research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structures of Na9[SO4]4X·2H2O2, where X = Cl or Br, in which the halide anions orchestrate extended orientation sequences of H2O2 solvate molecules

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Manchester, Manchester M60 1QD, England
*Correspondence e-mail: robin.pritchard@manchester.ac.uk

(Received 10 August 2005; accepted 9 October 2005)

Detailed structures of nonasodium tetrakis(sulfate) chloride diperhydrate, Na9[SO4]4Cl·2H2O2, and its novel bromide analogue are compared. Hydrogen peroxide could not be resolved in a previously reported Na9[SO4]4Cl·2H2O2 substructure [tetragonal, P4/mnc; Adams et al. (1978[Adams, J. M., Pritchard, R. G. & Thomas, J. M. (1978). J. Chem. Soc. Chem. Commun. p. 288.]), J. Chem. Soc. Chem. Commun. p. 288; Adams & Pritchard (1978[Adams, J. M. & Pritchard, R. G. (1978). Acta Cryst. B34, 1428-1432.]), Acta Cryst. B34, 1428–1432]. However, on lowering the symmetry to P4/n, and using reflection data based on full unit-cells, the H2O2 solvate can be clearly seen. Although H2O2 molecules are not directly bonded to the halide anions, they exert considerable influence on the eight sodium cations that constitute each halide's coordination shell so that H2O2 ordering can be linked to halide dimensions.

1. Introduction

The title compounds belong to a class of solids in which hydrogen peroxide simultaneously coordinates to alkali metal cations and hydrogen bonds to oxy-acid anions. These include commercially important sodium percarbonate, Na2(CO3)·1.5H2O2 (Pritchard & Islam, 2003[Pritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596-605.]), and the extensively studied alkali metal oxalates M2(C2O4)·H2O2 (M = Li, Na, K and Rb; Pedersen, 1969[Pedersen, B. F. (1969). Acta Chem. Scand. 23, 1871-1877.]; Pedersen & Pedersen, 1964[Pedersen, B. F. & Pedersen, B. (1964). Acta Chem. Scand. 18, 1454-1468.]; Pedersen & Kvick, 1989[Pedersen, B. F. & Kvick, A. (1989). Acta Cryst. C45, 1724-1727.], 1990[Pedersen, B. F. & Kvick, A. (1990). Acta Cryst. C46, 21-23.]; Adams et al., 1980a[Adams, J. M., Ramdas, V. & Hewat, A. W. (1980a). Acta Cryst. B36, 570-574.],b[Adams, J. M., Ramdas, V. & Hewat, A.W. (1980b). Acta Cryst. B36, 1096-1098.]). A previous crystallographic investigation of Na9[SO4]4Cl·2H2O2 yielded a subcell structure (Adams et al., 1978[Adams, J. M., Pritchard, R. G. & Thomas, J. M. (1978). J. Chem. Soc. Chem. Commun. p. 288.]; Adams & Pritchard, 1978[Adams, J. M. & Pritchard, R. G. (1978). Acta Cryst. B34, 1428-1432.]) in which the Na+, Cl and SO42- ions can be seen, but in which the H2O2 site is obscured by disorder. This led to continued speculation (Adams et al., 1981[Adams, J. M., Ramdas, V. & Hewat, A.W. (1981). Acta Cryst. B37, 915-917.]; Cosgrove & Jones, 1998a[Cosgrove, S. D. & Jones, W. (1998a). J. Mater. Chem. 8, 413-417.],b[Cosgrove, S. D. & Jones, W. (1998b). J. Mater. Chem. 8, 419-424.],c[Cosgrove, S. D. & Jones, W. (1998c). J. Mater. Chem. 8, 1911-1915.]) about the role of H2O2 in the architecture of this exceptionally stable compound (Kao Soap Co. Ltd & Nippon Peroxide Co. Ltd, 1975[Kao Soap Co. Ltd & Nippon Peroxide Co. Ltd (1975). German Patent No. 2 530 539, filed 9 July 1975.]).

The current investigation was initiated in order to address this last point and extended to include the bromide analogue, which was discovered during preliminary crystallization studies.

2. Experimental

2.1. Synthesis

The title compounds were prepared by dissolving sodium sulfate and sodium halide in 4:1 molar ratios in 30% w/w hydrogen peroxide and leaving the solution to evaporate over 48 h.

2.2. Data collection, structure solution and refinement

All measurements were carried out using a Nonius Kappa-CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Details of cell parameters, data collection and refinement are summarized in Table 1[link],1 together with a listing of the software employed.

Table 1
Experimental details

  Cl Br
Crystal data
Chemical formula H4ClNa9O20S4 H4BrNa9O20S4
Mr 694.63 739.09
Cell setting, space group Tetragonal, P4/n Tetragonal, P4/n
a, c (Å) 29.6829 (3), 8.40180 (10) 14.9126 (5), 8.4052 (2)
V3) 7402.61 (14) 1869.20 (10)
Z 16 4
Dx (Mg m−3) 2.493 2.626
Radiation type Mo Kα Mo Kα
No. of reflections for cell parameters 87 529 5097
θ range (°) 1.0–27.5 1.0–32.0
μ (mm−1) 0.97 2.96
Temperature (K) 150 (2) 150 (2)
Crystal form, colour Plate, colourless Prism, colourless
Crystal size (mm) 0.1 × 0.1 × 0.05 0.18 × 0.18 × 0.07
     
Data collection
Diffractometer KappaCCD KappaCCD
Data collection method CCD rotation images, thick slices CCD rotation images, thick slices
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.909 0.618
Tmax 0.953 0.820
No. of measured, independent and observed reflections 65 291, 8402, 4855 8459, 3226, 2368
Criterion for observed reflections I > 2σ(I) I > 2σ(I)
Rint 0.090 0.049
θmax (°) 27.5 32.0
Range of h, k, l −38 → h → 37 −18 → h → 21
  −38 → k → 38 −22 → k → 12
  −10 → l → 10 −12 → l → 8
     
Refinement
Refinement on F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.147, 1.24 0.040, 0.093, 1.07
No. of reflections 8402 3226
No. of parameters 649 164
H-atom treatment Mixture of independent and constrained refinement Mixture of independent and constrained refinement
Weighting scheme w = 1/[σ2(Fo2) + (0.0244P)2 + 19.2938P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.5967P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.011 0.001
Δρmax, Δρmin (e Å−3) 0.59, −0.53 0.59, −0.64
Extinction method None SHELXL
Extinction coefficient   0.0047 (5)
Computer programs used: Kappa-CCD server software (Nonius, 1997[Nonius (1997). Kappa-CCD, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]), COLLECT (Nonius, 1998[Nonius (1998). COLLECT, edited by R. Hooft. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]), Wingx (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]).

Systematic absences and statistical tests clearly indicate the space group P4/n for both the chloride and bromide structures, even though the diffraction patterns have very low intensity in regions that are not governed by the subcell.

The structures were solved by direct methods and refined with all data on F2. A weighting scheme based on P = [F2o + 2F2c]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]).

It did not prove necessary to restrain or constrain the refinements in any way, despite the pseudo-symmetric appearance of the structures.

3. Results and discussion

3.1. Crystallization characteristics

Na9[SO4]4X·2H2O2, where X = Cl or Br, crystallize as colourless squares when sodium sulfate and the appropriate sodium halide are dissolved in 30% w/w aqueous hydrogen peroxide and allowed to evaporate to dryness. Once formed the crystals are stable under ambient conditions.

3.2. Supramolecular structures

Fig. 1[link] shows the asymmetric units of the title chloride and bromide structures as well as the previously reported chloride substructure. It clearly illustrates how the resolution of the H2O2 molecules has dramatically increased the number of parameters that are needed to describe the structures. Interestingly, on application of the space-group symmetry the resulting packing diagrams, shown in Fig. 2[link], are almost identical except for the H2O2 sites. The H2O2 orientation sequence leads to the chloride a and b axes being double those of the bromide and 81/2 those of the chloride substructure.

[Figure 1]
Figure 1
Asymmetric unit of Na9[SO4]4Cl·2H2O2 (top), its bromide analogue (bottom left) and subcell structure (bottom right)
[Figure 2]
Figure 2
Perspective view of half a unit cell of Na9[SO4]4Cl·2H2O2 (c/2) on to the ab plane (top), bromide analogue (bottom left) and subcell structure (bottom right). The sublattice, defined by distorted Na+ cubes, has been highlighted in each case. Na+ ions are represented by filled ellipses and the X ions by empty ellipses.

In order to answer the question of why the chloride and bromide structures have different H2O2 orientation sequences, it is useful to focus on the distorted cubes with corners defined by six-coordinate Na+ that form a sublattice (4 × 4 × 2 cubes for the bromide and 8 × 8 × 2 for the chloride). Each cube houses an SO42-, X, or Na+ ion, or an H2O2 molecule. Sulfate anions form adjacent cubes from an eight-coordinate shell around each central Na+ ion (Fig. 5). The SO42- and H2O2 cubes each form stacks, generated by non-crystallographic glides down c. Those cubes containing central Na+ and X ions also stack down c, alternating their Na+ and X contents. Importantly, the halide and hydrogen peroxide cubes share edges parallel to c (Fig. 2[link]). Also, each hydrogen peroxide molecule is not located centrally within its cube, but straddles the top (i.e. perpendicular to the c axis) square face where it coordinates to four sodium cations and hydrogen bonds to two sulfate anions (Fig. 3[link], Table 2[link]). The side of the Na+ square over which the hydrogen bonding is directed distends and impinges on the corners of two neighbouring halide-containing cubes, distorting the halide environments. Travelling along an H2O2 stack, i.e. along c, the direction of the hydrogen bonding is reversed at each level and hence the side of the square that is elongated, and is also reversed (Fig. 3[link]). This has two repercussions on the shape of the halide-bearing sodium cubes: firstly, if a top corner is pushed in, the corner directly below is not; secondly, only half the corners of any cube can be pushed in. The four unique chloride ions and their surrounding sodium cubes are shown in Fig. 4[link] and, given the above conditions, represent all the possible distortions. In contrast, only distortions of the type seen around Cl2, which has C4 symmetry, and Cl4 with S4 symmetry, are seen in the bromide structure. A comparison of the Na—X bond lengths from these two sites, presented in Table 3[link], show that the larger bromide anion is able to interact more effectively with all eight Na+ cations than the smaller chloride anion in the C4 site. The difference between the bromide and chloride structure seems to hinge on the larger halide's tendency to promote C4 coordination, which would, however, destroy the crystal's tetragonal symmetry if used exclusively. The combination of C4 and S4 sites seen in the bromide enable it to retain tetragonal symmetry, whilst doubling the occurrence of what is, presumably, a favourable halide environment for the larger bromide anion.

Table 2
(a) Hydrogen bonds (Å, °) and Na—O coordination bonds (Å) involving H2O2; (b) H2O2 geometry (Å, °)

(a)

D—H⋯A d(D—H) d(H⋯A) d(DA) ∠(DHA) Na—O
Cl
O33—H33⋯O10i 1.00 (6) 1.70 (6) 2.676 (4) 164 (5) 2.413 (3), 2.364 (3)
O34—H34⋯O14ii 0.97 (6) 1.81 (5) 2.706 (4) 152 (5) 2.408 (3), 2.408 (3)
O35—H35⋯O3 0.85 (4) 1.83 (4) 2.677 (4) 169 (4) 2.353 (3), 2.403 (3)
O36—H36⋯O5 0.82 (5) 1.92 (5) 2.711 (4) 162 (5) 2.399 (3), 2.413 (3)
O37—H37⋯O17 0.95 (6) 1.77 (6) 2.700 (4) 167 (5) 2.410 (3), 2.406 (3)
O38—H38⋯O21 0.98 (7) 1.71 (7) 2.677 (4) 171 (5) 2.420 (3), 2.363 (3)
O39—H39⋯O26iii 0.89 (5) 1.84 (5) 2.696 (4) 159 (5) 2.407 (3), 2.394 (3)
O40—H40⋯O30iv 1.03 (7) 1.71 (6) 2.687 (4) 157 (6) 2.374 (3), 2.414 (3)
           
Br
O5—H5⋯O3 0.85 (2) 1.86 (3) 2.695 (2) 166 (3) 2.399 (2), 2.391 (2)
O15—H15⋯O13 0.86 (4) 1.86 (4) 2.688 (2) 161 (4) 2.380 (2), 2.379 (2)

(b)

  O—O O—O—H H—O—O—H (°)
Cl
O33, O34 1.465 (3) 98 (3), 105 (3) −114 (3)
O35, O36 1.466 (3) 97 (3), 101 (3) −107 (3)
O37, O38 1.465 (3) 100 (3), 100 (4) −98 (4)
O39, O40 1.459 (3) 101 (3), 105 (3) −112 (3)
       
Br
O5, O15 1.458 (2) 102 (2), 102 (3) 106 (3)
Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1-x, 1-y, -z; (iii) [{1\over 2}+y, 1-x, 1-z]; (iv) [{1\over 2}+y, 1-x, -z].

Table 3
Na—X bond lengths (Å) in the C4 and S4 sites of Na9[SO4]4X·2H2O2

C4 site S4 site
Cl2—Na10 2.845 (2) Cl4—Na13 2.747 (2)
C12—Na3 3.186 (2) Cl4—Na16 3.309 (2)
       
Br11—Na11 2.942 (1) Br1—Na1 2.847 (1)
Br11—Na13 3.177 (1) Br1—Na3 3.287 (1)
[Figure 3]
Figure 3
H2O2 environment in Na9[SO4]4X·2H2O2. Projections down (a) a and (b) c. The c axis is directed up the page in the top view.
[Figure 4]
Figure 4
The four Cl environments in Na9[SO4]4Cl·2H2O2 viewed down c. Referring to how many Na+ are pushed in on the top and bottom faces of the cube, the four configurations are 2–2, 0–4, 1–3 and diagonal 2–2.

Unlike sodium percarbonate (Pritchard & Islam, 2003[Pritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596-605.]), the current structures show no evidence of disordered H2O2. In sodium percarbonate dynamic H2O2 disorder becomes complete above 240 K, however, no disorder is observed in Na9[SO4]4Cl·2H2O2, even when the temperature is raised to 300 K.

3.3. Molecular conformations and dimensions

Although the sulfate anions in both structures conform to the expected tetrahedral geometry they all display minor systematic deviations, which are related to crystal packing interactions.

In the chloride the 32 crystallographically unique S—O bonds can be divided into two groups with those involved in hydrogen bonding to H2O2 being longer [1.488 (3)–1.492 (3) Å] than the remainder [1.456 (3)–1.484 (3) Å]. A similar picture is seen in the bromide where the hydrogen-bonding S—O bonds of 1.492 (2) and 1.494 (2) Å are clearly distinguished from the shorter non-hydrogen bonding variety of 1.467 (2)–1.479 (2) Å.

The O—S—O angles do not deviate substantially from the expected tetrahedral value, falling in the range 108.1 (2)–110.6 (2)°, however, there is a demarcation within this group with sulfate O atoms that participate in the eight-fold coordination of sodium cations (Fig. 5[link]) subtending the smaller O—S—O bond angles [108.1 (2)–108.7 (2)°]. An identical situation arises in the bromide, where the O—S—O angles range from 108.5 (1) to 110.1 (1)°, but those involved in the eightfold coordination of sodium are both 108.5 (1)°.

[Figure 5]
Figure 5
Eight-fold coordination shell of central sodium cation involving four SO42- anions.

The peroxide O—O bond lengths are presented in Table 2[link] and show that the chloride values of 1.459 (3)–1.466 (3) Å, average 1.464 Å, are in good agreement with the single bromide O—O bond of 1.458 (2) Å. All these bonds are slightly shorter than an equivalent bond in sodium percarbonate, which was determined to be 1.4785 (8) Å at 150 K, but are well within the range, 1.439 (15)–1.509 (7) Å, defined by alkali-metal oxalate monoperhydrates.

HOOH torsion angles vary from −98 (4) to −114 (3)° in the chloride, but their average, −108°, is a good match for the bromide value of 106 (3)°. All these values coincide with the staggered minimum energy conformation that was identified from gas-phase spectroscopic measurements (Hunt et al., 1965[Hunt, R. H., Leacock, A., Peters, C. W. & Hecht, K. T. (1965). J. Chem. Phys. 42, 1931-1946.]).

The O—H bonds fall in the range 0.82 (5)–1.03 (7) Å in the chloride and 0.85 (2), 0.86 (4) Å in the bromide, showing good agreement with the analogous bonds in the oxalate perhydrates [0.83 (10)–1.0117 (5) Å].2 Also at 97 (3)–105 (3)° in the chloride and 102 (3)° in the bromide the OOH angles show excellent agreement with the oxalate values of 97 (3)–104 (5)°.

4. Conclusions

Despite the rather elaborate pattern of H2O2 orientations within the above structures, each H2O2 site is identical (or nearly identical) as well as optimal in terms of H2O2 conformation, coordination and hydrogen bonding. In contrast to the alkali metal oxalate perhydrates, the title perhydrates do not form analogous hydrates. H2O2 must template these structures in a very specific way as crystallization from water yields a mixture of sodium halide and sodium sulfate. This is somewhat surprising, given that both sodium sulfate fluoride [Kogarkoite, Na3(SO4)F]; Fanfani et al., 1980[Fanfani, L., Giuseppetti, G., Tadini, C. & Zanazzi, P. F. (1980). Mineral. Mag. 43, 753-759.]] and sodium sulfate fluoride chloride [Na6(SO4)2FCl, sulphohalite; Sakamoto, 1968[Sakamoto, Y. (1968). J. Sci. Hiroshima University Ser. A Mathemat. Phys. Chem. 32, 101-108.]] are known. In these structures the halide is octahedrally coordinated by sodium cations, matching its geometry in NaF or NaCl. Also, as each sulfate coordinates to 12 sodium cations (three per oxygen), an octahedral geometry is maintained around each cation. The sodium octahedra that surround each halide share faces with the 12-pointed polyhedra that encase the sulfate anions, a truncated trigonal bipyramid for Kogarkoite and truncated cube for sulphohalite. In sulphohalite the halide octahedra share corners to form a three-dimensional orthogonal grid with alternating F and Cl anions so that the unit-cell dimension in this cubic structure corresponds directly to the sum of the bond distances in the Na–Cl–Na–F–Na sequence. If fluoride is replaced with chloride the unit cell and, consequently, the sodium polyhedra around the sulfate would expand, making it harder for the sulfate to span all 12 cations. This does not happen and, given the scenario of a system where full coordination of the cations becomes difficult due to steric effects, it is not surprising that hydrogen peroxide, with its excess of lone pairs, is able to create a niche for itself.

Initially, interest in perhydrates centred on their commercial application as bleaches, but more recent research has employed them as a convenient and safe method of introducing anhydrous hydrogen peroxide to chemical reactions (Jones, 1999[Jones, C. W. (1999). Application of Hydrogen Peroxide and Derivatives. Cambridge: The Royal Society of Chemistry.]). This work included extensive studies on their use in the presence of bromide ions to oxidize and brominate substituted toluenes (Jones et al., 1996[Jones, C. W., Hackett, A., Pattinson, A. I., Johnstone, A. & Wilson, S. L. (1996). J. Chem. Res. pp. 438-439.]) and suggests that it would be worthwhile to test Na9[SO4]4Br·2H2O2 as a combined H2O2/Br source.

Supporting information


Computing details top

For both compounds, data collection: Collect (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997). Program(s) used to solve structure: SIR92 (Giacovazzo et al., 1993) for kc; SHELXS86 (Sheldrick, 1986) for rgp29c. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(kc) top
Crystal data top
H4ClNa9O20S4Dx = 2.493 Mg m3
Mr = 694.63Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 87529 reflections
Hall symbol: -P 4aθ = 1.0–27.5°
a = 29.6829 (3) ŵ = 0.97 mm1
c = 8.4018 (1) ÅT = 150 K
V = 7402.61 (14) Å3Plate, colourless
Z = 160.1 × 0.1 × 0.05 mm
F(000) = 5504
Data collection top
KappaCCD
diffractometer
8402 independent reflections
Radiation source: Enraf Nonius FR5904855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 1.4°
CCD rotation images, thick slices scansh = 3837
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
k = 3838
Tmin = 0.909, Tmax = 0.953l = 1010
65291 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.0244P)2 + 19.2938P]
where P = (Fo2 + 2Fc2)/3
8402 reflections(Δ/σ)max = 0.011
649 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
H4ClNa9O20S4Z = 16
Mr = 694.63Mo Kα radiation
Tetragonal, P4/nµ = 0.97 mm1
a = 29.6829 (3) ÅT = 150 K
c = 8.4018 (1) Å0.1 × 0.1 × 0.05 mm
V = 7402.61 (14) Å3
Data collection top
KappaCCD
diffractometer
8402 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
4855 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.953Rint = 0.090
65291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.0244P)2 + 19.2938P]
where P = (Fo2 + 2Fc2)/3
8402 reflectionsΔρmax = 0.59 e Å3
649 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50.50.50.0199 (4)
Cl20.250.250.4967 (2)0.0221 (5)
Cl30.50129 (4)0.24869 (4)0.00132 (10)0.01858 (19)
Cl40.750.250.50.0171 (5)
Na10.44071 (5)0.69788 (5)0.18103 (18)0.0174 (3)
Na20.56244 (5)0.67803 (5)0.21408 (18)0.0188 (3)
Na30.68905 (5)0.68139 (5)0.3066 (2)0.0193 (4)
Na40.43877 (5)0.55061 (5)0.32099 (19)0.0167 (3)
Na50.55257 (5)0.55940 (5)0.32492 (19)0.0178 (3)
Na60.69977 (5)0.56102 (5)0.18434 (18)0.0169 (3)
Na70.43867 (5)0.42897 (5)0.2925 (2)0.0201 (4)
Na80.56912 (5)0.43795 (5)0.2956 (2)0.0215 (4)
Na90.68833 (5)0.44778 (5)0.18338 (19)0.0179 (3)
Na100.30152 (5)0.31147 (5)0.31134 (19)0.0178 (3)
Na110.44919 (5)0.30913 (5)0.17069 (17)0.0158 (3)
Na120.57066 (5)0.31119 (5)0.20173 (19)0.0205 (4)
Na130.69097 (5)0.30080 (5)0.32344 (18)0.0158 (3)
Na140.43117 (5)0.18784 (5)0.1989 (2)0.0199 (4)
Na150.56092 (5)0.18157 (5)0.19786 (19)0.0195 (3)
Na160.68755 (5)0.17876 (5)0.29231 (19)0.0190 (3)
Na170.50.500.0168 (6)
Na180.250.250.0227 (4)0.0168 (7)
Na190.50038 (5)0.24998 (5)0.48907 (16)0.0173 (3)
Na200.750.2500.0169 (8)
O10.57626 (9)0.50738 (9)0.1411 (3)0.0168 (6)
O20.57508 (9)0.50595 (9)0.1443 (3)0.0164 (6)
O30.63396 (10)0.54737 (10)0.0057 (3)0.0167 (7)
O40.63297 (11)0.46536 (10)0.0031 (3)0.0194 (7)
O50.61719 (10)0.54852 (10)0.5058 (3)0.0174 (7)
O60.61645 (10)0.46682 (10)0.4978 (3)0.0176 (7)
O70.67484 (9)0.50791 (9)0.3611 (3)0.0172 (6)
O80.67405 (9)0.50580 (9)0.6461 (3)0.0181 (6)
O90.46628 (10)0.38335 (11)0.5001 (3)0.0180 (7)
O100.54772 (10)0.38354 (10)0.4994 (3)0.0174 (7)
O110.50646 (9)0.32504 (9)0.6376 (3)0.0167 (6)
O120.50694 (9)0.32678 (9)0.3522 (3)0.0163 (6)
O130.46711 (10)0.36584 (10)0.0050 (3)0.0163 (7)
O140.54846 (10)0.36687 (10)0.0006 (3)0.0169 (7)
O150.50595 (9)0.42416 (9)0.1387 (3)0.0169 (6)
O160.50710 (9)0.42446 (9)0.1450 (3)0.0161 (6)
O170.38332 (10)0.29828 (10)0.0111 (3)0.0174 (7)
O180.38381 (10)0.21691 (10)0.0027 (3)0.0167 (7)
O190.32545 (8)0.25809 (9)0.1334 (3)0.0157 (6)
O200.32640 (9)0.25577 (9)0.1516 (3)0.0159 (6)
O210.36625 (10)0.29802 (10)0.4889 (3)0.0164 (7)
O220.36655 (10)0.21632 (10)0.4923 (3)0.0142 (7)
O230.42375 (9)0.25776 (8)0.6362 (3)0.0157 (6)
O240.42485 (9)0.25628 (9)0.3501 (3)0.0152 (6)
O250.63388 (11)0.28343 (11)0.5002 (3)0.0186 (7)
O260.63342 (10)0.20204 (10)0.4957 (3)0.0165 (7)
O270.57612 (9)0.24391 (8)0.3556 (3)0.0156 (6)
O280.57583 (9)0.24263 (8)0.6402 (3)0.0149 (6)
O290.61650 (11)0.28337 (10)0.0048 (3)0.0160 (7)
O300.61665 (10)0.20203 (10)0.0040 (3)0.0156 (7)
O310.67499 (9)0.24349 (9)0.1431 (3)0.0158 (6)
O320.67322 (9)0.24285 (9)0.1428 (3)0.0158 (6)
O330.38864 (9)0.64518 (8)0.2992 (3)0.0181 (6)
O340.38725 (9)0.60382 (8)0.2042 (3)0.0193 (6)
O350.60498 (8)0.61115 (9)0.2063 (3)0.0186 (6)
O360.64643 (8)0.61274 (9)0.3010 (3)0.0190 (6)
O370.35516 (8)0.36249 (8)0.1936 (3)0.0165 (6)
O380.39644 (8)0.36147 (9)0.2892 (3)0.0177 (6)
O390.63763 (9)0.39457 (8)0.3008 (3)0.0189 (6)
O400.63859 (9)0.35339 (8)0.2061 (3)0.0196 (6)
S10.60498 (4)0.50632 (4)0.00275 (9)0.0114 (2)
S20.64521 (4)0.50688 (4)0.50257 (9)0.0113 (2)
S30.50636 (4)0.35506 (4)0.49707 (10)0.0126 (2)
S40.50693 (4)0.39517 (4)0.00308 (10)0.0122 (2)
S50.35487 (4)0.25691 (4)0.00769 (10)0.0114 (2)
S60.39513 (4)0.25690 (4)0.49202 (10)0.0113 (2)
S70.60486 (4)0.24334 (4)0.49809 (9)0.0122 (2)
S80.64508 (4)0.24332 (4)0.00216 (9)0.0121 (2)
H330.4078 (19)0.6337 (18)0.388 (7)0.060 (18)*
H340.4035 (17)0.6108 (18)0.107 (7)0.052 (16)*
H350.6148 (14)0.5935 (14)0.134 (5)0.023 (12)*
H360.6391 (16)0.5975 (17)0.378 (6)0.038 (15)*
H370.3635 (18)0.3428 (18)0.110 (7)0.053 (17)*
H380.388 (2)0.339 (2)0.369 (10)0.11 (3)*
H390.6535 (17)0.3861 (16)0.386 (6)0.042 (15)*
H400.658 (2)0.361 (2)0.108 (9)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0108 (7)0.0246 (9)0.0241 (9)0.0006 (6)0.0003 (4)0.0077 (5)
Cl20.0211 (8)0.0211 (8)0.0241 (12)000
Cl30.0157 (6)0.0173 (7)0.0227 (5)0.0015 (7)0.0040 (3)0.0042 (3)
Cl40.0159 (7)0.0159 (7)0.0194 (11)000
Na10.0166 (7)0.0169 (7)0.0188 (8)0.0004 (6)0.0028 (6)0.0012 (6)
Na20.0217 (8)0.0164 (7)0.0184 (8)0.0023 (6)0.0014 (6)0.0027 (6)
Na30.0178 (7)0.0197 (8)0.0203 (9)0.0030 (6)0.0036 (6)0.0047 (7)
Na40.0161 (7)0.0143 (7)0.0195 (8)0.0015 (6)0.0036 (6)0.0002 (6)
Na50.0180 (7)0.0171 (7)0.0184 (8)0.0026 (6)0.0025 (6)0.0029 (6)
Na60.0162 (7)0.0158 (7)0.0188 (8)0.0023 (6)0.0020 (6)0.0040 (6)
Na70.0204 (8)0.0177 (8)0.0224 (9)0.0032 (6)0.0028 (7)0.0060 (6)
Na80.0233 (8)0.0170 (8)0.0242 (9)0.0036 (6)0.0086 (7)0.0044 (7)
Na90.0169 (7)0.0154 (7)0.0213 (8)0.0016 (6)0.0039 (6)0.0003 (6)
Na100.0159 (7)0.0199 (8)0.0177 (8)0.0021 (6)0.0011 (6)0.0042 (6)
Na110.0166 (7)0.0159 (7)0.0148 (7)0.0005 (6)0.0023 (6)0.0002 (6)
Na120.0197 (8)0.0211 (8)0.0208 (8)0.0046 (6)0.0064 (7)0.0043 (7)
Na130.0141 (7)0.0163 (7)0.0171 (8)0.0002 (6)0.0016 (6)0.0001 (6)
Na140.0207 (8)0.0155 (7)0.0236 (9)0.0031 (6)0.0061 (7)0.0036 (7)
Na150.0169 (7)0.0171 (8)0.0245 (8)0.0018 (6)0.0046 (7)0.0055 (7)
Na160.0173 (8)0.0179 (8)0.0219 (9)0.0034 (6)0.0034 (6)0.0045 (6)
Na170.0097 (12)0.0113 (12)0.0293 (15)0.0004 (9)0.0015 (8)0.0005 (8)
Na180.0176 (11)0.0176 (11)0.0151 (15)000
Na190.0140 (10)0.0139 (10)0.0239 (8)0.0004 (10)0.0003 (6)0.0004 (6)
Na200.0182 (12)0.0182 (12)0.0144 (18)000
O10.0184 (14)0.0143 (13)0.0177 (14)0.0014 (11)0.0024 (11)0.0014 (11)
O20.0188 (14)0.0140 (13)0.0165 (14)0.0031 (11)0.0035 (11)0.0007 (11)
O30.0162 (16)0.0155 (16)0.0183 (16)0.0066 (14)0.0021 (9)0.0015 (9)
O40.0204 (17)0.0143 (17)0.0236 (18)0.0052 (14)0.0016 (10)0.0011 (10)
O50.0187 (17)0.0152 (16)0.0183 (16)0.0040 (13)0.0019 (10)0.0015 (9)
O60.0147 (16)0.0142 (16)0.0240 (18)0.0036 (13)0.0021 (10)0.0022 (10)
O70.0163 (14)0.0174 (14)0.0177 (14)0.0004 (11)0.0049 (11)0.0013 (11)
O80.0174 (14)0.0199 (14)0.0170 (14)0.0001 (11)0.0033 (11)0.0008 (11)
O90.0155 (17)0.0193 (17)0.0191 (17)0.0058 (13)0.0028 (9)0.0028 (10)
O100.0156 (16)0.0160 (16)0.0207 (17)0.0048 (13)0.0017 (9)0.0024 (9)
O110.0168 (14)0.0152 (13)0.0181 (14)0.0010 (11)0.0019 (11)0.0049 (11)
O120.0157 (13)0.0164 (14)0.0168 (14)0.0013 (11)0.0006 (11)0.0039 (11)
O130.0160 (16)0.0145 (16)0.0183 (16)0.0043 (13)0.0002 (9)0.0017 (9)
O140.0115 (16)0.0186 (17)0.0205 (17)0.0041 (14)0.0015 (9)0.0027 (9)
O150.0166 (14)0.0166 (14)0.0175 (14)0.0001 (11)0.0014 (11)0.0033 (11)
O160.0143 (13)0.0175 (14)0.0165 (14)0.0002 (11)0.0014 (11)0.0022 (11)
O170.0164 (16)0.0157 (16)0.0200 (16)0.0049 (13)0.0024 (10)0.0018 (10)
O180.0132 (16)0.0129 (16)0.0238 (18)0.0043 (13)0.0018 (9)0.0012 (9)
O190.0126 (13)0.0157 (13)0.0188 (14)0.0008 (11)0.0044 (11)0.0001 (11)
O200.0122 (13)0.0174 (14)0.0181 (15)0.0009 (11)0.0022 (11)0.0001 (11)
O210.0156 (16)0.0134 (16)0.0202 (16)0.0032 (13)0.0015 (10)0.0015 (10)
O220.0135 (16)0.0135 (16)0.0157 (15)0.0041 (13)0.0018 (9)0.0002 (9)
O230.0143 (13)0.0145 (13)0.0183 (14)0.0000 (11)0.0037 (11)0.0009 (11)
O240.0133 (13)0.0154 (13)0.0168 (14)0.0014 (11)0.0036 (11)0.0012 (11)
O250.0184 (17)0.0183 (18)0.0190 (17)0.0055 (14)0.0030 (10)0.0023 (10)
O260.0165 (17)0.0158 (17)0.0173 (17)0.0038 (13)0.0036 (9)0.0022 (9)
O270.0185 (14)0.0133 (13)0.0152 (14)0.0010 (11)0.0028 (11)0.0017 (11)
O280.0179 (14)0.0117 (13)0.0152 (14)0.0016 (11)0.0034 (11)0.0021 (11)
O290.0193 (17)0.0167 (17)0.0120 (15)0.0034 (14)0.0018 (9)0.0024 (9)
O300.0164 (16)0.0108 (16)0.0196 (17)0.0017 (13)0.0018 (9)0.0014 (9)
O310.0143 (13)0.0166 (14)0.0163 (14)0.0000 (11)0.0043 (11)0.0006 (11)
O320.0145 (13)0.0172 (14)0.0156 (14)0.0019 (11)0.0049 (11)0.0002 (11)
O330.0179 (13)0.0165 (13)0.0199 (14)0.0005 (10)0.0004 (11)0.0044 (11)
O340.0233 (14)0.0161 (13)0.0184 (15)0.0011 (11)0.0015 (12)0.0051 (11)
O350.0158 (13)0.0202 (13)0.0197 (15)0.0021 (11)0.0039 (11)0.0023 (12)
O360.0148 (13)0.0211 (14)0.0210 (15)0.0023 (11)0.0050 (11)0.0003 (12)
O370.0137 (12)0.0170 (13)0.0189 (14)0.0032 (10)0.0046 (11)0.0010 (11)
O380.0146 (13)0.0204 (13)0.0182 (14)0.0002 (11)0.0032 (11)0.0012 (11)
O390.0187 (13)0.0161 (13)0.0219 (15)0.0005 (11)0.0026 (12)0.0044 (11)
O400.0205 (14)0.0164 (13)0.0221 (15)0.0018 (11)0.0006 (12)0.0034 (11)
S10.0114 (5)0.0109 (5)0.0120 (5)0.0012 (4)0.0002 (3)0.0003 (3)
S20.0119 (5)0.0093 (5)0.0127 (5)0.0002 (4)0.0004 (3)0.0001 (3)
S30.0123 (6)0.0091 (5)0.0165 (6)0.0013 (4)0.0009 (3)0.0001 (3)
S40.0125 (5)0.0090 (5)0.0152 (5)0.0010 (4)0.0003 (3)0.0007 (3)
S50.0113 (5)0.0083 (5)0.0146 (5)0.0013 (4)0.0003 (3)0.0001 (3)
S60.0103 (5)0.0092 (5)0.0144 (5)0.0005 (4)0.0002 (3)0.0001 (3)
S70.0120 (5)0.0126 (6)0.0121 (5)0.0011 (4)0.0008 (3)0.0005 (3)
S80.0116 (5)0.0110 (5)0.0137 (5)0.0017 (4)0.0001 (3)0.0001 (3)
Bond lengths (Å) top
Cl1—Na5i2.7764 (16)Na14—O242.404 (3)
Cl1—Na52.7764 (16)Na14—O37iv2.406 (3)
Cl1—Na4i2.7967 (15)Na14—O3ix2.433 (3)
Cl1—Na42.7967 (15)Na14—Na6ix3.247 (2)
Cl1—Na8i3.2484 (17)Na14—S2vi3.3579 (18)
Cl1—Na83.2484 (17)Na14—S63.3782 (18)
Cl1—Na73.2863 (16)Na14—Na193.683 (2)
Cl1—Na7i3.2863 (16)Na14—Na10iv3.690 (2)
Cl2—Na10ii2.8448 (18)Na15—O272.321 (3)
Cl2—Na10iii2.8448 (18)Na15—O4ix2.354 (3)
Cl2—Na10iv2.8448 (18)Na15—O8vi2.385 (3)
Cl2—Na102.8448 (19)Na15—O34iv2.408 (3)
Cl2—Na3i3.1860 (19)Na15—O302.446 (3)
Cl2—Na3v3.1860 (19)Na15—Na9ix3.220 (2)
Cl2—Na3vi3.1860 (19)Na15—S73.3804 (18)
Cl2—Na3vii3.1860 (19)Na15—Na193.652 (2)
Cl3—Na112.7746 (18)Na15—Na4iv3.731 (2)
Cl3—Na1viii2.7856 (19)Na15—Na163.843 (2)
Cl3—Na9ix2.7990 (19)Na16—O322.319 (3)
Cl3—Na6ix2.8095 (19)Na16—O25vi2.357 (3)
Cl3—Na153.1469 (19)Na16—O33iv2.364 (3)
Cl3—Na143.2285 (19)Na16—O31ix2.403 (3)
Cl3—Na123.2546 (19)Na16—O262.446 (3)
Cl4—Na13x2.7466 (15)Na16—Na13vi3.267 (2)
Cl4—Na13vi2.7466 (15)Na16—S8ix3.3395 (18)
Cl4—Na13xi2.7466 (15)Na16—S83.3739 (18)
Cl4—Na132.7466 (15)Na16—Na13xi3.6658 (19)
Cl4—Na163.3096 (16)Na16—Na1iv3.680 (2)
Cl4—Na16vi3.3096 (16)Na17—O152.541 (3)
Cl4—Na16xi3.3096 (16)Na17—O15viii2.541 (3)
Cl4—Na16x3.3096 (16)Na17—O22.543 (3)
Na1—O11i2.290 (3)Na17—O2viii2.543 (3)
Na1—O29viii2.321 (3)Na17—O162.561 (3)
Na1—O28i2.370 (3)Na17—O16viii2.561 (3)
Na1—O332.413 (3)Na17—O1viii2.565 (3)
Na1—O14viii2.469 (3)Na17—O12.565 (3)
Na1—Cl3viii2.7856 (19)Na17—S4viii3.1186 (11)
Na1—Na12viii3.245 (2)Na17—S43.1186 (11)
Na1—Na9xii3.384 (2)Na17—S1viii3.1218 (11)
Na1—Na19i3.624 (2)Na17—S13.1218 (11)
Na1—Na23.672 (2)Na18—O20ii2.519 (3)
Na1—Na16iii3.680 (2)Na18—O20iv2.519 (3)
Na2—O23i2.320 (3)Na18—O20iii2.519 (3)
Na2—O352.353 (3)Na18—O202.519 (3)
Na2—O13viii2.356 (3)Na18—O19iii2.606 (3)
Na2—O11i2.397 (3)Na18—O192.607 (3)
Na2—O17viii2.448 (3)Na18—O19ii2.607 (3)
Na2—Na11viii3.273 (2)Na18—O19iv2.607 (3)
Na2—S3i3.3203 (18)Na18—S5iii3.1223 (11)
Na2—S6i3.3785 (17)Na18—S5ii3.1223 (11)
Na2—Na6xii3.636 (2)Na18—S5iv3.1223 (11)
Na2—Na53.654 (2)Na18—S53.1223 (11)
Na2—Na19i3.777 (2)Na19—O272.519 (3)
Na3—O20viii2.321 (3)Na19—O8vi2.531 (3)
Na3—O22x2.352 (3)Na19—O242.534 (3)
Na3—O20xiii2.382 (3)Na19—O112.560 (3)
Na3—O362.399 (3)Na19—O122.561 (3)
Na3—O21i2.453 (3)Na19—O7vi2.573 (3)
Na3—Cl2i3.1860 (19)Na19—O282.584 (3)
Na3—Na10i3.229 (3)Na19—O232.599 (3)
Na3—S5viii3.3709 (18)Na19—S73.1086 (19)
Na3—Na18viii3.621 (3)Na19—S2vi3.1181 (19)
Na3—Na63.731 (2)Na19—S33.1249 (19)
Na3—Na3xiv3.852 (2)Na19—S63.1308 (19)
Na4—O6i2.296 (3)Na20—O312.538 (3)
Na4—O16viii2.306 (3)Na20—O31xiii2.538 (3)
Na4—O1viii2.334 (3)Na20—O31xi2.538 (3)
Na4—O342.408 (3)Na20—O31ix2.538 (3)
Na4—O10i2.502 (3)Na20—O32xi2.584 (3)
Na4—Na8i3.248 (2)Na20—O32ix2.584 (3)
Na4—S2i3.3652 (17)Na20—O322.584 (3)
Na4—Na53.388 (2)Na20—O32xiii2.584 (3)
Na4—Na173.5822 (15)Na20—S83.1206 (11)
Na4—Na73.618 (2)Na20—S8xi3.1206 (11)
Na4—Na15iii3.731 (2)Na20—S8ix3.1206 (11)
Na5—O22.295 (3)Na20—S8xiii3.1206 (11)
Na5—O9i2.315 (3)O1—S11.479 (3)
Na5—O16viii2.378 (3)O1—Na7viii2.320 (3)
Na5—O352.403 (3)O1—Na4viii2.334 (3)
Na5—O52.468 (3)O2—S11.484 (3)
Na5—Na7i3.243 (2)O3—S11.492 (3)
Na5—Na173.6051 (15)O3—Na14xiii2.433 (3)
Na5—Na83.647 (2)O4—S11.473 (3)
Na5—H352.64 (4)O4—Na15xiii2.354 (3)
Na6—O72.289 (3)O5—S21.490 (3)
Na6—O18xiii2.295 (3)O5—Na7i2.463 (3)
Na6—O23x2.333 (3)O6—S21.465 (3)
Na6—O362.413 (3)O6—Na4i2.296 (3)
Na6—O32.496 (3)O7—S21.479 (3)
Na6—Cl3xiii2.8095 (19)O7—Na19x2.573 (3)
Na6—Na14xiii3.247 (2)O8—S21.479 (3)
Na6—S5xiii3.3632 (17)O8—Na14x2.316 (3)
Na6—Na93.378 (2)O8—Na15x2.385 (3)
Na6—Na19x3.615 (2)O8—Na19x2.531 (3)
Na6—Na2xiv3.636 (2)O9—S31.456 (3)
Na6—H362.66 (5)O9—Na5i2.315 (3)
Na7—O1viii2.320 (3)O10—S31.491 (3)
Na7—O92.355 (3)O10—Na4i2.502 (3)
Na7—O382.363 (3)O11—S31.479 (3)
Na7—O152.383 (3)O11—Na1i2.290 (3)
Na7—O5i2.463 (3)O11—Na2i2.397 (3)
Na7—Na5i3.243 (2)O12—S31.479 (3)
Na7—S43.3584 (19)O13—S41.468 (3)
Na7—Na173.7147 (15)O13—Na2viii2.356 (3)
Na7—Na113.715 (2)O14—S41.492 (3)
Na7—Na14iii3.837 (2)O14—Na1viii2.469 (3)
Na8—O152.328 (3)O15—S41.470 (3)
Na8—O62.365 (3)O16—S41.475 (3)
Na8—O22.392 (3)O16—Na4viii2.306 (3)
Na8—O392.407 (3)O16—Na5viii2.378 (3)
Na8—O102.438 (3)O17—S51.491 (3)
Na8—Na4i3.248 (2)O17—Na2viii2.448 (3)
Na8—S13.3620 (18)O18—S51.466 (3)
Na8—S43.3639 (18)O18—Na6ix2.295 (3)
Na8—Na93.674 (2)O19—S51.473 (3)
Na8—Na173.7104 (15)O19—Na10iv2.353 (3)
Na9—O42.295 (3)O20—S51.476 (3)
Na9—O28x2.299 (3)O20—Na3viii2.321 (3)
Na9—O72.361 (3)O20—Na3ix2.382 (3)
Na9—O392.394 (3)O21—S61.492 (3)
Na9—O30xiii2.469 (3)O21—Na3i2.453 (3)
Na9—Cl3xiii2.7990 (19)O22—S61.473 (3)
Na9—Na15xiii3.220 (2)O22—Na10iv2.295 (3)
Na9—S13.3829 (18)O22—Na3vi2.352 (3)
Na9—Na1xiv3.384 (2)O23—S61.480 (3)
Na9—Na19x3.645 (2)O23—Na2i2.320 (3)
Na10—O192.291 (3)O23—Na6vi2.333 (3)
Na10—O22iii2.295 (3)O24—S61.483 (3)
Na10—O19iii2.353 (3)O25—S71.469 (3)
Na10—O372.410 (3)O25—Na16x2.357 (3)
Na10—O212.465 (3)O26—S71.491 (3)
Na10—Na3i3.229 (3)O26—Na13vi2.496 (3)
Na10—Na10iii3.367 (2)O27—S71.470 (3)
Na10—Na10iv3.367 (2)O28—S71.473 (3)
Na10—S6iii3.3881 (18)O28—Na9vi2.299 (3)
Na10—Na183.680 (3)O28—Na1i2.370 (3)
Na10—Na14iii3.690 (2)O29—S81.460 (3)
Na10—H372.67 (6)O29—Na1viii2.321 (3)
Na11—O242.293 (3)O30—S81.488 (3)
Na11—O132.301 (3)O30—Na9ix2.469 (3)
Na11—O122.354 (3)O31—S81.480 (3)
Na11—O382.420 (3)O31—Na13ix2.290 (3)
Na11—O172.502 (3)O31—Na16xiii2.403 (3)
Na11—Na2viii3.273 (2)O32—S81.477 (3)
Na11—Na193.542 (2)O33—O341.465 (3)
Na11—Na123.615 (2)O33—Na16iii2.364 (3)
Na11—Na143.647 (2)O33—H331.00 (6)
Na11—H382.63 (8)O34—Na15iii2.408 (3)
Na12—O122.321 (3)O34—H340.97 (6)
Na12—O292.355 (3)O35—O361.466 (4)
Na12—O402.374 (3)O35—H350.85 (5)
Na12—O272.384 (3)O36—H360.82 (5)
Na12—O142.461 (3)O37—O381.465 (3)
Na12—Na1viii3.245 (2)O37—Na14iii2.406 (3)
Na12—S73.3595 (18)O37—H370.95 (6)
Na12—Na193.672 (2)O38—H380.98 (8)
Na12—Na133.728 (2)O39—O401.459 (4)
Na13—O31xiii2.290 (3)O39—H390.89 (5)
Na13—O252.312 (3)O40—H401.03 (7)
Na13—O322.354 (3)S2—Na19x3.1181 (19)
Na13—O402.414 (3)S2—Na14x3.3579 (18)
Na13—O26x2.496 (3)S2—Na4i3.3652 (18)
Na13—Na16x3.267 (2)S3—Na2i3.3203 (18)
Na13—Na203.5676 (15)S5—Na6ix3.3632 (17)
Na13—Na163.633 (2)S5—Na3viii3.3709 (18)
Na13—Na16xi3.6658 (19)S6—Na2i3.3785 (17)
Na14—O8vi2.316 (3)S6—Na10iv3.3881 (18)
Na14—O182.364 (3)S8—Na16xiii3.3395 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) y+1/2, x, z; (iv) y, x+1/2, z; (v) x1/2, y1/2, z+1; (vi) y+1, x1/2, z+1; (vii) y1/2, x+1, z+1; (viii) x+1, y+1, z; (ix) y+1, x1/2, z; (x) y+1/2, x+1, z+1; (xi) x+3/2, y+1/2, z; (xii) y, x+3/2, z; (xiii) y+1/2, x+1, z; (xiv) y+3/2, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O33—H33···O10i1.00 (6)1.70 (6)2.675 (4)164 (5)
O34—H34···O14viii0.97 (6)1.81 (6)2.706 (4)152 (5)
O35—H35···O30.85 (4)1.83 (4)2.677 (4)169 (4)
O36—H36···O50.82 (5)1.92 (5)2.711 (4)162 (5)
O37—H37···O170.95 (6)1.77 (6)2.700 (4)167 (5)
O38—H38···O210.98 (7)1.71 (6)2.677 (4)171 (6)
O39—H39···O26x0.89 (5)1.84 (5)2.696 (4)159 (5)
O40—H40···O30xiii1.02 (7)1.71 (6)2.687 (4)158 (6)
Symmetry codes: (i) x+1, y+1, z+1; (viii) x+1, y+1, z; (x) y+1/2, x+1, z+1; (xiii) y+1/2, x+1, z.
(rgp29c) top
Crystal data top
H4BrNa9O20S4Dx = 2.626 Mg m3
Mr = 739.09Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 5097 reflections
Hall symbol: -P 4aθ = 1.0–32.0°
a = 14.9126 (5) ŵ = 2.96 mm1
c = 8.4052 (2) ÅT = 150 K
V = 1869.20 (10) Å3Prism, colourless
Z = 40.18 × 0.18 × 0.07 mm
F(000) = 1448
Data collection top
KappaCCD
diffractometer
3226 independent reflections
Radiation source: Enraf Nonius FR5902368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9 pixels mm-1θmax = 32.0°, θmin = 1.9°
CCD rotation images, thick slices scansh = 1821
Absorption correction: multi-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
k = 2212
Tmin = 0.618, Tmax = 0.820l = 128
8459 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.5967P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3226 reflectionsΔρmax = 0.59 e Å3
164 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (5)
Crystal data top
H4BrNa9O20S4Z = 4
Mr = 739.09Mo Kα radiation
Tetragonal, P4/nµ = 2.96 mm1
a = 14.9126 (5) ÅT = 150 K
c = 8.4052 (2) Å0.18 × 0.18 × 0.07 mm
V = 1869.20 (10) Å3
Data collection top
KappaCCD
diffractometer
3226 independent reflections
Absorption correction: multi-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
2368 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.820Rint = 0.049
8459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.59 e Å3
3226 reflectionsΔρmin = 0.64 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.750.2510.01417 (12)
Br110.250.250.48695 (5)0.01273 (12)
Na10.64723 (7)0.37337 (6)0.81685 (12)0.0146 (2)
Na20.750.250.50.0163 (4)
Na30.62673 (7)0.39174 (7)0.20464 (12)0.0163 (2)
Na110.35448 (6)0.37461 (7)0.68522 (11)0.0142 (2)
Na120.250.251.0196 (2)0.0161 (4)
Na130.37149 (7)0.38946 (7)1.29937 (12)0.0163 (2)
O10.48432 (12)0.18355 (12)0.50326 (18)0.0144 (4)
O20.59709 (11)0.26609 (11)0.3582 (2)0.0149 (3)
O30.48255 (12)0.34608 (11)0.50464 (18)0.0140 (4)
O40.59943 (11)0.26410 (11)0.6435 (2)0.0142 (3)
O50.54143 (12)0.47531 (12)0.7030 (2)0.0166 (4)
O110.51614 (12)0.18381 (12)1.00036 (18)0.0150 (4)
O120.40253 (11)0.26427 (11)1.1447 (2)0.0149 (3)
O130.51716 (12)0.34647 (12)1.00146 (17)0.0146 (4)
O140.40122 (11)0.26533 (11)0.8598 (2)0.0140 (3)
O150.46047 (12)0.47460 (12)0.8003 (2)0.0167 (4)
S10.54035 (4)0.26441 (4)0.50241 (6)0.01007 (13)
S110.45972 (4)0.26436 (4)1.00141 (6)0.01007 (13)
H50.527 (2)0.440 (2)0.628 (4)0.032 (9)*
H150.477 (3)0.443 (3)0.881 (5)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01358 (15)0.01358 (15)0.0153 (2)000
Br110.01265 (14)0.01265 (14)0.0129 (2)000
Na10.0153 (5)0.0151 (5)0.0134 (5)0.0012 (4)0.0002 (4)0.0014 (4)
Na20.0133 (6)0.0133 (6)0.0223 (11)000
Na30.0161 (5)0.0160 (5)0.0167 (5)0.0020 (4)0.0017 (4)0.0030 (4)
Na110.0141 (5)0.0144 (5)0.0140 (5)0.0002 (4)0.0000 (4)0.0022 (4)
Na120.0139 (6)0.0139 (6)0.0204 (10)000
Na130.0164 (5)0.0167 (5)0.0158 (5)0.0013 (4)0.0013 (4)0.0035 (4)
O10.0137 (8)0.0151 (8)0.0145 (9)0.0051 (6)0.0018 (6)0.0000 (6)
O20.0157 (8)0.0147 (8)0.0145 (8)0.0013 (7)0.0036 (7)0.0017 (7)
O30.0136 (8)0.0131 (8)0.0152 (9)0.0041 (6)0.0009 (6)0.0008 (6)
O40.0158 (8)0.0140 (8)0.0130 (8)0.0015 (7)0.0035 (7)0.0001 (6)
O50.0141 (8)0.0181 (9)0.0175 (9)0.0010 (7)0.0032 (7)0.0009 (7)
O110.0144 (8)0.0155 (8)0.0151 (9)0.0043 (6)0.0019 (6)0.0015 (6)
O120.0149 (8)0.0164 (8)0.0135 (8)0.0003 (7)0.0020 (7)0.0016 (7)
O130.0152 (8)0.0143 (8)0.0142 (9)0.0034 (6)0.0016 (6)0.0020 (6)
O140.0136 (8)0.0151 (8)0.0133 (8)0.0003 (6)0.0039 (6)0.0008 (6)
O150.0150 (8)0.0181 (9)0.0169 (9)0.0005 (7)0.0028 (7)0.0022 (7)
S10.0105 (2)0.0102 (2)0.0095 (3)0.00005 (19)0.00022 (19)0.00019 (19)
S110.0101 (2)0.0104 (2)0.0097 (3)0.00001 (19)0.00067 (19)0.00026 (19)
Geometric parameters (Å, º) top
Br1—Na1i2.8466 (10)Na11—Na13xii3.2606 (15)
Br1—Na1ii2.8466 (10)Na11—Na11ix3.4294 (14)
Br1—Na1iii2.8466 (10)Na11—Na11x3.4294 (14)
Br1—Na12.8466 (10)Na11—Na3xvi3.6161 (14)
Br1—Na3iv3.2872 (10)Na11—Na123.7121 (18)
Br1—Na3v3.2872 (10)Na11—H152.66 (4)
Br1—Na3vi3.2872 (10)Na12—O122.5147 (19)
Br1—Na3vii3.2872 (10)Na12—O12ix2.5147 (19)
Br11—Na112.9424 (10)Na12—O12x2.5147 (19)
Br11—Na11viii2.9424 (10)Na12—O12viii2.5147 (19)
Br11—Na11ix2.9424 (10)Na12—O14viii2.635 (2)
Br11—Na11x2.9424 (10)Na12—O14ix2.635 (2)
Br11—Na13xi3.1770 (11)Na12—O14x2.635 (2)
Br11—Na13xii3.1770 (11)Na12—O142.635 (2)
Br11—Na13xiii3.1770 (11)Na12—S11viii3.1385 (6)
Br11—Na13xiv3.1770 (11)Na12—S11ix3.1385 (6)
Na1—O42.2993 (19)Na12—S11x3.1385 (6)
Na1—O11i2.3179 (19)Na12—S113.1385 (6)
Na1—O2vi2.345 (2)Na13—O122.322 (2)
Na1—O52.391 (2)Na13—O1xvii2.3689 (19)
Na1—O132.516 (2)Na13—O5xv2.399 (2)
Na1—Na3v3.2852 (15)Na13—O12x2.414 (2)
Na1—Na23.5813 (10)Na13—O3v2.4777 (19)
Na1—Na3vi3.6507 (14)Na13—Br11v3.1770 (11)
Na1—Na13xv3.6798 (14)Na13—Na11v3.2606 (15)
Na1—Na3iv3.7281 (14)Na13—S11x3.3872 (11)
Na1—H52.59 (3)Na13—S113.3888 (11)
Na2—O4iv2.5574 (17)Na13—Na1xv3.6798 (14)
Na2—O4iii2.5574 (17)Na13—Na3v3.8889 (15)
Na2—O42.5574 (17)O1—S11.4670 (18)
Na2—O4vi2.5574 (17)O1—Na11ix2.3103 (19)
Na2—O22.5842 (18)O1—Na13xiv2.3689 (19)
Na2—O2iv2.5842 (18)O2—S11.4786 (17)
Na2—O2vi2.5842 (18)O2—Na1iv2.3452 (19)
Na2—O2iii2.5842 (18)O3—S11.4921 (17)
Na2—S1iv3.1339 (6)O3—Na13xii2.4777 (19)
Na2—S13.1339 (6)O4—S11.4773 (17)
Na2—S1vi3.1339 (6)O4—Na3iv2.4173 (19)
Na2—S1iii3.1339 (6)O5—O151.458 (2)
Na3—O22.3178 (19)O5—Na13xv2.399 (2)
Na3—O11vi2.3623 (19)O5—H50.85 (3)
Na3—O15xvi2.380 (2)O11—S111.4666 (18)
Na3—O4vi2.4173 (19)O11—Na1ii2.3179 (19)
Na3—O13xii2.458 (2)O11—Na3iv2.3623 (19)
Na3—Na1xii3.2852 (15)O12—S111.4755 (18)
Na3—Br1xii3.2872 (10)O12—Na13ix2.414 (2)
Na3—S1vi3.3621 (11)O13—S111.4945 (18)
Na3—Na11xvi3.6161 (14)O13—Na3v2.458 (2)
Na3—Na1iv3.6507 (14)O14—S111.4759 (17)
Na3—Na1vi3.7281 (14)O14—Na11ix2.3457 (19)
Na11—O142.3009 (19)O15—Na3xvi2.380 (2)
Na11—O1x2.3103 (19)O15—H150.86 (4)
Na11—O14x2.3457 (19)S1—Na3iv3.3621 (11)
Na11—O152.379 (2)S11—Na13ix3.3872 (11)
Na11—O32.4764 (19)
Na1i—Br1—Na1ii114.53 (4)O1x—Na11—O14x96.16 (7)
Na1i—Br1—Na1iii107.005 (19)O14—Na11—O1589.05 (7)
Na1ii—Br1—Na1iii107.005 (19)O1x—Na11—O1589.33 (7)
Na1i—Br1—Na1107.005 (19)O14x—Na11—O1598.38 (7)
Na1ii—Br1—Na1107.005 (19)O14—Na11—O392.04 (7)
Na1iii—Br1—Na1114.53 (4)O1x—Na11—O384.56 (6)
Na1i—Br1—Na3iv178.43 (2)O14x—Na11—O3179.08 (7)
Na1ii—Br1—Na3iv64.30 (3)O15—Na11—O381.05 (6)
Na1iii—Br1—Na3iv72.65 (3)O14—Na11—Br1194.26 (5)
Na1—Br1—Na3iv74.47 (3)O1x—Na11—Br1186.69 (5)
Na1i—Br1—Na3v74.47 (3)O14x—Na11—Br1193.31 (5)
Na1ii—Br1—Na3v72.65 (3)O15—Na11—Br11167.99 (6)
Na1iii—Br1—Na3v178.43 (2)O3—Na11—Br1187.29 (5)
Na1—Br1—Na3v64.30 (3)O14—Na11—Na13xii131.21 (6)
Na3iv—Br1—Na3v105.890 (16)O1x—Na11—Na13xii46.57 (5)
Na1i—Br1—Na3vi64.30 (3)O14x—Na11—Na13xii132.06 (6)
Na1ii—Br1—Na3vi178.43 (3)O15—Na11—Na13xii108.07 (6)
Na1iii—Br1—Na3vi74.47 (3)O3—Na11—Na13xii48.86 (4)
Na1—Br1—Na3vi72.65 (3)Br11—Na11—Na13xii61.36 (3)
Na3iv—Br1—Na3vi116.90 (3)O14—Na11—Na11ix42.94 (5)
Na3v—Br1—Na3vi105.890 (16)O1x—Na11—Na11ix136.63 (5)
Na1i—Br1—Na3vii72.65 (3)O14x—Na11—Na11ix103.60 (5)
Na1ii—Br1—Na3vii74.47 (3)O15—Na11—Na11ix124.50 (6)
Na1iii—Br1—Na3vii64.30 (3)O3—Na11—Na11ix76.19 (5)
Na1—Br1—Na3vii178.43 (3)Br11—Na11—Na11ix54.355 (10)
Na3iv—Br1—Na3vii105.890 (16)Na13xii—Na11—Na11ix93.49 (2)
Na3v—Br1—Na3vii116.90 (3)O14—Na11—Na11x103.87 (5)
Na3vi—Br1—Na3vii105.890 (16)O1x—Na11—Na11x79.48 (6)
Na11—Br11—Na11viii111.00 (4)O14x—Na11—Na11x41.93 (5)
Na11—Br11—Na11ix71.29 (2)O15—Na11—Na11x135.80 (6)
Na11viii—Br11—Na11ix71.29 (2)O3—Na11—Na11x138.87 (4)
Na11—Br11—Na11x71.29 (2)Br11—Na11—Na11x54.355 (10)
Na11viii—Br11—Na11x71.29 (2)Na13xii—Na11—Na11x94.79 (2)
Na11ix—Br11—Na11x111.00 (4)Na11ix—Na11—Na11x90
Na11—Br11—Na13xi175.17 (3)O14—Na11—Na3xvi119.72 (6)
Na11viii—Br11—Na13xi64.26 (3)O1x—Na11—Na3xvi60.40 (5)
Na11ix—Br11—Na13xi107.13 (3)O14x—Na11—Na3xvi74.69 (5)
Na11x—Br11—Na13xi105.52 (3)O15—Na11—Na3xvi40.56 (5)
Na11—Br11—Na13xii64.26 (3)O3—Na11—Na3xvi105.23 (5)
Na11viii—Br11—Na13xii175.17 (3)Br11—Na11—Na3xvi142.61 (4)
Na11ix—Br11—Na13xii105.52 (3)Na13xii—Na11—Na3xvi100.55 (3)
Na11x—Br11—Na13xii107.13 (3)Na11ix—Na11—Na3xvi162.38 (3)
Na13xi—Br11—Na13xii120.49 (4)Na11x—Na11—Na3xvi99.30 (4)
Na11—Br11—Na13xiii105.52 (3)O14—Na11—Na1244.75 (5)
Na11viii—Br11—Na13xiii107.13 (3)O1x—Na11—Na12138.83 (6)
Na11ix—Br11—Na13xiii175.17 (3)O14x—Na11—Na1244.88 (5)
Na11x—Br11—Na13xiii64.26 (3)O15—Na11—Na12106.55 (6)
Na13xi—Br11—Na13xiii75.742 (17)O3—Na11—Na12134.57 (5)
Na13xii—Br11—Na13xiii75.742 (17)Br11—Na11—Na1283.71 (3)
Na11—Br11—Na13xiv107.13 (3)Na13xii—Na11—Na12145.06 (4)
Na11viii—Br11—Na13xiv105.52 (3)Na11ix—Na11—Na1262.489 (15)
Na11ix—Br11—Na13xiv64.26 (3)Na11x—Na11—Na1262.489 (15)
Na11x—Br11—Na13xiv175.17 (3)Na3xvi—Na11—Na12108.73 (3)
Na13xi—Br11—Na13xiv75.742 (17)O14—Na11—H1570.7 (9)
Na13xii—Br11—Na13xiv75.742 (17)O1x—Na11—H15107.8 (9)
Na13xiii—Br11—Na13xiv120.49 (4)O14x—Na11—H1594.2 (8)
O4—Na1—O11i175.40 (8)O15—Na11—H1518.6 (9)
O4—Na1—O2vi88.27 (7)O3—Na11—H1585.1 (8)
O11i—Na1—O2vi96.00 (7)Br11—Na11—H15162.8 (8)
O4—Na1—O589.57 (7)Na13xii—Na11—H15122.3 (9)
O11i—Na1—O588.20 (7)Na11ix—Na11—H15108.8 (8)
O2vi—Na1—O597.37 (7)Na11x—Na11—H15135.9 (8)
O4—Na1—O1392.23 (7)Na3xvi—Na11—H1554.5 (8)
O11i—Na1—O1383.45 (6)Na12—Na11—H1590.7 (9)
O2vi—Na1—O13178.06 (7)O12—Na12—O12ix79.94 (4)
O5—Na1—O1380.76 (6)O12—Na12—O12x79.94 (4)
O4—Na1—Br192.96 (5)O12ix—Na12—O12x130.59 (11)
O11i—Na1—Br188.53 (5)O12—Na12—O12viii130.59 (11)
O2vi—Na1—Br193.08 (5)O12ix—Na12—O12viii79.94 (4)
O5—Na1—Br1169.32 (6)O12x—Na12—O12viii79.94 (4)
O13—Na1—Br188.77 (5)O12—Na12—O14viii174.04 (9)
O4—Na1—Na3v131.23 (6)O12ix—Na12—O14viii101.95 (5)
O11i—Na1—Na3v45.97 (5)O12x—Na12—O14viii102.66 (5)
O2vi—Na1—Na3v132.62 (6)O12viii—Na12—O14viii55.36 (6)
O5—Na1—Na3v106.42 (6)O12—Na12—O14ix101.95 (5)
O13—Na1—Na3v47.91 (4)O12ix—Na12—O14ix55.36 (6)
Br1—Na1—Na3v64.37 (3)O12x—Na12—O14ix174.04 (9)
O4—Na1—Na245.36 (5)O12viii—Na12—O14ix102.66 (5)
O11i—Na1—Na2139.23 (6)O14viii—Na12—O14ix74.93 (5)
O2vi—Na1—Na246.10 (5)O12—Na12—O14x102.66 (5)
O5—Na1—Na2108.15 (6)O12ix—Na12—O14x174.04 (9)
O13—Na1—Na2134.96 (5)O12x—Na12—O14x55.36 (6)
Br1—Na1—Na280.78 (2)O12viii—Na12—O14x101.95 (5)
Na3v—Na1—Na2145.13 (4)O14viii—Na12—O14x74.93 (5)
O4—Na1—Na3vi106.14 (5)O14ix—Na12—O14x118.69 (11)
O11i—Na1—Na3vi78.35 (5)O12—Na12—O1455.36 (6)
O2vi—Na1—Na3vi38.21 (5)O12ix—Na12—O14102.66 (5)
O5—Na1—Na3vi129.76 (6)O12x—Na12—O14101.95 (5)
O13—Na1—Na3vi143.17 (5)O12viii—Na12—O14174.04 (9)
Br1—Na1—Na3vi59.25 (2)O14viii—Na12—O14118.69 (11)
Na3v—Na1—Na3vi98.17 (3)O14ix—Na12—O1474.93 (5)
Na2—Na1—Na3vi62.33 (2)O14x—Na12—O1474.93 (5)
O4—Na1—Na13xv119.30 (6)O12—Na12—S11viii158.04 (9)
O11i—Na1—Na13xv60.70 (5)O12ix—Na12—S11viii92.46 (4)
O2vi—Na1—Na13xv73.16 (5)O12x—Na12—S11viii89.87 (4)
O5—Na1—Na13xv39.87 (5)O12viii—Na12—S11viii27.54 (4)
O13—Na1—Na13xv104.98 (5)O14viii—Na12—S11viii27.92 (4)
Br1—Na1—Na13xv143.67 (4)O14ix—Na12—S11viii90.19 (4)
Na3v—Na1—Na13xv100.15 (3)O14x—Na12—S11viii86.97 (4)
Na2—Na1—Na13xv109.20 (3)O14—Na12—S11viii146.50 (8)
Na3vi—Na1—Na13xv93.61 (3)O12—Na12—S11ix92.46 (4)
O4—Na1—Na3iv38.90 (5)O12ix—Na12—S11ix27.54 (4)
O11i—Na1—Na3iv140.36 (6)O12x—Na12—S11ix158.04 (9)
O2vi—Na1—Na3iv105.83 (5)O12viii—Na12—S11ix89.87 (4)
O5—Na1—Na3iv120.34 (6)O14viii—Na12—S11ix86.97 (4)
O13—Na1—Na3iv75.67 (5)O14ix—Na12—S11ix27.92 (4)
Br1—Na1—Na3iv58.16 (2)O14x—Na12—S11ix146.50 (8)
Na3v—Na1—Na3iv96.65 (3)O14—Na12—S11ix90.19 (4)
Na2—Na1—Na3iv61.57 (2)S11viii—Na12—S11ix89.864 (4)
Na3vi—Na1—Na3iv98.80 (3)O12—Na12—S11x89.87 (4)
Na13xv—Na1—Na3iv157.45 (4)O12ix—Na12—S11x158.04 (9)
O4—Na1—H570.6 (7)O12x—Na12—S11x27.54 (4)
O11i—Na1—H5107.3 (8)O12viii—Na12—S11x92.46 (4)
O2vi—Na1—H594.0 (7)O14viii—Na12—S11x90.19 (4)
O5—Na1—H519.2 (7)O14ix—Na12—S11x146.50 (8)
O13—Na1—H584.4 (7)O14x—Na12—S11x27.92 (4)
Br1—Na1—H5161.8 (7)O14—Na12—S11x86.97 (4)
Na3v—Na1—H5120.7 (7)S11viii—Na12—S11x89.864 (4)
Na2—Na1—H592.2 (7)S11ix—Na12—S11x174.41 (7)
Na3vi—Na1—H5131.5 (7)O12—Na12—S1127.54 (4)
Na13xv—Na1—H554.5 (7)O12ix—Na12—S1189.87 (4)
Na3iv—Na1—H5103.8 (7)O12x—Na12—S1192.46 (4)
O4iv—Na2—O4iii102.85 (3)O12viii—Na12—S11158.04 (9)
O4iv—Na2—O4102.85 (3)O14viii—Na12—S11146.50 (8)
O4iii—Na2—O4123.73 (7)O14ix—Na12—S1186.97 (4)
O4iv—Na2—O4vi123.73 (7)O14x—Na12—S1190.19 (4)
O4iii—Na2—O4vi102.85 (3)O14—Na12—S1127.92 (4)
O4—Na2—O4vi102.85 (3)S11viii—Na12—S11174.41 (7)
O4iv—Na2—O277.96 (5)S11ix—Na12—S1189.864 (4)
O4iii—Na2—O2179.11 (5)S11x—Na12—S1189.864 (4)
O4—Na2—O255.61 (6)O12—Na13—O1xvii162.63 (8)
O4vi—Na2—O276.91 (5)O12—Na13—O5xv124.29 (7)
O4iv—Na2—O2iv55.61 (6)O1xvii—Na13—O5xv72.03 (7)
O4iii—Na2—O2iv77.96 (5)O12—Na13—O12x86.01 (9)
O4—Na2—O2iv76.91 (5)O1xvii—Na13—O12x92.92 (7)
O4vi—Na2—O2iv179.11 (5)O5xv—Na13—O12x112.44 (7)
O2—Na2—O2iv102.28 (3)O12—Na13—O3v92.68 (7)
O4iv—Na2—O2vi179.11 (5)O1xvii—Na13—O3v83.32 (6)
O4iii—Na2—O2vi76.91 (5)O5xv—Na13—O3v82.15 (7)
O4—Na2—O2vi77.96 (5)O12x—Na13—O3v163.10 (7)
O4vi—Na2—O2vi55.61 (6)O12—Na13—Br11v82.26 (5)
O2—Na2—O2vi102.28 (3)O1xvii—Na13—Br11v80.46 (5)
O2iv—Na2—O2vi125.06 (7)O5xv—Na13—Br11v149.68 (6)
O4iv—Na2—O2iii76.91 (5)O12x—Na13—Br11v80.91 (5)
O4iii—Na2—O2iii55.61 (6)O3v—Na13—Br11v82.22 (5)
O4—Na2—O2iii179.11 (5)O12—Na13—Na11v121.20 (6)
O4vi—Na2—O2iii77.96 (5)O1xvii—Na13—Na11v45.09 (5)
O2—Na2—O2iii125.06 (7)O5xv—Na13—Na11v96.17 (6)
O2iv—Na2—O2iii102.28 (3)O12x—Na13—Na11v118.43 (6)
O2vi—Na2—O2iii102.28 (3)O3v—Na13—Na11v48.82 (4)
O4iv—Na2—S1iv27.80 (4)Br11v—Na13—Na11v54.38 (2)
O4iii—Na2—S1iv88.92 (4)O12—Na13—S11x87.36 (5)
O4—Na2—S1iv91.42 (4)O1xvii—Na13—S11x98.22 (5)
O4vi—Na2—S1iv151.46 (4)O5xv—Na13—S11x93.30 (5)
O2—Na2—S1iv91.67 (4)O12x—Na13—S11x22.36 (4)
O2iv—Na2—S1iv27.91 (4)O3v—Na13—S11x174.52 (6)
O2vi—Na2—S1iv152.83 (4)Br11v—Na13—S11x103.20 (3)
O2iii—Na2—S1iv87.99 (4)Na11v—Na13—S11x135.23 (4)
O4iv—Na2—S188.92 (4)O12—Na13—S1120.93 (4)
O4iii—Na2—S1151.46 (4)O1xvii—Na13—S11176.30 (6)
O4—Na2—S127.80 (4)O5xv—Na13—S11104.27 (6)
O4vi—Na2—S191.42 (4)O12x—Na13—S1188.39 (5)
O2—Na2—S127.91 (4)O3v—Na13—S1196.39 (5)
O2iv—Na2—S187.99 (4)Br11v—Na13—S11103.17 (3)
O2vi—Na2—S191.67 (4)Na11v—Na13—S11136.71 (4)
O2iii—Na2—S1152.83 (4)S11x—Na13—S1181.73 (3)
S1iv—Na2—S190O12—Na13—Na1243.52 (5)
O4iv—Na2—S1vi151.46 (4)O1xvii—Na13—Na12129.70 (6)
O4iii—Na2—S1vi91.42 (4)O5xv—Na13—Na12138.38 (6)
O4—Na2—S1vi88.92 (4)O12x—Na13—Na1243.75 (4)
O4vi—Na2—S1vi27.80 (4)O3v—Na13—Na12129.50 (5)
O2—Na2—S1vi87.99 (4)Br11v—Na13—Na1270.20 (3)
O2iv—Na2—S1vi152.83 (4)Na11v—Na13—Na12124.57 (4)
O2vi—Na2—S1vi27.91 (4)S11x—Na13—Na1253.05 (2)
O2iii—Na2—S1vi91.67 (4)S11—Na13—Na1253.04 (2)
S1iv—Na2—S1vi179.259 (19)O12—Na13—Na1xv129.74 (6)
S1—Na2—S1vi90O1xvii—Na13—Na1xv65.91 (5)
O4iv—Na2—S1iii91.42 (4)O5xv—Na13—Na1xv39.72 (5)
O4iii—Na2—S1iii27.80 (4)O12x—Na13—Na1xv73.49 (5)
O4—Na2—S1iii151.46 (4)O3v—Na13—Na1xv119.11 (5)
O4vi—Na2—S1iii88.92 (4)Br11v—Na13—Na1xv135.86 (3)
O2—Na2—S1iii152.83 (4)Na11v—Na13—Na1xv108.87 (3)
O2iv—Na2—S1iii91.67 (4)S11x—Na13—Na1xv57.39 (2)
O2vi—Na2—S1iii87.99 (4)S11—Na13—Na1xv111.25 (3)
O2iii—Na2—S1iii27.91 (4)Na12—Na13—Na1xv109.96 (3)
S1iv—Na2—S1iii90O12—Na13—Na3v72.38 (5)
S1—Na2—S1iii179.259 (19)O1xvii—Na13—Na3v118.82 (6)
S1vi—Na2—S1iii90O5xv—Na13—Na3v57.39 (5)
O2—Na3—O11vi160.90 (8)O12x—Na13—Na3v135.22 (6)
O2—Na3—O15xvi125.63 (8)O3v—Na13—Na3v59.37 (5)
O11vi—Na3—O15xvi72.37 (7)Br11v—Na13—Na3v131.72 (3)
O2—Na3—O4vi84.93 (7)Na11v—Na13—Na3v106.28 (3)
O11vi—Na3—O4vi92.76 (7)S11x—Na13—Na3v115.55 (3)
O15xvi—Na3—O4vi115.25 (7)S11—Na13—Na3v58.23 (2)
O2—Na3—O13xii92.18 (7)Na12—Na13—Na3v111.19 (3)
O11vi—Na3—O13xii83.83 (6)Na1xv—Na13—Na3v90.66 (3)
O15xvi—Na3—O13xii81.64 (7)S1—O1—Na11ix127.47 (10)
O4vi—Na3—O13xii160.94 (7)S1—O1—Na13xiv128.41 (9)
O2—Na3—Na1xii120.18 (6)Na11ix—O1—Na13xiv88.34 (7)
O11vi—Na3—Na1xii44.87 (5)S1—O2—Na3125.40 (10)
O15xvi—Na3—Na1xii95.93 (6)S1—O2—Na1iv127.52 (10)
O4vi—Na3—Na1xii116.72 (6)Na3—O2—Na1iv103.05 (7)
O13xii—Na3—Na1xii49.43 (4)S1—O2—Na297.20 (9)
O2—Na3—Br1xii83.00 (5)Na3—O2—Na299.42 (6)
O11vi—Na3—Br1xii77.92 (5)Na1iv—O2—Na293.06 (6)
O15xvi—Na3—Br1xii146.60 (6)S1—O3—Na11126.40 (10)
O4vi—Na3—Br1xii80.64 (5)S1—O3—Na13xii126.19 (9)
O13xii—Na3—Br1xii80.31 (5)Na11—O3—Na13xii82.32 (6)
Na1xii—Na3—Br1xii51.33 (2)S1—O4—Na1133.74 (10)
O2—Na3—S1vi87.26 (5)S1—O4—Na3iv117.32 (9)
O11vi—Na3—S1vi97.99 (5)Na1—O4—Na3iv104.42 (7)
O15xvi—Na3—S1vi95.40 (6)S1—O4—Na298.36 (9)
O4vi—Na3—S1vi22.98 (4)Na1—O4—Na294.87 (6)
O13xii—Na3—S1vi175.93 (6)Na3iv—O4—Na297.56 (6)
Na1xii—Na3—S1vi134.02 (4)O15—O5—Na1108.50 (12)
Br1xii—Na3—S1vi103.62 (3)O15—O5—Na13xv117.32 (13)
O2—Na3—Na11xvi130.63 (6)Na1—O5—Na13xv100.41 (7)
O11vi—Na3—Na11xvi66.33 (5)O15—O5—H5101 (2)
O15xvi—Na3—Na11xvi40.53 (5)Na1—O5—H594 (2)
O4vi—Na3—Na11xvi75.32 (5)Na13xv—O5—H5131 (2)
O13xii—Na3—Na11xvi119.60 (6)S11—O11—Na1ii126.62 (10)
Na1xii—Na3—Na11xvi109.10 (3)S11—O11—Na3iv129.28 (10)
Br1xii—Na3—Na11xvi135.25 (3)Na1ii—O11—Na3iv89.16 (7)
S1vi—Na3—Na11xvi58.33 (2)S11—O12—Na13124.86 (10)
O2—Na3—Na1iv38.74 (5)S11—O12—Na13ix119.14 (10)
O11vi—Na3—Na1iv123.02 (6)Na13—O12—Na13ix110.89 (9)
O15xvi—Na3—Na1iv146.64 (6)S11—O12—Na12100.48 (10)
O4vi—Na3—Na1iv94.64 (5)Na13—O12—Na1296.99 (7)
O13xii—Na3—Na1iv72.00 (5)Na13ix—O12—Na1294.66 (7)
Na1xii—Na3—Na1iv82.40 (3)S11—O13—Na3v127.32 (9)
Br1xii—Na3—Na1iv48.10 (2)S11—O13—Na1124.91 (10)
S1vi—Na3—Na1iv109.71 (3)Na3v—O13—Na182.66 (6)
Na11xvi—Na3—Na1iv167.18 (4)S11—O14—Na11134.46 (10)
O2—Na3—Na1vi95.11 (5)S11—O14—Na11ix126.65 (10)
O11vi—Na3—Na1vi72.53 (5)Na11—O14—Na11ix95.13 (8)
O15xvi—Na3—Na1vi131.97 (6)S11—O14—Na1295.38 (9)
O4vi—Na3—Na1vi36.68 (4)Na11—O14—Na1297.31 (7)
O13xii—Na3—Na1vi125.41 (6)Na11ix—O14—Na1296.20 (7)
Na1xii—Na3—Na1vi81.21 (3)O5—O15—Na11109.07 (13)
Br1xii—Na3—Na1vi47.37 (2)O5—O15—Na3xvi115.88 (13)
S1vi—Na3—Na1vi58.67 (2)Na11—O15—Na3xvi98.91 (7)
Na11xvi—Na3—Na1vi94.94 (3)O5—O15—H15102 (3)
Na1iv—Na3—Na1vi80.93 (3)Na11—O15—H15100 (3)
O2—Na3—Na242.93 (5)Na3xvi—O15—H15129 (3)
O11vi—Na3—Na2129.43 (6)O1—S1—O4109.46 (10)
O15xvi—Na3—Na2138.83 (6)O1—S1—O2110.11 (10)
O4vi—Na3—Na242.63 (4)O4—S1—O2108.47 (11)
O13xii—Na3—Na2129.21 (5)O1—S1—O3109.99 (11)
Na1xii—Na3—Na2124.42 (3)O4—S1—O3109.69 (9)
Br1xii—Na3—Na273.10 (2)O2—S1—O3109.09 (10)
S1vi—Na3—Na252.009 (17)O11—S11—O12109.62 (10)
Na11xvi—Na3—Na2109.65 (3)O11—S11—O14110.02 (10)
Na1iv—Na3—Na257.93 (2)O12—S11—O14108.45 (11)
Na1vi—Na3—Na257.29 (2)O11—S11—O13110.01 (11)
O14—Na11—O1x176.42 (8)O12—S11—O13109.38 (10)
O14—Na11—O14x87.23 (9)O14—S11—O13109.33 (10)
Symmetry codes: (i) y+1/2, x+1, z+2; (ii) y+1, x1/2, z+2; (iii) x+3/2, y+1/2, z; (iv) y+1, x1/2, z+1; (v) x, y, z+1; (vi) y+1/2, x+1, z+1; (vii) x+3/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z; (ix) y, x+1/2, z; (x) y+1/2, x, z; (xi) x+1/2, y+1/2, z1; (xii) x, y, z1; (xiii) y+1/2, x, z1; (xiv) y, x+1/2, z1; (xv) x+1, y+1, z+2; (xvi) x+1, y+1, z+1; (xvii) y+1/2, x, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.86 (3)1.85 (3)2.695 (2)166 (3)
O15—H15···O130.86 (4)1.86 (4)2.688 (2)161 (4)

Experimental details

(kc)(rgp29c)
Crystal data
Chemical formulaH4ClNa9O20S4H4BrNa9O20S4
Mr694.63739.09
Crystal system, space groupTetragonal, P4/nTetragonal, P4/n
Temperature (K)150150
a, c (Å)29.6829 (3), 8.4018 (1)14.9126 (5), 8.4052 (2)
V3)7402.61 (14)1869.20 (10)
Z164
Radiation typeMo KαMo Kα
µ (mm1)0.972.96
Crystal size (mm)0.1 × 0.1 × 0.050.18 × 0.18 × 0.07
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
Multi-scan
[c.f. r.h. blessing, acta cryst. (1995), a51, 33-38]
Tmin, Tmax0.909, 0.9530.618, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
65291, 8402, 4855 8459, 3226, 2368
Rint0.0900.049
(sin θ/λ)max1)0.6490.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.147, 1.24 0.040, 0.093, 1.07
No. of reflections84023226
No. of parameters649164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0244P)2 + 19.2938P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0204P)2 + 1.5967P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.59, 0.530.59, 0.64

Computer programs: Collect (Nonius BV, 1997-2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR92 (Giacovazzo et al., 1993), SHELXS86 (Sheldrick, 1986), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) for (kc) top
D—H···AD—HH···AD···AD—H···A
O33—H33···O10i1.00 (6)1.70 (6)2.675 (4)164 (5)
O34—H34···O14ii0.97 (6)1.81 (6)2.706 (4)152 (5)
O35—H35···O30.85 (4)1.83 (4)2.677 (4)169 (4)
O36—H36···O50.82 (5)1.92 (5)2.711 (4)162 (5)
O37—H37···O170.95 (6)1.77 (6)2.700 (4)167 (5)
O38—H38···O210.98 (7)1.71 (6)2.677 (4)171 (6)
O39—H39···O26iii0.89 (5)1.84 (5)2.696 (4)159 (5)
O40—H40···O30iv1.02 (7)1.71 (6)2.687 (4)158 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) y+1/2, x+1, z+1; (iv) y+1/2, x+1, z.
Hydrogen-bond geometry (Å, º) for (rgp29c) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.86 (3)1.85 (3)2.695 (2)166 (3)
O15—H15···O130.86 (4)1.86 (4)2.688 (2)161 (4)
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE5022 ). Services for accessing these data are described at the back of the journal.

2Determined using neutrons.

Acknowledgements

We would like to thank the EPSRC for purchasing the Nonius Kappa CCD diffractometer.

References

First citationAdams, J. M. & Pritchard, R. G. (1978). Acta Cryst. B34, 1428–1432.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAdams, J. M., Pritchard, R. G. & Thomas, J. M. (1978). J. Chem. Soc. Chem. Commun. p. 288.  CrossRef Google Scholar
First citationAdams, J. M., Ramdas, V. & Hewat, A. W. (1980a). Acta Cryst. B36, 570–574.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAdams, J. M., Ramdas, V. & Hewat, A.W. (1980b). Acta Cryst. B36, 1096–1098.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAdams, J. M., Ramdas, V. & Hewat, A.W. (1981). Acta Cryst. B37, 915–917.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosgrove, S. D. & Jones, W. (1998a). J. Mater. Chem. 8, 413–417.  Web of Science CrossRef CAS Google Scholar
First citationCosgrove, S. D. & Jones, W. (1998b). J. Mater. Chem. 8, 419–424.  Web of Science CrossRef CAS Google Scholar
First citationCosgrove, S. D. & Jones, W. (1998c). J. Mater. Chem. 8, 1911–1915.  Web of Science CrossRef CAS Google Scholar
First citationFanfani, L., Giuseppetti, G., Tadini, C. & Zanazzi, P. F. (1980). Mineral. Mag. 43, 753–759.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHunt, R. H., Leacock, A., Peters, C. W. & Hecht, K. T. (1965). J. Chem. Phys. 42, 1931–1946.  CrossRef CAS Web of Science Google Scholar
First citationJones, C. W. (1999). Application of Hydrogen Peroxide and Derivatives. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationJones, C. W., Hackett, A., Pattinson, A. I., Johnstone, A. & Wilson, S. L. (1996). J. Chem. Res. pp. 438–439.  Google Scholar
First citationKao Soap Co. Ltd & Nippon Peroxide Co. Ltd (1975). German Patent No. 2 530 539, filed 9 July 1975.  Google Scholar
First citationNonius (1997). Kappa-CCD, Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonius (1998). COLLECT, edited by R. Hooft. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPedersen, B. F. (1969). Acta Chem. Scand. 23, 1871–1877.  CrossRef CAS Web of Science Google Scholar
First citationPedersen, B. F. & Kvick, A. (1989). Acta Cryst. C45, 1724–1727.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPedersen, B. F. & Kvick, A. (1990). Acta Cryst. C46, 21–23.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPedersen, B. F. & Pedersen, B. (1964). Acta Chem. Scand. 18, 1454–1468.  CrossRef CAS Web of Science Google Scholar
First citationPritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596–605.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSakamoto, Y. (1968). J. Sci. Hiroshima University Ser. A Mathemat. Phys. Chem. 32, 101–108.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds