research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Concomitant polymorphism and a temperature-dependent phase change in (E)-[1-(4-methoxyphenyl)-3-phenyl-2-propenyl­idene­amino]oxyacetic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 25 October 2004; accepted 23 February 2005)

The title compound, C18H17NO4, crystallizes from ethanol at ambient temperature as two concomitant polymorphs (I) and (II), both monoclinic P21/c with Z′ = 1. The less abundant form (I) undergoes a reversible phase-transition at ca 173 K to a third monoclinic polymorph (III), P21/n, with Z′ = 2, while the more abundant polymorph (II) is unchanged down to 120 K. In each polymorph of (I)–(III) the molecules are linked by pairs of O—H⋯O hydrogen bonds into cyclic dimers which are crystallographically centrosymmetric in (I) and (II), and approximately, but not crystallographically, centrosymmetric in (III). There are no direction-specific interactions between the hydrogen-bonded dimers in polymorph (I); in polymorph (II) the dimers are linked into sheets by C—H⋯N and C—H⋯π(arene) hydrogen bonds; in polymorph (III) the dimers are linked into chains by a C—H⋯π(arene) hydrogen bond. The interconversion of polymorphs (I) and (III) is a simple displacive phase transition.

1. Introduction

Persulfate oxidation of imino-oxyacetic acids, R1R2C=NOCH2COOH, provides a useful route to iminyl radicals (Forrester et al., 1979[Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606-611.]). The subsequent reactions of the iminyl radicals thus generated depend greatly on the substituents and important species including nitrogen-containing heterocycles can result. We have recently reported the molecular and supramolecular structures of several substituted imino-oxyacetic acids, where the principal mode of supramolecular aggregation is the formation of the cyclic hydrogen-bonded dimers characteristic of simple carboxylic acids (Glidewell et al., 2004a[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004a). Acta Cryst. C60, o270-o272.],b[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004b). Acta Cryst. E60, o1560-o1562.]). Continuing this study, we have now investigated the title compound which proves to occur in several polymorphic forms. When the title compound was crystallized from ethanol, a mixture of two crystalline forms, concomitant polymorphs (Bernstein et al., 1999[Bernstein, J., Davey, R. J. & Henck, J.-O. (1999). Angew. Chem. Int. Ed. 38, 3440-3461.]), was obtained. These two forms, denoted (I) and (II), are both monoclinic at ambient temperature, with Z′ = 1 in space group P21/c; while they have similar unit-cell volumes, their cell dimensions differ markedly and the polymorph with the longer a dimension we denote as polymorph (I). The structure of polymorph (II) has been determined both at 120 (2) and 291 (2) K, and these structure determinations, denoted (IIa) and (IIb), respectively, are essentially identical; hence, for this polymorph we only discuss the results of refinement (IIa). However, when polymorph (I) is cooled to 120 (2) K, it forms a third monoclinic polymorph in P21/n with Z′ = 2, denoted (III). The numbering of polymorphs (I)–(III) follows the order in which they were characterized. The supramolecular structures of polymorphs (I)–(III) are briefly compared with those of the analogous compounds (IV)–(VI).

[Scheme 1]

2. Experimental

2.1. Synthesis

The title compound was prepared by the reaction of chloroacetic acid with the oxime derived from (E)-4-MeOC6H4Ch=CHCOPh (Atmaram et al., 1982[Atmaram, S., Forrester, A. R., Gill, M., Napier, R. J. & Thomson, R. H. (1982). Acta Chem. Scand. B, 36, 641-647.]); crystallization from ethanol at ambient temperature gave a mixture of polymorphs (I) and (II). Detailed X-ray examination of a representative sample of the crystals from this mixture indicated that the abundance ratio of (I):(II) was approximately 1:4.

2.2. Data collection, structure solution and refinement

Diffraction data for polymorph (I) and the data set for (II) denoted (IIb) were collected on a Bruker SMART diffractometer at 291 (2) K; diffraction data for (III) and the dataset for (II) denoted (IIa) were collected at 120 (2) K using a Nonius Kappa-CCD diffractometer: in all cases graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was employed. Other details of cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]; Bruker, 1998[Bruker (1998). SMART, Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.], 2000[Bruker (2000). SADABS, Version 2.03, and SAINT, Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]; Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]; Nonius, 1997[Nonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]).

Table 1
Experimental details

  (I) (IIa) (IIb) (III)
Crystal data
Chemical formula C18H17NO4 C18H17NO4 C18H17NO4 C18H17NO4
Mr 311.33 311.33 311.33 311.33
Cell setting, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
a, b, c (Å) 8.5153 (7), 16.0591 (13), 12.1476 (10) 6.4499 (2), 14.9693 (5), 16.6559 (6) 6.4238 (3), 15.1513 (9), 17.0552 (9) 12.1552 (4), 15.8657 (4), 16.6708 (5)
β (°) 96.801 (2) 92.947 (2) 93.167 (2) 97.4250 (15)
V3) 1649.5 (2) 1606.01 (9) 1657.43 (15) 3188.02 (16)
Z, Z 4, 1 4, 1 4, 1 8, 2
Dx (Mg m−3) 1.254 1.288 1.248 1.297
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 5963 3690 3837 7291
θ range (°) 2.1–32.6 3.0–27.5 1.8–27.6 3.1–27.5
μ (mm−1) 0.09 0.09 0.09 0.09
Temperature (K) 291 (2) 120 (2) 291 (2) 120 (2)
Crystal form, colour Plate, colourless Plate, yellow Plate, colourless Lath, colourless
Crystal size (mm) 0.45 × 0.40 × 0.04 0.25 × 0.20 × 0.05 0.25 × 0.20 × 0.05 0.50 × 0.40 × 0.10
         
Data collection
Diffractometer Bruker SMART 1000 CCD area detector Kappa-CCD Bruker SMART 1000 CCD area detector Bruker–Nonius 95 mm CCD camera on κ-goniostat
Data collection method φω φ scans, and ω scans with κ offsets φω φ and ω scans
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.952 0.967 0.982 0.950
Tmax 0.996 0.995 0.996 0.991
No. of measured, independent and observed reflections 16 995, 5963, 1586 17 758, 3690, 2647 13 953, 3837, 2171 37 246, 7291, 4714
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.058 0.062 0.038 0.060
θmax (°) 32.6 27.5 27.6 27.5
Range of h, k, l −12 → h → 12 −8 → h → 8 −7 → h → 8 −15 → h → 15
  −16 → k → 24 −19 → k → 19 −19 → k → 19 −20 → k → 20
  −17 → l → 18 −21 → l → 16 −22 → l → 21 −21 → l → 21
         
Refinement
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.172, 0.86 0.058, 0.232, 1.14 0.049, 0.151, 0.98 0.048, 0.133, 1.03
No. of reflections 5963 3690 3837 7291
No. of parameters 210 210 210 419
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0654P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.1318P)2 + 0.4171P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.0527P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.0298P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 <0.0001 <0.0001 0.001
Δρmax, Δρmin (e Å−3) 0.14, −0.12 0.66, −0.64 0.15, −0.14 0.19, −0.27
Computer programs used: SMART (Bruker, 1998[Bruker (1998). SMART, Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]), Kappa-CCD server software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), SAINT (Bruker, 2000[Bruker (2000). SADABS, Version 2.03, and SAINT, Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]), PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

For polymorphs (I)–(III) the space groups P21/c, P21/c and P21/n were uniquely assigned from the systematic absences. The structures were solved by direct methods and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and they were included in the refinements as riding atoms with distances C—H 0.93 Å (aromatic and ethylenic CH), 0.96 Å (CH3) or 0.97 Å (CH2) and O—H 0.82 Å at 291 (2) K, and C—H 0.95 Å (aromatic and ethylenic CH), 0.98 Å (CH3) or 0.99 Å (CH2) and O—H 0.84 Å at 120 (2) K, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for OH and methyl groups.

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Details of molecular conformations are given in Table 2[link] and details of hydrogen-bond dimensions are given in Table 3[link].1 Figures 1–9[link][link][link][link][link][link][link][link][link] show the molecular components, with atom-labelling schemes, and aspects of the supramolecular structures.

Table 2
Selected geometrical parameters (Å, °)

        (III) (III)
  (I) (IIa) (IIb) Mol. 1 Mol. 2
Temperature (K) 291 120 291 120 120
x Nil Nil Nil 1 2
           
Parameter
Ox3—Nx4 1.417 (2) 1.421 (2) 1.4165 (18) 1.4214 (16) 1.4243 (16)
Nx4—Cx5 1.294 (2) 1.297 (3) 1.291 (2) 1.289 (2) 1.298 (2)
           
Cx2—Ox3—Nx4 107.08 (17) 108.30 (16) 108.14 (13) 107.10 (12) 107.72 (11)
Ox3—Nx4—Cx5 111.16 (17) 111.37 (17) 111.05 (14) 110.93 (13) 111.00 (12)
           
Ox1—Cx1—Cx2—Ox3 −177.8 (2) −168.8 (2) −168.96 (16) −173.35 (14) 176.70 (13)
Cx1—Cx2—Ox3—Nx4 −153.1 (2) −78.8 (2) −80.63 (18) −158.92 (13) 145.91 (13)
Cx2—Ox3—Nx4—Cx5 179.5 (2) 173.2 (2) 174.60 (15) −177.91 (14) −172.06 (13)
Ox3—Nx4—Cx5—Cx6 1.5 (3) −1.1 (3) −1.6 (2) 1.1 (2) −0.3 (2)
Nx4—Cx5—Cx6—Cx7 171.7 (2) 168.7 (2) 169.29 (17) 172.97 (16) −170.89 (15)
Nx4—Cx5—Cx11—Cx12 113.3 (2) 124.3 (2) 121.89 (19) 107.38 (19) −119.08 (16)
Cx6—Cx7—Cx21—Cx22 10.5 (2) 2.4 (4) 2.8 (3) 8.3 (3) −11.1 (3)
Cx23—Cx24—Ox24—Cx27 175.4 (2) −179.1 (2) −178.57 (18) 178.30 (14) −173.96 (13)

Table 3
Selected hydrogen bond parameters (Å, °)

D—H⋯A H⋯A DA D—H⋯A
(I)
O1—H1⋯O2i 1.85 2.662 (3) 171
       
(IIa)
O1—H1⋯O2i 1.83 2.668 (3) 173
C23—H23⋯N4ii 2.48 3.409 (3) 166
C22—H22⋯Cg1ii, 2.85 3.647 (3) 142
       
(IIb)
O1—H1⋯O2i 1.86 2.679 (3) 175
C23—H23⋯N4ii 2.56 3.472 (2) 167
C22—H22⋯Cg1ii 2.94 3.712 (2) 141
       
