research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structural investigations of phosphorus–nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6 − n)(NHBut)n derivatives

aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, bBirkbeck College, University of London, Malet Street, Bloomsbury, London WC1E 7HX, England, and cGebze Institute of Technology, Gabze, 41400 Kocaeli, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk

(Received 2 November 2005; accepted 8 January 2006)

A series of compounds of the N3P3Cl(6 − n)(NHBut)n family (where n = 0, 1, 2, 4 and 6) are presented, and their molecular parameters are related to trends in physical properties, which provides insight into a potential reaction mechanism for nucleophilic substitution. The crystal structures of N3P3Cl5(NHBut) and N3P3Cl2(NHBut)4 have been determined at 120 K, and those of N3P3Cl6 and N3P3Cl4(NHBut)2 have been redetermined at 120 K. These are compared with the known structure of N3P3(NHBut)6 studied at 150 K. Trends in molecular parameters [phosphazene ring, P—Cl and P—N(HBut) distances, PCl2 angles, and endo- and exocyclic phosphazene ring parameters] across the series are observed. Hydrogen-bonding motifs are identified, characterized and compared. Both the molecular and the hydrogen-bonding parameters are related to the electron distribution in bonds and the derived basicities of the cyclophosphazene series of compounds. These findings provide evidence for a proposed mechanism for nucleophilic substitution at a phosphorus site bearing a PCl(NHBut) group.

1. Introduction

During extensive investigations of the replacement patterns of chloride substituents in N3P3Cl6 by amines (Shaw, 1976[Shaw, R. A. (1976). Z. Naturforsch. Teil B, 31, 641-667.]; Krishnamurthy et al., 1976[Krishnamurthy, S. S., Shaw, R. A. & Woods, M. (1976). Curr. Sci. 45, 433-443.]) the following conclusions were reached:

(i) Primary amines, H2NR, show a greater degree of variation in substitution patterns than secondary amines, HNR2.

(ii) Most secondary amines follow a predominantly non-geminal path, in which a PCl2 group is attacked in preference to a PCl(NR2) group.

(iii) At disubstitution, N3P3Cl4(NHR)2, both geminal and non-geminal replacements occur, depending on the R group. For R = Et only non-geminal cis and trans derivatives were observed, for R = Pri all three isomers, geminal and non-geminal, were obtained, whilst for R = But only the geminal derivative was isolated. Thus, under comparable conditions, the increasing steric bulk of the R group causes a change from non-geminal to geminal substitution.

(iv) At tetra-substitution, N3P3Cl2(NHR)4, a geminal pattern prevails.

Thus, when a cyclotriphosphazene compound containing PCl2 groups is allowed to react with tertiary butylamine, H2NBut, geminal P(NHBut)2 groups are formed with very few exceptions (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]; Begley et al., 1979[Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401-1404.]; Krishnamurthy et al., 1980[Krishnamurthy, S. S., Ramabrahmarn, P., Vasudeva Murthy, A. R., Shaw, R. A. & Woods, M. (1980). Inorg. Nucl. Chem. Lett. 16, 215-217.], Coles et al., 2001[Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2001). J. Chem. Soc. Dalton. Trans. pp. 365-370.]), and so tertiary butylamine is the preferred reagent to introduce geminal P(NHR)2 groupings into a cyclotriphosphazene derivative. The different substitution patterns have been explained by nucleophilic attack at different reaction sites, viz. at phosphorus or at the H atom of the PCl(NHR) grouping, giving rise to a proton abstraction/chloride ion elimination mechanism, which has been discussed elsewhere (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]; Ganapathiappan & Krishnamurthy, 1987[Ganapathiappan, S. & Krishnamurthy, S. S. (1987). J. Chem. Soc. Dalton Trans. pp. 585-590.]). If the P atom becomes more susceptible to nucleophilic attack, which occurs in N4P4Cl8 (Krishnamurthy et al., 1977[Krishnamurthy, S. S., Sau, A. C., Vasudeva Murthy, R., Keat, R., Shaw, R. A. & Woods, M. (1977). J. Chem. Soc. Dalton Trans. pp. 1980-1985.], 1978[Krishnamurthy, S. S., Ramachandran, K., Sau, A. C., Sudheendra Rao, M. N., Vasudeva Murthy, A. R., Keat, R. & Shaw, R. A. (1978). Phosphorus Sulfur, 5, 117-119.]), the balance is tipped towards non-geminal replacements giving rise to PCl(NHBut) groups. H2NBut is the most sterically hindered of the primary amines discussed, which is also borne out by the fact that under many reaction conditions only tetra-substitution, N3P3Cl2(NHBut)4, is usually achieved (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]), although the fully substituted derivative, N3P3(NHBut)6, can be obtained under very drastic conditions (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]; Bickley et al., 2003[Bickley, J. F., Bonar-Law, R., Lawson, G. T., Richards, P. I., Rivals, F., Steiner, A. & Zacchini, S. (2003). Dalton Trans. 7, 1235-1244.]). Whilst many other phosphazene derivatives containing P—Cl and P—NHR groupings are rather unstable, this does not seem to apply to tertiary butylamino derivatives. Following previous work (Beşli, Coles, Davies, Hursthouse, Kiliç, Mayer & Shaw, 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]; Beşli, Coles, Davies, Hursthouse, Kiliç, Mayer, Shaw & Yenilmez, 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2002). Acta Cryst. B58, 545-552.]; Coles, Davies, Eaton, Hursthouse et al., 2004[Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2001). J. Chem. Soc. Dalton. Trans. pp. 365-370.]) the crystal structures of a series of tertiary butylamino derivatives of cyclophosphazene have been determined, and their molecular parameters and hydrogen-bonding motifs are discussed in the light of the chemical and physical properties of the compounds.

2. Experimental

2.1. Preparation of compounds

Hexachlorocyclotriphosphazene (1) (15 g, 43.16 mmol) and tert-butylamine (12.6 g, 173 mmol) were dissolved in dichloromethane (200 ml) under argon pressure in a 250 ml three-necked round-bottomed flask. The reaction mixture was stirred and refluxed in an oil-bath for 6 d. tert-Butylamine hydrochloride was filtered off and the solvent was removed at 303 K. Two compounds were detected by thin-layer chromatography [Rf = 0.6 (2) and 0.3 (3), N3P3Cl4(NHBut)2], using dichloromethane–n-hexane (1:2) as the mobile phase. The crude product was subjected to column chromatography on silica gel using dichloromethane–n-hexane (1:2) as the eluant. 1-tert-Butylamino-1,3,3,5,5-pentachlorocyclotriphosphazatriene (2) was separated and recrystallized from n-hexane. Found: C 12.56, H 2.74, N 14.66%; (M+H)+, 384 C4H10Cl5N4P3; requires: C 12.50, H 2.62, N 14.58%; M 383.34. M.p. 319 K [literature 262–263 K (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]); 383 K (Begley et al., 1979[Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401-1404.])]. Yield 2 g, 21%. 1,1-Bis(tert-butylamino)-3,3,5,5-tetrachloro­cyclo­tri­phos­phazene (3) was separated and recrystallized from n-hexane–dichloromethane (1:1). Found: C 22.74, H 4.68, N 16.15%; (M+H)+, 421 C8H20Cl4N5P3; requires: C 22.82, H 4.79, N 16.63%; M 421. M.p. 393–395 K [literature 393–395 K (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]); 394 K (Begley et al., 1979[Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401-1404.])]. Yield 4.35 g, 24%.

Details of the preparation of N3P3Cl2(NHBut)4 (4) have been reported elsewhere (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]), with m.p. = 429 K from light petroleum.

2.2. X-ray crystallography

Data were collected at low temperature on an Nonius KappaCCD area-detector diffractometer located at the window of a Nonius FR591 rotating-anode X-ray generator, equipped with a molybdenum target (λMo Kα = 0.71073 Å). Structures were solved and refined using the SHELX97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]) suite of programs. Data were corrected for absorption effects by means of comparison of equivalent reflections using the program SORTAV (Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]). Non-H atoms were refined anisotropically, whilst H atoms were located from a difference map and freely refined isotropically for all N-bound H atoms, whereas all methyl H atoms were located in idealized positions according to a riding model, with their displacement parameters based on the values of their parent atoms. Compound (3) exhibited some rotational disorder in one But group. It also crystallized in a chiral space group with a Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter that refined to a value of 0.08 (8), and hence it can be assumed that the correct absolute structure has been determined. Pertinent data collection and refinement parameters are collated in Table 1[link].1

Table 1
Data collection and refinement parameters for structures (1)–(4)

  (1) (2) (3) (4)
Crystal data        
Chemical formula Cl6N3P3 C4H10Cl5N4P3 C8H20Cl4N5P3 C16H40Cl2N7P3
Mr 347.64 384.32 421.00 494.36
Cell setting, space group Orthorhombic, Pnma Monoclinic, P21/c Orthorhombic, Pna21 Monoclinic, P21/n
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 13.8572 (8), 12.8086 (11), 6.0801 (5) 13.8045 (14), 10.7964 (16), 20.7719 (12) 20.3441 (7), 11.9481 (4), 15.9661 (7) 12.5207 (2), 16.1282 (2), 13.1311 (2)
β (°) 90 104.132 (7) 90 95.9030 (10)
V3) 1079.17 (14) 3002.1 (6) 3880.9 (3) 2637.59 (7)
Z 4 8 8 4
Dx Mg m−3) 2.140 1.701 1.441 1.245
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 1403 6816 29 220 16 145
θ range (°) 2.9–27.5 2.9–27.5 2.9–27.5 2.9–27.5
μ (mm−1) 1.99 1.27 0.85 0.45
Crystal form, colour Plate, colourless Cut plate, colourless Plate, colourless Block, colourless
Crystal size (mm) 0.50 × 0.40 × 0.10 0.18 × 0.10 × 0.02 0.16 × 0.14 × 0.06 0.40 × 0.25 × 0.25
         
Data collection        
Diffractometer Bruker–Nonius KappaCCD area detector Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker–Nonius KappaCCD area detector Bruker–Nonius KappaCCD area detector
Data collection method φ and ω scans φ and ω scans φ and ω scans φ and ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.437 0.804 0.875 0.842
Tmax 0.826 0.975 0.951 0.897
No. of measured, independent and observed reflections 7733, 1283, 1194 40 456, 6867, 5549 29 635, 8587, 5744 29 576, 5994, 5106
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.022 0.044 0.078 0.057
θmax (°) 27.5 27.5 27.5 27.5
Range of h, k, l −16 → h → 18 −17 → h → 17 −26 → h → 24 −16 → h → 16
  −14 → k → 16 −14 → k → 14 −13 → k → 15 −20 → k → 20
  −7 → l → 7 −26 → l → 26 −20 → l → 20 −17 → l → 17
         
Refinement        
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.26 0.034, 0.086, 1.07 0.053, 0.107, 1.02 0.038, 0.100, 1.04
No. of reflections 1283 6867 8587 5994
No. of parameters 62 370 414 270
H-atom treatment No H atoms present Difmap Mixture of independent and constrained refinement Mixture of independent and constrained refinement
Weighting scheme w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3798P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.5716P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0134P)2 + 2.2238P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.043P)2 + 1.1457P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.005 0.001 0.011 0.030
Δρmax, Δρmin (e Å−3) 0.67, −0.68 0.49, −0.50 0.44, −0.43 0.27, −0.33
Extinction method SHELXL SHELXL SHELXL SHELXL
Extinction coefficient 0.0213 (18) 0.0021 (2) 0.0041 (3) 0.0099 (11)
Flack parameter Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Computer programs used: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Chemistry, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]), SHELXL (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.]), PLATON (Spek, 1998[Spek, A. L. (1998). PLATON. Utrecht University, The Netherlands.]).

3. Discussion

3.1. Molecular structures

Changes in molecular parameters of cyclophosphazene derivatives have been investigated as a function of substituents at fixed positions (Coles, Davies, Hursthouse et al., 2004[Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez-Ciftci, G. (2004). Acta Cryst. B60, 739-747.]); the overall architecture of these molecules remained the same, and so the designation of bond length and bond angle parameters was unambiguous for such a series of compounds. The molecules in the present study have different degrees of substitution of Cl atoms by NHBut residues, and this situation requires some modifications in the designation of their molecular parameters, as summarized in Fig. 1[link]. The endocyclic bond angle α is defined as N—P(X)2—N, the endocyclic bond angle β as (Y)2P—N—P(X)2 or (XY)P—N—P(X)2, the endocyclic bond angle γ as N—P(XY)—N or N—P(Y)2—N and the endocyclic bond angle δ as (X)2P—N—P(X)2 or (Y)2P—N—P(Y)2, where X = Cl and Y = NHBut. Analogous descriptions apply to definitions of the endocyclic bond lengths a, b, c etc., as summarized in Fig. 1[link]. Selected molecular parameters for all the crystal structures used in this comparison are given in Table 2[link].

Table 2
Selected molecular parameters for structures (1)–(5)

  (1) (2) (3) (4) (5)
a 1.577 (3) 1.594 (2) 1.619 (1) 1.623 (2) 1.578 (4)
b 1.567 (2) 1.556 (1) 1.560 (2)
Δ(P–N) = ab 0.027 (2) 0.063 (1) 0.063 (2)
c 1.575 (2) 1.577 (1) 1.598 (2)
d 1.986 (3) 1.991 (1) 2.003 (2) 2.034 (1)
d 2.017 (1)
e 1.616 (1) 1.644 (2) 1.638 (4)
e 1.600 (2)
α 118.5 (2) 119.2 (1) 119.9 (3) 121.3 (1)
β 121.1 (2) 121.6 (1) 123.5 (2) 121.9 (1) 121.9 (2)
γ 116.9 (1) 112.3 (2) 114.4 (1) 115.9 (2)
δ 120.6 (1) 118.4 (2) 126.7 (1)
θ 101.9 (1) 101.2 (1) 99.3 (1) 98.0 (1)
ω 104.8 (2) 102.5 (1) 101.7 (2)
λ 107.4 (1)
ΣN 358.3 (1) 358.8 (2) 353.7 (1) 355.1 (2)
[Figure 1]
Figure 1
Designation of molecular parameter descriptors for (1)–(5).

Although the room-temperature molecular structure of N3P3Cl6 (1) had been reported (Bullen, 1971[Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450-1453.]), a low-temperature structure (depicted in Fig. 2[link]) was determined for the purposes of accurate comparison in this study.

[Figure 2]
Figure 2
The molecular structure and numbering scheme of (1).

The structures of the two chemically equivalent molecules in the asymmetric unit of N3P3Cl5(NHBut) (2) are shown in Fig. 3[link], and a number of structural differences from (1) are observed. There is a significant decrease in γ, with a corresponding increase in β, and smaller changes are observed in α and δ. There is a marked increase in bond length a and a marked decrease in b, whereas c is largely unaffected. The non-geminal P—Cl bond, d′, is longer than the corresponding bond lengths, d, of the PCl2 group. The opposite behaviour is observed for the exocyclic P—N bond length e′, which is substantially shorter than those in geminal groups, e. Both effects have been observed in similar structures (Ahmed & Pollard, 1972[Ahmed, F. R. & Pollard, D. R. (1972). Acta Cryst. B28, 513-519.]; Ahmed & Gabe, 1975[Ahmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028-1032.]; Ahmed & Fortier, 1980[Ahmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456-1460.]; Alkubaisi et al., 1988[Alkubaisi, A. H., Hursthouse, M. B., Shaw, L. S. & Shaw, R. A. (1988). Acta Cryst. B44, 16-22.]; Beşli, Coles, Davies, Hursthouse, Kilic, Mayer, Shaw & Yenilmez, 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2002). Acta Cryst. B58, 545-552.]; Coles, Davies, Eaton et al., 2004[Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A. & Uslu, A. (2004). Eur. J. Org. Chem. pp. 1881-1886.]; Beşli, Coles, Davies, Hursthouse et al., 2004[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Uslu, A. (2004). Inorg. Chem. Commun. 7, 842-846.]; Beşli, Coles, Davies, Eaton et al., 2004[Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). Chem. Eur. J. 10, 4915-4920.]). The sum of the bond angles around the exocyclic N atom [358.3 (1)°] shows that it has trigonal planar character.

[Figure 3]
Figure 3
The molecular structure and numbering scheme of (2).

Although the crystal structure of N3P3Cl4(NHBut)2 (3) had been previously determined (Begley et al., 1979[Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401-1404.]), the study was performed at room temperature and the data were of insufficient quality to determine H-atom positions. As (3) is a typical example of a geminally disubstituted derivative of the type, N3P3Cl4R2, where R is a strongly electron-releasing substituent, an accurate structure (shown in Fig. 4[link]) was determined at low temperature, so that the molecular parameters could be included in this work. The structure exhibits two chemically equivalent molecules in the asymmetric unit. The bond lengths a of 1.619 (1) Å are relatively long, whereas those for b of 1.556 (1) Å are relatively short, giving a Δ(P—N) (= ab) value of 0.063 (1) Å, one of the largest observed from a survey of the Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Concomitantly, there is a very small bond angle α of 112.3 (2)° and a very large β angle of 123.5 (2)°. The exocyclic P—N bond length, e, of 1.616 (1) Å is quite short for this type of bond, indicating extensive back-donation of the lone-pair of electrons on the N atom towards the P atom. This bond shortening might have been even greater were it not for the conformation of the NHBut substituents, one of which is in almost a complete Type II conformation, while the other is between Type I and III [an explanation of these conformational types is given by Fincham et al. (1986[Fincham, J. K., Hursthouse, M. B., Parkes, G., Shaw, L. S. & Shaw, R. A. (1986). Acta Cryst. B42, 462-472.])]. The back-donation is also demonstrated by the sum of the bond angles around the exocyclic N atoms of 358.8 (2)°, showing their trigonal planar character. Increases in P—Cl bond lengths, d, and a decrease in bond angle Cl—P—Cl, ω, are also noted.

[Figure 4]
Figure 4
The molecular structure and numbering scheme of (3).

The crystal structure of N3P3Cl2(NHBut)4 (4) is presented in Fig. 5[link]. The effect on molecular parameters resulting from the large electron-releasing capacity of the NHBut substituents is also demonstrated in this compound, as the changes in some parameters are further enhanced compared with the disubstituted compound (3). The bond angle α of 114.4 (1)° bears this out, as do the respective bond lengths a and b of 1.623 (2) and 1.560 (2) Å, giving a Δ(P—N) value of 0.063 (2) Å. The averaged sum of bond angles around the exocyclic N atoms of 353.7 (1)° is the lowest in this series of compounds and indicates the greatest deviation from a trigonal planar structure.

[Figure 5]
Figure 5
The molecular structure and numbering scheme of (4).

The low-temperature structure of N3P3(NHBut)6 (5) has been reported previously (Bickley et al., 2003[Bickley, J. F., Bonar-Law, R., Lawson, G. T., Richards, P. I., Rivals, F., Steiner, A. & Zacchini, S. (2003). Dalton Trans. 7, 1235-1244.]) with the CSD refcode GUZVIG, and is used for comparison in this study. As expected for such a symmetrically substituted derivative, there are no statistically significant variations in the endocyclic P—N bond lengths. The averaged sum of the bond angles around the exocyclic N atoms of 355.1 (2)° is also somewhat lower than those for (2) and (3).

A measure of the conformational orientation of the NHBut groups relative to each other is given by the torsion angle to both adjacent ring N atoms. A measure of the close-packed nature of the NHBut groups is given by the non-bonded separation of the central C atoms between adjacent moieties (Table 3[link]). It can be seen from Table 3[link] that there is a general decrease in this C⋯C distance for a corresponding increase in the number of NHBut groups situated about the N3P3 core. This trend is indicative of the fact that these groups are more tightly clustered around the core and hence impede any interactions with it, owing to an increase in steric hindrance. Another indication of the close-packed nature of the NHBut groups is the dihedral angle between the plane of the N3P3 ring and the orientation of the NHBut group with respect to the P—N bond (Table 3[link]). With an increasing number of NHBut groups there is, on average, a corresponding increase in the torsion angle, indicating that this group must increasingly twist away from its sterically unhindered optimal position.

Table 3
Geometric parameters for NH—But groups

Compound Torsion angles of NHBut substituents to both adjacent ring N atoms C⋯C separations between central atoms on adjacent NHBut groups
(2) Molecule A 31.9 (5) 162.5 (4)  
  Molecule B −41.1 (5) −171.5 (5)  
         
(3) Molecule A 41.2 (5) −82.1 (5) 4.72
    49.0 (5) 172.5 (5)  
  Molecule B −37.8 (5) 86.8 (5) 4.68
    −51.3 (6) −174.4 (5)  
         
(4) Molecule A −43.07 (16) 84.84 (16) 4.74
    −42.2 (2) 85.23 (19) 4.75
    −37.63 (17) −162.53 (15)  
    −32.4 (2) −158.29 (17)  
         
(5) Molecule A −63.84 79.70 4.579
    −61.85 −83.88 4.605
    −51.52 83.18 4.548
    59.28 170.73  
    45.75 171.70  
    −45.32 −173.10  
         
  Molecule B 59.80 79.12 4.575
    −63.30 −81.27 4.569
    −60.85 84.54 4.554
    −49.67 169.13  
    48.31 172.77  
    −45.01 173.10  

3.2. Hydrogen bonding

The hydrogen bonding in the crystal structure of (2) is depicted in Fig. 6[link], which shows the formation of discreet head-to-tail dimers containing an eight-membered ring as a result of donation from the ButN—H group to the ring N atom of another molecule. The conformation of this ring is approximately saddle-shaped, with slightly different distances between donor and acceptor atoms, of 3.079 (4) and 3.095 (4) Å, respectively.

[Figure 6]
Figure 6
The hydrogen-bonded structure formed by (2).

The hydrogen bonding in the crystal structure of (3) is presented in Fig. 7[link] and leads to the formation of a similar structural arrangement to (2), where the intermolecular hydrogen bonds form an eight-membered ring of complementary dimers. The corresponding donor–acceptor separation distances of (3) are 3.123 (3) and 3.167 (4) Å, respectively, making them somewhat longer than those in (2).

[Figure 7]
Figure 7
The hydrogen-bonded structure formed by (3).

The hydrogen bonding exhibited by (4) forms a similar dimer motif (Fig. 8[link]), although the conformation of the eight-membered ring differs in that it is a boat form with the P atoms at the apices and the central six atoms coplanar. The symmetric N⋯N distances, with a value of 3.392 (4) Å, are even longer than in (3), indicating weaker hydrogen bonding, which presumably arises from an increase in steric hindrance in the hydrogen-bonding region.

[Figure 8]
Figure 8
The hydrogen-bonded structure formed by (4).

Bickley et al. (2003[Bickley, J. F., Bonar-Law, R., Lawson, G. T., Richards, P. I., Rivals, F., Steiner, A. & Zacchini, S. (2003). Dalton Trans. 7, 1235-1244.]) reported no hydrogen bonding in the crystal structure of N3P3(NHBut)6 (5). As the shortest N⋯N separation in the structure is 4.950 (5) Å there is certainly no sign of a hydrogen bond from any ButN—H group to a ring N atom. There may be a very weak intramolecular interaction from one NHBut group to another NHBut group in a cis non-geminal position, because there are two of these interactions having separations of 3.751 (5) and 3.766 (5) Å in chemically identical environments in the two molecules composing the asymmetric unit.

3.3. Structure–property relationships

The molecular parameters of (2)–(5) are discussed in terms of the basicity of each molecule. The NHBut substituent is one of the most base-strengthening primary amino residues so far investigated, with a substituent constant αR value of 5.9 (Feakins et al., 1969[Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468-2475.]). The basicities of the more basic compounds N3P3(NHBut)6 and N3P3Cl2(NHBut)4 have been measured in nitrobenzene solution with values of 8.0 and 4.35, respectively (Feakins et al., 1964[Feakins, D., Last, W. A. & Shaw, R.A. (1964). J. Chem. Soc. pp. 4464-4471.]). In fact, the basicity of 8.0 for (4) would be ∼ 9.9, if allowance were made for the saturation effect (Feakins et al., 1969[Feakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468-2475.]). The basicity values of the remaining derivatives have been obtained by summation of known substituent basicity constants (ΣαR) according to the previously described (Beşli, Coles, Davies, Hursthouse, Kilic, Mayer & Shaw, 2002[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067-1073.]), viz. −20.3, −14 and −8 for (1), (2) and (3), respectively. These ΣαR values span a range of 30 pKa units.

3.3.1. Molecular structures

Although the preparation of (2) has been published on two occasions, different physical properties were reported; the first report (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]) gave a melting point of 262–263 K and later a 31P NMR spectrum with absorptions at 16.0 and −5.3 p.p.m. (Keat et al., 1976[Keat, R., Shaw, R. A. & Woods, M. (1976). J. Chem. Soc. Dalton Trans. pp. 1582-1589.]). The sample of (2) prepared for this study has a melting point of 319 K and a 31P NMR spectrum with absorptions at 21.1 and 13.45 p.p.m. The fact that the structure is confirmed by X-ray crystallography (Fig. 3[link]) indicates that the former report must have been incorrectly assigned to a different product. The second report (Begley et al., 1979[Begley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401-1404.]) gave a melting point of 383 K for (2), which may indicate a different polymorph, and investigations into this result are underway.

The electron-donating power of the NHBut group is demonstrated by the Δ(P—N) values of (2), (3) and (4), which are 0.027 (2), 0.063 (1) and 0.063 (2) Å, respectively (Table 2[link]). As indicated by the results above, a simple additive behaviour is not expected for endocyclic parameters. For (2), in particular, some of the electron density appears to be diverted into lengthening the P(NHBut)—Cl bond, which at 2.017 (1) Å is considerably longer than the other P—Cl bonds in this compound. There are substantial changes in some bond angles, but again these are non-uniform, e.g. reduction in α.

In contrast to the non-uniform changes in endocyclic parameters, the exocyclic values follow uniform and consistent trends. The effect of the electron-releasing capacity of the substituents on the average values of the P—Cl bonds and the Cl—P—Cl bond angles in the remaining PCl2 groups are compared with the sum of the substituent basicity constants (∑αR) in Table 4[link], where the structures of some related PPh2 derivatives have been included, viz. N3P3Cl4Ph2 (6) (Mani et al., 1965[Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1965). Acta Cryst. 19, 693-698.]) and N3P3Cl2Ph4 (7) (Mani et al., 1966[Mani, N. V., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 375-382.]). In this series of compounds there is a good correlation between the increase in P—Cl bond length and the increase in ∑αR, as shown graphically in Fig. 9[link](a). Although the changes are small for the disubstituted compounds in this sequence, they are in keeping with the electron-supplying properties discussed above. For the tetrasubstituted compounds the effects on the P—Cl bond lengths are rather larger, as expected, because the effects of four donor groups are spread over only two P—Cl bonds, whereas the effects of two donors are spread over four P—Cl bonds for the disubstituted derivatives. A similar explanation can account for the concomitant decrease in Cl—P—Cl bond angles with ∑αR (shown graphically in Fig. 9[link]a), which is expected from a lengthening of the P—Cl bonds.

Table 4
Sum of substituent basicity constants (∑αR), geometric parameters and averaged 35Cl NQR frequencies of the PCl2 group of (1)–(4), (6) and (7)

Compounds N3P3Cl4Ph2 (6) and N3P3Cl2Ph4 (7) are included for comparison purposes.

Compound Molecular formula P—Cl (Å) Cl—P—Cl (°) αR Averaged 35Cl NQR frequencies (77 K) (MHz)
(1) N3P3Cl6 1.986 (3) 101.9 (1) 0.0 28.482
(2) N3P3Cl5(NHBut) 1.991 (1) 101.2 (1) 5.9
(6) N3P3Cl4Ph2 1.998 (6) 100.3 (2) 8.4 27.759
(3) N3P3Cl4(NHBut)2 2.003 (2) 99.3 (1) 11.8 27.481
(7) N3P3Cl2Ph4 2.017 (4) 98.5 (2) 16.8 26.511
(4) N3P3Cl2(NHBut)4 2.034 (1) 98.0 (1) 23.6 26.398
[Figure 9]
Figure 9
Correlation between (a) the sum of substituent basicity constants (∑αR) and (b) averaged 35Cl NQR frequencies (MHz) for P—Cl bond lengths and Cl—P—Cl bond angles for data presented in Table 4[link].

The above linear relationships are mirrored in a number of other physical properties. In a study of the Faraday effect of some aminochlorocyclotriphosphazenes in CCl4 solution, it was noted that in a plot of the number of amino substituents versus the molecular magnetic rotation geminal derivatives gave a good straight-line relationship, whilst non-geminal derivatives showed positive deviations (Bruniquel et al., 1973[Bruniquel, M. F., Fuacher, J.-P., Labarre, J.-F., Hasan, M., Krishnamurthy, S. S., Shaw, R. A. & Woods, M. (1973). Phosphorus, 3, 83-85.]). A possible explanation of these observations is that the former only depends on electron distributions within the plane of the N3P3 ring, whereas in the latter there is ample evidence from crystallographic data that there is an electron transfer, which changes the parameters of substituents above and below this ring.

In this study a significant correlation has been observed between molecular parameters and 35Cl NQR frequencies of PCl2 groups of cyclophosphazene derivatives, perhaps because this technique deals with crystalline substances as does crystallography. It has been shown previously that a linear relationship exists between 35Cl NQR frequencies and the P—Cl bond lengths both for Ph derivatives (Keat et al., 1972[Keat, R., Porte, A. L., Tong, D. A. & Shaw, R. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1648-1651.]) and for NHBut derivatives (Sridharan et al., 1980[Sridharan, K. R., Ramakrishna, J., Ramachandran, K. & Krishnamurthy, S. S. (1980). J. Mol. Struct. 69, 105-115.]). It is found that such a relationship holds for the compounds reported in this study and that it also extends to their Cl—P—Cl bond angles (Fig. 9[link]b). These results are also important because the observed linear correlations between molecular parameters and a physical parameter (35Cl NQR frequency) for molecules in the solid state are mirrored in the analogous dependence on a physical parameter (sum of substituent basicity constants, ∑αR) for molecules in the solution state.

The structural data also permit some tentative conclusions to be drawn as to why there is a mono, N3P3Cl5(NHBut), but no tris derivative, N3P3Cl3(NHBut)3, because the successive substitutions of the cyclophosphazene group change molecular parameters, particularly the P—Cl bond lengths. There is now a good deal of evidence for a hydrogen abstraction/chloride ion elimination mechanism leading to a trigonal planar intermediate, which then reacts rapidly with any nucleophile present (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]; Ganapathiappan & Krishnamurthy, 1987[Ganapathiappan, S. & Krishnamurthy, S. S. (1987). J. Chem. Soc. Dalton Trans. pp. 585-590.]). The proposed mechanism for nucleophilic substitution at a phosphorus site bearing an NHBut group is shown in Fig. 10[link]. When X = Cl, which is electron withdrawing, the proton abstraction by base is reversible, which was clearly shown by a D2O shake-up in proton NMR spectroscopy to eliminate the N–H coupling in (3) and (4) (Das et al., 1965[Das, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032-5036.]). If X = NHBut, which is a strongly electron-supplying group, proton abstraction is irreversible and thus prevents isolation of the tris derivative.

[Figure 10]
Figure 10
Proposed mechanism for nucleophilic substitution at a phosphorus site bearing an NHBut group.
3.3.2. Hydrogen-bonding trends

Compounds (2), (3) and (4) form eight-membered-ring hydrogen-bonded dimers, with the rings in a saddle shape for (2) and (3) and a boat conformation for (4). The increase in average N⋯N distances for (2) (3.087 Å), (3) (3.145 Å) and (4) (3.392 Å) are probably due to steric crowding. There are no intermolecular hydrogen bonds for (5), which is a result of the steric shielding of the potential acceptor N atoms in the cyclophosphazene core of the molecule.

The position of protonation of cyclophosphazene derivatives was originally deduced to be the ring N atoms from potentiometric studies, and this hypothesis was later proven by crystallography (Mani & Wagner, 1971[Mani, N. V. & Wagner, A. J. (1971). Acta Cryst. B27, 51-58.]; Shaw, 1976[Shaw, R. A. (1976). Z. Naturforsch. Teil B, 31, 641-667.]). These same N atoms are involved in the observed hydrogen-bonding patterns. However, the weakest base (2) seems to form the strongest hydrogen bonds, and the strongest base (5) does not form any intermolecular hydrogen-bonded interactions. Undoubtedly steric hindrance must be the cause, a conclusion supported by the geometric and conformational results (see above) regarding the relative conformations of the NHBut groups.

4. Conclusions

This is the first series of products from reaction of N3P3Cl6 with a given amine (in this case a bulky primary amine, H2NR), where all the compounds have been characterized crystallographically. The three hydrogen-bonded dimers show two types of eight-membered ring conformation; one is saddle shaped with slightly different hydrogen bridges for N3P3Cl5(NHBut) and N3P3Cl4(NHBut)2, whereas for N3P3Cl2(NHBut)4 the two intermolecular hydrogen-bonded bridges are identical and the conformation is that of a boat. The changes in observed molecular parameters show good correlation with changes in other physical properties, such as the substituent basicity constants, the Faraday effect, some 31P NMR parameters and 35Cl NQR frequencies. In spite of the much increased basicity of the ring N atoms, the capacity for intermolecular hydrogen-bonding decreases from the monosubstituted compound, N3P3Cl5(NHBut), to N3P3Cl2(NHBut)4 and has disappeared altogether for N3P3(NHBut)6. This behaviour is attributed to steric hindrance. The change in molecular parameters with increasing replacement of Cl atoms by NHBut groups gives rise to regular changes for exocyclic parameters, but is somewhat erratic for endocyclic parameters because of the different degrees and positions of substitution.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998) for (2); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (3), (4). Cell refinement: DENZO, COLLECT for (1); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (2); DENZO & COLLECT for (3), (4). Data reduction: DENZO, COLLECT for (1); DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998) for (2); DENZO & COLLECT for (3), (4). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (1), (3), (4). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: PLATON (Spek, 1998) for (1).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(1) Hexachlorocyclotriphosphazene top
Crystal data top
Cl6N3P3Dx = 2.140 Mg m3
Mr = 347.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1403 reflections
a = 13.8572 (8) Åθ = 2.9–27.5°
b = 12.8086 (11) ŵ = 1.99 mm1
c = 6.0801 (5) ÅT = 120 K
V = 1079.17 (14) Å3Plate, colourless
Z = 40.50 × 0.40 × 0.10 mm
F(000) = 672
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
1283 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1194 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.022
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1618
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, G.M., 2003)
k = 1416
Tmin = 0.437, Tmax = 0.826l = 77
7733 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3798P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.005
S = 1.26Δρmax = 0.67 e Å3
1283 reflectionsΔρmin = 0.69 e Å3
62 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0213 (18)
Crystal data top
Cl6N3P3V = 1079.17 (14) Å3
Mr = 347.64Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.8572 (8) ŵ = 1.99 mm1
b = 12.8086 (11) ÅT = 120 K
c = 6.0801 (5) Å0.50 × 0.40 × 0.10 mm
Data collection top
Bruker-Nonius KappaCCD Area Detector
diffractometer
1283 independent reflections
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, G.M., 2003)
1194 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.826Rint = 0.022
7733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02862 parameters
wR(F2) = 0.0740 restraints
S = 1.26Δρmax = 0.67 e Å3
1283 reflectionsΔρmin = 0.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64922 (15)0.75000.5951 (4)0.0187 (5)
N20.49315 (11)0.64417 (11)0.4448 (2)0.0181 (3)
P10.59531 (3)0.64294 (3)0.55879 (7)0.01317 (16)
P20.43947 (4)0.75000.39325 (10)0.01308 (18)
Cl10.58539 (3)0.57022 (4)0.84708 (7)0.02287 (16)
Cl20.68240 (3)0.54925 (4)0.39215 (8)0.02194 (16)
Cl30.31285 (4)0.75000.54745 (11)0.02096 (18)
Cl40.39841 (5)0.75000.08080 (10)0.02267 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0111 (9)0.0146 (10)0.0305 (12)0.0000.0067 (9)0.000
N20.0126 (7)0.0139 (7)0.0278 (8)0.0005 (5)0.0068 (6)0.0011 (6)
P10.0108 (3)0.0123 (3)0.0163 (3)0.00129 (15)0.00187 (15)0.00004 (16)
P20.0099 (3)0.0142 (3)0.0152 (3)0.0000.0025 (2)0.000
Cl10.0268 (3)0.0243 (3)0.0175 (2)0.00142 (18)0.00102 (17)0.00455 (17)
Cl20.0205 (2)0.0217 (3)0.0236 (3)0.00652 (17)0.00390 (17)0.00308 (17)
Cl30.0138 (3)0.0267 (4)0.0223 (3)0.0000.0039 (2)0.000
Cl40.0212 (3)0.0320 (4)0.0147 (3)0.0000.0039 (2)0.000
Geometric parameters (Å, º) top
N1—P11.5771 (11)P1—Cl11.9897 (6)
N1—P1i1.5771 (11)P2—N2i1.5777 (15)
N2—P11.5763 (15)P2—Cl41.9831 (9)
N2—P21.5777 (15)P2—Cl31.9894 (9)
P1—Cl21.9806 (6)
P1—N1—P1i120.80 (13)Cl2—P1—Cl1102.07 (3)
P1—N2—P2121.29 (9)N2i—P2—N2118.46 (11)
N2—P1—N1118.57 (9)N2i—P2—Cl4109.01 (6)
N2—P1—Cl2109.17 (6)N2—P2—Cl4109.01 (6)
N1—P1—Cl2108.05 (8)N2i—P2—Cl3108.79 (6)
N2—P1—Cl1109.26 (6)N2—P2—Cl3108.79 (6)
N1—P1—Cl1108.45 (9)Cl4—P2—Cl3101.44 (4)
Symmetry code: (i) x, y+3/2, z.
(2) 1-tert-butylamino-1,3,3,5,5-pentachlorocyclotriphosphazatriene top
Crystal data top
C4H10Cl5N4P3Dx = 1.701 Mg m3
Mr = 384.32Melting point: 46°C K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8045 (14) ÅCell parameters from 6816 reflections
b = 10.7964 (16) Åθ = 2.9–27.5°
c = 20.7719 (12) ŵ = 1.27 mm1
β = 104.132 (7)°T = 120 K
V = 3002.1 (6) Å3Cut plate, colourless
Z = 80.18 × 0.10 × 0.02 mm
F(000) = 1536
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6867 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
Φ & ω scansh = 1717
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1414
Tmin = 0.804, Tmax = 0.975l = 2626
40456 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034Difmap
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.5716P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6867 reflectionsΔρmax = 0.49 e Å3
370 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (2)
Crystal data top
C4H10Cl5N4P3V = 3002.1 (6) Å3
Mr = 384.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.8045 (14) ŵ = 1.27 mm1
b = 10.7964 (16) ÅT = 120 K
c = 20.7719 (12) Å0.18 × 0.10 × 0.02 mm
β = 104.132 (7)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6867 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
5549 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.975Rint = 0.044
40456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086Difmap
S = 1.07Δρmax = 0.49 e Å3
6867 reflectionsΔρmin = 0.50 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17129 (17)1.3566 (2)0.02067 (11)0.0200 (5)
C20.06088 (19)1.3307 (3)0.01014 (13)0.0267 (5)
C30.1898 (2)1.4958 (2)0.02625 (14)0.0281 (5)
C40.2045 (2)1.2962 (2)0.08855 (12)0.0258 (5)
N10.19717 (16)0.94770 (19)0.13223 (10)0.0262 (5)
N20.19499 (15)1.06715 (17)0.01843 (9)0.0221 (4)
N30.29851 (14)1.16389 (18)0.10223 (9)0.0203 (4)
N40.23111 (15)1.30907 (17)0.02485 (10)0.0190 (4)
P10.27037 (4)1.04750 (5)0.14864 (3)0.01853 (13)
P20.16093 (4)0.95511 (5)0.06614 (3)0.01894 (13)
P30.26885 (4)1.17078 (5)0.03256 (3)0.01697 (13)
Cl10.21669 (5)1.10893 (6)0.24080 (3)0.03175 (15)
Cl20.39452 (5)0.96200 (6)0.15753 (3)0.02996 (15)
Cl30.19861 (5)0.79780 (5)0.01638 (3)0.03274 (15)
Cl40.01293 (4)0.94518 (6)0.08895 (3)0.03296 (15)
Cl50.39640 (5)1.14713 (6)0.03862 (3)0.03337 (16)
H2A0.0431 (18)1.365 (2)0.0526 (13)0.022 (6)*
H2B0.023 (2)1.364 (3)0.0177 (14)0.036 (8)*
H2C0.046 (2)1.242 (3)0.0130 (13)0.036 (8)*
H3A0.257 (2)1.505 (3)0.0443 (13)0.027 (7)*
H3B0.172 (2)1.533 (2)0.0176 (14)0.027 (7)*
H3C0.151 (2)1.530 (3)0.0543 (14)0.035 (8)*
H4A0.165 (2)1.333 (3)0.1171 (15)0.043 (8)*
H4B0.276 (2)1.310 (3)0.1100 (13)0.028 (7)*
H4C0.191 (2)1.208 (3)0.0842 (14)0.038 (8)*
H4N0.2283 (18)1.349 (2)0.0552 (12)0.016 (6)*
C50.49140 (17)1.1284 (2)0.33533 (12)0.0232 (5)
C60.4741 (2)1.1961 (3)0.26974 (15)0.0363 (7)
C70.5492 (2)1.2093 (3)0.39132 (16)0.0383 (7)
C80.5476 (2)1.0082 (3)0.3331 (2)0.0404 (7)
N50.12289 (14)0.9223 (2)0.23559 (9)0.0255 (4)
N60.21928 (13)1.02251 (18)0.35386 (9)0.0199 (4)
N70.32415 (14)0.9041 (2)0.27736 (10)0.0295 (5)
N80.39181 (15)1.1045 (2)0.34894 (11)0.0264 (5)
P40.22630 (4)0.88148 (6)0.22243 (3)0.01944 (13)
P50.11899 (4)0.98830 (6)0.30245 (3)0.01815 (13)
P60.32529 (4)0.98200 (5)0.34220 (3)0.01789 (13)
Cl60.21650 (5)0.70290 (6)0.19752 (3)0.02974 (15)
Cl70.23985 (5)0.95840 (6)0.13795 (3)0.03634 (17)
Cl80.03513 (5)1.13916 (6)0.28189 (3)0.03327 (16)
Cl90.03580 (4)0.88348 (6)0.34766 (3)0.02836 (14)
Cl100.38806 (5)0.86825 (7)0.41762 (3)0.03675 (17)
H6A0.435 (2)1.148 (3)0.2370 (15)0.040 (9)*
H6B0.537 (2)1.217 (3)0.2576 (14)0.044 (8)*
H6C0.438 (3)1.276 (3)0.2701 (17)0.063 (11)*
H7A0.615 (2)1.231 (3)0.3834 (15)0.050 (9)*
H7B0.515 (2)1.288 (3)0.3950 (15)0.047 (9)*
H7C0.562 (3)1.160 (3)0.4311 (18)0.058 (10)*
H8A0.610 (2)1.026 (3)0.3230 (14)0.039 (8)*
H8B0.515 (2)0.955 (3)0.2961 (15)0.042 (9)*
H8C0.558 (3)0.963 (4)0.376 (2)0.071 (12)*
H8N0.366 (2)1.166 (3)0.3608 (13)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (12)0.0161 (12)0.0190 (11)0.0017 (9)0.0092 (10)0.0025 (9)
C20.0273 (13)0.0306 (15)0.0251 (13)0.0023 (11)0.0121 (11)0.0016 (11)
C30.0371 (16)0.0185 (13)0.0300 (14)0.0025 (11)0.0104 (13)0.0027 (10)
C40.0351 (15)0.0252 (14)0.0191 (11)0.0033 (11)0.0110 (11)0.0014 (10)
N10.0335 (12)0.0238 (11)0.0245 (10)0.0090 (9)0.0133 (9)0.0085 (8)
N20.0315 (11)0.0152 (10)0.0231 (10)0.0039 (8)0.0135 (9)0.0009 (8)
N30.0232 (10)0.0181 (10)0.0228 (10)0.0026 (8)0.0117 (8)0.0018 (8)
N40.0272 (11)0.0132 (10)0.0189 (10)0.0014 (8)0.0097 (9)0.0029 (8)
P10.0213 (3)0.0177 (3)0.0178 (3)0.0012 (2)0.0071 (2)0.0008 (2)
P20.0222 (3)0.0148 (3)0.0204 (3)0.0024 (2)0.0064 (2)0.0002 (2)
P30.0197 (3)0.0141 (3)0.0179 (3)0.0009 (2)0.0061 (2)0.0003 (2)
Cl10.0399 (4)0.0327 (4)0.0203 (3)0.0059 (3)0.0029 (3)0.0040 (2)
Cl20.0280 (3)0.0291 (3)0.0342 (3)0.0092 (3)0.0104 (3)0.0037 (2)
Cl30.0450 (4)0.0155 (3)0.0345 (3)0.0012 (3)0.0035 (3)0.0038 (2)
Cl40.0221 (3)0.0410 (4)0.0352 (3)0.0039 (3)0.0059 (3)0.0008 (3)
Cl50.0248 (3)0.0396 (4)0.0313 (3)0.0065 (3)0.0016 (3)0.0024 (3)
C50.0164 (11)0.0228 (13)0.0327 (13)0.0002 (9)0.0108 (10)0.0009 (10)
C60.0265 (14)0.0481 (19)0.0379 (16)0.0022 (14)0.0150 (13)0.0100 (14)
C70.0253 (14)0.0468 (19)0.0432 (17)0.0061 (13)0.0092 (13)0.0141 (15)
C80.0273 (15)0.0286 (16)0.073 (2)0.0020 (12)0.0282 (16)0.0028 (16)
N50.0199 (10)0.0361 (12)0.0189 (9)0.0058 (9)0.0019 (8)0.0050 (9)
N60.0175 (9)0.0237 (11)0.0199 (9)0.0012 (8)0.0073 (8)0.0047 (8)
N70.0164 (10)0.0430 (13)0.0296 (11)0.0030 (9)0.0064 (9)0.0163 (10)
N80.0198 (10)0.0185 (11)0.0462 (13)0.0002 (8)0.0184 (10)0.0029 (9)
P40.0195 (3)0.0222 (3)0.0176 (3)0.0022 (2)0.0064 (2)0.0023 (2)
P50.0166 (3)0.0213 (3)0.0179 (3)0.0020 (2)0.0068 (2)0.0001 (2)
P60.0163 (3)0.0197 (3)0.0184 (3)0.0001 (2)0.0058 (2)0.0017 (2)
Cl60.0296 (3)0.0221 (3)0.0383 (3)0.0009 (2)0.0096 (3)0.0046 (2)
Cl70.0490 (4)0.0354 (4)0.0314 (3)0.0103 (3)0.0228 (3)0.0111 (3)
Cl80.0320 (3)0.0288 (3)0.0396 (3)0.0128 (3)0.0099 (3)0.0048 (3)
Cl90.0254 (3)0.0350 (4)0.0254 (3)0.0095 (3)0.0076 (2)0.0017 (2)
Cl100.0366 (4)0.0386 (4)0.0366 (3)0.0096 (3)0.0119 (3)0.0178 (3)
Geometric parameters (Å, º) top
C1—N41.490 (3)C5—N81.492 (3)
C1—C41.519 (3)C5—C61.513 (4)
C1—C31.524 (3)C5—C71.516 (4)
C1—C21.528 (3)C5—C81.518 (4)
C2—H2A0.93 (3)C6—H6A0.92 (3)
C2—H2B0.94 (3)C6—H6B0.99 (3)
C2—H2C0.98 (3)C6—H6C1.00 (4)
C3—H3A0.91 (3)C7—H7A0.99 (3)
C3—H3B0.97 (3)C7—H7B0.98 (3)
C3—H3C0.95 (3)C7—H7C0.96 (4)
C4—H4A0.99 (3)C8—H8A0.96 (3)
C4—H4B0.99 (3)C8—H8B0.98 (3)
C4—H4C0.97 (3)C8—H8C1.00 (4)
N1—P11.570 (2)N5—P51.5733 (19)
N1—P21.5737 (19)N5—P41.581 (2)
N2—P21.562 (2)N6—P51.5722 (19)
N2—P31.5886 (19)N6—P61.6014 (18)
N3—P11.5736 (19)N7—P41.560 (2)
N3—P31.5991 (18)N7—P61.585 (2)
N4—P31.6021 (19)N8—P61.597 (2)
N4—H4N0.76 (3)N8—H8N0.82 (3)
P1—Cl11.9902 (8)P4—Cl71.9909 (8)
P1—Cl21.9946 (8)P4—Cl61.9922 (9)
P2—Cl41.9844 (9)P5—Cl81.9834 (9)
P2—Cl31.9901 (9)P5—Cl92.0020 (8)
P3—Cl52.0200 (9)P6—Cl102.0125 (9)
N4—C1—C4110.64 (19)N8—C5—C6107.7 (2)
N4—C1—C3106.22 (19)N8—C5—C7106.9 (2)
C4—C1—C3110.2 (2)C6—C5—C7110.5 (2)
N4—C1—C2108.78 (18)N8—C5—C8111.1 (2)
C4—C1—C2110.8 (2)C6—C5—C8110.8 (2)
C3—C1—C2110.1 (2)C7—C5—C8109.8 (2)
C1—C2—H2A109.3 (15)C5—C6—H6A109.2 (19)
C1—C2—H2B108.9 (17)C5—C6—H6B112.5 (18)
H2A—C2—H2B112 (2)H6A—C6—H6B110 (2)
C1—C2—H2C112.4 (17)C5—C6—H6C112 (2)
H2A—C2—H2C109 (2)H6A—C6—H6C107 (3)
H2B—C2—H2C105 (2)H6B—C6—H6C106 (3)
C1—C3—H3A105.9 (17)C5—C7—H7A110.1 (19)
C1—C3—H3B109.8 (16)C5—C7—H7B112.7 (19)
H3A—C3—H3B110 (2)H7A—C7—H7B106 (3)
C1—C3—H3C108.4 (17)C5—C7—H7C107 (2)
H3A—C3—H3C111 (2)H7A—C7—H7C107 (3)
H3B—C3—H3C111 (2)H7B—C7—H7C114 (3)
C1—C4—H4A107.4 (17)C5—C8—H8A109.3 (18)
C1—C4—H4B113.3 (15)C5—C8—H8B112.6 (18)
H4A—C4—H4B108 (2)H8A—C8—H8B102 (2)
C1—C4—H4C109.1 (17)C5—C8—H8C111 (2)
H4A—C4—H4C109 (2)H8A—C8—H8C110 (3)
H4B—C4—H4C110 (2)H8B—C8—H8C111 (3)
P1—N1—P2120.85 (13)P5—N5—P4120.40 (12)
P2—N2—P3122.38 (12)P5—N6—P6121.25 (11)
P1—N3—P3120.80 (12)P4—N7—P6122.14 (12)
C1—N4—P3128.93 (16)C5—N8—P6131.54 (17)
C1—N4—H4N113.9 (19)C5—N8—H8N114.4 (19)
P3—N4—H4N113.8 (19)P6—N8—H8N114.0 (19)
N1—P1—N3119.38 (10)N7—P4—N5119.15 (10)
N1—P1—Cl1109.22 (8)N7—P4—Cl7109.17 (9)
N3—P1—Cl1107.54 (8)N5—P4—Cl7108.62 (8)
N1—P1—Cl2108.39 (9)N7—P4—Cl6109.47 (9)
N3—P1—Cl2109.70 (8)N5—P4—Cl6107.94 (9)
Cl1—P1—Cl2101.05 (4)Cl7—P4—Cl6100.94 (4)
N2—P2—N1118.84 (10)N6—P5—N5119.46 (10)
N2—P2—Cl4109.04 (8)N6—P5—Cl8108.91 (8)
N1—P2—Cl4108.49 (9)N5—P5—Cl8109.00 (8)
N2—P2—Cl3109.35 (8)N6—P5—Cl9108.97 (8)
N1—P2—Cl3108.14 (9)N5—P5—Cl9107.78 (9)
Cl4—P2—Cl3101.60 (4)Cl8—P5—Cl9101.17 (4)
N2—P3—N3116.88 (10)N7—P6—N8113.58 (12)
N2—P3—N4113.50 (10)N7—P6—N6116.98 (10)
N3—P3—N4107.17 (10)N8—P6—N6106.72 (11)
N2—P3—Cl5105.06 (8)N7—P6—Cl10104.53 (9)
N3—P3—Cl5106.65 (8)N8—P6—Cl10107.95 (9)
N4—P3—Cl5106.93 (8)N6—P6—Cl10106.54 (7)
(3) 1,1-bis(tert-butylamino)-3,3,5,5-tetrachlorocyclotriphosphazene top
Crystal data top
C8H20Cl4N5P3Dx = 1.441 Mg m3
Mr = 421.00Melting point: 121°C K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 20.3441 (7) ÅCell parameters from 29220 reflections
b = 11.9481 (4) Åθ = 2.9–27.5°
c = 15.9661 (7) ŵ = 0.85 mm1
V = 3880.9 (3) Å3T = 120 K
Z = 8Plate, colourless
F(000) = 17280.16 × 0.14 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
5744 reflections with I > 2σ(I)
Radiation source: Nonius FR591 rotating anodeRint = 0.078
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 9.091 pixels mm-1h = 2624
ϕ & ω scansk = 1315
29635 measured reflectionsl = 2020
8587 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0134P)2 + 2.2238P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.011
S = 1.02Δρmax = 0.44 e Å3
8587 reflectionsΔρmin = 0.43 e Å3
414 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.0041 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (8)
Crystal data top
C8H20Cl4N5P3V = 3880.9 (3) Å3
Mr = 421.00Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 20.3441 (7) ŵ = 0.85 mm1
b = 11.9481 (4) ÅT = 120 K
c = 15.9661 (7) Å0.16 × 0.14 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
5744 reflections with I > 2σ(I)
29635 measured reflectionsRint = 0.078
8587 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.44 e Å3
S = 1.02Δρmin = 0.43 e Å3
8587 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
414 parametersAbsolute structure parameter: 0.08 (8)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.4512 (8)0.743 (2)0.4483 (12)0.112 (8)0.67 (3)
H2A0.48080.69370.41730.169*0.67 (3)
H2B0.43190.79810.40970.169*0.67 (3)
H2C0.47600.78260.49200.169*0.67 (3)
C30.369 (3)0.590 (2)0.5647 (14)0.148 (18)0.47 (4)
H3A0.38950.61420.61750.222*0.47 (4)
H3B0.32130.59500.56960.222*0.47 (4)
H3C0.38200.51320.55230.222*0.47 (4)
C40.358 (4)0.783 (7)0.506 (6)0.18 (3)0.34 (9)
H4A0.37940.84150.47180.263*0.34 (9)
H4B0.31200.77700.48980.263*0.34 (9)
H4C0.36150.80370.56520.263*0.34 (9)
C2'0.4626 (11)0.652 (4)0.497 (3)0.11 (2)0.33 (3)
H2'10.48220.65440.44140.163*0.33 (3)
H2'20.48210.71120.53210.163*0.33 (3)
H2'30.47090.57920.52310.163*0.33 (3)
C3'0.430 (2)0.5882 (18)0.5435 (14)0.115 (13)0.53 (4)
H3'10.46440.62730.57510.172*0.53 (4)
H3'20.39980.55170.58260.172*0.53 (4)
H3'30.45040.53160.50730.172*0.53 (4)
C4'0.3537 (11)0.755 (3)0.530 (2)0.109 (9)0.66 (9)
H4'10.38070.79750.57000.163*0.66 (9)
H4'20.33620.80570.48760.163*0.66 (9)
H4'30.31720.71950.56040.163*0.66 (9)
C90.0429 (2)0.3132 (4)0.5383 (3)0.0542 (12)
C100.0612 (3)0.2948 (6)0.6290 (3)0.0810 (18)
H10A0.05860.21480.64200.122*
H10B0.03070.33620.66500.122*
H10C0.10610.32150.63870.122*
C110.0255 (3)0.2668 (6)0.5210 (4)0.092 (2)
H11A0.03680.27920.46210.139*
H11B0.05760.30510.55670.139*
H11C0.02610.18640.53310.139*
C120.0465 (3)0.4379 (5)0.5192 (4)0.0747 (16)
H12A0.03380.45100.46080.112*
H12B0.09150.46450.52810.112*
H12C0.01650.47860.55640.112*
C130.2241 (2)0.2599 (4)0.3576 (4)0.0603 (14)
C140.2131 (3)0.3736 (5)0.3901 (5)0.092 (2)
H14A0.17450.40630.36280.138*
H14B0.25180.41990.37840.138*
H14C0.20570.37020.45070.138*
C150.2367 (5)0.2734 (7)0.2645 (6)0.151 (4)
H15A0.24510.19990.23950.226*
H15B0.27510.32180.25610.226*
H15C0.19820.30740.23790.226*
C160.2799 (3)0.2025 (6)0.3986 (10)0.200 (7)
H16A0.28540.12780.37410.301*
H16B0.27120.19550.45870.301*
H16C0.32020.24610.39000.301*
H10.388 (2)0.573 (4)0.397 (3)0.046 (14)*
H110.249 (2)0.586 (4)0.460 (3)0.041 (15)*
H210.1181 (16)0.229 (3)0.509 (2)0.008 (9)*
H310.173 (2)0.129 (4)0.350 (3)0.049 (16)*
C10.3933 (3)0.6702 (5)0.4910 (4)0.0712 (16)
C50.1693 (2)0.6632 (4)0.4244 (3)0.0543 (12)
C60.1428 (2)0.6708 (6)0.3369 (4)0.0800 (18)
H6A0.14630.59760.30970.120*
H6B0.09660.69380.33880.120*
H6C0.16820.72610.30520.120*
C70.1292 (3)0.5754 (5)0.4739 (4)0.0761 (17)
H7A0.14630.57010.53120.114*
H7B0.08290.59810.47570.114*
H7C0.13290.50240.44640.114*
C80.1650 (3)0.7762 (5)0.4685 (4)0.0776 (18)
H8A0.18270.76950.52530.116*
H8B0.19050.83170.43710.116*
H8C0.11900.80010.47130.116*
N10.30158 (17)0.5506 (3)0.2866 (2)0.0435 (9)
N20.3072 (3)0.7070 (4)0.1649 (3)0.1009 (19)
N30.29394 (19)0.7680 (3)0.3284 (3)0.0515 (10)
N40.36383 (19)0.6142 (4)0.4171 (3)0.0534 (11)
N50.23848 (19)0.6238 (4)0.4261 (3)0.0454 (10)
N60.03308 (19)0.1839 (3)0.2602 (3)0.0641 (12)
N70.05133 (15)0.0956 (3)0.3745 (2)0.0405 (8)
N80.05692 (17)0.3148 (3)0.3371 (2)0.0438 (9)
N90.0917 (2)0.2535 (3)0.4862 (2)0.0439 (9)
N100.16547 (17)0.1856 (4)0.3660 (3)0.0478 (10)
P10.29935 (5)0.64228 (9)0.36204 (7)0.0412 (3)
P20.30042 (7)0.58105 (11)0.19244 (8)0.0559 (3)
P30.30301 (9)0.80076 (11)0.23443 (10)0.0724 (4)
P40.09009 (5)0.21355 (8)0.38894 (7)0.0366 (2)
P50.01174 (6)0.08397 (10)0.31956 (8)0.0474 (3)
P60.00700 (6)0.29605 (10)0.26488 (8)0.0466 (3)
Cl10.36884 (8)0.49371 (16)0.13073 (10)0.0968 (6)
Cl20.21973 (7)0.51581 (14)0.13800 (10)0.0869 (5)
Cl30.38089 (11)0.90060 (15)0.22077 (15)0.1250 (8)
Cl40.23133 (12)0.90792 (15)0.20127 (14)0.1250 (8)
Cl50.09017 (6)0.04494 (12)0.39055 (11)0.0761 (4)
Cl60.00575 (7)0.05702 (13)0.25320 (12)0.0884 (5)
Cl70.05738 (7)0.42134 (14)0.26403 (12)0.0889 (5)
Cl80.05032 (8)0.32122 (14)0.15388 (9)0.0779 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.084 (9)0.133 (16)0.120 (12)0.047 (9)0.015 (8)0.038 (11)
C30.24 (5)0.132 (18)0.068 (13)0.02 (2)0.08 (2)0.000 (11)
C40.30 (7)0.10 (3)0.12 (4)0.02 (3)0.09 (4)0.08 (3)
C2'0.058 (14)0.15 (5)0.12 (3)0.016 (15)0.037 (14)0.08 (3)
C3'0.17 (3)0.092 (13)0.083 (14)0.036 (15)0.071 (17)0.026 (10)
C4'0.102 (13)0.125 (19)0.099 (16)0.040 (9)0.034 (8)0.083 (14)
C90.059 (3)0.063 (3)0.042 (3)0.002 (2)0.007 (2)0.007 (2)
C100.101 (4)0.097 (5)0.046 (3)0.012 (3)0.012 (3)0.003 (3)
C110.057 (4)0.140 (6)0.081 (4)0.012 (3)0.022 (3)0.047 (4)
C120.100 (4)0.064 (4)0.060 (4)0.017 (3)0.005 (3)0.015 (3)
C130.043 (3)0.046 (3)0.092 (4)0.012 (2)0.010 (3)0.006 (3)
C140.073 (4)0.061 (4)0.143 (6)0.034 (3)0.028 (4)0.026 (4)
C150.184 (8)0.120 (7)0.148 (8)0.090 (6)0.103 (7)0.044 (6)
C160.067 (5)0.087 (5)0.45 (2)0.025 (4)0.095 (8)0.076 (9)
C10.062 (3)0.072 (4)0.080 (4)0.003 (3)0.020 (3)0.037 (3)
C50.044 (3)0.059 (3)0.060 (3)0.004 (2)0.007 (2)0.011 (3)
C60.045 (3)0.119 (5)0.076 (4)0.002 (3)0.007 (3)0.002 (4)
C70.061 (3)0.075 (4)0.092 (4)0.002 (3)0.035 (3)0.003 (3)
C80.064 (4)0.065 (4)0.104 (5)0.012 (3)0.001 (3)0.025 (4)
N10.052 (2)0.037 (2)0.041 (2)0.0007 (16)0.0007 (16)0.0093 (16)
N20.206 (6)0.045 (3)0.052 (3)0.008 (3)0.016 (3)0.001 (2)
N30.065 (2)0.0328 (19)0.056 (3)0.0015 (17)0.0126 (19)0.0045 (19)
N40.041 (2)0.060 (3)0.060 (3)0.0062 (19)0.0079 (18)0.026 (2)
N50.046 (2)0.045 (2)0.045 (3)0.0000 (18)0.0044 (18)0.002 (2)
N60.067 (2)0.058 (3)0.068 (3)0.023 (2)0.035 (2)0.019 (2)
N70.0369 (18)0.0331 (18)0.051 (2)0.0075 (13)0.0025 (16)0.0003 (17)
N80.056 (2)0.039 (2)0.037 (2)0.0031 (16)0.0107 (17)0.0014 (16)
N90.043 (2)0.049 (2)0.040 (2)0.0046 (18)0.0097 (18)0.0033 (18)
N100.039 (2)0.038 (2)0.066 (3)0.0014 (16)0.0074 (18)0.009 (2)
P10.0432 (6)0.0370 (6)0.0435 (7)0.0015 (5)0.0029 (5)0.0090 (5)
P20.0798 (9)0.0458 (8)0.0421 (8)0.0002 (6)0.0045 (7)0.0068 (6)
P30.1206 (13)0.0385 (8)0.0581 (10)0.0094 (7)0.0194 (9)0.0017 (7)
P40.0390 (6)0.0331 (5)0.0376 (6)0.0020 (4)0.0004 (5)0.0003 (5)
P50.0443 (6)0.0423 (7)0.0556 (8)0.0092 (5)0.0050 (6)0.0005 (6)
P60.0510 (7)0.0469 (7)0.0418 (7)0.0012 (5)0.0053 (6)0.0052 (6)
Cl10.0960 (11)0.1181 (14)0.0764 (11)0.0027 (9)0.0231 (9)0.0433 (10)
Cl20.0928 (11)0.1003 (12)0.0676 (10)0.0094 (9)0.0356 (8)0.0106 (9)
Cl30.1551 (18)0.0762 (11)0.1436 (18)0.0425 (11)0.0792 (15)0.0088 (12)
Cl40.184 (2)0.0677 (12)0.1231 (17)0.0158 (12)0.0341 (15)0.0258 (11)
Cl50.0451 (7)0.0758 (9)0.1073 (12)0.0139 (6)0.0053 (7)0.0157 (9)
Cl60.0932 (11)0.0679 (10)0.1041 (13)0.0155 (7)0.0111 (10)0.0372 (9)
Cl70.0780 (10)0.0827 (11)0.1061 (13)0.0319 (8)0.0103 (9)0.0138 (10)
Cl80.0958 (11)0.0974 (12)0.0405 (7)0.0169 (8)0.0030 (7)0.0059 (8)
Geometric parameters (Å, º) top
C2—C11.617 (15)C15—H15C0.9800
C2—H2A0.9800C16—H16A0.9800
C2—H2B0.9800C16—H16B0.9800
C2—H2C0.9800C16—H16C0.9800
C3—C11.59 (3)C1—N41.482 (6)
C3—H3A0.9800C5—N51.485 (6)
C3—H3B0.9800C5—C61.499 (7)
C3—H3C0.9800C5—C81.525 (7)
C4—C11.55 (6)C5—C71.547 (7)
C4—H4A0.9800C6—H6A0.9800
C4—H4B0.9800C6—H6B0.9800
C4—H4C0.9800C6—H6C0.9800
C2'—C11.43 (2)C7—H7A0.9800
C2'—H2'10.9800C7—H7B0.9800
C2'—H2'20.9800C7—H7C0.9800
C2'—H2'30.9800C8—H8A0.9800
C3'—C11.492 (18)C8—H8B0.9800
C3'—H3'10.9800C8—H8C0.9800
C3'—H3'20.9800N1—P21.547 (4)
C3'—H3'30.9800N1—P11.628 (4)
C4'—C11.44 (2)N2—P21.574 (5)
C4'—H4'10.9800N2—P31.579 (5)
C4'—H4'20.9800N3—P31.561 (4)
C4'—H4'30.9800N3—P11.599 (4)
C9—N91.480 (6)N4—P11.615 (4)
C9—C101.510 (7)N4—H10.77 (4)
C9—C121.522 (7)N5—P11.621 (4)
C9—C111.523 (7)N5—H110.73 (4)
C10—H10A0.9800N6—P61.571 (4)
C10—H10B0.9800N6—P51.585 (4)
C10—H10C0.9800N7—P51.560 (3)
C11—H11A0.9800N7—P41.631 (3)
C11—H11B0.9800N8—P61.553 (4)
C11—H11C0.9800N8—P41.614 (3)
C12—H12A0.9800N9—P41.624 (4)
C12—H12B0.9800N9—H210.71 (3)
C12—H12C0.9800N10—P41.611 (4)
C13—C141.471 (7)N10—H310.73 (5)
C13—C161.480 (9)P2—Cl11.999 (2)
C13—N101.492 (5)P2—Cl22.014 (2)
C13—C151.517 (10)P3—Cl31.995 (2)
C14—H14A0.9800P3—Cl42.012 (3)
C14—H14B0.9800P5—Cl61.9939 (19)
C14—H14C0.9800P5—Cl52.0119 (18)
C15—H15A0.9800P6—Cl71.9892 (18)
C15—H15B0.9800P6—Cl82.0020 (19)
C1—C2—H2A109.5N4—C1—C3101.2 (9)
C1—C2—H2B109.5C3'—C1—C349.1 (13)
C1—C2—H2C109.5C4—C1—C3106 (5)
C1—C3—H3A109.5C2'—C1—C252.6 (18)
C1—C3—H3B109.5C4'—C1—C2102.2 (19)
C1—C3—H3C109.5N4—C1—C2101.7 (7)
C1—C4—H4A109.4C3'—C1—C2103 (2)
C1—C4—H4B109.5C4—C1—C286 (4)
C1—C4—H4C109.5C3—C1—C2149 (2)
C1—C2'—H2'1109.5N5—C5—C6112.2 (4)
C1—C2'—H2'2109.5N5—C5—C8109.1 (4)
H2'1—C2'—H2'2109.5C6—C5—C8110.8 (5)
C1—C2'—H2'3109.5N5—C5—C7106.0 (4)
H2'1—C2'—H2'3109.5C6—C5—C7109.1 (5)
H2'2—C2'—H2'3109.5C8—C5—C7109.5 (4)
C1—C3'—H3'1109.5C5—C6—H6A109.5
C1—C3'—H3'2109.5C5—C6—H6B109.5
H3'1—C3'—H3'2109.5H6A—C6—H6B109.5
C1—C3'—H3'3109.5C5—C6—H6C109.5
H3'1—C3'—H3'3109.5H6A—C6—H6C109.5
H3'2—C3'—H3'3109.5H6B—C6—H6C109.5
C1—C4'—H4'1109.5C5—C7—H7A109.5
C1—C4'—H4'2109.5C5—C7—H7B109.5
H4'1—C4'—H4'2109.5H7A—C7—H7B109.5
C1—C4'—H4'3109.5C5—C7—H7C109.5
H4'1—C4'—H4'3109.5H7A—C7—H7C109.5
H4'2—C4'—H4'3109.5H7B—C7—H7C109.5
N9—C9—C10107.7 (4)C5—C8—H8A109.5
N9—C9—C12109.1 (4)C5—C8—H8B109.5
C10—C9—C12108.8 (5)H8A—C8—H8B109.5
N9—C9—C11109.6 (4)C5—C8—H8C109.5
C10—C9—C11110.2 (5)H8A—C8—H8C109.5
C12—C9—C11111.3 (5)H8B—C8—H8C109.5
C9—C10—H10A109.5P2—N1—P1124.1 (2)
C9—C10—H10B109.5P2—N2—P3118.5 (3)
H10A—C10—H10B109.5P3—N3—P1123.4 (2)
C9—C10—H10C109.5C1—N4—P1131.9 (4)
H10A—C10—H10C109.5C1—N4—H1112 (4)
H10B—C10—H10C109.5P1—N4—H1115 (4)
C9—C11—H11A109.5C5—N5—P1132.0 (4)
C9—C11—H11B109.5C5—N5—H11119 (4)
H11A—C11—H11B109.5P1—N5—H11109 (4)
C9—C11—H11C109.5P6—N6—P5118.2 (2)
H11A—C11—H11C109.5P5—N7—P4123.7 (2)
H11B—C11—H11C109.5P6—N8—P4123.1 (2)
C9—C12—H12A109.5C9—N9—P4131.8 (3)
C9—C12—H12B109.5C9—N9—H21115 (3)
H12A—C12—H12B109.5P4—N9—H21112 (3)
C9—C12—H12C109.5C13—N10—P4131.1 (3)
H12A—C12—H12C109.5C13—N10—H31110 (4)
H12B—C12—H12C109.5P4—N10—H31118 (4)
C14—C13—C16112.9 (6)N3—P1—N4115.7 (2)
C14—C13—N10113.4 (4)N3—P1—N5106.7 (2)
C16—C13—N10107.4 (5)N4—P1—N5104.4 (2)
C14—C13—C15105.8 (6)N3—P1—N1112.7 (2)
C16—C13—C15110.6 (8)N4—P1—N1103.9 (2)
N10—C13—C15106.7 (5)N5—P1—N1113.3 (2)
C13—C14—H14A109.5N1—P2—N2119.7 (2)
C13—C14—H14B109.5N1—P2—Cl1110.23 (16)
H14A—C14—H14B109.5N2—P2—Cl1107.5 (2)
C13—C14—H14C109.5N1—P2—Cl2109.93 (16)
H14A—C14—H14C109.5N2—P2—Cl2108.7 (3)
H14B—C14—H14C109.5Cl1—P2—Cl298.78 (9)
C13—C15—H15A109.5N3—P3—N2120.3 (2)
C13—C15—H15B109.5N3—P3—Cl3110.41 (18)
H15A—C15—H15B109.5N2—P3—Cl3107.7 (2)
C13—C15—H15C109.5N3—P3—Cl4109.07 (18)
H15A—C15—H15C109.5N2—P3—Cl4107.8 (3)
H15B—C15—H15C109.5Cl3—P3—Cl499.57 (11)
C13—C16—H16A109.5N10—P4—N8115.9 (2)
C13—C16—H16B109.5N10—P4—N9105.0 (2)
H16A—C16—H16B109.5N8—P4—N9106.1 (2)
C13—C16—H16C109.5N10—P4—N7104.43 (19)
H16A—C16—H16C109.5N8—P4—N7111.89 (18)
H16B—C16—H16C109.5N9—P4—N7113.5 (2)
C2'—C1—C4'128.8 (15)N7—P5—N6119.61 (18)
C2'—C1—N4112.8 (10)N7—P5—Cl6108.90 (14)
C4'—C1—N4116.0 (11)N6—P5—Cl6109.58 (19)
C2'—C1—C3'51 (3)N7—P5—Cl5110.87 (16)
C4'—C1—C3'120 (2)N6—P5—Cl5107.12 (18)
N4—C1—C3'110.7 (8)Cl6—P5—Cl598.74 (8)
C2'—C1—C4125 (3)N8—P6—N6119.9 (2)
C4'—C1—C420 (5)N8—P6—Cl7109.09 (15)
N4—C1—C4109 (3)N6—P6—Cl7107.47 (18)
C3'—C1—C4136 (3)N8—P6—Cl8110.35 (15)
C2'—C1—C399 (3)N6—P6—Cl8108.3 (2)
C4'—C1—C386 (3)Cl7—P6—Cl899.84 (9)
C2'—C1—N4—P1153 (3)P3—N2—P2—Cl2117.2 (4)
C4'—C1—N4—P111 (2)P1—N3—P3—N29.6 (5)
C3'—C1—N4—P1152 (2)P1—N3—P3—Cl3116.7 (3)
C4—C1—N4—P19 (4)P1—N3—P3—Cl4134.8 (2)
C3—C1—N4—P1102 (2)P2—N2—P3—N31.4 (6)
C2—C1—N4—P199.0 (11)P2—N2—P3—Cl3129.0 (4)
C6—C5—N5—P133.5 (7)P2—N2—P3—Cl4124.4 (4)
C8—C5—N5—P189.6 (5)C13—N10—P4—N849.0 (5)
C7—C5—N5—P1152.5 (4)C13—N10—P4—N967.8 (5)
C10—C9—N9—P4161.9 (4)C13—N10—P4—N7172.5 (5)
C12—C9—N9—P480.2 (5)P6—N8—P4—N10104.2 (3)
C11—C9—N9—P442.0 (7)P6—N8—P4—N9139.7 (3)
C14—C13—N10—P412.2 (8)P6—N8—P4—N715.3 (3)
C16—C13—N10—P4137.5 (7)C9—N9—P4—N10164.5 (4)
C15—C13—N10—P4103.9 (6)C9—N9—P4—N841.2 (5)
P3—N3—P1—N4108.7 (3)C9—N9—P4—N782.1 (5)
P3—N3—P1—N5135.7 (3)P5—N7—P4—N10128.2 (3)
P3—N3—P1—N110.7 (4)P5—N7—P4—N82.1 (3)
C1—N4—P1—N351.3 (6)P5—N7—P4—N9118.0 (3)
C1—N4—P1—N565.6 (6)P4—N7—P5—N612.2 (4)
C1—N4—P1—N1175.4 (5)P4—N7—P5—Cl6139.2 (2)
C5—N5—P1—N337.8 (5)P4—N7—P5—Cl5113.2 (2)
C5—N5—P1—N4160.8 (4)P6—N6—P5—N75.3 (5)
C5—N5—P1—N186.8 (5)P6—N6—P5—Cl6132.1 (3)
P2—N1—P1—N31.5 (3)P6—N6—P5—Cl5121.8 (3)
P2—N1—P1—N4124.5 (3)P4—N8—P6—N622.7 (4)
P2—N1—P1—N5122.8 (3)P4—N8—P6—Cl7147.1 (2)
P1—N1—P2—N28.8 (4)P4—N8—P6—Cl8104.2 (2)
P1—N1—P2—Cl1134.1 (2)P5—N6—P6—N811.3 (5)
P1—N1—P2—Cl2118.0 (2)P5—N6—P6—Cl7136.5 (3)
P3—N2—P2—N110.2 (6)P5—N6—P6—Cl8116.5 (3)
P3—N2—P2—Cl1136.8 (4)
(4) 1,1-bis(tert-butylamino)-3-tert-butylamino,3,5,5-tetrachlorocyclotriphosphazene top
Crystal data top
C16H40Cl2N7P3Dx = 1.245 Mg m3
Mr = 494.36Melting point: 156°C K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.5207 (2) ÅCell parameters from 16145 reflections
b = 16.1282 (2) Åθ = 2.9–27.5°
c = 13.1311 (2) ŵ = 0.45 mm1
β = 95.903 (1)°T = 120 K
V = 2637.59 (7) Å3Block, colourless
Z = 40.40 × 0.25 × 0.25 mm
F(000) = 1056
Data collection top
Nonius KappaCCD
diffractometer
5994 independent reflections
Radiation source: Nonius FR591 rotating anode5106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 1616
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 2020
Tmin = 0.842, Tmax = 0.897l = 1717
29576 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.043P)2 + 1.1457P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.030
5994 reflectionsΔρmax = 0.27 e Å3
270 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (11)
Crystal data top
C16H40Cl2N7P3V = 2637.59 (7) Å3
Mr = 494.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5207 (2) ŵ = 0.45 mm1
b = 16.1282 (2) ÅT = 120 K
c = 13.1311 (2) Å0.40 × 0.25 × 0.25 mm
β = 95.903 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5994 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
5106 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.897Rint = 0.057
29576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
5994 reflectionsΔρmin = 0.33 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.5933 (18)0.0370 (13)0.5905 (17)0.042 (6)*
H110.4996 (18)0.1429 (14)0.6398 (17)0.045 (6)*
H310.5229 (18)0.2541 (14)0.3219 (17)0.042 (7)*
H210.6316 (19)0.0881 (16)0.3033 (19)0.055 (7)*
P10.63377 (3)0.08705 (2)0.58445 (3)0.02532 (12)
P30.63247 (3)0.18505 (3)0.40326 (3)0.02778 (12)
P20.80248 (3)0.19328 (3)0.55589 (4)0.03258 (13)
Cl20.84288 (5)0.29406 (3)0.64477 (4)0.05608 (16)
Cl10.95356 (4)0.15530 (4)0.53476 (5)0.05977 (17)
N30.58128 (11)0.11988 (8)0.47570 (10)0.0278 (3)
N50.54212 (12)0.10666 (9)0.66307 (11)0.0304 (3)
N40.64835 (12)0.01365 (9)0.59446 (11)0.0301 (3)
N10.75032 (11)0.12700 (9)0.62159 (11)0.0325 (3)
N20.74589 (12)0.22426 (9)0.45138 (11)0.0350 (3)
C30.76775 (17)0.04221 (12)0.45807 (16)0.0447 (5)
H3A0.79330.01520.45870.067*
H3B0.70420.04770.40840.067*
H3C0.82440.07920.43880.067*
N60.64041 (14)0.13570 (10)0.29421 (11)0.0364 (3)
N70.55544 (14)0.26399 (10)0.36771 (13)0.0377 (4)
C10.73873 (14)0.06543 (11)0.56431 (14)0.0333 (4)
C50.55491 (15)0.11040 (11)0.77714 (13)0.0363 (4)
C20.83600 (16)0.05749 (14)0.64443 (18)0.0503 (5)
H2A0.81520.07270.71190.076*
H2B0.86190.00010.64620.076*
H2C0.89320.09460.62650.076*
C40.69899 (17)0.15479 (11)0.56321 (16)0.0435 (5)
H4A0.68030.16980.63150.065*
H4B0.75570.19180.54390.065*
H4C0.63540.16030.51350.065*
C90.71139 (18)0.15448 (13)0.21300 (14)0.0462 (5)
C130.53940 (17)0.34388 (12)0.41971 (17)0.0451 (5)
C140.5342 (2)0.33081 (15)0.53378 (19)0.0596 (6)
H14A0.60280.30830.56460.089*
H14B0.47640.29180.54420.089*
H14C0.52020.38390.56610.089*
C70.6104 (2)0.19089 (16)0.81287 (18)0.0641 (7)
H7A0.56870.23810.78350.096*
H7B0.68260.19230.79040.096*
H7C0.61560.19400.88780.096*
C110.7121 (2)0.24687 (15)0.19187 (18)0.0636 (7)
H11A0.63870.26560.17060.095*
H11B0.75780.25830.13720.095*
H11C0.74020.27640.25420.095*
C60.4424 (2)0.10919 (19)0.81066 (19)0.0659 (7)
H6A0.40210.15740.78190.099*
H6B0.44670.11120.88560.099*
H6C0.40560.05820.78610.099*
C80.6176 (2)0.03628 (16)0.82168 (16)0.0665 (7)
H8A0.69020.03730.80000.100*
H8B0.58120.01490.79730.100*
H8C0.62200.03840.89660.100*
C160.6307 (3)0.40328 (15)0.4028 (3)0.0764 (8)
H16A0.63350.41170.32920.115*
H16B0.69890.37970.43290.115*
H16C0.61840.45660.43550.115*
C150.4322 (2)0.37871 (17)0.3725 (3)0.0849 (10)
H15A0.43500.38740.29900.127*
H15B0.41800.43160.40520.127*
H15C0.37460.33940.38300.127*
C100.8250 (2)0.1240 (2)0.2457 (2)0.0788 (9)
H10A0.82360.06420.25880.118*
H10B0.85370.15290.30820.118*
H10C0.87080.13520.19110.118*
C120.6643 (3)0.1099 (2)0.11594 (18)0.0873 (10)
H12A0.66380.05000.12840.131*
H12B0.70830.12190.06010.131*
H12C0.59080.12920.09710.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0261 (2)0.0272 (2)0.0223 (2)0.00094 (15)0.00046 (15)0.00082 (15)
P30.0311 (2)0.0283 (2)0.0236 (2)0.00109 (16)0.00111 (16)0.00031 (16)
P20.0271 (2)0.0378 (3)0.0321 (2)0.00539 (17)0.00020 (18)0.00413 (18)
Cl20.0661 (4)0.0490 (3)0.0506 (3)0.0197 (2)0.0065 (3)0.0131 (2)
Cl10.0278 (2)0.0839 (4)0.0679 (4)0.0016 (2)0.0064 (2)0.0007 (3)
N30.0272 (7)0.0316 (7)0.0239 (7)0.0024 (5)0.0019 (5)0.0015 (5)
N50.0323 (7)0.0341 (7)0.0250 (7)0.0063 (6)0.0037 (6)0.0000 (6)
N40.0301 (7)0.0276 (7)0.0326 (7)0.0019 (6)0.0033 (6)0.0001 (6)
N10.0290 (7)0.0383 (8)0.0286 (7)0.0027 (6)0.0047 (6)0.0004 (6)
N20.0340 (8)0.0384 (8)0.0321 (8)0.0085 (6)0.0014 (6)0.0027 (6)
C30.0504 (11)0.0439 (11)0.0419 (11)0.0110 (9)0.0143 (9)0.0009 (8)
N60.0513 (9)0.0328 (8)0.0255 (7)0.0035 (7)0.0064 (7)0.0005 (6)
N70.0455 (9)0.0316 (8)0.0337 (9)0.0034 (7)0.0059 (7)0.0000 (7)
C10.0341 (9)0.0323 (9)0.0332 (9)0.0085 (7)0.0015 (7)0.0014 (7)
C50.0450 (10)0.0392 (9)0.0254 (8)0.0006 (8)0.0074 (7)0.0039 (7)
C20.0401 (10)0.0528 (12)0.0551 (13)0.0142 (9)0.0099 (10)0.0050 (10)
C40.0521 (11)0.0316 (9)0.0459 (11)0.0090 (8)0.0010 (9)0.0004 (8)
C90.0626 (13)0.0510 (12)0.0271 (9)0.0049 (10)0.0139 (9)0.0026 (8)
C130.0525 (12)0.0300 (9)0.0525 (12)0.0056 (8)0.0040 (10)0.0013 (8)
C140.0730 (16)0.0506 (13)0.0573 (14)0.0064 (11)0.0169 (12)0.0156 (11)
C70.0888 (19)0.0628 (15)0.0413 (12)0.0232 (13)0.0095 (12)0.0190 (11)
C110.0826 (18)0.0592 (14)0.0522 (14)0.0116 (12)0.0224 (12)0.0149 (11)
C60.0584 (14)0.0952 (19)0.0476 (13)0.0038 (13)0.0223 (11)0.0077 (13)
C80.103 (2)0.0694 (16)0.0267 (10)0.0293 (14)0.0026 (11)0.0066 (10)
C160.097 (2)0.0361 (12)0.101 (2)0.0156 (12)0.0297 (18)0.0048 (13)
C150.091 (2)0.0548 (15)0.102 (2)0.0380 (14)0.0250 (18)0.0109 (15)
C100.0745 (18)0.112 (2)0.0562 (15)0.0246 (16)0.0362 (14)0.0176 (15)
C120.134 (3)0.099 (2)0.0318 (12)0.043 (2)0.0274 (15)0.0190 (13)
Geometric parameters (Å, º) top
P1—N31.5995 (13)C4—H4C0.9800
P1—N11.6236 (14)C9—C111.516 (3)
P1—N41.6380 (15)C9—C101.525 (4)
P1—N51.6512 (14)C9—C121.528 (3)
P3—N31.5956 (14)C13—C141.521 (3)
P3—N21.6221 (15)C13—C151.527 (3)
P3—N71.6361 (16)C13—C161.525 (3)
P3—N61.6502 (16)C14—H14A0.9800
P2—N11.5586 (15)C14—H14B0.9800
P2—N21.5604 (15)C14—H14C0.9800
P2—Cl22.0343 (7)C7—H7A0.9800
P2—Cl12.0343 (7)C7—H7B0.9800
N5—C51.491 (2)C7—H7C0.9800
N5—H110.83 (2)C11—H11A0.9800
N4—C11.492 (2)C11—H11B0.9800
N4—H10.78 (2)C11—H11C0.9800
C3—C11.524 (3)C6—H6A0.9800
C3—H3A0.9800C6—H6B0.9800
C3—H3B0.9800C6—H6C0.9800
C3—H3C0.9800C8—H8A0.9800
N6—C91.488 (2)C8—H8B0.9800
N6—H210.79 (2)C8—H8C0.9800
N7—C131.482 (2)C16—H16A0.9800
N7—H310.71 (2)C16—H16B0.9800
C1—C41.524 (3)C16—H16C0.9800
C1—C21.531 (3)C15—H15A0.9800
C5—C81.514 (3)C15—H15B0.9800
C5—C61.519 (3)C15—H15C0.9800
C5—C71.524 (3)C10—H10A0.9800
C2—H2A0.9800C10—H10B0.9800
C2—H2B0.9800C10—H10C0.9800
C2—H2C0.9800C12—H12A0.9800
C4—H4A0.9800C12—H12B0.9800
C4—H4B0.9800C12—H12C0.9800
N3—P1—N1114.26 (7)C11—C9—C10110.2 (2)
N3—P1—N4115.59 (8)N6—C9—C12107.14 (18)
N1—P1—N4106.27 (8)C11—C9—C12108.6 (2)
N3—P1—N5104.28 (7)C10—C9—C12110.6 (2)
N1—P1—N5113.40 (8)N7—C13—C14110.79 (16)
N4—P1—N5102.63 (8)N7—C13—C15106.74 (18)
N3—P3—N2114.45 (7)C14—C13—C15109.0 (2)
N3—P3—N7114.94 (8)N7—C13—C16109.87 (18)
N2—P3—N7105.93 (8)C14—C13—C16109.8 (2)
N3—P3—N6105.27 (8)C15—C13—C16110.5 (2)
N2—P3—N6113.43 (8)C13—C14—H14A109.5
N7—P3—N6102.36 (9)C13—C14—H14B109.5
N1—P2—N2121.88 (8)H14A—C14—H14B109.5
N1—P2—Cl2108.91 (6)C13—C14—H14C109.5
N2—P2—Cl2108.20 (6)H14A—C14—H14C109.5
N1—P2—Cl1108.50 (6)H14B—C14—H14C109.5
N2—P2—Cl1108.72 (6)C5—C7—H7A109.5
Cl2—P2—Cl197.99 (3)C5—C7—H7B109.5
P3—N3—P1126.65 (9)H7A—C7—H7B109.5
C5—N5—P1128.76 (12)C5—C7—H7C109.5
C5—N5—H11109.9 (16)H7A—C7—H7C109.5
P1—N5—H11111.5 (16)H7B—C7—H7C109.5
C1—N4—P1127.94 (13)C9—C11—H11A109.5
C1—N4—H1113.6 (16)C9—C11—H11B109.5
P1—N4—H1112.4 (16)H11A—C11—H11B109.5
P2—N1—P1121.38 (9)C9—C11—H11C109.5
P2—N2—P3121.19 (9)H11A—C11—H11C109.5
C1—C3—H3A109.5H11B—C11—H11C109.5
C1—C3—H3B109.5C5—C6—H6A109.5
H3A—C3—H3B109.5C5—C6—H6B109.5
C1—C3—H3C109.5H6A—C6—H6B109.5
H3A—C3—H3C109.5C5—C6—H6C109.5
H3B—C3—H3C109.5H6A—C6—H6C109.5
C9—N6—P3128.14 (14)H6B—C6—H6C109.5
C9—N6—H21114.3 (18)C5—C8—H8A109.5
P3—N6—H21108.4 (18)C5—C8—H8B109.5
C13—N7—P3130.48 (14)H8A—C8—H8B109.5
C13—N7—H31119.5 (19)C5—C8—H8C109.5
P3—N7—H31109.7 (19)H8A—C8—H8C109.5
N4—C1—C3111.34 (14)H8B—C8—H8C109.5
N4—C1—C4106.02 (15)C13—C16—H16A109.5
C3—C1—C4109.39 (16)C13—C16—H16B109.5
N4—C1—C2110.01 (15)H16A—C16—H16B109.5
C3—C1—C2111.16 (17)C13—C16—H16C109.5
C4—C1—C2108.75 (16)H16A—C16—H16C109.5
N5—C5—C8110.72 (15)H16B—C16—H16C109.5
N5—C5—C6106.48 (16)C13—C15—H15A109.5
C8—C5—C6109.7 (2)C13—C15—H15B109.5
N5—C5—C7110.01 (16)H15A—C15—H15B109.5
C8—C5—C7110.6 (2)C13—C15—H15C109.5
C6—C5—C7109.21 (19)H15A—C15—H15C109.5
C1—C2—H2A109.5H15B—C15—H15C109.5
C1—C2—H2B109.5C9—C10—H10A109.5
H2A—C2—H2B109.5C9—C10—H10B109.5
C1—C2—H2C109.5H10A—C10—H10B109.5
H2A—C2—H2C109.5C9—C10—H10C109.5
H2B—C2—H2C109.5H10A—C10—H10C109.5
C1—C4—H4A109.5H10B—C10—H10C109.5
C1—C4—H4B109.5C9—C12—H12A109.5
H4A—C4—H4B109.5C9—C12—H12B109.5
C1—C4—H4C109.5H12A—C12—H12B109.5
H4A—C4—H4C109.5C9—C12—H12C109.5
H4B—C4—H4C109.5H12A—C12—H12C109.5
N6—C9—C11110.26 (17)H12B—C12—H12C109.5
N6—C9—C10109.96 (17)
N2—P3—N3—P13.94 (14)N3—P3—N2—P25.12 (14)
N7—P3—N3—P1126.90 (11)N7—P3—N2—P2132.81 (11)
N6—P3—N3—P1121.29 (11)N6—P3—N2—P2115.70 (12)
N1—P1—N3—P30.75 (14)N3—P3—N6—C9158.29 (17)
N4—P1—N3—P3123.07 (11)N2—P3—N6—C932.4 (2)
N5—P1—N3—P3125.09 (11)N7—P3—N6—C981.23 (19)
N3—P1—N5—C5162.53 (15)N3—P3—N7—C1385.23 (19)
N1—P1—N5—C537.63 (17)N2—P3—N7—C1342.2 (2)
N4—P1—N5—C576.55 (16)N6—P3—N7—C13161.24 (18)
N3—P1—N4—C184.84 (16)P1—N4—C1—C346.5 (2)
N1—P1—N4—C143.07 (16)P1—N4—C1—C4165.37 (13)
N5—P1—N4—C1162.36 (14)P1—N4—C1—C277.2 (2)
N2—P2—N1—P10.23 (15)P1—N5—C5—C847.0 (2)
Cl2—P2—N1—P1126.77 (9)P1—N5—C5—C6166.22 (16)
Cl1—P2—N1—P1127.59 (9)P1—N5—C5—C775.6 (2)
N3—P1—N1—P21.51 (14)P3—N6—C9—C1144.4 (3)
N4—P1—N1—P2130.20 (10)P3—N6—C9—C1077.4 (2)
N5—P1—N1—P2117.82 (11)P3—N6—C9—C12162.41 (19)
N1—P2—N2—P33.33 (16)P3—N7—C13—C1441.1 (3)
Cl2—P2—N2—P3130.64 (9)P3—N7—C13—C15159.7 (2)
Cl1—P2—N2—P3123.93 (10)P3—N7—C13—C1680.4 (2)

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaCl6N3P3C4H10Cl5N4P3C8H20Cl4N5P3C16H40Cl2N7P3
Mr347.64384.32421.00494.36
Crystal system, space groupOrthorhombic, PnmaMonoclinic, P21/cOrthorhombic, Pna21Monoclinic, P21/n
Temperature (K)120120120120
a, b, c (Å)13.8572 (8), 12.8086 (11), 6.0801 (5)13.8045 (14), 10.7964 (16), 20.7719 (12)20.3441 (7), 11.9481 (4), 15.9661 (7)12.5207 (2), 16.1282 (2), 13.1311 (2)
α, β, γ (°)90, 90, 9090, 104.132 (7), 9090, 90, 9090, 95.903 (1), 90
V3)1079.17 (14)3002.1 (6)3880.9 (3)2637.59 (7)
Z4884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.991.270.850.45
Crystal size (mm)0.50 × 0.40 × 0.100.18 × 0.10 × 0.020.16 × 0.14 × 0.060.40 × 0.25 × 0.25
Data collection
DiffractometerBruker-Nonius KappaCCD Area Detector
diffractometer
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SADABS V2.10 (Sheldrick, G.M., 2003)
Multi-scan
SORTAV (Blessing, 1997)
Multi-scan
SORTAV (Blessing, 1997)
Tmin, Tmax0.437, 0.8260.804, 0.9750.842, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
7733, 1283, 1194 40456, 6867, 5549 29635, 8587, 5744 29576, 5994, 5106
Rint0.0220.0440.0780.057
(sin θ/λ)max1)0.6490.6500.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.26 0.034, 0.086, 1.07 0.053, 0.107, 1.02 0.038, 0.100, 1.04
No. of reflections1283686785875994
No. of parameters62370414270
No. of restraints0070
H-atom treatmentDifmapH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.690.49, 0.500.44, 0.430.27, 0.33
Absolute structure??Flack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter??0.08 (8)?

Computer programs: , DENZO (Otwinowski & Minor, 1997) & COLLECT (Hooft, 1998), DENZO, COLLECT, DENZO & COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1998).

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE5025 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

The authors thank the Shin Nisso Kako Co. Ltd for gifts of N3P3Cl6, the EPSRC for funding the National Crystallographic Service (Southampton, UK) and the Gebze Institute of Technology (GIT) Research Fund for partial support (Hİ, AK and İÜ).

References

First citationAhmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456–1460.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAhmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028–1032.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAhmed, F. R. & Pollard, D. R. (1972). Acta Cryst. B28, 513–519.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAlkubaisi, A. H., Hursthouse, M. B., Shaw, L. S. & Shaw, R. A. (1988). Acta Cryst. B44, 16–22.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBegley, M. J., Sowerby, D. B. & Bamgboye, T. T. (1979). J. Chem. Soc. Dalton Trans. pp. 1401–1404.  CrossRef Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). Chem. Eur. J. 10, 4915–4920.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A. & Shaw, R. A. (2002). Acta Cryst. B58, 1067–1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2002). Acta Cryst. B58, 545–552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Uslu, A. (2004). Inorg. Chem. Commun. 7, 842–846.  Web of Science CSD CrossRef CAS Google Scholar
First citationBickley, J. F., Bonar-Law, R., Lawson, G. T., Richards, P. I., Rivals, F., Steiner, A. & Zacchini, S. (2003). Dalton Trans. 7, 1235–1244.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruniquel, M. F., Fuacher, J.-P., Labarre, J.-F., Hasan, M., Krishnamurthy, S. S., Shaw, R. A. & Woods, M. (1973). Phosphorus, 3, 83–85.  CAS Google Scholar
First citationBullen, G. J. (1971). J. Chem. Soc. A, pp. 1450–1453.  CSD CrossRef Google Scholar
First citationColes, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Mayer, T. A., Shaw, R. A. & Yenilmez, G. (2001). J. Chem. Soc. Dalton. Trans. pp. 365–370.  Google Scholar
First citationColes, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A., Shaw, R. A. & Uslu, A. (2004). Eur. J. Org. Chem. pp. 1881–1886.  CrossRef Google Scholar
First citationColes, S. J., Davies, D. B., Hursthouse, M. B., Kilic, A., Mayer, T. A., Shaw, R. A. & Yenilmez-Ciftci, G. (2004). Acta Cryst. B60, 739–747.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDas, S. K., Keat, R., Shaw, R. A. & Smith, B. C. (1965). J. Chem. Soc. pp. 5032–5036.  CrossRef Web of Science Google Scholar
First citationFeakins, D., Last, W. A. & Shaw, R.A. (1964). J. Chem. Soc. pp. 4464–4471.  CrossRef Google Scholar
First citationFeakins, D., Shaw, R. A., Watson, P. & Nabi, S. N. (1969). J. Chem. Soc. A, pp. 2468–2475.  CrossRef Google Scholar
First citationFincham, J. K., Hursthouse, M. B., Parkes, G., Shaw, L. S. & Shaw, R. A. (1986). Acta Cryst. B42, 462–472.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanapathiappan, S. & Krishnamurthy, S. S. (1987). J. Chem. Soc. Dalton Trans. pp. 585–590.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKeat, R., Porte, A. L., Tong, D. A. & Shaw, R. A. (1972). J. Chem. Soc. Dalton Trans. pp. 1648–1651.  CrossRef Web of Science Google Scholar
First citationKeat, R., Shaw, R. A. & Woods, M. (1976). J. Chem. Soc. Dalton Trans. pp. 1582–1589.  CrossRef Google Scholar
First citationKrishnamurthy, S. S., Ramachandran, K., Sau, A. C., Sudheendra Rao, M. N., Vasudeva Murthy, A. R., Keat, R. & Shaw, R. A. (1978). Phosphorus Sulfur, 5, 117–119.  CrossRef CAS Google Scholar
First citationKrishnamurthy, S. S., Ramabrahmarn, P., Vasudeva Murthy, A. R., Shaw, R. A. & Woods, M. (1980). Inorg. Nucl. Chem. Lett. 16, 215–217.  CrossRef CAS Web of Science Google Scholar
First citationKrishnamurthy, S. S., Sau, A. C., Vasudeva Murthy, R., Keat, R., Shaw, R. A. & Woods, M. (1977). J. Chem. Soc. Dalton Trans. pp. 1980–1985.  CrossRef Google Scholar
First citationKrishnamurthy, S. S., Shaw, R. A. & Woods, M. (1976). Curr. Sci. 45, 433–443.  CAS Google Scholar
First citationMani, N. V., Ahmed, F. R. & Barnes, W. H. (1965). Acta Cryst. 19, 693–698.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMani, N. V., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 375–382.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMani, N. V. & Wagner, A. J. (1971). Acta Cryst. B27, 51–58.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Chemistry, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaw, R. A. (1976). Z. Naturforsch. Teil B, 31, 641–667.  Google Scholar
First citationSheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (1998). PLATON. Utrecht University, The Netherlands.  Google Scholar
First citationSridharan, K. R., Ramakrishna, J., Ramachandran, K. & Krishnamurthy, S. S. (1980). J. Mol. Struct. 69, 105–115.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds