research papers
Structural investigations of phosphorus–nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6 − n)(NHBut)n derivatives
aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, bBirkbeck College, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England, and cGebze Institute of Technology, Gabze, 41400 Kocaeli, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk
A series of compounds of the N3P3Cl(6 − n)(NHBut)n family (where n = 0, 1, 2, 4 and 6) are presented, and their molecular parameters are related to trends in physical properties, which provides insight into a potential for nucleophilic substitution. The crystal structures of N3P3Cl5(NHBut) and N3P3Cl2(NHBut)4 have been determined at 120 K, and those of N3P3Cl6 and N3P3Cl4(NHBut)2 have been redetermined at 120 K. These are compared with the known structure of N3P3(NHBut)6 studied at 150 K. Trends in molecular parameters [phosphazene ring, P—Cl and P—N(HBut) distances, PCl2 angles, and endo- and exocyclic phosphazene ring parameters] across the series are observed. Hydrogen-bonding motifs are identified, characterized and compared. Both the molecular and the hydrogen-bonding parameters are related to the electron distribution in bonds and the derived basicities of the cyclophosphazene series of compounds. These findings provide evidence for a proposed mechanism for nucleophilic substitution at a phosphorus site bearing a PCl(NHBut) group.
Keywords: structure–property relationships; cyclophosphazenes; hydrogen bonding; structural systematics.
1. Introduction
During extensive investigations of the replacement patterns of chloride substituents in N3P3Cl6 by (Shaw, 1976; Krishnamurthy et al., 1976) the following conclusions were reached:
(i) Primary 2NR, show a greater degree of variation in substitution patterns than secondary HNR2.
H(ii) Most secondary 2 group is attacked in preference to a PCl(NR2) group.
follow a predominantly non-geminal path, in which a PCl(iii) At disubstitution, N3P3Cl4(NHR)2, both geminal and non-geminal replacements occur, depending on the R group. For R = Et only non-geminal cis and trans derivatives were observed, for R = Pri all three isomers, geminal and non-geminal, were obtained, whilst for R = But only the geminal derivative was isolated. Thus, under comparable conditions, the increasing steric bulk of the R group causes a change from non-geminal to geminal substitution.
(iv) At tetra-substitution, N3P3Cl2(NHR)4, a geminal pattern prevails.
Thus, when a cyclotriphosphazene compound containing PCl2 groups is allowed to react with tertiary butylamine, H2NBut, geminal P(NHBut)2 groups are formed with very few exceptions (Das et al., 1965; Begley et al., 1979; Krishnamurthy et al., 1980, Coles et al., 2001), and so tertiary butylamine is the preferred reagent to introduce geminal P(NHR)2 groupings into a cyclotriphosphazene derivative. The different substitution patterns have been explained by nucleophilic attack at different reaction sites, viz. at phosphorus or at the H atom of the PCl(NHR) grouping, giving rise to a proton abstraction/chloride ion elimination mechanism, which has been discussed elsewhere (Das et al., 1965; Ganapathiappan & Krishnamurthy, 1987). If the P atom becomes more susceptible to nucleophilic attack, which occurs in N4P4Cl8 (Krishnamurthy et al., 1977, 1978), the balance is tipped towards non-geminal replacements giving rise to PCl(NHBut) groups. H2NBut is the most sterically hindered of the primary discussed, which is also borne out by the fact that under many reaction conditions only tetra-substitution, N3P3Cl2(NHBut)4, is usually achieved (Das et al., 1965), although the fully substituted derivative, N3P3(NHBut)6, can be obtained under very drastic conditions (Das et al., 1965; Bickley et al., 2003). Whilst many other phosphazene derivatives containing P—Cl and P—NHR groupings are rather unstable, this does not seem to apply to tertiary butylamino derivatives. Following previous work (Beşli, Coles, Davies, Hursthouse, Kiliç, Mayer & Shaw, 2002; Beşli, Coles, Davies, Hursthouse, Kiliç, Mayer, Shaw & Yenilmez, 2002; Coles, Davies, Eaton, Hursthouse et al., 2004) the crystal structures of a series of tertiary butylamino derivatives of cyclophosphazene have been determined, and their molecular parameters and hydrogen-bonding motifs are discussed in the light of the chemical and physical properties of the compounds.
2. Experimental
2.1. Preparation of compounds
Hexachlorocyclotriphosphazene (1) (15 g, 43.16 mmol) and tert-butylamine (12.6 g, 173 mmol) were dissolved in dichloromethane (200 ml) under argon pressure in a 250 ml three-necked round-bottomed flask. The reaction mixture was stirred and refluxed in an oil-bath for 6 d. tert-Butylamine hydrochloride was filtered off and the solvent was removed at 303 K. Two compounds were detected by [Rf = 0.6 (2) and 0.3 (3), N3P3Cl4(NHBut)2], using dichloromethane–n-hexane (1:2) as the mobile phase. The crude product was subjected to on silica gel using dichloromethane–n-hexane (1:2) as the eluant. 1-tert-Butylamino-1,3,3,5,5-pentachlorocyclotriphosphazatriene (2) was separated and recrystallized from n-hexane. Found: C 12.56, H 2.74, N 14.66%; (M+H)+, 384 C4H10Cl5N4P3; requires: C 12.50, H 2.62, N 14.58%; M 383.34. M.p. 319 K [literature 262–263 K (Das et al., 1965); 383 K (Begley et al., 1979)]. Yield 2 g, 21%. 1,1-Bis(tert-butylamino)-3,3,5,5-tetrachlorocyclotriphosphazene (3) was separated and recrystallized from n-hexane–dichloromethane (1:1). Found: C 22.74, H 4.68, N 16.15%; (M+H)+, 421 C8H20Cl4N5P3; requires: C 22.82, H 4.79, N 16.63%; M 421. M.p. 393–395 K [literature 393–395 K (Das et al., 1965); 394 K (Begley et al., 1979)]. Yield 4.35 g, 24%.
Details of the preparation of N3P3Cl2(NHBut)4 (4) have been reported elsewhere (Das et al., 1965), with m.p. = 429 K from light petroleum.
2.2. X-ray crystallography
Data were collected at low temperature on an Nonius KappaCCD area-detector diffractometer located at the window of a Nonius FR591 rotating-anode X-ray generator, equipped with a molybdenum target (λMo Kα = 0.71073 Å). Structures were solved and refined using the SHELX97 (Sheldrick, 1997) suite of programs. Data were corrected for absorption effects by means of comparison of equivalent reflections using the program SORTAV (Blessing, 1997). Non-H atoms were refined anisotropically, whilst H atoms were located from a difference map and freely refined isotropically for all N-bound H atoms, whereas all methyl H atoms were located in idealized positions according to a riding model, with their displacement parameters based on the values of their parent atoms. Compound (3) exhibited some rotational disorder in one But group. It also crystallized in a with a Flack (1983) parameter that refined to a value of 0.08 (8), and hence it can be assumed that the correct has been determined. Pertinent data collection and parameters are collated in Table 1.1
|
3. Discussion
3.1. Molecular structures
Changes in molecular parameters of cyclophosphazene derivatives have been investigated as a function of substituents at fixed positions (Coles, Davies, Hursthouse et al., 2004); the overall architecture of these molecules remained the same, and so the designation of bond length and bond angle parameters was unambiguous for such a series of compounds. The molecules in the present study have different degrees of substitution of Cl atoms by NHBut residues, and this situation requires some modifications in the designation of their molecular parameters, as summarized in Fig. 1. The endocyclic bond angle α is defined as N—P(X)2—N, the endocyclic bond angle β as (Y)2P—N—P(X)2 or (XY)P—N—P(X)2, the endocyclic bond angle γ as N—P(XY)—N or N—P(Y)2—N and the endocyclic bond angle δ as (X)2P—N—P(X)2 or (Y)2P—N—P(Y)2, where X = Cl and Y = NHBut. Analogous descriptions apply to definitions of the endocyclic bond lengths a, b, c etc., as summarized in Fig. 1. Selected molecular parameters for all the crystal structures used in this comparison are given in Table 2.
|
Although the room-temperature molecular structure of N3P3Cl6 (1) had been reported (Bullen, 1971), a low-temperature structure (depicted in Fig. 2) was determined for the purposes of accurate comparison in this study.
The structures of the two chemically equivalent molecules in the 3P3Cl5(NHBut) (2) are shown in Fig. 3, and a number of structural differences from (1) are observed. There is a significant decrease in γ, with a corresponding increase in β, and smaller changes are observed in α and δ. There is a marked increase in bond length a and a marked decrease in b, whereas c is largely unaffected. The non-geminal P—Cl bond, d′, is longer than the corresponding bond lengths, d, of the PCl2 group. The opposite behaviour is observed for the exocyclic P—N bond length e′, which is substantially shorter than those in geminal groups, e. Both effects have been observed in similar structures (Ahmed & Pollard, 1972; Ahmed & Gabe, 1975; Ahmed & Fortier, 1980; Alkubaisi et al., 1988; Beşli, Coles, Davies, Hursthouse, Kilic, Mayer, Shaw & Yenilmez, 2002; Coles, Davies, Eaton et al., 2004; Beşli, Coles, Davies, Hursthouse et al., 2004; Beşli, Coles, Davies, Eaton et al., 2004). The sum of the bond angles around the exocyclic N atom [358.3 (1)°] shows that it has trigonal planar character.
of NAlthough the 3P3Cl4(NHBut)2 (3) had been previously determined (Begley et al., 1979), the study was performed at room temperature and the data were of insufficient quality to determine H-atom positions. As (3) is a typical example of a geminally disubstituted derivative of the type, N3P3Cl4R2, where R is a strongly electron-releasing substituent, an accurate structure (shown in Fig. 4) was determined at low temperature, so that the molecular parameters could be included in this work. The structure exhibits two chemically equivalent molecules in the The bond lengths a of 1.619 (1) Å are relatively long, whereas those for b of 1.556 (1) Å are relatively short, giving a Δ(P—N) (= a − b) value of 0.063 (1) Å, one of the largest observed from a survey of the Cambridge Structural Database (CSD; Allen, 2002). Concomitantly, there is a very small bond angle α of 112.3 (2)° and a very large β angle of 123.5 (2)°. The exocyclic P—N bond length, e, of 1.616 (1) Å is quite short for this type of bond, indicating extensive back-donation of the lone-pair of electrons on the N atom towards the P atom. This bond shortening might have been even greater were it not for the conformation of the NHBut substituents, one of which is in almost a complete Type II conformation, while the other is between Type I and III [an explanation of these conformational types is given by Fincham et al. (1986)]. The back-donation is also demonstrated by the sum of the bond angles around the exocyclic N atoms of 358.8 (2)°, showing their trigonal planar character. Increases in P—Cl bond lengths, d, and a decrease in bond angle Cl—P—Cl, ω, are also noted.
of NThe 3P3Cl2(NHBut)4 (4) is presented in Fig. 5. The effect on molecular parameters resulting from the large electron-releasing capacity of the NHBut substituents is also demonstrated in this compound, as the changes in some parameters are further enhanced compared with the disubstituted compound (3). The bond angle α of 114.4 (1)° bears this out, as do the respective bond lengths a and b of 1.623 (2) and 1.560 (2) Å, giving a Δ(P—N) value of 0.063 (2) Å. The averaged sum of bond angles around the exocyclic N atoms of 353.7 (1)° is the lowest in this series of compounds and indicates the greatest deviation from a trigonal planar structure.
of NThe low-temperature structure of N3P3(NHBut)6 (5) has been reported previously (Bickley et al., 2003) with the CSD refcode GUZVIG, and is used for comparison in this study. As expected for such a symmetrically substituted derivative, there are no statistically significant variations in the endocyclic P—N bond lengths. The averaged sum of the bond angles around the exocyclic N atoms of 355.1 (2)° is also somewhat lower than those for (2) and (3).
A measure of the conformational orientation of the NHBut groups relative to each other is given by the torsion angle to both adjacent ring N atoms. A measure of the close-packed nature of the NHBut groups is given by the non-bonded separation of the central C atoms between adjacent moieties (Table 3). It can be seen from Table 3 that there is a general decrease in this C⋯C distance for a corresponding increase in the number of NHBut groups situated about the N3P3 core. This trend is indicative of the fact that these groups are more tightly clustered around the core and hence impede any interactions with it, owing to an increase in Another indication of the close-packed nature of the NHBut groups is the dihedral angle between the plane of the N3P3 ring and the orientation of the NHBut group with respect to the P—N bond (Table 3). With an increasing number of NHBut groups there is, on average, a corresponding increase in the torsion angle, indicating that this group must increasingly twist away from its sterically unhindered optimal position.
|
3.2. Hydrogen bonding
The hydrogen bonding in the , which shows the formation of discreet head-to-tail dimers containing an eight-membered ring as a result of donation from the ButN—H group to the ring N atom of another molecule. The conformation of this ring is approximately saddle-shaped, with slightly different distances between donor and acceptor atoms, of 3.079 (4) and 3.095 (4) Å, respectively.
of (2) is depicted in Fig. 6The hydrogen bonding in the and leads to the formation of a similar structural arrangement to (2), where the intermolecular hydrogen bonds form an eight-membered ring of complementary dimers. The corresponding donor–acceptor separation distances of (3) are 3.123 (3) and 3.167 (4) Å, respectively, making them somewhat longer than those in (2).
of (3) is presented in Fig. 7The hydrogen bonding exhibited by (4) forms a similar dimer motif (Fig. 8), although the conformation of the eight-membered ring differs in that it is a boat form with the P atoms at the apices and the central six atoms coplanar. The symmetric N⋯N distances, with a value of 3.392 (4) Å, are even longer than in (3), indicating weaker hydrogen bonding, which presumably arises from an increase in in the hydrogen-bonding region.
Bickley et al. (2003) reported no hydrogen bonding in the of N3P3(NHBut)6 (5). As the shortest N⋯N separation in the structure is 4.950 (5) Å there is certainly no sign of a hydrogen bond from any ButN—H group to a ring N atom. There may be a very weak intramolecular interaction from one NHBut group to another NHBut group in a cis non-geminal position, because there are two of these interactions having separations of 3.751 (5) and 3.766 (5) Å in chemically identical environments in the two molecules composing the asymmetric unit.
3.3. Structure–property relationships
The molecular parameters of (2)–(5) are discussed in terms of the basicity of each molecule. The NHBut substituent is one of the most base-strengthening primary amino residues so far investigated, with a substituent constant αR value of 5.9 (Feakins et al., 1969). The basicities of the more basic compounds N3P3(NHBut)6 and N3P3Cl2(NHBut)4 have been measured in nitrobenzene solution with values of 8.0 and 4.35, respectively (Feakins et al., 1964). In fact, the basicity of 8.0 for (4) would be ∼ 9.9, if allowance were made for the saturation effect (Feakins et al., 1969). The basicity values of the remaining derivatives have been obtained by summation of known substituent basicity constants (ΣαR) according to the previously described (Beşli, Coles, Davies, Hursthouse, Kilic, Mayer & Shaw, 2002), viz. −20.3, −14 and −8 for (1), (2) and (3), respectively. These ΣαR values span a range of 30 pKa units.
3.3.1. Molecular structures
Although the preparation of (2) has been published on two occasions, different physical properties were reported; the first report (Das et al., 1965) gave a melting point of 262–263 K and later a 31P NMR spectrum with absorptions at 16.0 and −5.3 p.p.m. (Keat et al., 1976). The sample of (2) prepared for this study has a melting point of 319 K and a 31P NMR spectrum with absorptions at 21.1 and 13.45 p.p.m. The fact that the structure is confirmed by X-ray crystallography (Fig. 3) indicates that the former report must have been incorrectly assigned to a different product. The second report (Begley et al., 1979) gave a melting point of 383 K for (2), which may indicate a different polymorph, and investigations into this result are underway.
The electron-donating power of the NHBut group is demonstrated by the Δ(P—N) values of (2), (3) and (4), which are 0.027 (2), 0.063 (1) and 0.063 (2) Å, respectively (Table 2). As indicated by the results above, a simple additive behaviour is not expected for endocyclic parameters. For (2), in particular, some of the electron density appears to be diverted into lengthening the P(NHBut)—Cl bond, which at 2.017 (1) Å is considerably longer than the other P—Cl bonds in this compound. There are substantial changes in some bond angles, but again these are non-uniform, e.g. reduction in α.
In contrast to the non-uniform changes in endocyclic parameters, the exocyclic values follow uniform and consistent trends. The effect of the electron-releasing capacity of the substituents on the average values of the P—Cl bonds and the Cl—P—Cl bond angles in the remaining PCl2 groups are compared with the sum of the substituent basicity constants (∑αR) in Table 4, where the structures of some related PPh2 derivatives have been included, viz. N3P3Cl4Ph2 (6) (Mani et al., 1965) and N3P3Cl2Ph4 (7) (Mani et al., 1966). In this series of compounds there is a good correlation between the increase in P—Cl bond length and the increase in ∑αR, as shown graphically in Fig. 9(a). Although the changes are small for the disubstituted compounds in this sequence, they are in keeping with the electron-supplying properties discussed above. For the tetrasubstituted compounds the effects on the P—Cl bond lengths are rather larger, as expected, because the effects of four donor groups are spread over only two P—Cl bonds, whereas the effects of two donors are spread over four P—Cl bonds for the disubstituted derivatives. A similar explanation can account for the concomitant decrease in Cl—P—Cl bond angles with ∑αR (shown graphically in Fig. 9a), which is expected from a lengthening of the P—Cl bonds.
|
The above linear relationships are mirrored in a number of other physical properties. In a study of the Faraday effect of some aminochlorocyclotriphosphazenes in CCl4 solution, it was noted that in a plot of the number of amino substituents versus the molecular magnetic rotation geminal derivatives gave a good straight-line relationship, whilst non-geminal derivatives showed positive deviations (Bruniquel et al., 1973). A possible explanation of these observations is that the former only depends on electron distributions within the plane of the N3P3 ring, whereas in the latter there is ample evidence from crystallographic data that there is an which changes the parameters of substituents above and below this ring.
In this study a significant correlation has been observed between molecular parameters and 35Cl NQR frequencies of PCl2 groups of cyclophosphazene derivatives, perhaps because this technique deals with crystalline substances as does crystallography. It has been shown previously that a linear relationship exists between 35Cl NQR frequencies and the P—Cl bond lengths both for Ph derivatives (Keat et al., 1972) and for NHBut derivatives (Sridharan et al., 1980). It is found that such a relationship holds for the compounds reported in this study and that it also extends to their Cl—P—Cl bond angles (Fig. 9b). These results are also important because the observed linear correlations between molecular parameters and a physical parameter (35Cl NQR frequency) for molecules in the solid state are mirrored in the analogous dependence on a physical parameter (sum of substituent basicity constants, ∑αR) for molecules in the solution state.
The structural data also permit some tentative conclusions to be drawn as to why there is a mono, N3P3Cl5(NHBut), but no tris derivative, N3P3Cl3(NHBut)3, because the successive substitutions of the cyclophosphazene group change molecular parameters, particularly the P—Cl bond lengths. There is now a good deal of evidence for a hydrogen abstraction/chloride ion elimination mechanism leading to a trigonal planar intermediate, which then reacts rapidly with any present (Das et al., 1965; Ganapathiappan & Krishnamurthy, 1987). The proposed mechanism for nucleophilic substitution at a phosphorus site bearing an NHBut group is shown in Fig. 10. When X = Cl, which is electron withdrawing, the proton abstraction by base is reversible, which was clearly shown by a D2O shake-up in proton NMR spectroscopy to eliminate the N–H coupling in (3) and (4) (Das et al., 1965). If X = NHBut, which is a strongly electron-supplying group, proton abstraction is irreversible and thus prevents isolation of the tris derivative.
3.3.2. Hydrogen-bonding trends
Compounds (2), (3) and (4) form eight-membered-ring hydrogen-bonded dimers, with the rings in a saddle shape for (2) and (3) and a boat conformation for (4). The increase in average N⋯N distances for (2) (3.087 Å), (3) (3.145 Å) and (4) (3.392 Å) are probably due to steric crowding. There are no intermolecular hydrogen bonds for (5), which is a result of the steric shielding of the potential acceptor N atoms in the cyclophosphazene core of the molecule.
The position of protonation of cyclophosphazene derivatives was originally deduced to be the ring N atoms from potentiometric studies, and this hypothesis was later proven by crystallography (Mani & Wagner, 1971; Shaw, 1976). These same N atoms are involved in the observed hydrogen-bonding patterns. However, the weakest base (2) seems to form the strongest hydrogen bonds, and the strongest base (5) does not form any intermolecular hydrogen-bonded interactions. Undoubtedly must be the cause, a conclusion supported by the geometric and conformational results (see above) regarding the relative conformations of the NHBut groups.
4. Conclusions
This is the first series of products from reaction of N3P3Cl6 with a given amine (in this case a bulky primary amine, H2NR), where all the compounds have been characterized crystallographically. The three hydrogen-bonded dimers show two types of eight-membered ring conformation; one is saddle shaped with slightly different hydrogen bridges for N3P3Cl5(NHBut) and N3P3Cl4(NHBut)2, whereas for N3P3Cl2(NHBut)4 the two intermolecular hydrogen-bonded bridges are identical and the conformation is that of a boat. The changes in observed molecular parameters show good correlation with changes in other physical properties, such as the substituent basicity constants, the Faraday effect, some 31P NMR parameters and 35Cl NQR frequencies. In spite of the much increased basicity of the ring N atoms, the capacity for intermolecular hydrogen-bonding decreases from the monosubstituted compound, N3P3Cl5(NHBut), to N3P3Cl2(NHBut)4 and has disappeared altogether for N3P3(NHBut)6. This behaviour is attributed to The change in molecular parameters with increasing replacement of Cl atoms by NHBut groups gives rise to regular changes for exocyclic parameters, but is somewhat erratic for endocyclic parameters because of the different degrees and positions of substitution.
Supporting information
10.1107/S0108768106000851/de5025sup1.cif
contains datablocks 1, 2, 3, 4. DOI:Structure factors: contains datablocks 1, 2, 3, 4. DOI: 10.1107/S0108768106000851/de5025sup2.hkl
Data collection: COLLECT (Hooft, 1998) for (2); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (3), (4). Cell
DENZO, COLLECT for (1); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (2); DENZO & COLLECT for (3), (4). Data reduction: DENZO, COLLECT for (1); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (2); DENZO & COLLECT for (3), (4). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (1), (3), (4). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON (Spek, 1998) for (1).Cl6N3P3 | Dx = 2.140 Mg m−3 |
Mr = 347.64 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 1403 reflections |
a = 13.8572 (8) Å | θ = 2.9–27.5° |
b = 12.8086 (11) Å | µ = 1.99 mm−1 |
c = 6.0801 (5) Å | T = 120 K |
V = 1079.17 (14) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.40 × 0.10 mm |
F(000) = 672 |
Bruker-Nonius KappaCCD Area Detector diffractometer | 1283 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 1194 reflections with I > 2σ(I) |
10cm confocal mirrors monochromator | Rint = 0.022 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
ϕ and ω scans | h = −16→18 |
Absorption correction: multi-scan SADABS V2.10 (Sheldrick, G.M., 2003) | k = −14→16 |
Tmin = 0.437, Tmax = 0.826 | l = −7→7 |
7733 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3798P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.074 | (Δ/σ)max = 0.005 |
S = 1.26 | Δρmax = 0.67 e Å−3 |
1283 reflections | Δρmin = −0.69 e Å−3 |
62 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0213 (18) |
Cl6N3P3 | V = 1079.17 (14) Å3 |
Mr = 347.64 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 13.8572 (8) Å | µ = 1.99 mm−1 |
b = 12.8086 (11) Å | T = 120 K |
c = 6.0801 (5) Å | 0.50 × 0.40 × 0.10 mm |
Bruker-Nonius KappaCCD Area Detector diffractometer | 1283 independent reflections |
Absorption correction: multi-scan SADABS V2.10 (Sheldrick, G.M., 2003) | 1194 reflections with I > 2σ(I) |
Tmin = 0.437, Tmax = 0.826 | Rint = 0.022 |
7733 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 62 parameters |
wR(F2) = 0.074 | 0 restraints |
S = 1.26 | Δρmax = 0.67 e Å−3 |
1283 reflections | Δρmin = −0.69 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.64922 (15) | 0.7500 | 0.5951 (4) | 0.0187 (5) | |
N2 | 0.49315 (11) | 0.64417 (11) | 0.4448 (2) | 0.0181 (3) | |
P1 | 0.59531 (3) | 0.64294 (3) | 0.55879 (7) | 0.01317 (16) | |
P2 | 0.43947 (4) | 0.7500 | 0.39325 (10) | 0.01308 (18) | |
Cl1 | 0.58539 (3) | 0.57022 (4) | 0.84708 (7) | 0.02287 (16) | |
Cl2 | 0.68240 (3) | 0.54925 (4) | 0.39215 (8) | 0.02194 (16) | |
Cl3 | 0.31285 (4) | 0.7500 | 0.54745 (11) | 0.02096 (18) | |
Cl4 | 0.39841 (5) | 0.7500 | 0.08080 (10) | 0.02267 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0111 (9) | 0.0146 (10) | 0.0305 (12) | 0.000 | −0.0067 (9) | 0.000 |
N2 | 0.0126 (7) | 0.0139 (7) | 0.0278 (8) | −0.0005 (5) | −0.0068 (6) | −0.0011 (6) |
P1 | 0.0108 (3) | 0.0123 (3) | 0.0163 (3) | 0.00129 (15) | −0.00187 (15) | 0.00004 (16) |
P2 | 0.0099 (3) | 0.0142 (3) | 0.0152 (3) | 0.000 | −0.0025 (2) | 0.000 |
Cl1 | 0.0268 (3) | 0.0243 (3) | 0.0175 (2) | 0.00142 (18) | 0.00102 (17) | 0.00455 (17) |
Cl2 | 0.0205 (2) | 0.0217 (3) | 0.0236 (3) | 0.00652 (17) | 0.00390 (17) | −0.00308 (17) |
Cl3 | 0.0138 (3) | 0.0267 (4) | 0.0223 (3) | 0.000 | 0.0039 (2) | 0.000 |
Cl4 | 0.0212 (3) | 0.0320 (4) | 0.0147 (3) | 0.000 | −0.0039 (2) | 0.000 |
N1—P1 | 1.5771 (11) | P1—Cl1 | 1.9897 (6) |
N1—P1i | 1.5771 (11) | P2—N2i | 1.5777 (15) |
N2—P1 | 1.5763 (15) | P2—Cl4 | 1.9831 (9) |
N2—P2 | 1.5777 (15) | P2—Cl3 | 1.9894 (9) |
P1—Cl2 | 1.9806 (6) | ||
P1—N1—P1i | 120.80 (13) | Cl2—P1—Cl1 | 102.07 (3) |
P1—N2—P2 | 121.29 (9) | N2i—P2—N2 | 118.46 (11) |
N2—P1—N1 | 118.57 (9) | N2i—P2—Cl4 | 109.01 (6) |
N2—P1—Cl2 | 109.17 (6) | N2—P2—Cl4 | 109.01 (6) |
N1—P1—Cl2 | 108.05 (8) | N2i—P2—Cl3 | 108.79 (6) |
N2—P1—Cl1 | 109.26 (6) | N2—P2—Cl3 | 108.79 (6) |
N1—P1—Cl1 | 108.45 (9) | Cl4—P2—Cl3 | 101.44 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C4H10Cl5N4P3 | Dx = 1.701 Mg m−3 |
Mr = 384.32 | Melting point: 46°C K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.8045 (14) Å | Cell parameters from 6816 reflections |
b = 10.7964 (16) Å | θ = 2.9–27.5° |
c = 20.7719 (12) Å | µ = 1.27 mm−1 |
β = 104.132 (7)° | T = 120 K |
V = 3002.1 (6) Å3 | Cut plate, colourless |
Z = 8 | 0.18 × 0.10 × 0.02 mm |
F(000) = 1536 |
Bruker-Nonius 95mm CCD camera on κ-goniostat diffractometer | 6867 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 5549 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
Φ & ω scans | h = −17→17 |
Absorption correction: multi-scan SORTAV (Blessing, 1997) | k = −14→14 |
Tmin = 0.804, Tmax = 0.975 | l = −26→26 |
40456 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | Difmap |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0415P)2 + 1.5716P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
6867 reflections | Δρmax = 0.49 e Å−3 |
370 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0021 (2) |
C4H10Cl5N4P3 | V = 3002.1 (6) Å3 |
Mr = 384.32 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.8045 (14) Å | µ = 1.27 mm−1 |
b = 10.7964 (16) Å | T = 120 K |
c = 20.7719 (12) Å | 0.18 × 0.10 × 0.02 mm |
β = 104.132 (7)° |
Bruker-Nonius 95mm CCD camera on κ-goniostat diffractometer | 6867 independent reflections |
Absorption correction: multi-scan SORTAV (Blessing, 1997) | 5549 reflections with I > 2σ(I) |
Tmin = 0.804, Tmax = 0.975 | Rint = 0.044 |
40456 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.086 | Difmap |
S = 1.07 | Δρmax = 0.49 e Å−3 |
6867 reflections | Δρmin = −0.50 e Å−3 |
370 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17129 (17) | 1.3566 (2) | 0.02067 (11) | 0.0200 (5) | |
C2 | 0.06088 (19) | 1.3307 (3) | −0.01014 (13) | 0.0267 (5) | |
C3 | 0.1898 (2) | 1.4958 (2) | 0.02625 (14) | 0.0281 (5) | |
C4 | 0.2045 (2) | 1.2962 (2) | 0.08855 (12) | 0.0258 (5) | |
N1 | 0.19717 (16) | 0.94770 (19) | −0.13223 (10) | 0.0262 (5) | |
N2 | 0.19499 (15) | 1.06715 (17) | −0.01843 (9) | 0.0221 (4) | |
N3 | 0.29851 (14) | 1.16389 (18) | −0.10223 (9) | 0.0203 (4) | |
N4 | 0.23111 (15) | 1.30907 (17) | −0.02485 (10) | 0.0190 (4) | |
P1 | 0.27037 (4) | 1.04750 (5) | −0.14864 (3) | 0.01853 (13) | |
P2 | 0.16093 (4) | 0.95511 (5) | −0.06614 (3) | 0.01894 (13) | |
P3 | 0.26885 (4) | 1.17078 (5) | −0.03256 (3) | 0.01697 (13) | |
Cl1 | 0.21669 (5) | 1.10893 (6) | −0.24080 (3) | 0.03175 (15) | |
Cl2 | 0.39452 (5) | 0.96200 (6) | −0.15753 (3) | 0.02996 (15) | |
Cl3 | 0.19861 (5) | 0.79780 (5) | −0.01638 (3) | 0.03274 (15) | |
Cl4 | 0.01293 (4) | 0.94518 (6) | −0.08895 (3) | 0.03296 (15) | |
Cl5 | 0.39640 (5) | 1.14713 (6) | 0.03862 (3) | 0.03337 (16) | |
H2A | 0.0431 (18) | 1.365 (2) | −0.0526 (13) | 0.022 (6)* | |
H2B | 0.023 (2) | 1.364 (3) | 0.0177 (14) | 0.036 (8)* | |
H2C | 0.046 (2) | 1.242 (3) | −0.0130 (13) | 0.036 (8)* | |
H3A | 0.257 (2) | 1.505 (3) | 0.0443 (13) | 0.027 (7)* | |
H3B | 0.172 (2) | 1.533 (2) | −0.0176 (14) | 0.027 (7)* | |
H3C | 0.151 (2) | 1.530 (3) | 0.0543 (14) | 0.035 (8)* | |
H4A | 0.165 (2) | 1.333 (3) | 0.1171 (15) | 0.043 (8)* | |
H4B | 0.276 (2) | 1.310 (3) | 0.1100 (13) | 0.028 (7)* | |
H4C | 0.191 (2) | 1.208 (3) | 0.0842 (14) | 0.038 (8)* | |
H4N | 0.2283 (18) | 1.349 (2) | −0.0552 (12) | 0.016 (6)* | |
C5 | 0.49140 (17) | 1.1284 (2) | 0.33533 (12) | 0.0232 (5) | |
C6 | 0.4741 (2) | 1.1961 (3) | 0.26974 (15) | 0.0363 (7) | |
C7 | 0.5492 (2) | 1.2093 (3) | 0.39132 (16) | 0.0383 (7) | |
C8 | 0.5476 (2) | 1.0082 (3) | 0.3331 (2) | 0.0404 (7) | |
N5 | 0.12289 (14) | 0.9223 (2) | 0.23559 (9) | 0.0255 (4) | |
N6 | 0.21928 (13) | 1.02251 (18) | 0.35386 (9) | 0.0199 (4) | |
N7 | 0.32415 (14) | 0.9041 (2) | 0.27736 (10) | 0.0295 (5) | |
N8 | 0.39181 (15) | 1.1045 (2) | 0.34894 (11) | 0.0264 (5) | |
P4 | 0.22630 (4) | 0.88148 (6) | 0.22243 (3) | 0.01944 (13) | |
P5 | 0.11899 (4) | 0.98830 (6) | 0.30245 (3) | 0.01815 (13) | |
P6 | 0.32529 (4) | 0.98200 (5) | 0.34220 (3) | 0.01789 (13) | |
Cl6 | 0.21650 (5) | 0.70290 (6) | 0.19752 (3) | 0.02974 (15) | |
Cl7 | 0.23985 (5) | 0.95840 (6) | 0.13795 (3) | 0.03634 (17) | |
Cl8 | 0.03513 (5) | 1.13916 (6) | 0.28189 (3) | 0.03327 (16) | |
Cl9 | 0.03580 (4) | 0.88348 (6) | 0.34766 (3) | 0.02836 (14) | |
Cl10 | 0.38806 (5) | 0.86825 (7) | 0.41762 (3) | 0.03675 (17) | |
H6A | 0.435 (2) | 1.148 (3) | 0.2370 (15) | 0.040 (9)* | |
H6B | 0.537 (2) | 1.217 (3) | 0.2576 (14) | 0.044 (8)* | |
H6C | 0.438 (3) | 1.276 (3) | 0.2701 (17) | 0.063 (11)* | |
H7A | 0.615 (2) | 1.231 (3) | 0.3834 (15) | 0.050 (9)* | |
H7B | 0.515 (2) | 1.288 (3) | 0.3950 (15) | 0.047 (9)* | |
H7C | 0.562 (3) | 1.160 (3) | 0.4311 (18) | 0.058 (10)* | |
H8A | 0.610 (2) | 1.026 (3) | 0.3230 (14) | 0.039 (8)* | |
H8B | 0.515 (2) | 0.955 (3) | 0.2961 (15) | 0.042 (9)* | |
H8C | 0.558 (3) | 0.963 (4) | 0.376 (2) | 0.071 (12)* | |
H8N | 0.366 (2) | 1.166 (3) | 0.3608 (13) | 0.026 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0267 (12) | 0.0161 (12) | 0.0190 (11) | 0.0017 (9) | 0.0092 (10) | −0.0025 (9) |
C2 | 0.0273 (13) | 0.0306 (15) | 0.0251 (13) | 0.0023 (11) | 0.0121 (11) | 0.0016 (11) |
C3 | 0.0371 (16) | 0.0185 (13) | 0.0300 (14) | 0.0025 (11) | 0.0104 (13) | −0.0027 (10) |
C4 | 0.0351 (15) | 0.0252 (14) | 0.0191 (11) | 0.0033 (11) | 0.0110 (11) | 0.0014 (10) |
N1 | 0.0335 (12) | 0.0238 (11) | 0.0245 (10) | −0.0090 (9) | 0.0133 (9) | −0.0085 (8) |
N2 | 0.0315 (11) | 0.0152 (10) | 0.0231 (10) | −0.0039 (8) | 0.0135 (9) | −0.0009 (8) |
N3 | 0.0232 (10) | 0.0181 (10) | 0.0228 (10) | −0.0026 (8) | 0.0117 (8) | −0.0018 (8) |
N4 | 0.0272 (11) | 0.0132 (10) | 0.0189 (10) | 0.0014 (8) | 0.0097 (9) | 0.0029 (8) |
P1 | 0.0213 (3) | 0.0177 (3) | 0.0178 (3) | 0.0012 (2) | 0.0071 (2) | −0.0008 (2) |
P2 | 0.0222 (3) | 0.0148 (3) | 0.0204 (3) | −0.0024 (2) | 0.0064 (2) | 0.0002 (2) |
P3 | 0.0197 (3) | 0.0141 (3) | 0.0179 (3) | −0.0009 (2) | 0.0061 (2) | −0.0003 (2) |
Cl1 | 0.0399 (4) | 0.0327 (4) | 0.0203 (3) | 0.0059 (3) | 0.0029 (3) | 0.0040 (2) |
Cl2 | 0.0280 (3) | 0.0291 (3) | 0.0342 (3) | 0.0092 (3) | 0.0104 (3) | −0.0037 (2) |
Cl3 | 0.0450 (4) | 0.0155 (3) | 0.0345 (3) | 0.0012 (3) | 0.0035 (3) | 0.0038 (2) |
Cl4 | 0.0221 (3) | 0.0410 (4) | 0.0352 (3) | −0.0039 (3) | 0.0059 (3) | 0.0008 (3) |
Cl5 | 0.0248 (3) | 0.0396 (4) | 0.0313 (3) | 0.0065 (3) | −0.0016 (3) | 0.0024 (3) |
C5 | 0.0164 (11) | 0.0228 (13) | 0.0327 (13) | −0.0002 (9) | 0.0108 (10) | −0.0009 (10) |
C6 | 0.0265 (14) | 0.0481 (19) | 0.0379 (16) | 0.0022 (14) | 0.0150 (13) | 0.0100 (14) |
C7 | 0.0253 (14) | 0.0468 (19) | 0.0432 (17) | −0.0061 (13) | 0.0092 (13) | −0.0141 (15) |
C8 | 0.0273 (15) | 0.0286 (16) | 0.073 (2) | 0.0020 (12) | 0.0282 (16) | −0.0028 (16) |
N5 | 0.0199 (10) | 0.0361 (12) | 0.0189 (9) | 0.0058 (9) | 0.0019 (8) | −0.0050 (9) |
N6 | 0.0175 (9) | 0.0237 (11) | 0.0199 (9) | −0.0012 (8) | 0.0073 (8) | −0.0047 (8) |
N7 | 0.0164 (10) | 0.0430 (13) | 0.0296 (11) | 0.0030 (9) | 0.0064 (9) | −0.0163 (10) |
N8 | 0.0198 (10) | 0.0185 (11) | 0.0462 (13) | −0.0002 (8) | 0.0184 (10) | −0.0029 (9) |
P4 | 0.0195 (3) | 0.0222 (3) | 0.0176 (3) | 0.0022 (2) | 0.0064 (2) | −0.0023 (2) |
P5 | 0.0166 (3) | 0.0213 (3) | 0.0179 (3) | 0.0020 (2) | 0.0068 (2) | −0.0001 (2) |
P6 | 0.0163 (3) | 0.0197 (3) | 0.0184 (3) | 0.0001 (2) | 0.0058 (2) | −0.0017 (2) |
Cl6 | 0.0296 (3) | 0.0221 (3) | 0.0383 (3) | −0.0009 (2) | 0.0096 (3) | −0.0046 (2) |
Cl7 | 0.0490 (4) | 0.0354 (4) | 0.0314 (3) | 0.0103 (3) | 0.0228 (3) | 0.0111 (3) |
Cl8 | 0.0320 (3) | 0.0288 (3) | 0.0396 (3) | 0.0128 (3) | 0.0099 (3) | 0.0048 (3) |
Cl9 | 0.0254 (3) | 0.0350 (4) | 0.0254 (3) | −0.0095 (3) | 0.0076 (2) | 0.0017 (2) |
Cl10 | 0.0366 (4) | 0.0386 (4) | 0.0366 (3) | 0.0096 (3) | 0.0119 (3) | 0.0178 (3) |
C1—N4 | 1.490 (3) | C5—N8 | 1.492 (3) |
C1—C4 | 1.519 (3) | C5—C6 | 1.513 (4) |
C1—C3 | 1.524 (3) | C5—C7 | 1.516 (4) |
C1—C2 | 1.528 (3) | C5—C8 | 1.518 (4) |
C2—H2A | 0.93 (3) | C6—H6A | 0.92 (3) |
C2—H2B | 0.94 (3) | C6—H6B | 0.99 (3) |
C2—H2C | 0.98 (3) | C6—H6C | 1.00 (4) |
C3—H3A | 0.91 (3) | C7—H7A | 0.99 (3) |
C3—H3B | 0.97 (3) | C7—H7B | 0.98 (3) |
C3—H3C | 0.95 (3) | C7—H7C | 0.96 (4) |
C4—H4A | 0.99 (3) | C8—H8A | 0.96 (3) |
C4—H4B | 0.99 (3) | C8—H8B | 0.98 (3) |
C4—H4C | 0.97 (3) | C8—H8C | 1.00 (4) |
N1—P1 | 1.570 (2) | N5—P5 | 1.5733 (19) |
N1—P2 | 1.5737 (19) | N5—P4 | 1.581 (2) |
N2—P2 | 1.562 (2) | N6—P5 | 1.5722 (19) |
N2—P3 | 1.5886 (19) | N6—P6 | 1.6014 (18) |
N3—P1 | 1.5736 (19) | N7—P4 | 1.560 (2) |
N3—P3 | 1.5991 (18) | N7—P6 | 1.585 (2) |
N4—P3 | 1.6021 (19) | N8—P6 | 1.597 (2) |
N4—H4N | 0.76 (3) | N8—H8N | 0.82 (3) |
P1—Cl1 | 1.9902 (8) | P4—Cl7 | 1.9909 (8) |
P1—Cl2 | 1.9946 (8) | P4—Cl6 | 1.9922 (9) |
P2—Cl4 | 1.9844 (9) | P5—Cl8 | 1.9834 (9) |
P2—Cl3 | 1.9901 (9) | P5—Cl9 | 2.0020 (8) |
P3—Cl5 | 2.0200 (9) | P6—Cl10 | 2.0125 (9) |
N4—C1—C4 | 110.64 (19) | N8—C5—C6 | 107.7 (2) |
N4—C1—C3 | 106.22 (19) | N8—C5—C7 | 106.9 (2) |
C4—C1—C3 | 110.2 (2) | C6—C5—C7 | 110.5 (2) |
N4—C1—C2 | 108.78 (18) | N8—C5—C8 | 111.1 (2) |
C4—C1—C2 | 110.8 (2) | C6—C5—C8 | 110.8 (2) |
C3—C1—C2 | 110.1 (2) | C7—C5—C8 | 109.8 (2) |
C1—C2—H2A | 109.3 (15) | C5—C6—H6A | 109.2 (19) |
C1—C2—H2B | 108.9 (17) | C5—C6—H6B | 112.5 (18) |
H2A—C2—H2B | 112 (2) | H6A—C6—H6B | 110 (2) |
C1—C2—H2C | 112.4 (17) | C5—C6—H6C | 112 (2) |
H2A—C2—H2C | 109 (2) | H6A—C6—H6C | 107 (3) |
H2B—C2—H2C | 105 (2) | H6B—C6—H6C | 106 (3) |
C1—C3—H3A | 105.9 (17) | C5—C7—H7A | 110.1 (19) |
C1—C3—H3B | 109.8 (16) | C5—C7—H7B | 112.7 (19) |
H3A—C3—H3B | 110 (2) | H7A—C7—H7B | 106 (3) |
C1—C3—H3C | 108.4 (17) | C5—C7—H7C | 107 (2) |
H3A—C3—H3C | 111 (2) | H7A—C7—H7C | 107 (3) |
H3B—C3—H3C | 111 (2) | H7B—C7—H7C | 114 (3) |
C1—C4—H4A | 107.4 (17) | C5—C8—H8A | 109.3 (18) |
C1—C4—H4B | 113.3 (15) | C5—C8—H8B | 112.6 (18) |
H4A—C4—H4B | 108 (2) | H8A—C8—H8B | 102 (2) |
C1—C4—H4C | 109.1 (17) | C5—C8—H8C | 111 (2) |
H4A—C4—H4C | 109 (2) | H8A—C8—H8C | 110 (3) |
H4B—C4—H4C | 110 (2) | H8B—C8—H8C | 111 (3) |
P1—N1—P2 | 120.85 (13) | P5—N5—P4 | 120.40 (12) |
P2—N2—P3 | 122.38 (12) | P5—N6—P6 | 121.25 (11) |
P1—N3—P3 | 120.80 (12) | P4—N7—P6 | 122.14 (12) |
C1—N4—P3 | 128.93 (16) | C5—N8—P6 | 131.54 (17) |
C1—N4—H4N | 113.9 (19) | C5—N8—H8N | 114.4 (19) |
P3—N4—H4N | 113.8 (19) | P6—N8—H8N | 114.0 (19) |
N1—P1—N3 | 119.38 (10) | N7—P4—N5 | 119.15 (10) |
N1—P1—Cl1 | 109.22 (8) | N7—P4—Cl7 | 109.17 (9) |
N3—P1—Cl1 | 107.54 (8) | N5—P4—Cl7 | 108.62 (8) |
N1—P1—Cl2 | 108.39 (9) | N7—P4—Cl6 | 109.47 (9) |
N3—P1—Cl2 | 109.70 (8) | N5—P4—Cl6 | 107.94 (9) |
Cl1—P1—Cl2 | 101.05 (4) | Cl7—P4—Cl6 | 100.94 (4) |
N2—P2—N1 | 118.84 (10) | N6—P5—N5 | 119.46 (10) |
N2—P2—Cl4 | 109.04 (8) | N6—P5—Cl8 | 108.91 (8) |
N1—P2—Cl4 | 108.49 (9) | N5—P5—Cl8 | 109.00 (8) |
N2—P2—Cl3 | 109.35 (8) | N6—P5—Cl9 | 108.97 (8) |
N1—P2—Cl3 | 108.14 (9) | N5—P5—Cl9 | 107.78 (9) |
Cl4—P2—Cl3 | 101.60 (4) | Cl8—P5—Cl9 | 101.17 (4) |
N2—P3—N3 | 116.88 (10) | N7—P6—N8 | 113.58 (12) |
N2—P3—N4 | 113.50 (10) | N7—P6—N6 | 116.98 (10) |
N3—P3—N4 | 107.17 (10) | N8—P6—N6 | 106.72 (11) |
N2—P3—Cl5 | 105.06 (8) | N7—P6—Cl10 | 104.53 (9) |
N3—P3—Cl5 | 106.65 (8) | N8—P6—Cl10 | 107.95 (9) |
N4—P3—Cl5 | 106.93 (8) | N6—P6—Cl10 | 106.54 (7) |
C8H20Cl4N5P3 | Dx = 1.441 Mg m−3 |
Mr = 421.00 | Melting point: 121°C K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
a = 20.3441 (7) Å | Cell parameters from 29220 reflections |
b = 11.9481 (4) Å | θ = 2.9–27.5° |
c = 15.9661 (7) Å | µ = 0.85 mm−1 |
V = 3880.9 (3) Å3 | T = 120 K |
Z = 8 | Plate, colourless |
F(000) = 1728 | 0.16 × 0.14 × 0.06 mm |
Nonius KappaCCD diffractometer | 5744 reflections with I > 2σ(I) |
Radiation source: Nonius FR591 rotating anode | Rint = 0.078 |
Graphite monochromator | θmax = 27.5°, θmin = 2.9° |
Detector resolution: 9.091 pixels mm-1 | h = −26→24 |
ϕ & ω scans | k = −13→15 |
29635 measured reflections | l = −20→20 |
8587 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0134P)2 + 2.2238P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.107 | (Δ/σ)max = 0.011 |
S = 1.02 | Δρmax = 0.44 e Å−3 |
8587 reflections | Δρmin = −0.43 e Å−3 |
414 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
7 restraints | Extinction coefficient: 0.0041 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.08 (8) |
C8H20Cl4N5P3 | V = 3880.9 (3) Å3 |
Mr = 421.00 | Z = 8 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 20.3441 (7) Å | µ = 0.85 mm−1 |
b = 11.9481 (4) Å | T = 120 K |
c = 15.9661 (7) Å | 0.16 × 0.14 × 0.06 mm |
Nonius KappaCCD diffractometer | 5744 reflections with I > 2σ(I) |
29635 measured reflections | Rint = 0.078 |
8587 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | Δρmax = 0.44 e Å−3 |
S = 1.02 | Δρmin = −0.43 e Å−3 |
8587 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
414 parameters | Absolute structure parameter: 0.08 (8) |
7 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C2 | −0.4512 (8) | 0.743 (2) | 0.4483 (12) | 0.112 (8) | 0.67 (3) |
H2A | −0.4808 | 0.6937 | 0.4173 | 0.169* | 0.67 (3) |
H2B | −0.4319 | 0.7981 | 0.4097 | 0.169* | 0.67 (3) |
H2C | −0.4760 | 0.7826 | 0.4920 | 0.169* | 0.67 (3) |
C3 | −0.369 (3) | 0.590 (2) | 0.5647 (14) | 0.148 (18) | 0.47 (4) |
H3A | −0.3895 | 0.6142 | 0.6175 | 0.222* | 0.47 (4) |
H3B | −0.3213 | 0.5950 | 0.5696 | 0.222* | 0.47 (4) |
H3C | −0.3820 | 0.5132 | 0.5523 | 0.222* | 0.47 (4) |
C4 | −0.358 (4) | 0.783 (7) | 0.506 (6) | 0.18 (3) | 0.34 (9) |
H4A | −0.3794 | 0.8415 | 0.4718 | 0.263* | 0.34 (9) |
H4B | −0.3120 | 0.7770 | 0.4898 | 0.263* | 0.34 (9) |
H4C | −0.3615 | 0.8037 | 0.5652 | 0.263* | 0.34 (9) |
C2' | −0.4626 (11) | 0.652 (4) | 0.497 (3) | 0.11 (2) | 0.33 (3) |
H2'1 | −0.4822 | 0.6544 | 0.4414 | 0.163* | 0.33 (3) |
H2'2 | −0.4821 | 0.7112 | 0.5321 | 0.163* | 0.33 (3) |
H2'3 | −0.4709 | 0.5792 | 0.5231 | 0.163* | 0.33 (3) |
C3' | −0.430 (2) | 0.5882 (18) | 0.5435 (14) | 0.115 (13) | 0.53 (4) |
H3'1 | −0.4644 | 0.6273 | 0.5751 | 0.172* | 0.53 (4) |
H3'2 | −0.3998 | 0.5517 | 0.5826 | 0.172* | 0.53 (4) |
H3'3 | −0.4504 | 0.5316 | 0.5073 | 0.172* | 0.53 (4) |
C4' | −0.3537 (11) | 0.755 (3) | 0.530 (2) | 0.109 (9) | 0.66 (9) |
H4'1 | −0.3807 | 0.7975 | 0.5700 | 0.163* | 0.66 (9) |
H4'2 | −0.3362 | 0.8057 | 0.4876 | 0.163* | 0.66 (9) |
H4'3 | −0.3172 | 0.7195 | 0.5604 | 0.163* | 0.66 (9) |
C9 | 0.0429 (2) | 0.3132 (4) | 0.5383 (3) | 0.0542 (12) | |
C10 | 0.0612 (3) | 0.2948 (6) | 0.6290 (3) | 0.0810 (18) | |
H10A | 0.0586 | 0.2148 | 0.6420 | 0.122* | |
H10B | 0.0307 | 0.3362 | 0.6650 | 0.122* | |
H10C | 0.1061 | 0.3215 | 0.6387 | 0.122* | |
C11 | −0.0255 (3) | 0.2668 (6) | 0.5210 (4) | 0.092 (2) | |
H11A | −0.0368 | 0.2792 | 0.4621 | 0.139* | |
H11B | −0.0576 | 0.3051 | 0.5567 | 0.139* | |
H11C | −0.0261 | 0.1864 | 0.5331 | 0.139* | |
C12 | 0.0465 (3) | 0.4379 (5) | 0.5192 (4) | 0.0747 (16) | |
H12A | 0.0338 | 0.4510 | 0.4608 | 0.112* | |
H12B | 0.0915 | 0.4645 | 0.5281 | 0.112* | |
H12C | 0.0165 | 0.4786 | 0.5564 | 0.112* | |
C13 | 0.2241 (2) | 0.2599 (4) | 0.3576 (4) | 0.0603 (14) | |
C14 | 0.2131 (3) | 0.3736 (5) | 0.3901 (5) | 0.092 (2) | |
H14A | 0.1745 | 0.4063 | 0.3628 | 0.138* | |
H14B | 0.2518 | 0.4199 | 0.3784 | 0.138* | |
H14C | 0.2057 | 0.3702 | 0.4507 | 0.138* | |
C15 | 0.2367 (5) | 0.2734 (7) | 0.2645 (6) | 0.151 (4) | |
H15A | 0.2451 | 0.1999 | 0.2395 | 0.226* | |
H15B | 0.2751 | 0.3218 | 0.2561 | 0.226* | |
H15C | 0.1982 | 0.3074 | 0.2379 | 0.226* | |
C16 | 0.2799 (3) | 0.2025 (6) | 0.3986 (10) | 0.200 (7) | |
H16A | 0.2854 | 0.1278 | 0.3741 | 0.301* | |
H16B | 0.2712 | 0.1955 | 0.4587 | 0.301* | |
H16C | 0.3202 | 0.2461 | 0.3900 | 0.301* | |
H1 | −0.388 (2) | 0.573 (4) | 0.397 (3) | 0.046 (14)* | |
H11 | −0.249 (2) | 0.586 (4) | 0.460 (3) | 0.041 (15)* | |
H21 | 0.1181 (16) | 0.229 (3) | 0.509 (2) | 0.008 (9)* | |
H31 | 0.173 (2) | 0.129 (4) | 0.350 (3) | 0.049 (16)* | |
C1 | −0.3933 (3) | 0.6702 (5) | 0.4910 (4) | 0.0712 (16) | |
C5 | −0.1693 (2) | 0.6632 (4) | 0.4244 (3) | 0.0543 (12) | |
C6 | −0.1428 (2) | 0.6708 (6) | 0.3369 (4) | 0.0800 (18) | |
H6A | −0.1463 | 0.5976 | 0.3097 | 0.120* | |
H6B | −0.0966 | 0.6938 | 0.3388 | 0.120* | |
H6C | −0.1682 | 0.7261 | 0.3052 | 0.120* | |
C7 | −0.1292 (3) | 0.5754 (5) | 0.4739 (4) | 0.0761 (17) | |
H7A | −0.1463 | 0.5701 | 0.5312 | 0.114* | |
H7B | −0.0829 | 0.5981 | 0.4757 | 0.114* | |
H7C | −0.1329 | 0.5024 | 0.4464 | 0.114* | |
C8 | −0.1650 (3) | 0.7762 (5) | 0.4685 (4) | 0.0776 (18) | |
H8A | −0.1827 | 0.7695 | 0.5253 | 0.116* | |
H8B | −0.1905 | 0.8317 | 0.4371 | 0.116* | |
H8C | −0.1190 | 0.8001 | 0.4713 | 0.116* | |
N1 | −0.30158 (17) | 0.5506 (3) | 0.2866 (2) | 0.0435 (9) | |
N2 | −0.3072 (3) | 0.7070 (4) | 0.1649 (3) | 0.1009 (19) | |
N3 | −0.29394 (19) | 0.7680 (3) | 0.3284 (3) | 0.0515 (10) | |
N4 | −0.36383 (19) | 0.6142 (4) | 0.4171 (3) | 0.0534 (11) | |
N5 | −0.23848 (19) | 0.6238 (4) | 0.4261 (3) | 0.0454 (10) | |
N6 | −0.03308 (19) | 0.1839 (3) | 0.2602 (3) | 0.0641 (12) | |
N7 | 0.05133 (15) | 0.0956 (3) | 0.3745 (2) | 0.0405 (8) | |
N8 | 0.05692 (17) | 0.3148 (3) | 0.3371 (2) | 0.0438 (9) | |
N9 | 0.0917 (2) | 0.2535 (3) | 0.4862 (2) | 0.0439 (9) | |
N10 | 0.16547 (17) | 0.1856 (4) | 0.3660 (3) | 0.0478 (10) | |
P1 | −0.29935 (5) | 0.64228 (9) | 0.36204 (7) | 0.0412 (3) | |
P2 | −0.30042 (7) | 0.58105 (11) | 0.19244 (8) | 0.0559 (3) | |
P3 | −0.30301 (9) | 0.80076 (11) | 0.23443 (10) | 0.0724 (4) | |
P4 | 0.09009 (5) | 0.21355 (8) | 0.38894 (7) | 0.0366 (2) | |
P5 | −0.01174 (6) | 0.08397 (10) | 0.31956 (8) | 0.0474 (3) | |
P6 | 0.00700 (6) | 0.29605 (10) | 0.26488 (8) | 0.0466 (3) | |
Cl1 | −0.36884 (8) | 0.49371 (16) | 0.13073 (10) | 0.0968 (6) | |
Cl2 | −0.21973 (7) | 0.51581 (14) | 0.13800 (10) | 0.0869 (5) | |
Cl3 | −0.38089 (11) | 0.90060 (15) | 0.22077 (15) | 0.1250 (8) | |
Cl4 | −0.23133 (12) | 0.90792 (15) | 0.20127 (14) | 0.1250 (8) | |
Cl5 | −0.09017 (6) | 0.04494 (12) | 0.39055 (11) | 0.0761 (4) | |
Cl6 | −0.00575 (7) | −0.05702 (13) | 0.25320 (12) | 0.0884 (5) | |
Cl7 | −0.05738 (7) | 0.42134 (14) | 0.26403 (12) | 0.0889 (5) | |
Cl8 | 0.05032 (8) | 0.32122 (14) | 0.15388 (9) | 0.0779 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.084 (9) | 0.133 (16) | 0.120 (12) | 0.047 (9) | 0.015 (8) | −0.038 (11) |
C3 | 0.24 (5) | 0.132 (18) | 0.068 (13) | 0.02 (2) | 0.08 (2) | 0.000 (11) |
C4 | 0.30 (7) | 0.10 (3) | 0.12 (4) | −0.02 (3) | 0.09 (4) | −0.08 (3) |
C2' | 0.058 (14) | 0.15 (5) | 0.12 (3) | −0.016 (15) | 0.037 (14) | −0.08 (3) |
C3' | 0.17 (3) | 0.092 (13) | 0.083 (14) | −0.036 (15) | 0.071 (17) | −0.026 (10) |
C4' | 0.102 (13) | 0.125 (19) | 0.099 (16) | −0.040 (9) | 0.034 (8) | −0.083 (14) |
C9 | 0.059 (3) | 0.063 (3) | 0.042 (3) | −0.002 (2) | 0.007 (2) | −0.007 (2) |
C10 | 0.101 (4) | 0.097 (5) | 0.046 (3) | −0.012 (3) | 0.012 (3) | −0.003 (3) |
C11 | 0.057 (4) | 0.140 (6) | 0.081 (4) | −0.012 (3) | 0.022 (3) | −0.047 (4) |
C12 | 0.100 (4) | 0.064 (4) | 0.060 (4) | 0.017 (3) | −0.005 (3) | −0.015 (3) |
C13 | 0.043 (3) | 0.046 (3) | 0.092 (4) | −0.012 (2) | 0.010 (3) | −0.006 (3) |
C14 | 0.073 (4) | 0.061 (4) | 0.143 (6) | −0.034 (3) | 0.028 (4) | −0.026 (4) |
C15 | 0.184 (8) | 0.120 (7) | 0.148 (8) | −0.090 (6) | 0.103 (7) | −0.044 (6) |
C16 | 0.067 (5) | 0.087 (5) | 0.45 (2) | −0.025 (4) | −0.095 (8) | 0.076 (9) |
C1 | 0.062 (3) | 0.072 (4) | 0.080 (4) | −0.003 (3) | 0.020 (3) | −0.037 (3) |
C5 | 0.044 (3) | 0.059 (3) | 0.060 (3) | −0.004 (2) | −0.007 (2) | −0.011 (3) |
C6 | 0.045 (3) | 0.119 (5) | 0.076 (4) | −0.002 (3) | 0.007 (3) | −0.002 (4) |
C7 | 0.061 (3) | 0.075 (4) | 0.092 (4) | 0.002 (3) | −0.035 (3) | −0.003 (3) |
C8 | 0.064 (4) | 0.065 (4) | 0.104 (5) | −0.012 (3) | −0.001 (3) | −0.025 (4) |
N1 | 0.052 (2) | 0.037 (2) | 0.041 (2) | −0.0007 (16) | 0.0007 (16) | −0.0093 (16) |
N2 | 0.206 (6) | 0.045 (3) | 0.052 (3) | 0.008 (3) | −0.016 (3) | −0.001 (2) |
N3 | 0.065 (2) | 0.0328 (19) | 0.056 (3) | 0.0015 (17) | −0.0126 (19) | −0.0045 (19) |
N4 | 0.041 (2) | 0.060 (3) | 0.060 (3) | −0.0062 (19) | 0.0079 (18) | −0.026 (2) |
N5 | 0.046 (2) | 0.045 (2) | 0.045 (3) | 0.0000 (18) | −0.0044 (18) | 0.002 (2) |
N6 | 0.067 (2) | 0.058 (3) | 0.068 (3) | −0.023 (2) | −0.035 (2) | 0.019 (2) |
N7 | 0.0369 (18) | 0.0331 (18) | 0.051 (2) | −0.0075 (13) | −0.0025 (16) | 0.0003 (17) |
N8 | 0.056 (2) | 0.039 (2) | 0.037 (2) | −0.0031 (16) | −0.0107 (17) | 0.0014 (16) |
N9 | 0.043 (2) | 0.049 (2) | 0.040 (2) | 0.0046 (18) | −0.0097 (18) | 0.0033 (18) |
N10 | 0.039 (2) | 0.038 (2) | 0.066 (3) | −0.0014 (16) | 0.0074 (18) | −0.009 (2) |
P1 | 0.0432 (6) | 0.0370 (6) | 0.0435 (7) | 0.0015 (5) | −0.0029 (5) | −0.0090 (5) |
P2 | 0.0798 (9) | 0.0458 (8) | 0.0421 (8) | 0.0002 (6) | −0.0045 (7) | −0.0068 (6) |
P3 | 0.1206 (13) | 0.0385 (8) | 0.0581 (10) | 0.0094 (7) | −0.0194 (9) | 0.0017 (7) |
P4 | 0.0390 (6) | 0.0331 (5) | 0.0376 (6) | −0.0020 (4) | −0.0004 (5) | −0.0003 (5) |
P5 | 0.0443 (6) | 0.0423 (7) | 0.0556 (8) | −0.0092 (5) | −0.0050 (6) | −0.0005 (6) |
P6 | 0.0510 (7) | 0.0469 (7) | 0.0418 (7) | −0.0012 (5) | −0.0053 (6) | 0.0052 (6) |
Cl1 | 0.0960 (11) | 0.1181 (14) | 0.0764 (11) | −0.0027 (9) | −0.0231 (9) | −0.0433 (10) |
Cl2 | 0.0928 (11) | 0.1003 (12) | 0.0676 (10) | −0.0094 (9) | 0.0356 (8) | −0.0106 (9) |
Cl3 | 0.1551 (18) | 0.0762 (11) | 0.1436 (18) | 0.0425 (11) | −0.0792 (15) | −0.0088 (12) |
Cl4 | 0.184 (2) | 0.0677 (12) | 0.1231 (17) | −0.0158 (12) | 0.0341 (15) | 0.0258 (11) |
Cl5 | 0.0451 (7) | 0.0758 (9) | 0.1073 (12) | −0.0139 (6) | 0.0053 (7) | 0.0157 (9) |
Cl6 | 0.0932 (11) | 0.0679 (10) | 0.1041 (13) | −0.0155 (7) | −0.0111 (10) | −0.0372 (9) |
Cl7 | 0.0780 (10) | 0.0827 (11) | 0.1061 (13) | 0.0319 (8) | −0.0103 (9) | 0.0138 (10) |
Cl8 | 0.0958 (11) | 0.0974 (12) | 0.0405 (7) | −0.0169 (8) | 0.0030 (7) | 0.0059 (8) |
C2—C1 | 1.617 (15) | C15—H15C | 0.9800 |
C2—H2A | 0.9800 | C16—H16A | 0.9800 |
C2—H2B | 0.9800 | C16—H16B | 0.9800 |
C2—H2C | 0.9800 | C16—H16C | 0.9800 |
C3—C1 | 1.59 (3) | C1—N4 | 1.482 (6) |
C3—H3A | 0.9800 | C5—N5 | 1.485 (6) |
C3—H3B | 0.9800 | C5—C6 | 1.499 (7) |
C3—H3C | 0.9800 | C5—C8 | 1.525 (7) |
C4—C1 | 1.55 (6) | C5—C7 | 1.547 (7) |
C4—H4A | 0.9800 | C6—H6A | 0.9800 |
C4—H4B | 0.9800 | C6—H6B | 0.9800 |
C4—H4C | 0.9800 | C6—H6C | 0.9800 |
C2'—C1 | 1.43 (2) | C7—H7A | 0.9800 |
C2'—H2'1 | 0.9800 | C7—H7B | 0.9800 |
C2'—H2'2 | 0.9800 | C7—H7C | 0.9800 |
C2'—H2'3 | 0.9800 | C8—H8A | 0.9800 |
C3'—C1 | 1.492 (18) | C8—H8B | 0.9800 |
C3'—H3'1 | 0.9800 | C8—H8C | 0.9800 |
C3'—H3'2 | 0.9800 | N1—P2 | 1.547 (4) |
C3'—H3'3 | 0.9800 | N1—P1 | 1.628 (4) |
C4'—C1 | 1.44 (2) | N2—P2 | 1.574 (5) |
C4'—H4'1 | 0.9800 | N2—P3 | 1.579 (5) |
C4'—H4'2 | 0.9800 | N3—P3 | 1.561 (4) |
C4'—H4'3 | 0.9800 | N3—P1 | 1.599 (4) |
C9—N9 | 1.480 (6) | N4—P1 | 1.615 (4) |
C9—C10 | 1.510 (7) | N4—H1 | 0.77 (4) |
C9—C12 | 1.522 (7) | N5—P1 | 1.621 (4) |
C9—C11 | 1.523 (7) | N5—H11 | 0.73 (4) |
C10—H10A | 0.9800 | N6—P6 | 1.571 (4) |
C10—H10B | 0.9800 | N6—P5 | 1.585 (4) |
C10—H10C | 0.9800 | N7—P5 | 1.560 (3) |
C11—H11A | 0.9800 | N7—P4 | 1.631 (3) |
C11—H11B | 0.9800 | N8—P6 | 1.553 (4) |
C11—H11C | 0.9800 | N8—P4 | 1.614 (3) |
C12—H12A | 0.9800 | N9—P4 | 1.624 (4) |
C12—H12B | 0.9800 | N9—H21 | 0.71 (3) |
C12—H12C | 0.9800 | N10—P4 | 1.611 (4) |
C13—C14 | 1.471 (7) | N10—H31 | 0.73 (5) |
C13—C16 | 1.480 (9) | P2—Cl1 | 1.999 (2) |
C13—N10 | 1.492 (5) | P2—Cl2 | 2.014 (2) |
C13—C15 | 1.517 (10) | P3—Cl3 | 1.995 (2) |
C14—H14A | 0.9800 | P3—Cl4 | 2.012 (3) |
C14—H14B | 0.9800 | P5—Cl6 | 1.9939 (19) |
C14—H14C | 0.9800 | P5—Cl5 | 2.0119 (18) |
C15—H15A | 0.9800 | P6—Cl7 | 1.9892 (18) |
C15—H15B | 0.9800 | P6—Cl8 | 2.0020 (19) |
C1—C2—H2A | 109.5 | N4—C1—C3 | 101.2 (9) |
C1—C2—H2B | 109.5 | C3'—C1—C3 | 49.1 (13) |
C1—C2—H2C | 109.5 | C4—C1—C3 | 106 (5) |
C1—C3—H3A | 109.5 | C2'—C1—C2 | 52.6 (18) |
C1—C3—H3B | 109.5 | C4'—C1—C2 | 102.2 (19) |
C1—C3—H3C | 109.5 | N4—C1—C2 | 101.7 (7) |
C1—C4—H4A | 109.4 | C3'—C1—C2 | 103 (2) |
C1—C4—H4B | 109.5 | C4—C1—C2 | 86 (4) |
C1—C4—H4C | 109.5 | C3—C1—C2 | 149 (2) |
C1—C2'—H2'1 | 109.5 | N5—C5—C6 | 112.2 (4) |
C1—C2'—H2'2 | 109.5 | N5—C5—C8 | 109.1 (4) |
H2'1—C2'—H2'2 | 109.5 | C6—C5—C8 | 110.8 (5) |
C1—C2'—H2'3 | 109.5 | N5—C5—C7 | 106.0 (4) |
H2'1—C2'—H2'3 | 109.5 | C6—C5—C7 | 109.1 (5) |
H2'2—C2'—H2'3 | 109.5 | C8—C5—C7 | 109.5 (4) |
C1—C3'—H3'1 | 109.5 | C5—C6—H6A | 109.5 |
C1—C3'—H3'2 | 109.5 | C5—C6—H6B | 109.5 |
H3'1—C3'—H3'2 | 109.5 | H6A—C6—H6B | 109.5 |
C1—C3'—H3'3 | 109.5 | C5—C6—H6C | 109.5 |
H3'1—C3'—H3'3 | 109.5 | H6A—C6—H6C | 109.5 |
H3'2—C3'—H3'3 | 109.5 | H6B—C6—H6C | 109.5 |
C1—C4'—H4'1 | 109.5 | C5—C7—H7A | 109.5 |
C1—C4'—H4'2 | 109.5 | C5—C7—H7B | 109.5 |
H4'1—C4'—H4'2 | 109.5 | H7A—C7—H7B | 109.5 |
C1—C4'—H4'3 | 109.5 | C5—C7—H7C | 109.5 |
H4'1—C4'—H4'3 | 109.5 | H7A—C7—H7C | 109.5 |
H4'2—C4'—H4'3 | 109.5 | H7B—C7—H7C | 109.5 |
N9—C9—C10 | 107.7 (4) | C5—C8—H8A | 109.5 |
N9—C9—C12 | 109.1 (4) | C5—C8—H8B | 109.5 |
C10—C9—C12 | 108.8 (5) | H8A—C8—H8B | 109.5 |
N9—C9—C11 | 109.6 (4) | C5—C8—H8C | 109.5 |
C10—C9—C11 | 110.2 (5) | H8A—C8—H8C | 109.5 |
C12—C9—C11 | 111.3 (5) | H8B—C8—H8C | 109.5 |
C9—C10—H10A | 109.5 | P2—N1—P1 | 124.1 (2) |
C9—C10—H10B | 109.5 | P2—N2—P3 | 118.5 (3) |
H10A—C10—H10B | 109.5 | P3—N3—P1 | 123.4 (2) |
C9—C10—H10C | 109.5 | C1—N4—P1 | 131.9 (4) |
H10A—C10—H10C | 109.5 | C1—N4—H1 | 112 (4) |
H10B—C10—H10C | 109.5 | P1—N4—H1 | 115 (4) |
C9—C11—H11A | 109.5 | C5—N5—P1 | 132.0 (4) |
C9—C11—H11B | 109.5 | C5—N5—H11 | 119 (4) |
H11A—C11—H11B | 109.5 | P1—N5—H11 | 109 (4) |
C9—C11—H11C | 109.5 | P6—N6—P5 | 118.2 (2) |
H11A—C11—H11C | 109.5 | P5—N7—P4 | 123.7 (2) |
H11B—C11—H11C | 109.5 | P6—N8—P4 | 123.1 (2) |
C9—C12—H12A | 109.5 | C9—N9—P4 | 131.8 (3) |
C9—C12—H12B | 109.5 | C9—N9—H21 | 115 (3) |
H12A—C12—H12B | 109.5 | P4—N9—H21 | 112 (3) |
C9—C12—H12C | 109.5 | C13—N10—P4 | 131.1 (3) |
H12A—C12—H12C | 109.5 | C13—N10—H31 | 110 (4) |
H12B—C12—H12C | 109.5 | P4—N10—H31 | 118 (4) |
C14—C13—C16 | 112.9 (6) | N3—P1—N4 | 115.7 (2) |
C14—C13—N10 | 113.4 (4) | N3—P1—N5 | 106.7 (2) |
C16—C13—N10 | 107.4 (5) | N4—P1—N5 | 104.4 (2) |
C14—C13—C15 | 105.8 (6) | N3—P1—N1 | 112.7 (2) |
C16—C13—C15 | 110.6 (8) | N4—P1—N1 | 103.9 (2) |
N10—C13—C15 | 106.7 (5) | N5—P1—N1 | 113.3 (2) |
C13—C14—H14A | 109.5 | N1—P2—N2 | 119.7 (2) |
C13—C14—H14B | 109.5 | N1—P2—Cl1 | 110.23 (16) |
H14A—C14—H14B | 109.5 | N2—P2—Cl1 | 107.5 (2) |
C13—C14—H14C | 109.5 | N1—P2—Cl2 | 109.93 (16) |
H14A—C14—H14C | 109.5 | N2—P2—Cl2 | 108.7 (3) |
H14B—C14—H14C | 109.5 | Cl1—P2—Cl2 | 98.78 (9) |
C13—C15—H15A | 109.5 | N3—P3—N2 | 120.3 (2) |
C13—C15—H15B | 109.5 | N3—P3—Cl3 | 110.41 (18) |
H15A—C15—H15B | 109.5 | N2—P3—Cl3 | 107.7 (2) |
C13—C15—H15C | 109.5 | N3—P3—Cl4 | 109.07 (18) |
H15A—C15—H15C | 109.5 | N2—P3—Cl4 | 107.8 (3) |
H15B—C15—H15C | 109.5 | Cl3—P3—Cl4 | 99.57 (11) |
C13—C16—H16A | 109.5 | N10—P4—N8 | 115.9 (2) |
C13—C16—H16B | 109.5 | N10—P4—N9 | 105.0 (2) |
H16A—C16—H16B | 109.5 | N8—P4—N9 | 106.1 (2) |
C13—C16—H16C | 109.5 | N10—P4—N7 | 104.43 (19) |
H16A—C16—H16C | 109.5 | N8—P4—N7 | 111.89 (18) |
H16B—C16—H16C | 109.5 | N9—P4—N7 | 113.5 (2) |
C2'—C1—C4' | 128.8 (15) | N7—P5—N6 | 119.61 (18) |
C2'—C1—N4 | 112.8 (10) | N7—P5—Cl6 | 108.90 (14) |
C4'—C1—N4 | 116.0 (11) | N6—P5—Cl6 | 109.58 (19) |
C2'—C1—C3' | 51 (3) | N7—P5—Cl5 | 110.87 (16) |
C4'—C1—C3' | 120 (2) | N6—P5—Cl5 | 107.12 (18) |
N4—C1—C3' | 110.7 (8) | Cl6—P5—Cl5 | 98.74 (8) |
C2'—C1—C4 | 125 (3) | N8—P6—N6 | 119.9 (2) |
C4'—C1—C4 | 20 (5) | N8—P6—Cl7 | 109.09 (15) |
N4—C1—C4 | 109 (3) | N6—P6—Cl7 | 107.47 (18) |
C3'—C1—C4 | 136 (3) | N8—P6—Cl8 | 110.35 (15) |
C2'—C1—C3 | 99 (3) | N6—P6—Cl8 | 108.3 (2) |
C4'—C1—C3 | 86 (3) | Cl7—P6—Cl8 | 99.84 (9) |
C2'—C1—N4—P1 | 153 (3) | P3—N2—P2—Cl2 | −117.2 (4) |
C4'—C1—N4—P1 | −11 (2) | P1—N3—P3—N2 | −9.6 (5) |
C3'—C1—N4—P1 | −152 (2) | P1—N3—P3—Cl3 | 116.7 (3) |
C4—C1—N4—P1 | 9 (4) | P1—N3—P3—Cl4 | −134.8 (2) |
C3—C1—N4—P1 | −102 (2) | P2—N2—P3—N3 | −1.4 (6) |
C2—C1—N4—P1 | 99.0 (11) | P2—N2—P3—Cl3 | −129.0 (4) |
C6—C5—N5—P1 | −33.5 (7) | P2—N2—P3—Cl4 | 124.4 (4) |
C8—C5—N5—P1 | 89.6 (5) | C13—N10—P4—N8 | 49.0 (5) |
C7—C5—N5—P1 | −152.5 (4) | C13—N10—P4—N9 | −67.8 (5) |
C10—C9—N9—P4 | 161.9 (4) | C13—N10—P4—N7 | 172.5 (5) |
C12—C9—N9—P4 | −80.2 (5) | P6—N8—P4—N10 | 104.2 (3) |
C11—C9—N9—P4 | 42.0 (7) | P6—N8—P4—N9 | −139.7 (3) |
C14—C13—N10—P4 | 12.2 (8) | P6—N8—P4—N7 | −15.3 (3) |
C16—C13—N10—P4 | 137.5 (7) | C9—N9—P4—N10 | 164.5 (4) |
C15—C13—N10—P4 | −103.9 (6) | C9—N9—P4—N8 | 41.2 (5) |
P3—N3—P1—N4 | −108.7 (3) | C9—N9—P4—N7 | −82.1 (5) |
P3—N3—P1—N5 | 135.7 (3) | P5—N7—P4—N10 | −128.2 (3) |
P3—N3—P1—N1 | 10.7 (4) | P5—N7—P4—N8 | −2.1 (3) |
C1—N4—P1—N3 | −51.3 (6) | P5—N7—P4—N9 | 118.0 (3) |
C1—N4—P1—N5 | 65.6 (6) | P4—N7—P5—N6 | 12.2 (4) |
C1—N4—P1—N1 | −175.4 (5) | P4—N7—P5—Cl6 | 139.2 (2) |
C5—N5—P1—N3 | −37.8 (5) | P4—N7—P5—Cl5 | −113.2 (2) |
C5—N5—P1—N4 | −160.8 (4) | P6—N6—P5—N7 | −5.3 (5) |
C5—N5—P1—N1 | 86.8 (5) | P6—N6—P5—Cl6 | −132.1 (3) |
P2—N1—P1—N3 | −1.5 (3) | P6—N6—P5—Cl5 | 121.8 (3) |
P2—N1—P1—N4 | 124.5 (3) | P4—N8—P6—N6 | 22.7 (4) |
P2—N1—P1—N5 | −122.8 (3) | P4—N8—P6—Cl7 | 147.1 (2) |
P1—N1—P2—N2 | −8.8 (4) | P4—N8—P6—Cl8 | −104.2 (2) |
P1—N1—P2—Cl1 | −134.1 (2) | P5—N6—P6—N8 | −11.3 (5) |
P1—N1—P2—Cl2 | 118.0 (2) | P5—N6—P6—Cl7 | −136.5 (3) |
P3—N2—P2—N1 | 10.2 (6) | P5—N6—P6—Cl8 | 116.5 (3) |
P3—N2—P2—Cl1 | 136.8 (4) |
C16H40Cl2N7P3 | Dx = 1.245 Mg m−3 |
Mr = 494.36 | Melting point: 156°C K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5207 (2) Å | Cell parameters from 16145 reflections |
b = 16.1282 (2) Å | θ = 2.9–27.5° |
c = 13.1311 (2) Å | µ = 0.45 mm−1 |
β = 95.903 (1)° | T = 120 K |
V = 2637.59 (7) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.25 × 0.25 mm |
F(000) = 1056 |
Nonius KappaCCD diffractometer | 5994 independent reflections |
Radiation source: Nonius FR591 rotating anode | 5106 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ϕ & ω scans | h = −16→16 |
Absorption correction: multi-scan SORTAV (Blessing, 1997) | k = −20→20 |
Tmin = 0.842, Tmax = 0.897 | l = −17→17 |
29576 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.043P)2 + 1.1457P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.030 |
5994 reflections | Δρmax = 0.27 e Å−3 |
270 parameters | Δρmin = −0.33 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0099 (11) |
C16H40Cl2N7P3 | V = 2637.59 (7) Å3 |
Mr = 494.36 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.5207 (2) Å | µ = 0.45 mm−1 |
b = 16.1282 (2) Å | T = 120 K |
c = 13.1311 (2) Å | 0.40 × 0.25 × 0.25 mm |
β = 95.903 (1)° |
Nonius KappaCCD diffractometer | 5994 independent reflections |
Absorption correction: multi-scan SORTAV (Blessing, 1997) | 5106 reflections with I > 2σ(I) |
Tmin = 0.842, Tmax = 0.897 | Rint = 0.057 |
29576 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.100 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.27 e Å−3 |
5994 reflections | Δρmin = −0.33 e Å−3 |
270 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
H1 | 0.5933 (18) | −0.0370 (13) | 0.5905 (17) | 0.042 (6)* | |
H11 | 0.4996 (18) | 0.1429 (14) | 0.6398 (17) | 0.045 (6)* | |
H31 | 0.5229 (18) | 0.2541 (14) | 0.3219 (17) | 0.042 (7)* | |
H21 | 0.6316 (19) | 0.0881 (16) | 0.3033 (19) | 0.055 (7)* | |
P1 | 0.63377 (3) | 0.08705 (2) | 0.58445 (3) | 0.02532 (12) | |
P3 | 0.63247 (3) | 0.18505 (3) | 0.40326 (3) | 0.02778 (12) | |
P2 | 0.80248 (3) | 0.19328 (3) | 0.55589 (4) | 0.03258 (13) | |
Cl2 | 0.84288 (5) | 0.29406 (3) | 0.64477 (4) | 0.05608 (16) | |
Cl1 | 0.95356 (4) | 0.15530 (4) | 0.53476 (5) | 0.05977 (17) | |
N3 | 0.58128 (11) | 0.11988 (8) | 0.47570 (10) | 0.0278 (3) | |
N5 | 0.54212 (12) | 0.10666 (9) | 0.66307 (11) | 0.0304 (3) | |
N4 | 0.64835 (12) | −0.01365 (9) | 0.59446 (11) | 0.0301 (3) | |
N1 | 0.75032 (11) | 0.12700 (9) | 0.62159 (11) | 0.0325 (3) | |
N2 | 0.74589 (12) | 0.22426 (9) | 0.45138 (11) | 0.0350 (3) | |
C3 | 0.76775 (17) | −0.04221 (12) | 0.45807 (16) | 0.0447 (5) | |
H3A | 0.7933 | 0.0152 | 0.4587 | 0.067* | |
H3B | 0.7042 | −0.0477 | 0.4084 | 0.067* | |
H3C | 0.8244 | −0.0792 | 0.4388 | 0.067* | |
N6 | 0.64041 (14) | 0.13570 (10) | 0.29421 (11) | 0.0364 (3) | |
N7 | 0.55544 (14) | 0.26399 (10) | 0.36771 (13) | 0.0377 (4) | |
C1 | 0.73873 (14) | −0.06543 (11) | 0.56431 (14) | 0.0333 (4) | |
C5 | 0.55491 (15) | 0.11040 (11) | 0.77714 (13) | 0.0363 (4) | |
C2 | 0.83600 (16) | −0.05749 (14) | 0.64443 (18) | 0.0503 (5) | |
H2A | 0.8152 | −0.0727 | 0.7119 | 0.076* | |
H2B | 0.8619 | −0.0001 | 0.6462 | 0.076* | |
H2C | 0.8932 | −0.0946 | 0.6265 | 0.076* | |
C4 | 0.69899 (17) | −0.15479 (11) | 0.56321 (16) | 0.0435 (5) | |
H4A | 0.6803 | −0.1698 | 0.6315 | 0.065* | |
H4B | 0.7557 | −0.1918 | 0.5439 | 0.065* | |
H4C | 0.6354 | −0.1603 | 0.5135 | 0.065* | |
C9 | 0.71139 (18) | 0.15448 (13) | 0.21300 (14) | 0.0462 (5) | |
C13 | 0.53940 (17) | 0.34388 (12) | 0.41971 (17) | 0.0451 (5) | |
C14 | 0.5342 (2) | 0.33081 (15) | 0.53378 (19) | 0.0596 (6) | |
H14A | 0.6028 | 0.3083 | 0.5646 | 0.089* | |
H14B | 0.4764 | 0.2918 | 0.5442 | 0.089* | |
H14C | 0.5202 | 0.3839 | 0.5661 | 0.089* | |
C7 | 0.6104 (2) | 0.19089 (16) | 0.81287 (18) | 0.0641 (7) | |
H7A | 0.5687 | 0.2381 | 0.7835 | 0.096* | |
H7B | 0.6826 | 0.1923 | 0.7904 | 0.096* | |
H7C | 0.6156 | 0.1940 | 0.8878 | 0.096* | |
C11 | 0.7121 (2) | 0.24687 (15) | 0.19187 (18) | 0.0636 (7) | |
H11A | 0.6387 | 0.2656 | 0.1706 | 0.095* | |
H11B | 0.7578 | 0.2583 | 0.1372 | 0.095* | |
H11C | 0.7402 | 0.2764 | 0.2542 | 0.095* | |
C6 | 0.4424 (2) | 0.10919 (19) | 0.81066 (19) | 0.0659 (7) | |
H6A | 0.4021 | 0.1574 | 0.7819 | 0.099* | |
H6B | 0.4467 | 0.1112 | 0.8856 | 0.099* | |
H6C | 0.4056 | 0.0582 | 0.7861 | 0.099* | |
C8 | 0.6176 (2) | 0.03628 (16) | 0.82168 (16) | 0.0665 (7) | |
H8A | 0.6902 | 0.0373 | 0.8000 | 0.100* | |
H8B | 0.5812 | −0.0149 | 0.7973 | 0.100* | |
H8C | 0.6220 | 0.0384 | 0.8966 | 0.100* | |
C16 | 0.6307 (3) | 0.40328 (15) | 0.4028 (3) | 0.0764 (8) | |
H16A | 0.6335 | 0.4117 | 0.3292 | 0.115* | |
H16B | 0.6989 | 0.3797 | 0.4329 | 0.115* | |
H16C | 0.6184 | 0.4566 | 0.4355 | 0.115* | |
C15 | 0.4322 (2) | 0.37871 (17) | 0.3725 (3) | 0.0849 (10) | |
H15A | 0.4350 | 0.3874 | 0.2990 | 0.127* | |
H15B | 0.4180 | 0.4316 | 0.4052 | 0.127* | |
H15C | 0.3746 | 0.3394 | 0.3830 | 0.127* | |
C10 | 0.8250 (2) | 0.1240 (2) | 0.2457 (2) | 0.0788 (9) | |
H10A | 0.8236 | 0.0642 | 0.2588 | 0.118* | |
H10B | 0.8537 | 0.1529 | 0.3082 | 0.118* | |
H10C | 0.8708 | 0.1352 | 0.1911 | 0.118* | |
C12 | 0.6643 (3) | 0.1099 (2) | 0.11594 (18) | 0.0873 (10) | |
H12A | 0.6638 | 0.0500 | 0.1284 | 0.131* | |
H12B | 0.7083 | 0.1219 | 0.0601 | 0.131* | |
H12C | 0.5908 | 0.1292 | 0.0971 | 0.131* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0261 (2) | 0.0272 (2) | 0.0223 (2) | 0.00094 (15) | 0.00046 (15) | −0.00082 (15) |
P3 | 0.0311 (2) | 0.0283 (2) | 0.0236 (2) | −0.00109 (16) | 0.00111 (16) | 0.00031 (16) |
P2 | 0.0271 (2) | 0.0378 (3) | 0.0321 (2) | −0.00539 (17) | −0.00020 (18) | −0.00413 (18) |
Cl2 | 0.0661 (4) | 0.0490 (3) | 0.0506 (3) | −0.0197 (2) | −0.0065 (3) | −0.0131 (2) |
Cl1 | 0.0278 (2) | 0.0839 (4) | 0.0679 (4) | 0.0016 (2) | 0.0064 (2) | −0.0007 (3) |
N3 | 0.0272 (7) | 0.0316 (7) | 0.0239 (7) | −0.0024 (5) | −0.0019 (5) | 0.0015 (5) |
N5 | 0.0323 (7) | 0.0341 (7) | 0.0250 (7) | 0.0063 (6) | 0.0037 (6) | 0.0000 (6) |
N4 | 0.0301 (7) | 0.0276 (7) | 0.0326 (7) | 0.0019 (6) | 0.0033 (6) | 0.0001 (6) |
N1 | 0.0290 (7) | 0.0383 (8) | 0.0286 (7) | −0.0027 (6) | −0.0047 (6) | −0.0004 (6) |
N2 | 0.0340 (8) | 0.0384 (8) | 0.0321 (8) | −0.0085 (6) | 0.0014 (6) | 0.0027 (6) |
C3 | 0.0504 (11) | 0.0439 (11) | 0.0419 (11) | 0.0110 (9) | 0.0143 (9) | −0.0009 (8) |
N6 | 0.0513 (9) | 0.0328 (8) | 0.0255 (7) | −0.0035 (7) | 0.0064 (7) | 0.0005 (6) |
N7 | 0.0455 (9) | 0.0316 (8) | 0.0337 (9) | 0.0034 (7) | −0.0059 (7) | 0.0000 (7) |
C1 | 0.0341 (9) | 0.0323 (9) | 0.0332 (9) | 0.0085 (7) | 0.0015 (7) | −0.0014 (7) |
C5 | 0.0450 (10) | 0.0392 (9) | 0.0254 (8) | −0.0006 (8) | 0.0074 (7) | −0.0039 (7) |
C2 | 0.0401 (10) | 0.0528 (12) | 0.0551 (13) | 0.0142 (9) | −0.0099 (10) | −0.0050 (10) |
C4 | 0.0521 (11) | 0.0316 (9) | 0.0459 (11) | 0.0090 (8) | 0.0010 (9) | 0.0004 (8) |
C9 | 0.0626 (13) | 0.0510 (12) | 0.0271 (9) | −0.0049 (10) | 0.0139 (9) | 0.0026 (8) |
C13 | 0.0525 (12) | 0.0300 (9) | 0.0525 (12) | 0.0056 (8) | 0.0040 (10) | −0.0013 (8) |
C14 | 0.0730 (16) | 0.0506 (13) | 0.0573 (14) | 0.0064 (11) | 0.0169 (12) | −0.0156 (11) |
C7 | 0.0888 (19) | 0.0628 (15) | 0.0413 (12) | −0.0232 (13) | 0.0095 (12) | −0.0190 (11) |
C11 | 0.0826 (18) | 0.0592 (14) | 0.0522 (14) | −0.0116 (12) | 0.0224 (12) | 0.0149 (11) |
C6 | 0.0584 (14) | 0.0952 (19) | 0.0476 (13) | −0.0038 (13) | 0.0223 (11) | −0.0077 (13) |
C8 | 0.103 (2) | 0.0694 (16) | 0.0267 (10) | 0.0293 (14) | 0.0026 (11) | 0.0066 (10) |
C16 | 0.097 (2) | 0.0361 (12) | 0.101 (2) | −0.0156 (12) | 0.0297 (18) | −0.0048 (13) |
C15 | 0.091 (2) | 0.0548 (15) | 0.102 (2) | 0.0380 (14) | −0.0250 (18) | −0.0109 (15) |
C10 | 0.0745 (18) | 0.112 (2) | 0.0562 (15) | 0.0246 (16) | 0.0362 (14) | 0.0176 (15) |
C12 | 0.134 (3) | 0.099 (2) | 0.0318 (12) | −0.043 (2) | 0.0274 (15) | −0.0190 (13) |
P1—N3 | 1.5995 (13) | C4—H4C | 0.9800 |
P1—N1 | 1.6236 (14) | C9—C11 | 1.516 (3) |
P1—N4 | 1.6380 (15) | C9—C10 | 1.525 (4) |
P1—N5 | 1.6512 (14) | C9—C12 | 1.528 (3) |
P3—N3 | 1.5956 (14) | C13—C14 | 1.521 (3) |
P3—N2 | 1.6221 (15) | C13—C15 | 1.527 (3) |
P3—N7 | 1.6361 (16) | C13—C16 | 1.525 (3) |
P3—N6 | 1.6502 (16) | C14—H14A | 0.9800 |
P2—N1 | 1.5586 (15) | C14—H14B | 0.9800 |
P2—N2 | 1.5604 (15) | C14—H14C | 0.9800 |
P2—Cl2 | 2.0343 (7) | C7—H7A | 0.9800 |
P2—Cl1 | 2.0343 (7) | C7—H7B | 0.9800 |
N5—C5 | 1.491 (2) | C7—H7C | 0.9800 |
N5—H11 | 0.83 (2) | C11—H11A | 0.9800 |
N4—C1 | 1.492 (2) | C11—H11B | 0.9800 |
N4—H1 | 0.78 (2) | C11—H11C | 0.9800 |
C3—C1 | 1.524 (3) | C6—H6A | 0.9800 |
C3—H3A | 0.9800 | C6—H6B | 0.9800 |
C3—H3B | 0.9800 | C6—H6C | 0.9800 |
C3—H3C | 0.9800 | C8—H8A | 0.9800 |
N6—C9 | 1.488 (2) | C8—H8B | 0.9800 |
N6—H21 | 0.79 (2) | C8—H8C | 0.9800 |
N7—C13 | 1.482 (2) | C16—H16A | 0.9800 |
N7—H31 | 0.71 (2) | C16—H16B | 0.9800 |
C1—C4 | 1.524 (3) | C16—H16C | 0.9800 |
C1—C2 | 1.531 (3) | C15—H15A | 0.9800 |
C5—C8 | 1.514 (3) | C15—H15B | 0.9800 |
C5—C6 | 1.519 (3) | C15—H15C | 0.9800 |
C5—C7 | 1.524 (3) | C10—H10A | 0.9800 |
C2—H2A | 0.9800 | C10—H10B | 0.9800 |
C2—H2B | 0.9800 | C10—H10C | 0.9800 |
C2—H2C | 0.9800 | C12—H12A | 0.9800 |
C4—H4A | 0.9800 | C12—H12B | 0.9800 |
C4—H4B | 0.9800 | C12—H12C | 0.9800 |
N3—P1—N1 | 114.26 (7) | C11—C9—C10 | 110.2 (2) |
N3—P1—N4 | 115.59 (8) | N6—C9—C12 | 107.14 (18) |
N1—P1—N4 | 106.27 (8) | C11—C9—C12 | 108.6 (2) |
N3—P1—N5 | 104.28 (7) | C10—C9—C12 | 110.6 (2) |
N1—P1—N5 | 113.40 (8) | N7—C13—C14 | 110.79 (16) |
N4—P1—N5 | 102.63 (8) | N7—C13—C15 | 106.74 (18) |
N3—P3—N2 | 114.45 (7) | C14—C13—C15 | 109.0 (2) |
N3—P3—N7 | 114.94 (8) | N7—C13—C16 | 109.87 (18) |
N2—P3—N7 | 105.93 (8) | C14—C13—C16 | 109.8 (2) |
N3—P3—N6 | 105.27 (8) | C15—C13—C16 | 110.5 (2) |
N2—P3—N6 | 113.43 (8) | C13—C14—H14A | 109.5 |
N7—P3—N6 | 102.36 (9) | C13—C14—H14B | 109.5 |
N1—P2—N2 | 121.88 (8) | H14A—C14—H14B | 109.5 |
N1—P2—Cl2 | 108.91 (6) | C13—C14—H14C | 109.5 |
N2—P2—Cl2 | 108.20 (6) | H14A—C14—H14C | 109.5 |
N1—P2—Cl1 | 108.50 (6) | H14B—C14—H14C | 109.5 |
N2—P2—Cl1 | 108.72 (6) | C5—C7—H7A | 109.5 |
Cl2—P2—Cl1 | 97.99 (3) | C5—C7—H7B | 109.5 |
P3—N3—P1 | 126.65 (9) | H7A—C7—H7B | 109.5 |
C5—N5—P1 | 128.76 (12) | C5—C7—H7C | 109.5 |
C5—N5—H11 | 109.9 (16) | H7A—C7—H7C | 109.5 |
P1—N5—H11 | 111.5 (16) | H7B—C7—H7C | 109.5 |
C1—N4—P1 | 127.94 (13) | C9—C11—H11A | 109.5 |
C1—N4—H1 | 113.6 (16) | C9—C11—H11B | 109.5 |
P1—N4—H1 | 112.4 (16) | H11A—C11—H11B | 109.5 |
P2—N1—P1 | 121.38 (9) | C9—C11—H11C | 109.5 |
P2—N2—P3 | 121.19 (9) | H11A—C11—H11C | 109.5 |
C1—C3—H3A | 109.5 | H11B—C11—H11C | 109.5 |
C1—C3—H3B | 109.5 | C5—C6—H6A | 109.5 |
H3A—C3—H3B | 109.5 | C5—C6—H6B | 109.5 |
C1—C3—H3C | 109.5 | H6A—C6—H6B | 109.5 |
H3A—C3—H3C | 109.5 | C5—C6—H6C | 109.5 |
H3B—C3—H3C | 109.5 | H6A—C6—H6C | 109.5 |
C9—N6—P3 | 128.14 (14) | H6B—C6—H6C | 109.5 |
C9—N6—H21 | 114.3 (18) | C5—C8—H8A | 109.5 |
P3—N6—H21 | 108.4 (18) | C5—C8—H8B | 109.5 |
C13—N7—P3 | 130.48 (14) | H8A—C8—H8B | 109.5 |
C13—N7—H31 | 119.5 (19) | C5—C8—H8C | 109.5 |
P3—N7—H31 | 109.7 (19) | H8A—C8—H8C | 109.5 |
N4—C1—C3 | 111.34 (14) | H8B—C8—H8C | 109.5 |
N4—C1—C4 | 106.02 (15) | C13—C16—H16A | 109.5 |
C3—C1—C4 | 109.39 (16) | C13—C16—H16B | 109.5 |
N4—C1—C2 | 110.01 (15) | H16A—C16—H16B | 109.5 |
C3—C1—C2 | 111.16 (17) | C13—C16—H16C | 109.5 |
C4—C1—C2 | 108.75 (16) | H16A—C16—H16C | 109.5 |
N5—C5—C8 | 110.72 (15) | H16B—C16—H16C | 109.5 |
N5—C5—C6 | 106.48 (16) | C13—C15—H15A | 109.5 |
C8—C5—C6 | 109.7 (2) | C13—C15—H15B | 109.5 |
N5—C5—C7 | 110.01 (16) | H15A—C15—H15B | 109.5 |
C8—C5—C7 | 110.6 (2) | C13—C15—H15C | 109.5 |
C6—C5—C7 | 109.21 (19) | H15A—C15—H15C | 109.5 |
C1—C2—H2A | 109.5 | H15B—C15—H15C | 109.5 |
C1—C2—H2B | 109.5 | C9—C10—H10A | 109.5 |
H2A—C2—H2B | 109.5 | C9—C10—H10B | 109.5 |
C1—C2—H2C | 109.5 | H10A—C10—H10B | 109.5 |
H2A—C2—H2C | 109.5 | C9—C10—H10C | 109.5 |
H2B—C2—H2C | 109.5 | H10A—C10—H10C | 109.5 |
C1—C4—H4A | 109.5 | H10B—C10—H10C | 109.5 |
C1—C4—H4B | 109.5 | C9—C12—H12A | 109.5 |
H4A—C4—H4B | 109.5 | C9—C12—H12B | 109.5 |
C1—C4—H4C | 109.5 | H12A—C12—H12B | 109.5 |
H4A—C4—H4C | 109.5 | C9—C12—H12C | 109.5 |
H4B—C4—H4C | 109.5 | H12A—C12—H12C | 109.5 |
N6—C9—C11 | 110.26 (17) | H12B—C12—H12C | 109.5 |
N6—C9—C10 | 109.96 (17) | ||
N2—P3—N3—P1 | −3.94 (14) | N3—P3—N2—P2 | 5.12 (14) |
N7—P3—N3—P1 | −126.90 (11) | N7—P3—N2—P2 | 132.81 (11) |
N6—P3—N3—P1 | 121.29 (11) | N6—P3—N2—P2 | −115.70 (12) |
N1—P1—N3—P3 | 0.75 (14) | N3—P3—N6—C9 | −158.29 (17) |
N4—P1—N3—P3 | −123.07 (11) | N2—P3—N6—C9 | −32.4 (2) |
N5—P1—N3—P3 | 125.09 (11) | N7—P3—N6—C9 | 81.23 (19) |
N3—P1—N5—C5 | −162.53 (15) | N3—P3—N7—C13 | 85.23 (19) |
N1—P1—N5—C5 | −37.63 (17) | N2—P3—N7—C13 | −42.2 (2) |
N4—P1—N5—C5 | 76.55 (16) | N6—P3—N7—C13 | −161.24 (18) |
N3—P1—N4—C1 | 84.84 (16) | P1—N4—C1—C3 | −46.5 (2) |
N1—P1—N4—C1 | −43.07 (16) | P1—N4—C1—C4 | −165.37 (13) |
N5—P1—N4—C1 | −162.36 (14) | P1—N4—C1—C2 | 77.2 (2) |
N2—P2—N1—P1 | −0.23 (15) | P1—N5—C5—C8 | −47.0 (2) |
Cl2—P2—N1—P1 | 126.77 (9) | P1—N5—C5—C6 | −166.22 (16) |
Cl1—P2—N1—P1 | −127.59 (9) | P1—N5—C5—C7 | 75.6 (2) |
N3—P1—N1—P2 | 1.51 (14) | P3—N6—C9—C11 | −44.4 (3) |
N4—P1—N1—P2 | 130.20 (10) | P3—N6—C9—C10 | 77.4 (2) |
N5—P1—N1—P2 | −117.82 (11) | P3—N6—C9—C12 | −162.41 (19) |
N1—P2—N2—P3 | −3.33 (16) | P3—N7—C13—C14 | −41.1 (3) |
Cl2—P2—N2—P3 | −130.64 (9) | P3—N7—C13—C15 | −159.7 (2) |
Cl1—P2—N2—P3 | 123.93 (10) | P3—N7—C13—C16 | 80.4 (2) |
Experimental details
(1) | (2) | (3) | (4) | |
Crystal data | ||||
Chemical formula | Cl6N3P3 | C4H10Cl5N4P3 | C8H20Cl4N5P3 | C16H40Cl2N7P3 |
Mr | 347.64 | 384.32 | 421.00 | 494.36 |
Crystal system, space group | Orthorhombic, Pnma | Monoclinic, P21/c | Orthorhombic, Pna21 | Monoclinic, P21/n |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 13.8572 (8), 12.8086 (11), 6.0801 (5) | 13.8045 (14), 10.7964 (16), 20.7719 (12) | 20.3441 (7), 11.9481 (4), 15.9661 (7) | 12.5207 (2), 16.1282 (2), 13.1311 (2) |
α, β, γ (°) | 90, 90, 90 | 90, 104.132 (7), 90 | 90, 90, 90 | 90, 95.903 (1), 90 |
V (Å3) | 1079.17 (14) | 3002.1 (6) | 3880.9 (3) | 2637.59 (7) |
Z | 4 | 8 | 8 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.99 | 1.27 | 0.85 | 0.45 |
Crystal size (mm) | 0.50 × 0.40 × 0.10 | 0.18 × 0.10 × 0.02 | 0.16 × 0.14 × 0.06 | 0.40 × 0.25 × 0.25 |
Data collection | ||||
Diffractometer | Bruker-Nonius KappaCCD Area Detector diffractometer | Bruker-Nonius 95mm CCD camera on κ-goniostat diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan SADABS V2.10 (Sheldrick, G.M., 2003) | Multi-scan SORTAV (Blessing, 1997) | – | Multi-scan SORTAV (Blessing, 1997) |
Tmin, Tmax | 0.437, 0.826 | 0.804, 0.975 | – | 0.842, 0.897 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7733, 1283, 1194 | 40456, 6867, 5549 | 29635, 8587, 5744 | 29576, 5994, 5106 |
Rint | 0.022 | 0.044 | 0.078 | 0.057 |
(sin θ/λ)max (Å−1) | 0.649 | 0.650 | 0.649 | 0.649 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.074, 1.26 | 0.034, 0.086, 1.07 | 0.053, 0.107, 1.02 | 0.038, 0.100, 1.04 |
No. of reflections | 1283 | 6867 | 8587 | 5994 |
No. of parameters | 62 | 370 | 414 | 270 |
No. of restraints | 0 | 0 | 7 | 0 |
H-atom treatment | – | Difmap | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.67, −0.69 | 0.49, −0.50 | 0.44, −0.43 | 0.27, −0.33 |
Absolute structure | ? | ? | Flack H D (1983), Acta Cryst. A39, 876-881 | ? |
Absolute structure parameter | ? | ? | 0.08 (8) | ? |
Computer programs: , DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998), DENZO, COLLECT, DENZO & COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998).
Acknowledgements
The authors thank the Shin Nisso Kako Co. Ltd for gifts of N3P3Cl6, the EPSRC for funding the National Crystallographic Service (Southampton, UK) and the Gebze Institute of Technology (GIT) Research Fund for partial support (Hİ, AK and İÜ).
References
Ahmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456–1460. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ahmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028–1032. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ahmed, F. R. & Pollard, D. R. (1972). Acta Cryst. B28, 513–519. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Alkubaisi, A. H., Hursthouse, M. B., Shaw, L. S. & Shaw, R. A. (1988). Acta Cryst. B44, 16–22. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401–1404. CrossRef Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). Chem. Eur. J. 10, 4915–4920. Web of Science CSD CrossRef PubMed CAS Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067–1073. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2002). Acta Cryst. B58, 545–552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Uslu, A. (2004). Inorg. Chem. Commun. 7, 842–846. Web of Science CSD CrossRef CAS Google Scholar
Bickley, J. F., Bonar-Law, R., Lawson, G. T., Richards, P. I., Rivals, F., Steiner, A. & Zacchini, S. (2003). Dalton Trans. 7, 1235–1244. Web of Science CSD CrossRef Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruniquel, M. F., Fuacher, J.-P., Labarre, J.-F., Hasan, M., Krishnamurthy, S. S., Shaw, R. A. & Woods, M. (1973). Phosphorus, 3, 83–85. CAS Google Scholar
Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450–1453. CSD CrossRef Google Scholar
Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2001). J. Chem. Soc. Dalton. Trans. pp. 365–370. Google Scholar
Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A. & Uslu, A. (2004). Eur. J. Org. Chem. pp. 1881–1886. CrossRef Google Scholar
Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez-Ciftci, G. (2004). Acta Cryst. B60, 739–747. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032–5036. CrossRef Web of Science Google Scholar
Feakins, D., Last, W. A. & Shaw, R.A. (1964). J. Chem. Soc. pp. 4464–4471. CrossRef Google Scholar
Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468–2475. CrossRef Google Scholar
Fincham, J. K., Hursthouse, M. B., Parkes, G., Shaw, L. S. & Shaw, R. A. (1986). Acta Cryst. B42, 462–472. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ganapathiappan, S. & Krishnamurthy, S. S. (1987). J. Chem. Soc. Dalton Trans. pp. 585–590. CrossRef Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Keat, R., Porte, A. L., Tong, D. A. & Shaw, R. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1648–1651. CrossRef Web of Science Google Scholar
Keat, R., Shaw, R. A. & Woods, M. (1976). J. Chem. Soc. Dalton Trans. pp. 1582–1589. CrossRef Google Scholar
Krishnamurthy, S. S., Ramachandran, K., Sau, A. C., Sudheendra Rao, M. N., Vasudeva Murthy, A. R., Keat, R. & Shaw, R. A. (1978). Phosphorus Sulfur, 5, 117–119. CrossRef CAS Google Scholar
Krishnamurthy, S. S., Ramabrahmarn, P., Vasudeva Murthy, A. R., Shaw, R. A. & Woods, M. (1980). Inorg. Nucl. Chem. Lett. 16, 215–217. CrossRef CAS Web of Science Google Scholar
Krishnamurthy, S. S., Sau, A. C., Vasudeva Murthy, R., Keat, R., Shaw, R. A. & Woods, M. (1977). J. Chem. Soc. Dalton Trans. pp. 1980–1985. CrossRef Google Scholar
Krishnamurthy, S. S., Shaw, R. A. & Woods, M. (1976). Curr. Sci. 45, 433–443. CAS Google Scholar
Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1965). Acta Cryst. 19, 693–698. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 375–382. CSD CrossRef IUCr Journals Web of Science Google Scholar
Mani, N. V. & Wagner, A. J. (1971). Acta Cryst. B27, 51–58. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Chemistry, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Shaw, R. A. (1976). Z. Naturforsch. Teil B, 31, 641–667. Google Scholar
Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands. Google Scholar
Sridharan, K. R., Ramakrishna, J., Ramachandran, K. & Krishnamurthy, S. S. (1980). J. Mol. Struct. 69, 105–115. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.