research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

17 salts of ephedrine: crystal structures and packing analysis

aMolecular Materials Centre, School of Chemical Engineering and Analytical Science, The University of Manchester, PO Box 88, Sackville Street, Manchester M60 1QD, England, bProcess Engineering Group, PR&D, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, Cheshire SK10 2NA, England, and cPreformulation and Biopharmaceutics, PAR&D, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, Cheshire SK10 2NA, England
*Correspondence e-mail: roger.davey@manchester.ac.uk

(Received 17 October 2005; accepted 3 April 2006)

The structures of two neutral and 17 salt forms of the base (1R, 2S)-(−)-ephedrine are reported. These structures are discussed in the light of the conformers of the ephedrine moiety, the existence of bilayers and the structure determining role of the counterions. Overall, most of the salt structures are essentially derived from the observed packing of the neutral base and are dominated by the amphiphilic nature of the ephedrine molecular structure. In a few cases the size and hydrophobicity of the counterion disrupts this behaviour.

1. Introduction

The importance of molecular salts as solid forms in pharmaceutical formulations is well known (Stahl & Wermuth, 2002[Stahl, P. H. & Wermuth, C. G. (2002). Editors. Handbook of Pharmaceutical Salts: Properties, Selection and Use. Chichester, England: Wiley-VCH.]). For a given active ingredient, the isolation and selection of a salt with the appropriate physicochemical properties involves significant screening activity and has been discussed at some length in the literature (Tong & Whitesell, 1998[Tong, W. & Whitesell, G. (1998). Pharmaceut. Dev. Technol. 5, 579-582.]; Shanker, 1994[Shanker, R. (1994). Pharmaceut. Res. 11, S-236.]). It is apparent that over 40% of marketed salts are hydrochlorides (Gould, 1986[Gould, P. L. (1986). Int. J. Pharmaceut. 33, 201-207.]) and this trend is reflected in the available salt structures in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002).  Acta Cryst. B58, 380-388.]): the November 2003 release (Collier, 2004[Collier, E. A. (2004). PhD Thesis, University of Manchester, England.]; Jones et al., 2005[Jones, H., Cox, B. & Davey, R. J. (2005). J. Phys. Chem. B, 109, 5273-5278.]) showed that of 950 salts in which one component is recorded as being active, an agent or a drug, hydrochlorides are the most common occurring as 55% of the entries, with acetates the next most popular at 17%. It is also evident from the CSD records that there have been very few studies in which crystal structures of multiple salt forms of a single active drug have been reported. Recently (Lewis et al., 2005[Lewis, G. R., Steele, G., McBride, L., Florence, A. J., Kennedy, A. R., Shankland, N., David, W. I. F., Shankland, K. & Teat, S. J. (2005). Cryst. Growth Des. 5, 427-438.]) the structures of six salts of remacemide have been determined, and the competition between hydrophilic and hydrophobic interactions as drivers for the crystal packings discussed. Our current work seeks to go further using the pharmaceutically active base (1R, 2S)-(−)-ephedrine (I)[link] as a cation from which salts have been prepared from 17 anions, including carboxylates, sulfonates, phosphonates and inorganic species. The CSD already contains determinations for the hemihydrate (Krebs et al., 2001[Krebs, F. C., Jorgensen, M., Lebech, B. & Frydenvang, K. (2001). J. Appl. Cryst. 34, 203-207.]), mono- and dihydrogenphosphates (Hearn et al., 1973[Hearn, R. A., Freeman, G. R. & Bugg, C. E. (1973). J. Am. Chem. Soc. 95, 7150-7154.]; Hearn & Bugg, 1972[Hearn, R. A. & Bugg, C. E. (1972). Acta Cryst. B28, 3662-3667.]) and the hydrochloride (Bergin, 1971[Bergin, R. (1971). Acta Cryst. B27, 381-386.]). The entry for the anhydrous free base (Malone & Parvez, 1978[Malone, J. F. & Parvez, M. (1978). Acta Cryst. A34, S76.]) is incomplete, containing no atomic coordinates: this structure is reported here for the first time. The available hemihydrate structure was solved from powder data at 6 K and so we also report here the results of our single-crystal determination. We have, in addition, redetermined both the hydrochloride and the dihydrogen phosphate since these determinations date from the 1970s. In earlier studies (Leusen et al., 1991[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1991). Recl. Trav. Chim. Pays-Bas, 110, 013-018.], 1992[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1992). Recl. Trav. Chim. Pays-Bas, 111, 111-118.]) the structures of five pairs of diastereomeric salts of ephedrine with a cyclic phosphoric acid were reported (Zingg et al., 1988[Zingg, S. P., Arnett, E. M., McPhail, A. T., Bother-By, A. A. & Glikerson, W. R. (1988). J. Am. Chem. Soc. 110, 1565-1580.]), as well as the structures of the diastereomeric mandelates. These workers were concerned with understanding the structural basis of the chiral resolution process and the relation between solution and crystal structures, respectively, and their studies revealed two conformations of ephedrine in structures based on bilayer packings.

[Scheme 1]

We are concerned with a more general question concerning the process of salt formation. We wanted to explore the relative roles of coulombic and steric factors in directing the packing of molecular salts and, ultimately, to see how crystallographic data might help in providing general guidance for selecting counterions for salt formation. From the previous studies (Leusen et al., 1991[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1991). Recl. Trav. Chim. Pays-Bas, 110, 013-018.], 1992[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1992). Recl. Trav. Chim. Pays-Bas, 111, 111-118.]; Zingg et al., 1988[Zingg, S. P., Arnett, E. M., McPhail, A. T., Bother-By, A. A. & Glikerson, W. R. (1988). J. Am. Chem. Soc. 110, 1565-1580.]) we expected that in our new salts ephedrine would adopt either extended or folded conformations and that, in general, the crystal packings would show polar regions where charged moieties are connected by hydrogen bonds, separated by nonpolar sections comprising phenyl rings and alkyl chains.

2. Experimental

Ephedrine base and the inorganic and organic acids were purchased from Sigma–Aldrich and used as supplied. All crystals were grown at room temperature from equimolar aqueous, methanolic or ethanolic solutions of the base and chosen acid. A glass, 10 ml jacketed vessel connected to a circulating water bath was used in these experiments. This allowed components to be dissolved at 323 K in some experiments so that crystallization could be induced by cooling, while in others the vessel was left open so that evaporative crystallization could occur. In a separate series of experiments solutions of the pure base in water were crystallized to yield a hemihydrate which was dehydrated to an anhydrous form in a desiccator. Single-crystal X-ray diffraction data was collected using a Nonius Kappa CCD diffractometer running routinely at 150 K. Graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was used. Structure solution was performed either with SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).  J. Appl. Cryst. 27, 435-436.]) or SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97. University of Göttingen, Germany.]), with subsequent refinement achieved using SHELXL97 (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.]). The nomenclature used to describe the salt forms of the sulfonic acids is that used widely in the pharmaceutical industry, with besylate representing the counterion benzenesulfonic acid, edisylate (ethanedisulfonic), esylate (ethanesulfonic), mesylate (methanesulfonic) and tosylate (toluenesulfonic), respectively.

3. Results

Table 1[link] lists the 17 salt systems, together with ephedrine hemihydrate and anhydrous forms, along with summaries of the crystallographic data.1 We note that for some structures (e.g adipate, hemihydrate, malonate) the ellipsoid plots indicate the presence of unresolved disorder. In the discussion below we describe the details of some of the specific structures, while here we make some general observations.

Table 1
Summary of crystallographic data

R1 = R[F2 > 2σ(F2)], wR2 = wR(F2), NV = No. of parameters.

Compound Chemical formula, Mr Space group, T (K) Cell parameters (Å, °), V3), Z θ max (°), Rint, completeness R1, wR2, S, Nref, NV, bond precision (Å) Morphology (fastest growth direction) Ephedrine dihedral angles (°) and molecular conformation
(1R,2S)-(−)-Ephedrine C10H15NO, 165.23 P212121, 150 a = 5.6851 (4), b = 7.7047 (5), c = 22.4819 (17), 984.75 (12), 4 27.48, 0.076, 1.00 0.0560, 0.1151, 0.963, 1345, 154, 0.0059 Needle (a axis) τ1 = −22.8, τ2 = −68.0, τ3 = −166.6, extended
(1R,2S)-(−)-Ephedrine hemihydrate (1:0.5) 2C10H15NO·H2O, 348.48 C2221, 150 a = 7.3639 (4), b = 11.2551 (6), c = 24.1442 (16), 2001.1 (2), 4 25.00, 0.048, 0.99 0.0420, 0.0999, 1.077, 1017, 151, 0.0060 Plate τ1 = −31.6, τ2 = −67.8, τ3 = −169.3, extended
(1R,2S)-(−)-Ephedrine acetate (1:1) C10H16NO·C2H3O2, 225.28 P1, 150 a = 5.96420 (10), b = 10.4125 (2), c = 11.7403 (4), α = 108.1750 (10), β = 104.5600 (10), γ = 104.087 (2), 628.08 (3), 2 28.28, 0.062, 0.97 0.0427, 0.1020, 1.033, 3105, 351, 0.0048 Needle (a axis) τ1 = 5.6, τ2 = 60.0, τ3 = 167.6, extended
(1R,2S)-(−)-Ephedrine adipate (1:1) C10H16NO·C6H9O4, 311.37 P212121, 150 a = 5.82900 (10), b = 13.5440 (4), c = 21.7000 (7), 1713.17 (8), 4 27.48, 0.028, 0.99 0.0405, 0.0943, 1.034, 2282, 269, 0.0031 Plate τ1 = 23.7, τ2 = 68.1, τ3 = 168.4, extended
(1R,2S)-(−)-Ephedrine maleate monohydrate (1:1) C10H16NO·C4H3O4, 299.32 P212121, 150 a = 5.6370 (2), b = 13.4950 (5), c = 20.5250 (5), 1561.36 (9), 4 27.48, 0.052, 0.96 0.0361, 0.0915, 1.052, 2089, 208, 0.0031 Needle (a axis) τ1 = −17.2, τ2 = −54.2, τ3 = −60.8, folded
(1R,2S)-(−)-Ephedrine hemimalonate (1:0.5) 2C10H16NO·C3H2O4, 434.52 C2, 150 a = 15.1190 (14), b = 5.7840 (7), c = 13.8788 (15), β = 105.765 (7), 1168.0 (2), 2 27.49, 0.061, 0.98 0.0563, 0.1290, 1.063, 1475, 182, 0.0060 Needle (b axis) τ1 = 19.8, τ2 = 69.4, τ3 = 178.1, extended
(1R,2S)-(−)-Ephedrine glycolate (1:1) C10H16NO·C2H3O3, 241.28 P21, 150 a = 9.5946 (4), b = 6.0474 (3), c = 10.8255 (5), β = 101.607 (2), 615.28 (5), 2 27.44, 0.035, 0.99 0.0449, 0.0976, 1.081, 1532, 211, 0.0042 Needle (b axis) τ1 = −17.2, τ2 = −63.4, τ3 = −163.7, extended
(1R,2S)-(−)-Ephedrine L-(−)-malate (1:1) C10H16NO·C4H5O5, 299.32 P21, 293 a = 6.1312 (6), b = 9.1719 (10), c = 13.7393 (17), β = 100.909 (4), 758.66 (15), 2 27.51, 0.109, 0.93 0.0598, 0.1851, 1.127, 1841, 213, 0.0090 Plate τ1 = −16.8, τ2 = −57.4, τ3 = −49.1, folded
(1R,2S)-(−)-Ephedrine L-(+)-tartrate monohydrate (1:1) C10H16NO·C4H5O6, 333.33 P212121, 150 a = 6.6220 (2), b = 7.4620 (3), c = 33.2160 (15), 1641.31 (11), 4 25.67, 0.062, 0.97 0.0399, 0.0874, 1.032, 1844, 263, 0.0049 Plate τ1 = −20.8, τ2 = −50.0, τ3 = −72.3, folded
(1R,2S)-(−)-Ephedrine L-(+)-hemitartrate trihydrate (1:0.5) 2C10H16NO·C4H4, 534.60 P1, 150 a = 5.9373 (2), b = 7.0594 (2), c = 18.3791 (8), α = 80.2540 (10), β = 88.527 (2), γ = 66.247 (2), 694.14 (4), 1 25.01, 0.081, 0.98 0.0979, 0.2946, 1.311, 2449, 349, 0.0139 Plate τ1 = 15.1, τ2 = 65.2, τ3 = 173.6, extended
(1R,2S)-(−)-Ephedrine hydrochloride (1:1) C10H16NOCl, 201.69 P21, 150 a = 7.2557 (3), b = 6.1228 (3), c = 18.3791 (8), β = 102.223 (2), 544.84 (4), 2 27.50, 0.057, 0.98 0.0657, 0.1558, 1.187, 1372, 148, 0.0068 Needle (b axis) τ1 = −22.3, τ2 = −70.7, τ3 = −168.9, extended
(1R,2S)-(−)-Ephedrine nitrate (1:1) C10H16NO·NO3, 228.25 P21, 150 a = 5.5309 (4), b = 6.8501 (6), c = 15.6906 (13), β = 97.243 (6), 589.73 (8), 2 27.45, 0.032, 0.87 0.0437, 0.1025, 1.067, 1460, 185, 0.0047 Plate τ1 = −23.7, τ2 = −56.6, τ3 = −52.6, folded
(1R,2S)-(−)-Ephedrine dihydrogen phosphate (1:1) C10H16NO·H2PO4, 263.22 C2, 150 a = 14.6992 (10), b = 5.6433 (4), c = 15.2432 (14), β = 97.333 (3), 1254.11 (17), 4 27.36, 0.033, 0.88 0.0510, 0.1194, 1.073, 1569, 173, 0.0053 Needle (b axis) τ1 = −21.5, τ2 = −73.7, τ3 = 176.4, extended
(1R,2S)-(−)-Ephedrine bisulfate (1:1) C10H16NO·HSO4, 263.32 C2, 150 a = 30.9967 (17), b = 6.9861 (4), c = 5.6170 (3), β = 93.354 (3), 1214.26 (12), 4 28.93, 0.058, 0.99 0.0735, 0.1253, 1.116, 1739, 173, 0.0057 Needle (c axis) τ1 = −25.8, τ2 = −50.2, τ3 = −60.2, folded
(1R,2S)-(−)-Ephedrine besylate (1:1) C10H16NO·C6H5O3S, 323.41 P21, 150 a = 5.7214 (3), b = 20.8336 (11), c = 6.9188 (5), β = 98.409 (2), 815.84 (8), 2 27.47, 0.038, 0.91 0.0554, 0.1127, 1.012, 1919, 260, 0.0061 Plate τ1 = −19.7, τ2 = −58.1, τ3 = −62.4, folded
(1R, 2S)-(−)-Ephedrine hemiedisylate (1:0.5) 2C10H16NO·C2H4, 520.67 P21, 150 a = 5.71080 (10), b = 34.0651 (7), c = 6.6590 (2), β = 90.09, 1295.43 (5), 2 27.47, 0.032, 0.88 0.0540, 0.1251, 0.984, 3031, 357, 0.0076 Plate τ1 = 23.2, τ2 = 59.1, τ3 = 53.6, folded
(1R,2S)-(−)-Ephedrine esylate (1:1) C10H16NO·C2H5O3S, 275.37 P212121, 150 a = 5.4877 (7), b = 11.9057 (17), c = 22.639 (4), 1479.1 (4), 4 28.16, 0.000, 0.86 0.1023, 0.2643, 1.078, 2118, 169, 0.0171 Needle (a axis) τ1 = 23.4, τ2 = 54.4, τ3 = 59.5, folded
(1R,2S)-(−)-Ephedrine mesylate (1:1) C10H16NO·CH3O3S, 261.34 C2, 150 a = 14.287 (2), b = 6.1075 (7), c = 14.993 (2), β = 93.211 (6), 1306.2 (3), 4 27.47, 0.029, 0.75 0.0478, 0.1193, 1.101, 1631, 179, 0.0070 Needle (b axis) τ1 = −16.3, τ2 = −65.5, τ3 = −168.4, extended
(1R,2S)-(−)-Ephedrine p-tosylate (1:1) C10H16NO·C7H7O3, 337.43 P212121, 150 a = 5.7491 (2), b = 7.1665 (2), c = 42.0343 (9), 1731.85 (9), 4 27.47, 0.018, 0.87 0.0431, 0.0993, 1.040, 2353, 263, 0.0039 Plate τ1 = −22.8, τ2 = −59.3, τ3 = −55.4, folded

Overall it is clear that the molecular packing in many of these solids reflects the amphiphilic nature of the molecular structure of ephedrine itself, with the almost ubiquitous existence of a molecular bilayer, in which the polar hydroxyl and (protonated) amino functionalities are sandwiched between the nonpolar aromatic moieties. This is as expected from the previously solved salt structures (Leusen et al., 1991[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1991). Recl. Trav. Chim. Pays-Bas, 110, 013-018.], 1992[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1992). Recl. Trav. Chim. Pays-Bas, 111, 111-118.]; Zingg et al., 1988[Zingg, S. P., Arnett, E. M., McPhail, A. T., Bother-By, A. A. & Glikerson, W. R. (1988). J. Am. Chem. Soc. 110, 1565-1580.]) and is indeed seen in other systems which have similar amphiphilic molecular features such as remacemide (Lewis et al., 2005[Lewis, G. R., Steele, G., McBride, L., Florence, A. J., Kennedy, A. R., Shankland, N., David, W. I. F., Shankland, K. & Teat, S. J. (2005). Cryst. Growth Des. 5, 427-438.]). In the case of the anhydrous solid, the polar functionalities are hydrogen-bonded directly through —OH⋯N— interactions, while in the hemihydrate these interactions are modified by the inclusion of further extensive hydrogen bonding involving the water molecules. In the salts the bilayer expands to incorporate the counterion (and occasionally additional water molecules) through combined coulombic and hydrogen-bonded interactions. In each salt there are two distinct —N—H⋯acceptor distances, one short and one slightly longer. The short distances lie in the range 1.8 (malonate) to 2.2 Å (hydrochloride), while the long distances are in the range 1.9 (dihydrogenphosphate) to 3.0 Å (tartrate trihydrate). In many cases the stability of the bilayer is enhanced through aromatic ππ stacking with distances from the H atom to the closest ring carbon in the range 4.5 (acetate) to 2.8 Å (maleate; Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). Typical ππ stacks taken from four salts are shown in Fig. 1[link], indicating stacking distances between 3.19 and 2.95 Å. The layers are usually interlinked by face-to-edge or methyl-to-face close contacts with dH—π centroid distances between 3.6 (esylate) and 2.8 Å (dihydrogenphosphate). In the case of the adipate, esylate, besylate and tosylate anions, the existence of additional non-polar interactions between the ions destroys the ephedrine bilayer to yield structures with mixed and alternating layers. In the besylate and tosylate this occurs owing to the possibility of additional anion–anion and cation–cation ππ and face-to-edge interactions; in the adipate, its extended non-polar alkyl chain requires that the bilayer is destroyed and in the case of esylate, the ethyl moiety fits between the phenyl rings of the ephedrine.

[Figure 1]
Figure 1
ππ stackings of ephedrine from various salt structures. The figures in brackets give the inter-stacking distances in Å. Key: green = ephedrine glycolate (`extended') (3.00, 3.14); blue = ephedrine hydrochloride (`extended') (3.23, 3.10); orange = ephedrine bisulfate (`folded') (3.14, 3.02); red = ephedrine nitrate (`folded') (2.95, 2.92).

The protonated ephedrine molecule adopts one of two conformations in these structures: `folded' or `extended' owing to the three torsions encompassing the chiral C atoms C7 and C8. Only the `folded' conformation includes an intramolecular hydrogen bond. These conformers are shown in Fig. 2[link](a), and Table 1[link] incorporates the measured values (achieved using CERIUS2 (Accelrys Inc., 2003[Accelrys Inc. (2003). Cerius2. Accelrys, San Diego, California USA.]) of the dihedral angles, τ1, τ2 and τ3, for ephedrine molecules within each crystal structure. Little variation with respect to the dihedral angles involved in either the `extended' or `folded' conformation can be seen. To demonstrate this, individual units of `extended' and `folded' ephedrine were isolated and overlaid from several salt forms, as seen in Fig. 2[link](b). This conveys both the similarity in the molecular conformation for units of each conformation and the variation between the two types arising from the torsional flexibility and the intramolecular hydrogen bond. The main difference between the units arises from the variation in τ3 (approximately 100°) from one conformation to the other. Ten structures exhibit the extended form and nine the folded form. In the 12 ephedrine structures examined by Leusen et al. (1991[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1991). Recl. Trav. Chim. Pays-Bas, 110, 013-018.]) they noted that nine exhibited the extended conformer but showed that this could not be rationalized by the difference in internal energy since this was insignificant. We have used a MOPAC conformational search to confirm this result and to show that both conformers represent minima in the overall τ2, τ3 landscape. Our new structures do not appear to support their notion that the extended conformation is associated with face-to-edge aromatic interactions.

[Figure 2]
Figure 2
(a) The two conformers of ephedrine. (b) Comparison of ephedrine conformations from selected salt structures. Key: green = ephedrine glycolate (`extended'); blue = ephedrine hydrochloride (`extended'); orange = ephedrine bisulfate (`folded'); red = ephedrine nitrate (`folded').

Overall the crystals studied had either needle or plate morphologies. For those that were needles (pure base, acetate, maleate monohydrate, malonate, glycolate, hydrochloride, dihydrogen phosphate, bisulfate, esylate, mesylate), the needle direction always coincided, as expected, with the direction of the strong coulombic interactions and shortest crystallographic axis. These data are included in Table 1[link]. Although we did not perform a dedicated polymorph search, none were found.

4. Ephedrine neutral base and hemihydrate

Fig. 3[link] (visualized in MERCURY1.4; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) shows how in the anhydrous neutral base structure, ephedrine molecules are linked along a in hydrogen-bonded chains through alternate —N⋯H—O— interactions between hydroxyl and amino groups, and along b by —C—H⋯ring interactions between methyl groups and phenyl rings on adjacent molecules. The bilayers are then linked along the c axis by T-shaped aromatic —C—H⋯π interactions. The hemihydrate is also based on a bilayer structure, but in this case the inclusion of water molecules into the polar core of the layer enables a different hydrogen-bonding pattern. Our single-crystal structure appears to be essentially similar to that of Krebs et al. (2001[Krebs, F. C., Jorgensen, M., Lebech, B. & Frydenvang, K. (2001). J. Appl. Cryst. 34, 203-207.]) solved from powder data. The bilayers are created by utilizing hydrogen-bonded dimers linked via hydroxyl–water contacts along a and —C—H⋯π interactions along b. These layers are then further linked along c by face-to-edge contacts between neighbouring phenyl rings. In both of these structures the molecule adopts an extended conformation.

[Figure 3]
Figure 3
Projection of ephedrine free base viewed down b.

5. Inorganic acids

Fig. 4[link] shows the hydrochloride salt which is essentially the same as in previous structure solutions (Bergin, 1971[Bergin, R. (1971). Acta Cryst. B27, 381-386.]). This bilayer structure is held along b by coulombic —N—H2+⋯Cl interactions and along a by chloride–methyl contacts. The bilayers are then stacked along c by face-to-edge contacts between the interdigitated aromatic rings. The dihydrogenphosphate and bisulfate structures (not shown) follow the same pattern, but here the stereochemistry of the anions allows the bilayer to be held by coulombic interactions, hydrogen bonds and ππ stacking. These layers are then interlinked by aromatic face-to-edge contacts. The planarity of the nitrate ion leads to bilayers in which the expected coulombic interaction and hydrogen bonds between the hydroxyl group and nitrate oxygen are supplemented by weaker —C—H⋯O—N— interactions, as seen in Fig. 5[link]. The bilayer is further stabilized by ππ stacking between the aromatic rings and the bilayers are again held together by face-to-edge contacts.

[Figure 4]
Figure 4
Projection of the hydrochloride salt viewed down a.
[Figure 5]
Figure 5
Projection of the nitrate salt viewed down a.

6. Carboxylic acids

Structures of the acetate, adipate, maleate, malonate, glycolate, malate and tartrate were solved. In all of these there is, of course, a primary coulombic interaction between the acid anion and the ephedrine cation. Beyond this the actual packing is determined by the nature of the acid involved. The acetate is the simplest comprising (100) bilayers hydrogen bonded as seen in Fig. 6[link]. These layers are interdigitated and held by methyl-to-face and aromatic face-to-edge interactions. In the malonate the dual functionality of the diacid enables the interlinking of bilayers by additional hydrogen bonding along the a axis. In the maleate the increased non-polar nature of the acid, together with the incorporation of water, destroys the bilayer structure totally and creates a three-dimensional hydrogen-bonded network. The acid itself contains an intramolecular hydrogen bond, effectively removing one of its potential hydrogen-bonded functionalities; this is compensated for by the inclusion of water.

[Figure 6]
Figure 6
Projection of the acetate salt viewed down b.

This trend continues in adipate, which again no longer displays the bilayer features. Here the extended non-polar [—(CH2)4—] chain interacts with alternate phenyl rings and the bilayer structure is lost, as seen in Fig. 7[link]. Hydrogen-bonded chains of acid anions run along b. To these chains are bound to ephedrine cations through —C—H⋯aromatic and —O—H⋯O— and —N—H+⋯O— interactions. The case of the glycolate represents a further complication, being a hydroxy acid. Fig. 8[link] illustrates some features of the structure. Here, the dual functionality of the acid allows the creation of sheets, much in the same ways as the inorganic ions. One hydrogen-bonded chain runs along the c axis connecting molecules via carboxylate–amino and hydroxyl–carboxylate interactions. A second identical chain runs along the b axis, creating hydrogen-bonded (100) sheets. These sheets are stacked along the a axis and held by face-to-edge methyl–phenyl and phenyl–phenyl close contacts. The malate structure is a very similar bilayer structure with the hydrogen bonding creating a (001) sheet. These sheets are held by face-to-edge contacts. The hydrated tartrate salts are similar; the structures (not shown) retain a bilayer form with hydrogen-bonded interactions in the core of the bilayer and the bilayers linked by further hydrogen bonding into sheets. Aromatic face-to-edge ring interactions link the sheets along the c axis. In the case of the monohydrate this involves interdigitation of the phenyl rings, while in the trihydrate the bilayer is translated along the c axis.

[Figure 7]
Figure 7
Projection of the adipate salt viewed down a.
[Figure 8]
Figure 8
Projection of the glycolate salt viewed down b.

7. Sulfonic acids

The mesylate follows a now familiar pattern in which coulombic and hydrogen-bonded interactions from sulfonate O atoms to amino and hydroxyl groups create an (001) layer, with layers interdigitated and held by aromatic face-to-edge contacts. The addition of one methylene group in the esylate changes the nature of the bilayer, which now exposes (Fig. 9[link]) both phenyl rings of the ephedrine and the methyl group of the sulfonic acid. The bilayers have close methyl-aromatic and face-to-edge aromatic contacts. In the case of the disulfonate edysilate, each anion now bridges two ephedrine cations via hydrogen bonds and coulombic interactions which, together with methyl–aromatic close contacts create (010) sheets interdigitated with face-to-edge interactions. The aromatic nature of the besylate totally destroys the ephedrine bilayer and creates (Fig. 10[link]) a mixed sheet of cations and anions held via coulombic oxygen–amino interactions and oxygen hydroxyl hydrogen bonds. These layers are further stabilized by ππ stacking and methyl-to-face interactions and are held with face-to-edge contacts between phenyl rings of adjacent sulfonic acid anions and ephedrine cations. Finally in the tosylate, the bilayers again comprise both anions and cations. Layers are held together by the usual combination of coulombic, hydrogen bonding and methyl-to-face contacts. Interlayer interactions are face-to-edge on both sides.

[Figure 9]
Figure 9
Projection of the esylate salt viewed down a.
[Figure 10]
Figure 10
Projection of the besylate salt viewed down c.

8. Conclusions

This study has provided the structures of 17 salts of the base ephedrine, enabling for the first time the opportunity to compare and contrast the impact of various factors on the crystal packing of a single molecular entity. It is clear that the packings observed incorporate, as expected, both bilayer structures of the ions and the two conformations of the ephedrine ion. It is also evident that the crystal structures of ephedrine base and hydrate contain all the essential structural elements which are then transferred over into the salts, with ions fitting within ephedrine bilayers. The bilayers are typically interconnected through aromatic face-to-edge contacts. With increasing size and hydrophobicity of the anion these layers either incorporate the counterion (besylate and tosylate) or can be destroyed altogether (adipate). In the case of the inorganic salts it is clear that crystal packings are determined by the organic moeties rather than the inorganic ions, even though their additional contribution to the lattice energy is presumably quite large.

The factors determining the ephedrine conformation are not clear. NMR studies of both neutral (Portoghese, 1967[Portoghese, P. S. (1967). J. Med. Chem. 10, 1057-1063.]) and protonated (Zingg et al., 1988[Zingg, S. P., Arnett, E. M., McPhail, A. T., Bother-By, A. A. & Glikerson, W. R. (1988). J. Am. Chem. Soc. 110, 1565-1580.]) ephedrine in organic solvents have shown the folded conformer with the intramolecular hydrogen bond to be the favoured form. This suggests that in those instances in which the extended conformer exists, it must be imposed by packing and hydrogen-bonding constraints in the crystalline state. Given the previous calculations (Leusen et al., 1991[Leusen, F. J. J., Bruins Slot, H. J., Noordik, J. H., van der Haest, A. D., Wynberg, H. & Bruggink, A. (1991). Recl. Trav. Chim. Pays-Bas, 110, 013-018.]) showing that the energy barrier between conformers is less than 4.19 kJ mol−1, such a change in conformation could clearly occur during nucleation and crystal growth.

Supporting information


Computing details top

For all compounds, data collection: Collect (Nonius BV, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997). Data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) for publication_text, EPHEADIP, EPHEBESY, EPHEEDIS, EPHE, EPHEESYL, EPHEGLYC, EPHEHCL, EPHEHEMI, EPHEMALE, EPHEMALO, EPHEMESY, EPHENITR, EPHEPHOS, EPHEBISU, EPHETART1, EPHETART3, EPHETOSY; HKL DENZO and SCALEPACK (Otwinowski & Minor 1 for EPHEMALA. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997). Program(s) used to refine structure: SHELXL97 (sheldrick, 1997) for publication_text; SHELXL97 (Sheldrick, 1997) for EPHEADIP, EPHEBESY, EPHEEDIS, EPHE, EPHEESYL, EPHEGLYC, EPHEHCL, EPHEHEMI, EPHEMALA, EPHEMALE, EPHEMALO, EPHEMESY, EPHENITR, EPHEPHOS, EPHEBISU, EPHETART1, EPHETART3, EPHETOSY. For all compounds, molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(publication_text) (1R, 2S)-(-)-ephedrine acetate top
Crystal data top
C12H19NO3Z = 1
Mr = 450.56F(000) = 244
Triclinic, P1Dx = 1.191 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9642 (1) ÅCell parameters from 7676 reflections
b = 10.4125 (2) Åθ = 0–0°
c = 11.7403 (4) ŵ = 0.09 mm1
α = 108.175 (1)°T = 150 K
β = 104.560 (1)°Needle, colourless
γ = 104.087 (2)°0.3 × 0.05 × 0.05 mm
V = 628.08 (3) Å3
Data collection top
KappaCCD
diffractometer
3007 independent reflections
Radiation source: Enraf Nonius FR5902247 reflections with > 2σ(i)
Graphite monochromatorRint = 0.062
CCD rotation images, thick slices scansθmax = 28.3°, θmin = 3.5°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 77
Tmin = 0.927, Tmax = 1.051k = 1313
11807 measured reflectionsl = 1515
Refinement top
Refinement on f2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(fo2) + (0.0548p)2 + 0.0180p]
where p = (fo2 + 2fc2)/3
3007 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H19NO3γ = 104.087 (2)°
Mr = 450.56V = 628.08 (3) Å3
Triclinic, P1Z = 1
a = 5.9642 (1) ÅMo Kα radiation
b = 10.4125 (2) ŵ = 0.09 mm1
c = 11.7403 (4) ÅT = 150 K
α = 108.175 (1)°0.3 × 0.05 × 0.05 mm
β = 104.560 (1)°
Data collection top
KappaCCD
diffractometer
3007 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2247 reflections with > 2σ(i)
Tmin = 0.927, Tmax = 1.051Rint = 0.062
11807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
3007 reflectionsΔρmin = 0.22 e Å3
351 parameters
Special details top

Geometry. all e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. the cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. an approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of f2 against all reflections. the weighted r-factor wr and goodness of fit s are based on f2, conventional r-factors r are based on f, with f set to zero for negative f2. the threshold expression of f2 > σ(f2) is used only for calculating r-factors(gt) etc. and is not relevant to the choice of reflections for refinement. r-factors based on f2 are statistically about twice as large as those based on f, and r- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
c010.2211 (5)0.9237 (3)0.9491 (3)0.0399 (7)
h010.333 (7)0.890 (4)0.915 (3)0.048*
c020.2123 (6)0.9280 (4)1.0662 (4)0.0507 (9)
h020.31630.89471.11340.061*
c030.0502 (6)0.9815 (3)1.1138 (3)0.0461 (8)
h030.040 (7)0.984 (4)1.191 (4)0.055*
c040.1086 (6)1.0281 (3)1.0413 (3)0.0437 (8)
h040.230 (7)1.061 (4)1.073 (3)0.052*
c050.1006 (5)1.0218 (3)0.9233 (3)0.0373 (7)
h050.224 (6)1.046 (4)0.868 (3)0.045*
c060.0668 (5)0.9715 (3)0.8759 (3)0.0297 (6)
c070.0800 (5)0.9706 (3)0.7482 (3)0.0298 (6)
h070.091 (6)0.922 (3)0.680 (3)0.036*
c080.1675 (5)1.1250 (3)0.7551 (3)0.0293 (6)
h080.057 (6)1.167 (3)0.775 (3)0.035*
c090.4253 (5)1.2176 (3)0.8537 (3)0.0400 (7)
h09a0.54581.18490.82440.06*
h09b0.43561.20970.93410.06*
h09c0.45681.31640.86490.06*
c100.1881 (6)1.2533 (3)0.6078 (3)0.0360 (7)
h12a0.155 (6)1.231 (3)0.519 (4)0.043*
h12b0.355 (6)1.329 (4)0.671 (3)0.043*
h12c0.058 (6)1.286 (4)0.624 (3)0.043*
c110.5376 (5)0.9674 (3)0.4752 (3)0.0290 (6)
c120.2796 (5)0.8617 (3)0.3923 (3)0.0383 (7)
h13a0.22950.79630.43090.057*
h13b0.27790.80840.30880.057*
h13c0.16730.91340.38440.057*
c210.5902 (5)1.6417 (3)1.0878 (3)0.0353 (7)
h210.763 (6)1.697 (4)1.151 (3)0.042*
c220.5131 (6)1.6445 (3)0.9669 (3)0.0410 (7)
h220.635 (6)1.705 (4)0.940 (3)0.049*
c230.2704 (6)1.5715 (3)0.8853 (3)0.0393 (7)
h230.212 (6)1.572 (4)0.798 (3)0.047*
c240.1053 (6)1.4912 (4)0.9229 (3)0.0403 (7)
h240.066 (7)1.440 (4)0.869 (3)0.048*
c250.1832 (5)1.4871 (4)1.0432 (3)0.0387 (7)
h250.057 (6)1.436 (4)1.070 (3)0.046*
c260.4248 (5)1.5627 (3)1.1274 (3)0.0279 (6)
c270.5043 (4)1.5596 (3)1.2595 (2)0.0271 (6)
h270.37441.56881.29530.033*
c280.5452 (5)1.4179 (3)1.2544 (3)0.0281 (6)
h280.383 (6)1.340 (3)1.201 (3)0.034*
c290.7507 (5)1.3977 (3)1.2056 (3)0.0374 (7)
h29a0.90471.47161.26490.056*
h29b0.71731.40381.12350.056*
h29c0.76071.30471.19730.056*
c300.6195 (6)1.2859 (3)1.3991 (3)0.0361 (7)
h32a0.637 (6)1.298 (3)1.496 (3)0.043*
h32b0.472 (7)1.211 (4)1.339 (3)0.043*
h32c0.762 (7)1.270 (3)1.381 (3)0.043*
c310.2496 (4)0.5727 (3)0.5515 (2)0.0248 (6)
c320.5108 (5)0.6702 (3)0.6366 (3)0.0423 (8)
h33a0.58990.62060.68070.063*
h33b0.50840.75560.6980.063*
h33c0.60060.69660.58510.063*
n010.1602 (4)1.1171 (2)0.6256 (2)0.0298 (5)
h100.28131.08620.60880.036*
h110.01521.05050.56760.036*
n210.6061 (4)1.4229 (2)1.3886 (2)0.0258 (5)
h300.75241.49381.43870.031*
h310.49051.44561.41920.031*
o010.2428 (3)0.9050 (2)0.7081 (2)0.0374 (5)
h060.17380.81710.67510.056*
o020.5679 (3)1.0778 (2)0.5663 (2)0.0370 (5)
o030.7149 (3)0.9349 (2)0.44695 (19)0.0384 (5)
o210.7290 (3)1.6704 (2)1.34584 (18)0.0349 (5)
h260.700 (6)1.742 (4)1.369 (3)0.042*
o220.0740 (3)0.60889 (19)0.57567 (18)0.0311 (4)
o230.2199 (3)0.45987 (19)0.46028 (18)0.0298 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
c010.0325 (17)0.0408 (17)0.051 (2)0.0156 (13)0.0127 (14)0.0242 (15)
c020.045 (2)0.056 (2)0.056 (2)0.0178 (16)0.0108 (16)0.0345 (18)
c030.0474 (19)0.0429 (18)0.0407 (18)0.0036 (14)0.0136 (15)0.0181 (16)
c040.0429 (19)0.0362 (17)0.047 (2)0.0105 (14)0.0190 (15)0.0103 (15)
c050.0294 (15)0.0325 (16)0.0465 (19)0.0117 (12)0.0097 (13)0.0137 (14)
c060.0273 (14)0.0182 (12)0.0374 (15)0.0057 (10)0.0047 (11)0.0104 (11)
c070.0235 (14)0.0210 (13)0.0377 (16)0.0062 (10)0.0050 (12)0.0083 (12)
c080.0252 (14)0.0192 (13)0.0351 (16)0.0063 (10)0.0048 (11)0.0060 (12)
c090.0358 (17)0.0235 (14)0.0448 (18)0.0040 (12)0.0020 (13)0.0113 (13)
c100.0363 (18)0.0293 (16)0.0428 (19)0.0124 (14)0.0103 (15)0.0170 (15)
c110.0227 (14)0.0289 (15)0.0348 (16)0.0070 (11)0.0069 (12)0.0160 (14)
c120.0260 (14)0.0421 (18)0.0405 (17)0.0067 (12)0.0072 (12)0.0160 (15)
c210.0339 (16)0.0309 (15)0.0345 (16)0.0034 (12)0.0086 (13)0.0137 (13)
c220.0521 (18)0.0328 (16)0.0383 (18)0.0084 (13)0.0161 (14)0.0192 (14)
c230.0499 (18)0.0366 (16)0.0325 (17)0.0176 (14)0.0114 (14)0.0157 (14)
c240.0286 (16)0.052 (2)0.0338 (16)0.0126 (14)0.0051 (13)0.0144 (15)
c250.0274 (15)0.0517 (19)0.0354 (17)0.0102 (13)0.0121 (13)0.0173 (15)
c260.0288 (14)0.0257 (13)0.0289 (15)0.0106 (11)0.0103 (11)0.0095 (12)
c270.0223 (13)0.0281 (14)0.0279 (14)0.0064 (11)0.0090 (11)0.0092 (12)
c280.0259 (14)0.0317 (15)0.0243 (14)0.0090 (11)0.0071 (11)0.0103 (12)
c290.0392 (16)0.0464 (18)0.0303 (15)0.0215 (14)0.0138 (13)0.0136 (13)
c300.0317 (16)0.0282 (16)0.0468 (19)0.0087 (13)0.0105 (14)0.0170 (14)
c310.0238 (13)0.0262 (14)0.0249 (14)0.0064 (10)0.0077 (11)0.0133 (12)
c320.0269 (15)0.0381 (17)0.0442 (19)0.0046 (12)0.0080 (13)0.0028 (15)
n010.0209 (11)0.0242 (11)0.0394 (14)0.0068 (9)0.0072 (10)0.0100 (10)
n210.0198 (11)0.0284 (12)0.0294 (13)0.0076 (9)0.0087 (9)0.0123 (10)
o010.0381 (11)0.0230 (10)0.0513 (13)0.0126 (8)0.0189 (10)0.0114 (10)
o020.0298 (11)0.0285 (11)0.0490 (13)0.0084 (8)0.0161 (9)0.0104 (10)
o030.0240 (10)0.0351 (11)0.0434 (12)0.0075 (8)0.0092 (9)0.0039 (10)
o210.0333 (11)0.0259 (11)0.0325 (11)0.0050 (9)0.0023 (8)0.0068 (9)
o220.0251 (10)0.0296 (10)0.0349 (11)0.0104 (8)0.0080 (8)0.0093 (8)
o230.0257 (10)0.0298 (11)0.0306 (10)0.0084 (8)0.0112 (8)0.0080 (9)
Geometric parameters (Å, º) top
c01—c021.375 (5)c22—c231.380 (5)
c01—c061.389 (4)c22—h221.02 (4)
c01—h010.95 (4)c23—c241.383 (5)
c02—c031.377 (5)c23—h231.00 (3)
c02—h020.93c24—c251.389 (4)
c03—c041.390 (5)c24—h240.96 (4)
c03—h030.92 (4)c25—c261.385 (4)
c04—c051.381 (5)c25—h250.99 (4)
c04—h040.98 (4)c26—c271.517 (4)
c05—c061.390 (4)c27—o211.411 (3)
c05—h050.99 (3)c27—c281.539 (4)
c06—c071.518 (4)c27—h270.98
c07—o011.408 (3)c28—n211.506 (3)
c07—c081.533 (4)c28—c291.509 (4)
c07—h071.01 (3)c28—h280.99 (3)
c08—n011.486 (4)c29—h29a0.96
c08—c091.523 (4)c29—h29b0.96
c08—h080.92 (3)c29—h29c0.96
c09—h09a0.96c30—n211.489 (3)
c09—h09b0.96c30—h32a1.07 (3)
c09—h09c0.96c30—h32b0.94 (4)
c10—n011.473 (4)c30—h32c0.97 (4)
c10—h12a0.95 (4)c31—o231.256 (3)
c10—h12b1.02 (3)c31—o221.263 (3)
c10—h12c0.96 (3)c31—c321.507 (4)
c11—o021.239 (3)c32—h33a0.96
c11—o031.273 (3)c32—h33b0.96
c11—c121.510 (4)c32—h33c0.96
c12—h13a0.96n01—h100.9
c12—h13b0.96n01—h110.9
c12—h13c0.96n21—h300.9
c21—c221.389 (4)n21—h310.9
c21—c261.393 (4)o01—h060.82
c21—h211.00 (4)o21—h260.78 (4)
c02—c01—c06121.2 (3)c22—c23—h23122 (2)
c02—c01—h01123 (2)c24—c23—h23119 (2)
c06—c01—h01116 (2)c23—c24—c25119.9 (3)
c01—c02—c03120.4 (3)c23—c24—h24121 (2)
c01—c02—h02119.8c25—c24—h24119 (2)
c03—c02—h02119.8c26—c25—c24121.2 (3)
c02—c03—c04119.5 (3)c26—c25—h25120.8 (19)
c02—c03—h03122 (2)c24—c25—h25117.8 (19)
c04—c03—h03119 (2)c25—c26—c21118.4 (3)
c05—c04—c03119.8 (3)c25—c26—c27120.3 (2)
c05—c04—h04121 (2)c21—c26—c27121.3 (2)
c03—c04—h04119 (2)o21—c27—c26113.6 (2)
c04—c05—c06121.2 (3)o21—c27—c28105.4 (2)
c04—c05—h05119.7 (19)c26—c27—c28111.9 (2)
c06—c05—h05119.0 (19)o21—c27—h27108.6
c01—c06—c05118.0 (3)c26—c27—h27108.6
c01—c06—c07121.5 (3)c28—c27—h27108.6
c05—c06—c07120.5 (2)n21—c28—c29110.3 (2)
o01—c07—c06113.7 (2)n21—c28—c27107.1 (2)
o01—c07—c08106.9 (2)c29—c28—c27112.3 (2)
c06—c07—c08110.6 (2)n21—c28—h28107.5 (17)
o01—c07—h07110.2 (17)c29—c28—h28113.4 (17)
c06—c07—h07109.9 (18)c27—c28—h28106.0 (16)
c08—c07—h07105.1 (18)c28—c29—h29a109.5
n01—c08—c09110.1 (2)c28—c29—h29b109.5
n01—c08—c07108.3 (2)h29a—c29—h29b109.5
c09—c08—c07113.6 (2)c28—c29—h29c109.5
n01—c08—h08107.6 (19)h29a—c29—h29c109.5
c09—c08—h08109 (2)h29b—c29—h29c109.5
c07—c08—h08108 (2)n21—c30—h32a107.0 (18)
c08—c09—h09a109.5n21—c30—h32b108 (2)
c08—c09—h09b109.5h32a—c30—h32b111 (3)
h09a—c09—h09b109.5n21—c30—h32c109 (2)
c08—c09—h09c109.5h32a—c30—h32c111 (3)
h09a—c09—h09c109.5h32b—c30—h32c111 (3)
h09b—c09—h09c109.5o23—c31—o22123.9 (2)
n01—c10—h12a107 (2)o23—c31—c32117.7 (2)
n01—c10—h12b109.2 (18)o22—c31—c32118.4 (2)
h12a—c10—h12b118 (3)c31—c32—h33a109.5
n01—c10—h12c109 (2)c31—c32—h33b109.5
h12a—c10—h12c104 (3)h33a—c32—h33b109.5
h12b—c10—h12c109 (3)c31—c32—h33c109.5
o02—c11—o03123.5 (2)h33a—c32—h33c109.5
o02—c11—c12119.8 (2)h33b—c32—h33c109.5
o03—c11—c12116.6 (3)c10—n01—c08115.5 (2)
c11—c12—h13a109.5c10—n01—h10108.4
c11—c12—h13b109.5c08—n01—h10108.4
h13a—c12—h13b109.5c10—n01—h11108.4
c11—c12—h13c109.5c08—n01—h11108.4
h13a—c12—h13c109.5h10—n01—h11107.5
h13b—c12—h13c109.5c30—n21—c28114.5 (2)
c22—c21—c26120.5 (3)c30—n21—h30108.6
c22—c21—h21122.6 (19)c28—n21—h30108.6
c26—c21—h21117.0 (19)c30—n21—h31108.6
c23—c22—c21120.5 (3)c28—n21—h31108.6
c23—c22—h22120 (2)h30—n21—h31107.6
c21—c22—h22120 (2)c07—o01—h06109.5
c22—c23—c24119.5 (3)c27—o21—h26107 (3)
c06—c01—c02—c030.5 (5)c22—c23—c24—c251.5 (5)
c01—c02—c03—c041.5 (5)c23—c24—c25—c260.2 (5)
c02—c03—c04—c050.7 (5)c24—c25—c26—c211.0 (4)
c03—c04—c05—c061.0 (4)c24—c25—c26—c27178.5 (3)
c02—c01—c06—c051.1 (4)c22—c21—c26—c250.2 (4)
c02—c01—c06—c07178.4 (3)c22—c21—c26—c27179.3 (3)
c04—c05—c06—c011.9 (4)c25—c26—c27—o21163.3 (2)
c04—c05—c06—c07177.7 (3)c21—c26—c27—o2116.3 (3)
c01—c06—c07—o015.8 (3)c25—c26—c27—c2877.5 (3)
c05—c06—c07—o01174.7 (2)c21—c26—c27—c28102.9 (3)
c01—c06—c07—c08114.5 (3)o21—c27—c28—n2159.8 (3)
c05—c06—c07—c0865.0 (3)c26—c27—c28—n21176.2 (2)
o01—c07—c08—n0159.6 (3)o21—c27—c28—c2961.3 (3)
c06—c07—c08—n01176.1 (2)c26—c27—c28—c2962.6 (3)
o01—c07—c08—c0963.0 (3)c09—c08—n01—c1067.5 (3)
c06—c07—c08—c0961.3 (3)c07—c08—n01—c10167.7 (2)
c26—c21—c22—c231.4 (5)c29—c28—n21—c3065.1 (3)
c21—c22—c23—c242.2 (5)c27—c28—n21—c30172.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
n01—h11···o03i0.91.812.705 (3)173
n01—h11···o02i0.92.753.318 (3)122
n21—h31···o23ii0.91.822.714 (3)170
o21—h26···o03ii0.78 (4)1.90 (4)2.669 (3)166 (4)
n21—h30···o23iii0.92.853.438 (3)124
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
(EPHEADIP) (1R, 2S)-(-)-ephedrine adipate top
Crystal data top
C16H25NO5F(000) = 672
Mr = 311.37Dx = 1.207 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2198 reflections
a = 5.8290 (1) Åθ = 1.0–27.5°
b = 13.5440 (4) ŵ = 0.09 mm1
c = 21.7000 (7) ÅT = 150 K
V = 1713.17 (8) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1808 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590θmax = 27.5°, θmin = 3.2°
Graphite monochromatorh = 77
CCD rotation images, thick slices scansk = 1717
3874 measured reflectionsl = 2728
2266 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.0611P]
where P = (Fo2 + 2Fc2)/3
2266 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H25NO5V = 1713.17 (8) Å3
Mr = 311.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8290 (1) ŵ = 0.09 mm1
b = 13.5440 (4) ÅT = 150 K
c = 21.7000 (7) Å0.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
2266 independent reflections
3874 measured reflections1808 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2266 reflectionsΔρmin = 0.24 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8800 (4)1.13541 (16)0.03860 (10)0.0301 (5)
H10.753 (4)1.1082 (16)0.0118 (10)0.036*
C20.8687 (4)1.23258 (17)0.05869 (11)0.0369 (5)
H20.719 (4)1.2733 (17)0.0469 (11)0.044*
C31.0415 (4)1.27166 (18)0.09512 (11)0.0399 (6)
H31.033 (4)1.341 (2)0.1128 (11)0.048*
C41.2274 (4)1.21354 (17)0.11049 (11)0.0381 (6)
H41.353 (5)1.2426 (19)0.1367 (11)0.046*
C51.2402 (4)1.11630 (16)0.09050 (10)0.0319 (5)
H51.380 (4)1.0754 (17)0.0999 (10)0.038*
C61.0656 (3)1.07666 (15)0.05414 (9)0.0243 (4)
C71.0842 (3)0.97004 (14)0.03315 (9)0.0240 (4)
H71.162 (4)0.9334 (15)0.0674 (9)0.029*
C81.2329 (3)0.96040 (14)0.02480 (9)0.0231 (4)
H81.382 (4)0.9931 (15)0.0167 (9)0.028*
C91.1216 (4)1.00141 (17)0.08211 (10)0.0296 (5)
H9A1.073 (4)1.0719 (18)0.0754 (10)0.036*
H9B0.987 (4)0.9646 (17)0.0918 (10)0.036*
H9C1.216 (4)0.9979 (17)0.1151 (10)0.036*
C101.4669 (4)0.82970 (18)0.07916 (11)0.0312 (5)
H12A1.414 (4)0.8557 (17)0.1190 (11)0.037*
H12B1.491 (4)0.7536 (19)0.0795 (10)0.037*
H12C1.605 (4)0.8666 (17)0.0657 (10)0.037*
C111.0124 (3)0.67136 (15)0.12613 (9)0.0250 (4)
C120.8658 (4)0.68769 (17)0.18247 (10)0.0321 (5)
H130.908 (4)0.6397 (16)0.2136 (11)0.039*
H140.710 (5)0.6753 (17)0.1707 (11)0.039*
C130.8842 (4)0.79217 (18)0.20703 (10)0.0327 (5)
H151.035 (5)0.8071 (17)0.2204 (11)0.039*
H160.844 (4)0.8431 (17)0.1755 (11)0.039*
C140.7242 (5)0.80945 (19)0.26106 (11)0.0473 (6)
H170.7640.7640.29390.057*
H180.56840.79480.24830.057*
C150.7325 (5)0.9141 (2)0.28594 (12)0.0480 (7)
H190.887 (5)0.936 (2)0.2940 (13)0.058*
H200.663 (5)0.9199 (19)0.3261 (13)0.058*
C160.6204 (5)0.9895 (2)0.24503 (13)0.0630 (9)
N11.2860 (3)0.85283 (12)0.03256 (8)0.0233 (4)
H101.163 (4)0.8173 (15)0.0427 (10)0.028*
H111.339 (4)0.8239 (15)0.0079 (10)0.028*
O10.8699 (2)0.92552 (11)0.01902 (7)0.0302 (4)
H60.804 (4)0.9125 (17)0.0549 (11)0.036*
O20.9614 (2)0.71905 (10)0.07795 (6)0.0263 (3)
O31.1767 (3)0.61184 (12)0.12894 (7)0.0435 (5)
O40.5197 (5)0.97026 (19)0.19809 (12)0.1134 (11)
O50.6364 (4)1.08406 (16)0.26288 (10)0.0671 (6)
H210.703 (6)1.086 (2)0.2997 (16)0.08*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0286 (10)0.0328 (12)0.0289 (11)0.0020 (10)0.0000 (9)0.0010 (9)
C20.0382 (12)0.0345 (13)0.0380 (12)0.0086 (11)0.0047 (11)0.0016 (10)
C30.0515 (14)0.0289 (12)0.0392 (13)0.0018 (12)0.0120 (12)0.0054 (11)
C40.0408 (12)0.0374 (13)0.0360 (12)0.0084 (11)0.0002 (11)0.0106 (10)
C50.0302 (11)0.0354 (12)0.0301 (11)0.0002 (10)0.0005 (10)0.0039 (10)
C60.0248 (9)0.0270 (11)0.0210 (9)0.0017 (9)0.0035 (8)0.0000 (8)
C70.0242 (9)0.0257 (10)0.0220 (10)0.0010 (9)0.0015 (8)0.0004 (9)
C80.0243 (9)0.0200 (10)0.0251 (10)0.0028 (9)0.0012 (8)0.0006 (8)
C90.0368 (11)0.0276 (12)0.0243 (11)0.0016 (10)0.0032 (10)0.0023 (9)
C100.0297 (10)0.0334 (13)0.0304 (12)0.0030 (10)0.0075 (10)0.0036 (10)
C110.0281 (10)0.0242 (10)0.0225 (10)0.0019 (9)0.0024 (9)0.0006 (9)
C120.0380 (12)0.0335 (12)0.0249 (11)0.0033 (11)0.0071 (10)0.0043 (10)
C130.0332 (11)0.0406 (13)0.0243 (11)0.0009 (11)0.0034 (9)0.0044 (10)
C140.0522 (14)0.0573 (16)0.0324 (12)0.0031 (13)0.0106 (12)0.0153 (12)
C150.0490 (15)0.0630 (17)0.0320 (12)0.0028 (15)0.0022 (12)0.0237 (13)
C160.0529 (14)0.074 (2)0.0616 (17)0.0283 (16)0.0257 (15)0.0455 (16)
N10.0236 (8)0.0235 (9)0.0228 (9)0.0011 (8)0.0017 (7)0.0008 (7)
O10.0281 (7)0.0358 (8)0.0268 (8)0.0093 (7)0.0051 (6)0.0022 (7)
O20.0294 (7)0.0273 (8)0.0224 (7)0.0006 (6)0.0004 (6)0.0033 (6)
O30.0473 (10)0.0525 (10)0.0308 (8)0.0246 (9)0.0111 (7)0.0146 (7)
O40.133 (2)0.1035 (18)0.1035 (17)0.0730 (17)0.0912 (18)0.0781 (15)
O50.0744 (13)0.0663 (12)0.0605 (12)0.0330 (12)0.0322 (11)0.0371 (11)
Geometric parameters (Å, º) top
C1—C61.385 (3)C10—H12B1.04 (2)
C1—C21.388 (3)C10—H12C0.99 (3)
C1—H11.01 (2)C11—O31.253 (2)
C2—C31.386 (4)C11—O21.264 (2)
C2—H21.06 (3)C11—C121.508 (3)
C3—C41.380 (3)C12—C131.516 (3)
C3—H31.02 (3)C12—H130.97 (2)
C4—C51.389 (3)C12—H140.96 (3)
C4—H41.01 (3)C13—C141.517 (3)
C5—C61.395 (3)C13—H150.95 (3)
C5—H51.01 (2)C13—H161.00 (2)
C6—C71.518 (3)C14—C151.517 (4)
C7—O11.420 (2)C14—H170.97
C7—C81.533 (3)C14—H180.97
C7—H71.00 (2)C15—C161.503 (4)
C8—N11.499 (2)C15—H190.96 (3)
C8—C91.509 (3)C15—H200.96 (3)
C8—H80.99 (2)C16—O41.204 (3)
C9—H9A1.01 (2)C16—O51.341 (3)
C9—H9B0.95 (2)N1—H100.89 (2)
C9—H9C0.90 (2)N1—H111.01 (2)
C10—N11.494 (3)O1—H60.89 (3)
C10—H12A0.98 (2)O5—H210.89 (3)
C6—C1—C2120.4 (2)H12A—C10—H12C109.4 (19)
C6—C1—H1120.1 (13)H12B—C10—H12C112.9 (18)
C2—C1—H1119.5 (13)O3—C11—O2123.26 (18)
C3—C2—C1120.4 (2)O3—C11—C12119.21 (18)
C3—C2—H2122.3 (13)O2—C11—C12117.53 (18)
C1—C2—H2117.1 (13)C11—C12—C13112.45 (18)
C4—C3—C2119.4 (2)C11—C12—H13108.9 (14)
C4—C3—H3118.5 (15)C13—C12—H13111.3 (13)
C2—C3—H3122.1 (15)C11—C12—H14107.2 (14)
C3—C4—C5120.5 (2)C13—C12—H14108.9 (14)
C3—C4—H4119.0 (14)H13—C12—H14107.8 (19)
C5—C4—H4120.5 (15)C12—C13—C14111.9 (2)
C4—C5—C6120.2 (2)C12—C13—H15111.9 (14)
C4—C5—H5120.2 (13)C14—C13—H15107.6 (14)
C6—C5—H5119.5 (13)C12—C13—H16112.7 (13)
C1—C6—C5119.10 (19)C14—C13—H16106.1 (14)
C1—C6—C7121.97 (18)H15—C13—H16106 (2)
C5—C6—C7118.92 (18)C13—C14—C15113.6 (2)
O1—C7—C6113.93 (16)C13—C14—H17108.9
O1—C7—C8106.50 (15)C15—C14—H17108.9
C6—C7—C8111.57 (16)C13—C14—H18108.9
O1—C7—H7110.3 (12)C15—C14—H18108.9
C6—C7—H7106.3 (12)H17—C14—H18107.7
C8—C7—H7108.1 (12)C16—C15—C14114.3 (2)
N1—C8—C9110.74 (17)C16—C15—H19107.8 (17)
N1—C8—C7106.96 (15)C14—C15—H19112.4 (16)
C9—C8—C7113.70 (17)C16—C15—H20107.2 (17)
N1—C8—H8105.9 (12)C14—C15—H20112.6 (16)
C9—C8—H8111.0 (12)H19—C15—H20102 (2)
C7—C8—H8108.2 (12)O4—C16—O5119.0 (3)
C8—C9—H9A110.5 (12)O4—C16—C15124.4 (3)
C8—C9—H9B110.0 (14)O5—C16—C15116.6 (2)
H9A—C9—H9B107.3 (18)C10—N1—C8115.19 (17)
C8—C9—H9C111.8 (15)C10—N1—H10106.7 (14)
H9A—C9—H9C109.7 (19)C8—N1—H10112.7 (14)
H9B—C9—H9C107.4 (19)C10—N1—H11106.9 (12)
N1—C10—H12A107.4 (14)C8—N1—H11110.0 (12)
N1—C10—H12B108.0 (13)H10—N1—H11104.7 (18)
H12A—C10—H12B113.0 (19)C7—O1—H6106.2 (15)
N1—C10—H12C105.6 (13)C16—O5—H21109 (2)
C6—C1—C2—C30.8 (3)C6—C7—C8—N1166.74 (16)
C1—C2—C3—C41.1 (4)O1—C7—C8—C954.2 (2)
C2—C3—C4—C51.0 (4)C6—C7—C8—C970.7 (2)
C3—C4—C5—C60.6 (3)O3—C11—C12—C13115.1 (2)
C2—C1—C6—C50.3 (3)O2—C11—C12—C1365.0 (3)
C2—C1—C6—C7179.93 (19)C11—C12—C13—C14176.2 (2)
C4—C5—C6—C10.3 (3)C12—C13—C14—C15178.4 (2)
C4—C5—C6—C7179.85 (18)C13—C14—C15—C1672.7 (3)
C1—C6—C7—O123.6 (3)C14—C15—C16—O44.2 (4)
C5—C6—C7—O1155.96 (18)C14—C15—C16—O5175.7 (3)
C1—C6—C7—C897.0 (2)C9—C8—N1—C1067.2 (2)
C5—C6—C7—C883.4 (2)C7—C8—N1—C10168.43 (17)
O1—C7—C8—N168.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H6···O3i0.89 (3)1.80 (3)2.686 (2)178 (2)
N1—H11···O2ii1.01 (2)1.78 (2)2.783 (2)173.6 (19)
O5—H21···O3iii0.89 (3)1.73 (3)2.615 (2)170 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+2, y+1/2, z+1/2.
(EPHEBESY) (1R, 2S)-(-)-ephedrine besylate top
Crystal data top
C16H20O4SF(000) = 344
Mr = 323.4Dx = 1.316 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7649 reflections
a = 5.7214 (3) Åθ = 1.0–27.5°
b = 20.8336 (11) ŵ = 0.22 mm1
c = 6.9188 (5) ÅT = 150 K
β = 98.409 (2)°Plate, brown
V = 815.84 (8) Å30.25 × 0.25 × 0.05 mm
Z = 2
Data collection top
KappaCCD
diffractometer
3395 independent reflections
Radiation source: Enraf Nonius FR5902159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 77
Tmin = 0.984, Tmax = 1.024k = 2426
5520 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3395 reflectionsΔρmax = 0.27 e Å3
260 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (11)
Crystal data top
C16H20O4SV = 815.84 (8) Å3
Mr = 323.4Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7214 (3) ŵ = 0.22 mm1
b = 20.8336 (11) ÅT = 150 K
c = 6.9188 (5) Å0.25 × 0.25 × 0.05 mm
β = 98.409 (2)°
Data collection top
KappaCCD
diffractometer
3395 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2159 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 1.024Rint = 0.038
5520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.27 e Å3
S = 1.01Δρmin = 0.42 e Å3
3395 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
260 parametersAbsolute structure parameter: 0.04 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3882 (8)0.85924 (19)0.6682 (6)0.0302 (10)
H11.232 (9)0.8493 (18)0.590 (6)0.036*
C21.4381 (9)0.9179 (2)0.7637 (7)0.0354 (11)
H21.306 (8)0.9518 (19)0.736 (6)0.042*
C31.6630 (9)0.9295 (2)0.8638 (6)0.0348 (11)
H31.712 (8)0.967 (2)0.923 (6)0.042*
C41.8332 (8)0.8831 (2)0.8709 (7)0.0355 (11)
H41.983 (8)0.892 (2)0.935 (6)0.043*
C51.7846 (8)0.8246 (2)0.7771 (6)0.0292 (10)
H51.911 (7)0.7929 (19)0.784 (6)0.035*
C61.5624 (7)0.81220 (17)0.6745 (5)0.0208 (9)
C71.5112 (8)0.74808 (19)0.5743 (6)0.0265 (10)
H71.598 (7)0.717 (2)0.648 (6)0.032*
C81.6069 (8)0.74590 (18)0.3781 (6)0.0257 (9)
H81.778 (7)0.7451 (17)0.408 (6)0.031*
C91.4924 (11)0.7943 (2)0.2315 (7)0.0358 (12)
H9A1.539 (8)0.7903 (19)0.110 (7)0.043*
H9B1.524 (9)0.835 (2)0.270 (7)0.043*
H9C1.313 (9)0.785 (2)0.216 (6)0.043*
C101.6836 (9)0.6260 (2)0.4045 (7)0.0338 (12)
H12A1.628 (7)0.6208 (19)0.524 (7)0.041*
H12B1.851 (8)0.631 (2)0.421 (6)0.041*
H12C1.633 (8)0.584 (2)0.321 (7)0.041*
C112.2319 (8)0.5644 (2)0.7256 (6)0.0300 (11)
H132.344 (8)0.6002 (19)0.741 (6)0.036*
C122.2484 (8)0.5099 (2)0.6154 (7)0.0377 (12)
H142.393 (8)0.504 (2)0.543 (6)0.045*
C132.0794 (8)0.4618 (2)0.6064 (7)0.0358 (11)
H152.079 (7)0.426 (2)0.524 (6)0.043*
C141.8907 (9)0.4692 (2)0.7111 (7)0.0357 (11)
H161.779 (8)0.431 (2)0.713 (6)0.043*
C151.8736 (8)0.52318 (19)0.8223 (6)0.0291 (10)
H171.749 (8)0.5324 (19)0.901 (7)0.035*
C162.0422 (7)0.57102 (17)0.8286 (6)0.0229 (9)
O11.2687 (5)0.73278 (13)0.5334 (4)0.0291 (7)
H61.22580.71640.63010.044*
O22.1234 (5)0.62436 (12)1.1704 (4)0.0303 (7)
O32.1531 (5)0.69075 (12)0.8878 (4)0.0330 (7)
O41.7664 (5)0.65500 (12)0.9529 (4)0.0293 (7)
S12.01984 (17)0.64093 (4)0.97080 (13)0.0249 (2)
N11.5633 (7)0.68021 (15)0.2902 (5)0.0232 (8)
H101.620 (7)0.6774 (18)0.184 (6)0.028*
H111.397 (8)0.6682 (16)0.275 (5)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (3)0.032 (2)0.026 (2)0.003 (2)0.004 (2)0.0010 (18)
C20.041 (3)0.032 (2)0.034 (3)0.001 (2)0.007 (2)0.001 (2)
C30.043 (3)0.034 (2)0.029 (3)0.012 (2)0.013 (2)0.008 (2)
C40.028 (3)0.048 (3)0.030 (3)0.009 (2)0.002 (2)0.010 (2)
C50.029 (3)0.034 (2)0.026 (2)0.003 (2)0.006 (2)0.0031 (19)
C60.025 (2)0.025 (2)0.013 (2)0.0022 (17)0.0085 (18)0.0011 (16)
C70.025 (3)0.032 (2)0.024 (3)0.0023 (19)0.009 (2)0.0005 (18)
C80.027 (2)0.029 (2)0.022 (2)0.0024 (19)0.0053 (19)0.0021 (17)
C90.057 (3)0.034 (3)0.020 (3)0.002 (2)0.014 (2)0.002 (2)
C100.038 (3)0.041 (3)0.026 (2)0.008 (2)0.015 (2)0.005 (2)
C110.029 (3)0.033 (2)0.030 (3)0.0004 (19)0.013 (2)0.0039 (19)
C120.035 (3)0.041 (3)0.039 (3)0.005 (2)0.011 (2)0.009 (2)
C130.039 (3)0.034 (3)0.032 (3)0.003 (2)0.002 (2)0.011 (2)
C140.034 (3)0.032 (2)0.037 (3)0.003 (2)0.009 (2)0.002 (2)
C150.025 (3)0.035 (2)0.026 (3)0.001 (2)0.001 (2)0.0011 (19)
C160.023 (2)0.027 (2)0.019 (2)0.0017 (17)0.0039 (19)0.0027 (16)
O10.0272 (18)0.0397 (17)0.0223 (16)0.0100 (13)0.0097 (13)0.0014 (13)
O20.0269 (17)0.0444 (18)0.0192 (15)0.0031 (12)0.0023 (13)0.0004 (11)
O30.0404 (19)0.0281 (15)0.0350 (18)0.0045 (13)0.0207 (15)0.0024 (13)
O40.0209 (16)0.0428 (19)0.0249 (15)0.0065 (12)0.0055 (12)0.0032 (12)
S10.0257 (6)0.0300 (5)0.0204 (5)0.0006 (5)0.0083 (4)0.0003 (5)
N10.022 (2)0.0298 (19)0.0190 (19)0.0037 (15)0.0072 (17)0.0014 (15)
Geometric parameters (Å, º) top
C1—C61.394 (6)C10—H12A0.94 (5)
C1—C21.398 (6)C10—H12B0.96 (4)
C1—H11.00 (5)C10—H12C1.06 (4)
C2—C31.390 (6)C11—C121.379 (6)
C2—H21.03 (4)C11—C161.390 (6)
C3—C41.368 (6)C11—H130.98 (4)
C3—H30.91 (4)C12—C131.386 (6)
C4—C51.389 (6)C12—H141.04 (4)
C4—H40.93 (5)C13—C141.394 (7)
C5—C61.387 (5)C13—H150.94 (4)
C5—H50.97 (4)C14—C151.375 (6)
C6—C71.514 (5)C14—H161.02 (4)
C7—O11.411 (5)C15—C161.384 (6)
C7—C81.537 (5)C15—H170.98 (5)
C7—H70.92 (4)C16—S11.773 (4)
C8—N11.504 (5)O1—H60.82
C8—C91.510 (6)O2—S11.462 (3)
C8—H80.97 (4)O3—S11.455 (3)
C9—H9A0.92 (5)O4—S11.467 (3)
C9—H9B0.91 (5)N1—H100.85 (4)
C9—H9C1.03 (5)N1—H110.97 (4)
C10—N11.488 (5)
C6—C1—C2120.3 (4)N1—C10—H12B111 (3)
C6—C1—H1117 (2)H12A—C10—H12B112 (3)
C2—C1—H1123 (2)N1—C10—H12C105 (3)
C3—C2—C1119.9 (4)H12A—C10—H12C107 (4)
C3—C2—H2125 (2)H12B—C10—H12C111 (4)
C1—C2—H2115 (2)C12—C11—C16119.1 (4)
C4—C3—C2119.8 (4)C12—C11—H13126 (2)
C4—C3—H3115 (3)C16—C11—H13115 (2)
C2—C3—H3125 (3)C11—C12—C13121.1 (4)
C3—C4—C5120.7 (4)C11—C12—H14119 (3)
C3—C4—H4118 (3)C13—C12—H14120 (3)
C5—C4—H4121 (3)C12—C13—C14119.1 (4)
C6—C5—C4120.6 (4)C12—C13—H15123 (3)
C6—C5—H5121 (2)C14—C13—H15118 (3)
C4—C5—H5118 (2)C15—C14—C13120.3 (4)
C5—C6—C1118.9 (4)C15—C14—H16122 (3)
C5—C6—C7120.0 (4)C13—C14—H16117 (3)
C1—C6—C7121.1 (4)C14—C15—C16120.0 (4)
O1—C7—C6114.2 (3)C14—C15—H17126 (2)
O1—C7—C8106.4 (3)C16—C15—H17114 (2)
C6—C7—C8111.1 (3)C15—C16—C11120.4 (4)
O1—C7—H7113 (3)C15—C16—S1120.2 (3)
C6—C7—H7109 (3)C11—C16—S1119.4 (3)
C8—C7—H7103 (3)C7—O1—H6109.5
N1—C8—C9107.9 (3)O3—S1—O2112.21 (16)
N1—C8—C7108.9 (3)O3—S1—O4113.13 (16)
C9—C8—C7113.4 (4)O2—S1—O4112.69 (16)
N1—C8—H8100 (2)O3—S1—C16106.40 (17)
C9—C8—H8119 (2)O2—S1—C16106.15 (17)
C7—C8—H8107 (2)O4—S1—C16105.55 (17)
C8—C9—H9A113 (3)C10—N1—C8116.1 (3)
C8—C9—H9B113 (3)C10—N1—H10102 (3)
H9A—C9—H9B106 (4)C8—N1—H10111 (3)
C8—C9—H9C105 (2)C10—N1—H11103 (2)
H9A—C9—H9C107 (4)C8—N1—H11112 (2)
H9B—C9—H9C112 (4)H10—N1—H11112 (4)
N1—C10—H12A112 (2)
C6—C1—C2—C30.6 (6)C16—C11—C12—C130.1 (7)
C1—C2—C3—C41.0 (7)C11—C12—C13—C140.1 (7)
C2—C3—C4—C50.7 (7)C12—C13—C14—C150.3 (7)
C3—C4—C5—C60.0 (7)C13—C14—C15—C160.9 (6)
C4—C5—C6—C10.4 (6)C14—C15—C16—C111.1 (6)
C4—C5—C6—C7179.5 (4)C14—C15—C16—S1179.7 (3)
C2—C1—C6—C50.1 (6)C12—C11—C16—C150.7 (6)
C2—C1—C6—C7179.2 (4)C12—C11—C16—S1179.9 (3)
C5—C6—C7—O1159.7 (3)C15—C16—S1—O3156.9 (3)
C1—C6—C7—O119.4 (5)C11—C16—S1—O323.9 (4)
C5—C6—C7—C879.9 (5)C15—C16—S1—O283.4 (4)
C1—C6—C7—C8101.0 (4)C11—C16—S1—O295.8 (3)
O1—C7—C8—N158.2 (4)C15—C16—S1—O436.5 (4)
C6—C7—C8—N1176.9 (3)C11—C16—S1—O4144.3 (3)
O1—C7—C8—C962.0 (4)C9—C8—N1—C10174.0 (4)
C6—C7—C8—C962.9 (5)C7—C8—N1—C1062.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O4i0.85 (4)1.97 (4)2.804 (4)170 (4)
N1—H10···S1i0.85 (4)3.00 (4)3.750 (4)149 (3)
N1—H11···O2ii0.97 (4)1.87 (4)2.787 (5)156 (3)
N1—H11···S1ii0.97 (4)2.84 (4)3.635 (4)139 (3)
O1—H6···O3iii0.821.962.773 (4)169
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x1, y, z.
(EPHEEDIS) (1R, 2S)-(-)-ephedrine edisylate top
Crystal data top
C22H36N2O8S2F(000) = 556
Mr = 520.65Dx = 1.335 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 13259 reflections
a = 5.7108 (1) Åθ = 1.0–27.5°
b = 34.0651 (7) ŵ = 0.25 mm1
c = 6.6590 (2) ÅT = 150 K
β = 90.09°Plate, white
V = 1295.43 (5) Å30.35 × 0.35 × 0.05 mm
Z = 2
Data collection top
KappaCCD
diffractometer
5249 independent reflections
Radiation source: Enraf Nonius FR5903134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 47
Tmin = 0.979, Tmax = 1.027k = 4144
10886 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2649P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5249 reflectionsΔρmax = 0.31 e Å3
357 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (11)
Crystal data top
C22H36N2O8S2V = 1295.43 (5) Å3
Mr = 520.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7108 (1) ŵ = 0.25 mm1
b = 34.0651 (7) ÅT = 150 K
c = 6.6590 (2) Å0.35 × 0.35 × 0.05 mm
β = 90.09°
Data collection top
KappaCCD
diffractometer
5249 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
3134 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 1.027Rint = 0.032
10886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.31 e Å3
S = 0.98Δρmin = 0.37 e Å3
5249 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
357 parametersAbsolute structure parameter: 0.03 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.7038 (8)0.90658 (15)0.9014 (7)0.0391 (12)
H010.59440.92670.89210.047*
C020.6496 (11)0.86970 (17)0.8240 (8)0.0502 (15)
H020.499 (9)0.8631 (15)0.767 (7)0.055 (16)*
C030.8089 (12)0.84027 (19)0.8410 (9)0.0527 (17)
H030.767 (8)0.8138 (14)0.782 (7)0.049 (14)*
C041.0209 (11)0.84649 (16)0.9342 (9)0.0458 (15)
H041.126 (8)0.8260 (14)0.950 (6)0.031 (13)*
C051.0740 (10)0.88305 (15)1.0101 (8)0.0389 (13)
H051.213 (7)0.8836 (12)1.064 (6)0.019 (12)*
C060.9182 (8)0.91369 (15)0.9922 (7)0.0288 (12)
C070.9738 (8)0.95497 (15)1.0672 (7)0.0311 (12)
H70.905 (7)0.9785 (13)0.970 (6)0.036 (13)*
C080.8671 (8)0.96273 (14)1.2739 (7)0.0320 (12)
H080.69610.96221.26210.038*
C090.9419 (12)0.93356 (18)1.4325 (8)0.0589 (18)
H09A1.10970.93211.43620.088*
H09B0.87860.90821.4010.088*
H09C0.88490.94191.56120.088*
C100.8845 (8)1.03619 (14)1.2058 (7)0.0398 (13)
H12A0.97051.03331.0830.06*
H12B0.9261.06061.26850.06*
H12C0.71971.0361.17730.06*
C111.1361 (9)1.08813 (16)0.7161 (8)0.0294 (12)
H131.012 (9)1.0713 (15)0.760 (7)0.047 (14)*
H141.137 (7)1.0936 (11)0.578 (6)0.015 (10)*
C121.3726 (8)1.07241 (15)0.7801 (7)0.0277 (12)
H151.37251.06790.9240.033*
H161.49241.09180.75070.033*
C211.6242 (8)0.76002 (15)0.4064 (7)0.0392 (12)
H211.73840.74060.39820.047*
C221.6691 (11)0.79639 (17)0.3293 (8)0.0468 (14)
H221.833 (8)0.8019 (13)0.274 (6)0.039 (13)*
C231.5031 (11)0.82548 (17)0.3433 (8)0.0514 (16)
H231.53310.85020.28980.062*
C241.2959 (12)0.81820 (17)0.4348 (9)0.0498 (16)
H241.183 (9)0.8370 (15)0.441 (7)0.039 (14)*
C251.2466 (8)0.78152 (14)0.5112 (7)0.0379 (12)
H251.1030.77690.57250.045*
C261.4099 (8)0.75136 (15)0.4973 (7)0.0287 (12)
C271.3662 (8)0.70974 (15)0.5746 (7)0.0289 (12)
H271.454 (6)0.6919 (12)0.494 (5)0.011 (11)*
C281.4679 (9)0.70392 (14)0.7834 (7)0.0311 (12)
H281.619 (7)0.7051 (12)0.776 (6)0.020 (12)*
C291.3654 (11)0.73094 (18)0.9421 (7)0.0580 (18)
H29A1.19840.72780.94540.087*
H29B1.40320.75770.910.087*
H29C1.42990.72441.0710.087*
C301.5080 (9)0.63087 (15)0.7106 (7)0.0407 (12)
H32A1.40630.62970.59580.061*
H32B1.50520.60610.77940.061*
H32C1.66480.63650.66760.061*
N010.9421 (6)1.00332 (11)1.3427 (6)0.0304 (10)
H100.87511.00811.46250.036*
H111.09821.00311.36180.036*
N211.4267 (6)0.66234 (11)0.8487 (5)0.0304 (10)
H301.49780.65880.96810.036*
H311.2720.65920.86830.036*
O020.8585 (5)1.14831 (10)0.7290 (5)0.0396 (9)
O031.2702 (5)1.15841 (9)0.8096 (5)0.0343 (8)
O041.0147 (6)1.12468 (10)1.0438 (4)0.0364 (9)
O051.4018 (5)1.03526 (10)0.4410 (4)0.0357 (8)
O061.6839 (5)1.01977 (10)0.7020 (4)0.0350 (8)
O071.2764 (6)0.99872 (10)0.7302 (5)0.0414 (9)
O211.1214 (5)0.70113 (10)0.5869 (5)0.0368 (8)
H261.08460.68630.49520.055*
S11.06486 (19)1.13367 (3)0.83440 (17)0.0284 (3)
S21.43963 (19)1.02792 (3)0.65424 (17)0.0281 (3)
O011.2197 (5)0.96210 (9)1.0871 (5)0.0377 (8)
H061.28220.94321.1410.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.033 (3)0.047 (3)0.037 (3)0.001 (2)0.006 (2)0.007 (2)
C020.041 (3)0.063 (4)0.047 (3)0.014 (3)0.009 (3)0.022 (3)
C030.059 (4)0.046 (4)0.053 (4)0.016 (4)0.017 (3)0.017 (3)
C040.057 (4)0.028 (3)0.052 (4)0.005 (3)0.009 (3)0.004 (3)
C050.035 (3)0.042 (3)0.040 (3)0.003 (3)0.000 (3)0.003 (3)
C060.034 (3)0.030 (3)0.022 (3)0.007 (2)0.007 (2)0.001 (2)
C070.029 (3)0.035 (3)0.029 (3)0.004 (2)0.004 (2)0.000 (2)
C080.034 (3)0.030 (3)0.033 (3)0.009 (2)0.008 (2)0.005 (2)
C090.104 (5)0.036 (3)0.037 (3)0.009 (3)0.010 (3)0.001 (3)
C100.044 (3)0.033 (3)0.042 (3)0.003 (3)0.003 (2)0.006 (2)
C110.030 (3)0.031 (3)0.027 (3)0.005 (2)0.001 (2)0.001 (3)
C120.022 (3)0.028 (3)0.033 (3)0.005 (2)0.001 (2)0.006 (2)
C210.033 (3)0.047 (3)0.038 (3)0.004 (3)0.002 (2)0.007 (3)
C220.040 (3)0.055 (4)0.046 (3)0.016 (3)0.007 (3)0.016 (3)
C230.063 (4)0.039 (3)0.052 (4)0.011 (3)0.023 (3)0.018 (3)
C240.055 (4)0.030 (3)0.064 (4)0.002 (3)0.014 (3)0.004 (3)
C250.031 (3)0.040 (3)0.043 (3)0.002 (2)0.003 (2)0.003 (2)
C260.031 (3)0.035 (3)0.020 (2)0.004 (2)0.008 (2)0.004 (2)
C270.028 (3)0.034 (3)0.026 (3)0.002 (2)0.002 (2)0.001 (2)
C280.031 (3)0.030 (3)0.032 (3)0.002 (3)0.006 (2)0.004 (2)
C290.100 (5)0.049 (4)0.025 (3)0.006 (4)0.010 (3)0.004 (3)
C300.047 (3)0.035 (3)0.040 (3)0.009 (3)0.001 (2)0.004 (3)
N010.029 (2)0.035 (3)0.027 (2)0.001 (2)0.0032 (17)0.001 (2)
N210.028 (2)0.033 (3)0.030 (2)0.0008 (19)0.0023 (17)0.002 (2)
O020.0289 (18)0.041 (2)0.049 (2)0.0090 (16)0.0089 (15)0.0067 (17)
O030.0311 (19)0.030 (2)0.042 (2)0.0059 (15)0.0012 (15)0.0001 (15)
O040.0410 (19)0.043 (2)0.0250 (18)0.0117 (17)0.0080 (14)0.0037 (15)
O050.0338 (18)0.047 (2)0.0264 (17)0.0018 (17)0.0010 (14)0.0060 (15)
O060.0232 (17)0.041 (2)0.0404 (19)0.0058 (15)0.0010 (14)0.0060 (16)
O070.0327 (19)0.035 (2)0.057 (2)0.0085 (16)0.0121 (16)0.0074 (17)
O210.0320 (19)0.039 (2)0.040 (2)0.0056 (15)0.0001 (14)0.0024 (15)
S10.0244 (7)0.0293 (7)0.0316 (7)0.0036 (6)0.0001 (5)0.0010 (6)
S20.0232 (6)0.0291 (7)0.0319 (7)0.0010 (6)0.0040 (5)0.0019 (6)
O010.0238 (18)0.042 (2)0.048 (2)0.0016 (15)0.0022 (15)0.0038 (17)
Geometric parameters (Å, º) top
C01—C061.386 (6)C22—C231.375 (8)
C01—C021.393 (7)C22—H221.02 (5)
C01—H010.93C23—C241.355 (8)
C02—C031.358 (8)C23—H230.93
C02—H020.96 (5)C24—C251.378 (7)
C03—C041.376 (9)C24—H240.91 (5)
C03—H031.01 (5)C25—C261.391 (7)
C04—C051.377 (7)C25—H250.93
C04—H040.92 (5)C26—C271.529 (7)
C05—C061.377 (7)C27—O211.431 (5)
C05—H050.87 (4)C27—C281.519 (6)
C06—C071.525 (7)C27—H270.95 (4)
C07—O011.431 (5)C28—N211.500 (6)
C07—C081.529 (6)C28—C291.519 (7)
C07—H71.10 (4)C28—H280.87 (4)
C08—C091.511 (7)C29—H29A0.96
C08—N011.518 (6)C29—H29B0.96
C08—H080.98C29—H29C0.96
C09—H09A0.96C30—N211.487 (6)
C09—H09B0.96C30—H32A0.96
C09—H09C0.96C30—H32B0.96
C10—N011.481 (6)C30—H32C0.96
C10—H12A0.96N01—H100.9
C10—H12B0.96N01—H110.9
C10—H12C0.96N21—H300.9
C11—C121.514 (5)N21—H310.9
C11—S11.787 (5)O02—S11.458 (3)
C11—H130.96 (5)O03—S11.454 (3)
C11—H140.94 (4)O04—S11.456 (3)
C12—S21.774 (5)O05—S21.457 (3)
C12—H150.97O06—S21.457 (3)
C12—H160.97O07—S21.454 (3)
C21—C221.366 (7)O21—H260.82
C21—C261.398 (6)O01—H060.82
C21—H210.93
C06—C01—C02121.0 (5)C24—C23—H23120
C06—C01—H01119.5C22—C23—H23120
C02—C01—H01119.5C23—C24—C25120.7 (6)
C03—C02—C01119.1 (6)C23—C24—H24121 (3)
C03—C02—H02117 (3)C25—C24—H24119 (3)
C01—C02—H02124 (3)C24—C25—C26120.5 (5)
C02—C03—C04120.8 (6)C24—C25—H25119.7
C02—C03—H03118 (3)C26—C25—H25119.7
C04—C03—H03121 (3)C25—C26—C21117.4 (5)
C03—C04—C05119.8 (6)C25—C26—C27123.6 (4)
C03—C04—H04120 (3)C21—C26—C27119.0 (5)
C05—C04—H04120 (3)O21—C27—C28107.0 (4)
C06—C05—C04120.8 (5)O21—C27—C26111.7 (4)
C06—C05—H05127 (3)C28—C27—C26111.5 (4)
C04—C05—H05112 (3)O21—C27—H27115 (2)
C05—C06—C01118.4 (5)C28—C27—H27103 (2)
C05—C06—C07122.5 (4)C26—C27—H27108 (2)
C01—C06—C07119.2 (5)N21—C28—C27109.2 (4)
O01—C07—C06113.0 (4)N21—C28—C29108.1 (4)
O01—C07—C08106.2 (4)C27—C28—C29114.2 (4)
C06—C07—C08111.8 (4)N21—C28—H28103 (3)
O01—C07—H7106 (2)C27—C28—H28109 (3)
C06—C07—H7114 (2)C29—C28—H28113 (3)
C08—C07—H7105 (2)C28—C29—H29A109.5
C09—C08—N01108.0 (4)C28—C29—H29B109.5
C09—C08—C07113.8 (4)H29A—C29—H29B109.5
N01—C08—C07108.5 (4)C28—C29—H29C109.5
C09—C08—H08108.9H29A—C29—H29C109.5
N01—C08—H08108.9H29B—C29—H29C109.5
C07—C08—H08108.9N21—C30—H32A109.5
C08—C09—H09A109.5N21—C30—H32B109.5
C08—C09—H09B109.5H32A—C30—H32B109.5
H09A—C09—H09B109.5N21—C30—H32C109.5
C08—C09—H09C109.5H32A—C30—H32C109.5
H09A—C09—H09C109.5H32B—C30—H32C109.5
H09B—C09—H09C109.5C10—N01—C08116.1 (4)
N01—C10—H12A109.5C10—N01—H10108.3
N01—C10—H12B109.5C08—N01—H10108.3
H12A—C10—H12B109.5C10—N01—H11108.3
N01—C10—H12C109.5C08—N01—H11108.3
H12A—C10—H12C109.5H10—N01—H11107.4
H12B—C10—H12C109.5C30—N21—C28116.9 (3)
C12—C11—S1112.7 (3)C30—N21—H30108.1
C12—C11—H13111 (3)C28—N21—H30108.1
S1—C11—H13103 (3)C30—N21—H31108.1
C12—C11—H14110 (2)C28—N21—H31108.1
S1—C11—H14105 (2)H30—N21—H31107.3
H13—C11—H14115 (4)C27—O21—H26109.5
C11—C12—S2111.2 (3)O03—S1—O04112.99 (19)
C11—C12—H15109.4O03—S1—O02113.5 (2)
S2—C12—H15109.4O04—S1—O02111.9 (2)
C11—C12—H16109.4O03—S1—C11105.6 (2)
S2—C12—H16109.4O04—S1—C11106.5 (2)
H15—C12—H16108O02—S1—C11105.6 (2)
C22—C21—C26121.3 (5)O07—S2—O06114.1 (2)
C22—C21—H21119.3O07—S2—O05111.2 (2)
C26—C21—H21119.3O06—S2—O05112.70 (18)
C21—C22—C23119.9 (6)O07—S2—C12106.3 (2)
C21—C22—H22118 (3)O06—S2—C12105.5 (2)
C23—C22—H22122 (3)O05—S2—C12106.4 (2)
C24—C23—C22120.1 (6)C07—O01—H06109.5
C06—C01—C02—C031.0 (8)C24—C25—C26—C27178.8 (5)
C01—C02—C03—C040.3 (9)C22—C21—C26—C251.7 (7)
C02—C03—C04—C050.5 (9)C22—C21—C26—C27178.0 (4)
C03—C04—C05—C060.7 (8)C25—C26—C27—O2123.2 (6)
C04—C05—C06—C011.9 (7)C21—C26—C27—O21156.5 (4)
C04—C05—C06—C07177.7 (5)C25—C26—C27—C2896.5 (6)
C02—C01—C06—C052.1 (7)C21—C26—C27—C2883.8 (6)
C02—C01—C06—C07177.5 (5)O21—C27—C28—N2159.4 (5)
C05—C06—C07—O0121.5 (6)C26—C27—C28—N21178.2 (4)
C01—C06—C07—O01158.1 (4)O21—C27—C28—C2961.7 (5)
C05—C06—C07—C0898.2 (5)C26—C27—C28—C2960.7 (6)
C01—C06—C07—C0882.1 (6)C09—C08—N01—C10179.8 (4)
O01—C07—C08—C0967.1 (5)C07—C08—N01—C1056.1 (5)
C06—C07—C08—C0956.6 (6)C27—C28—N21—C3053.5 (5)
O01—C07—C08—N0153.0 (5)C29—C28—N21—C30178.2 (4)
C06—C07—C08—N01176.7 (4)C12—C11—S1—O0348.7 (4)
S1—C11—C12—S2178.4 (3)C12—C11—S1—O0471.7 (4)
C26—C21—C22—C231.0 (8)C12—C11—S1—O02169.2 (3)
C21—C22—C23—C240.6 (9)C11—C12—S2—O0768.1 (3)
C22—C23—C24—C251.4 (9)C11—C12—S2—O06170.5 (3)
C23—C24—C25—C260.6 (8)C11—C12—S2—O0550.6 (3)
C24—C25—C26—C210.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N01—H10···O06i0.91.982.868 (5)171
N01—H10···S2i0.92.883.642 (4)144
N01—H11···O05ii0.92.122.915 (5)147
N01—H11···S2ii0.92.883.614 (4)140
N21—H30···O03iii0.91.982.860 (5)164
N21—H30···S1iii0.92.953.717 (4)144
N21—H31···O04iv0.92.12.919 (5)151
N21—H31···S1iv0.92.93.648 (4)142
O21—H26···O02v0.8222.771 (4)156
O21—H26···S1v0.822.963.778 (3)178
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1; (iii) x+3, y1/2, z+2; (iv) x+2, y1/2, z+2; (v) x+2, y1/2, z+1.
(EPHE) (1R, 2S)-(-)-ephedrine top
Crystal data top
C10H16NOF(000) = 360
Mr = 165.23Dx = 1.114 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15515 reflections
a = 5.6851 (4) Åθ = 1.0–27.5°
b = 7.7047 (5) ŵ = 0.07 mm1
c = 22.4819 (17) ÅT = 150 K
V = 984.75 (12) Å3Plate, colourless
Z = 40.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1340 independent reflections
Radiation source: Enraf Nonius FR590617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 77
Tmin = 0.975, Tmax = 1.061k = 107
8327 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1340 reflectionsΔρmax = 0.23 e Å3
154 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (5)
Crystal data top
C10H16NOV = 984.75 (12) Å3
Mr = 165.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6851 (4) ŵ = 0.07 mm1
b = 7.7047 (5) ÅT = 150 K
c = 22.4819 (17) Å0.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1340 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
617 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 1.061Rint = 0.076
8327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.23 e Å3
1340 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0038 (7)0.0288 (5)0.35785 (16)0.0424 (10)
H10.117 (6)0.034 (4)0.3892 (14)0.051*
C20.0285 (8)0.0706 (6)0.3072 (2)0.0573 (13)
H20.177 (6)0.145 (5)0.2999 (16)0.069*
C30.1436 (10)0.0785 (7)0.2651 (2)0.0697 (16)
H30.126 (7)0.161 (6)0.2310 (17)0.084*
C40.3490 (9)0.0151 (8)0.27192 (17)0.0694 (16)
H40.481 (8)0.019 (6)0.2419 (17)0.083*
C50.3820 (8)0.1170 (6)0.32321 (15)0.0543 (13)
H50.530 (6)0.188 (5)0.3327 (15)0.065*
C60.2098 (6)0.1225 (5)0.36642 (15)0.0380 (10)
C70.2359 (6)0.2316 (5)0.42236 (14)0.0361 (10)
H70.169 (5)0.152 (4)0.4568 (13)0.043*
C80.1075 (7)0.4034 (5)0.41872 (14)0.0375 (10)
H80.068 (6)0.389 (5)0.4089 (13)0.045*
C90.2151 (8)0.5247 (6)0.37257 (18)0.0527 (12)
H9A0.219 (6)0.477 (5)0.3329 (15)0.063*
H9B0.395 (7)0.555 (5)0.3818 (15)0.063*
H9C0.129 (7)0.637 (5)0.3703 (15)0.063*
C100.0643 (8)0.6247 (6)0.4851 (2)0.0532 (12)
H11A0.057 (6)0.663 (5)0.5312 (16)0.064*
H11B0.228 (6)0.579 (5)0.4746 (15)0.064*
H11C0.029 (6)0.725 (5)0.4629 (17)0.064*
N10.0998 (6)0.4786 (4)0.47910 (13)0.0414 (9)
H100.242 (5)0.512 (4)0.4858 (12)0.015 (8)*
O10.4778 (4)0.2673 (3)0.43595 (9)0.0449 (8)
H60.52390.19950.46150.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.045 (3)0.037 (2)0.007 (2)0.006 (2)0.005 (2)
C20.062 (3)0.049 (3)0.061 (3)0.015 (3)0.026 (3)0.014 (2)
C30.082 (4)0.074 (4)0.053 (3)0.035 (3)0.029 (3)0.026 (3)
C40.060 (3)0.105 (4)0.043 (3)0.037 (3)0.004 (3)0.011 (3)
C50.051 (2)0.078 (4)0.034 (2)0.018 (3)0.000 (2)0.004 (2)
C60.036 (2)0.044 (3)0.0337 (19)0.012 (2)0.0032 (18)0.0008 (19)
C70.0308 (19)0.045 (3)0.0326 (19)0.001 (2)0.0019 (16)0.0036 (19)
C80.039 (2)0.040 (3)0.033 (2)0.001 (2)0.0026 (19)0.0003 (19)
C90.063 (3)0.053 (3)0.042 (2)0.002 (3)0.002 (2)0.007 (2)
C100.056 (3)0.040 (3)0.063 (3)0.002 (3)0.015 (2)0.006 (2)
N10.037 (2)0.045 (2)0.0427 (19)0.0042 (19)0.0026 (16)0.0065 (16)
O10.0336 (13)0.060 (2)0.0414 (15)0.0001 (15)0.0061 (12)0.0052 (12)
Geometric parameters (Å, º) top
C1—C21.385 (5)C7—H71.06 (3)
C1—C61.389 (5)C8—N11.477 (4)
C1—H10.98 (3)C8—C91.524 (5)
C2—C31.362 (6)C8—H81.03 (3)
C2—H21.03 (4)C9—H9A0.97 (3)
C3—C41.381 (7)C9—H9B1.07 (4)
C3—H31.00 (4)C9—H9C1.00 (4)
C4—C51.408 (6)C10—N11.469 (5)
C4—H41.01 (4)C10—H11A1.08 (4)
C5—C61.380 (5)C10—H11B1.02 (4)
C5—H51.03 (4)C10—H11C0.94 (4)
C6—C71.520 (5)N1—H100.86 (3)
C7—O11.435 (4)O1—H60.82
C7—C81.514 (5)
C2—C1—C6120.9 (4)C6—C7—H7104.3 (17)
C2—C1—H1121.4 (19)N1—C8—C7107.9 (3)
C6—C1—H1117.7 (19)N1—C8—C9113.4 (4)
C3—C2—C1120.0 (5)C7—C8—C9112.3 (3)
C3—C2—H2117 (2)N1—C8—H8102.3 (18)
C1—C2—H2123 (2)C7—C8—H8112 (2)
C2—C3—C4120.5 (4)C9—C8—H8108.1 (19)
C2—C3—H3119 (2)C8—C9—H9A114 (2)
C4—C3—H3120 (2)C8—C9—H9B113 (2)
C3—C4—C5119.7 (4)H9A—C9—H9B104 (3)
C3—C4—H4125 (2)C8—C9—H9C112 (2)
C5—C4—H4116 (2)H9A—C9—H9C107 (3)
C6—C5—C4119.9 (5)H9B—C9—H9C107 (3)
C6—C5—H5115 (2)N1—C10—H11A106.1 (19)
C4—C5—H5125 (2)N1—C10—H11B107 (2)
C5—C6—C1119.0 (4)H11A—C10—H11B110 (3)
C5—C6—C7122.0 (4)N1—C10—H11C116 (2)
C1—C6—C7119.0 (3)H11A—C10—H11C106 (3)
O1—C7—C8107.8 (3)H11B—C10—H11C111 (3)
O1—C7—C6112.1 (3)C10—N1—C8113.8 (3)
C8—C7—C6113.1 (3)C10—N1—H10110 (2)
O1—C7—H7107.3 (17)C8—N1—H10104.5 (19)
C8—C7—H7112.1 (17)C7—O1—H6109.5
C6—C1—C2—C30.6 (6)C1—C6—C7—O1158.6 (3)
C1—C2—C3—C41.5 (7)C5—C6—C7—C899.1 (4)
C2—C3—C4—C51.1 (8)C1—C6—C7—C879.3 (4)
C3—C4—C5—C60.2 (7)O1—C7—C8—N168.2 (3)
C4—C5—C6—C11.1 (6)C6—C7—C8—N1167.4 (3)
C4—C5—C6—C7179.5 (4)O1—C7—C8—C957.5 (4)
C2—C1—C6—C50.7 (6)C6—C7—C8—C966.9 (4)
C2—C1—C6—C7179.2 (3)C7—C8—N1—C10166.9 (3)
C5—C6—C7—O123.0 (5)C9—C8—N1—C1068.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H6···N1i0.821.962.778 (4)173
Symmetry code: (i) x+1/2, y+1/2, z+1.
(EPHEESYL) (1R, 2S)-(-)-ephedrine esylate top
Crystal data top
C12H21NO4SF(000) = 592
Mr = 275.36Dx = 1.237 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1430 reflections
a = 5.4877 (7) Åθ = 1.0–27.5°
b = 11.9057 (17) ŵ = 0.23 mm1
c = 22.639 (4) ÅT = 150 K
V = 1479.1 (4) Å3Needle, colourless
Z = 40.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1073 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590θmax = 28.2°, θmin = 3.2°
Graphite monochromatorh = 07
CCD rotation images, thick slices scansk = 015
1831 measured reflectionsl = 028
1831 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.102H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.264 w = 1/[σ2(Fo2) + (0.0573P)2 + 6.3635P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1831 reflectionsΔρmax = 0.33 e Å3
169 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (5)
Crystal data top
C12H21NO4SV = 1479.1 (4) Å3
Mr = 275.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4877 (7) ŵ = 0.23 mm1
b = 11.9057 (17) ÅT = 150 K
c = 22.639 (4) Å0.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1831 independent reflections
1831 measured reflections1073 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.1020 restraints
wR(F2) = 0.264H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
1831 reflectionsΔρmin = 0.31 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.674 (2)0.2150 (9)0.1265 (6)0.065 (3)
H1C0.79660.23170.15360.078*
C20.697 (2)0.1248 (9)0.0875 (7)0.073 (4)
H20.83070.07760.09140.087*
C30.538 (3)0.1034 (9)0.0456 (7)0.083 (4)
H30.56360.04490.01910.1*
C40.327 (3)0.1704 (12)0.0413 (7)0.083 (4)
H40.21020.15570.01270.1*
C50.297 (2)0.2580 (9)0.0802 (6)0.068 (3)
H50.16070.30390.07690.082*
C60.4635 (18)0.2787 (8)0.1235 (5)0.052 (2)
C70.4312 (17)0.3764 (7)0.1673 (5)0.053 (3)
H70.48780.3520.20630.064*
C80.5694 (19)0.4821 (8)0.1499 (5)0.053 (3)
H80.74460.46650.1520.063*
C90.511 (3)0.5260 (9)0.0894 (5)0.071 (3)
H9A0.34050.54280.0870.106*
H9B0.55240.47030.06040.106*
H9C0.60380.59310.08220.106*
C100.570 (2)0.5481 (10)0.2549 (6)0.071 (4)
H12A0.46570.48940.26930.106*
H12B0.54590.61460.27810.106*
H12C0.73680.52460.25780.106*
C110.120 (2)0.3574 (9)0.3706 (6)0.070 (4)
H130.08330.43590.36330.084*
H140.29520.34810.36720.084*
C120.047 (4)0.3296 (15)0.4311 (7)0.116 (6)
H15A0.05460.24980.43660.173*
H15B0.15430.36590.45850.173*
H15C0.11710.3550.43770.173*
N10.5102 (16)0.5721 (6)0.1926 (4)0.053 (2)
H100.59010.63480.18170.064*
H110.34960.58680.19010.064*
O10.1779 (12)0.4058 (5)0.1715 (4)0.060 (2)
H60.15770.46960.15870.091*
O20.2829 (12)0.2952 (6)0.3204 (5)0.072 (2)
O30.0346 (14)0.1593 (6)0.3292 (4)0.072 (2)
O40.0808 (14)0.3093 (8)0.2601 (4)0.076 (3)
S10.0218 (5)0.2757 (2)0.31611 (14)0.0563 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (6)0.048 (5)0.103 (10)0.001 (6)0.002 (6)0.002 (6)
C20.051 (7)0.046 (6)0.122 (12)0.013 (6)0.003 (8)0.004 (7)
C30.091 (10)0.045 (6)0.113 (12)0.005 (8)0.014 (10)0.016 (6)
C40.066 (8)0.085 (9)0.099 (11)0.023 (8)0.017 (8)0.018 (8)
C50.068 (7)0.063 (7)0.074 (9)0.001 (6)0.010 (7)0.020 (6)
C60.039 (5)0.043 (5)0.074 (7)0.002 (5)0.005 (5)0.003 (5)
C70.036 (5)0.039 (5)0.085 (9)0.005 (4)0.002 (5)0.003 (5)
C80.043 (5)0.045 (5)0.070 (7)0.007 (5)0.001 (5)0.003 (5)
C90.084 (9)0.053 (5)0.076 (8)0.032 (7)0.005 (8)0.012 (5)
C100.074 (9)0.075 (8)0.062 (8)0.019 (7)0.003 (7)0.012 (6)
C110.055 (7)0.050 (6)0.105 (12)0.012 (6)0.003 (7)0.005 (6)
C120.142 (15)0.141 (13)0.064 (10)0.011 (14)0.011 (11)0.021 (8)
N10.039 (4)0.041 (4)0.080 (6)0.003 (4)0.001 (5)0.003 (4)
O10.041 (4)0.039 (3)0.102 (7)0.007 (3)0.002 (4)0.006 (4)
O20.033 (4)0.062 (4)0.120 (7)0.013 (3)0.002 (4)0.006 (5)
O30.054 (4)0.043 (4)0.120 (7)0.005 (4)0.005 (5)0.007 (4)
O40.057 (5)0.105 (7)0.067 (6)0.001 (5)0.005 (4)0.004 (5)
S10.0447 (14)0.0501 (13)0.0742 (19)0.0012 (13)0.0006 (15)0.0003 (13)
Geometric parameters (Å, º) top
C1—C61.385 (14)C9—H9B0.96
C1—C21.395 (17)C9—H9C0.96
C1—H1C0.93C10—N11.476 (15)
C2—C31.315 (19)C10—H12A0.96
C2—H20.93C10—H12B0.96
C3—C41.406 (19)C10—H12C0.96
C3—H30.93C11—C121.465 (19)
C4—C51.374 (17)C11—S11.754 (12)
C4—H40.93C11—H130.97
C5—C61.362 (15)C11—H140.97
C5—H50.93C12—H15A0.96
C6—C71.540 (14)C12—H15B0.96
C7—O11.436 (11)C12—H15C0.96
C7—C81.521 (13)N1—H100.9
C7—H70.98N1—H110.9
C8—N11.480 (13)O1—H60.82
C8—C91.500 (16)O2—S11.455 (7)
C8—H80.98O3—S11.450 (7)
C9—H9A0.96O4—S11.443 (9)
C6—C1—C2117.6 (11)H9A—C9—H9C109.5
C6—C1—H1C121.2H9B—C9—H9C109.5
C2—C1—H1C121.2N1—C10—H12A109.5
C3—C2—C1123.2 (11)N1—C10—H12B109.5
C3—C2—H2118.4H12A—C10—H12B109.5
C1—C2—H2118.4N1—C10—H12C109.5
C2—C3—C4118.9 (11)H12A—C10—H12C109.5
C2—C3—H3120.5H12B—C10—H12C109.5
C4—C3—H3120.5C12—C11—S1114.2 (10)
C5—C4—C3119.1 (13)C12—C11—H13108.7
C5—C4—H4120.5S1—C11—H13108.7
C3—C4—H4120.5C12—C11—H14108.7
C6—C5—C4121.1 (12)S1—C11—H14108.7
C6—C5—H5119.4H13—C11—H14107.6
C4—C5—H5119.4C11—C12—H15A109.5
C5—C6—C1119.8 (10)C11—C12—H15B109.5
C5—C6—C7121.5 (9)H15A—C12—H15B109.5
C1—C6—C7118.5 (10)C11—C12—H15C109.5
O1—C7—C8107.4 (7)H15A—C12—H15C109.5
O1—C7—C6109.7 (9)H15B—C12—H15C109.5
C8—C7—C6113.6 (9)C10—N1—C8115.8 (8)
O1—C7—H7108.7C10—N1—H10108.3
C8—C7—H7108.7C8—N1—H10108.3
C6—C7—H7108.7C10—N1—H11108.3
N1—C8—C9107.3 (8)C8—N1—H11108.3
N1—C8—C7108.7 (8)H10—N1—H11107.4
C9—C8—C7114.8 (9)C7—O1—H6109.5
N1—C8—H8108.7O4—S1—O3111.2 (5)
C9—C8—H8108.7O4—S1—O2113.5 (6)
C7—C8—H8108.7O3—S1—O2110.5 (5)
C8—C9—H9A109.5O4—S1—C11106.9 (6)
C8—C9—H9B109.5O3—S1—C11106.9 (6)
H9A—C9—H9B109.5O2—S1—C11107.6 (6)
C8—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O2i0.92.032.904 (11)162
N1—H10···O3i0.92.473.099 (11)127
N1—H10···S1i0.92.713.537 (9)153
N1—H11···O3ii0.91.982.852 (11)162
O1—H6···O3ii0.822.373.119 (9)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
(EPHEGLYC) (1R, 2S)-(-)-ephedrine glycolate top
Crystal data top
C12H19NO4F(000) = 260
Mr = 241.28Dx = 1.302 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2930 reflections
a = 9.5946 (4) Åθ = 1.0–27.5°
b = 6.0474 (3) ŵ = 0.10 mm1
c = 10.8255 (5) ÅT = 150 K
β = 101.607 (2)°Needle, colourless
V = 615.28 (5) Å30.3 × 0.05 × 0.05 mm
Z = 2
Data collection top
KappaCCD
diffractometer
1513 independent reflections
Radiation source: Enraf Nonius FR5901200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD rotation images, thick slices scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1211
Tmin = 0.938, Tmax = 1.054k = 76
4479 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.0943P]
where P = (Fo2 + 2Fc2)/3
1513 reflections(Δ/σ)max = 0.008
211 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C12H19NO4V = 615.28 (5) Å3
Mr = 241.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5946 (4) ŵ = 0.10 mm1
b = 6.0474 (3) ÅT = 150 K
c = 10.8255 (5) Å0.3 × 0.05 × 0.05 mm
β = 101.607 (2)°
Data collection top
KappaCCD
diffractometer
1513 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1200 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 1.054Rint = 0.035
4479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
1513 reflectionsΔρmin = 0.25 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0109 (3)0.4855 (6)0.8559 (3)0.0238 (7)
H10.058 (3)0.345 (6)0.861 (3)0.029*
C20.1238 (3)0.5263 (6)0.9273 (3)0.0299 (8)
H20.174 (3)0.420 (7)0.981 (3)0.036*
C30.1865 (3)0.7304 (6)0.9218 (3)0.0305 (8)
H30.282 (3)0.757 (6)0.971 (3)0.037*
C40.1143 (3)0.8961 (6)0.8468 (3)0.0291 (8)
H40.163 (3)1.057 (7)0.851 (3)0.035*
C50.0213 (3)0.8552 (5)0.7754 (3)0.0231 (7)
H50.070 (3)0.973 (6)0.723 (3)0.028*
C60.0839 (3)0.6491 (5)0.7784 (2)0.0187 (6)
C70.2266 (3)0.5947 (5)0.6942 (3)0.0194 (6)
H70.282 (3)0.500 (6)0.747 (3)0.023*
C80.2027 (3)0.4557 (5)0.5816 (2)0.0188 (6)
H80.152 (3)0.323 (6)0.615 (3)0.023*
C90.1232 (3)0.5801 (6)0.4957 (3)0.0238 (7)
H9A0.037 (4)0.621 (6)0.538 (3)0.029*
H9B0.179 (3)0.703 (6)0.454 (3)0.029*
H9C0.108 (3)0.497 (6)0.423 (3)0.029*
C100.3347 (3)0.1944 (6)0.4189 (3)0.0244 (6)
H12A0.280 (3)0.254 (6)0.349 (3)0.029*
H12B0.434 (3)0.162 (6)0.368 (3)0.029*
H12C0.297 (3)0.065 (6)0.462 (3)0.029*
C120.4983 (3)0.1423 (5)0.7712 (2)0.0181 (6)
C130.5625 (3)0.2993 (5)0.8524 (3)0.0213 (7)
H130.507 (3)0.440 (7)0.857 (3)0.026*
H140.659 (3)0.335 (5)0.809 (3)0.026*
O10.3052 (2)0.7832 (4)0.64316 (19)0.0242 (5)
H60.339 (3)0.835 (6)0.693 (3)0.029*
O20.5598 (2)0.2123 (4)0.97389 (17)0.0252 (5)
H150.559 (3)0.323 (6)1.025 (3)0.03*
O30.51542 (19)0.1985 (4)0.65561 (16)0.0207 (5)
O40.4317 (2)0.0259 (4)0.81707 (17)0.0278 (5)
N10.3437 (2)0.3799 (4)0.5077 (2)0.0187 (5)
H100.393 (3)0.483 (6)0.462 (3)0.022*
H110.397 (3)0.333 (5)0.565 (3)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0266 (15)0.0239 (17)0.0217 (14)0.0045 (15)0.0067 (12)0.0011 (14)
C20.0262 (16)0.042 (2)0.0205 (15)0.0119 (17)0.0022 (12)0.0006 (15)
C30.0208 (14)0.045 (2)0.0246 (15)0.0012 (16)0.0026 (12)0.0083 (16)
C40.0261 (15)0.033 (2)0.0287 (16)0.0063 (15)0.0078 (13)0.0068 (15)
C50.0261 (14)0.0216 (17)0.0223 (15)0.0009 (14)0.0064 (12)0.0015 (14)
C60.0205 (12)0.0225 (17)0.0140 (12)0.0033 (12)0.0057 (11)0.0003 (12)
C70.0205 (13)0.0212 (16)0.0175 (13)0.0010 (13)0.0060 (11)0.0016 (13)
C80.0171 (12)0.0181 (16)0.0212 (14)0.0022 (13)0.0041 (11)0.0008 (13)
C90.0247 (15)0.0254 (18)0.0243 (16)0.0046 (15)0.0121 (12)0.0057 (14)
C100.0296 (15)0.0198 (17)0.0239 (14)0.0015 (15)0.0053 (13)0.0033 (14)
C120.0184 (12)0.0185 (17)0.0171 (14)0.0021 (12)0.0031 (11)0.0013 (12)
C130.0249 (14)0.0216 (17)0.0174 (13)0.0033 (14)0.0044 (11)0.0007 (13)
O10.0268 (10)0.0258 (13)0.0202 (10)0.0101 (10)0.0056 (8)0.0012 (10)
O20.0378 (11)0.0251 (12)0.0144 (9)0.0042 (11)0.0093 (8)0.0008 (9)
O30.0267 (9)0.0203 (11)0.0151 (9)0.0023 (10)0.0043 (8)0.0001 (9)
O40.0397 (11)0.0254 (12)0.0208 (10)0.0150 (11)0.0119 (9)0.0030 (10)
N10.0197 (11)0.0187 (14)0.0176 (12)0.0002 (12)0.0032 (9)0.0005 (11)
Geometric parameters (Å, º) top
C1—C21.388 (4)C9—H9A0.89 (3)
C1—C61.392 (4)C9—H9B0.97 (4)
C1—H10.97 (4)C9—H9C0.97 (4)
C2—C31.380 (5)C10—N11.491 (4)
C2—H20.93 (4)C10—H12A1.06 (4)
C3—C41.384 (5)C10—H12B1.02 (3)
C3—H30.98 (3)C10—H12C0.94 (4)
C4—C51.396 (4)C12—O41.249 (3)
C4—H41.08 (4)C12—O31.275 (3)
C5—C61.387 (4)C12—C131.508 (4)
C5—H50.97 (4)C13—O21.411 (3)
C6—C71.520 (4)C13—H131.00 (4)
C7—O11.416 (4)C13—H140.97 (3)
C7—C81.536 (4)O1—H60.75 (4)
C7—H71.03 (3)O2—H150.87 (4)
C8—N11.499 (3)N1—H100.88 (3)
C8—C91.516 (4)N1—H110.92 (3)
C8—H80.97 (3)
C2—C1—C6120.6 (3)C8—C9—H9A111 (2)
C2—C1—H1121.0 (19)C8—C9—H9B111.6 (19)
C6—C1—H1118.4 (19)H9A—C9—H9B113 (3)
C3—C2—C1120.0 (3)C8—C9—H9C115 (2)
C3—C2—H2118 (2)H9A—C9—H9C106 (3)
C1—C2—H2122 (2)H9B—C9—H9C100 (3)
C2—C3—C4120.1 (3)N1—C10—H12A107.8 (19)
C2—C3—H3120 (2)N1—C10—H12B109 (2)
C4—C3—H3120 (2)H12A—C10—H12B103 (2)
C3—C4—C5119.9 (3)N1—C10—H12C112 (2)
C3—C4—H4118.1 (18)H12A—C10—H12C116 (3)
C5—C4—H4121.9 (18)H12B—C10—H12C109 (3)
C6—C5—C4120.4 (3)O4—C12—O3124.2 (3)
C6—C5—H5120.8 (19)O4—C12—C13121.1 (2)
C4—C5—H5118.8 (19)O3—C12—C13114.7 (2)
C5—C6—C1119.0 (3)O2—C13—C12112.1 (3)
C5—C6—C7121.5 (3)O2—C13—H13111.1 (17)
C1—C6—C7119.4 (3)C12—C13—H13106.8 (18)
O1—C7—C6113.9 (3)O2—C13—H14111.5 (18)
O1—C7—C8106.5 (2)C12—C13—H14108.9 (19)
C6—C7—C8109.5 (2)H13—C13—H14106 (2)
O1—C7—H7111.6 (17)C7—O1—H6109 (3)
C6—C7—H7107.1 (15)C13—O2—H15108 (2)
C8—C7—H7108.2 (17)C10—N1—C8114.3 (2)
N1—C8—C9109.6 (2)C10—N1—H10106 (2)
N1—C8—C7109.1 (2)C8—N1—H10114 (2)
C9—C8—C7112.9 (3)C10—N1—H11108 (2)
N1—C8—H8106.0 (18)C8—N1—H11107.5 (17)
C9—C8—H8111.4 (18)H10—N1—H11106 (3)
C7—C8—H8107.4 (18)
C6—C1—C2—C30.1 (4)C5—C6—C7—C8101.8 (3)
C1—C2—C3—C41.1 (5)C1—C6—C7—C875.0 (3)
C2—C3—C4—C50.9 (5)O1—C7—C8—N163.2 (3)
C3—C4—C5—C60.5 (5)C6—C7—C8—N1173.2 (2)
C4—C5—C6—C11.5 (4)O1—C7—C8—C959.0 (3)
C4—C5—C6—C7175.3 (3)C6—C7—C8—C964.5 (3)
C2—C1—C6—C51.2 (4)O4—C12—C13—O210.5 (4)
C2—C1—C6—C7175.6 (3)O3—C12—C13—O2170.8 (2)
C5—C6—C7—O117.3 (4)C9—C8—N1—C1072.2 (3)
C1—C6—C7—O1166.0 (2)C7—C8—N1—C10163.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H15···O4i0.87 (4)1.95 (4)2.776 (3)158 (3)
O2—H15···O2i0.87 (4)2.62 (4)3.2430 (15)130 (3)
O1—H6···O4ii0.75 (4)1.94 (4)2.696 (3)177 (3)
N1—H10···O3iii0.88 (3)1.91 (4)2.776 (3)171 (3)
Symmetry codes: (i) x1, y+1/2, z+2; (ii) x, y+1, z; (iii) x1, y+1/2, z+1.
(EPHEHCL) (1R, 2S)-(-)-ephedrine hydrochloride top
Crystal data top
C10H14ClNOF(000) = 216
Mr = 201.69Dx = 1.229 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11628 reflections
a = 7.2557 (3) Åθ = 1.0–27.5°
b = 6.1228 (3) ŵ = 0.31 mm1
c = 12.5486 (6) ÅT = 150 K
β = 102.223 (2)°Needle, colourless
V = 544.84 (4) Å30.3 × 0.05 × 0.05 mm
Z = 2
Data collection top
KappaCCD
diffractometer
2458 independent reflections
Radiation source: Enraf Nonius FR5902006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 99
Tmin = 0.926, Tmax = 1.083k = 77
9528 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.7722P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2458 reflectionsΔρmax = 0.73 e Å3
148 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (13)
Crystal data top
C10H14ClNOV = 544.84 (4) Å3
Mr = 201.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2557 (3) ŵ = 0.31 mm1
b = 6.1228 (3) ÅT = 150 K
c = 12.5486 (6) Å0.3 × 0.05 × 0.05 mm
β = 102.223 (2)°
Data collection top
KappaCCD
diffractometer
2458 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2006 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 1.083Rint = 0.057
9528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156Δρmax = 0.73 e Å3
S = 1.19Δρmin = 0.37 e Å3
2458 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
148 parametersAbsolute structure parameter: 0.05 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8557 (6)0.0094 (9)0.0753 (4)0.0290 (10)
H10.906 (7)0.151 (10)0.103 (4)0.035*
C20.8046 (7)0.0174 (9)0.0373 (4)0.0338 (12)
H20.839 (7)0.108 (10)0.083 (4)0.041*
C30.7084 (6)0.2047 (9)0.0799 (4)0.0335 (13)
H30.685 (7)0.224 (9)0.154 (4)0.04*
C40.6663 (7)0.3648 (9)0.0110 (4)0.0361 (12)
H40.596 (7)0.505 (10)0.039 (4)0.043*
C50.7153 (6)0.3370 (8)0.1014 (4)0.0297 (10)
H50.685 (7)0.449 (9)0.147 (4)0.036*
C60.8108 (5)0.1492 (11)0.1455 (3)0.0247 (8)
C70.8635 (6)0.1080 (7)0.2672 (3)0.0232 (10)
H70.98660.03540.28390.028*
C80.7203 (6)0.0402 (8)0.3033 (3)0.0214 (9)
H80.690 (6)0.169 (9)0.259 (4)0.026*
C90.5321 (6)0.0728 (7)0.3037 (4)0.0259 (10)
H10A0.44130.0340.31510.039*
H10B0.48760.14410.23490.039*
H10C0.54940.1790.36120.039*
C100.6985 (6)0.3065 (8)0.4550 (4)0.0319 (12)
H12A0.57580.25480.46020.048*
H12B0.76530.3550.52530.048*
H12C0.68550.42580.40430.048*
N10.8064 (5)0.1248 (7)0.4160 (3)0.0248 (8)
H100.927 (7)0.196 (8)0.411 (4)0.03*
H110.804 (7)0.019 (9)0.460 (4)0.03*
O10.8740 (5)0.2991 (6)0.3322 (3)0.0315 (8)
H60.956 (8)0.404 (10)0.325 (4)0.038*
Cl11.17971 (13)0.34367 (18)0.37349 (7)0.0267 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.030 (3)0.031 (2)0.002 (2)0.0095 (19)0.002 (2)
C20.035 (3)0.039 (3)0.033 (3)0.010 (2)0.019 (2)0.011 (2)
C30.029 (2)0.049 (4)0.024 (2)0.009 (2)0.0076 (17)0.005 (2)
C40.029 (2)0.038 (3)0.041 (3)0.006 (2)0.009 (2)0.012 (2)
C50.029 (2)0.031 (3)0.031 (2)0.002 (2)0.0106 (19)0.002 (2)
C60.0205 (16)0.028 (2)0.027 (2)0.001 (2)0.0080 (14)0.002 (3)
C70.0222 (19)0.021 (3)0.026 (2)0.0009 (16)0.0039 (15)0.0019 (17)
C80.018 (2)0.025 (2)0.020 (2)0.0008 (17)0.0034 (15)0.0046 (18)
C90.020 (2)0.028 (2)0.029 (2)0.0002 (17)0.0040 (17)0.0039 (18)
C100.034 (2)0.032 (3)0.032 (2)0.011 (2)0.0095 (17)0.001 (2)
N10.0247 (18)0.025 (2)0.0259 (19)0.0050 (16)0.0072 (15)0.0020 (16)
O10.0358 (17)0.0290 (19)0.0312 (17)0.0162 (15)0.0108 (14)0.0091 (15)
Cl10.0221 (4)0.0298 (5)0.0289 (5)0.0045 (5)0.0068 (3)0.0017 (6)
Geometric parameters (Å, º) top
C1—C21.392 (7)C7—H70.98
C1—C61.395 (7)C8—N11.512 (5)
C1—H10.97 (6)C8—C91.532 (6)
C2—C31.389 (8)C8—H80.96 (5)
C2—H21.02 (6)C9—H10A0.96
C3—C41.383 (7)C9—H10B0.96
C3—H30.92 (5)C9—H10C0.96
C4—C51.391 (7)C10—N11.500 (6)
C4—H41.02 (6)C10—H12A0.96
C5—C61.395 (8)C10—H12B0.96
C5—H50.95 (6)C10—H12C0.96
C6—C71.515 (5)N1—H100.99 (5)
C7—O11.419 (5)N1—H110.85 (5)
C7—C81.519 (6)O1—H60.89 (6)
C2—C1—C6120.7 (5)N1—C8—C9110.1 (3)
C2—C1—H1118 (3)C7—C8—C9113.4 (4)
C6—C1—H1121 (3)N1—C8—H8105 (3)
C3—C2—C1119.5 (5)C7—C8—H8114 (3)
C3—C2—H2125 (3)C9—C8—H8106 (3)
C1—C2—H2116 (3)C8—C9—H10A109.5
C4—C3—C2120.2 (4)C8—C9—H10B109.5
C4—C3—H3121 (3)H10A—C9—H10B109.5
C2—C3—H3118 (3)C8—C9—H10C109.5
C3—C4—C5120.3 (5)H10A—C9—H10C109.5
C3—C4—H4123 (3)H10B—C9—H10C109.5
C5—C4—H4117 (3)N1—C10—H12A109.5
C4—C5—C6120.1 (5)N1—C10—H12B109.5
C4—C5—H5119 (3)H12A—C10—H12B109.5
C6—C5—H5121 (3)N1—C10—H12C109.5
C1—C6—C5119.1 (4)H12A—C10—H12C109.5
C1—C6—C7118.6 (5)H12B—C10—H12C109.5
C5—C6—C7122.3 (4)C10—N1—C8114.7 (3)
O1—C7—C6114.4 (4)C10—N1—H10103 (3)
O1—C7—C8106.1 (3)C8—N1—H10107 (3)
C6—C7—C8111.0 (4)C10—N1—H11106 (3)
O1—C7—H7108.4C8—N1—H11106 (3)
C6—C7—H7108.4H10—N1—H11121 (4)
C8—C7—H7108.4C7—O1—H6119 (3)
N1—C8—C7108.1 (3)
C6—C1—C2—C30.2 (7)C5—C6—C7—O122.3 (6)
C1—C2—C3—C41.0 (7)C1—C6—C7—C880.7 (5)
C2—C3—C4—C51.8 (7)C5—C6—C7—C897.7 (5)
C3—C4—C5—C61.3 (7)O1—C7—C8—N170.6 (4)
C2—C1—C6—C50.7 (7)C6—C7—C8—N1164.5 (4)
C2—C1—C6—C7177.8 (4)O1—C7—C8—C951.8 (4)
C4—C5—C6—C10.1 (7)C6—C7—C8—C973.1 (5)
C4—C5—C6—C7178.5 (4)C7—C8—N1—C10168.8 (4)
C1—C6—C7—O1159.2 (4)C9—C8—N1—C1066.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl1i0.85 (5)2.33 (5)3.136 (4)157 (5)
O1—H6···Cl1ii0.89 (6)2.23 (6)3.080 (3)159 (4)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x, y+1, z.
(EPHEHEMI) (1R, 2S)-(-)-ephedrine hemihydrate top
Crystal data top
C10H15NOF(000) = 760
Mr = 174.24Dx = 1.157 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 8739 reflections
a = 7.3639 (4) Åθ = 1.0–25.0°
b = 11.2551 (6) ŵ = 0.08 mm1
c = 24.1442 (16) ÅT = 150 K
V = 2001.1 (2) Å3Plate, colourless
Z = 80.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1007 independent reflections
Radiation source: Enraf Nonius FR590801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
CCD rotation images, thick slices scansθmax = 25°, θmin = 3.7°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 88
Tmin = 0.976, Tmax = 1.02k = 1313
5306 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.566P]
where P = (Fo2 + 2Fc2)/3
1007 reflections(Δ/σ)max = 0.001
151 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H15NOV = 2001.1 (2) Å3
Mr = 174.24Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 7.3639 (4) ŵ = 0.08 mm1
b = 11.2551 (6) ÅT = 150 K
c = 24.1442 (16) Å0.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1007 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
801 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 1.02Rint = 0.048
5306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.14 e Å3
1007 reflectionsΔρmin = 0.16 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3249 (6)0.3337 (4)0.60488 (13)0.0592 (11)
H10.302 (6)0.395 (4)0.6318 (17)0.071*
C20.4242 (7)0.3626 (6)0.55793 (17)0.0883 (18)
H20.458 (8)0.438 (5)0.553 (2)0.106*
C30.4752 (6)0.2761 (7)0.52123 (17)0.0889 (18)
H30.5410.29550.48960.107*
C40.4286 (7)0.1618 (7)0.53154 (16)0.0859 (19)
H40.470 (7)0.103 (4)0.510 (2)0.103*
C50.3290 (6)0.1322 (4)0.57806 (13)0.0564 (10)
H50.296 (6)0.054 (3)0.5870 (16)0.068*
C60.2740 (4)0.2179 (3)0.61511 (12)0.0368 (7)
C70.1604 (4)0.1856 (3)0.66467 (11)0.0287 (7)
H70.188 (4)0.100 (3)0.6764 (11)0.034*
C80.0439 (4)0.1851 (2)0.65060 (11)0.0294 (7)
H80.057 (4)0.134 (3)0.6167 (13)0.035*
C90.1189 (5)0.3083 (3)0.63911 (16)0.0429 (8)
H9A0.252 (5)0.303 (3)0.6291 (13)0.051*
H9B0.109 (5)0.355 (3)0.6726 (15)0.051*
H9C0.051 (5)0.346 (3)0.6083 (15)0.051*
C100.3349 (4)0.1031 (3)0.68479 (12)0.0453 (9)
H11A0.40580.17410.6890.068*
H11B0.37840.04350.70990.068*
H11C0.34560.07470.64740.068*
N10.1429 (3)0.1293 (2)0.69701 (9)0.0308 (6)
H100.088 (4)0.064 (3)0.7083 (13)0.029 (8)*
O10.1982 (3)0.26304 (17)0.70953 (7)0.0341 (5)
H60.17080.23040.73870.051*
O20.50.3973 (3)0.750.0435 (8)
H130.417 (4)0.349 (3)0.7382 (14)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (3)0.076 (3)0.0313 (17)0.039 (2)0.0065 (18)0.0029 (16)
C20.088 (3)0.144 (4)0.033 (2)0.079 (3)0.004 (2)0.003 (3)
C30.037 (2)0.196 (6)0.033 (2)0.013 (3)0.0028 (18)0.017 (3)
C40.071 (3)0.152 (5)0.035 (2)0.064 (4)0.012 (2)0.002 (3)
C50.060 (2)0.077 (2)0.0315 (17)0.035 (2)0.0021 (17)0.0019 (17)
C60.0259 (15)0.058 (2)0.0264 (14)0.0019 (14)0.0065 (13)0.0008 (14)
C70.0291 (15)0.0304 (15)0.0266 (14)0.0008 (14)0.0030 (12)0.0038 (12)
C80.0284 (15)0.0363 (16)0.0236 (15)0.0026 (14)0.0026 (12)0.0000 (13)
C90.0379 (18)0.0461 (19)0.0447 (19)0.0109 (15)0.0008 (16)0.0122 (16)
C100.0358 (18)0.063 (2)0.0371 (17)0.0129 (17)0.0036 (16)0.0052 (15)
N10.0270 (13)0.0344 (13)0.0309 (12)0.0022 (12)0.0049 (11)0.0028 (11)
O10.0349 (11)0.0428 (11)0.0247 (10)0.0095 (9)0.0020 (9)0.0002 (8)
O20.0360 (19)0.0310 (16)0.063 (2)00.0119 (16)0
Geometric parameters (Å, º) top
C1—C61.379 (5)C7—H71.03 (3)
C1—C21.387 (5)C8—N11.477 (4)
C1—H10.96 (4)C8—C91.518 (4)
C2—C31.369 (8)C8—H81.01 (3)
C2—H20.89 (5)C9—H9A1.01 (4)
C3—C41.354 (7)C9—H9B0.97 (4)
C3—H30.93C9—H9C0.99 (3)
C4—C51.382 (6)C10—N11.474 (4)
C4—H40.90 (5)C10—H11A0.96
C5—C61.376 (5)C10—H11B0.96
C5—H50.93 (4)C10—H11C0.96
C6—C71.505 (4)N1—H100.88 (3)
C7—O11.418 (3)O1—H60.82
C7—C81.543 (4)O2—H130.86 (3)
C6—C1—C2120.7 (4)C8—C7—H7104.6 (19)
C6—C1—H1121 (2)N1—C8—C9110.3 (3)
C2—C1—H1118 (3)N1—C8—C7108.4 (2)
C3—C2—C1120.4 (5)C9—C8—C7113.0 (3)
C3—C2—H2121 (4)N1—C8—H8108.8 (17)
C1—C2—H2119 (4)C9—C8—H8110.0 (17)
C4—C3—C2119.1 (4)C7—C8—H8106.1 (17)
C4—C3—H3120.4C8—C9—H9A110 (2)
C2—C3—H3120.4C8—C9—H9B108 (2)
C3—C4—C5120.9 (5)H9A—C9—H9B108 (3)
C3—C4—H4121 (3)C8—C9—H9C110 (2)
C5—C4—H4118 (3)H9A—C9—H9C110 (3)
C6—C5—C4121.0 (4)H9B—C9—H9C111 (3)
C6—C5—H5115 (3)N1—C10—H11A109.5
C4—C5—H5124 (3)N1—C10—H11B109.5
C5—C6—C1117.8 (3)H11A—C10—H11B109.5
C5—C6—C7120.7 (3)N1—C10—H11C109.5
C1—C6—C7121.5 (3)H11A—C10—H11C109.5
O1—C7—C6110.5 (2)H11B—C10—H11C109.5
O1—C7—C8111.2 (2)C10—N1—C8114.0 (2)
C6—C7—C8111.6 (2)C10—N1—H10109.7 (18)
O1—C7—H7109.2 (16)C8—N1—H10111.2 (19)
C6—C7—H7109.6 (17)C7—O1—H6109.5
C6—C1—C2—C30.8 (7)C1—C6—C7—O131.6 (4)
C1—C2—C3—C40.4 (7)C5—C6—C7—C886.6 (3)
C2—C3—C4—C50.8 (7)C1—C6—C7—C892.7 (4)
C3—C4—C5—C60.1 (6)O1—C7—C8—N167.7 (3)
C4—C5—C6—C11.3 (5)C6—C7—C8—N1168.5 (2)
C4—C5—C6—C7178.0 (3)O1—C7—C8—C955.0 (3)
C2—C1—C6—C51.7 (6)C6—C7—C8—C968.9 (3)
C2—C1—C6—C7177.7 (4)C9—C8—N1—C1066.3 (3)
C5—C6—C7—O1149.1 (3)C7—C8—N1—C10169.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O2i0.88 (3)2.23 (3)3.092 (4)167 (3)
O1—H6···N1ii0.821.932.743 (3)168
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+3/2.
(EPHEMALA) (1R, 2S)-(-)-ephedrine L-(-)-malate top
Crystal data top
C14H21NO6F(000) = 320
Mr = 299.32Dx = 1.31 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 17480 reflections
a = 6.1312 (6) Åθ = 2.0–25.0°
b = 9.1719 (10) ŵ = 0.10 mm1
c = 13.7393 (17) ÅT = 293 K
β = 100.909 (4)°Plate, colourless
V = 758.66 (15) Å30.25 × 0.25 × 0.1 mm
Z = 2
Data collection top
KappaCCD
diffractometer
1713 independent reflections
Radiation source: Enraf Nonius FR5901232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD rotation images, thick slices scansh = 77
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
k = 1011
Tmin = 0.912, Tmax = 1.134l = 1517
6933 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.0445P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1713 reflectionsΔρmax = 0.26 e Å3
213 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10 (10)
Crystal data top
C14H21NO6V = 758.66 (15) Å3
Mr = 299.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1312 (6) ŵ = 0.10 mm1
b = 9.1719 (10) ÅT = 293 K
c = 13.7393 (17) Å0.25 × 0.25 × 0.1 mm
β = 100.909 (4)°
Data collection top
KappaCCD
diffractometer
1713 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1232 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 1.134Rint = 0.109
6933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185Δρmax = 0.26 e Å3
S = 1.13Δρmin = 0.30 e Å3
1713 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
213 parametersAbsolute structure parameter: 10 (10)
1 restraint
Special details top

Experimental. Structures of 17 salts of ephedrine: Crystal packing and hydrogen bonding analysis

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0631 (11)0.2120 (7)0.3731 (5)0.0442 (15)
H10.03930.15520.33090.053*
C20.1200 (12)0.1756 (8)0.4714 (6)0.0544 (18)
H20.05420.09550.49570.065*
C30.2732 (13)0.2567 (9)0.5337 (5)0.0526 (18)
H30.314 (12)0.241 (10)0.587 (6)0.063*
C40.3665 (11)0.3788 (9)0.4986 (5)0.0475 (16)
H40.472 (12)0.445 (9)0.542 (6)0.057*
C50.3078 (9)0.4149 (8)0.3997 (5)0.0396 (14)
H50.384 (10)0.512 (8)0.388 (5)0.047*
C60.1559 (9)0.3319 (6)0.3361 (5)0.0337 (13)
C70.0991 (8)0.3755 (6)0.2272 (4)0.0294 (12)
H70.247 (9)0.401 (7)0.199 (4)0.035*
C80.0623 (8)0.5035 (6)0.2096 (4)0.0272 (11)
H80.001 (9)0.585 (8)0.240 (4)0.033*
C90.2807 (9)0.4759 (7)0.2413 (5)0.0373 (13)
H9A0.37860.55680.22190.056*
H9B0.25620.46460.3120.056*
H9C0.34650.38860.21010.056*
C100.0904 (9)0.5631 (7)0.0559 (5)0.0384 (14)
H12A0.20260.61650.09990.058*
H12B0.04870.61590.00510.058*
H12C0.14760.46920.04260.058*
C110.2994 (8)0.1015 (6)0.2301 (4)0.0280 (12)
C120.4963 (8)0.0001 (6)0.2406 (4)0.0297 (12)
H130.62370.04590.28170.036*
H140.46340.08860.27370.036*
C130.5549 (8)0.0401 (6)0.1398 (4)0.0270 (11)
H150.700 (10)0.087 (7)0.145 (4)0.032*
C140.5836 (8)0.1006 (6)0.0837 (4)0.0276 (11)
N10.1073 (7)0.5439 (5)0.1027 (3)0.0289 (10)
H100.19420.47440.06910.035*
H110.18530.62760.09580.035*
O10.0033 (6)0.2631 (4)0.1639 (3)0.0348 (9)
H60.09050.2030.15570.052*
O20.3888 (6)0.1340 (4)0.0873 (3)0.0328 (9)
H160.44690.19460.05640.049*
O30.1126 (6)0.0354 (4)0.1911 (3)0.0404 (11)
H170.01270.09580.17810.061*
O40.3119 (6)0.2288 (5)0.2511 (4)0.0445 (11)
O50.4475 (6)0.1366 (4)0.0085 (3)0.0332 (9)
O60.7526 (6)0.1770 (4)0.1212 (3)0.0333 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (3)0.029 (3)0.045 (4)0.003 (3)0.000 (3)0.001 (3)
C20.071 (4)0.041 (4)0.047 (4)0.008 (4)0.000 (3)0.010 (3)
C30.071 (4)0.056 (4)0.028 (3)0.000 (4)0.001 (3)0.011 (3)
C40.047 (3)0.055 (4)0.036 (4)0.008 (3)0.003 (3)0.004 (3)
C50.038 (3)0.044 (4)0.035 (3)0.003 (3)0.003 (2)0.004 (3)
C60.033 (3)0.030 (3)0.037 (3)0.003 (2)0.004 (2)0.001 (3)
C70.023 (2)0.027 (3)0.036 (3)0.001 (2)0.002 (2)0.002 (2)
C80.031 (3)0.020 (2)0.031 (3)0.000 (2)0.006 (2)0.001 (2)
C90.035 (3)0.037 (3)0.040 (3)0.004 (3)0.008 (2)0.006 (3)
C100.030 (3)0.048 (4)0.039 (3)0.001 (3)0.012 (2)0.003 (3)
C110.027 (2)0.023 (3)0.034 (3)0.000 (2)0.005 (2)0.001 (2)
C120.030 (2)0.025 (3)0.032 (3)0.001 (2)0.001 (2)0.002 (2)
C130.025 (2)0.021 (2)0.033 (3)0.003 (2)0.001 (2)0.005 (2)
C140.024 (2)0.026 (3)0.032 (3)0.002 (2)0.005 (2)0.003 (2)
N10.030 (2)0.026 (2)0.028 (3)0.0022 (19)0.0007 (18)0.001 (2)
O10.0373 (19)0.0210 (18)0.044 (2)0.0033 (17)0.0014 (17)0.0067 (18)
O20.0306 (19)0.0215 (18)0.046 (3)0.0024 (15)0.0056 (17)0.0051 (17)
O30.0287 (19)0.025 (2)0.065 (3)0.0012 (16)0.0031 (19)0.006 (2)
O40.036 (2)0.028 (2)0.065 (3)0.0015 (17)0.0009 (19)0.009 (2)
O50.0320 (18)0.0259 (19)0.040 (2)0.0027 (16)0.0014 (16)0.0013 (17)
O60.0307 (18)0.0249 (18)0.042 (3)0.0025 (16)0.0022 (16)0.0010 (17)
Geometric parameters (Å, º) top
C1—C21.371 (9)C10—N11.487 (7)
C1—C61.378 (9)C10—H12A0.96
C1—H10.93C10—H12B0.96
C2—C31.365 (11)C10—H12C0.96
C2—H20.93C11—O41.201 (7)
C3—C41.385 (11)C11—O31.317 (6)
C3—H30.74 (8)C11—C121.511 (7)
C4—C51.379 (9)C12—C131.540 (8)
C4—H41.00 (8)C12—H130.97
C5—C61.379 (8)C12—H140.97
C5—H51.03 (7)C13—O21.422 (6)
C6—C71.525 (8)C13—C141.530 (7)
C7—O11.416 (6)C13—H150.98 (6)
C7—C81.525 (7)C14—O51.243 (7)
C7—H71.08 (6)C14—O61.277 (6)
C8—N11.488 (7)N1—H100.9
C8—C91.506 (7)N1—H110.9
C8—H80.91 (7)O1—H60.82
C9—H9A0.96O2—H160.82
C9—H9B0.96O3—H170.82
C9—H9C0.96
C2—C1—C6120.8 (6)H9B—C9—H9C109.5
C2—C1—H1119.6N1—C10—H12A109.5
C6—C1—H1119.6N1—C10—H12B109.5
C3—C2—C1120.1 (6)H12A—C10—H12B109.5
C3—C2—H2119.9N1—C10—H12C109.5
C1—C2—H2119.9H12A—C10—H12C109.5
C2—C3—C4120.2 (7)H12B—C10—H12C109.5
C2—C3—H3125 (7)O4—C11—O3123.8 (5)
C4—C3—H3115 (7)O4—C11—C12124.3 (5)
C5—C4—C3119.3 (7)O3—C11—C12111.9 (4)
C5—C4—H4118 (4)C11—C12—C13112.3 (4)
C3—C4—H4123 (4)C11—C12—H13109.1
C6—C5—C4120.7 (6)C13—C12—H13109.1
C6—C5—H5131 (4)C11—C12—H14109.1
C4—C5—H5109 (4)C13—C12—H14109.1
C1—C6—C5118.9 (6)H13—C12—H14107.9
C1—C6—C7122.5 (5)O2—C13—C14113.2 (4)
C5—C6—C7118.6 (5)O2—C13—C12109.5 (4)
O1—C7—C6113.9 (5)C14—C13—C12108.7 (4)
O1—C7—C8105.3 (4)O2—C13—H15109 (4)
C6—C7—C8112.2 (5)C14—C13—H15103 (4)
O1—C7—H7104 (3)C12—C13—H15114 (3)
C6—C7—H7111 (3)O5—C14—O6123.8 (5)
C8—C7—H7110 (3)O5—C14—C13121.3 (4)
N1—C8—C9108.5 (4)O6—C14—C13114.9 (4)
N1—C8—C7110.0 (4)C10—N1—C8116.2 (4)
C9—C8—C7114.2 (5)C10—N1—H10108.2
N1—C8—H8104 (4)C8—N1—H10108.2
C9—C8—H8109 (4)C10—N1—H11108.2
C7—C8—H8111 (4)C8—N1—H11108.2
C8—C9—H9A109.5H10—N1—H11107.4
C8—C9—H9B109.5C7—O1—H6109.5
H9A—C9—H9B109.5C13—O2—H16109.5
C8—C9—H9C109.5C11—O3—H17109.5
H9A—C9—H9C109.5
C6—C1—C2—C31.2 (11)C6—C7—C8—N1178.6 (4)
C1—C2—C3—C42.0 (12)O1—C7—C8—C965.2 (6)
C2—C3—C4—C51.8 (12)C6—C7—C8—C959.2 (6)
C3—C4—C5—C60.8 (10)O4—C11—C12—C13106.6 (6)
C2—C1—C6—C50.2 (9)O3—C11—C12—C1370.7 (6)
C2—C1—C6—C7179.4 (6)C11—C12—C13—O271.0 (5)
C4—C5—C6—C10.0 (9)C11—C12—C13—C1453.2 (5)
C4—C5—C6—C7179.2 (6)O2—C13—C14—O511.5 (7)
C1—C6—C7—O117.0 (7)C12—C13—C14—O5110.5 (6)
C5—C6—C7—O1162.2 (5)O2—C13—C14—O6169.9 (4)
C1—C6—C7—C8102.5 (6)C12—C13—C14—O668.2 (6)
C5—C6—C7—C878.3 (6)C9—C8—N1—C10175.0 (5)
O1—C7—C8—N157.1 (5)C7—C8—N1—C1049.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O5i0.91.992.867 (6)165
N1—H11···O6ii0.91.882.727 (6)156
O2—H16···O5iii0.821.962.769 (5)170
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y+1, z; (iii) x+1, y+1/2, z.
(EPHEMALE) (1R, 2S)-(-)-ephedrine maleate monohydrate top
Crystal data top
C12H12NO4F(000) = 640
Mr = 299.32Dx = 1.273 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12306 reflections
a = 5.6370 (2) Åθ = 4.1–27.5°
b = 13.4950 (5) ŵ = 0.1 mm1
c = 20.5250 (5) ÅT = 150 K
V = 1561.36 (9) Å3Needle, colourless
Z = 40.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1712 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590θmax = 27.5°, θmin = 4.1°
Graphite monochromatorh = 67
CCD rotation images, thick slices scansk = 1717
11592 measured reflectionsl = 2125
1996 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2281P]
where P = (Fo2 + 2Fc2)/3
1996 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H12NO4V = 1561.36 (9) Å3
Mr = 299.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6370 (2) ŵ = 0.1 mm1
b = 13.4950 (5) ÅT = 150 K
c = 20.5250 (5) Å0.25 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1996 independent reflections
11592 measured reflections1712 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
1996 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7193 (4)0.02778 (16)0.10470 (10)0.0293 (5)
H10.85150.00610.08380.035*
C20.7626 (4)0.07003 (18)0.16530 (10)0.0352 (5)
H20.93510.05540.18260.042*
C30.5922 (5)0.12873 (17)0.19428 (11)0.0379 (5)
H30.61470.15840.23810.045*
C40.3802 (5)0.14626 (17)0.16295 (11)0.0380 (5)
H40.24720.1860.17930.046*
C50.3363 (4)0.10395 (17)0.10224 (10)0.0318 (5)
H50.18320.10990.08570.038*
C60.5055 (4)0.04414 (15)0.07267 (9)0.0251 (4)
C70.4589 (4)0.00311 (15)0.00663 (9)0.0240 (4)
H70.52380.07420.01020.029*
C80.5904 (4)0.05299 (15)0.04737 (9)0.0270 (4)
H80.76830.04850.03950.032*
C90.5209 (6)0.16161 (17)0.05193 (11)0.0442 (6)
H9A0.60320.19190.08770.066*
H9B0.56270.19470.01220.066*
H9C0.35290.16680.05880.066*
C100.5986 (5)0.09858 (16)0.12049 (11)0.0361 (5)
H12A0.76340.1070.110.054*
H12B0.57160.11810.16490.054*
H12C0.50410.1390.0920.054*
C110.4881 (4)0.41800 (16)0.20953 (10)0.0282 (4)
C120.6532 (4)0.39022 (17)0.26328 (10)0.0287 (5)
H130.81240.40330.25440.034*
C130.6134 (4)0.34417 (16)0.31996 (10)0.0280 (4)
H140.75280.33380.34450.034*
C140.3868 (4)0.30580 (15)0.34815 (9)0.0254 (4)
O10.2161 (3)0.00389 (13)0.01055 (7)0.0314 (3)
O20.5673 (3)0.46479 (14)0.16280 (8)0.0422 (4)
O30.2668 (3)0.39346 (12)0.21329 (7)0.0296 (3)
O40.1941 (3)0.30615 (12)0.31439 (7)0.0320 (4)
H150.22280.33390.27160.038*
O50.3894 (3)0.27414 (13)0.40451 (7)0.0358 (4)
O60.0138 (3)0.31905 (12)0.47903 (8)0.0377 (4)
H160.11630.29810.45410.045*
N10.5318 (3)0.00672 (13)0.11208 (8)0.0262 (4)
H60.152 (6)0.061 (3)0.0027 (13)0.064 (10)*
H100.607 (5)0.0451 (19)0.1476 (11)0.031 (6)*
H110.372 (5)0.019 (2)0.1212 (11)0.035 (6)*
H170.012 (6)0.287 (2)0.5127 (14)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (10)0.0323 (11)0.0273 (10)0.0002 (9)0.0005 (8)0.0000 (8)
C20.0351 (12)0.0408 (12)0.0298 (11)0.0035 (11)0.0045 (9)0.0014 (9)
C30.0521 (15)0.0331 (12)0.0285 (11)0.0029 (11)0.0022 (11)0.0047 (9)
C40.0480 (14)0.0302 (12)0.0358 (12)0.0057 (11)0.0059 (11)0.0038 (9)
C50.0343 (12)0.0297 (11)0.0312 (11)0.0031 (9)0.0002 (9)0.0001 (8)
C60.0290 (10)0.0240 (9)0.0223 (10)0.0016 (9)0.0023 (8)0.0034 (7)
C70.0257 (10)0.0254 (9)0.0209 (9)0.0014 (9)0.0009 (7)0.0028 (7)
C80.0300 (11)0.0299 (11)0.0211 (10)0.0067 (9)0.0002 (8)0.0009 (7)
C90.0728 (19)0.0275 (11)0.0322 (12)0.0091 (12)0.0089 (12)0.0034 (8)
C100.0485 (13)0.0301 (11)0.0296 (11)0.0019 (11)0.0042 (10)0.0013 (8)
C110.0256 (10)0.0344 (11)0.0246 (10)0.0041 (9)0.0035 (8)0.0018 (8)
C120.0203 (10)0.0377 (12)0.0281 (11)0.0006 (9)0.0014 (8)0.0035 (8)
C130.0229 (10)0.0345 (11)0.0268 (10)0.0024 (9)0.0031 (8)0.0008 (8)
C140.0254 (10)0.0269 (10)0.0239 (10)0.0034 (9)0.0004 (8)0.0015 (7)
O10.0270 (8)0.0395 (8)0.0278 (8)0.0060 (8)0.0012 (6)0.0043 (6)
O20.0333 (9)0.0601 (11)0.0331 (9)0.0018 (8)0.0071 (7)0.0172 (8)
O30.0247 (8)0.0405 (8)0.0237 (7)0.0008 (7)0.0030 (6)0.0052 (6)
O40.0258 (8)0.0435 (9)0.0269 (7)0.0053 (7)0.0021 (6)0.0109 (6)
O50.0355 (8)0.0468 (9)0.0252 (8)0.0033 (8)0.0003 (7)0.0124 (6)
O60.0395 (9)0.0417 (9)0.0320 (9)0.0101 (8)0.0094 (7)0.0110 (7)
N10.0250 (9)0.0321 (9)0.0216 (9)0.0023 (8)0.0001 (7)0.0028 (7)
Geometric parameters (Å, º) top
C1—C21.390 (3)C10—N11.480 (3)
C1—C61.391 (3)C10—H12A0.96
C1—H10.9741C10—H12B0.96
C2—C31.380 (4)C10—H12C0.96
C2—H21.0536C11—O21.232 (3)
C3—C41.378 (4)C11—O31.293 (3)
C3—H30.9928C11—C121.491 (3)
C4—C51.393 (3)C12—C131.338 (3)
C4—H40.9809C12—H130.9323
C5—C61.389 (3)C13—C141.494 (3)
C5—H50.9305C13—H140.9439
C6—C71.521 (3)C14—O51.233 (2)
C7—O11.413 (3)C14—O41.289 (3)
C7—C81.533 (3)O1—H60.89 (4)
C7—H71.0297O3—H151.4617
C8—N11.504 (3)O4—H150.9696
C8—C91.520 (3)O6—H160.9374
C8—H81.0172O6—H170.83 (3)
C9—H9A0.96N1—H100.99 (2)
C9—H9B0.96N1—H110.94 (3)
C9—H9C0.96
C2—C1—C6120.7 (2)H9A—C9—H9B109.5
C2—C1—H1117C8—C9—H9C109.5
C6—C1—H1121.9H9A—C9—H9C109.5
C3—C2—C1119.9 (2)H9B—C9—H9C109.5
C3—C2—H2127.2N1—C10—H12A109.5
C1—C2—H2112.7N1—C10—H12B109.5
C4—C3—C2120.1 (2)H12A—C10—H12B109.5
C4—C3—H3117.7N1—C10—H12C109.5
C2—C3—H3122.2H12A—C10—H12C109.5
C3—C4—C5120.1 (2)H12B—C10—H12C109.5
C3—C4—H4126.7O2—C11—O3121.8 (2)
C5—C4—H4113.2O2—C11—C12118.6 (2)
C6—C5—C4120.5 (2)O3—C11—C12119.57 (18)
C6—C5—H5121.9C13—C12—C11130.9 (2)
C4—C5—H5117.1C13—C12—H13114.8
C5—C6—C1118.74 (19)C11—C12—H13114.1
C5—C6—C7120.94 (19)C12—C13—C14129.9 (2)
C1—C6—C7120.32 (18)C12—C13—H14113.1
O1—C7—C6113.13 (17)C14—C13—H14117
O1—C7—C8106.96 (16)O5—C14—O4121.0 (2)
C6—C7—C8110.71 (16)O5—C14—C13118.24 (19)
O1—C7—H7110.8O4—C14—C13120.73 (16)
C6—C7—H7105.4C7—O1—H6109 (2)
C8—C7—H7109.8C11—O3—H15110.7
N1—C8—C9106.82 (17)C14—O4—H15110.4
N1—C8—C7109.09 (16)H16—O6—H1799.2
C9—C8—C7113.32 (18)C10—N1—C8116.47 (16)
N1—C8—H8109.4C10—N1—H10108.0 (14)
C9—C8—H8108.8C8—N1—H10109.9 (14)
C7—C8—H8109.4C10—N1—H11113.4 (16)
C8—C9—H9A109.5C8—N1—H11108.2 (15)
C8—C9—H9B109.5H10—N1—H11100 (2)
C6—C1—C2—C30.1 (3)O1—C7—C8—N154.0 (2)
C1—C2—C3—C40.6 (4)C6—C7—C8—N1177.67 (16)
C2—C3—C4—C50.7 (4)O1—C7—C8—C964.9 (2)
C3—C4—C5—C60.2 (3)C6—C7—C8—C958.8 (2)
C4—C5—C6—C10.3 (3)O2—C11—C12—C13176.7 (2)
C4—C5—C6—C7179.53 (19)O3—C11—C12—C132.6 (4)
C2—C1—C6—C50.3 (3)C11—C12—C13—C140.4 (4)
C2—C1—C6—C7179.48 (19)C12—C13—C14—O5173.1 (2)
C5—C6—C7—O117.1 (3)C12—C13—C14—O46.7 (4)
C1—C6—C7—O1162.66 (19)C9—C8—N1—C10176.4 (2)
C5—C6—C7—C8102.9 (2)C7—C8—N1—C1060.8 (2)
C1—C6—C7—C877.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H6···O6i0.89 (4)1.84 (4)2.725 (2)174 (3)
N1—H10···O3ii0.99 (2)1.82 (3)2.808 (2)174 (2)
N1—H10···O2ii0.99 (2)2.62 (3)3.216 (3)118.9 (18)
N1—H11···O2iii0.94 (3)1.93 (3)2.844 (2)165 (2)
O6—H17···O5iv0.83 (3)2.01 (3)2.755 (2)149 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1.
(EPHEMALO) (1R, 2S)-(-)-ephedrine malonate top
Crystal data top
C11H17NO3F(000) = 468
Mr = 217.26Dx = 1.235 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 7336 reflections
a = 15.1190 (14) Åθ = 1.0–27.5°
b = 5.7840 (7) ŵ = 0.09 mm1
c = 13.8788 (15) ÅT = 150 K
β = 105.765 (7)°Needle, colourless
V = 1168.0 (2) Å30.3 × 0.05 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
1448 independent reflections
Radiation source: Enraf Nonius FR590937 reflections with I > 2σ(I)
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
CCD rotation images, thick slices scansh = 1919
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
k = 67
Tmin = 0.987, Tmax = 1.021l = 1714
4107 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
1448 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C11H17NO3V = 1168.0 (2) Å3
Mr = 217.26Z = 4
Monoclinic, C2Mo Kα radiation
a = 15.1190 (14) ŵ = 0.09 mm1
b = 5.7840 (7) ÅT = 150 K
c = 13.8788 (15) Å0.3 × 0.05 × 0.05 mm
β = 105.765 (7)°
Data collection top
KappaCCD
diffractometer
4107 measured reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1448 independent reflections
Tmin = 0.987, Tmax = 1.021937 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.15 e Å3
1448 reflectionsΔρmin = 0.23 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3002 (3)0.9664 (8)0.1316 (3)0.0496 (10)
H10.262 (3)0.835 (8)0.147 (3)0.06*
C20.3336 (3)0.9584 (9)0.0474 (3)0.0569 (11)
H20.318 (3)0.823 (9)0.004 (3)0.068*
C30.3865 (3)1.1377 (8)0.0280 (3)0.0564 (12)
H30.411 (3)1.125 (8)0.030 (3)0.068*
C40.4078 (3)1.3199 (8)0.0924 (3)0.0561 (11)
H40.447 (3)1.467 (8)0.080 (3)0.067*
C50.3747 (3)1.3314 (7)0.1768 (3)0.0479 (10)
H50.389 (3)1.459 (8)0.224 (3)0.057*
C60.3201 (2)1.1523 (7)0.1964 (3)0.0421 (9)
C70.2841 (3)1.1662 (6)0.2886 (3)0.0408 (9)
H70.339 (3)1.240 (7)0.347 (3)0.049*
C80.2022 (3)1.3267 (7)0.2733 (3)0.0433 (9)
H80.217 (2)1.480 (8)0.253 (3)0.052*
C90.1149 (2)1.2277 (9)0.2038 (3)0.0580 (11)
H9A0.09571.09530.23460.087*
H9B0.12641.18250.14180.087*
H9C0.06741.34280.1910.087*
C100.1129 (3)1.5373 (9)0.3772 (4)0.0576 (11)
H12A0.119 (3)1.681 (9)0.340 (3)0.069*
H12B0.052 (3)1.469 (8)0.340 (3)0.069*
H12C0.120 (3)1.574 (9)0.446 (3)0.069*
C110.0851 (2)1.0927 (7)0.4610 (3)0.0429 (9)
C1200.9540 (12)0.50.087 (2)
H130.00820.85490.44670.104*0.5
H140.00820.85490.55330.104*0.5
N10.1890 (2)1.3749 (6)0.3743 (2)0.0432 (8)
H100.243 (3)1.436 (7)0.414 (3)0.052*
H110.175 (3)1.240 (8)0.404 (3)0.052*
O10.25754 (19)0.9501 (5)0.31847 (19)0.0498 (7)
H60.305 (3)0.875 (8)0.341 (3)0.06*
O20.15250 (16)1.0494 (5)0.49529 (17)0.0498 (7)
O30.08517 (19)1.2321 (7)0.3944 (2)0.0739 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (2)0.045 (2)0.054 (2)0.002 (2)0.0234 (18)0.002 (2)
C20.065 (3)0.057 (3)0.053 (2)0.005 (2)0.022 (2)0.011 (2)
C30.047 (2)0.077 (3)0.053 (2)0.000 (2)0.0252 (18)0.002 (2)
C40.045 (2)0.070 (3)0.060 (2)0.011 (2)0.0251 (18)0.002 (2)
C50.047 (2)0.053 (3)0.046 (2)0.0041 (19)0.0179 (17)0.0036 (19)
C60.0364 (19)0.047 (2)0.0445 (19)0.0022 (17)0.0143 (15)0.0007 (18)
C70.043 (2)0.040 (2)0.0434 (19)0.0051 (17)0.0182 (16)0.0004 (17)
C80.042 (2)0.046 (2)0.0452 (19)0.0031 (17)0.0172 (15)0.0020 (18)
C90.042 (2)0.080 (3)0.052 (2)0.000 (2)0.0140 (18)0.002 (2)
C100.051 (2)0.052 (3)0.078 (3)0.005 (2)0.032 (2)0.002 (2)
C110.040 (2)0.045 (2)0.0436 (18)0.0003 (17)0.0117 (15)0.0077 (18)
C120.034 (3)0.044 (4)0.174 (7)00.012 (4)0
N10.0378 (17)0.0461 (19)0.0502 (18)0.0069 (16)0.0194 (13)0.0019 (16)
O10.0497 (16)0.0456 (18)0.0582 (16)0.0010 (13)0.0213 (13)0.0075 (13)
O20.0431 (15)0.0563 (16)0.0555 (14)0.0029 (13)0.0225 (12)0.0069 (14)
O30.0509 (17)0.104 (3)0.0693 (18)0.0005 (19)0.0206 (14)0.028 (2)
Geometric parameters (Å, º) top
C1—C61.382 (5)C8—H80.97 (5)
C1—C21.395 (5)C9—H9A0.96
C1—H11.01 (4)C9—H9B0.96
C2—C31.380 (6)C9—H9C0.96
C2—H20.98 (5)C10—N11.494 (5)
C3—C41.363 (6)C10—H12A0.99 (5)
C3—H30.98 (4)C10—H12B1.00 (5)
C4—C51.394 (5)C10—H12C0.96 (4)
C4—H41.08 (5)C11—O31.227 (5)
C5—C61.397 (5)C11—O21.261 (4)
C5—H50.97 (4)C11—C121.488 (5)
C6—C71.522 (5)C12—C11i1.488 (5)
C7—O11.409 (4)C12—H130.97
C7—C81.516 (5)C12—H140.97
C7—H71.08 (4)N1—H100.92 (4)
C8—N11.496 (5)N1—H110.94 (4)
C8—C91.519 (5)O1—H60.83 (4)
C6—C1—C2120.5 (4)C9—C8—H8113 (2)
C6—C1—H1119 (2)C8—C9—H9A109.5
C2—C1—H1121 (2)C8—C9—H9B109.5
C3—C2—C1120.0 (4)H9A—C9—H9B109.5
C3—C2—H2122 (2)C8—C9—H9C109.5
C1—C2—H2118 (2)H9A—C9—H9C109.5
C4—C3—C2120.0 (3)H9B—C9—H9C109.5
C4—C3—H3122 (3)N1—C10—H12A109 (2)
C2—C3—H3118 (3)N1—C10—H12B110 (3)
C3—C4—C5120.9 (4)H12A—C10—H12B105 (4)
C3—C4—H4123 (2)N1—C10—H12C107 (3)
C5—C4—H4116 (2)H12A—C10—H12C110 (4)
C4—C5—C6119.6 (4)H12B—C10—H12C115 (3)
C4—C5—H5123 (2)O3—C11—O2125.4 (3)
C6—C5—H5117 (2)O3—C11—C12116.8 (3)
C1—C6—C5119.1 (3)O2—C11—C12117.6 (3)
C1—C6—C7121.6 (3)C11—C12—C11i114.8 (6)
C5—C6—C7119.3 (3)C11—C12—H13108.6
O1—C7—C8107.3 (3)C11i—C12—H13108.6
O1—C7—C6113.3 (3)C11—C12—H14108.6
C8—C7—C6112.3 (3)C11i—C12—H14108.6
O1—C7—H7111 (2)H13—C12—H14107.6
C8—C7—H7107 (2)C10—N1—C8116.3 (3)
C6—C7—H7106.1 (18)C10—N1—H10108 (2)
N1—C8—C7107.1 (3)C8—N1—H10108 (2)
N1—C8—C9110.6 (3)C10—N1—H11104 (2)
C7—C8—C9113.2 (4)C8—N1—H11111 (2)
N1—C8—H8101 (2)H10—N1—H11109 (3)
C7—C8—H8111 (2)C7—O1—H6107 (3)
C6—C1—C2—C30.4 (7)C1—C6—C7—C8101.8 (4)
C1—C2—C3—C41.5 (7)C5—C6—C7—C878.4 (4)
C2—C3—C4—C51.8 (7)O1—C7—C8—N169.5 (4)
C3—C4—C5—C60.9 (7)C6—C7—C8—N1165.3 (3)
C2—C1—C6—C50.5 (6)O1—C7—C8—C952.6 (4)
C2—C1—C6—C7179.7 (4)C6—C7—C8—C972.5 (4)
C4—C5—C6—C10.2 (6)O3—C11—C12—C11i56.6 (3)
C4—C5—C6—C7180.0 (4)O2—C11—C12—C11i126.9 (3)
C1—C6—C7—O119.9 (5)C7—C8—N1—C10178.1 (3)
C5—C6—C7—O1159.9 (3)C9—C8—N1—C1058.1 (5)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O2ii0.92 (4)1.80 (4)2.719 (4)178 (3)
N1—H11···O2i0.94 (4)1.88 (4)2.769 (4)158 (4)
O1—H6···O3iii0.83 (4)1.82 (5)2.645 (4)175 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
(EPHEMESY) (1R, 2S)-(-)-ephedrine mesylate top
Crystal data top
C11H19NO4SF(000) = 560
Mr = 261.33Dx = 1.329 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 32320 reflections
a = 14.287 (2) Åθ = 1.0–27.5°
b = 6.1075 (7) ŵ = 0.25 mm1
c = 14.993 (2) ÅT = 150 K
β = 93.211 (6)°Needle, colourless
V = 1306.3 (3) Å30.3 × 0.05 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2236 independent reflections
Radiation source: Enraf Nonius FR5901751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1314
Tmin = 0.984, Tmax = 1.017k = 77
3231 measured reflectionsl = 1913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.5263P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2236 reflectionsΔρmax = 0.20 e Å3
179 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (14)
Crystal data top
C11H19NO4SV = 1306.3 (3) Å3
Mr = 261.33Z = 4
Monoclinic, C2Mo Kα radiation
a = 14.287 (2) ŵ = 0.25 mm1
b = 6.1075 (7) ÅT = 150 K
c = 14.993 (2) Å0.3 × 0.05 × 0.05 mm
β = 93.211 (6)°
Data collection top
KappaCCD
diffractometer
2236 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1751 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 1.017Rint = 0.029
3231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.33 e Å3
2236 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
179 parametersAbsolute structure parameter: 0.04 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7331 (3)1.1379 (8)0.8743 (3)0.0452 (11)
H10.779 (3)1.260 (8)0.859 (3)0.054*
C20.6799 (4)1.1472 (10)0.9496 (3)0.0566 (13)
H20.68461.26840.98710.068*
C30.6207 (3)0.9779 (13)0.9686 (3)0.0551 (12)
H30.58640.98351.01940.066*
C40.6122 (4)0.8000 (10)0.9122 (3)0.0546 (13)
H40.569 (3)0.663 (9)0.932 (3)0.066*
C50.6645 (3)0.7875 (9)0.8372 (3)0.0446 (11)
H50.657 (3)0.652 (9)0.798 (3)0.054*
C60.7257 (2)0.9583 (9)0.8181 (2)0.0344 (8)
C70.7853 (3)0.9374 (7)0.7377 (2)0.0322 (9)
H70.743 (3)0.883 (6)0.681 (2)0.039*
C80.8638 (3)0.7697 (8)0.7542 (3)0.0360 (10)
H80.836 (3)0.631 (8)0.768 (2)0.043*
C90.9381 (3)0.8471 (9)0.8238 (3)0.0492 (12)
H9A0.98280.73190.8360.074*
H9B0.90890.88510.87780.074*
H9C0.96960.9730.80160.074*
C100.9741 (3)0.5363 (7)0.6674 (3)0.0498 (12)
H12A1.02580.56060.710.075*
H12B0.99730.5190.6090.075*
H12C0.94110.40630.68320.075*
C110.6427 (3)0.6881 (8)0.5094 (3)0.0436 (12)
H13A0.58790.68880.46930.065*
H13B0.69760.67280.47580.065*
H13C0.64610.8230.54230.065*
N10.9090 (3)0.7283 (6)0.6675 (2)0.0351 (8)
H100.858 (3)0.707 (7)0.623 (3)0.042*
H110.937 (3)0.836 (8)0.653 (3)0.042*
O10.8263 (2)1.1391 (5)0.7140 (2)0.0445 (7)
H60.88141.14140.73240.067*
O20.72468 (18)0.4740 (6)0.63878 (15)0.0453 (7)
O30.5562 (2)0.5129 (5)0.63647 (18)0.0493 (9)
O40.6274 (2)0.2689 (5)0.5309 (2)0.0465 (8)
S10.63637 (6)0.46809 (17)0.58403 (5)0.0330 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.038 (3)0.050 (3)0.004 (2)0.007 (2)0.005 (2)
C20.054 (3)0.064 (4)0.052 (3)0.008 (3)0.006 (2)0.016 (3)
C30.037 (3)0.085 (4)0.045 (2)0.002 (3)0.0106 (17)0.005 (3)
C40.044 (3)0.069 (4)0.052 (3)0.015 (3)0.011 (2)0.001 (3)
C50.043 (3)0.049 (3)0.042 (2)0.011 (2)0.0063 (19)0.003 (2)
C60.030 (2)0.040 (2)0.0338 (17)0.005 (2)0.0016 (13)0.004 (2)
C70.029 (2)0.032 (3)0.0352 (19)0.0051 (19)0.0013 (14)0.0007 (18)
C80.035 (3)0.036 (3)0.038 (2)0.002 (2)0.0100 (17)0.0046 (19)
C90.042 (3)0.068 (3)0.036 (2)0.001 (2)0.0061 (19)0.001 (2)
C100.042 (3)0.035 (3)0.074 (3)0.0044 (18)0.014 (2)0.002 (2)
C110.043 (3)0.047 (3)0.041 (2)0.003 (2)0.0013 (19)0.007 (2)
N10.035 (2)0.033 (2)0.0371 (19)0.0018 (15)0.0039 (14)0.0005 (14)
O10.0397 (19)0.0435 (19)0.0509 (17)0.0038 (15)0.0072 (14)0.0082 (15)
O20.0425 (16)0.0421 (16)0.0494 (15)0.0016 (17)0.0141 (11)0.0024 (17)
O30.0441 (19)0.053 (3)0.0530 (16)0.0014 (15)0.0249 (13)0.0032 (14)
O40.047 (2)0.0388 (19)0.0534 (19)0.0064 (15)0.0042 (14)0.0155 (14)
S10.0306 (5)0.0317 (5)0.0370 (5)0.0007 (6)0.0047 (3)0.0012 (5)
Geometric parameters (Å, º) top
C1—C61.384 (6)C9—H9A0.96
C1—C21.398 (6)C9—H9B0.96
C1—H11.02 (5)C9—H9C0.96
C2—C31.376 (8)C10—N11.497 (5)
C2—H20.93C10—H12A0.96
C3—C41.378 (8)C10—H12B0.96
C3—H30.93C10—H12C0.96
C4—C51.386 (6)C11—S11.754 (4)
C4—H41.09 (5)C11—H13A0.96
C5—C61.402 (7)C11—H13B0.96
C5—H51.02 (5)C11—H13C0.96
C6—C71.519 (5)N1—H100.97 (4)
C7—O11.418 (5)N1—H110.81 (5)
C7—C81.528 (6)O1—H60.82
C7—H71.07 (4)O2—S11.467 (2)
C8—N11.505 (5)O3—S11.451 (3)
C8—C91.522 (6)O4—S11.456 (3)
C8—H80.97 (5)
C6—C1—C2119.9 (4)C8—C9—H9B109.5
C6—C1—H1118 (3)H9A—C9—H9B109.5
C2—C1—H1122 (3)C8—C9—H9C109.5
C3—C2—C1120.3 (5)H9A—C9—H9C109.5
C3—C2—H2119.8H9B—C9—H9C109.5
C1—C2—H2119.8N1—C10—H12A109.5
C2—C3—C4120.0 (4)N1—C10—H12B109.5
C2—C3—H3120H12A—C10—H12B109.5
C4—C3—H3120N1—C10—H12C109.5
C3—C4—C5120.6 (5)H12A—C10—H12C109.5
C3—C4—H4118 (2)H12B—C10—H12C109.5
C5—C4—H4121 (3)S1—C11—H13A109.5
C4—C5—C6119.7 (5)S1—C11—H13B109.5
C4—C5—H5118 (3)H13A—C11—H13B109.5
C6—C5—H5122 (3)S1—C11—H13C109.5
C1—C6—C5119.5 (3)H13A—C11—H13C109.5
C1—C6—C7121.5 (4)H13B—C11—H13C109.5
C5—C6—C7118.9 (4)C10—N1—C8115.4 (3)
O1—C7—C6112.5 (4)C10—N1—H10109 (3)
O1—C7—C8108.3 (3)C8—N1—H10106 (2)
C6—C7—C8111.5 (3)C10—N1—H11109 (3)
O1—C7—H7107 (2)C8—N1—H11110 (3)
C6—C7—H7110 (2)H10—N1—H11107 (4)
C8—C7—H7107 (2)C7—O1—H6109.5
N1—C8—C9109.1 (4)O3—S1—O4113.94 (19)
N1—C8—C7108.6 (3)O3—S1—O2111.87 (16)
C9—C8—C7112.4 (4)O4—S1—O2111.9 (2)
N1—C8—H8104 (2)O3—S1—C11105.8 (2)
C9—C8—H8114 (2)O4—S1—C11107.31 (18)
C7—C8—H8108 (3)O2—S1—C11105.3 (2)
C8—C9—H9A109.5
C6—C1—C2—C30.5 (8)C5—C6—C7—O1165.9 (4)
C1—C2—C3—C41.3 (8)C1—C6—C7—C8105.4 (5)
C2—C3—C4—C51.4 (9)C5—C6—C7—C872.3 (5)
C3—C4—C5—C60.7 (8)O1—C7—C8—N165.5 (4)
C2—C1—C6—C50.2 (7)C6—C7—C8—N1170.2 (4)
C2—C1—C6—C7177.4 (4)O1—C7—C8—C955.3 (4)
C4—C5—C6—C10.1 (7)C6—C7—C8—C968.9 (5)
C4—C5—C6—C7177.6 (4)C9—C8—N1—C1068.9 (5)
C1—C6—C7—O116.4 (5)C7—C8—N1—C10168.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O4i0.97 (4)2.36 (4)3.002 (5)124 (3)
N1—H11···O3ii0.81 (5)2.04 (5)2.788 (5)153 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z.
(EPHENITR) (1R, 2S)-(-)-ephedrine nitrate top
Crystal data top
C10H14N2O4F(000) = 244
Mr = 228.25Dx = 1.285 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4151 reflections
a = 5.5309 (4) Åθ = 1.0–27.5°
b = 6.8501 (6) ŵ = 0.1 mm1
c = 15.6906 (13) ÅT = 150 K
β = 97.243 (6)°Plate, yellow
V = 589.73 (8) Å30.2 × 0.2 × 0.05 mm
Z = 2
Data collection top
KappaCCD
diffractometer
1274 independent reflections
Radiation source: Enraf Nonius FR590991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 57
Tmin = 0.951, Tmax = 1.041k = 68
2914 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
1274 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C10H14N2O4V = 589.73 (8) Å3
Mr = 228.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5309 (4) ŵ = 0.1 mm1
b = 6.8501 (6) ÅT = 150 K
c = 15.6906 (13) Å0.2 × 0.2 × 0.05 mm
β = 97.243 (6)°
Data collection top
KappaCCD
diffractometer
1274 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
991 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 1.041Rint = 0.032
2914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
1274 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0329 (6)0.5459 (5)0.3402 (2)0.0404 (7)
H10.169 (7)0.565 (6)0.299 (2)0.049*
C20.0436 (7)0.6236 (6)0.4211 (2)0.0498 (8)
H20.185 (7)0.693 (7)0.435 (2)0.06*
C30.1510 (6)0.6036 (6)0.4847 (2)0.0505 (9)
H30.140 (6)0.654 (7)0.542 (2)0.061*
C40.3562 (7)0.5038 (6)0.4677 (2)0.0518 (9)
H40.483 (7)0.489 (7)0.511 (3)0.062*
C50.3679 (6)0.4258 (5)0.3870 (2)0.0432 (8)
H50.516 (6)0.353 (7)0.3714 (19)0.052*
C60.1751 (5)0.4460 (4)0.32202 (19)0.0364 (7)
H60.456 (6)0.437 (7)0.188 (2)0.044*
C70.1859 (5)0.3675 (5)0.23264 (18)0.0332 (6)
H70.100 (5)0.462 (6)0.196 (2)0.04*
C80.0613 (5)0.1688 (5)0.21980 (18)0.0365 (7)
H80.111 (5)0.190 (6)0.2266 (18)0.044*
C90.1802 (8)0.0130 (6)0.2798 (2)0.0510 (9)
H9A0.360 (7)0.018 (7)0.280 (2)0.061*
H9B0.108 (6)0.114 (7)0.268 (2)0.061*
H9C0.136 (6)0.038 (7)0.343 (2)0.061*
C100.0222 (6)0.2406 (5)0.0604 (2)0.0439 (8)
H12A0.17640.29130.07210.066*
H12B0.04220.17540.00580.066*
H12C0.09180.34590.05910.066*
N10.0715 (5)0.0995 (4)0.12897 (15)0.0363 (6)
H100.244 (6)0.070 (5)0.1250 (19)0.044*
H110.016 (6)0.002 (7)0.121 (2)0.044*
N20.5696 (4)0.8008 (4)0.11488 (15)0.0366 (6)
O10.4272 (3)0.3458 (4)0.21190 (14)0.0403 (5)
O20.7798 (4)0.7339 (4)0.12860 (14)0.0479 (6)
O30.3895 (4)0.7037 (4)0.12808 (14)0.0500 (6)
O40.5408 (4)0.9729 (4)0.08800 (15)0.0537 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (16)0.0297 (18)0.0500 (18)0.0046 (14)0.0077 (14)0.0037 (14)
C20.055 (2)0.035 (2)0.064 (2)0.0082 (16)0.0229 (17)0.0081 (16)
C30.062 (2)0.045 (2)0.0456 (18)0.0174 (18)0.0110 (16)0.0052 (15)
C40.056 (2)0.051 (2)0.0473 (18)0.0136 (18)0.0021 (15)0.0017 (17)
C50.0448 (16)0.036 (2)0.0488 (18)0.0062 (14)0.0056 (14)0.0030 (14)
C60.0400 (15)0.0230 (17)0.0463 (16)0.0087 (12)0.0056 (13)0.0054 (12)
C70.0344 (13)0.0215 (15)0.0430 (15)0.0013 (13)0.0025 (11)0.0035 (12)
C80.0406 (16)0.0265 (17)0.0427 (17)0.0068 (13)0.0067 (13)0.0023 (13)
C90.075 (2)0.026 (2)0.050 (2)0.0067 (17)0.0003 (17)0.0086 (15)
C100.0523 (17)0.0343 (19)0.0445 (16)0.0021 (15)0.0036 (13)0.0016 (14)
N10.0373 (14)0.0244 (15)0.0468 (15)0.0035 (11)0.0033 (11)0.0027 (11)
N20.0384 (13)0.0274 (15)0.0449 (13)0.0016 (11)0.0086 (10)0.0027 (11)
O10.0392 (11)0.0291 (14)0.0534 (13)0.0019 (9)0.0089 (9)0.0032 (9)
O20.0390 (11)0.0423 (14)0.0616 (13)0.0056 (11)0.0033 (9)0.0008 (11)
O30.0453 (11)0.0386 (14)0.0673 (14)0.0071 (11)0.0115 (10)0.0110 (11)
O40.0479 (13)0.0296 (14)0.0858 (17)0.0015 (11)0.0162 (12)0.0137 (12)
Geometric parameters (Å, º) top
C1—C21.385 (5)C8—C91.517 (5)
C1—C61.399 (4)C8—H80.99 (3)
C1—H10.94 (4)C9—H9A0.99 (4)
C2—C31.379 (5)C9—H9B0.97 (5)
C2—H20.96 (4)C9—H9C1.06 (4)
C3—C41.379 (6)C10—N11.490 (4)
C3—H30.97 (4)C10—H12A0.96
C4—C51.383 (5)C10—H12B0.96
C4—H40.91 (4)C10—H12C0.96
C5—C61.387 (4)N1—H100.99 (3)
C5—H51.01 (4)N1—H110.83 (4)
C6—C71.510 (4)N2—O31.237 (3)
C7—O11.421 (3)N2—O21.243 (3)
C7—C81.527 (4)N2—O41.256 (3)
C7—H70.95 (4)O1—H60.76 (4)
C8—N11.510 (4)
C2—C1—C6120.4 (3)C9—C8—C7113.1 (3)
C2—C1—H1117 (2)N1—C8—H8107.4 (17)
C6—C1—H1123 (2)C9—C8—H8113 (2)
C3—C2—C1120.4 (4)C7—C8—H8107 (2)
C3—C2—H2118 (2)C8—C9—H9A109 (2)
C1—C2—H2122 (2)C8—C9—H9B112 (2)
C2—C3—C4119.7 (4)H9A—C9—H9B115 (4)
C2—C3—H3120 (2)C8—C9—H9C109 (2)
C4—C3—H3120 (2)H9A—C9—H9C110 (3)
C3—C4—C5120.2 (3)H9B—C9—H9C101 (3)
C3—C4—H4119 (3)N1—C10—H12A109.5
C5—C4—H4121 (3)N1—C10—H12B109.5
C4—C5—C6121.0 (3)H12A—C10—H12B109.5
C4—C5—H5123.0 (17)N1—C10—H12C109.5
C6—C5—H5116.1 (17)H12A—C10—H12C109.5
C5—C6—C1118.4 (3)H12B—C10—H12C109.5
C5—C6—C7122.1 (3)C10—N1—C8115.3 (3)
C1—C6—C7119.6 (3)C10—N1—H10110 (2)
O1—C7—C6113.5 (2)C8—N1—H10106.1 (18)
O1—C7—C8107.3 (2)C10—N1—H11106 (2)
C6—C7—C8111.7 (2)C8—N1—H11108 (2)
O1—C7—H7110.2 (18)H10—N1—H11112 (3)
C6—C7—H7104 (2)O3—N2—O2121.9 (3)
C8—C7—H7110 (2)O3—N2—O4119.4 (2)
N1—C8—C9107.4 (3)O2—N2—O4118.7 (2)
N1—C8—C7109.6 (2)C7—O1—H6107 (3)
C6—C1—C2—C30.1 (5)C1—C6—C7—O1154.8 (3)
C1—C2—C3—C40.7 (5)C5—C6—C7—C897.6 (3)
C2—C3—C4—C50.7 (5)C1—C6—C7—C883.7 (3)
C3—C4—C5—C60.1 (5)O1—C7—C8—N156.5 (3)
C4—C5—C6—C10.5 (5)C6—C7—C8—N1178.5 (2)
C4—C5—C6—C7178.2 (3)O1—C7—C8—C963.3 (4)
C2—C1—C6—C50.5 (4)C6—C7—C8—C961.6 (4)
C2—C1—C6—C7178.2 (3)C9—C8—N1—C10176.0 (3)
C5—C6—C7—O123.9 (4)C7—C8—N1—C1052.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O4i0.99 (3)1.93 (3)2.885 (4)164 (3)
N1—H10···N2i0.99 (3)2.59 (4)3.461 (4)147 (3)
N1—H10···O3i0.99 (3)2.63 (4)3.233 (4)120 (3)
N1—H11···O2ii0.83 (4)2.16 (4)2.978 (4)168 (3)
N1—H11···O4ii0.83 (4)2.45 (3)3.051 (3)130 (3)
N1—H11···N2ii0.83 (4)2.66 (4)3.433 (4)155 (3)
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z.
(EPHEPHOS) (1R, 2S)-(-)-ephedrine dihydrogen phosphate top
Crystal data top
C10H16NO5PF(000) = 560
Mr = 263.22Dx = 1.394 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 6301 reflections
a = 14.6992 (10) Åθ = 1.0–27.5°
b = 5.6433 (4) ŵ = 0.23 mm1
c = 15.2432 (14) ÅT = 150 K
β = 97.333 (3)°Needle, colourless
V = 1254.11 (17) Å30.25 × 0.05 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2497 independent reflections
Radiation source: Enraf Nonius FR5902110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
CCD rotation images, thick slices scansθmax = 27.4°, θmin = 2.8°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 1814
Tmin = 0.954, Tmax = 1.056k = 77
4138 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.P)2 + 2.2505P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.31 e Å3
2497 reflectionsΔρmin = 0.37 e Å3
173 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.018 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.13 (15)
Crystal data top
C10H16NO5PV = 1254.11 (17) Å3
Mr = 263.22Z = 4
Monoclinic, C2Mo Kα radiation
a = 14.6992 (10) ŵ = 0.23 mm1
b = 5.6433 (4) ÅT = 150 K
c = 15.2432 (14) Å0.25 × 0.05 × 0.05 mm
β = 97.333 (3)°
Data collection top
KappaCCD
diffractometer
2497 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2110 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 1.056Rint = 0.033
4138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119Δρmax = 0.31 e Å3
S = 1.07Δρmin = 0.37 e Å3
2497 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
173 parametersAbsolute structure parameter: 0.13 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3548 (2)0.8180 (7)0.6557 (2)0.0289 (8)
H10.368 (2)0.677 (7)0.695 (3)0.035*
C20.3993 (2)0.8304 (7)0.5802 (3)0.0348 (9)
H20.443 (3)0.695 (7)0.567 (3)0.042*
C30.3841 (2)1.0262 (7)0.5237 (3)0.0338 (9)
H30.415 (3)1.030 (8)0.469 (3)0.041*
C40.3254 (3)1.2054 (8)0.5432 (3)0.0347 (9)
H40.316 (3)1.336 (8)0.505 (3)0.042*
C50.2811 (3)1.1901 (7)0.6182 (3)0.0324 (9)
H50.245 (3)1.314 (8)0.634 (3)0.039*
C60.2953 (2)0.9963 (7)0.6750 (2)0.0257 (8)
C70.2455 (2)0.9729 (7)0.7557 (2)0.0276 (8)
H70.289 (2)0.896 (7)0.806 (3)0.033*
C80.1622 (2)0.8075 (6)0.7381 (2)0.0276 (8)
H80.178 (2)0.651 (7)0.710 (3)0.033*
C90.0821 (3)0.9185 (8)0.6795 (3)0.0356 (9)
H9A0.03440.8030.66640.053*
H9B0.10230.9720.62550.053*
H9C0.0591.05060.70970.053*
C100.05114 (14)0.5858 (4)0.8238 (2)0.0334 (8)
H12A0.00160.67390.79840.05*
H12B0.04340.540.88310.05*
H12C0.05770.44670.78890.05*
O10.21329 (14)1.1954 (4)0.78344 (17)0.0332 (7)
H60.24431.23630.82950.05*
N10.13475 (18)0.7361 (6)0.82548 (19)0.0271 (7)
H100.1820.65750.85570.033*
H110.1260.86880.85610.033*
P10.36077 (5)0.61493 (17)0.95859 (6)0.0249 (3)
O20.27240 (15)0.4862 (4)0.92661 (17)0.0286 (6)
O30.40593 (15)0.5393 (5)1.04823 (16)0.0311 (6)
O40.42669 (13)0.5879 (3)0.88673 (13)0.0308 (6)
H130.47940.61710.90860.046*
O50.34129 (14)0.8902 (3)0.95827 (14)0.0314 (6)
H140.30270.9190.99110.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (18)0.036 (2)0.0232 (19)0.0031 (15)0.0018 (14)0.0003 (16)
C20.0216 (17)0.044 (2)0.038 (2)0.0020 (16)0.0015 (16)0.0011 (18)
C30.0256 (18)0.045 (2)0.031 (2)0.0013 (16)0.0019 (16)0.0026 (17)
C40.032 (2)0.041 (2)0.030 (2)0.0018 (17)0.0010 (16)0.0056 (17)
C50.035 (2)0.032 (2)0.029 (2)0.0043 (16)0.0001 (16)0.0014 (15)
C60.0198 (16)0.0322 (19)0.0251 (19)0.0011 (14)0.0025 (14)0.0056 (15)
C70.0264 (18)0.031 (2)0.0242 (19)0.0033 (14)0.0032 (15)0.0000 (15)
C80.0314 (18)0.031 (2)0.0198 (17)0.0016 (15)0.0014 (14)0.0018 (15)
C90.035 (2)0.045 (2)0.024 (2)0.0003 (18)0.0058 (16)0.0007 (17)
C100.0246 (16)0.036 (2)0.039 (2)0.0006 (17)0.0028 (14)0.0023 (18)
O10.0382 (15)0.0339 (16)0.0267 (14)0.0014 (11)0.0006 (11)0.0085 (10)
N10.0238 (14)0.0313 (16)0.0258 (16)0.0041 (13)0.0021 (12)0.0004 (14)
P10.0185 (4)0.0314 (5)0.0241 (5)0.0011 (4)0.0001 (3)0.0011 (4)
O20.0214 (12)0.0302 (14)0.0333 (14)0.0010 (10)0.0001 (10)0.0031 (11)
O30.0220 (11)0.0445 (17)0.0265 (13)0.0001 (10)0.0009 (10)0.0063 (11)
O40.0209 (10)0.0472 (16)0.0245 (12)0.0027 (12)0.0037 (9)0.0008 (12)
O50.0318 (14)0.0304 (14)0.0321 (15)0.0012 (11)0.0042 (12)0.0016 (11)
Geometric parameters (Å, º) top
C1—C61.389 (5)C8—H81.02 (4)
C1—C21.397 (5)C9—H9A0.96
C1—H11.00 (4)C9—H9B0.96
C2—C31.401 (6)C9—H9C0.96
C2—H21.03 (4)C10—N11.491 (4)
C3—C41.386 (6)C10—H12A0.96
C3—H31.00 (4)C10—H12B0.96
C4—C51.389 (5)C10—H12C0.96
C4—H40.94 (4)O1—H60.82
C5—C61.393 (5)N1—H100.9
C5—H50.93 (4)N1—H110.9
C6—C71.515 (5)P1—O31.503 (2)
C7—O11.425 (4)P1—O21.514 (2)
C7—C81.536 (5)P1—O41.5597 (18)
C7—H71.03 (4)P1—O51.580 (2)
C8—N11.495 (4)O4—H130.82
C8—C91.519 (5)O5—H140.82
C6—C1—C2120.8 (4)C7—C8—H8112 (2)
C6—C1—H1123 (2)C8—C9—H9A109.5
C2—C1—H1117 (2)C8—C9—H9B109.5
C1—C2—C3119.5 (4)H9A—C9—H9B109.5
C1—C2—H2119 (2)C8—C9—H9C109.5
C3—C2—H2121 (2)H9A—C9—H9C109.5
C4—C3—C2119.9 (4)H9B—C9—H9C109.5
C4—C3—H3122 (3)N1—C10—H12A109.5
C2—C3—H3118 (3)N1—C10—H12B109.5
C3—C4—C5120.1 (4)H12A—C10—H12B109.5
C3—C4—H4119 (3)N1—C10—H12C109.5
C5—C4—H4121 (3)H12A—C10—H12C109.5
C4—C5—C6120.8 (4)H12B—C10—H12C109.5
C4—C5—H5121 (3)C7—O1—H6109.5
C6—C5—H5118 (3)C10—N1—C8117.0 (3)
C1—C6—C5119.0 (3)C10—N1—H10108.1
C1—C6—C7119.4 (3)C8—N1—H10108.1
C5—C6—C7121.6 (3)C10—N1—H11108.1
O1—C7—C6112.2 (3)C8—N1—H11108.1
O1—C7—C8107.4 (3)H10—N1—H11107.3
C6—C7—C8111.6 (3)O3—P1—O2114.70 (15)
O1—C7—H7110 (2)O3—P1—O4111.65 (13)
C6—C7—H7109 (2)O2—P1—O4108.14 (13)
C8—C7—H7106 (2)O3—P1—O5109.93 (14)
N1—C8—C9111.0 (3)O2—P1—O5108.86 (13)
N1—C8—C7108.0 (3)O4—P1—O5102.87 (11)
C9—C8—C7113.1 (3)P1—O4—H13109.5
N1—C8—H8104 (2)P1—O5—H14109.4
C9—C8—H8108 (2)
C6—C1—C2—C30.5 (5)C5—C6—C7—O121.7 (4)
C1—C2—C3—C40.0 (6)C1—C6—C7—C879.5 (4)
C2—C3—C4—C50.4 (6)C5—C6—C7—C898.9 (4)
C3—C4—C5—C60.3 (6)O1—C7—C8—N173.6 (4)
C2—C1—C6—C50.7 (5)C6—C7—C8—N1163.1 (3)
C2—C1—C6—C7177.8 (3)O1—C7—C8—C949.7 (4)
C4—C5—C6—C10.2 (5)C6—C7—C8—C973.7 (4)
C4—C5—C6—C7178.2 (3)C9—C8—N1—C1051.9 (4)
C1—C6—C7—O1159.9 (3)C7—C8—N1—C10176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O20.91.872.768 (4)174
O4—H13···O3i0.821.782.547 (3)154
O5—H14···O2ii0.821.812.630 (3)174
N1—H11···O3ii0.91.862.699 (4)155
O1—H6···O2iii0.822.052.780 (3)148
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z.
(EPHEBISU) (1R, 2S)-(-)-ephedrine bisulfate top
Crystal data top
C10H18NO5SF(000) = 560
Mr = 263.31Dx = 1.44 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 22048 reflections
a = 30.9967 (17) Åθ = 1.0–29.1°
b = 6.9861 (4) ŵ = 0.28 mm1
c = 5.6170 (3) ÅT = 150 K
β = 93.354 (3)°Needle, colourless
V = 1214.26 (12) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
3183 independent reflections
Radiation source: Enraf Nonius FR5901982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
CCD rotation images, thick slices scansθmax = 28.9°, θmin = 2.6°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 4141
Tmin = 0.969, Tmax = 1.029k = 99
10680 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.1389P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3183 reflectionsΔρmax = 0.31 e Å3
173 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (12)
Crystal data top
C10H18NO5SV = 1214.26 (12) Å3
Mr = 263.31Z = 4
Monoclinic, C2Mo Kα radiation
a = 30.9967 (17) ŵ = 0.28 mm1
b = 6.9861 (4) ÅT = 150 K
c = 5.6170 (3) Å0.35 × 0.15 × 0.05 mm
β = 93.354 (3)°
Data collection top
KappaCCD
diffractometer
3183 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1982 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 1.029Rint = 0.058
10680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.31 e Å3
S = 1.12Δρmin = 0.37 e Å3
3183 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
173 parametersAbsolute structure parameter: 0.01 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69736 (14)0.5950 (6)0.8924 (7)0.0284 (10)
H10.6776 (13)0.639 (6)1.015 (7)0.034*
C20.74148 (14)0.6077 (6)0.9390 (8)0.0273 (10)
H20.7516 (14)0.667 (6)1.073 (7)0.033*
C30.76962 (14)0.5381 (5)0.7768 (7)0.0275 (10)
H30.79930.54480.81020.033*
C40.75313 (13)0.4582 (5)0.5641 (7)0.0249 (10)
H40.7720 (12)0.428 (6)0.442 (6)0.03*
C50.70880 (13)0.4471 (5)0.5176 (7)0.0243 (10)
H50.6974 (11)0.404 (6)0.368 (6)0.029*
C60.68042 (13)0.5124 (5)0.6821 (7)0.0236 (9)
C70.63223 (13)0.4804 (5)0.6424 (7)0.0242 (9)
H70.61690.58850.70960.029*
C80.61885 (12)0.2950 (5)0.7653 (7)0.0232 (9)
H80.62230.31270.93850.028*
C90.64371 (13)0.1181 (6)0.6978 (7)0.0300 (10)
H9A0.63180.00760.77140.045*
H9B0.67350.13190.75170.045*
H9C0.64160.10280.52770.045*
C100.54098 (12)0.4076 (7)0.7644 (6)0.0313 (9)
H10A0.5470.44290.92810.047*
H10B0.5120.35930.74410.047*
H10C0.54390.51780.66460.047*
N10.57185 (10)0.2572 (4)0.6970 (5)0.0246 (8)
H110.5690.24110.53790.029*
H120.56430.14640.76480.029*
O10.61847 (10)0.4596 (4)0.3975 (5)0.0288 (7)
H60.6147 (14)0.555 (6)0.334 (8)0.035*
O20.55023 (8)0.8906 (4)0.8922 (4)0.0275 (6)
O30.52720 (9)0.7720 (4)1.2722 (5)0.0323 (7)
H130.50250.80841.23580.048*
O40.55403 (10)1.0985 (4)1.2305 (5)0.0380 (8)
O50.60190 (9)0.8243 (4)1.2223 (5)0.0365 (8)
S10.56039 (3)0.90469 (14)1.15108 (16)0.0264 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (3)0.021 (2)0.027 (2)0.004 (2)0.0035 (19)0.0013 (18)
C20.034 (3)0.023 (2)0.025 (2)0.002 (2)0.003 (2)0.0041 (19)
C30.029 (2)0.024 (2)0.029 (2)0.0036 (18)0.0016 (19)0.0044 (18)
C40.032 (2)0.021 (2)0.022 (2)0.0002 (17)0.0053 (18)0.0011 (16)
C50.031 (2)0.022 (2)0.0194 (18)0.0052 (17)0.0006 (17)0.0005 (17)
C60.029 (2)0.0193 (19)0.023 (2)0.0000 (18)0.0024 (18)0.0041 (16)
C70.027 (2)0.023 (2)0.023 (2)0.0015 (18)0.0007 (17)0.0011 (17)
C80.021 (2)0.027 (2)0.021 (2)0.0040 (18)0.0008 (17)0.0016 (18)
C90.029 (2)0.024 (2)0.037 (2)0.0006 (19)0.0008 (18)0.0033 (19)
C100.030 (2)0.029 (2)0.036 (2)0.004 (2)0.0046 (17)0.001 (2)
N10.030 (2)0.0217 (17)0.0218 (18)0.0017 (15)0.0004 (15)0.0021 (15)
O10.0368 (17)0.0261 (18)0.0228 (14)0.0035 (13)0.0040 (12)0.0053 (12)
O20.0335 (15)0.0282 (14)0.0211 (13)0.0047 (15)0.0027 (11)0.0005 (15)
O30.0273 (17)0.0339 (16)0.0360 (17)0.0002 (14)0.0033 (13)0.0136 (14)
O40.058 (2)0.0223 (15)0.0327 (17)0.0022 (15)0.0088 (14)0.0038 (13)
O50.0279 (18)0.0368 (18)0.0439 (19)0.0031 (13)0.0048 (14)0.0104 (14)
S10.0300 (6)0.0228 (5)0.0262 (5)0.0021 (5)0.0016 (4)0.0036 (5)
Geometric parameters (Å, º) top
C1—C21.380 (6)C8—H80.98
C1—C61.390 (5)C9—H9A0.96
C1—H11.00 (4)C9—H9B0.96
C2—C31.386 (6)C9—H9C0.96
C2—H20.90 (4)C10—N11.485 (5)
C3—C41.389 (5)C10—H10A0.96
C3—H30.93C10—H10B0.96
C4—C51.386 (5)C10—H10C0.96
C4—H40.95 (4)N1—H110.9
C5—C61.390 (5)N1—H120.9
C5—H50.94 (4)O1—H60.76 (4)
C6—C71.514 (6)O2—S11.473 (2)
C7—O11.424 (4)O3—S11.569 (3)
C7—C81.536 (5)O3—H130.82
C7—H70.98O4—S11.443 (3)
C8—N11.508 (5)O5—S11.439 (3)
C8—C91.516 (5)
C2—C1—C6120.6 (4)C9—C8—H8108.8
C2—C1—H1119 (2)C7—C8—H8108.8
C6—C1—H1120 (2)C8—C9—H9A109.5
C1—C2—C3120.5 (4)C8—C9—H9B109.5
C1—C2—H2119 (3)H9A—C9—H9B109.5
C3—C2—H2121 (3)C8—C9—H9C109.5
C2—C3—C4119.5 (4)H9A—C9—H9C109.5
C2—C3—H3120.3H9B—C9—H9C109.5
C4—C3—H3120.3N1—C10—H10A109.5
C5—C4—C3119.7 (4)N1—C10—H10B109.5
C5—C4—H4120 (2)H10A—C10—H10B109.5
C3—C4—H4120 (2)N1—C10—H10C109.5
C4—C5—C6121.0 (3)H10A—C10—H10C109.5
C4—C5—H5120 (2)H10B—C10—H10C109.5
C6—C5—H5119 (2)C10—N1—C8116.0 (3)
C1—C6—C5118.6 (4)C10—N1—H11108.3
C1—C6—C7120.5 (4)C8—N1—H11108.3
C5—C6—C7120.7 (3)C10—N1—H12108.3
O1—C7—C6113.3 (3)C8—N1—H12108.3
O1—C7—C8106.0 (3)H11—N1—H12107.4
C6—C7—C8110.4 (3)C7—O1—H6113 (3)
O1—C7—H7109S1—O3—H13109.5
C6—C7—H7109O5—S1—O4114.60 (17)
C8—C7—H7109O5—S1—O2112.61 (16)
N1—C8—C9106.9 (3)O4—S1—O2110.05 (17)
N1—C8—C7108.4 (3)O5—S1—O3104.30 (16)
C9—C8—C7114.9 (3)O4—S1—O3108.40 (19)
N1—C8—H8108.8O2—S1—O3106.30 (16)
C6—C1—C2—C30.0 (6)C5—C6—C7—O125.6 (5)
C1—C2—C3—C41.1 (6)C1—C6—C7—C882.2 (4)
C2—C3—C4—C50.7 (5)C5—C6—C7—C893.0 (4)
C3—C4—C5—C60.9 (5)O1—C7—C8—N150.5 (4)
C2—C1—C6—C51.5 (6)C6—C7—C8—N1173.4 (3)
C2—C1—C6—C7173.8 (4)O1—C7—C8—C969.0 (4)
C4—C5—C6—C12.0 (5)C6—C7—C8—C954.0 (4)
C4—C5—C6—C7173.3 (3)C9—C8—N1—C10175.6 (3)
C1—C6—C7—O1159.2 (3)C7—C8—N1—C1060.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O4i0.92.022.869 (4)156
O1—H6···O5ii0.76 (4)2.01 (4)2.768 (4)170 (5)
N1—H12···O2iii0.91.982.881 (4)175
N1—H12···S1iii0.92.763.578 (3)152
O3—H13···O2iv0.821.842.653 (4)171
O3—H13···S1iv0.822.913.623 (3)146
Symmetry codes: (i) x, y1, z1; (ii) x, y, z1; (iii) x, y1, z; (iv) x+1, y, z+2.
(EPHETART1) (1R, 2S)-(-)-ephedrine L-(+)-tartrate monohydrate top
Crystal data top
C14H23NO8F(000) = 712
Mr = 333.33Dx = 1.349 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1411 reflections
a = 6.6220 (2) Åθ = 0–0°
b = 7.4620 (3) ŵ = 0.11 mm1
c = 33.2160 (15) ÅT = 150 K
V = 1641.31 (11) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1789 independent reflections
Radiation source: Enraf Nonius FR5901362 reflections with I > 2σ(I)
Graphite monochromatorθmax = 25.7°, θmin = 4.1°
CCD rotation images, thick slices scansh = 07
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
k = 09
Tmin = 0.962, Tmax = 1.02l = 040
1789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.535P]
where P = (Fo2 + 2Fc2)/3
1789 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H23NO8V = 1641.31 (11) Å3
Mr = 333.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6220 (2) ŵ = 0.11 mm1
b = 7.4620 (3) ÅT = 150 K
c = 33.2160 (15) Å0.25 × 0.25 × 0.05 mm
Data collection top
KappaCCD
diffractometer
1789 measured reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
1789 independent reflections
Tmin = 0.962, Tmax = 1.021362 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
1789 reflectionsΔρmin = 0.21 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9589 (7)0.7626 (5)0.25786 (10)0.0282 (9)
H11.087 (6)0.707 (5)0.2610 (10)0.034*
C20.8679 (7)0.7652 (5)0.21982 (11)0.0327 (10)
H20.935 (6)0.712 (5)0.2000 (10)0.039*
C30.6841 (7)0.8478 (5)0.21453 (11)0.0329 (10)
H30.629 (6)0.849 (5)0.1879 (11)0.039*
C40.5886 (6)0.9293 (5)0.24668 (10)0.0336 (10)
H40.445 (6)0.995 (5)0.2429 (10)0.04*
C50.6794 (6)0.9271 (5)0.28445 (10)0.0268 (9)
H50.620 (6)0.975 (5)0.3046 (10)0.032*
C60.8636 (5)0.8442 (4)0.29030 (9)0.0215 (8)
C70.9608 (6)0.8340 (5)0.33154 (9)0.0208 (8)
H71.111 (6)0.860 (4)0.3284 (9)0.025*
C80.9254 (6)0.6497 (5)0.35107 (9)0.0216 (8)
H81.018 (6)0.560 (5)0.3369 (9)0.026*
C90.7066 (6)0.5896 (6)0.35069 (12)0.0300 (9)
H9A0.657 (6)0.577 (5)0.3221 (11)0.036*
H9B0.699 (6)0.483 (5)0.3652 (11)0.036*
H9C0.622 (6)0.676 (5)0.3643 (10)0.036*
C101.2209 (6)0.6605 (6)0.39925 (12)0.0279 (9)
H12A1.280 (6)0.564 (5)0.3849 (10)0.033*
H12B1.273 (6)0.772 (5)0.3893 (10)0.033*
H12C1.247 (5)0.650 (4)0.4302 (11)0.033*
C110.6022 (5)0.8044 (4)0.47101 (10)0.0196 (7)
C120.5932 (5)0.9981 (4)0.45559 (9)0.0174 (7)
H130.482 (6)1.063 (4)0.4693 (9)0.021*
C130.7946 (5)1.0856 (4)0.46695 (10)0.0182 (8)
H150.804 (5)1.080 (4)0.4962 (10)0.022*
C140.7937 (5)1.2806 (4)0.45358 (9)0.0193 (8)
O10.8810 (4)0.9684 (3)0.35767 (6)0.0232 (6)
H60.97291.03280.36570.035*
O20.6298 (3)0.6817 (3)0.44457 (6)0.0220 (5)
O30.5862 (4)0.7800 (3)0.50762 (6)0.0262 (6)
O40.9564 (3)0.9938 (3)0.44803 (6)0.0204 (5)
H161.0050.9210.46380.031*
O50.5563 (3)1.0124 (3)0.41350 (6)0.0213 (5)
H140.65770.98210.40110.032*
O60.9189 (4)1.3369 (3)0.42906 (7)0.0263 (6)
O70.6541 (4)1.3744 (3)0.46977 (7)0.0278 (6)
H170.65231.47430.45950.042*
O80.7976 (4)0.6740 (3)0.11874 (7)0.0268 (6)
H180.694 (6)0.623 (5)0.1098 (11)0.032*
H190.869 (6)0.709 (5)0.0974 (11)0.032*
N10.9988 (4)0.6565 (4)0.39388 (7)0.0190 (6)
H100.94640.75460.40570.023*
H110.950.56030.4070.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.025 (2)0.0248 (19)0.0057 (18)0.0021 (19)0.0018 (16)
C20.054 (3)0.026 (2)0.0177 (18)0.004 (2)0.0013 (19)0.0023 (16)
C30.048 (3)0.027 (2)0.0237 (19)0.002 (2)0.0091 (19)0.0001 (18)
C40.038 (3)0.035 (2)0.0283 (19)0.004 (2)0.006 (2)0.0051 (18)
C50.029 (2)0.031 (2)0.0204 (18)0.0038 (18)0.0033 (17)0.0014 (17)
C60.029 (2)0.0197 (17)0.0162 (16)0.0019 (17)0.0029 (15)0.0028 (14)
C70.020 (2)0.0223 (18)0.0198 (17)0.0013 (17)0.0028 (15)0.0013 (15)
C80.029 (2)0.0207 (18)0.0147 (17)0.0014 (17)0.0024 (15)0.0017 (15)
C90.030 (2)0.036 (2)0.024 (2)0.0112 (19)0.0039 (18)0.0059 (19)
C100.022 (2)0.031 (2)0.031 (2)0.0032 (19)0.0014 (17)0.0058 (19)
C110.0133 (18)0.0186 (17)0.0268 (18)0.0022 (15)0.0003 (16)0.0026 (15)
C120.021 (2)0.0138 (17)0.0172 (16)0.0037 (15)0.0032 (15)0.0008 (14)
C130.0215 (19)0.0189 (18)0.0142 (16)0.0030 (15)0.0008 (15)0.0004 (15)
C140.0214 (19)0.0209 (18)0.0156 (16)0.0016 (16)0.0001 (17)0.0028 (15)
O10.0293 (14)0.0203 (12)0.0199 (11)0.0015 (11)0.0004 (11)0.0011 (10)
O20.0254 (13)0.0157 (11)0.0250 (12)0.0015 (11)0.0002 (11)0.0024 (10)
O30.0393 (16)0.0173 (12)0.0219 (13)0.0047 (11)0.0054 (12)0.0032 (10)
O40.0213 (14)0.0181 (12)0.0220 (11)0.0040 (10)0.0004 (11)0.0026 (10)
O50.0197 (13)0.0252 (13)0.0190 (11)0.0023 (11)0.0000 (10)0.0000 (10)
O60.0292 (15)0.0182 (12)0.0316 (13)0.0014 (12)0.0089 (12)0.0048 (11)
O70.0336 (16)0.0122 (12)0.0374 (14)0.0028 (11)0.0135 (13)0.0039 (11)
O80.0237 (14)0.0292 (14)0.0275 (14)0.0024 (13)0.0024 (12)0.0009 (12)
N10.0208 (16)0.0171 (14)0.0190 (14)0.0014 (13)0.0011 (12)0.0008 (12)
Geometric parameters (Å, º) top
C1—C61.389 (5)C10—H12A0.95 (4)
C1—C21.400 (5)C10—H12B0.96 (4)
C1—H10.95 (4)C10—H12C1.05 (3)
C2—C31.376 (6)C11—O31.234 (4)
C2—H20.89 (4)C11—O21.281 (4)
C3—C41.382 (5)C11—C121.535 (4)
C3—H30.96 (3)C12—O51.423 (4)
C4—C51.391 (5)C12—C131.532 (5)
C4—H41.08 (4)C12—H130.99 (4)
C5—C61.381 (5)C13—O41.419 (4)
C5—H50.86 (4)C13—C141.521 (5)
C6—C71.516 (4)C13—H150.97 (3)
C7—O11.428 (4)C14—O61.236 (4)
C7—C81.538 (5)C14—O71.278 (4)
C7—H71.02 (4)O1—H60.82
C8—N11.504 (4)O4—H160.82
C8—C91.517 (5)O5—H140.82
C8—H81.02 (4)O7—H170.82
C9—H9A1.01 (4)O8—H180.84 (4)
C9—H9B0.93 (4)O8—H190.89 (4)
C9—H9C0.96 (4)N1—H100.9
C10—N11.481 (5)N1—H110.9
C6—C1—C2119.9 (4)N1—C10—H12A109 (2)
C6—C1—H1121 (2)N1—C10—H12B110 (2)
C2—C1—H1119 (2)H12A—C10—H12B110 (3)
C3—C2—C1120.1 (4)N1—C10—H12C106.3 (19)
C3—C2—H2123 (2)H12A—C10—H12C112 (3)
C1—C2—H2117 (2)H12B—C10—H12C110 (3)
C2—C3—C4120.2 (4)O3—C11—O2125.6 (3)
C2—C3—H3117 (2)O3—C11—C12117.7 (3)
C4—C3—H3122 (2)O2—C11—C12116.7 (3)
C3—C4—C5119.6 (4)O5—C12—C13111.1 (3)
C3—C4—H4120.9 (18)O5—C12—C11113.9 (3)
C5—C4—H4119.5 (19)C13—C12—C11106.6 (3)
C6—C5—C4120.9 (4)O5—C12—H13106.8 (18)
C6—C5—H5119 (2)C13—C12—H13108.9 (19)
C4—C5—H5120 (2)C11—C12—H13109.5 (18)
C5—C6—C1119.2 (3)O4—C13—C14109.6 (3)
C5—C6—C7121.6 (3)O4—C13—C12110.0 (2)
C1—C6—C7119.1 (3)C14—C13—C12109.4 (3)
O1—C7—C6110.9 (3)O4—C13—H15111.9 (19)
O1—C7—C8108.4 (3)C14—C13—H15109.2 (18)
C6—C7—C8111.2 (3)C12—C13—H15106.6 (19)
O1—C7—H7107.0 (19)O6—C14—O7125.2 (3)
C6—C7—H7108.3 (18)O6—C14—C13121.0 (3)
C8—C7—H7111.0 (19)O7—C14—C13113.8 (3)
N1—C8—C9109.1 (3)C7—O1—H6109.5
N1—C8—C7108.6 (3)C13—O4—H16109.5
C9—C8—C7114.0 (3)C12—O5—H14109.5
N1—C8—H8105.2 (18)C14—O7—H17109.5
C9—C8—H8112 (2)H18—O8—H19106 (3)
C7—C8—H8107.6 (18)C10—N1—C8115.8 (3)
C8—C9—H9A110 (2)C10—N1—H10108.3
C8—C9—H9B108 (2)C8—N1—H10108.3
H9A—C9—H9B113 (3)C10—N1—H11108.3
C8—C9—H9C111 (2)C8—N1—H11108.3
H9A—C9—H9C108 (3)H10—N1—H11107.4
H9B—C9—H9C107 (3)
C6—C1—C2—C30.2 (6)C6—C7—C8—C950.2 (4)
C1—C2—C3—C40.3 (6)O3—C11—C12—O5163.4 (3)
C2—C3—C4—C50.1 (6)O2—C11—C12—O517.9 (4)
C3—C4—C5—C60.1 (6)O3—C11—C12—C1373.7 (4)
C4—C5—C6—C10.2 (5)O2—C11—C12—C13104.9 (3)
C4—C5—C6—C7177.5 (3)O5—C12—C13—O463.4 (3)
C2—C1—C6—C50.0 (5)C11—C12—C13—O461.2 (3)
C2—C1—C6—C7177.8 (3)O5—C12—C13—C1457.1 (3)
C5—C6—C7—O120.8 (4)C11—C12—C13—C14178.4 (3)
C1—C6—C7—O1161.5 (3)O4—C13—C14—O61.4 (4)
C5—C6—C7—C899.8 (4)C12—C13—C14—O6119.3 (3)
C1—C6—C7—C877.9 (4)O4—C13—C14—O7178.9 (3)
O1—C7—C8—N149.9 (4)C12—C13—C14—O760.4 (3)
C6—C7—C8—N1172.0 (3)C9—C8—N1—C10162.8 (3)
O1—C7—C8—C971.9 (4)C7—C8—N1—C1072.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H16···O3i0.821.862.661 (3)167
O1—H6···O8ii0.821.922.738 (3)175
N1—H11···O6iii0.91.832.709 (3)164
O8—H18···O5iv0.84 (4)2.01 (4)2.845 (3)177 (4)
O8—H19···O6v0.89 (4)1.91 (4)2.743 (3)154 (3)
O8—H19···O4v0.89 (4)2.49 (3)3.063 (3)122 (3)
O7—H17···O2vi0.821.632.446 (3)172
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x, y+1, z.
(EPHETART3) (1R, 2S)-(-)-ephedrine L-(+)-tartrate trihydrate top
Crystal data top
C24H42N2O11Z = 1
Mr = 534.6F(000) = 288
Triclinic, P1Dx = 1.279 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9373 (2) ÅCell parameters from 25777 reflections
b = 7.0594 (2) Åθ = 1.0–25.0°
c = 18.3791 (8) ŵ = 0.10 mm1
α = 80.254 (1)°T = 150 K
β = 88.527 (2)°Plate, colourless
γ = 66.247 (2)°0.25 × 0.25 × 0.05 mm
V = 694.14 (4) Å3
Data collection top
KappaCCD
diffractometer
2412 independent reflections
Radiation source: Enraf Nonius FR5902078 reflections with I > 2σ(I)
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
CCD rotation images, thick slices scansh = 77
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
k = 88
Tmin = 0.879, Tmax = 1.158l = 2119
6838 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.098H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.295 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.31(Δ/σ)max = 0.007
2412 reflectionsΔρmax = 0.59 e Å3
349 parametersΔρmin = 0.43 e Å3
3 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.44 (9)
Crystal data top
C24H42N2O11γ = 66.247 (2)°
Mr = 534.6V = 694.14 (4) Å3
Triclinic, P1Z = 1
a = 5.9373 (2) ÅMo Kα radiation
b = 7.0594 (2) ŵ = 0.10 mm1
c = 18.3791 (8) ÅT = 150 K
α = 80.254 (1)°0.25 × 0.25 × 0.05 mm
β = 88.527 (2)°
Data collection top
KappaCCD
diffractometer
6838 measured reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2412 independent reflections
Tmin = 0.879, Tmax = 1.1582078 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0983 restraints
wR(F2) = 0.295H atoms treated by a mixture of independent and constrained refinement
S = 1.31Δρmax = 0.59 e Å3
2412 reflectionsΔρmin = 0.43 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C010.871 (2)0.1721 (17)1.1790 (6)0.057 (3)
H010.74940.17871.14640.069*
C020.925 (2)0.033 (2)1.2468 (7)0.070 (3)
H020.8360.04931.25950.084*
C031.109 (2)0.0169 (18)1.2943 (6)0.060 (3)
H031.14540.07721.33880.072*
C041.240 (2)0.1419 (15)1.2760 (5)0.051 (2)
H041.36360.13241.30810.062*
C051.1823 (17)0.2839 (14)1.2077 (5)0.047 (2)
H051.27070.36651.19490.056*
C060.9975 (15)0.3001 (12)1.1606 (4)0.0383 (18)
C070.9281 (15)0.4561 (13)1.0880 (4)0.0370 (17)
H070.93520.37981.04760.044*
C080.6637 (16)0.6258 (12)1.0890 (5)0.0386 (19)
C090.621 (2)0.7431 (18)1.1535 (6)0.067 (3)
H09A0.74530.79731.15550.1*
H09B0.63060.64891.19870.1*
H09C0.46150.85731.14710.1*
C100.3560 (19)0.8877 (17)0.9919 (6)0.053 (2)
H12A0.30680.7940.97080.079*
H12B0.33671.00780.9550.079*
H12C0.25520.93291.03250.079*
C111.0959 (17)0.5183 (13)0.8929 (5)0.0417 (19)
C121.1825 (16)0.4567 (13)0.8185 (5)0.0421 (19)
H131.27180.30350.82680.051*
C131.3653 (14)0.5513 (11)0.7876 (5)0.0346 (17)
H141.50110.5070.82450.042*
C141.4718 (13)0.4785 (11)0.7163 (5)0.0336 (17)
C210.7053 (17)0.7605 (13)0.4616 (5)0.044 (2)
H210.54870.84420.47460.053*
C220.731 (2)0.6825 (16)0.3962 (5)0.053 (2)
H220.59370.71430.36580.063*
C230.963 (2)0.5571 (14)0.3762 (5)0.052 (2)
H230.98080.5030.33260.062*
C241.167 (2)0.5125 (15)0.4204 (6)0.054 (2)
H241.32320.42980.40650.064*
C251.1406 (16)0.5920 (14)0.4868 (5)0.0420 (19)
H251.27870.56170.51680.05*
C260.9045 (15)0.7175 (12)0.5077 (5)0.0366 (18)
C270.8824 (14)0.8062 (12)0.5784 (5)0.0372 (18)
H270.9860.69460.61770.045*
C280.9715 (15)0.9843 (11)0.5667 (4)0.0324 (16)
C290.809 (2)1.1765 (14)0.5132 (5)0.052 (2)
H29A0.6441.22670.52950.077*
H29B0.8111.14070.4650.077*
H29C0.87041.28420.51090.077*
C301.0894 (16)1.1982 (12)0.6451 (5)0.0413 (19)
H32A1.24581.15390.62250.062*
H32B1.1121.20730.69570.062*
H32C0.98081.33350.6190.062*
O011.0899 (12)0.5557 (11)1.0747 (4)0.0481 (16)
H061.23220.46811.08280.072*
O020.8714 (11)0.6330 (10)0.8980 (3)0.0460 (15)
O031.2568 (12)0.4514 (11)0.9439 (4)0.0512 (17)
O040.9895 (11)0.5091 (11)0.7662 (4)0.0482 (16)
H150.8630.52010.78750.072*
O051.2373 (10)0.7757 (8)0.7781 (4)0.0422 (14)
H161.12270.80620.80590.063*
O061.4444 (12)0.6083 (10)0.6597 (3)0.0474 (15)
O071.5890 (12)0.2805 (9)0.7206 (4)0.0489 (16)
O081.5864 (13)0.9141 (11)0.7831 (4)0.0523 (16)
H17A1.71690.80620.79670.063*
H17B1.49630.87890.75730.063*
O090.7162 (12)0.1428 (11)0.9908 (4)0.0505 (16)
H18A0.83680.17020.97320.061*
H18B0.58570.25240.97870.061*
O100.9462 (12)0.1046 (10)0.8566 (4)0.0504 (16)
H19A1.08320.03150.83940.06*
H19B0.83930.15340.81990.06*
O210.6383 (11)0.8885 (10)0.6011 (4)0.0442 (14)
H260.54430.95340.5650.066*
N010.6160 (13)0.7781 (11)1.0185 (4)0.0397 (16)
H110.67320.87491.02440.048*
H10A0.70280.70890.98320.048*
N210.9799 (12)1.0424 (10)0.6419 (4)0.0355 (15)
H300.82531.09460.65740.043*
H311.0670.92430.67380.043*
H080.551 (19)0.549 (19)1.086 (6)0.043*
H281.12 (2)0.966 (18)0.548 (6)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C010.066 (6)0.051 (6)0.050 (5)0.025 (5)0.007 (4)0.011 (4)
C020.076 (7)0.054 (7)0.071 (7)0.028 (6)0.009 (6)0.021 (6)
C030.072 (7)0.049 (6)0.046 (5)0.016 (5)0.002 (5)0.002 (4)
C040.069 (6)0.034 (5)0.038 (4)0.005 (4)0.008 (4)0.009 (4)
C050.054 (5)0.031 (4)0.049 (5)0.009 (4)0.002 (4)0.011 (4)
C060.049 (4)0.022 (4)0.037 (4)0.006 (3)0.007 (3)0.007 (3)
C070.047 (4)0.030 (4)0.031 (4)0.010 (3)0.004 (3)0.009 (3)
C080.053 (5)0.016 (4)0.039 (4)0.006 (3)0.005 (3)0.006 (3)
C090.086 (8)0.041 (6)0.049 (6)0.004 (5)0.009 (5)0.021 (5)
C100.051 (5)0.043 (5)0.056 (6)0.016 (4)0.007 (4)0.006 (4)
C110.052 (5)0.028 (4)0.042 (5)0.015 (4)0.008 (4)0.003 (3)
C120.044 (4)0.026 (4)0.057 (5)0.014 (3)0.013 (4)0.012 (4)
C130.038 (4)0.013 (3)0.048 (5)0.007 (3)0.004 (3)0.001 (3)
C140.036 (4)0.024 (4)0.044 (4)0.014 (3)0.001 (3)0.007 (3)
C210.048 (5)0.028 (4)0.045 (5)0.007 (4)0.007 (4)0.005 (4)
C220.078 (7)0.050 (6)0.027 (4)0.024 (5)0.012 (4)0.001 (4)
C230.077 (6)0.029 (4)0.045 (5)0.016 (4)0.005 (4)0.012 (4)
C240.065 (6)0.034 (5)0.053 (6)0.009 (4)0.016 (5)0.015 (4)
C250.043 (4)0.028 (4)0.044 (4)0.005 (3)0.001 (3)0.003 (3)
C260.044 (4)0.022 (4)0.046 (5)0.015 (3)0.006 (3)0.009 (3)
C270.039 (4)0.023 (4)0.043 (4)0.006 (3)0.004 (3)0.005 (3)
C280.040 (4)0.022 (4)0.034 (4)0.011 (3)0.006 (3)0.005 (3)
C290.078 (6)0.030 (4)0.041 (5)0.019 (4)0.006 (4)0.003 (4)
C300.055 (5)0.020 (4)0.044 (4)0.012 (3)0.004 (4)0.003 (3)
O010.045 (3)0.060 (4)0.041 (3)0.025 (3)0.002 (2)0.003 (3)
O020.048 (3)0.037 (3)0.042 (3)0.005 (3)0.009 (3)0.007 (3)
O030.055 (4)0.045 (4)0.036 (3)0.005 (3)0.010 (3)0.005 (3)
O040.047 (3)0.058 (4)0.049 (4)0.026 (3)0.014 (3)0.026 (3)
O050.043 (3)0.017 (3)0.061 (4)0.006 (2)0.004 (3)0.008 (2)
O060.054 (3)0.046 (4)0.041 (3)0.022 (3)0.002 (3)0.000 (3)
O070.059 (4)0.024 (3)0.060 (4)0.012 (3)0.022 (3)0.013 (3)
O080.060 (4)0.040 (3)0.058 (4)0.023 (3)0.011 (3)0.003 (3)
O090.050 (3)0.038 (3)0.059 (4)0.012 (3)0.001 (3)0.009 (3)
O100.056 (3)0.034 (3)0.051 (4)0.007 (3)0.001 (3)0.006 (3)
O210.041 (3)0.034 (3)0.055 (4)0.013 (2)0.007 (3)0.007 (3)
N010.047 (4)0.026 (3)0.041 (4)0.008 (3)0.005 (3)0.009 (3)
N210.042 (3)0.029 (3)0.032 (3)0.011 (3)0.004 (3)0.005 (3)
Geometric parameters (Å, º) top
C01—C061.389 (14)C21—H210.93
C01—C021.405 (16)C22—C231.384 (16)
C01—H010.93C22—H220.93
C02—C031.371 (18)C23—C241.373 (16)
C02—H020.93C23—H230.93
C03—C041.391 (17)C24—C251.407 (14)
C03—H030.93C24—H240.93
C04—C051.420 (14)C25—C261.410 (12)
C04—H040.93C25—H250.93
C05—C061.372 (13)C26—C271.514 (11)
C05—H050.93C27—O211.409 (10)
C06—C071.525 (11)C27—C281.531 (11)
C07—O011.397 (11)C27—H270.98
C07—C081.546 (11)C28—C291.510 (12)
C07—H070.98C28—N211.514 (10)
C08—N011.489 (11)C28—H280.93 (12)
C08—C091.519 (12)C29—H29A0.96
C08—H081.03 (12)C29—H29B0.96
C09—H09A0.96C29—H29C0.96
C09—H09B0.96C30—N211.496 (11)
C09—H09C0.96C30—H32A0.96
C10—N011.472 (12)C30—H32B0.96
C10—H12A0.96C30—H32C0.96
C10—H12B0.96O01—H060.82
C10—H12C0.96O04—H150.82
C11—O031.244 (12)O05—H160.82
C11—O021.261 (11)O08—H17A0.8445
C11—C121.519 (12)O08—H17B0.8564
C12—O041.404 (12)O09—H18A0.8562
C12—C131.539 (11)O09—H18B0.8464
C12—H130.98O10—H19A0.8551
C13—O051.435 (9)O10—H19B0.861
C13—C141.518 (11)O21—H260.82
C13—H140.98N01—H110.9
C14—O061.231 (11)N01—H10A0.9
C14—O071.275 (10)N21—H300.9
C21—C261.373 (13)N21—H310.9
C21—C221.384 (14)
C06—C01—C02120.1 (10)C26—C21—H21119.1
C06—C01—H01119.9C22—C21—H21119.1
C02—C01—H01119.9C23—C22—C21119.8 (9)
C03—C02—C01120.5 (11)C23—C22—H22120.1
C03—C02—H02119.8C21—C22—H22120.1
C01—C02—H02119.8C24—C23—C22120.2 (9)
C02—C03—C04119.9 (10)C24—C23—H23119.9
C02—C03—H03120.1C22—C23—H23119.9
C04—C03—H03120.1C23—C24—C25119.9 (8)
C03—C04—C05119.4 (9)C23—C24—H24120.1
C03—C04—H04120.3C25—C24—H24120.1
C05—C04—H04120.3C24—C25—C26120.0 (8)
C06—C05—C04120.5 (9)C24—C25—H25120
C06—C05—H05119.8C26—C25—H25120
C04—C05—H05119.8C21—C26—C25118.3 (8)
C05—C06—C01119.6 (8)C21—C26—C27122.9 (7)
C05—C06—C07121.3 (8)C25—C26—C27118.7 (8)
C01—C06—C07119.1 (8)O21—C27—C26112.7 (7)
O01—C07—C06111.4 (7)O21—C27—C28107.6 (6)
O01—C07—C08108.6 (7)C26—C27—C28109.6 (6)
C06—C07—C08110.7 (6)O21—C27—H27108.9
O01—C07—H07108.7C26—C27—H27108.9
C06—C07—H07108.7C28—C27—H27108.9
C08—C07—H07108.7C29—C28—N21109.7 (6)
N01—C08—C09109.2 (7)C29—C28—C27114.1 (7)
N01—C08—C07107.3 (6)N21—C28—C27106.5 (6)
C09—C08—C07114.1 (8)C29—C28—H2899 (7)
N01—C08—H08106 (6)N21—C28—H28105 (7)
C09—C08—H08115 (6)C27—C28—H28121 (7)
C07—C08—H08105 (6)C28—C29—H29A109.5
C08—C09—H09A109.5C28—C29—H29B109.5
C08—C09—H09B109.5H29A—C29—H29B109.5
H09A—C09—H09B109.5C28—C29—H29C109.5
C08—C09—H09C109.5H29A—C29—H29C109.5
H09A—C09—H09C109.5H29B—C29—H29C109.5
H09B—C09—H09C109.5N21—C30—H32A109.5
N01—C10—H12A109.5N21—C30—H32B109.5
N01—C10—H12B109.5H32A—C30—H32B109.5
H12A—C10—H12B109.5N21—C30—H32C109.5
N01—C10—H12C109.5H32A—C30—H32C109.5
H12A—C10—H12C109.5H32B—C30—H32C109.5
H12B—C10—H12C109.5C07—O01—H06109.5
O03—C11—O02125.6 (8)C12—O04—H15109.5
O03—C11—C12116.0 (8)C13—O05—H16109.5
O02—C11—C12118.4 (8)H17A—O08—H17B107.6
O04—C12—C11113.6 (7)H18A—O09—H18B107.5
O04—C12—C13110.3 (7)H19A—O10—H19B106.2
C11—C12—C13110.9 (7)C27—O21—H26109.5
O04—C12—H13107.2C10—N01—C08115.4 (7)
C11—C12—H13107.2C10—N01—H11108.4
C13—C12—H13107.2C08—N01—H11108.4
O05—C13—C14112.1 (6)C10—N01—H10A108.4
O05—C13—C12107.2 (6)C08—N01—H10A108.4
C14—C13—C12112.3 (6)H11—N01—H10A107.5
O05—C13—H14108.4C30—N21—C28115.6 (6)
C14—C13—H14108.4C30—N21—H30108.4
C12—C13—H14108.4C28—N21—H30108.4
O06—C14—O07124.5 (8)C30—N21—H31108.4
O06—C14—C13119.9 (6)C28—N21—H31108.4
O07—C14—C13115.6 (7)H30—N21—H31107.4
C26—C21—C22121.8 (9)
C06—C01—C02—C032 (2)O05—C13—C14—O060.6 (10)
C01—C02—C03—C041.0 (19)C12—C13—C14—O06121.5 (8)
C02—C03—C04—C050.4 (16)O05—C13—C14—O07179.8 (6)
C03—C04—C05—C060.8 (13)C12—C13—C14—O0759.4 (9)
C04—C05—C06—C011.8 (12)C26—C21—C22—C230.2 (14)
C04—C05—C06—C07178.3 (8)C21—C22—C23—C241.0 (15)
C02—C01—C06—C052.4 (15)C22—C23—C24—C250.9 (15)
C02—C01—C06—C07177.6 (10)C23—C24—C25—C260.1 (14)
C05—C06—C07—O016.1 (10)C22—C21—C26—C250.6 (12)
C01—C06—C07—O01173.8 (8)C22—C21—C26—C27178.0 (9)
C05—C06—C07—C08114.8 (8)C24—C25—C26—C210.7 (13)
C01—C06—C07—C0865.2 (10)C24—C25—C26—C27178.2 (8)
O01—C07—C08—N0154.1 (8)C21—C26—C27—O2115.6 (11)
C06—C07—C08—N01176.7 (7)C25—C26—C27—O21167.0 (7)
O01—C07—C08—C0967.1 (10)C21—C26—C27—C28104.2 (8)
C06—C07—C08—C0955.5 (10)C25—C26—C27—C2873.1 (9)
O03—C11—C12—O04171.0 (8)O21—C27—C28—C2955.7 (9)
O02—C11—C12—O049.8 (11)C26—C27—C28—C2967.1 (9)
O03—C11—C12—C1364.0 (10)O21—C27—C28—N2165.4 (8)
O02—C11—C12—C13115.2 (8)C26—C27—C28—N21171.8 (6)
O04—C12—C13—O0565.7 (8)C09—C08—N01—C1083.5 (10)
C11—C12—C13—O0561.1 (9)C07—C08—N01—C10152.4 (8)
O04—C12—C13—C1457.9 (8)C29—C28—N21—C3062.7 (9)
C11—C12—C13—C14175.3 (7)C27—C28—N21—C30173.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O05—H16···O10i0.822.292.869 (9)128
N01—H11···O09i0.922.832 (10)153
O08—H17A···O02ii0.842.052.705 (9)134
O08—H17A···O04ii0.842.222.958 (10)145
O09—H18B···O03iii0.851.942.762 (9)165
O10—H19B···O07iii0.862.23.063 (10)176
O10—H19A···O05iv0.862.162.869 (9)140
N21—H30···O07v0.922.795 (9)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y1, z; (v) x1, y+1, z.
(EPHETOSY) (1R, 2S)-(-)-ephedrine P-tosylate top
Crystal data top
C17H23NO7SF(000) = 720
Mr = 337.42Dx = 1.294 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19550 reflections
a = 5.7491 (2) Åθ = 1.0–27.5°
b = 7.1665 (2) ŵ = 0.21 mm1
c = 42.0343 (9) ÅT = 150 K
V = 1731.85 (9) Å3Plate, white
Z = 40.35 × 0.35 × 0.05 mm
Data collection top
KappaCCD
diffractometer
3446 independent reflections
Radiation source: Enraf Nonius FR5902839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
h = 76
Tmin = 0.976, Tmax = 1.022k = 99
6102 measured reflectionsl = 3954
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3943P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3446 reflectionsΔρmax = 0.24 e Å3
263 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C17H23NO7SV = 1731.85 (9) Å3
Mr = 337.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7491 (2) ŵ = 0.21 mm1
b = 7.1665 (2) ÅT = 150 K
c = 42.0343 (9) Å0.35 × 0.35 × 0.05 mm
Data collection top
KappaCCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
R.H. Blessing, Acta Cryst. (1995), A51, 33-38
2839 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 1.022Rint = 0.018
6102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.29 e Å3
3446 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
263 parameters