(III)
O11—H11⋯O22 1.81 2.6542 (17) 177
O21—H21⋯O12 1.80 2.6410 (17) 178
C215—H215⋯Cg2iii 2.64 3.532 (2) 157
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) [-x, {1\over 2}+ y, {1\over 2}- z]; (iii) [{3\over 2}- x, -{1\over 2}+ y, -{1\over 2}- z].
†Cg1 is the centroid of the C31–C36 ring.
‡Cg2 is the centroid of the C221–C226 ring.
[Figure 1]
Figure 1
The molecule in polymorph (I) at 291 K showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The molecule in polymorph (II) showing the atom-labelling scheme: (a) at 120 K (IIa) and (b) at 291 K (IIb). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The two independent molecules in polymorph (III) at 120 K showing the atom-labelling scheme and the dimeric aggregate formed by the O—H⋯O hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
Part of the crystal structure of polymorph (I) at 291 K showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 5]
Figure 5
Part of the crystal structure of polymorph (II) at 120 K showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
[Figure 6]
Figure 6
Stereoview of part of the crystal structure of polymorph (II) at 120 K showing the formation of a (10[\bar 2]) hydrogen-bonded sheet of R22(8) and R66(52) rings built from O—H⋯O and C—H⋯N hydrogen bonds. For the sake of clarity the H atoms not involved in the motifs shown have been omitted.
[Figure 7]
Figure 7
Part of the crystal structure of polymorph (II) at 120 K showing the cooperative combination of the C—H⋯N and C—H⋯π(arene) hydrogen bonds. For the sake of clarity the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([-x, {1\over 2}+ y, {1\over 2}- z]) and ([-x, -{1\over 2}+ y, {1\over 2}- z]), respectively.
[Figure 8]
Figure 8
Stereoview of part of the crystal structure of polymorph (III) showing the formation of an [010] chain built of type 2 molecules only.
[Figure 9]
Figure 9
(a) Projection of part of the crystal structure of polymorph (I) in the domain 0 < y < ½; (b) projection of part of the crystal structure of polymorph (III) in the domain ½ < y < 1.0. For the sake of clarity, the other half of the unit-cell contents has been omitted in each case, as have the H atoms.

2.3. Thermal analysis

DSC measurements were made using a Mettler Toledo model 821e instrument, with heating and cooling at a constant rate of 10 K per minute. The following thermal regime was adopted: samples were cooled from ambient temperature to 153 K and then held for 10 min, heated to 403 K and held for 10 min, cooled to 153 K and held for 10 min, heated to 423 K and held for 10 min, cooled to 153 K and held for 10 min, and finally heated to ambient temperature.

3. Results and discussion

3.1. Crystallization behaviour

An initial dataset collected at 291 (2) K gave a satisfactory solution and refinement for polymorph (I), but at this temperature only 27% of the reflections were labelled as `observed': although these data were 99.1% complete to θ = 32.58%, with an overall data:parameter ratio of 28.4, the ratio of `observed' data to parameters was only 7.5. Accordingly, a second dataset was collected at 120 (2) K using a freshly mounted crystal: this proved to have a different unit cell and a different supramolecular structure from that found from the first data set, and hence this form was denoted as polymorph (II). The observation of different structures derived from diffraction data collected from different crystals at different temperatures immediately raised the question of whether forms (I) and (II) were concomitant polymorphs both present in the original crystalline product, or whether a phase change from (I) to (II) had occurred upon cooling from 291 to 120 K.

Some ten crystals from the original batch were then taken, essentially at random, and their unit-cell dimensions were determined at 291 K: the majority were of polymorph (II) but several of the crystals were of polymorph (I), confirming the occurrence of concomitant polymorphism at ambient temperature. Two further datasets were then collected, one for polymorph (II) at ambient temperature and a second at 120 (2) K for a crystal which had been shown to be of polymorph (I) at ambient temperature: this crystal at 120 K proved to have yet a third unit cell, having undergone a phase transformation upon cooling, and this form is denoted as polymorph (III).

DSC examination of the original mixture of polymorphs showed several distinct events as the temperature was cycled in the range 153–423 K (−120 to +150°C): a reversible phase transition, corresponding to the interconversion of polymorphs (I) and (III), was observed at approximately 173 K, and the melting points of (I) and (II) were observed at 393 and 413 K, respectively. However, while the melting of (I) was reversible, cooling the melt of (II) led to the formation of a glass rather than to crystallization.

3.2. Molecular conformations

In each of the independent molecules in polymorphs (I)–(III) (Figs. 1–3[link][link][link]) the intramolecular bond lengths and angles are very similar, and all distances have values which are typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). However, there are some significant variations in the molecular conformations, as shown by the key torsional angles (Table 2[link]), although the torsional angles in polymorph (II) all show very little variation with temperature. For polymorph (III) the values of those torsional angles which are remote from zero or 180° generally have similar magnitudes for the two independent molecules but with opposite signs, indicating that the two molecules are close to being enantiomorphs and pointing up the pseudosymmetric nature of the hydrogen-bonded dimer (Fig. 3[link]). The most notable variation between the different polymorphs occurs in the torsional angle Cx1—Cx2—Ox3—Nx4, where polymorph (II) adopts quite a different value from those in polymorphs (I) and (III), where the values are, in fact, rather similar in magnitude.

3.3. Supramolecular aggregation

In each polymorph the primary mode of supramolecular aggregation is the formation of R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers by means of paired O—H⋯O hydrogen bonds (Table B): these dimers are centrosymmetric in polymorphs (I) and (II) (Figs. 4[link] and 5[link]) and pseudosymmetric in polymorph (III), where the dimer contains one of each type of independent molecule (Fig. 3[link]). In both (I) and (II) the reference molecule has been selected such that the hydrogen-bonded dimer is centred at (½, ½, ½): in (III) the selected asymmetric unit is approximately centrosymmetric and its centroid lies at approximately (½, ½, 0.22).

In polymorph (II) the dimers are linked into sheets by means of C—H⋯N hydrogen bonds, augmented by C—H⋯π(arene) hydrogen bonds, and the patterns of the hydrogen bonds are same at both 120 and 291 K, while the dimensions change only slightly between these two temperatures (Table 3[link]). The atoms of type C23 in the molecules at (x, y, z) and (1- x, 1 - y, 1 - z) are components of the R22(8) dimer centred at (½, ½, ½). These two atoms act as hydrogen-bond donors to the N4 atoms in the molecules at ([-x, {1\over 2}+ y, {1\over 2}- z]) and ([1 + x, {1\over 2}- y, {1\over 2}+ z]), which lie respectively in the dimers centred at (−½, 1, 0,) and [3\over 2], 0, 1). At the same time the atoms N4 at (x, y, z) and (1 - x, 1 - y, 1 - z) accept hydrogen bonds from the atoms C23 at ([-x, -{1\over 2}+ y, {1\over 2}- z]) and ([1 + x, {3\over 2}- y, {1\over 2}+ z]), which themselves lie in the dimers centred at (−½, 0, 0) and ([3\over 2], 1, 1), respectively. In this manner a (10[\bar 2]) sheet is generated (Fig. 6[link]), in which O—H⋯O and C—H⋯N hydrogen bonds generate R22(8) and R66(52) rings, which alternate in chessboard fashion. The C—H⋯π(arene) hydrogen bonds (Table 3[link]) follow exactly the same pattern (Fig. 7[link]) and hence serve to reinforce the sheet generated by the C—H⋯N hydrogen bonds.

By contrast, in polymorph (I) there are no hydrogen bonds between adjacent dimers: in particular, the C—H⋯N and C—H⋯π(arene) hydrogen bonds found in polymorph (II) are both absent from the crystal structure of (I). The only direction-specific interaction of possible significance between the R22(8) dimers in (I) is a weak ππ stacking interaction. The methoxy-substituted rings C21–C26 in the molecules at (x, y, z) and (-x, 1 - y, 2 - z) are strictly parallel, but both the interplanar spacing, 3.534 (2) Å, and the ring-centroid separation, 3.960 (2) Å, are rather large, associated with a large centroid offset of 1.787 (2) Å; hence, this interaction is probably not structurally significant.

The principal interaction between the dimeric units in polymorph (III) is a C—H⋯π(arene) hydrogen bond which involves only the molecules of type 2 (containing C21 etc.). The aryl C215 atom in the unsubstituted ring of the type 2 molecule at (x, y, z) acts as a hydrogen-bond donor to the substituted ring C221–C216 in the corresponding molecule at ([{3\over 2}- x, -{1\over 2}+ y, -{1\over 2}- z]), so forming a chain of type 2 molecules, from which the type 1 molecules are pendent, running parallel to the [010] direction and generated by the 21 screw axis along ([3\over 4], y, −¼), see Fig. 8[link]. As in polymorph (I), the ππ stacking interactions in (III) again involve the methoxy-substituted rings, in particular those of type 2 molecules at (x, y, z) and (2 - x, 1 - y, -z), see §3.4[link]. Also as in (I), the large interplanar separations and large ring-centroid separations (> 3.8 Å) indicate that these interactions are probably not structurally significant.

3.4. Phase relationship

The relationship between the crystal structures of polymorphs (I) and (III) can readily be understood once it is recognized that the unit cell of (III) can be derived from that of (II) via the transformation (0, 0, 1; 0, −1, 0; 2, 0, 0). In polymorph (I) the dimeric units are centred at (½, ½, ½) and (½, 0, 0), whereas in (III), where the length of the c axis is double that of the a axis in (I), the dimers are located at approximately (½, ½, 0.22), (½, ½, 0.78), (0, 0, 0.28) and (0, 0, 0.72), leading to a very close similarity between the structures of (I) and (III) (Fig. 9[link]). Hence, this temperature-dependent change of structure from P21/c with Z′ = 1 at 291 K, to P21/n with Z′ = 2 at 120 K can be described as a simple displacive transition. The similarity of molecular conformation between the unique molecules in polymorph (I), and each of the two independent molecules in (III), is entirely consistent with this. In both (I) and (III) the pattern of the hard (Braga et al., 1995[Braga, D., Grepioni, F., Birdha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.]) hydrogen bonds is essentially the same and the difference between the supramolecular structures of (I) and (III) depends on a single rather weak C—H⋯π(arene) hydrogen bond in (III), which is absent from the structure of (I).

3.5. Comparison with analogous structures

It is of interest to compare briefly the supramolecular structures of polymorphs (I)–III) with those of the related compounds (IV)–(VI) (Glidewell et al., 2004a[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004a). Acta Cryst. C60, o270-o272.],b[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004b). Acta Cryst. E60, o1560-o1562.]). In each of (IV)–(VI), the molecules are linked by paired O—H⋯O hydrogen bonds into centrosymmetric dimers, analogous to those observed in (I) and (II), and in both (IV) and (VI) there are no direction-specific interactions between these dimers: in (V), on the other hand, the dimers are weakly linked into chains by a single aromatic ππ stacking interaction. It is noteworthy that C—H⋯N hydrogen bonds are absent from the structures of each of (IV)–(VI), in contrast to polymorph (II).

3.6. General comments

In our recent structural studies we have encountered several examples of concomitant polymorphism. Thus, when crystallized from ethanol, 2-iodo-4-nitro aniline yields a mixture of triclinic (P[\bar 1], Z′ = 1) and orthorhombic (Pbca, Z′ = 1) crystals which have slightly different colours (McWilliam et al., 2001[McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942-945.]); crystallization of ethyl N-(2-amino-6-benzyloxy-5-nitrosopyrimidin-2-yl)-3-aminopropanoate from acetonitrile/ethanol/water (1/1/1 by volume) yields a mixture of two monoclinic polymorphs, one blue (P21/c, Z′ = 1) and the other pink (P21, Z′ = 2; Quesada et al., 2002[Quesada, A., Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A., Low, J. N., Cannon, D., Farrell, D. M. M. & Glidewell, C. (2002). Acta Cryst. B58, 300-315.]), where the conformations of the three independent molecules of the nitrosopyrimidine are all different, so that these concomitant polymorphs are also conformational polymorphs; the 1: 1 adduct formed between (S)-malic acid and 4,4′-bipyridyl crystallizes from methanol as a mixture of triclinic (P1, Z′ = 1) and monoclinic (C2, Z′ = 1) polymorphs (Farrell et al., 2002[Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58, 530-544.]); benzanilide crystallizes from ethanol in both a monoclinic (C2/c, Z′ = 0.5) form (Kashino et al., 1979[Kashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365-369.]) and a triclinic ([P\bar 1], Z′ = 1) form (Bowes, Glidewell et al., 2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); the 2:1 adduct formed between triphenylsilanol and 4,4′-bipyridyl forms three triclinic polymorphs (all [P\bar 1] with Z′ = 0.5, 1 and 4), which crystallize in pairwise-concomitant fashion (Bowes, Ferguson et al., 2003[Bowes, K. F., Ferguson, G., Lough, A. J & Glidewell, C. (2003). Acta Cryst. B59, 277-286.]); and crystallization of 1-(6-amino-1,3-benzodioxol-5-yl)-3-(4-methoxyphenyl)prop-2-en-1-one from dimethylform­amide solution gives a mixture of a red monoclinic (P21/c, Z′ = 1) polymorph and a yellow triclinic ([P\bar 1], Z′ = 2) form, where the two independent molecules in the triclinic form exhibit different conformations, so providing a second example of conformational polymorphism also (Low et al., 2004[Low, J. N., Cobo, J., Nogueras, M., Cuervo, P., Abonia, R. & Glidewell, C. (2004). Acta Cryst. C60, o744-o750.]).

We emphasize that in none of these systems had there been any attempt to engineer such polymorphic behaviour, nor was this behaviour being specifically sought after: instead, each pair of polymorphs was identified serendipitously. In the cases of 2-iodo-4-nitroaniline, the nitrosopyrimidine and the substituted propenone, the identification of the two forms was facilitated by their differences in colour, but in the other examples identification depended solely upon careful scrutiny of the crystalline samples and observation of more than one crystal habit, followed in every case by careful manual separation. Our identification, essentially by chance, of seven such examples within a rather short space of time suggests to us that the phenomenon of concomitant polymorphism may, in fact, be a rather common one, certainly far more common than the current literature (Bernstein et al., 1999[Bernstein, J., Davey, R. J. & Henck, J.-O. (1999). Angew. Chem. Int. Ed. 38, 3440-3461.]) tends to suggest, but one which goes largely un-noticed. On the other hand, we note the recent reports on 3,6,13,16-tetrabromo-2,7,12,17-tetrapropylporphycene, where monoclinic prisms and triclinic plates crystallize concurrently from dichloromethane–hexane (Aritome et al., 2002[Aritome, I., Shimakoshi, H. & Hisaeda, Y. (2002). Acta Cryst. C58, o563-o564.]), and on the 1:1 co-crystal of caffeine and glutaric acid, where monoclinic rods and triclinic blocks crystallize concurrently from chloroform solution (Trask et al., 2004[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2004). Chem. Commun. pp. 890-891.]).

4. Concluding remarks

The investigation of the title compound was originally expected to be entirely straightforward, simply providing another example of this class of compound for comparison with the analogues which have been reported recently (Glidewell et al., 2004a[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004a). Acta Cryst. C60, o270-o272.],b[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004b). Acta Cryst. E60, o1560-o1562.]). In the event, this investigation has proved to be much more complex than those for the previous examples. We emphasize, however, that as with so many examples of polymorphism, and particularly concomitant polymorphism, the structural behaviour can be unravelled, as here, only by careful and painstaking separation of a substantial number of individual crystals followed by their X-ray examination initially at ambient temperature and then at reduced temperature.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

Data collection: SMART (Bruker, 1998) for (I), (IIb); Kappa-CCD server software (Nonius, 1997) for (IIa); COLLECT (Hooft, 1999) for (III). Cell refinement: SAINT (Bruker, 2000) for (I), (IIb); DENZO-SMN (Otwinowski & Minor, 1997) for (IIa); DENZO (Otwinowski & Minor, 1997) & COLLECT for (III). Data reduction: SAINT (Bruker, 2000) for (I), (IIb); DENZO-SMN for (IIa); DENZO & COLLECT for (III). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I), (IIb); OSCAIL (McArdle , 2003) and SHELXS97 (Sheldrick, 1997) for (IIa); OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (III). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (I), (IIb); OSCAIL and SHELXS97 (Sheldrick, 1997) for (IIa); OSCAIL and SHELXL97 (Sheldrick, 1997) for (III). For all compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
In full text version
(I) (E)-[1-(4-methoxyphenyl)-3-phenyl-2-propenylideneamino)oxyacetic acid top
Crystal data top
C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5963 reflections
a = 8.5153 (7) Åθ = 2.1–32.6°
b = 16.0591 (13) ŵ = 0.09 mm1
c = 12.1476 (10) ÅT = 291 K
β = 96.801 (2)°Plate, colourless
V = 1649.5 (2) Å30.45 × 0.40 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
5963 independent reflections
Radiation source: fine-focus sealed X-ray tube1586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕω scansθmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
h = 1212
Tmin = 0.952, Tmax = 0.996k = 1624
16995 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
5963 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C18H17NO4V = 1649.5 (2) Å3
Mr = 311.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5153 (7) ŵ = 0.09 mm1
b = 16.0591 (13) ÅT = 291 K
c = 12.1476 (10) Å0.45 × 0.40 × 0.04 mm
β = 96.801 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
5963 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
1586 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.996Rint = 0.058
16995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 0.86Δρmax = 0.14 e Å3
5963 reflectionsΔρmin = 0.12 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2993 (4)0.44487 (15)0.4914 (2)0.0959 (8)
O20.3503 (2)0.48398 (12)0.57345 (16)0.1263 (7)
O10.3735 (2)0.43644 (12)0.40495 (14)0.1201 (7)
C110.2197 (2)0.28337 (14)0.68035 (19)0.0706 (6)
C120.1911 (3)0.22962 (15)0.7691 (2)0.0888 (7)
C130.2876 (4)0.16258 (18)0.7787 (3)0.1155 (10)
C140.4145 (4)0.1500 (2)0.7009 (4)0.1423 (16)
C150.4436 (4)0.2016 (3)0.6141 (3)0.1511 (17)
C160.3468 (3)0.2687 (2)0.6026 (2)0.1085 (9)
C20.1439 (4)0.40161 (15)0.4777 (2)0.1028 (8)
O30.0657 (2)0.41549 (9)0.57237 (13)0.1006 (5)
N40.0365 (2)0.34680 (10)0.58148 (15)0.0791 (5)
C50.1124 (2)0.35421 (13)0.66720 (17)0.0684 (6)
C60.0998 (2)0.42388 (12)0.74340 (16)0.0696 (6)
C70.1928 (2)0.43479 (13)0.82325 (17)0.0705 (6)
C210.1906 (2)0.50399 (12)0.90073 (16)0.0610 (5)
C230.1080 (2)0.64037 (13)0.96543 (17)0.0683 (6)
C220.1050 (2)0.57650 (12)0.89120 (16)0.0666 (6)
C240.1972 (2)0.63359 (12)1.05257 (16)0.0613 (5)
O240.19435 (16)0.70151 (9)1.12107 (12)0.0796 (4)
C270.2930 (3)0.70124 (16)1.20787 (19)0.0992 (8)
C250.2818 (2)0.56231 (13)1.06569 (18)0.0721 (6)
C260.2783 (2)0.49899 (13)0.98954 (18)0.0729 (6)
H10.45320.46560.41190.180*
H120.10560.23900.82270.107*
H130.26680.12590.83790.139*
H40.48160.10510.70810.171*
H150.52990.19190.56130.181*
H160.36760.30420.54210.130*
H2A0.07970.42250.41220.123*
H2B0.15970.34240.46800.123*
H60.02200.46350.73630.084*
H70.26760.39350.83020.085*
H230.04970.68850.95710.082*
H220.04410.58190.83290.080*
H27A0.40130.69431.17690.149*
H27B0.28150.75311.24740.149*
H27C0.26290.65621.25780.149*
H250.34070.55681.12510.087*
H260.33710.45110.99810.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.154 (3)0.0612 (15)0.0794 (18)0.0045 (17)0.0413 (18)0.0039 (13)
O20.1767 (19)0.1113 (14)0.0998 (13)0.0377 (14)0.0530 (13)0.0317 (12)
O10.1646 (19)0.1167 (16)0.0876 (12)0.0190 (13)0.0505 (13)0.0161 (10)
C110.0610 (13)0.0748 (15)0.0766 (14)0.0006 (12)0.0109 (12)0.0239 (13)
C120.0845 (16)0.0757 (16)0.1051 (19)0.0129 (14)0.0068 (14)0.0041 (15)
C130.121 (2)0.0910 (19)0.143 (3)0.0400 (19)0.050 (2)0.0258 (18)
C140.121 (3)0.168 (4)0.154 (3)0.080 (3)0.081 (3)0.097 (3)
C150.091 (2)0.246 (5)0.119 (3)0.059 (3)0.025 (2)0.086 (3)
C160.0780 (16)0.159 (3)0.0866 (18)0.0092 (19)0.0005 (15)0.0386 (18)
C20.163 (3)0.0716 (15)0.0811 (17)0.0123 (18)0.0438 (18)0.0030 (13)
O30.1629 (15)0.0579 (9)0.0892 (11)0.0131 (10)0.0492 (11)0.0078 (8)
N40.1055 (13)0.0529 (10)0.0786 (12)0.0007 (10)0.0104 (11)0.0023 (9)
C50.0762 (14)0.0636 (14)0.0628 (13)0.0180 (12)0.0024 (11)0.0071 (11)
C60.0769 (14)0.0583 (13)0.0721 (14)0.0057 (11)0.0028 (12)0.0000 (10)
C70.0647 (12)0.0629 (13)0.0816 (14)0.0025 (11)0.0007 (12)0.0059 (11)
C210.0567 (11)0.0550 (12)0.0698 (13)0.0058 (10)0.0016 (10)0.0019 (10)
C230.0764 (14)0.0548 (12)0.0745 (14)0.0010 (11)0.0127 (12)0.0027 (10)
C220.0769 (14)0.0595 (13)0.0657 (13)0.0054 (11)0.0183 (11)0.0032 (10)
C240.0586 (12)0.0569 (13)0.0667 (13)0.0068 (10)0.0004 (10)0.0061 (10)
O240.0857 (10)0.0726 (10)0.0822 (10)0.0011 (8)0.0168 (8)0.0168 (8)
C270.1024 (17)0.110 (2)0.0886 (17)0.0071 (16)0.0270 (15)0.0283 (14)
C250.0641 (12)0.0710 (14)0.0846 (15)0.0009 (11)0.0226 (11)0.0079 (12)
C260.0624 (12)0.0629 (13)0.0955 (16)0.0076 (11)0.0180 (12)0.0075 (12)
Geometric parameters (Å, º) top
C1—O21.214 (3)C5—C61.448 (3)
C1—O11.295 (3)C6—C71.335 (3)
C1—C21.486 (4)C6—H60.93
O1—H10.82C7—C211.455 (3)
C11—C161.370 (3)C7—H70.93
C11—C121.380 (3)C21—C261.385 (3)
C11—C51.479 (3)C21—C221.386 (3)
C12—C131.368 (3)C23—C221.368 (3)
C12—H120.93C23—C241.378 (3)
C13—C141.364 (4)C23—H230.93
C13—H130.93C22—H220.93
C14—C151.341 (5)C24—O241.370 (2)
C14—H40.93C24—C251.372 (3)
C15—C161.374 (5)O24—C271.424 (2)
C15—H150.93C27—H27A0.96
C16—H160.93C27—H27B0.96
C2—O31.414 (3)C27—H27C0.96
C2—H2A0.97C25—C261.377 (3)
C2—H2B0.97C25—H250.93
O3—N41.417 (2)C26—H260.93
N4—C51.294 (2)
O2—C1—O1123.9 (3)C6—C5—C11121.7 (2)
O2—C1—C2124.2 (2)C7—C6—C5124.1 (2)
O1—C1—C2111.9 (2)C7—C6—H6118.0
C1—O1—H1109.5C5—C6—H6118.0
C16—C11—C12118.9 (2)C6—C7—C21127.4 (2)
C16—C11—C5120.3 (2)C6—C7—H7116.3
C12—C11—C5120.7 (2)C21—C7—H7116.3
C13—C12—C11120.5 (3)C26—C21—C22116.82 (18)
C13—C12—H12119.8C26—C21—C7119.51 (19)
C11—C12—H12119.8C22—C21—C7123.67 (19)
C14—C13—C12119.5 (3)C22—C23—C24120.1 (2)
C14—C13—H13120.3C22—C23—H23119.9
C12—C13—H13120.3C24—C23—H23119.9
C15—C14—C13120.7 (3)C23—C22—C21121.60 (19)
C15—C14—H4119.6C23—C22—H22119.2
C13—C14—H4119.6C21—C22—H22119.2
C14—C15—C16120.5 (3)O24—C24—C25124.42 (19)
C14—C15—H15119.7O24—C24—C23115.57 (19)
C16—C15—H15119.7C25—C24—C23120.01 (19)
C11—C16—C15119.9 (3)C24—O24—C27118.53 (17)
C11—C16—H16120.1O24—C27—H27A109.5
C15—C16—H16120.1O24—C27—H27B109.5
O3—C2—C1109.5 (2)H27A—C27—H27B109.5
O3—C2—H2A109.8O24—C27—H27C109.5
C1—C2—H2A109.8H27A—C27—H27C109.5
O3—C2—H2B109.8H27B—C27—H27C109.5
C1—C2—H2B109.8C24—C25—C26118.97 (19)
H2A—C2—H2B108.2C24—C25—H25120.5
C2—O3—N4107.08 (17)C26—C25—H25120.5
C5—N4—O3111.16 (17)C25—C26—C21122.5 (2)
N4—C5—C6125.4 (2)C25—C26—H26118.8
N4—C5—C11112.94 (18)C21—C26—H26118.8
C16—C11—C12—C130.4 (3)N4—C5—C6—C7171.67 (19)
C5—C11—C12—C13177.7 (2)C11—C5—C6—C77.2 (3)
C11—C12—C13—C141.2 (4)C5—C6—C7—C21178.12 (18)
C12—C13—C14—C151.4 (5)C6—C7—C21—C26169.78 (19)
C13—C14—C15—C160.7 (6)C6—C7—C21—C2210.5 (3)
C12—C11—C16—C150.3 (4)C24—C23—C22—C210.2 (3)
C5—C11—C16—C15178.4 (2)C26—C21—C22—C230.5 (3)
C14—C15—C16—C110.2 (5)C7—C21—C22—C23179.23 (18)
O2—C1—C2—O31.7 (4)C22—C23—C24—O24178.90 (17)
O1—C1—C2—O3177.8 (2)C22—C23—C24—C250.7 (3)
C1—C2—O3—N4153.09 (19)C25—C24—O24—C274.2 (3)
C2—O3—N4—C5179.48 (19)C23—C24—O24—C27175.38 (17)
O3—N4—C5—C61.5 (3)O24—C24—C25—C26178.34 (18)
O3—N4—C5—C11179.55 (17)C23—C24—C25—C261.2 (3)
C16—C11—C5—N464.8 (2)C24—C25—C26—C210.9 (3)
C12—C11—C5—N4113.3 (2)C22—C21—C26—C250.1 (3)
C16—C11—C5—C6114.2 (2)C7—C21—C26—C25179.80 (19)
C12—C11—C5—C667.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.662 (3)171
Symmetry code: (i) x+1, y+1, z+1.
(IIa) (E)-[1-(4-methoxyphenyl)-3-phenyl-2-propenylideneamino)oxyacetic acid top
Crystal data top
C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3690 reflections
a = 6.4499 (2) Åθ = 3.0–27.5°
b = 14.9693 (5) ŵ = 0.09 mm1
c = 16.6559 (6) ÅT = 120 K
β = 92.947 (2)°Plate, yellow
V = 1606.01 (9) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
3690 independent reflections
Radiation source: fine-focus sealed X-ray tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
SORTAV (Blessing 1995 and 1997
h = 88
Tmin = 0.967, Tmax = 0.995k = 1919
17758 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1318P)2 + 0.4171P]
where P = (Fo2 + 2Fc2)/3
3690 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C18H17NO4V = 1606.01 (9) Å3
Mr = 311.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4499 (2) ŵ = 0.09 mm1
b = 14.9693 (5) ÅT = 120 K
c = 16.6559 (6) Å0.25 × 0.20 × 0.05 mm
β = 92.947 (2)°
Data collection top
Kappa-CCD
diffractometer
3690 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing 1995 and 1997
2647 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.995Rint = 0.062
17758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.14Δρmax = 0.66 e Å3
3690 reflectionsΔρmin = 0.64 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5113 (3)0.56573 (15)0.40172 (15)0.0304 (5)
O20.3533 (2)0.52726 (11)0.41955 (11)0.0350 (4)
O10.6769 (2)0.57544 (12)0.45065 (11)0.0352 (4)
C110.0796 (4)0.43697 (15)0.16447 (15)0.0311 (5)
C120.1059 (4)0.39619 (16)0.18352 (17)0.0367 (6)
C130.1517 (4)0.30945 (16)0.15832 (19)0.0433 (7)
C140.0143 (5)0.26405 (18)0.11227 (17)0.0482 (8)
C150.1672 (5)0.30496 (18)0.09115 (17)0.0467 (7)
C160.2164 (4)0.39095 (17)0.11727 (17)0.0401 (6)
C20.5414 (4)0.60708 (16)0.32101 (16)0.0336 (6)
O30.3571 (2)0.61316 (10)0.27205 (11)0.0336 (4)
N40.3144 (3)0.52776 (12)0.23787 (13)0.0310 (5)
C50.1352 (4)0.52637 (15)0.19887 (15)0.0296 (5)
C60.0067 (4)0.60192 (15)0.19205 (15)0.0299 (5)
C70.1762 (4)0.60633 (15)0.14176 (15)0.0302 (5)
C210.3231 (3)0.68066 (15)0.13578 (14)0.0287 (5)
C260.4999 (4)0.67479 (15)0.08457 (15)0.0321 (6)
C250.6458 (4)0.74346 (16)0.07875 (15)0.0338 (6)
C240.6148 (4)0.81959 (15)0.12510 (15)0.0301 (5)
O240.7452 (3)0.89141 (11)0.12568 (11)0.0390 (5)
C270.9303 (4)0.88886 (19)0.07543 (18)0.0414 (7)
C230.4387 (4)0.82659 (15)0.17666 (16)0.0334 (6)
C220.2960 (4)0.75869 (15)0.18168 (15)0.0308 (5)
H10.66130.54620.49300.053*
H120.20210.42800.21410.044*
H130.27680.28160.17270.052*
H140.04450.20470.09510.058*
H150.25950.27390.05840.056*
H160.34240.41820.10300.048*
H2A0.59980.66780.32910.040*
H2B0.64380.57120.29270.040*
H60.02280.65200.22580.036*
H70.20290.55680.10710.036*
H260.52180.62260.05280.039*
H250.76530.73810.04330.041*
H27A0.89480.89100.01900.062*
H27B1.01750.94030.08730.062*
H27C1.00610.83360.08540.062*
H230.41720.87870.20850.040*
H220.17630.76460.21700.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (12)0.0258 (11)0.0385 (13)0.0020 (9)0.0018 (10)0.0055 (10)
O20.0291 (9)0.0370 (9)0.0390 (10)0.0087 (7)0.0025 (7)0.0009 (7)
O10.0320 (9)0.0357 (9)0.0376 (10)0.0111 (7)0.0011 (8)0.0036 (7)
C110.0369 (13)0.0226 (11)0.0333 (13)0.0046 (9)0.0044 (10)0.0009 (9)
C120.0401 (14)0.0270 (12)0.0426 (15)0.0026 (10)0.0030 (11)0.0020 (10)
C130.0466 (15)0.0257 (12)0.0562 (17)0.0023 (10)0.0123 (13)0.0013 (11)
C140.069 (2)0.0279 (13)0.0452 (17)0.0049 (12)0.0194 (15)0.0036 (11)
C150.0655 (19)0.0372 (14)0.0370 (15)0.0181 (13)0.0011 (14)0.0049 (12)
C160.0479 (15)0.0331 (13)0.0391 (15)0.0077 (11)0.0017 (12)0.0027 (11)
C20.0274 (12)0.0300 (12)0.0432 (15)0.0047 (9)0.0004 (11)0.0041 (10)
O30.0323 (9)0.0234 (8)0.0444 (10)0.0015 (6)0.0036 (8)0.0013 (7)
N40.0330 (11)0.0235 (9)0.0365 (11)0.0014 (8)0.0027 (9)0.0019 (8)
C50.0300 (12)0.0258 (11)0.0331 (12)0.0001 (9)0.0038 (10)0.0030 (9)
C60.0313 (12)0.0235 (11)0.0351 (13)0.0002 (9)0.0038 (10)0.0014 (9)
C70.0331 (12)0.0239 (11)0.0336 (13)0.0014 (9)0.0026 (10)0.0007 (9)
C210.0302 (12)0.0242 (11)0.0317 (12)0.0008 (9)0.0009 (10)0.0032 (9)
C260.0372 (13)0.0267 (11)0.0321 (13)0.0016 (9)0.0009 (10)0.0019 (10)
C250.0299 (12)0.0336 (12)0.0372 (14)0.0001 (10)0.0048 (10)0.0023 (10)
C240.0283 (12)0.0260 (11)0.0360 (13)0.0011 (9)0.0022 (10)0.0051 (10)
O240.0338 (9)0.0365 (10)0.0458 (11)0.0103 (7)0.0056 (8)0.0009 (8)
C270.0268 (12)0.0449 (15)0.0523 (17)0.0075 (10)0.0009 (11)0.0024 (12)
C230.0369 (13)0.0247 (11)0.0381 (14)0.0015 (9)0.0033 (11)0.0000 (10)
C220.0297 (12)0.0262 (11)0.0360 (13)0.0005 (9)0.0043 (10)0.0035 (10)
Geometric parameters (Å, º) top
C1—O21.221 (3)C5—C61.456 (3)
C1—O11.318 (3)C6—C71.344 (3)
C1—C21.501 (4)C6—H60.95
O1—H10.84C7—C211.461 (3)
C11—C161.394 (4)C7—H70.95
C11—C121.394 (3)C21—C261.391 (3)
C11—C51.492 (3)C21—C221.402 (3)
C12—C131.392 (3)C26—C251.393 (3)
C12—H120.95C26—H260.95
C13—C141.380 (4)C25—C241.385 (3)
C13—H130.95C25—H250.95
C14—C151.383 (4)C24—O241.365 (3)
C14—H140.95C24—C231.393 (3)
C15—C161.390 (4)O24—C271.423 (3)
C15—H150.95C27—H27A0.98
C16—H160.95C27—H27B0.98
C2—O31.409 (3)C27—H27C0.98
C2—H2A0.99C23—C221.371 (3)
C2—H2B0.99C23—H230.95
O3—N41.421 (2)C22—H220.95
N4—C51.297 (3)
O2—C1—O1124.2 (2)C6—C5—C11121.9 (2)
O2—C1—C2124.1 (2)C7—C6—C5125.1 (2)
O1—C1—C2111.76 (19)C7—C6—H6117.5
C1—O1—H1109.5C5—C6—H6117.5
C16—C11—C12119.2 (2)C6—C7—C21125.7 (2)
C16—C11—C5120.9 (2)C6—C7—H7117.2
C12—C11—C5119.8 (2)C21—C7—H7117.2
C13—C12—C11120.7 (3)C26—C21—C22117.5 (2)
C13—C12—H12119.6C26—C21—C7120.1 (2)
C11—C12—H12119.6C22—C21—C7122.4 (2)
C14—C13—C12119.7 (3)C21—C26—C25121.7 (2)
C14—C13—H13120.2C21—C26—H26119.2
C12—C13—H13120.2C25—C26—H26119.2
C13—C14—C15120.0 (3)C24—C25—C26119.4 (2)
C13—C14—H14120.0C24—C25—H25120.3
C15—C14—H14120.0C26—C25—H25120.3
C14—C15—C16120.9 (3)O24—C24—C25125.5 (2)
C14—C15—H15119.6O24—C24—C23114.8 (2)
C16—C15—H15119.6C25—C24—C23119.7 (2)
C15—C16—C11119.6 (3)C24—O24—C27118.25 (19)
C15—C16—H16120.2O24—C27—H27A109.5
C11—C16—H16120.2O24—C27—H27B109.5
O3—C2—C1113.64 (19)H27A—C27—H27B109.5
O3—C2—H2A108.8O24—C27—H27C109.5
C1—C2—H2A108.8H27A—C27—H27C109.5
O3—C2—H2B108.8H27B—C27—H27C109.5
C1—C2—H2B108.8C22—C23—C24120.4 (2)
H2A—C2—H2B107.7C22—C23—H23119.8
C2—O3—N4108.30 (16)C24—C23—H23119.8
C5—N4—O3111.37 (17)C23—C22—C21121.3 (2)
N4—C5—C6124.6 (2)C23—C22—H22119.3
N4—C5—C11113.41 (19)C21—C22—H22119.3
C16—C11—C12—C132.2 (4)N4—C5—C6—C7168.7 (2)
C5—C11—C12—C13173.9 (2)C11—C5—C6—C714.9 (4)
C11—C12—C13—C141.6 (4)C5—C6—C7—C21178.3 (2)
C12—C13—C14—C150.3 (4)C6—C7—C21—C26176.1 (2)
C13—C14—C15—C161.5 (4)C6—C7—C21—C222.4 (4)
C14—C15—C16—C110.9 (4)C22—C21—C26—C250.1 (3)
C12—C11—C16—C151.0 (4)C7—C21—C26—C25178.5 (2)
C5—C11—C16—C15175.1 (2)C21—C26—C25—C240.1 (4)
O2—C1—C2—O311.7 (3)C26—C25—C24—O24179.6 (2)
O1—C1—C2—O3168.81 (19)C26—C25—C24—C230.1 (4)
C1—C2—O3—N478.8 (2)C25—C24—O24—C270.6 (4)
C2—O3—N4—C5173.23 (19)C23—C24—O24—C27179.1 (2)
O3—N4—C5—C61.1 (3)O24—C24—C23—C22179.8 (2)
O3—N4—C5—C11177.76 (18)C25—C24—C23—C220.1 (4)
C16—C11—C5—N451.8 (3)C24—C23—C22—C210.3 (4)
C12—C11—C5—N4124.3 (2)C26—C21—C22—C230.3 (4)
C16—C11—C5—C6131.5 (3)C7—C21—C22—C23178.2 (2)
C12—C11—C5—C652.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.832.668 (2)174
C23—H23···N4ii0.952.483.409 (3)166
C22—H22···Cg1ii0.952.853.647 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
(IIb) (E)-[1-(4-methoxyphenyl)-3-phenyl-2-propenylideneamino)oxyacetic acid top
Crystal data top
C18H17NO4F(000) = 656
Mr = 311.33Dx = 1.248 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3837 reflections
a = 6.4238 (3) Åθ = 1.8–27.6°
b = 15.1513 (9) ŵ = 0.09 mm1
c = 17.0552 (9) ÅT = 291 K
β = 93.167 (2)°Plate, colourless
V = 1657.43 (15) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3837 independent reflections
Radiation source: fine-focus sealed X-ray tube2171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 78
Tmin = 0.982, Tmax = 0.996k = 1919
13953 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.0527P]
where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H17NO4V = 1657.43 (15) Å3
Mr = 311.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4238 (3) ŵ = 0.09 mm1
b = 15.1513 (9) ÅT = 291 K
c = 17.0552 (9) Å0.25 × 0.20 × 0.05 mm
β = 93.167 (2)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2171 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.996Rint = 0.038
13953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 0.98Δρmax = 0.15 e Å3
3837 reflectionsΔρmin = 0.14 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6749 (2)0.57149 (10)0.44883 (8)0.0731 (4)
O20.35075 (19)0.52460 (10)0.42022 (8)0.0715 (4)
O30.35183 (19)0.60586 (8)0.27465 (8)0.0655 (4)
O240.7423 (2)0.88371 (10)0.12369 (9)0.0827 (5)
N40.3106 (2)0.52168 (9)0.24115 (9)0.0589 (4)
C10.5087 (3)0.56167 (12)0.40199 (11)0.0576 (5)
C20.5374 (3)0.60012 (13)0.32253 (12)0.0638 (5)
C50.1331 (3)0.52079 (11)0.20183 (10)0.0549 (4)
C60.0105 (3)0.59500 (11)0.19403 (11)0.0575 (4)
C70.1774 (3)0.59977 (12)0.14494 (11)0.0576 (4)
C110.0793 (3)0.43272 (12)0.16713 (11)0.0595 (5)
C120.1032 (3)0.39073 (13)0.18608 (13)0.0733 (6)
C130.1463 (4)0.30646 (15)0.15944 (16)0.0896 (7)
C140.0131 (5)0.26365 (17)0.11396 (15)0.0972 (9)
C150.1652 (5)0.30432 (17)0.09294 (14)0.0970 (8)
C160.2143 (4)0.38905 (14)0.12045 (13)0.0788 (6)
C210.3237 (3)0.67349 (11)0.13728 (10)0.0536 (4)
C220.2960 (3)0.75123 (12)0.18074 (11)0.0622 (5)
C230.4369 (3)0.81881 (12)0.17438 (12)0.0670 (5)
C240.6123 (3)0.81232 (13)0.12425 (11)0.0614 (5)
C270.9292 (3)0.88148 (17)0.07492 (15)0.0883 (7)
C250.6452 (3)0.73650 (14)0.08002 (12)0.0674 (5)
C260.4998 (3)0.66828 (13)0.08728 (11)0.0651 (5)
H10.66090.54350.48940.110*
H2A0.59640.65880.32890.077*
H2B0.63680.56420.29600.077*
H120.19690.41960.21690.088*
H130.26840.27870.17290.108*
H140.04300.20650.09700.117*
H150.25420.27550.06020.116*
H160.33780.41590.10730.095*
H60.01750.64340.22640.069*
H70.20400.55150.11220.069*
H220.17880.75710.21480.075*
H230.41430.86970.20420.080*
H27A0.89530.88110.02080.132*
H27B1.01180.93260.08500.132*
H27C1.00660.82920.08610.132*
H250.76260.73120.04590.081*
H260.52230.61750.05740.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (8)0.0832 (10)0.0719 (9)0.0270 (7)0.0102 (7)0.0086 (7)
O20.0558 (7)0.0877 (10)0.0707 (8)0.0206 (7)0.0021 (6)0.0051 (7)
O30.0661 (8)0.0492 (7)0.0792 (9)0.0051 (6)0.0124 (7)0.0042 (6)
O240.0735 (9)0.0773 (9)0.0947 (11)0.0247 (7)0.0188 (8)0.0045 (8)
N40.0633 (9)0.0475 (9)0.0652 (9)0.0029 (7)0.0026 (8)0.0031 (7)
C10.0509 (10)0.0543 (10)0.0673 (11)0.0077 (8)0.0001 (9)0.0052 (9)
C20.0553 (11)0.0610 (11)0.0741 (12)0.0123 (9)0.0054 (9)0.0066 (9)
C50.0591 (10)0.0500 (10)0.0554 (10)0.0005 (8)0.0011 (8)0.0051 (8)
C60.0597 (11)0.0465 (10)0.0657 (11)0.0001 (8)0.0015 (9)0.0004 (8)
C70.0629 (11)0.0502 (10)0.0589 (10)0.0008 (8)0.0034 (9)0.0015 (8)
C110.0668 (12)0.0497 (10)0.0606 (11)0.0073 (9)0.0095 (9)0.0021 (8)
C120.0744 (13)0.0556 (11)0.0889 (15)0.0018 (10)0.0042 (11)0.0004 (10)
C130.0964 (16)0.0584 (13)0.1106 (18)0.0066 (12)0.0255 (15)0.0016 (13)
C140.135 (2)0.0598 (14)0.0920 (17)0.0059 (15)0.0358 (18)0.0120 (12)
C150.139 (2)0.0751 (16)0.0759 (15)0.0344 (16)0.0012 (16)0.0107 (12)
C160.0901 (15)0.0689 (13)0.0777 (14)0.0156 (11)0.0079 (12)0.0018 (11)
C210.0541 (10)0.0501 (10)0.0558 (10)0.0033 (8)0.0043 (8)0.0057 (8)
C220.0577 (10)0.0536 (10)0.0727 (12)0.0011 (9)0.0185 (9)0.0021 (9)
C230.0678 (12)0.0513 (10)0.0796 (13)0.0017 (9)0.0170 (11)0.0053 (9)
C240.0566 (10)0.0607 (11)0.0659 (11)0.0043 (9)0.0055 (9)0.0057 (9)
C270.0576 (12)0.0967 (17)0.1090 (18)0.0169 (11)0.0097 (12)0.0088 (14)
C250.0588 (11)0.0716 (13)0.0695 (12)0.0012 (10)0.0165 (9)0.0045 (10)
C260.0712 (12)0.0582 (11)0.0643 (11)0.0027 (9)0.0114 (10)0.0035 (9)
Geometric parameters (Å, º) top
C1—O21.215 (2)C16—H160.93
C1—O11.306 (2)C6—C71.326 (2)
C1—C21.496 (3)C6—H60.93
O1—H10.82C7—C211.461 (2)
C2—O31.410 (2)C7—H70.93
C2—H2A0.97C21—C261.381 (2)
C2—H2B0.97C21—C221.398 (2)
O3—N41.4165 (18)C22—C231.367 (2)
N4—C51.291 (2)C22—H220.93
C5—C61.456 (2)C23—C241.380 (2)
C5—C111.493 (2)C23—H230.93
C11—C161.379 (3)C24—O241.366 (2)
C11—C121.387 (3)C24—C251.384 (3)
C12—C131.378 (3)O24—C271.423 (2)
C12—H120.93C27—H27A0.96
C13—C141.352 (4)C27—H27B0.96
C13—H130.93C27—H27C0.96
C14—C151.366 (4)C25—C261.394 (3)
C14—H140.93C25—H250.93
C15—C161.397 (3)C26—H260.93
C15—H150.93
O2—C1—O1124.19 (17)C15—C16—H16120.1
O2—C1—C2123.94 (16)C7—C6—C5125.89 (17)
O1—C1—C2111.86 (15)C7—C6—H6117.1
C1—O1—H1109.5C5—C6—H6117.1
O3—C2—C1113.97 (15)C6—C7—C21126.31 (17)
O3—C2—H2A108.8C6—C7—H7116.8
C1—C2—H2A108.8C21—C7—H7116.8
O3—C2—H2B108.8C26—C21—C22116.85 (16)
C1—C2—H2B108.8C26—C21—C7120.83 (16)
H2A—C2—H2B107.7C22—C21—C7122.31 (15)
C2—O3—N4108.14 (13)C23—C22—C21121.65 (16)
C5—N4—O3111.05 (14)C23—C22—H22119.2
N4—C5—C6125.21 (16)C21—C22—H22119.2
N4—C5—C11113.21 (15)C22—C23—C24120.68 (17)
C6—C5—C11121.50 (16)C22—C23—H23119.7
C16—C11—C12118.76 (19)C24—C23—H23119.7
C16—C11—C5121.23 (19)O24—C24—C23115.22 (17)
C12—C11—C5119.86 (18)O24—C24—C25125.32 (17)
C13—C12—C11120.3 (2)C23—C24—C25119.46 (17)
C13—C12—H12119.8C24—O24—C27118.77 (17)
C11—C12—H12119.8O24—C27—H27A109.5
C14—C13—C12120.8 (2)O24—C27—H27B109.5
C14—C13—H13119.6H27A—C27—H27B109.5
C12—C13—H13119.6O24—C27—H27C109.5
C13—C14—C15120.0 (2)H27A—C27—H27C109.5
C13—C14—H14120.0H27B—C27—H27C109.5
C15—C14—H14120.0C24—C25—C26119.05 (17)
C14—C15—C16120.2 (2)C24—C25—H25120.5
C14—C15—H15119.9C26—C25—H25120.5
C16—C15—H15119.9C21—C26—C25122.30 (18)
C11—C16—C15119.8 (2)C21—C26—H26118.8
C11—C16—H16120.1C25—C26—H26118.8
O2—C1—C2—O312.1 (3)N4—C5—C6—C7169.29 (17)
O1—C1—C2—O3168.96 (16)C11—C5—C6—C714.2 (3)
C1—C2—O3—N480.63 (18)C5—C6—C7—C21179.27 (16)
C2—O3—N4—C5174.60 (15)C6—C7—C21—C26175.84 (18)
O3—N4—C5—C61.6 (2)C6—C7—C21—C222.8 (3)
O3—N4—C5—C11178.36 (14)C26—C21—C22—C230.3 (3)
N4—C5—C11—C1653.7 (2)C7—C21—C22—C23178.36 (17)
C6—C5—C11—C16129.4 (2)C21—C22—C23—C240.1 (3)
N4—C5—C11—C12121.89 (19)C22—C23—C24—O24179.32 (17)
C6—C5—C11—C1255.0 (2)C22—C23—C24—C250.0 (3)
C16—C11—C12—C130.9 (3)C23—C24—O24—C27178.57 (18)
C5—C11—C12—C13174.80 (19)C25—C24—O24—C270.8 (3)
C11—C12—C13—C140.6 (3)O24—C24—C25—C26179.26 (18)
C12—C13—C14—C150.9 (4)C23—C24—C25—C260.0 (3)
C13—C14—C15—C162.2 (4)C22—C21—C26—C250.3 (3)
C12—C11—C16—C150.3 (3)C7—C21—C26—C25178.38 (17)
C5—C11—C16—C15176.0 (2)C24—C25—C26—C210.1 (3)
C14—C15—C16—C111.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.679 (2)175
C23—H23···N4ii0.932.563.472 (2)167
C22—H22···Cg1ii0.932.943.712 (2)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
(III) (E)-[1-(4-methoxyphenyl)-3-phenyl-2-propenylideneamino)oxyacetic acid top
Crystal data top
C18H17NO4F(000) = 1312
Mr = 311.33Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7291 reflections
a = 12.1552 (4) Åθ = 3.1–27.5°
b = 15.8657 (4) ŵ = 0.09 mm1
c = 16.6708 (5) ÅT = 120 K
β = 97.4250 (15)°Lath, colourless
V = 3188.02 (16) Å30.50 × 0.40 × 0.10 mm
Z = 8
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
7291 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ & ω scansh = 1515
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
k = 2020
Tmin = 0.950, Tmax = 0.991l = 2121
37246 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.0298P]
where P = (Fo2 + 2Fc2)/3
7291 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H17NO4V = 3188.02 (16) Å3
Mr = 311.33Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.1552 (4) ŵ = 0.09 mm1
b = 15.8657 (4) ÅT = 120 K
c = 16.6708 (5) Å0.50 × 0.40 × 0.10 mm
β = 97.4250 (15)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
7291 independent reflections
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
4714 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.991Rint = 0.060
37246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
7291 reflectionsΔρmin = 0.27 e Å3
419 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.60212 (10)0.56379 (9)0.28717 (7)0.0435 (4)
O120.42927 (11)0.52190 (8)0.29603 (7)0.0411 (3)
O130.43379 (10)0.58474 (7)0.44360 (7)0.0323 (3)
O1240.11867 (10)0.29543 (7)0.59410 (7)0.0331 (3)
N140.42907 (12)0.64910 (9)0.50237 (8)0.0290 (3)
C110.51295 (14)0.55789 (11)0.32369 (10)0.0291 (4)
C120.52739 (15)0.60170 (12)0.40365 (11)0.0352 (4)
C150.34766 (14)0.63659 (10)0.54340 (9)0.0264 (4)
C160.26956 (14)0.56694 (10)0.53505 (9)0.0280 (4)
C170.19449 (14)0.55516 (10)0.58655 (10)0.0281 (4)
C1110.33781 (14)0.70341 (10)0.60582 (9)0.0269 (4)
C1120.25273 (17)0.76212 (12)0.59476 (11)0.0409 (5)
C1130.24311 (18)0.82324 (12)0.65273 (11)0.0444 (5)
C1140.31780 (16)0.82537 (11)0.72226 (11)0.0365 (4)
C1150.40130 (15)0.76687 (12)0.73392 (11)0.0391 (5)
C1160.41229 (14)0.70639 (12)0.67570 (10)0.0348 (4)
C1210.11332 (14)0.48772 (10)0.58652 (9)0.0269 (4)
C1220.11024 (14)0.41659 (10)0.53648 (9)0.0280 (4)
C1230.03236 (14)0.35489 (10)0.54017 (10)0.0290 (4)
C1240.04624 (14)0.36190 (10)0.59366 (9)0.0268 (4)
C1270.19932 (15)0.29812 (13)0.64951 (11)0.0388 (4)
C1250.04615 (14)0.43180 (10)0.64316 (10)0.0290 (4)
C1260.03363 (14)0.49315 (10)0.63944 (10)0.0303 (4)
O210.40174 (10)0.43730 (8)0.15846 (7)0.0350 (3)
O220.57373 (10)0.48298 (8)0.14661 (7)0.0344 (3)
O230.56570 (9)0.41308 (7)0.00042 (7)0.0292 (3)
O2241.13190 (9)0.69604 (7)0.09055 (7)0.0304 (3)
N240.58213 (11)0.33839 (8)0.04476 (8)0.0258 (3)
C210.48979 (14)0.44498 (10)0.12040 (10)0.0276 (4)
C220.47239 (14)0.39976 (10)0.04122 (10)0.0285 (4)
C250.67422 (13)0.34212 (10)0.07630 (9)0.0232 (3)
C260.75050 (13)0.41265 (10)0.06827 (9)0.0247 (4)
C270.83773 (13)0.42128 (10)0.10911 (9)0.0244 (4)
C2110.69586 (13)0.26371 (10)0.12096 (9)0.0234 (4)
C2120.78964 (14)0.21562 (10)0.09741 (10)0.0272 (4)
C2130.80524 (14)0.13922 (10)0.13449 (10)0.0305 (4)
C2140.72783 (15)0.11144 (11)0.19686 (10)0.0330 (4)
C2150.63508 (15)0.15915 (11)0.22151 (10)0.0342 (4)
C2160.61770 (14)0.23510 (11)0.18340 (10)0.0296 (4)
C2210.91380 (13)0.49278 (10)0.10393 (9)0.0234 (4)
C2220.89385 (13)0.56883 (10)0.06499 (9)0.0254 (4)
C2230.96769 (14)0.63421 (10)0.06110 (9)0.0263 (4)
C2241.06506 (13)0.62654 (10)0.09646 (9)0.0246 (4)
C2271.22717 (15)0.69469 (12)0.13253 (11)0.0374 (4)
C2251.08826 (13)0.55199 (10)0.13456 (9)0.0261 (4)
C2261.01226 (13)0.48678 (10)0.13817 (9)0.0255 (4)
H110.59110.53900.24230.065*
H12A0.59560.58140.43690.042*
H12B0.53460.66320.39570.042*
H1120.20070.76040.54710.049*
H1130.18510.86360.64460.053*
H1140.31150.86730.76210.044*
H1150.45200.76790.78230.047*
H1160.47130.66680.68380.042*
H160.27160.52830.49170.034*
H170.19440.59600.62820.034*
H1220.16300.41110.49940.034*
H1230.03190.30690.50600.035*
H12C0.24550.34850.63900.058*
H12D0.16140.29990.70510.058*
H12E0.24620.24770.64240.058*
H1250.10020.43760.67920.035*
H1260.03420.54070.67410.036*
H210.41220.46370.20240.053*
H22A0.46280.33870.05040.034*
H22B0.40450.42110.00830.034*
H2120.84380.23530.05540.033*
H2130.86890.10600.11710.037*
H2140.73860.05930.22280.040*
H2150.58250.14010.26490.041*
H2160.55280.26730.19990.035*
H260.73770.45600.03130.030*
H270.85130.37680.14470.029*
H2220.82760.57490.04090.030*
H2230.95260.68490.03430.032*
H22C1.27560.64790.11240.056*
H22D1.26760.74800.12340.056*
H22E1.20360.68730.19060.056*
H2251.15520.54590.15770.031*
H2261.02770.43610.16490.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0307 (10)0.0267 (9)0.0316 (9)0.0005 (8)0.0104 (8)0.0013 (7)
O110.0345 (7)0.0610 (9)0.0377 (8)0.0131 (7)0.0156 (6)0.0155 (6)
O120.0376 (7)0.0514 (8)0.0376 (7)0.0158 (7)0.0177 (6)0.0152 (6)
C120.0310 (10)0.0381 (10)0.0385 (10)0.0020 (8)0.0118 (8)0.0098 (8)
O130.0366 (7)0.0296 (6)0.0330 (7)0.0050 (6)0.0132 (5)0.0097 (5)
N140.0338 (8)0.0269 (8)0.0262 (7)0.0003 (6)0.0040 (6)0.0066 (6)
C150.0296 (9)0.0268 (9)0.0220 (8)0.0020 (8)0.0008 (7)0.0032 (7)
C1110.0330 (9)0.0244 (8)0.0249 (9)0.0028 (8)0.0093 (7)0.0000 (7)
C1120.0525 (12)0.0370 (11)0.0310 (10)0.0113 (10)0.0030 (9)0.0033 (8)
C1130.0592 (13)0.0330 (10)0.0417 (11)0.0104 (10)0.0094 (10)0.0056 (8)
C1140.0461 (11)0.0322 (10)0.0349 (10)0.0142 (9)0.0192 (9)0.0102 (8)
C1150.0332 (10)0.0507 (12)0.0339 (10)0.0095 (10)0.0061 (8)0.0147 (9)
C1160.0260 (9)0.0434 (11)0.0354 (10)0.0001 (8)0.0054 (8)0.0058 (8)
C160.0349 (10)0.0248 (9)0.0245 (9)0.0025 (8)0.0048 (7)0.0023 (7)
C170.0344 (10)0.0253 (9)0.0246 (9)0.0030 (8)0.0036 (7)0.0014 (7)
C1210.0313 (9)0.0253 (9)0.0242 (8)0.0052 (8)0.0041 (7)0.0049 (7)
C1220.0339 (10)0.0267 (9)0.0243 (9)0.0054 (8)0.0076 (7)0.0024 (7)
C1230.0371 (10)0.0233 (9)0.0275 (9)0.0029 (8)0.0076 (7)0.0017 (7)
C1240.0304 (9)0.0249 (8)0.0247 (8)0.0017 (8)0.0022 (7)0.0053 (7)
O1240.0367 (7)0.0309 (7)0.0329 (7)0.0058 (6)0.0094 (5)0.0008 (5)
C1270.0342 (10)0.0457 (11)0.0385 (10)0.0068 (9)0.0123 (8)0.0033 (9)
C1250.0319 (9)0.0313 (9)0.0253 (9)0.0035 (8)0.0102 (7)0.0008 (7)
C1260.0403 (11)0.0247 (9)0.0268 (9)0.0032 (8)0.0079 (7)0.0012 (7)
C210.0281 (9)0.0235 (9)0.0329 (9)0.0026 (8)0.0113 (7)0.0040 (7)
O210.0304 (7)0.0436 (8)0.0336 (7)0.0068 (6)0.0142 (5)0.0096 (6)
O220.0309 (7)0.0415 (7)0.0326 (7)0.0067 (6)0.0109 (5)0.0060 (5)
C220.0281 (9)0.0236 (8)0.0363 (9)0.0022 (8)0.0143 (7)0.0029 (7)
O230.0318 (7)0.0220 (6)0.0372 (7)0.0035 (5)0.0169 (5)0.0064 (5)
N240.0321 (8)0.0185 (7)0.0279 (7)0.0002 (6)0.0076 (6)0.0051 (5)
C250.0240 (9)0.0250 (8)0.0205 (8)0.0000 (7)0.0028 (6)0.0011 (6)
C2110.0236 (8)0.0251 (8)0.0228 (8)0.0051 (7)0.0080 (7)0.0003 (6)
C2120.0264 (9)0.0273 (9)0.0282 (9)0.0044 (7)0.0055 (7)0.0020 (7)
C2130.0282 (9)0.0264 (9)0.0390 (10)0.0012 (8)0.0121 (8)0.0025 (7)
C2140.0351 (10)0.0286 (9)0.0384 (10)0.0067 (8)0.0166 (8)0.0106 (8)
C2150.0342 (10)0.0393 (10)0.0298 (9)0.0118 (9)0.0068 (8)0.0119 (8)
C2160.0267 (9)0.0344 (10)0.0275 (9)0.0027 (8)0.0032 (7)0.0025 (7)
C260.0268 (9)0.0232 (8)0.0239 (8)0.0009 (7)0.0029 (7)0.0020 (6)
C270.0277 (9)0.0220 (8)0.0237 (8)0.0010 (7)0.0040 (7)0.0027 (6)
C2210.0238 (9)0.0240 (8)0.0222 (8)0.0004 (7)0.0025 (6)0.0006 (6)
C2220.0231 (9)0.0275 (9)0.0264 (9)0.0015 (7)0.0066 (7)0.0002 (7)
C2230.0293 (9)0.0239 (8)0.0260 (9)0.0005 (7)0.0044 (7)0.0017 (7)
C2240.0245 (9)0.0270 (9)0.0213 (8)0.0038 (7)0.0012 (6)0.0028 (6)
O2240.0290 (6)0.0282 (6)0.0348 (7)0.0081 (5)0.0073 (5)0.0010 (5)
C2270.0321 (10)0.0422 (11)0.0393 (10)0.0120 (9)0.0095 (8)0.0003 (8)
C2250.0235 (9)0.0296 (9)0.0262 (9)0.0023 (7)0.0066 (7)0.0014 (7)
C2260.0265 (9)0.0248 (8)0.0259 (9)0.0033 (7)0.0066 (7)0.0020 (7)
Geometric parameters (Å, º) top
C11—O121.205 (2)C21—O221.217 (2)
C11—O111.3133 (19)C21—O211.3184 (19)
C11—C121.493 (2)C21—C221.493 (2)
O11—H110.84O21—H210.84
C12—O131.416 (2)C22—O231.4200 (18)
C12—H12A0.99C22—H22A0.99
C12—H12B0.99C22—H22B0.99
O13—N141.4214 (16)O23—N241.4243 (16)
N14—C151.289 (2)N24—C251.298 (2)
C15—C161.452 (2)C25—C261.448 (2)
C15—C1111.501 (2)C25—C2111.491 (2)
C111—C1161.381 (2)C211—C2121.386 (2)
C111—C1121.386 (2)C211—C2161.392 (2)
C112—C1131.385 (2)C212—C2131.385 (2)
C112—H1120.95C212—H2120.95
C113—C1141.377 (3)C213—C2141.381 (2)
C113—H1130.95C213—H2130.95
C114—C1151.370 (3)C214—C2151.376 (3)
C114—H1140.95C214—H2140.95
C115—C1161.383 (2)C215—C2161.391 (2)
C115—H1150.95C215—H2150.95
C116—H1160.95C216—H2160.95
C16—C171.344 (2)C26—C271.339 (2)
C16—H160.95C26—H260.95
C17—C1211.455 (2)C27—C2211.459 (2)
C17—H170.95C27—H270.95
C121—C1261.395 (2)C221—C2261.394 (2)
C121—C1221.401 (2)C221—C2221.406 (2)
C122—C1231.369 (2)C222—C2231.368 (2)
C122—H1220.95C222—H2220.95
C123—C1241.393 (2)C223—C2241.394 (2)
C123—H1230.95C223—H2230.95
C124—O1241.374 (2)C224—O2241.3655 (19)
C124—C1251.382 (2)C224—C2251.389 (2)
O124—C1271.432 (2)O224—C2271.428 (2)
C127—H12C0.98C227—H22C0.98
C127—H12D0.98C227—H22D0.98
C127—H12E0.98C227—H22E0.98
C125—C1261.381 (2)C225—C2261.383 (2)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
O12—C11—O11124.25 (15)O22—C21—O21124.63 (15)
O12—C11—C12123.92 (15)O22—C21—C22124.88 (15)
O11—C11—C12111.82 (15)O21—C21—C22110.49 (14)
C11—O11—H11109.5C21—O21—H21109.5
O13—C12—C11108.81 (14)O23—C22—C21109.27 (13)
O13—C12—H12A109.9O23—C22—H22A109.8
C11—C12—H12A109.9C21—C22—H22A109.8
O13—C12—H12B109.9O23—C22—H22B109.8
C11—C12—H12B109.9C21—C22—H22B109.8
H12A—C12—H12B108.3H22A—C22—H22B108.3
C12—O13—N14107.10 (12)C22—O23—N24107.72 (11)
C15—N14—O13110.93 (13)C25—N24—O23111.00 (12)
N14—C15—C16127.14 (15)N24—C25—C26124.97 (14)
N14—C15—C111113.24 (14)N24—C25—C211112.42 (13)
C16—C15—C111119.62 (14)C26—C25—C211122.60 (14)
C116—C111—C112119.06 (16)C212—C211—C216119.30 (15)
C116—C111—C15120.45 (15)C212—C211—C25120.66 (14)
C112—C111—C15120.49 (15)C216—C211—C25119.89 (15)
C113—C112—C111120.44 (18)C213—C212—C211120.70 (16)
C113—C112—H112119.8C213—C212—H212119.6
C111—C112—H112119.8C211—C212—H212119.6
C114—C113—C112119.91 (19)C214—C213—C212119.75 (16)
C114—C113—H113120.0C214—C213—H213120.1
C112—C113—H113120.0C212—C213—H213120.1
C115—C114—C113119.89 (17)C215—C214—C213120.09 (15)
C115—C114—H114120.1C215—C214—H214120.0
C113—C114—H114120.1C213—C214—H214120.0
C114—C115—C116120.47 (17)C214—C215—C216120.47 (16)
C114—C115—H115119.8C214—C215—H215119.8
C116—C115—H115119.8C216—C215—H215119.8
C111—C116—C115120.23 (17)C215—C216—C211119.67 (16)
C111—C116—H116119.9C215—C216—H216120.2
C115—C116—H116119.9C211—C216—H216120.2
C17—C16—C15122.28 (15)C27—C26—C25124.86 (14)
C17—C16—H16118.9C27—C26—H26117.6
C15—C16—H16118.9C25—C26—H26117.6
C16—C17—C121128.17 (15)C26—C27—C221125.93 (15)
C16—C17—H17115.9C26—C27—H27117.0
C121—C17—H17115.9C221—C27—H27117.0
C126—C121—C122117.33 (15)C226—C221—C222117.13 (14)
C126—C121—C17118.72 (15)C226—C221—C27119.58 (14)
C122—C121—C17123.95 (15)C222—C221—C27123.28 (14)
C123—C122—C121120.99 (15)C223—C222—C221121.43 (15)
C123—C122—H122119.5C223—C222—H222119.3
C121—C122—H122119.5C221—C222—H222119.3
C122—C123—C124120.48 (15)C222—C223—C224120.11 (15)
C122—C123—H123119.8C222—C223—H223119.9
C124—C123—H123119.8C224—C223—H223119.9
O124—C124—C125124.30 (15)O224—C224—C225124.52 (14)
O124—C124—C123115.78 (14)O224—C224—C223115.39 (14)
C125—C124—C123119.90 (15)C225—C224—C223120.09 (15)
C124—O124—C127118.23 (13)C224—O224—C227117.71 (13)
O124—C127—H12C109.5O224—C227—H22C109.5
O124—C127—H12D109.5O224—C227—H22D109.5
H12C—C127—H12D109.5H22C—C227—H22D109.5
O124—C127—H12E109.5O224—C227—H22E109.5
H12C—C127—H12E109.5H22C—C227—H22E109.5
H12D—C127—H12E109.5H22D—C227—H22E109.5
C126—C125—C124119.02 (15)C226—C225—C224118.89 (15)
C126—C125—H125120.5C226—C225—H225120.6
C124—C125—H125120.5C224—C225—H225120.6
C125—C126—C121122.27 (15)C225—C226—C221122.34 (15)
C125—C126—H126118.9C225—C226—H226118.8
C121—C126—H126118.9C221—C226—H226118.8
O12—C11—C12—O137.0 (2)O22—C21—C22—O233.9 (2)
O11—C11—C12—O13173.35 (14)O21—C21—C22—O23176.70 (13)
C11—C12—O13—N14158.92 (13)C21—C22—O23—N24145.91 (13)
C12—O13—N14—C15177.91 (14)C22—O23—N24—C25172.06 (13)
O13—N14—C15—C161.1 (2)O23—N24—C25—C260.3 (2)
O13—N14—C15—C111179.28 (12)O23—N24—C25—C211178.15 (12)
N14—C15—C111—C11673.7 (2)N24—C25—C211—C212119.08 (16)
C16—C15—C111—C116105.94 (19)C26—C25—C211—C21259.4 (2)
N14—C15—C111—C112107.38 (19)N24—C25—C211—C21656.44 (19)
C16—C15—C111—C11273.0 (2)C26—C25—C211—C216125.06 (17)
C116—C111—C112—C1130.5 (3)C216—C211—C212—C2131.0 (2)
C15—C111—C112—C113179.39 (17)C25—C211—C212—C213174.59 (14)
C111—C112—C113—C1140.6 (3)C211—C212—C213—C2141.5 (2)
C112—C113—C114—C1150.1 (3)C212—C213—C214—C2150.6 (3)
C113—C114—C115—C1161.1 (3)C213—C214—C215—C2160.8 (3)
C112—C111—C116—C1150.5 (3)C214—C215—C216—C2111.3 (2)
C15—C111—C116—C115178.47 (16)C212—C211—C216—C2150.4 (2)
C114—C115—C116—C1111.2 (3)C25—C211—C216—C215175.98 (14)
N14—C15—C16—C17172.97 (16)N24—C25—C26—C27170.89 (15)
C111—C15—C16—C176.6 (2)C211—C25—C26—C2710.8 (2)
C15—C16—C17—C121178.62 (15)C25—C26—C27—C221178.06 (15)
C16—C17—C121—C126171.99 (17)C26—C27—C221—C226168.28 (15)
C16—C17—C121—C1228.3 (3)C26—C27—C221—C22211.1 (3)
C126—C121—C122—C1230.5 (2)C226—C221—C222—C2230.2 (2)
C17—C121—C122—C123179.22 (15)C27—C221—C222—C223179.62 (15)
C121—C122—C123—C1240.4 (3)C221—C222—C223—C2240.3 (2)
C122—C123—C124—O124178.29 (14)C222—C223—C224—O224178.72 (14)
C122—C123—C124—C1250.3 (2)C222—C223—C224—C2251.1 (2)
C125—C124—O124—C1270.3 (2)C225—C224—O224—C2275.8 (2)
C123—C124—O124—C127178.30 (14)C223—C224—O224—C227173.96 (13)
O124—C124—C125—C126177.48 (15)O224—C224—C225—C226178.40 (14)
C123—C124—C125—C1261.0 (2)C223—C224—C225—C2261.4 (2)
C124—C125—C126—C1211.0 (3)C224—C225—C226—C2210.9 (2)
C122—C121—C126—C1250.3 (2)C222—C221—C226—C2250.1 (2)
C17—C121—C126—C125179.95 (15)C27—C221—C226—C225179.32 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O220.841.812.6542 (17)177
O21—H21···O120.841.802.6410 (17)178
C215—H215···Cg2i0.952.643.532 (2)157
Symmetry code: (i) x+3/2, y1/2, z1/2.

Experimental details

(I)(IIa)(IIb)(III)
Crystal data
Chemical formulaC18H17NO4C18H17NO4C18H17NO4C18H17NO4
Mr311.33311.33311.33311.33
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)291120291120
a, b, c (Å)8.5153 (7), 16.0591 (13), 12.1476 (10)6.4499 (2), 14.9693 (5), 16.6559 (6)6.4238 (3), 15.1513 (9), 17.0552 (9)12.1552 (4), 15.8657 (4), 16.6708 (5)
β (°) 96.801 (2) 92.947 (2) 93.167 (2) 97.4250 (15)
V3)1649.5 (2)1606.01 (9)1657.43 (15)3188.02 (16)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.090.090.09
Crystal size (mm)0.45 × 0.40 × 0.040.25 × 0.20 × 0.050.25 × 0.20 × 0.050.50 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area detector
diffractometer
Kappa-CCD
diffractometer
Bruker SMART 1000 CCD area detector
diffractometer
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Multi-scan
SORTAV (Blessing 1995 and 1997
Multi-scan
(SADABS; Bruker, 2000)
Multi-scan
SADABS V2.10 (Sheldrick, 2003)
Tmin, Tmax0.952, 0.9960.967, 0.9950.982, 0.9960.950, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16995, 5963, 1586 17758, 3690, 2647 13953, 3837, 2171 37246, 7291, 4714
Rint0.0580.0620.0380.060
(sin θ/λ)max1)0.7580.6500.6510.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.172, 0.86 0.058, 0.232, 1.14 0.049, 0.151, 0.98 0.048, 0.133, 1.03
No. of reflections5963369038377291
No. of parameters210210210419
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.120.66, 0.640.15, 0.140.19, 0.27

Computer programs: SMART (Bruker, 1998), Kappa-CCD server software (Nonius, 1997), COLLECT (Hooft, 1999), SAINT (Bruker, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) & COLLECT, DENZO-SMN, DENZO & COLLECT, OSCAIL (McArdle , 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.852.662 (3)171
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.832.668 (2)174
C23—H23···N4ii0.952.483.409 (3)166
C22—H22···Cg1ii0.952.853.647 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.679 (2)175
C23—H23···N4ii0.932.563.472 (2)167
C22—H22···Cg1ii0.932.943.712 (2)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O220.841.812.6542 (17)177
O21—H21···O120.841.802.6410 (17)178
C215—H215···Cg2i0.952.643.532 (2)157
Symmetry code: (i) x+3/2, y1/2, z1/2.
 

Footnotes

Postal address: School of Engineering & Physics, University of Dundee, Dundee DD1 4HN, Scotland.

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: WS5022 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data for (IIa) and (III) were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK. The authors thank the staff of the service for all their help and advice. X-ray data for (I) and (IIb) were collected at the University of Aberdeen using a Bruker SMART 1000CCD diffractometer and the authors thank the University of Aberdeen for funding the purchase of the diffractometer. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAritome, I., Shimakoshi, H. & Hisaeda, Y. (2002). Acta Cryst. C58, o563–o564.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAtmaram, S., Forrester, A. R., Gill, M., Napier, R. J. & Thomson, R. H. (1982). Acta Chem. Scand. B, 36, 641–647.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davey, R. J. & Henck, J.-O. (1999). Angew. Chem. Int. Ed. 38, 3440–3461.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J & Glidewell, C. (2003). Acta Cryst. B59, 277–286.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Grepioni, F., Birdha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156–3166.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART, Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS, Version 2.03, and SAINT, Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58, 530–544.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 606–611.  CrossRef Web of Science Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004a). Acta Cryst. C60, o270–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004b). Acta Cryst. E60, o1560–o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365–369.  CrossRef CAS Web of Science Google Scholar
First citationLow, J. N., Cobo, J., Nogueras, M., Cuervo, P., Abonia, R. & Glidewell, C. (2004). Acta Cryst. C60, o744–o750.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows, Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMcWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1997). Kappa-CCD Server Software, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuesada, A., Marchal, A., Melguizo, M., Nogueras, M., Sánchez, A., Low, J. N., Cannon, D., Farrell, D. M. M. & Glidewell, C. (2002). Acta Cryst. B58, 300–315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2004). Chem. Commun. pp. 890–891.  Web of Science CSD CrossRef Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds