Å? radiation, λ = ? Å
c = 20.07056 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.79818 ÅZ = ?
b = 12.79818 Å? radiation, λ = ? Å
c = 20.07056 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.910590.333830.93972
Si20.000080.239870.82606
O10.972120.325440.87170
O20.354890.000000.00000
O30.213060.786940.04498
O40.117360.558680.06857
O50.997040.719000.25000
O60.872890.745770.15251
O70.100430.899570.16417
(2_88) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nmmV = ? Å3
a = 13.51990 ÅZ = ?
b = 13.51990 Å? radiation, λ = ? Å
c = 7.61151 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nmmV = ? Å3
a = 13.51990 ÅZ = ?
b = 13.51990 Å? radiation, λ = ? Å
c = 7.61151 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.386510.386510.00000
Si20.724510.615440.35269
O10.631260.500000.94657
O20.680550.644190.16385
O30.747490.500000.36791
O40.354920.354920.50000
O50.673010.826990.61808
(2_89) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.91224 ÅZ = ?
b = 12.91224 Å? radiation, λ = ? Å
c = 15.10509 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, P63/mmcV = ? Å3
a = 12.91224 ÅZ = ?
b = 12.91224 Å? radiation, λ = ? Å
c = 15.10509 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.423880.091810.25000
Si20.761810.000010.10094
O10.230090.460180.75000
O20.082090.541050.75000
O30.651180.974550.83721
O40.000000.722100.00000
O50.100020.899980.88519
O60.252270.126140.87183
(2_9) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 20.68706 ÅZ = ?
b = 20.68706 Å? radiation, λ = ? Å
c = 10.74704 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 20.68706 ÅZ = ?
b = 20.68706 Å? radiation, λ = ? Å
c = 10.74704 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.723780.000000.00000
Si20.533130.930770.43257
O10.709110.071520.98908
O20.770640.000030.87556
O30.534680.000000.50000
O40.557390.114770.60685
(2_90) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.72594 ÅZ = ?
b = 12.72594 Å? radiation, λ = ? Å
c = 30.36777 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 120°
?, R3mV = ? Å3
a = 12.72594 ÅZ = ?
b = 12.72594 Å? radiation, λ = ? Å
c = 30.36777 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.754290.998640.29320
Si20.574820.908130.21684
O10.873620.436810.03865
O20.687920.993450.24754
O30.461270.538730.36933
O40.666670.983100.33333
O50.051280.666670.16667
O60.131770.565880.10981
O70.871770.743540.43618
(2_91) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mcmV = ? Å3
a = 13.97677 ÅZ = ?
b = 13.97677 Å? radiation, λ = ? Å
c = 19.19531 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mcmV = ? Å3
a = 13.97677 ÅZ = ?
b = 13.97677 Å? radiation, λ = ? Å
c = 19.19531 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.741710.601400.78431
Si20.558980.646010.42199
O10.352950.352950.75000
O20.666610.833390.72982
O30.726120.590850.86713
O40.737240.000000.25000
O50.424590.313770.50000
O60.622120.551820.41036
(2_92) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nbmV = ? Å3
a = 13.94895 ÅZ = ?
b = 13.94895 Å? radiation, λ = ? Å
c = 9.24965 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4/nbmV = ? Å3
a = 13.94895 ÅZ = ?
b = 13.94895 Å? radiation, λ = ? Å
c = 9.24965 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.396080.258970.93027
Si20.626430.407720.66075
O10.164360.335640.03174
O20.500000.240640.00000
O30.379420.282960.75993
O40.644790.644790.00000
O50.520780.370490.69420
O60.636960.363040.50000
(2_93) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 17.26967 ÅZ = ?
b = 17.26967 Å? radiation, λ = ? Å
c = 17.26967 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3mV = ? Å3
a = 17.26967 ÅZ = ?
b = 17.26967 Å? radiation, λ = ? Å
c = 17.26967 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.591200.813870.81387
Si20.587560.000000.58756
O10.579430.878670.87867
O20.711310.000000.71131
O30.750000.644620.85538
O40.500000.000000.89064
(2_94) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, C2V = ? Å3
a = 29.43823 ÅZ = ?
b = 29.38405 Å? radiation, λ = ? Å
c = 20.79885 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, C2V = ? Å3
a = 29.43823 ÅZ = ?
b = 29.38405 Å? radiation, λ = ? Å
c = 20.79885 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.042030.631640.32781
Si20.543410.625060.33072
Si30.287120.878750.82706
Si40.293660.388720.80172
Si50.493190.197170.42801
Si60.486530.684030.43090
Si70.727800.434880.92542
Si80.250270.418270.93196
Si90.263570.853070.42484
Si100.255840.341230.43412
Si110.011210.600610.92961
Si120.512550.598140.92902
Si130.696330.416270.34161
Si140.217500.400800.32423
Si150.458550.148210.81905
Si160.459540.649110.81676
Si170.491890.849630.42663
Si180.489500.358650.42545
Si190.232710.585340.92308
Si200.741220.607350.93448
Si210.375030.066740.65678
Si220.361180.578290.66443
Si230.633200.319380.15042
Si240.126870.316070.14951
Si250.719010.640530.29541
Si260.205980.632540.32755
Si270.453690.379890.82810
Si280.462750.877340.83259
Si290.372450.958710.66749
Si300.389130.476410.65076
Si310.124400.711170.15549
Si320.618270.709150.14612
Si330.047720.396690.31493
Si340.537370.407560.30964
Si350.290910.657240.84978
Si360.292280.155610.81776
Si370.923470.523010.09910
Si380.430000.518760.09313
Si390.178040.757990.58330
Si400.177720.269110.59319
Si410.259580.174500.42946
Si420.263160.686770.42787
Si430.511510.435180.93191
Si440.008800.445420.92472
Si450.819290.494390.09304
Si460.322030.522770.09158
Si470.576260.274270.60466
Si480.572730.769340.58889
Si490.121630.557740.48217
Si500.650710.575820.47782
Si510.383350.815530.99264
Si520.353870.314190.99298
Si530.175390.489480.76458
Si540.675940.521490.76383
Si550.427580.779580.26958
Si560.402530.270290.25345
Si570.080160.508510.75524
Si580.579020.539930.76819
Si590.332050.752710.26972
Si600.306200.251710.27727
Si610.104640.461010.47208
Si620.627560.482010.48641
Si630.404140.720590.99083
Si640.358790.214080.98718
Si650.078020.420200.58950
Si660.585800.424330.58555
Si670.321990.687670.05733
Si680.343610.150980.08992
Si690.037010.569070.66017
Si700.524010.549130.65238
Si710.284370.824910.20873
Si720.289210.312900.18279
Si730.015530.475560.66896
Si740.548140.458460.70217
Si750.272430.733640.16224
Si760.289140.214330.15968
Si770.231640.487180.65133
Si780.702420.464310.65379
Si790.467410.720470.18150
Si800.466820.215130.18918
Si810.204820.573940.70569
Si820.727530.557440.66377
Si830.454830.817560.15056
Si840.473640.308510.16970
Si850.174230.435900.56261
Si860.671670.410530.54233
Si870.411970.661250.10236
Si880.433550.181810.06538
Si890.162740.607880.59060
Si900.666290.620330.59759
Si910.409890.885690.06898
Si920.435110.349970.05573
Si930.073570.621930.55105
Si940.574220.602690.55570
Si950.323750.855190.09116
Si960.346050.371780.10876
O10.491040.113740.32120
O20.522040.577490.35432
O30.251290.841370.84639
O40.246890.367070.77679
O50.468390.153440.45531
O60.465000.637960.45662
O70.682080.418370.88915
O80.227840.369020.92228
O90.286920.899410.44299
O100.282590.384640.46072
O110.521140.153310.94692
O120.561120.614850.90214
O130.722620.461250.36459
O140.266890.420720.33349
O150.507440.168630.80184
O160.486760.694660.83251
O170.450920.876320.39205
O180.464170.406100.42643
O190.185740.606960.89847
O200.718610.653780.96030
O210.354820.054800.58713
O220.336740.579400.59558
O230.658160.320230.08152
O240.137380.306950.07631
O250.265980.116940.27431
O260.231890.589310.35632
O270.497350.350890.80887
O280.501120.847200.86486
O290.401050.955270.60249
O300.398180.494140.57905
O310.148250.709990.08733
O320.585560.712840.08386
O330.025430.442510.34102
O340.487960.419790.28019
O350.250730.688480.87743
O360.270440.201980.84111
O370.911540.519570.17210
O380.431950.548340.15839
O390.180450.736020.65371
O400.165790.239370.65619
O410.289270.130680.41930
O420.303920.664300.38651
O430.531420.389540.96456
O440.056540.422730.90698
O450.822100.472070.16348
O460.320960.505410.16417
O470.597320.285590.67292
O480.577870.793280.65771
O490.533920.177130.37833
O500.524960.667980.37676
O510.772800.420320.87921
O520.284770.419910.86775
O530.718390.370340.38074
O540.219610.357430.37753
O550.471050.106690.87180
O560.473300.611420.87375
O570.034750.358460.37302
O580.529700.369720.36992
O590.276750.607170.88293
O600.276490.117710.87293
O610.374110.013860.69089
O620.373670.525100.68639
O630.625030.265920.17615
O640.125020.262030.17674
O650.227010.172820.36246
O660.217540.673560.38150
O670.471030.420160.87933
O680.969170.425750.87559
O690.372500.008490.06748
O700.376080.520080.06721
O710.624360.265410.56223
O720.125630.271780.55886
O730.500000.867160.50000
O740.500000.348150.50000
O750.764820.588240.99892
O760.263760.667930.50120
O770.500000.460620.00000
O780.000000.435430.00000
O790.029320.382780.24443
O800.563900.392930.24399
O810.293800.664450.77201
O820.276830.143440.74475
O830.424490.090820.64894
O840.402980.614470.66495
O850.667680.349400.19304
O860.165060.352230.17079
O870.790710.455010.05715
O880.284010.488370.06185
O890.542060.230840.60730
O900.552170.718490.59634
O910.298880.818150.39085
O920.292720.304360.41075
O930.057540.573950.91068
O940.528640.545760.94314
O950.321580.938540.66169
O960.355250.432440.64596
O970.074390.687820.15326
O980.591580.670250.18731
O990.500000.220560.50000
O1000.500000.706910.50000
O1010.273190.415620.00168
O1020.239260.326110.50517
O1030.000000.578660.00000
O1040.500000.617690.00000
O1050.694900.415640.26334
O1060.215030.391050.24835
O1070.440260.138090.74639
O1080.470040.631770.74455
O1090.098850.416890.29813
O1100.563680.454150.32746
O1110.336330.681700.87433
O1120.344830.172490.80840
O1130.469410.799470.43964
O1140.455690.317040.41012
O1150.219830.533560.90719
O1160.700300.572810.91475
O1170.971840.496480.08286
O1180.449560.467230.10025
O1190.208650.718930.55063
O1200.219630.239240.56297
O1210.679190.602190.29646
O1220.155750.609570.31795
O1230.414250.347370.85663
O1240.417960.846670.84013
O1250.094420.511800.49588
O1260.657720.525190.50594
O1270.414860.772650.00996
O1280.343720.262750.01383
O1290.125770.482760.73290
O1300.631080.551810.75357
O1310.381570.758630.23993
O1320.351100.261570.23283
O1330.059220.463840.62607
O1340.589240.437500.66037
O1350.302860.729220.09903
O1360.335930.189030.14451
O1370.064960.578200.59609
O1380.555850.558300.59142
O1390.327060.837590.16373
O1400.334860.341930.17187
O1410.194360.480500.59594
O1420.669910.451670.59524
O1430.425090.687330.16745
O1440.440200.218030.12164
O1450.161550.588420.66263
O1460.679400.577940.64168
O1470.414590.837490.10770
O1480.462790.311550.09403
O1490.158680.567720.53749
O1500.680330.608490.52286
O1510.412170.864100.99619
O1520.408430.325860.99768
O1530.186110.544720.76556
O1540.720130.551110.74144
O1550.441690.823170.22659
O1560.426160.308940.20977
O1570.036060.476060.74240
O1580.570550.484760.76141
O1590.303370.718820.22450
O1600.281340.210890.23881
O1610.071140.428230.51194
O1620.590530.468490.53987
O1630.349330.709830.99839
O1640.328740.175380.02187
O1650.131630.415180.60372
O1660.624450.385650.56514
O1670.357660.656710.09969
O1680.397310.142540.08908
O1690.072070.555730.71670
O1700.548040.568060.71861
O1710.306240.802390.27161
O1720.280790.300030.25983
O1730.001550.526880.64908
O1740.519010.494940.65806
O1750.255800.785650.16938
O1760.289450.267050.13988
O1770.211280.464530.71789
O1780.673850.476800.71770
O1790.464370.738870.25543
O1800.430620.222490.24654
O1810.237740.541160.66114
O1820.734150.507420.63298
O1830.464570.764720.13464
O1840.499220.260510.18551
O1850.157300.449650.49150
O1860.662540.438230.47617
O1870.431780.689180.03979
O1880.412950.207140.00334
O1890.120540.643800.58039
O1900.612240.627420.60173
O1910.357950.900030.08480
O1920.400040.376540.10458
O1930.084860.599730.48167
O1940.596550.587800.48821
O1950.339640.817930.03945
O1960.327450.345960.04330
(2_95) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 12.20584 ÅZ = ?
b = 12.20584 Å? radiation, λ = ? Å
c = 19.17938 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, I4/mmmV = ? Å3
a = 12.20584 ÅZ = ?
b = 12.20584 Å? radiation, λ = ? Å
c = 19.17938 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.305180.126490.32531
Si20.369700.000000.92162
O10.391390.171860.38214
O20.359320.140680.25000
O30.723800.000000.66177
O40.306790.306790.16713
O50.500000.000000.92100
O60.677570.000000.00000
(2_96) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3V = ? Å3
a = 16.44133 ÅZ = ?
b = 16.44133 Å? radiation, λ = ? Å
c = 16.44133 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Im3V = ? Å3
a = 16.44133 ÅZ = ?
b = 16.44133 Å? radiation, λ = ? Å
c = 16.44133 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.097890.317660.65956
Si20.000000.595710.08858
O10.124020.364160.57887
O20.500000.184200.82582
O30.133700.228060.64730
O40.000000.500000.07933
O50.000000.637181.00000
(2_97) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 16.19734 ÅZ = ?
b = 16.19734 Å? radiation, λ = ? Å
c = 16.19734 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3nV = ? Å3
a = 16.19734 ÅZ = ?
b = 16.19734 Å? radiation, λ = ? Å
c = 16.19734 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.170260.599130.16690
Si20.910740.404570.50000
O10.843120.250000.34312
O20.878720.378720.25000
O30.119600.630990.08658
O40.811870.500000.83332
O50.921220.500000.50000
O60.500000.000000.63986
(2_98) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4132V = ? Å3
a = 11.56424 ÅZ = ?
b = 11.56424 Å? radiation, λ = ? Å
c = 11.56424 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, P4132V = ? Å3
a = 11.56424 ÅZ = ?
b = 11.56424 Å? radiation, λ = ? Å
c = 11.56424 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.503920.099060.69493
Si20.701530.201530.29847
O10.649770.375000.10023
O20.583610.077220.58376
O30.510730.982650.77984
O40.625000.125000.37500
(2_99) top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3V = ? Å3
a = 12.81712 ÅZ = ?
b = 12.81712 Å? radiation, λ = ? Å
c = 12.81712 Å × × mm
α = 90°
Data collection top
h = ??l = ??
k = ??
Refinement top
Crystal data top
O2Siβ = 90°
Mr = ?γ = 90°
?, Pm3V = ? Å3
a = 12.81712 ÅZ = ?
b = 12.81712 Å? radiation, λ = ? Å
c = 12.81712 Å × × mm
α = 90°
Data collection top
Refinement top
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Si10.115520.000000.62293
Si20.748970.196810.37911
O10.823070.103040.34231
O20.000000.500000.89618
O30.000000.000000.67429
O40.808290.306890.35534
O50.283080.810320.50000

Experimental details

(2_10)(2_100)(2_101)(2_102)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, I4m2?, Fm3m?, R3m
Temperature (K)????
a, b, c (Å)30.86100, 30.86100, 30.8610012.86907, 12.86907, 7.6291513.45924, 13.45924, 13.4592412.61409, 12.61409, 16.64170
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_103)(2_104)(2_105)(2_106)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P63/mcm?, P31m?, P1?, P63/mmc
Temperature (K)????
a, b, c (Å)13.61516, 13.61516, 13.9813013.48100, 13.48100, 6.5128610.67472, 16.87892, 16.9017512.40926, 12.40926, 15.45706
α, β, γ (°)90, 90, 12090, 90, 12067.80785, 86.07812, 86.1531790, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_107)(2_108)(2_109)(2_110)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P63/mmc?, R3m?, Pn3m?, R3m
Temperature (K)????
a, b, c (Å)12.39718, 12.39718, 10.3205412.41855, 12.41855, 30.8572817.25621, 17.25621, 17.2562112.40595, 12.40595, 23.19481
α, β, γ (°)90, 90, 12090, 90, 12090, 90, 9090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_111)(2_112)(2_113)(2_114)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P4132?, P213?, Fddd?, I4/mcm
Temperature (K)????
a, b, c (Å)11.63239, 11.63239, 11.6323913.70190, 13.70190, 13.701907.41702, 13.54690, 23.6644713.70551, 13.70551, 14.12245
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_115)(2_116)(2_117)(2_12)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P4/nbm?, I432?, P42/mnm?, I41/amd
Temperature (K)????
a, b, c (Å)13.41282, 13.41282, 6.8566616.45100, 16.45100, 16.451007.18391, 7.18391, 12.4078715.17688, 15.17688, 17.20330
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_13)(2_14)(2_15)(2_16)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Fm3m?, I4/mmm?, Pm3n?, P42/mnm
Temperature (K)????
a, b, c (Å)17.45206, 17.45206, 17.4520611.59288, 11.59288, 12.9539513.63666, 13.63666, 13.6366610.21713, 10.21713, 16.39642
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_17)(2_18)(2_19)(2_20)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, Im3m?, Im3m?, Pm3m
Temperature (K)????
a, b, c (Å)31.66657, 31.66657, 31.6665718.13320, 18.13320, 18.1332026.02111, 26.02111, 26.0211117.51913, 17.51913, 17.51913
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_21)(2_22)(2_23)(2_24)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Fm3m?, Pm3m?, Fm3m?, Pm3m
Temperature (K)????
a, b, c (Å)31.52555, 31.52555, 31.5255519.50871, 19.50871, 19.5087132.82548, 32.82548, 32.8254814.68960, 14.68960, 14.68960
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_25)(2_26)(2_27)(2_28)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Fm3m?, Fm3m?, Fm3m?, Im3
Temperature (K)????
a, b, c (Å)30.18974, 30.18974, 30.1897430.21510, 30.21510, 30.2151027.54800, 27.54800, 27.5480016.01550, 16.01550, 16.01550
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_29)(2_30)(2_31)(2_32)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Fd3c?, Pn3m?, R3m?, Im3m
Temperature (K)????
a, b, c (Å)29.91716, 29.91716, 29.9171615.38789, 15.38789, 15.3878926.30283, 26.30283, 64.9313724.92704, 24.92704, 24.92704
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 12090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_33)(2_34)(2_35)(2_36)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, R3m?, Im3m?, Fd3m?, Pm3m
Temperature (K)????
a, b, c (Å)13.17414, 13.17414, 32.3569725.91834, 25.91834, 25.9183430.84125, 30.84125, 30.8412519.83415, 19.83415, 19.83415
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_37)(2_39)(2_4)(2_40)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Pn3m?, P1?, Im3m?, R3m
Temperature (K)????
a, b, c (Å)19.68871, 19.68871, 19.6887121.59403, 21.62598, 21.6369924.55503, 24.55503, 24.5550313.20840, 13.20840, 23.80341
α, β, γ (°)90, 90, 9090.12618, 89.95583, 90.0775490, 90, 9090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_41)(2_42)(2_43)(2_44)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, Im3m?, Fm3m?, P43m
Temperature (K)????
a, b, c (Å)25.21274, 25.21274, 25.2127420.02090, 20.02090, 20.0209025.90396, 25.90396, 25.9039611.31235, 11.31235, 11.31235
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_45)(2_46)(2_47)(2_48)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Pm3m?, Pn3m?, Pm3m?, Pm3n
Temperature (K)????
a, b, c (Å)17.67861, 17.67861, 17.6786115.49191, 15.49191, 15.4919119.00033, 19.00033, 19.0003316.76131, 16.76131, 16.76131
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_5)(2_50)(2_51)(2_52)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, P31m?, P63/mcm?, Pn3m
Temperature (K)????
a, b, c (Å)23.62521, 23.62521, 23.6252112.33507, 12.33507, 8.6006712.33404, 12.33404, 17.2042816.75835, 16.75835, 16.75835
α, β, γ (°)90, 90, 9090, 90, 12090, 90, 12090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_53)(2_54)(2_55)(2_56)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Pn3m?, I4/mmm?, P63/mcm?, P31m
Temperature (K)????
a, b, c (Å)18.54480, 18.54480, 18.5448014.84377, 14.84377, 20.0781513.75624, 13.75624, 19.2726913.70028, 13.70028, 9.26856
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 12090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_57)(2_58)(2_59)(2_6)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, I4/mmm?, I4/mmm?, P4/nmm?, Pn3m
Temperature (K)????
a, b, c (Å)14.09929, 14.09929, 15.5434913.52645, 13.52645, 20.6385113.51327, 13.51327, 10.3318819.22650, 19.22650, 19.22650
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_60)(2_61)(2_62)(2_63)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, I41/amd?, Pm3m?, I4m2
Temperature (K)????
a, b, c (Å)17.93196, 17.93196, 17.9319616.38749, 16.38749, 10.9440914.59852, 14.59852, 14.5985212.61418, 12.61418, 9.44863
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_64)(2_65)(2_67)(2_68)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Pm3m?, Ia3?, Ia3d?, I41/amd
Temperature (K)????
a, b, c (Å)18.34185, 18.34185, 18.3418518.03111, 18.03111, 18.0311119.95204, 19.95204, 19.9520415.10434, 15.10434, 10.72743
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_69)(2_7)(2_70)(2_71)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, R3m?, P43m?, Pm3m?, P213
Temperature (K)????
a, b, c (Å)16.68529, 16.68529, 20.9554214.07848, 14.07848, 14.0784813.89397, 13.89397, 13.8939714.02981, 14.02981, 14.02981
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_73)(2_74)(2_75)(2_76)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Fd3m?, Fm3m?, Fd3m?, P43m
Temperature (K)????
a, b, c (Å)29.61840, 29.61840, 29.6184030.48719, 30.48719, 30.4871925.93681, 25.93681, 25.9368113.34184, 13.34184, 13.34184
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_77)(2_78)(2_79)(2_8)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Pn3m?, P63/mmc?, Im3m?, Im3m
Temperature (K)????
a, b, c (Å)15.57873, 15.57873, 15.5787313.54790, 13.54790, 19.3502921.24240, 21.24240, 21.2424029.90458, 29.90458, 29.90458
α, β, γ (°)90, 90, 9090, 90, 12090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_80)(2_81)(2_82)(2_83)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, Im3m?, I4/mmm?, Pn3m?, R3m
Temperature (K)????
a, b, c (Å)18.09381, 18.09381, 18.0938113.99930, 13.99930, 10.2051315.82403, 15.82403, 15.8240312.97857, 12.97857, 22.46097
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_84)(2_85)(2_86)(2_87)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P63/mmc?, I4/mmm?, P3m1?, P63/mmc
Temperature (K)????
a, b, c (Å)12.98872, 12.98872, 14.9436113.28124, 13.28124, 15.4875312.79309, 12.79309, 10.0490312.79818, 12.79818, 20.07056
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 12090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_88)(2_89)(2_9)(2_90)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, P4/nmm?, P63/mmc?, R3m?, R3m
Temperature (K)????
a, b, c (Å)13.51990, 13.51990, 7.6115112.91224, 12.91224, 15.1050920.68706, 20.68706, 10.7470412.72594, 12.72594, 30.36777
α, β, γ (°)90, 90, 9090, 90, 12090, 90, 12090, 90, 120
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_91)(2_92)(2_93)(2_94)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, I4/mcm?, P4/nbm?, Im3m?, C2
Temperature (K)????
a, b, c (Å)13.97677, 13.97677, 19.1953113.94895, 13.94895, 9.2496517.26967, 17.26967, 17.2696729.43823, 29.38405, 20.79885
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_95)(2_96)(2_97)(2_98)
Crystal data
Chemical formulaO2SiO2SiO2SiO2Si
Mr????
Crystal system, space group?, I4/mmm?, Im3?, Pm3n?, P4132
Temperature (K)????
a, b, c (Å)12.20584, 12.20584, 19.1793816.44133, 16.44133, 16.4413316.19734, 16.19734, 16.1973411.56424, 11.56424, 11.56424
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 90
V3)????
Z????
Radiation type?, λ = ? Å?, λ = ? Å?, λ = ? Å?, λ = ? Å
µ (mm1)????
Crystal size (mm) × × × × × × × ×
Data collection
Diffractometer????
Absorption correction????
No. of measured, independent and
observed (?) reflections
?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
Rint????
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ? ?, ?, ? ?, ?, ? ?, ?, ?
No. of reflections????
No. of parameters????
No. of restraints????
Δρmax, Δρmin (e Å3)?, ??, ??, ??, ?


(2_99)
Crystal data
Chemical formulaO2Si
Mr?
Crystal system, space group?, Pm3
Temperature (K)?
a, b, c (Å)12.81712, 12.81712, 12.81712
α, β, γ (°)90, 90, 90
V3)?
Z?
Radiation type?, λ = ? Å
µ (mm1)?
Crystal size (mm) × ×
Data collection
Diffractometer?
Absorption correction?
No. of measured, independent and
observed (?) reflections
?, ?, ?
Rint?
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, ?, ?
No. of reflections?
No. of parameters?
No. of restraints?
Δρmax, Δρmin (e Å3)?, ?

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK5018 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

We are grateful to the EPSRC (U.K.) and to the Leverhulme Trust for support, and to the Portuguese Foundation for Science and Technology (FCT) for the Ph.D. scholarship No. SFRH/BD/3024/2000 to F.A.A.P.

References

First citationAkporiaye, D. E. & Price, G. D. (1989). Zeolites, 9, 23–32.  CrossRef CAS Web of Science Google Scholar
First citationAlberti, A. (1979). Am. Mineral. 64, 1188–1198.  CAS Google Scholar
First citationBaerlocher, C. & McCusker, L. B. (2004). https://www.iza-structure.org/databasesGoogle Scholar
First citationBaerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at https://www.iza-structure.org/ ), 5th ed. London: Elsevier.  Google Scholar
First citationBarrer, R. M. & Villiger, H. (1969). Z. Kristallogr. 128, 352–370.  CrossRef CAS Web of Science Google Scholar
First citationBialek, R. (1995). KRIBER, Version 1.1. Institut für Kristallographie und Petrographie, ETH, Zürich, Switzerland.  Google Scholar
First citationBoisen, M. B., Gibbs, G. V., O'Keeffe, M. & Bartelmehs, K. L. (1999). Micropor. Mesopor. Mater. 29, 219–266.  Web of Science CrossRef CAS Google Scholar
First citationBrunner, G. O. & Meier, W. M. (1989). Nature, 337, 146–147.  CrossRef CAS Google Scholar
First citationConnolly, M. L. (1985). J. Am. Chem. Soc. 107, 1118–1124.  CrossRef CAS Web of Science Google Scholar
First citationDelgado Friedrichs, O. (2001). Discret. Comput. Geom. 26, 549–571.  Google Scholar
First citationDelgado Friedrichs, O., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. (1999). Nature, 400, 644–647.  Google Scholar
First citationDress, A. W. M., Huson, D. H. & Molnár, E. (1993). Acta Cryst. A49, 806–817.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFoster, M. D., Bell, R. G. & Klinowski, J. (2001). Stud. Surf. Sci. Catal. 136, 266.  CrossRef Google Scholar
First citationFoster, M. D., Delgado Friedrichs, O., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. (2003). Angew. Chem. Int. Ed. 42, 3896–3899.  Web of Science CrossRef CAS Google Scholar
First citationFoster, M. D., Friedrichs, O. D., Bell, R. G., Almeida Paz, F. A. & Klinowski, J. J. (2004). Am. Chem. Soc. 126, 9769–9775.  Web of Science CrossRef CAS Google Scholar
First citationFoster, M. D., Simperler, A., Bell, R. G., Delgado Friedrichs, O., Almeida Paz, F. A. & Klinowski, J. (2004). Nature Mater. 3, 234–238.  Web of Science CrossRef CAS Google Scholar
First citationFoster, M. D. & Treacy, M. M. J. (2004). Hypothetical Zeolites: Enumeration Research; https://www.hypotheticalzeolites.net/ 2004Google Scholar
First citationHenson, N. J., Cheetham, A. K. & Gale, J. D. (1994). Chem. Mater. 6, 1647–1650.  CrossRef CAS Web of Science Google Scholar
First citationHu, Y. T., Navrotsky, A., Chen, C. Y. & Davis, M. E. (1995). Chem. Mater. 7, 1816–1823.  CrossRef CAS Web of Science Google Scholar
First citationKlinowski, J. (1998). Curr. Opin. Solid State Mater. Sci. 3, 79–85.  Web of Science CrossRef CAS Google Scholar
First citationKoningsveld, H. van (2004). Schemes for Building Zeolite Structure Models, in Database of Zeolite Structures; https://topaz.ethz.ch/IZA-SC/ModelBuilding.htmGoogle Scholar
First citationLiebau, F., Gies, H., Gunawardane, R. P. & Marler, B. (1986). Zeolites, 6, 373–377.  CrossRef CAS Web of Science Google Scholar
First citationMeier, W. M. (1986). Zeolites and Zeolite-Like Materials. 7th Int. Zeolite Conference, Tokyo, 17–22 August.  Google Scholar
First citationMeier, W. M. & Villiger, H. (1969). Z. Kristallogr. 128, 352–370.  Google Scholar
First citationMellot-Draznieks, C., Girard, S., Férey, G., Schön, J. C., Cancarevic, Z. & Jansen, M. (2002). Chem. Eur. J. 8, 4103–4113.  Google Scholar
First citationMellot-Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M. & Férey, G. (2000). Angew. Chem. Int. Ed. 39, 2270–2275.  CrossRef Google Scholar
First citationMolecular Simulations Inc. (1999). Cerius2, Version 4.0. Molecular Simulations Inc., San Diego, USA.  Google Scholar
First citationMoloy, E. C., Davila, L. P., Shackelford, J. F. & Navrotsky, A. (2002). Micropor. Mesopor. Mater. 54, 1–13.  Web of Science CrossRef CAS Google Scholar
First citationO'Keeffe, M. & Hyde, S. T. (1996a). Z. Kristallogr. 211, 73–78.  CAS Google Scholar
First citationO'Keeffe, M. & Hyde, B. G. (1996b). Crystal Structures I: Patterns and Symmetry. Mineralogical Association of America Monograph, Washington, DC.  Google Scholar
First citationNavrotsky, A., Petrovic, I., Hu, Y. T., Chen, C.-Y. & Davis, M. E. (1995). Micropor. Mater. 4, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationPersistence of Vision Raytracer Pty. Ltd (2004). POV-Ray, Version 3.6. Persistence of Vision Raytracer Pty Ltd.  Google Scholar
First citationPetrovic, I., Navrotsky, A., Davis, M. E., Zones, S. I. (1993). Chem. Mater. 5, 1805–1813.  CrossRef CAS Web of Science Google Scholar
First citationPiccione, P. M., Laberty, C., Yang, S. Y., Camblor, M. A., Navrotsky, A. & Davis, M. E. (2000). J. Phys. Chem. B, 104, 10001–10011.  Web of Science CrossRef CAS Google Scholar
First citationPiccione, P. M., Woodfield, B. F., Boerio-Goates, J., Navrotsky, A. & Davis, M. E. (2001). J. Phys. Chem. B, 105, 6025–6030.  Web of Science CrossRef CAS Google Scholar
First citationPiccione, P. M., Yang, S. Y., Navrotsky, A. & Davis, M. E. (2002). J. Phys. Chem. B, 106, 3629–3638.  Web of Science CrossRef CAS Google Scholar
First citationSastre, G. & Gale, J. D. (2001). Micropor. Mesopor. Mater. 43, 27–40.  Web of Science CrossRef CAS Google Scholar
First citationSato, M. (1984). Framework Topology and Systematic Derivation of Zeolite Structures, edited by D. H. Olson and A. Bisio. In Proc. of the 6th Intl Zeolite Conference, Reno, USA, 10–15 July. Guildford: Butterworths.  Google Scholar
First citationSato, M. J. (1987). Phys. Chem. 91, 4675–4681.  CrossRef CAS Web of Science Google Scholar
First citationSherman, J. D. & Bennett, J. M. (1973). Molecular Sieves, edited by W. M. Meier and J. B. Uytterhoeven, Vol. 121, p. 52. Washington, DC: American Chemical Society.  Google Scholar
First citationSimperler, A., Foster, M. D., Bell, R. G. & Klinowski, J. (2004). J. Phys. Chem. B, 108, 869–879.  Web of Science CrossRef CAS Google Scholar
First citationSmith, J. V. (1988). Chem. Rev. 88, 149–182.  CrossRef CAS Web of Science Google Scholar
First citationSmith, J. V. (1993). ACS Abstr. 205, 157-IEC.  Google Scholar
First citationSourceForge (2004). GDIS, Version 0.84. SourceForge.  Google Scholar
First citationTreacy, M. M. J., Randall, K. H., Rao, S., Perry, J. A. & Chadi, D. J. (1997). Z. Kristallogr. 212, 768.  CrossRef Web of Science Google Scholar
First citationWells, A. F. (1977). Three-Dimensional Nets and Polyhedra. New York: Wiley.  Google Scholar
First citationWells, A. F. (1979). Further Studies of Three-Dimensional Nets, American Crystallographic Association Monograph No. 8, Vol. 9. Pittsburgh, PA: Polycrystal Book Service.  Google Scholar
First citationWells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds