research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Isomers and polymorphs of (E,E)-1,4-bis­(nitro­phenyl)-2,3-di­aza-1,3-butadienes

aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro-RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 28 February 2006; accepted 20 April 2006)

The structures of five of the possible six isomers of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadiene are reported, including two polymorphs of one of the isomers. (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene, C14H10N4O4 (I), crystallizes in two polymorphic forms (Ia) and (Ib) in which the molecules lie across centres of inversion in space groups P21/n and P21/c, respectively: the molecules in (Ia) and (Ib) are linked into chains by aromatic ππ stacking interactions and C—H⋯π(arene) hydrogen bonds, respectively. Molecules of (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene (II) are linked into sheets by two independent C—H⋯O hydrogen bonds. The molecules of (E,E)-1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene (III) lie across inversion centres in the space group P21/n, and a combination of a C—H⋯O hydrogen bond and a ππ stacking interaction links the molecules into sheets. A total of four independent C—H⋯O hydrogen bonds link the molecules of (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (IV) into sheets. In (E,E)-1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene (V) the molecules, which lie across centres of inversion in the space group P21/n, are linked by just two independent C—H⋯O hydrogen bonds into a three-dimensional framework.

1. Introduction

We have recently reported the supramolecular structures of the three isomeric (E,E)-1-(2-iodophenyl)-4-(nitrophenyl)-2,3-diaza-1,3-butadienes (Glidewell, Low, Skakle & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312-o316.]). In this series, the 2-nitro isomer forms chains, the 3-nitro isomer forms a three-dimensional framework structure, while the 4-nitro isomer forms a sheet structure. In each isomer, a different array of direction-specific intermolecular interactions is manifest: an iodo⋯nitro interaction in the 2-nitro isomer, C—H⋯O and C—H⋯I hydrogen bonds and aromatic ππ stacking interactions in the 3-nitro isomer, and a C—H⋯O hydrogen bond and an iodo⋯nitro interaction in the 4-nitro isomer. Intrigued by the changes in intermolecular interactions and the corresponding structural changes consequent upon a simple positional change of a single substituent, we have developed the earlier study to an even simpler series of positional isomers, namely the isomeric (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadienes, O2NC6H4CH=N—N=CHC6H4NO2, and again we observe wide structural variation. We report here the molecular and supramolecular structures of five of the possible six isomeric 1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadienes, compounds (I)–(V) (see Scheme[link], and Figs. 1[link][link][link][link][link]6[link]) and, in addition, we have identified two polymorphs of 1,4-bis(2-nitrophenyl)-2,3-diazabutadiene (I) (Figs. 1[link] and 2[link]), but we have consistently failed in attempts to synthesize the sixth isomer 1-(2-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (VI). Both polymorphs of (I) are monoclinic, but their b-axis vectors differ by a factor of more than two: we denote the polymorph with the shorter b axis as (Ia) and that with the longer b axis as (Ib). The structure of the polymorph denoted here as (Ia) was determined some years ago (Hsu et al., 1993[Hsu, L.-Y., Nordman, C. E. & Kenny, D. H. (1993). Acta Cryst. C49, 394-398.]) using ambient-temperature diffraction data: however, no discussion of the supramolecular aggregation was given; in particular, the occurrence of the ππ stacking interactions (see §3.2.1[link]) went unreported.[link]

[Scheme 1]
[Figure 1]
Figure 1
The molecule of polymorph (Ia) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with `a' are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 2]
Figure 2
The molecule of polymorph (Ib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with `a' are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
The molecule of isomer (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The molecule of isomer (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with `a' are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5]
Figure 5
The molecule of isomer (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The molecule of isomer (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and the atoms marked with `a' are at the symmetry position (1 − x, 1 − y, 1 − z).

2. Experimental

2.1. Synthesis

Isomers (Ia), (III) and (V) were obtained by heating under reflux a mixture of the appropriate nitrobenzaldehyde (3 mmol) and hydrazine hydrate (1.5 mmol) in methanol (20 cm3) for 30 min, and then leaving the reaction solution at room temperature for 24 h. The products were collected and recrystallized from 1,2-dichloroethane: m.p.s (Ia) 483–486 K, (III) 475–477 K, (V) >500 K. Similar reactions of 3-nitrobenzaldehyde hydrazone with 2-nitro- or 4-nitrobenzaldehyde yielded isomers (II) and (IV); (II) was recrystallized from methanol, m.p. 471–473 K after partial liquifaction at 421–423 K; (IV) was recrystallized from 1,2-dichloroethane, m.p. 480–483 K. Polymorph (Ib) was isolated by recrystallization, from 1,2-dichloroethane, of the initial product obtained by reaction of 2-nitrobenzaldehyde hydrazone and 2-iodobenz­aldehyde, m.p. 443–446 K, following loss of crystallinity at 423 K. Despite the reasonably straightforward preparations of the 2,3′ and 3,4′ isomers (II) and (IV), numerous attempts to prepare a sample of the 2,4′ isomer (VI) (see Scheme[link]) have consistently proved fruitless: using either the reaction of 2-nitrobenzaldehyde with 4-nitrobenzaldehyde hydrazone, or that of 4-nitrobenzaldehyde with 2-nitrobenzaldehyde hydrazone, the only crystalline products obtained were the symmetrical isomers (I) and (V). The reasons for this behaviour, so different from that in the preparations of isomers (II) and (IV), are entirely unclear.

2.2. Data collection, structure solution and refinement

Diffraction data for compounds (I)–(III) and (V) were collected at 120 (2) K using a Nonius–Kappa CCD diffractometer; in all these cases graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was employed. Data for (IV) were collected at 120 (2) K using a Bruker SMART APEX2 diffractometer and synchrotron radiation (λ = 0.6778 Å). Other details of cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed.

Table 1
Experimental table

  (Ia) (Ib) (II)
Crystal data
Chemical formula C14H10N4O4 C14H10N4O4 C14H10N4O4
Mr 298.26 298.26 298.26
Cell setting, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, P21
Temperature (K) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 9.1379 (4), 6.1776 (3), 11.7682 (4) 7.7809 (2), 14.7825 (6), 6.2196 (2) 7.8036 (2), 7.0914 (3), 12.3424 (4)
β (°) 93.853 (3) 113.106 (2) 101.742 (2)
V3) 662.82 (5) 658.00 (4) 668.72 (4)
Z 2 2 2
Dx (Mg m−3) 1.494 1.505 1.481
Radiation type Mo Kα Mo Kα Mo Kα
No. of reflections for cell parameters 1511 1503 1653
θ range (°) 3.5–27.5 3.2–27.5 3.3–27.5
μ (mm−1) 0.11 0.11 0.11
Crystal form, colour Block, yellow Block, yellow Blade, orange
Crystal size (mm) 0.46 × 0.34 × 0.18 0.48 × 0.22 × 0.08 0.50 × 0.32 × 0.12
       
Data collection
Diffractometer Bruker–Nonius 95 mm CCD camera on κ-goniostat Bruker–Nonius 95 mm CCD camera on κ-goniostat Bruker–Nonius 95 mm CCD camera on κ-goniostat
Data collection method φ and ω scans φ and ω scans φ and ω scans
Absorption correction Multi-scan Multi-scan Multi-scan
Tmin 0.967 0.957 0.936
Tmax 0.980 0.991 0.987
No. of measured, independent and observed reflections 8093, 1511, 1232 10 780, 1503, 1222 7771, 1653, 1519
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.034 0.043 0.031
θmax (°) 27.5 27.5 27.5
Range of h, k, l −10 → h → 11 −9 → h → 10 −10 → h → 10
  −7 → k → 8 −19 → k → 19 −8 → k → 9
  −15 → l → 15 −8 → l → 8 −15 → l → 14
       
Refinement
Refinement on F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.124, 1.00 0.060, 0.160, 1.02 0.040, 0.107, 1.25
No. of reflections 1511 1503 1653
No. of parameters 100 100 199
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.093P)2 + 0.0092P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.8974P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0096P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 <0.0001 <0.0001
Δρmax, Δρmin (e Å−3) 0.23, −0.29 1.44, −0.31 0.27, −0.31
  (III) (IV) (V)
Crystal data
Chemical formula C14H10N4O4 C14H10N4O4 C14H10N4O4
Mr 298.26 298.26 298.26
Cell setting, space group Monoclinic, P21/n Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 7.0128 (4), 7.6318 (5), 12.8037 (5) 30.865 (3), 4.7660 (5), 21.736 (2) 3.7318 (2), 7.2442 (3), 23.9367 (10)
β (°) 105.825 (3) 123.926 (2) 94.053 (2)
V3) 659.29 (6) 2653.1 (5) 645.48 (5)
Z 2 8 2
Dx (Mg m−3) 1.502 1.493 1.535
Radiation type Mo Kα Synchrotron Mo Kα
No. of reflections for cell parameters 1507 2789 1479
θ range (°) 3.1–27.6 3.0–28.8 2.9–27.6
μ (mm−1) 0.11 0.11 0.12
Crystal form, colour Plate, yellow Lath, yellow Lath, yellow
Crystal size (mm) 0.43 × 0.30 × 0.08 0.10 × 0.06 × 0.01 0.40 × 0.10 × 0.01
       
Data collection
Diffractometer Bruker–Nonius 95 mm CCD camera on κ goniostat Bruker SMART APEX2 CCD diffractometer Bruker–Nonius 95 mm CCD camera on κ goniostat
Data collection method φ and ω scans Fine-slice ω scans φ and ω scans
Absorption correction Multi-scan Multi-scan Multi-scan
Tmin 0.969 0.980 0.949
Tmax 0.991 0.999 0.999
No. of measured, independent and observed reflections 7854, 1507, 1095 14 589, 3961, 2817 6443, 1479, 1239
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.061 0.034 0.049
θmax (°) 27.6 29.0 27.6
Range of h, k, l −9 → h → 9 −43 → h → 44 −4 → h → 4
  −9 → k → 9 −6 → k → 6 −9 → k → 9
  −16 → l → 14 −30 → l → 30 −30 → l → 31
       
Refinement
Refinement on F2 F2 F2
R[F2> 2σ(F2)], wR(F2), S 0.044, 0.122, 1.04 0.057, 0.170, 1.09 0.041, 0.110, 1.06
No. of reflections 1507 3961 1479
No. of parameters 100 199 100
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.068P)2 + 0.1014P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.095P)2 + 1.033P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.3185P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 0.001 0.001
Δρmax, Δρmin (e Å–3) 0.20, −0.35 0.44, −0.26 0.24, −0.24
Computer programs used: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.]), APEX2 (Bruker AXS Inc., 2004[Bruker AXS Inc. (2004). APEX2 and SAINT, Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SAINT (Bruker AXS Inc., 2004[Bruker AXS Inc. (2004). APEX2 and SAINT, Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]), OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA - a WordPerfect-5.1 Macro to Formulate and Polish CIF Format Files from the SHELXL-97 Refinement of Kappa-CCD Data. University of Guelph, Canada.]), SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]).

For each of (Ia), (III) and (V), the space group P21/n was uniquely assigned from the systematic absences; likewise the space group P21/c was uniquely assigned for (Ib). For isomer (II) the systematic absences permitted P21 and P21/m as possible space groups: from a consideration of the unit-cell volume and the likely value of Z′, the space group P21 was selected and subsequently confirmed by the structure analysis. For isomer (IV), the systematic absences permitted Cc and C2/c as possible space groups: C2/c was selected and subsequently confirmed by the structure analysis.

The structures were solved by direct methods and refined with all data on F2. A weighting scheme based upon P = [Fo2 + 2Fc2]/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and then treated as riding atoms with C—H distances of 0.95 Å and with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous dispersion, the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) for (II) was inconclusive (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]): hence the Friedel-equivalent reflections were merged prior to the final refinements and it was not possible to determine the correct orientation of the structure relative to the polar-axis direction (Jones, 1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]). In isomer (Ib), the maximum residual density, 1.438 e Å−3, is located 0.93 Å from the C4 atom, lying almost equidistant from H4 and H5, while the largest hole, −0.306 e Å−3, is located 0.62 Å from N2: no plausible disorder model can be developed to take account of these extrema.

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Details of molecular conformations are given in Table 2[link], and details of hydrogen-bond dimensions are given in Table 3[link].1

Table 2
Selected torsional angles (°)

(a) Centrosymmetric isomers
Parameter (Ia) (Ib) (III) (V)
N1i—N1—C7—C1 −176.75 (11) −176.8 (2) −179.28 (14) 179.48 (13)
N1—C7—C1—C2 −146.55 (12) −149.4 (2) −3.0 (2) 178.82 (13)
C1—C2—N2—O21 19.17 (15) 21.2 (3)
C2—C3—N3—O31 −3.83 (19)
C3—C4—N4—O41 9.71 (19)
(b) Non-centrosymmetric isomers
Parameter (II) (IV)
C17—N11—N21—C27 175.13 (18) −172.53 (14)
N21—N11—C17—C11 −179.66 (18) −179.43 (13)
N11—C17—C11—C12 −159.7 (2) 6.4 (2)
N11—N21—C27—C21 179.39 (17 −178.92 (14)
N21—C27—C21—C22 165.11 (19) −175.28 (15)
C11—C12—N12—O121 25.1 (3)
C22—C23—N23—O231 −3.9 (3)
C12—C13—N13—O131 −1.5 (2)
C23—C24—N24—O241 −0.1 (2)
Symmetry code: (i) 1 − x, 1 − y, 1 − z.

Table 3
Selected hydrogen-bond parameters (Å, o)

D—H⋯A H⋯A DA D—H⋯A
(Ib)      
C3—H3⋯Cg1i 2.89 3.568 (2) 129
       
(II)      
C14—H14⋯O232ii 2.45 3.178 (3) 134
C22—H22⋯O231iii 2.51 3.289 (3) 139
       
(III)      
C4—H4⋯O32iv 2.50 3.448 (2) 176
       
(IV)      
C14—H14⋯O132v 2.44 3.309 (3) 151
C17—H17⋯O242vi 2.42 3.262 (2) 147
C22—H22⋯O131vii 2.51 3.363 (3) 149
C27—H27⋯O131vii 2.53 3.383 (2) 149
       
(V)      
C3—H3⋯O41viii 2.50 3.186 (2) 129
C7—H7⋯O42ix 2.47 3.343 (2) 152
Symmetry codes: (i) [x, {3\over 2}- y, -{1\over 2} + z]; (ii) 1 + x, 2 + y, z; (iii) [1 - x, {1\over 2} + y, 1 - z]; (iv) -1 - x, -y, 1 - z; (v) 1 - x, -2 - y, 1 - z; (vi) [{3\over 2} - x, {3\over 2} - y, 1 - z]; (vii) [1 - x, 1 + y, {1\over 2} - z]; (viii) [{3\over 2} - x, -{1\over 2} + y, {3\over 2} - z]; (ix) 1 + x, -1 + y, z.
†Cg1 is the centroid of ring C1–C6.

3. Results and discussion

3.1. Molecular conformations

In the symmetrically substituted isomers (I), (III) and (V), the molecules lie across centres of inversion, and in all of the isomers the central C—C=N—N=C—C fragment has an all-transoid conformation and it is essentially planar, as shown by the leading torsional angles (Table 2[link]). In both polymorphs of (I), where there is a 2-nitro substituent, the aryl rings are significantly twisted out of the plane of the central spacer unit, and the molecular conformations are very similar, as shown by the leading torsional angles (Table 2[link]). However, in isomers (III) and (V), containing 3-nitro and 4-nitro substituents, respectively, the aryl rings are almost coplanar with the spacer unit. In (III) the nitro group is on the edge of the molecule remote from the methine C—H bond, whereas in both polymorphs of (I) the two groups are on the same edge (Table 2[link]; Figs. 1[link], 2[link] and 4[link]). In isomer (II) both of the independent nitro groups are on the same edges of the molecules as the nearest methine C—H bond, whereas the 3-nitro group in isomer (IV) is remote from the corresponding C—H bond (Table 2[link]; Figs. 3[link] and 5[link]). In all of compounds (I)–(V), the bond lengths and angles present no unusual features.

3.2. Supramolecular aggregation

3.2.1. Polymorphs of isomer (I), 1,4-bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene

The supramolecular aggregation of the two polymorphs (Ia) and (Ib) of isomer (I) differs significantly: the supramolecular aggregation is determined in (Ia) by an aromatic ππ stacking interaction and in (Ib) by a C—H⋯π(arene) hydrogen bond: ππ stacking interactions are absent from the structure of (Ib).

The aryl rings in (Ia) at (x, y, z) and (−x, 2 − y, 1 − z) are components of the molecules across the inversion centres at (0.5, 0.5, 0.5) and (−0.5, 1.5, 0.5), respectively. These two rings are strictly parallel with an interplanar spacing of 3.569 (2) Å; the ring–centroid separation is 3.887 (2) Å, corresponding to a nearly ideal centroid offset of 1.539 (2) Å. Propagation by inversion of this interaction then leads to the formation of a π-stacked chain of centrosymmetric molecules running parallel to the [[1\bar10]] direction (Fig. 7[link]).

[Figure 7]
Figure 7
Stereoview of part of the crystal structure of polymorph (Ia) showing the formation of a π-stacked chain along [[1\bar10]]. For the sake of clarity the H atoms have all been omitted.

In polymorph (Ib) the chain structure is generated by a single C—H⋯π(arene) hydrogen bond (Table 3[link]). The aryl C3 atom in the ring at (x, y, z) is part of the molecule centred across (½, ½, ½): this atom acts as a hydrogen-bond donor to the aryl ring at (x, [{3\over 2}]y, −½ + z), which forms part of the molecule centred across (½, 1, 0). Propagation of this hydrogen bond then forms a zigzag chain running parallel to the [[01\bar1]] direction and generated by the c-glide plane at y = 0.75 (Fig. 8[link]). In the structures of both (Ia) and (Ib) two chains pass through each unit cell, but there are no direction-specific interactions between adjacent chains.

[Figure 8]
Figure 8
Stereoview of part of the crystal structure of polymorph (Ib) showing the formation of a hydrogen-bonded chain along [[01\bar1]]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.
3.2.2. Isomer (II), 1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene

In contrast to the dimorphism observed for (I), only a single polymorph has been observed for the isomeric 1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diazabutadi­ene (II) (Fig. 3[link]). In this isomer the molecules lie in general positions in the non-centrosymmetric space group P21, but the molecular skeleton apart from the nitro groups is nearly centrosymmetric, as shown by the principal torsional angles (Table 2[link]).

The two-dimensional supramolecular structure of isomer (II) is built from two independent C—H⋯O hydrogen bonds (Table 3[link]), augmented by a ππ stacking interaction: C—H⋯π(arene) hydrogen bonds are absent, however. The aryl C22 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro O231 atom in the molecule at (1 − x, ½ + y, 1 − z), so forming a spiral C(5) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) running parallel to the [010] direction and generated by the 21 screw axis along (½, y, ½) (Fig. 9[link]). At the same time, the aryl C14 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro O232 atom in the molecule at (1 + x, 2 + y, z), so generating by translation a C(14) chain running parallel to the [120] direction (Fig. 10[link]). It is notable that the two O acceptor atoms in (II) belong to the same nitro group: the second nitro group containing the N12 atom plays no part in the hydrogen bonding. The combination of the [101] and [120] chains generates a (001) sheet, which is reinforced by the ππ stacking interaction.

[Figure 9]
Figure 9
Stereoview of part of the crystal structure of isomer (II) showing the formation of a hydrogen-bonded C(5) chain along [010]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.
[Figure 10]
Figure 10
Stereoview of part of the crystal structure of isomer (II) showing the formation of a hydrogen-bonded C(14) chain along [120]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.

The aryl rings C11–C16 and C21–C26 in the molecules at (x, y, z) and (1 + x, 1 + y, z), respectively, make a dihedral angle of only 1.1 (2)°. The ring–centroid separation is 3.722 (2) Å and the interplanar spacing is ca 3.42 Å, corresponding to a centroid offset of ca 1.48 Å. In this manner a [110] chain is produced (Fig. 11[link]), which lies wholly within the hydrogen-bonded (001) sheet. There are no direction-specific interactions between adjacent sheets.

[Figure 11]
Figure 11
Stereoview of part of the crystal structure of isomer (II) showing the formation of a π-stacked chain along [110]. For the sake of clarity the H atoms have all been omitted.
3.2.3. Isomer (III), 1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene

The molecules of the 3,3′ isomer (III) (Fig. 4[link]) lie across centres of inversion in the space group P21/n with the reference molecule selected as that lying across (½, ½, ½). The molecules are effectively planar, and they are linked into chains of rings by a single C—H⋯O hydrogen bond (Table 3[link]), and the chains are further linked into sheets by a single ππ stacking interaction. The aryl C4 atom at (x, y, z), which lies in the molecule centred at (½, ½, ½), acts as a hydrogen-bond donor to the nitro O32 atom at (−1 − x, −y, 1 − z), which lies in the molecule centred at (−[3\over 2], −½, ½): propagation by inversion of this single hydrogen bond then generates a C(14)[R22(10)] chain of rings running parallel to the [210] direction (Fig. 12[link]).

[Figure 12]
Figure 12
Stereoview of part of the crystal structure of isomer (III) showing the formation of a hydrogen-bonded chain of rings along [210]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.

The aryl rings at (x, y, z) and (−x, −y, 1 − z), which form parts of the molecules of (III) centred at (½, ½, ½) and (−½, −½, ½), respectively, are strictly parallel with an interplanar spacing of 3.344 (2) Å; the ring–centroid separation is 3.784 (2) Å, corresponding to a ring offset of 1.770 (2) Å. Propagation by inversion of this π-stacking interaction then generates a chain running parallel to the [110] direction (Fig. 13[link]). The combination of [110] and [210] chains generates a (001) sheet, but there are no direction-specific interactions between adjacent sheets.

[Figure 13]
Figure 13
Stereoview of part of the crystal structure of isomer (III) showing the formation of a π-stacked chain along [110]. For the sake of clarity the H atoms have been omitted.
3.2.4. Isomer (IV), 1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene

Although the molecules of the 3,4′ isomer (IV) (Fig. 5[link]) have no crystallographic symmetry, nonetheless they are very nearly planar. The two-dimensional aggregation is determined by four C—H⋯O hydrogen bonds (Table 3[link]), but it can readily be analysed in terms of two one-dimensional substructures. In the first of these substructures, the aryl C14 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro O132 atom in the molecule at (1 − x, −2 − y, 1 − z), thereby forming an R22(10) ring centred at (½, −1, ½): similarly, the methine C17 atom at (x, y, z) acts as a donor to the nitro O242 atom in the molecule at ([3\over 2]x, [3\over 2]y, 1 − z), so forming an R22(22) ring centred at ([3\over 4], [3\over 4], ½). Propagation by inversion of these two interactions then generates a C22(22)[R22(10)][R22(22)] chain of rings running parallel to the [170] direction (Fig. 14[link]). In the second substructure, atoms C22 and C27 in the molecule at (x, y, z) both act as donors to the nitro O131 atom in the molecule at (1 − x, 1 + y, ½ − z), while C22 and C27 at (1 − x, 1 + y, ½ − z) in turn act as donors to O131 at (x, 2 + y, z). In this way a pair of C(10)C(12)[R21(6)] chains of rings (Fig. 15[link]) is generated by the twofold rotation axis along (½, y, [1\over 4]), forming a double helix running parallel to the [010] direction (Fig. 16[link]). The combination of the [170] and [010] chains generates a (001) sheet.

[Figure 14]
Figure 14
Stereoview of part of the crystal structure of isomer (IV) showing the formation of a chain along [170] containing R22(10) and R22(22) rings. For the sake of clarity the H atoms not involved in the motif shown have been omitted.
[Figure 15]
Figure 15
Part of the crystal structure of isomer (IV) showing the formation of a [010] chain of rings along [010]. For the sake of clarity the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, 1 + y, ½ − z) and (x, 2 + y, z), respectively.
[Figure 16]
Figure 16
Stereoview of part of the crystal structure of isomer (IV), showing the formation of a hydrogen-bonded double helix along [010]. For the sake of clarity the H atoms not involved in the motif shown have been omitted.
3.2.5. Isomer (V), 1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene

The molecules of the 4,4′ isomer (V) (Fig. 6[link]) lie across centres of inversion in the space group P21/n with the reference molecule selected as that lying across (½, ½, ½). With the exception of the nitro groups, the molecules are effectively planar (Table 2[link]). The supramolecular aggregation in (V) is dominated by two C—H⋯O hydrogen bonds, one much stronger than the other (Table 3[link]). The overall effect of these interactions is to link the molecules into a three-dimensional framework, and the formation of this framework is most readily analysed in terms of two substructures, each generated by a single hydrogen bond. In the stronger interaction, the methine C7 atom at (x, y, z) acts as a hydrogen-bond donor to the nitro O41 atom at (1 + x, −1 + y, z): propagation of this interaction by translation and inversion then leads to the formation of a chain of edge-fused centrosymmetric R22(22) rings running parallel to the [[1\bar10]] direction (Fig. 17[link]).

[Figure 17]
Figure 17
Part of the crystal structure of isomer (V) showing the formation of a chain of edge-fused R22(22) rings along [[1\bar10]]. For the sake of clarity the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (1 − x, 1 − y, 1 − z), (1 + x, −1 + y, z) and (2 − x, −y, 1 − z), respectively.

In contrast to the stronger hydrogen bond, which generates a one-dimensional substructure, the weaker interaction generates a substructure which is two-dimensional. The aryl atoms C3 at (x, y, z) and (1 − x, 1 − y, 1 − z), which both form part of the molecule centred at (½, ½, ½), act as hydrogen-bond donors, respectively, to the nitro O41 atoms at ([3\over 2]x, −½ + y, [3\over 2]z) and (−½ + x, [3\over 2]y, −½ + z), which themselves lie in the molecules centred at (1, 0, 1) and (0, 1, 0), respectively. Similarly, the O41 atoms at (x, y, z) and (1 − x, 1 − y, 1 − z) accept hydrogen bonds from C3 atoms at ([3\over 2]x, ½ + y, [3\over 2]z) and (−½ + x, ½ − y, −½ + z), respectively, which are components of the molecules centred at (1, 1, 1) and (0, 0, 0), respectively. Propagation of this hydrogen bond then generates a ([10\bar1]) sheet in the form of a (4, 4) net (Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]) built from a single type of R44(38) ring (Fig. 18[link]). The combination of the [[1\bar10]] chains and ([10\bar1]) sheets suffices to link all of the molecules into a single framework, from which C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking interactions are, however, both absent.

[Figure 18]
Figure 18
Stereoview of part of the crystal structure of isomer (V) showing the formation of a sheet of R44(38) rings parallel to ([10\bar1]). For the sake of clarity the H atoms not involved in the motif shown have been omitted.
3.2.6. General discussion of the structures

In making comparisons between the supramolecular aggregation patterns of the various forms of bis(nitrobenzaldehyde)azine, it is convenient to consider firstly the symmetrically substituted isomers and then the non-symmetric forms. The supramolecular structures of the two polymorphs (Ia) and (Ib) of the 2,2′-isomer are both one-dimensional (Figs. 7[link] and 8[link]), but they depend upon different intermolecular interactions, ππ stacking in (Ia) and a C—H⋯π(arene) hydrogen bond in (Ib). In the 3,3′-isomer (III) the supramolecular structure is two-dimensional, utilizing a C—H⋯O hydrogen bond and a ππ stacking interaction, while in the 4,4′-isomer (V) the only direction-specific intermolecular interactions are two independent C—H⋯O hydrogen bonds which generate a three-dimensional structure. Thus, these symmetrical isomers can form supramolecular structures which are one-, two- or three-dimensional, and in which no two exhibit the same types of intermolecular interaction.

Amongst the three non-symmetrically substituted isomers, the 2,3′-isomer (II) forms a two-dimensional supramolecular structure dominated by two C—H⋯O hydrogen bonds, and the structure of the 3,4′-isomer (IV) is again two-dimensional but here determined by four independent C—H⋯O hydrogen bonds.

Within the two- and three-dimensional structures a wide variety of low-dimensional substructures can be discerned, including simple chains in the 2,3′-isomer (II) (Figs. 9[link] and 10[link]), chains of rings in both the 3,3′-isomer (III) and the 3,4′-isomer (IV), including a double-helical chain in (IV) (Figs. 12[link], 14[link], 15[link] and 16[link]), and both chains of edge-fused rings and sheets of R44(38) rings in the 4,4′-isomer (V) (Figs. 17[link] and 18[link]).

These supramolecular structures are built from C—H⋯O and C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking interactions although, perhaps surprisingly, C—H⋯N hydrogen bonds are absent. All of these interactions are comparatively weak; accordingly, the computational modelling and prediction of crystal structures in which interactions of this type are the only direction-specific intermolecular interactions present, is fraught with difficulty. Despite considerable effort in recent years, reliable predictive methods for such structures remain elusive: extended series of isomeric compounds, such as those whose structures are described here, will provide a keen test of computational methods for structure prediction.

4. Concluding remarks

The supramolecular structures of (Ia), (Ib) and (II)–(V) all exhibit different combinations of direction-specific intermolecular interactions, and different overall patterns of supramolecular aggregation. Accordingly it is not possible to make a reliable prediction of the supramolecular molecular structure of isomer (VI). To the extent that no one structure in this series can be predicted, even with knowledge of all the others, the series under study here neatly mimics the behaviour of other extended series of simple positional isomers which we have studied recently, including iodo-arene-nitroarenesulfonamides (Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]), nitrobenzylidene-iodoanilines, where solvent-dependent polymorphism occurs (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]; Ferguson et al., 2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445-o449.]), iodo-N-(nitrobenzyl)anilines (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]) and N-iodophenyl)nitrophthalimides (Glidewell, Low, Skakle, Wardell & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]). In each of these series, every isomer manifests a distinct pattern of intermolecular interactions such that predictions on further isomers become merely speculative. The occurrence of polymorphism in two of these series adds to the overall complexity, which presents a keen challenge to computational methods for crystal structure prediction.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

Data collection: COLLECT (Hooft, 1999) for (Ia), (Ib), (II), (III), (V); Bruker APEX2 for (IV). Cell refinement: DENZO (Otwinowski & Minor, 1997) & COLLECT for (Ia), (Ib), (II), (III), (V); Bruker SAINT for (IV). Data reduction: DENZO & COLLECT for (Ia), (Ib), (II), (III), (V); Bruker SAINT for (IV). Program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997) for (Ia), (Ib), (II), (III), (V); SHELXS97 (Sheldrick, 1997) for (IV). Program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997) for (Ia), (Ib), (II), (III), (V); SHELXL97 (Sheldrick, 1997) for (IV). For all compounds, molecular graphics: PLATON (Spek, 2003). Software used to prepare material for publication: SHELXL97 macro PRPKAPPA (Ferguson, 1999) for (Ia), (Ib), (II), (III), (V); SHELXL97 and PRPKAPPA (Ferguson, 1999) for (IV).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
In full text version
(Ia) (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 308
Mr = 298.26Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1511 reflections
a = 9.1379 (4) Åθ = 3.5–27.5°
b = 6.1776 (3) ŵ = 0.11 mm1
c = 11.7682 (4) ÅT = 120 K
β = 93.853 (3)°Block, yellow
V = 662.82 (5) Å30.46 × 0.34 × 0.18 mm
Z = 2
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1511 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ & ω scansh = 1011
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
k = 78
Tmin = 0.967, Tmax = 0.980l = 1515
8093 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.093P)2 + 0.0092P]
where P = (Fo2 + 2Fc2)/3
1511 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H10N4O4V = 662.82 (5) Å3
Mr = 298.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.1379 (4) ŵ = 0.11 mm1
b = 6.1776 (3) ÅT = 120 K
c = 11.7682 (4) Å0.46 × 0.34 × 0.18 mm
β = 93.853 (3)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1511 independent reflections
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
1232 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.980Rint = 0.034
8093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1511 reflectionsΔρmin = 0.29 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.46979 (8)0.98902 (15)0.69804 (7)0.0251 (3)
O220.30848 (9)1.22318 (15)0.74435 (7)0.0301 (3)
N10.46268 (10)0.58815 (16)0.47246 (8)0.0211 (3)
N20.35647 (10)1.09231 (16)0.67747 (8)0.0202 (3)
C10.29761 (12)0.87752 (18)0.50217 (9)0.0193 (3)
C20.27452 (12)1.06186 (19)0.56715 (9)0.0185 (3)
C30.17968 (12)1.22613 (19)0.53063 (10)0.0236 (3)
C40.10725 (14)1.2111 (2)0.42404 (11)0.0294 (3)
C50.12914 (13)1.0315 (2)0.35656 (10)0.0288 (3)
C60.22146 (13)0.8663 (2)0.39507 (10)0.0249 (3)
C70.39007 (12)0.69393 (18)0.54258 (9)0.0194 (3)
H30.16461.34740.57810.028*
H40.04281.32320.39710.035*
H50.08011.02210.28300.035*
H60.23350.74320.34820.030*
H70.39550.65460.62080.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0213 (5)0.0273 (5)0.0260 (4)0.0033 (4)0.0032 (3)0.0006 (3)
O220.0314 (5)0.0331 (6)0.0261 (5)0.0043 (4)0.0042 (4)0.0111 (4)
N10.0226 (5)0.0182 (5)0.0228 (5)0.0019 (4)0.0031 (4)0.0005 (4)
N20.0208 (5)0.0194 (5)0.0206 (5)0.0013 (4)0.0034 (4)0.0009 (4)
C10.0172 (6)0.0215 (6)0.0195 (6)0.0012 (5)0.0042 (4)0.0007 (5)
C20.0159 (6)0.0215 (6)0.0183 (5)0.0011 (4)0.0019 (4)0.0016 (4)
C30.0213 (6)0.0210 (6)0.0288 (6)0.0002 (5)0.0030 (5)0.0010 (5)
C40.0238 (6)0.0301 (7)0.0336 (7)0.0039 (5)0.0025 (5)0.0096 (5)
C50.0257 (7)0.0389 (8)0.0212 (6)0.0017 (6)0.0030 (5)0.0048 (5)
C60.0231 (6)0.0307 (7)0.0211 (6)0.0017 (5)0.0019 (5)0.0030 (5)
C70.0198 (6)0.0194 (6)0.0188 (5)0.0016 (4)0.0012 (4)0.0009 (4)
Geometric parameters (Å, º) top
N1—C71.2735 (15)N2—O221.2295 (13)
N1—N1i1.4186 (18)C3—C41.3815 (17)
C7—C11.4739 (16)C3—H30.95
C7—H70.95C4—C51.386 (2)
C1—C21.3956 (16)C4—H40.95
C1—C61.3998 (16)C5—C61.3814 (18)
C2—C31.3840 (16)C5—H50.95
C2—N21.4667 (14)C6—H60.95
N2—O211.2265 (12)
C7—N1—N1i110.69 (11)C4—C3—C2118.96 (11)
N1—C7—C1119.87 (10)C4—C3—H3120.5
N1—C7—H7120.1C2—C3—H3120.5
C1—C7—H7120.1C3—C4—C5119.69 (11)
C2—C1—C6116.72 (11)C3—C4—H4120.2
C2—C1—C7123.75 (10)C5—C4—H4120.2
C6—C1—C7119.46 (11)C6—C5—C4120.78 (11)
C3—C2—C1122.87 (11)C6—C5—H5119.6
C3—C2—N2116.91 (10)C4—C5—H5119.6
C1—C2—N2120.18 (10)C5—C6—C1120.95 (11)
O21—N2—O22123.27 (9)C5—C6—H6119.5
O21—N2—C2118.82 (9)C1—C6—H6119.5
O22—N2—C2117.91 (9)
N1i—N1—C7—C1176.75 (11)C3—C2—N2—O2220.50 (15)
N1—C7—C1—C2146.55 (12)C1—C2—N2—O22161.76 (11)
N1—C7—C1—C636.77 (16)C1—C2—C3—C41.80 (18)
C6—C1—C2—C31.16 (18)N2—C2—C3—C4175.89 (10)
C7—C1—C2—C3175.60 (10)C2—C3—C4—C50.85 (18)
C6—C1—C2—N2176.45 (9)C3—C4—C5—C60.7 (2)
C7—C1—C2—N26.79 (17)C4—C5—C6—C11.3 (2)
C3—C2—N2—O21158.58 (10)C2—C1—C6—C50.40 (18)
C1—C2—N2—O2119.17 (15)C7—C1—C6—C5177.31 (11)
Symmetry code: (i) x+1, y+1, z+1.
(Ib) (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 308
Mr = 298.26Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1503 reflections
a = 7.7809 (2) Åθ = 3.2–27.5°
b = 14.7825 (6) ŵ = 0.11 mm1
c = 6.2196 (2) ÅT = 120 K
β = 113.106 (2)°Block, yellow
V = 658.00 (4) Å30.48 × 0.22 × 0.08 mm
Z = 2
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1503 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 910
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
k = 1919
Tmin = 0.957, Tmax = 0.991l = 88
10780 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0754P)2 + 0.8974P]
where P = (Fo2 + 2Fc2)/3
1503 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H10N4O4V = 658.00 (4) Å3
Mr = 298.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7809 (2) ŵ = 0.11 mm1
b = 14.7825 (6) ÅT = 120 K
c = 6.2196 (2) Å0.48 × 0.22 × 0.08 mm
β = 113.106 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1503 independent reflections
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
1222 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.991Rint = 0.043
10780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.02Δρmax = 1.44 e Å3
1503 reflectionsΔρmin = 0.31 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O210.7127 (2)0.61167 (11)0.0804 (3)0.0260 (4)
O220.6322 (2)0.71425 (11)0.1895 (3)0.0295 (4)
N10.4327 (3)0.50685 (13)0.3852 (3)0.0227 (4)
N20.5951 (3)0.65689 (12)0.0702 (3)0.0214 (4)
C10.3442 (3)0.60172 (14)0.0518 (4)0.0202 (5)
C20.3975 (3)0.64220 (14)0.1167 (4)0.0195 (5)
C30.2679 (3)0.66893 (15)0.3334 (4)0.0241 (5)
C40.0765 (4)0.65544 (17)0.3887 (4)0.0309 (6)
C50.0223 (3)0.61676 (17)0.2229 (4)0.0307 (6)
C60.1530 (3)0.59099 (16)0.0072 (4)0.0251 (5)
C70.4746 (3)0.57464 (15)0.2876 (4)0.0198 (5)
H30.30820.69620.44380.029*
H40.01390.67260.53720.037*
H50.10680.60780.25770.037*
H60.11150.56530.10410.030*
H70.58760.60700.36560.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O210.0241 (8)0.0289 (9)0.0234 (8)0.0034 (6)0.0078 (7)0.0022 (6)
O220.0322 (9)0.0272 (9)0.0353 (10)0.0017 (7)0.0197 (8)0.0071 (7)
N10.0283 (10)0.0227 (10)0.0168 (9)0.0007 (7)0.0086 (8)0.0015 (7)
N20.0255 (10)0.0190 (9)0.0226 (9)0.0004 (7)0.0123 (8)0.0023 (7)
C10.0249 (11)0.0152 (10)0.0215 (11)0.0010 (8)0.0102 (9)0.0009 (8)
C20.0206 (10)0.0174 (10)0.0211 (10)0.0001 (8)0.0090 (8)0.0013 (8)
C30.0292 (12)0.0220 (11)0.0213 (11)0.0015 (9)0.0102 (9)0.0028 (8)
C40.0352 (13)0.0315 (13)0.0222 (11)0.0090 (10)0.0073 (10)0.0067 (10)
C50.0233 (11)0.0331 (13)0.0341 (13)0.0001 (10)0.0094 (10)0.0021 (11)
C60.0252 (12)0.0251 (11)0.0263 (12)0.0021 (9)0.0115 (9)0.0015 (9)
C70.0221 (10)0.0202 (10)0.0179 (10)0.0013 (8)0.0085 (8)0.0006 (8)
Geometric parameters (Å, º) top
N1—C71.278 (3)N2—O221.233 (2)
N1—N1i1.415 (4)C3—C41.405 (4)
C7—C11.474 (3)C3—H30.95
C7—H70.95C4—C51.382 (4)
C1—C61.395 (3)C4—H40.95
C1—C21.403 (3)C5—C61.381 (3)
C2—C31.386 (3)C5—H50.95
C2—N21.465 (3)C6—H60.95
N2—O211.221 (2)
C7—N1—N1i111.4 (2)C2—C3—C4119.6 (2)
N1—C7—C1118.77 (19)C2—C3—H3120.2
N1—C7—H7120.6C4—C3—H3120.2
C1—C7—H7120.6C5—C4—C3118.7 (2)
C6—C1—C2116.7 (2)C5—C4—H4120.6
C6—C1—C7118.50 (19)C3—C4—H4120.6
C2—C1—C7124.69 (19)C6—C5—C4121.0 (2)
C3—C2—C1122.1 (2)C6—C5—H5119.5
C3—C2—N2117.17 (19)C4—C5—H5119.5
C1—C2—N2120.70 (19)C5—C6—C1121.8 (2)
O21—N2—O22123.76 (19)C5—C6—H6119.1
O21—N2—C2118.92 (18)C1—C6—H6119.1
O22—N2—C2117.31 (18)
N1i—N1—C7—C1176.8 (2)C3—C2—N2—O2221.2 (3)
N1—C7—C1—C634.0 (3)C1—C2—N2—O22159.54 (19)
N1—C7—C1—C2149.4 (2)C1—C2—C3—C40.1 (3)
C6—C1—C2—C31.2 (3)N2—C2—C3—C4179.2 (2)
C7—C1—C2—C3177.9 (2)C2—C3—C4—C50.9 (4)
C6—C1—C2—N2179.58 (19)C3—C4—C5—C60.5 (4)
C7—C1—C2—N22.9 (3)C4—C5—C6—C10.8 (4)
C3—C2—N2—O21157.95 (19)C2—C1—C6—C51.6 (3)
C1—C2—N2—O2121.3 (3)C7—C1—C6—C5178.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.952.893.568 (2)129
Symmetry code: (ii) x, y+3/2, z1/2.
(II) (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 308
Mr = 298.26Dx = 1.481 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1653 reflections
a = 7.8036 (2) Åθ = 3.3–27.5°
b = 7.0914 (3) ŵ = 0.11 mm1
c = 12.3424 (4) ÅT = 120 K
β = 101.742 (2)°Blade, orange
V = 668.72 (4) Å30.50 × 0.32 × 0.12 mm
Z = 2
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1653 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ & ω scansh = 1010
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
k = 89
Tmin = 0.936, Tmax = 0.987l = 1514
7771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0096P]
where P = (Fo2 + 2Fc2)/3
1653 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C14H10N4O4V = 668.72 (4) Å3
Mr = 298.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8036 (2) ŵ = 0.11 mm1
b = 7.0914 (3) ÅT = 120 K
c = 12.3424 (4) Å0.50 × 0.32 × 0.12 mm
β = 101.742 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
1653 independent reflections
Absorption correction: multi-scan
SADABS V2.10 (Sheldrick, 2003)
1519 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.987Rint = 0.031
7771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.107H-atom parameters constrained
S = 1.25Δρmax = 0.27 e Å3
1653 reflectionsΔρmin = 0.31 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1210.7741 (2)0.6427 (3)0.03301 (14)0.0344 (4)
O1220.9832 (2)0.8362 (4)0.02160 (15)0.0457 (6)
O2310.4814 (3)0.5798 (3)0.45405 (13)0.0442 (5)
O2320.3223 (2)0.7467 (3)0.32540 (16)0.0417 (5)
N110.7767 (2)0.2780 (3)0.26739 (15)0.0248 (4)
N120.9066 (2)0.7306 (3)0.07464 (16)0.0273 (5)
N210.6911 (2)0.1230 (3)0.20885 (15)0.0234 (4)
N230.4115 (2)0.6066 (3)0.35745 (17)0.0283 (5)
C110.9397 (2)0.5555 (3)0.25359 (19)0.0221 (5)
C120.9748 (3)0.7147 (4)0.19415 (19)0.0221 (5)
C131.0706 (3)0.8679 (4)0.2440 (2)0.0282 (5)
C141.1331 (3)0.8666 (4)0.3577 (2)0.0303 (5)
C151.1008 (3)0.7117 (4)0.4192 (2)0.0281 (5)
C161.0079 (3)0.5606 (4)0.36847 (19)0.0256 (5)
C170.8447 (3)0.3876 (3)0.20532 (18)0.0228 (5)
C210.5404 (2)0.1642 (3)0.23476 (17)0.0197 (5)
C220.5212 (3)0.3015 (3)0.31221 (17)0.0206 (5)
C230.4325 (3)0.4645 (3)0.27564 (18)0.0213 (5)
C240.3595 (3)0.4982 (4)0.16492 (18)0.0238 (5)
C250.3778 (3)0.3598 (4)0.08904 (17)0.0245 (5)
C260.4661 (3)0.1947 (4)0.12280 (17)0.0231 (5)
C270.6356 (3)0.0081 (3)0.27403 (18)0.0221 (5)
H131.09300.97240.20080.034*
H141.19750.97100.39310.036*
H151.14330.71020.49700.034*
H160.98890.45560.41230.031*
H170.83370.36040.12880.027*
H220.56840.28290.38870.025*
H240.29910.61240.14210.029*
H250.32890.37880.01280.029*
H260.47660.10070.06970.028*
H270.65720.03600.35090.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1210.0312 (8)0.0366 (10)0.0335 (9)0.0000 (8)0.0021 (7)0.0024 (8)
O1220.0365 (8)0.0612 (14)0.0401 (11)0.0057 (10)0.0094 (8)0.0268 (11)
O2310.0662 (11)0.0377 (11)0.0253 (9)0.0099 (10)0.0011 (8)0.0102 (9)
O2320.0526 (10)0.0240 (10)0.0486 (11)0.0093 (9)0.0103 (9)0.0048 (9)
N110.0294 (9)0.0217 (10)0.0242 (9)0.0031 (8)0.0077 (7)0.0022 (8)
N120.0225 (8)0.0314 (11)0.0292 (10)0.0060 (9)0.0079 (7)0.0089 (9)
N210.0263 (8)0.0203 (10)0.0237 (9)0.0037 (8)0.0056 (7)0.0037 (8)
N230.0342 (9)0.0201 (11)0.0308 (10)0.0000 (8)0.0070 (8)0.0037 (8)
C110.0200 (9)0.0237 (12)0.0246 (11)0.0015 (9)0.0090 (8)0.0006 (9)
C120.0183 (9)0.0247 (12)0.0250 (11)0.0043 (9)0.0081 (8)0.0039 (9)
C130.0233 (9)0.0225 (12)0.0402 (13)0.0024 (10)0.0097 (9)0.0079 (10)
C140.0265 (10)0.0227 (13)0.0406 (13)0.0016 (10)0.0041 (9)0.0039 (11)
C150.0302 (10)0.0279 (13)0.0269 (12)0.0008 (10)0.0070 (9)0.0022 (10)
C160.0303 (10)0.0242 (12)0.0240 (11)0.0007 (10)0.0093 (9)0.0023 (10)
C170.0265 (10)0.0220 (12)0.0213 (10)0.0009 (9)0.0080 (8)0.0015 (9)
C210.0199 (8)0.0186 (12)0.0212 (10)0.0013 (9)0.0057 (7)0.0014 (9)
C220.0223 (9)0.0242 (12)0.0157 (10)0.0036 (8)0.0046 (7)0.0001 (8)
C230.0239 (10)0.0180 (11)0.0234 (11)0.0032 (9)0.0081 (8)0.0020 (9)
C240.0227 (10)0.0214 (11)0.0263 (11)0.0010 (9)0.0026 (8)0.0059 (10)
C250.0252 (10)0.0305 (13)0.0166 (10)0.0024 (10)0.0011 (8)0.0035 (10)
C260.0250 (9)0.0268 (12)0.0189 (10)0.0023 (9)0.0073 (8)0.0033 (10)
C270.0254 (10)0.0234 (11)0.0181 (10)0.0015 (9)0.0057 (8)0.0001 (9)
Geometric parameters (Å, º) top
N11—C171.280 (3)N21—C271.281 (3)
N11—N211.407 (3)C27—C211.461 (3)
C17—C111.464 (3)C27—H270.95
C17—H170.95C21—C221.393 (3)
C11—C121.404 (3)C21—C261.402 (3)
C11—C161.410 (3)C22—C231.376 (3)
C12—C131.389 (3)C22—H220.95
C12—N121.467 (3)C23—C241.390 (3)
N12—O1211.227 (3)C23—N231.459 (3)
N12—O1221.227 (3)N23—O2311.221 (3)
C13—C141.389 (3)N23—O2321.231 (3)
C13—H130.95C24—C251.384 (3)
C14—C151.387 (3)C24—H240.95
C14—H140.95C25—C261.380 (4)
C15—C161.371 (3)C25—H250.95
C15—H150.95C26—H260.95
C16—H160.95
C17—N11—N21112.23 (18)C27—N21—N11111.11 (17)
N11—C17—C11119.19 (19)N21—C27—C21122.55 (18)
N11—C17—H17120.4N21—C27—H27118.7
C11—C17—H17120.4C21—C27—H27118.7
C12—C11—C16115.5 (2)C22—C21—C26119.2 (2)
C12—C11—C17125.32 (19)C22—C21—C27118.37 (18)
C16—C11—C17119.1 (2)C26—C21—C27122.4 (2)
C13—C12—C11122.8 (2)C23—C22—C21118.63 (18)
C13—C12—N12116.0 (2)C23—C22—H22120.7
C11—C12—N12121.2 (2)C21—C22—H22120.7
O121—N12—O122123.2 (2)C22—C23—C24123.0 (2)
O121—N12—C12118.98 (18)C22—C23—N23118.24 (18)
O122—N12—C12117.83 (19)C24—C23—N23118.7 (2)
C14—C13—C12119.3 (2)O231—N23—O232123.4 (2)
C14—C13—H13120.4O231—N23—C23118.53 (19)
C12—C13—H13120.4O232—N23—C23118.08 (18)
C15—C14—C13119.5 (2)C25—C24—C23117.7 (2)
C15—C14—H14120.3C25—C24—H24121.1
C13—C14—H14120.3C23—C24—H24121.1
C16—C15—C14120.5 (2)C26—C25—C24120.76 (18)
C16—C15—H15119.8C26—C25—H25119.6
C14—C15—H15119.8C24—C25—H25119.6
C15—C16—C11122.4 (2)C25—C26—C21120.6 (2)
C15—C16—H16118.8C25—C26—H26119.7
C11—C16—H16118.8C21—C26—H26119.7
N21—N11—C17—C11179.66 (18)C17—N11—N21—C27175.13 (18)
N11—C17—C11—C12159.7 (2)N11—N21—C27—C21179.39 (17)
N11—C17—C11—C1622.3 (3)N21—C27—C21—C22165.11 (19)
C16—C11—C12—C130.2 (3)N21—C27—C21—C2615.8 (3)
C17—C11—C12—C13177.91 (19)C26—C21—C22—C231.2 (3)
C16—C11—C12—N12177.96 (19)C27—C21—C22—C23179.64 (17)
C17—C11—C12—N124.0 (3)C21—C22—C23—C240.6 (3)
C13—C12—N12—O121153.2 (2)C21—C22—C23—N23179.36 (18)
C11—C12—N12—O12125.1 (3)C22—C23—N23—O2313.9 (3)
C13—C12—N12—O12224.8 (3)C24—C23—N23—O231177.3 (2)
C11—C12—N12—O122157.0 (2)C22—C23—N23—O232175.31 (18)
C11—C12—C13—C140.9 (3)C24—C23—N23—O2323.5 (3)
N12—C12—C13—C14177.31 (19)C22—C23—C24—C250.1 (3)
C12—C13—C14—C150.8 (3)N23—C23—C24—C25178.64 (19)
C13—C14—C15—C160.0 (3)C23—C24—C25—C260.2 (3)
C14—C15—C16—C110.8 (3)C24—C25—C26—C210.5 (3)
C12—C11—C16—C150.7 (3)C22—C21—C26—C251.2 (3)
C17—C11—C16—C15178.88 (19)C27—C21—C26—C25179.71 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O232i0.952.453.178 (3)134
C22—H22···O231ii0.952.513.289 (3)139
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1.
(III) (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 308
Mr = 298.26Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1507 reflections
a = 7.0128 (4) Åθ = 3.1–27.6°
b = 7.6318 (5) ŵ = 0.11 mm1
c = 12.8037 (5) ÅT = 120 K
β = 105.825 (3)°Plate, yellow
V = 659.29 (6) Å30.43 × 0.30 × 0.08 mm
Z = 2
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
1507 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode1095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ & ω scansh = 99
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 99
Tmin = 0.969, Tmax = 0.991l = 1614
7854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.068P)2 + 0.1014P]
where P = (Fo2 + 2Fc2)/3
1507 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H10N4O4V = 659.29 (6) Å3
Mr = 298.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.0128 (4) ŵ = 0.11 mm1
b = 7.6318 (5) ÅT = 120 K
c = 12.8037 (5) Å0.43 × 0.30 × 0.08 mm
β = 105.825 (3)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
1507 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
1095 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.991Rint = 0.061
7854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1507 reflectionsΔρmin = 0.35 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O310.09983 (16)0.27543 (15)0.68104 (8)0.0329 (3)
O320.34487 (15)0.11164 (15)0.59533 (9)0.0359 (3)
N10.41253 (17)0.46167 (16)0.50700 (9)0.0250 (3)
N30.19378 (18)0.19608 (16)0.59948 (10)0.0254 (3)
C10.1283 (2)0.29160 (18)0.41783 (11)0.0223 (3)
C20.0541 (2)0.28839 (19)0.50926 (11)0.0224 (3)
C30.1216 (2)0.20250 (19)0.50200 (11)0.0224 (3)
C40.2296 (2)0.1181 (2)0.40910 (12)0.0267 (4)
C50.1544 (2)0.1209 (2)0.31907 (12)0.0277 (4)
C60.0221 (2)0.20644 (19)0.32335 (11)0.0260 (4)
C70.3159 (2)0.37952 (19)0.42187 (11)0.0236 (3)
H20.12380.34440.57480.027*
H40.35060.06030.40680.032*
H50.22470.06360.25410.033*
H60.07130.20710.26120.031*
H70.36660.37550.36030.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O310.0301 (6)0.0435 (7)0.0268 (6)0.0042 (5)0.0105 (4)0.0020 (5)
O320.0262 (6)0.0419 (7)0.0445 (7)0.0069 (5)0.0182 (5)0.0003 (5)
N10.0197 (6)0.0272 (7)0.0308 (7)0.0011 (5)0.0114 (5)0.0007 (5)
N30.0211 (7)0.0266 (7)0.0304 (6)0.0022 (5)0.0103 (5)0.0039 (5)
C10.0220 (7)0.0209 (8)0.0250 (7)0.0029 (6)0.0082 (5)0.0021 (6)
C20.0223 (8)0.0218 (8)0.0237 (7)0.0013 (6)0.0071 (5)0.0002 (6)
C30.0196 (7)0.0245 (8)0.0242 (7)0.0031 (6)0.0077 (5)0.0033 (6)
C40.0184 (7)0.0286 (8)0.0322 (8)0.0001 (6)0.0053 (6)0.0039 (6)
C50.0247 (8)0.0312 (9)0.0239 (7)0.0004 (7)0.0011 (5)0.0005 (6)
C60.0277 (8)0.0286 (9)0.0229 (7)0.0027 (6)0.0087 (6)0.0023 (6)
C70.0229 (7)0.0255 (8)0.0249 (7)0.0031 (6)0.0108 (6)0.0024 (6)
Geometric parameters (Å, º) top
N1—C71.2797 (18)C3—N31.4699 (18)
N1—N1i1.414 (2)N3—O321.2289 (16)
C7—C11.465 (2)N3—O311.2313 (15)
C7—H70.95C4—C51.392 (2)
C1—C61.396 (2)C4—H40.95
C1—C21.4050 (19)C5—C61.387 (2)
C2—C31.376 (2)C5—H50.95
C2—H20.95C6—H60.95
C3—C41.383 (2)
C7—N1—N1i111.77 (13)O32—N3—O31123.38 (12)
N1—C7—C1121.09 (12)O32—N3—C3118.24 (12)
N1—C7—H7119.5O31—N3—C3118.38 (12)
C1—C7—H7119.5C3—C4—C5117.59 (13)
C6—C1—C2118.86 (13)C3—C4—H4121.2
C6—C1—C7120.36 (13)C5—C4—H4121.2
C2—C1—C7120.76 (12)C6—C5—C4120.63 (14)
C3—C2—C1118.69 (13)C6—C5—H5119.7
C3—C2—H2120.7C4—C5—H5119.7
C1—C2—H2120.7C5—C6—C1120.85 (13)
C2—C3—C4123.38 (13)C5—C6—H6119.6
C2—C3—N3117.88 (13)C1—C6—H6119.6
C4—C3—N3118.71 (13)
N1i—N1—C7—C1179.28 (14)C2—C3—N3—O313.83 (19)
N1—C7—C1—C6178.32 (14)C4—C3—N3—O31178.09 (13)
N1—C7—C1—C23.0 (2)C2—C3—C4—C50.2 (2)
C6—C1—C2—C30.5 (2)N3—C3—C4—C5177.78 (12)
C7—C1—C2—C3179.26 (13)C3—C4—C5—C60.3 (2)
C1—C2—C3—C40.2 (2)C4—C5—C6—C10.0 (2)
C1—C2—C3—N3178.21 (12)C2—C1—C6—C50.4 (2)
C2—C3—N3—O32176.15 (12)C7—C1—C6—C5179.16 (13)
C4—C3—N3—O321.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O32ii0.952.503.448 (2)176
Symmetry code: (ii) x1, y, z+1.
(IV) (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 1232
Mr = 298.26Dx = 1.493 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.6778 Å
Hall symbol: -C 2ycCell parameters from 2789 reflections
a = 30.865 (3) Åθ = 3.0–28.8°
b = 4.7660 (5) ŵ = 0.11 mm1
c = 21.736 (2) ÅT = 120 K
β = 123.926 (2)°Lath, yellow
V = 2653.1 (5) Å30.10 × 0.06 × 0.01 mm
Z = 8
Data collection top
Bruker SMART APEX2 CCD
diffractometer
3961 independent reflections
Radiation source: Daresbury SRS station 9.82817 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.034
fine–slice ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
h = 4344
Tmin = 0.980, Tmax = 0.999k = 66
14589 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.095P)2 + 1.033P]
where P = (Fo2 + 2Fc2)/3
3961 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H10N4O4V = 2653.1 (5) Å3
Mr = 298.26Z = 8
Monoclinic, C2/cSynchrotron radiation, λ = 0.6778 Å
a = 30.865 (3) ŵ = 0.11 mm1
b = 4.7660 (5) ÅT = 120 K
c = 21.736 (2) Å0.10 × 0.06 × 0.01 mm
β = 123.926 (2)°
Data collection top
Bruker SMART APEX2 CCD
diffractometer
3961 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2817 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.999Rint = 0.034
14589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.09Δρmax = 0.44 e Å3
3961 reflectionsΔρmin = 0.26 e Å3
199 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1310.47646 (6)0.6159 (3)0.32018 (8)0.0490 (4)
O1320.47144 (5)0.8936 (3)0.39427 (8)0.0406 (4)
O2410.71080 (5)1.3799 (3)0.24123 (7)0.0301 (3)
O2420.78120 (5)1.3094 (3)0.34947 (6)0.0287 (3)
N110.61784 (6)0.0894 (3)0.41626 (8)0.0255 (3)
N130.49204 (6)0.6999 (3)0.38204 (8)0.0309 (3)
N210.65162 (6)0.2929 (3)0.41794 (7)0.0246 (3)
N240.73536 (6)1.2586 (3)0.30096 (7)0.0241 (3)
C110.60740 (6)0.2324 (3)0.49114 (9)0.0225 (3)
C120.56194 (6)0.3538 (3)0.43126 (9)0.0238 (3)
C130.53815 (6)0.5646 (3)0.44561 (9)0.0245 (3)
C140.55621 (7)0.6589 (4)0.51591 (10)0.0270 (4)
C150.60081 (7)0.5358 (4)0.57473 (9)0.0274 (4)
C160.62627 (6)0.3254 (3)0.56259 (9)0.0247 (3)
C170.63593 (6)0.0149 (3)0.48018 (9)0.0229 (3)
C210.65817 (6)0.6351 (3)0.34322 (8)0.0231 (3)
C220.63189 (7)0.7801 (3)0.27598 (9)0.0260 (4)
C230.65688 (7)0.9832 (3)0.26155 (8)0.0253 (3)
C240.70876 (6)1.0414 (3)0.31580 (8)0.0224 (3)
C250.73586 (6)0.9054 (3)0.38355 (8)0.0237 (3)
C260.71045 (6)0.7001 (3)0.39661 (9)0.0240 (3)
C270.63041 (7)0.4180 (3)0.35565 (9)0.0245 (3)
H120.54780.29250.38200.029*
H140.53860.80360.52370.032*
H150.61420.59580.62390.033*
H160.65700.24360.60360.030*
H170.66850.04960.52140.027*
H220.59630.73820.23970.031*
H230.63901.08080.21560.030*
H250.77110.95230.42020.028*
H260.72870.60160.44240.029*
H270.59590.36910.31650.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1310.0444 (8)0.0471 (9)0.0276 (7)0.0090 (7)0.0028 (6)0.0051 (6)
O1320.0360 (7)0.0366 (8)0.0441 (8)0.0121 (6)0.0192 (6)0.0036 (6)
O2410.0337 (7)0.0268 (6)0.0231 (6)0.0012 (5)0.0116 (5)0.0058 (5)
O2420.0267 (6)0.0276 (6)0.0241 (6)0.0037 (5)0.0094 (5)0.0043 (5)
N110.0286 (7)0.0217 (6)0.0239 (7)0.0009 (5)0.0133 (6)0.0005 (5)
N130.0276 (7)0.0261 (7)0.0303 (8)0.0011 (6)0.0108 (6)0.0002 (6)
N210.0280 (7)0.0215 (6)0.0223 (6)0.0002 (5)0.0129 (6)0.0001 (5)
N240.0291 (7)0.0187 (6)0.0217 (6)0.0003 (5)0.0123 (6)0.0018 (5)
C110.0229 (7)0.0184 (7)0.0228 (7)0.0035 (6)0.0107 (6)0.0001 (5)
C120.0243 (7)0.0219 (7)0.0205 (7)0.0056 (6)0.0095 (6)0.0010 (6)
C130.0205 (7)0.0211 (7)0.0263 (8)0.0016 (6)0.0097 (6)0.0034 (6)
C140.0284 (8)0.0227 (8)0.0316 (9)0.0011 (6)0.0179 (7)0.0012 (6)
C150.0326 (8)0.0261 (8)0.0244 (8)0.0019 (7)0.0164 (7)0.0019 (6)
C160.0267 (8)0.0208 (7)0.0218 (7)0.0019 (6)0.0107 (6)0.0006 (6)
C170.0247 (7)0.0191 (7)0.0208 (7)0.0024 (6)0.0102 (6)0.0006 (5)
C210.0285 (8)0.0191 (7)0.0203 (7)0.0013 (6)0.0127 (6)0.0017 (5)
C220.0256 (8)0.0236 (8)0.0210 (8)0.0005 (6)0.0081 (6)0.0011 (6)
C230.0286 (8)0.0226 (8)0.0175 (7)0.0018 (6)0.0084 (6)0.0009 (6)
C240.0273 (8)0.0166 (7)0.0213 (7)0.0012 (6)0.0123 (6)0.0001 (5)
C250.0237 (7)0.0224 (7)0.0186 (7)0.0018 (6)0.0077 (6)0.0006 (5)
C260.0276 (8)0.0219 (7)0.0177 (7)0.0041 (6)0.0095 (6)0.0012 (6)
C270.0273 (8)0.0203 (7)0.0218 (7)0.0011 (6)0.0113 (6)0.0013 (6)
Geometric parameters (Å, º) top
N11—C171.274 (2)N21—C271.276 (2)
N11—N211.409 (2)C27—C211.462 (2)
C17—C111.463 (2)C27—H270.95
C17—H170.95C21—C221.396 (2)
C11—C161.392 (2)C21—C261.399 (2)
C11—C121.400 (2)C22—C231.379 (2)
C12—C131.379 (2)C22—H220.95
C12—H120.95C23—C241.387 (2)
C13—C141.377 (2)C23—H230.95
C13—N131.468 (2)C24—C251.383 (2)
N13—O1311.216 (2)C24—N241.465 (2)
N13—O1321.231 (2)N24—O2411.2228 (17)
C14—C151.382 (2)N24—O2421.2276 (18)
C14—H140.95C25—C261.379 (2)
C15—C161.387 (2)C25—H250.95
C15—H150.95C26—H260.95
C16—H160.95
C17—N11—N21111.88 (14)C27—N21—N11111.10 (14)
N11—C17—C11121.12 (15)N21—C27—C21121.36 (15)
N11—C17—H17119.4N21—C27—H27119.3
C11—C17—H17119.4C21—C27—H27119.3
C16—C11—C12118.94 (15)C22—C21—C26119.09 (15)
C16—C11—C17119.49 (14)C22—C21—C27119.07 (15)
C12—C11—C17121.56 (14)C26—C21—C27121.84 (14)
C13—C12—C11118.34 (15)C23—C22—C21120.92 (15)
C13—C12—H12120.8C23—C22—H22119.5
C11—C12—H12120.8C21—C22—H22119.5
C14—C13—C12123.49 (15)C22—C23—C24118.30 (14)
C14—C13—N13118.71 (15)C22—C23—H23120.9
C12—C13—N13117.77 (15)C24—C23—H23120.9
O131—N13—O132123.55 (16)C25—C24—C23122.44 (15)
O131—N13—C13118.26 (15)C25—C24—N24119.05 (14)
O132—N13—C13118.18 (15)C23—C24—N24118.50 (14)
C13—C14—C15117.74 (16)O241—N24—O242123.58 (14)
C13—C14—H14121.1O241—N24—C24118.44 (14)
C15—C14—H14121.1O242—N24—C24117.97 (13)
C14—C15—C16120.56 (15)C26—C25—C24118.45 (15)
C14—C15—H15119.7C26—C25—H25120.8
C16—C15—H15119.7C24—C25—H25120.8
C15—C16—C11120.91 (15)C25—C26—C21120.78 (14)
C15—C16—H16119.5C25—C26—H26119.6
C11—C16—H16119.5C21—C26—H26119.6
N21—N11—C17—C11179.43 (13)N11—N21—C27—C21178.92 (14)
N11—C17—C11—C16174.89 (15)N21—C27—C21—C22175.28 (15)
N11—C17—C11—C126.4 (2)N21—C27—C21—C265.2 (2)
C16—C11—C12—C131.0 (2)C26—C21—C22—C230.6 (2)
C17—C11—C12—C13177.72 (14)C27—C21—C22—C23178.95 (15)
C11—C12—C13—C141.2 (2)C21—C22—C23—C240.4 (2)
C11—C12—C13—N13176.98 (14)C22—C23—C24—C250.6 (2)
C14—C13—N13—O131179.81 (17)C22—C23—C24—N24179.52 (14)
C12—C13—N13—O1311.5 (2)C25—C24—N24—O241179.08 (14)
C14—C13—N13—O1320.3 (2)C23—C24—N24—O2410.1 (2)
C12—C13—N13—O132178.02 (15)C25—C24—N24—O2420.7 (2)
C12—C13—C14—C150.6 (3)C23—C24—N24—O242179.67 (14)
N13—C13—C14—C15177.60 (15)C23—C24—C25—C261.5 (2)
C13—C14—C15—C160.2 (3)N24—C24—C25—C26179.59 (14)
C14—C15—C16—C110.4 (3)C24—C25—C26—C211.4 (2)
C12—C11—C16—C150.3 (2)C22—C21—C26—C250.4 (2)
C17—C11—C16—C15178.49 (15)C27—C21—C26—C25179.86 (15)
C17—N11—N21—C27172.53 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O132i0.952.443.309 (3)151
C17—H17···O242ii0.952.423.262 (2)147
C22—H22···O131iii0.952.513.363 (3)149
C27—H27···O131iii0.952.533.383 (3)149
Symmetry codes: (i) x+1, y2, z+1; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z+1/2.
(V) (E,E)-1,4-Bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene top
Crystal data top
C14H10N4O4F(000) = 308
Mr = 298.26Dx = 1.535 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1479 reflections
a = 3.7318 (2) Åθ = 2.9–27.6°
b = 7.2442 (3) ŵ = 0.12 mm1
c = 23.9367 (10) ÅT = 120 K
β = 94.053 (2)°Lath, yellow
V = 645.48 (5) Å30.40 × 0.10 × 0.01 mm
Z = 2
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
1479 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ & ω scansh = 44
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 99
Tmin = 0.949, Tmax = 0.999l = 3031
6443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.3185P]
where P = (Fo2 + 2Fc2)/3
1479 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H10N4O4V = 645.48 (5) Å3
Mr = 298.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 3.7318 (2) ŵ = 0.12 mm1
b = 7.2442 (3) ÅT = 120 K
c = 23.9367 (10) Å0.40 × 0.10 × 0.01 mm
β = 94.053 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
1479 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
1239 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.999Rint = 0.049
6443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
1479 reflectionsΔρmin = 0.24 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O410.4336 (3)1.28743 (16)0.72674 (4)0.0330 (3)
O420.1025 (3)1.38990 (14)0.65597 (4)0.0306 (3)
N10.4502 (3)0.58742 (16)0.50989 (5)0.0218 (3)
N40.2944 (3)1.27087 (17)0.67923 (5)0.0212 (3)
C10.4796 (4)0.77966 (19)0.59139 (6)0.0184 (3)
C20.5886 (4)0.7945 (2)0.64823 (5)0.0200 (3)
C30.5298 (4)0.95619 (19)0.67713 (5)0.0198 (3)
C40.3602 (3)1.10060 (18)0.64832 (5)0.0181 (3)
C50.2477 (4)1.09149 (19)0.59169 (6)0.0191 (3)
C60.3100 (3)0.92931 (19)0.56356 (5)0.0193 (3)
C70.5506 (4)0.60798 (19)0.56165 (6)0.0201 (3)
H20.70370.69310.66720.024*
H30.60410.96750.71580.024*
H50.13201.19330.57300.023*
H60.23680.91920.52490.023*
H70.67350.51020.58130.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O410.0403 (7)0.0350 (7)0.0221 (5)0.0060 (5)0.0080 (5)0.0090 (5)
O420.0377 (6)0.0235 (6)0.0297 (6)0.0106 (5)0.0043 (5)0.0031 (4)
N10.0247 (6)0.0182 (6)0.0226 (6)0.0038 (5)0.0021 (5)0.0017 (5)
N40.0201 (6)0.0217 (6)0.0217 (6)0.0002 (5)0.0012 (4)0.0022 (5)
C10.0153 (6)0.0201 (7)0.0201 (6)0.0004 (5)0.0023 (5)0.0003 (5)
C20.0187 (7)0.0214 (7)0.0197 (7)0.0018 (5)0.0003 (5)0.0032 (5)
C30.0182 (6)0.0240 (7)0.0169 (6)0.0013 (5)0.0003 (5)0.0007 (5)
C40.0168 (6)0.0185 (7)0.0192 (6)0.0013 (5)0.0016 (5)0.0032 (5)
C50.0175 (6)0.0190 (7)0.0207 (6)0.0007 (5)0.0007 (5)0.0026 (5)
C60.0189 (7)0.0229 (7)0.0158 (6)0.0004 (5)0.0003 (5)0.0003 (5)
C70.0184 (7)0.0204 (7)0.0215 (6)0.0017 (5)0.0008 (5)0.0013 (5)
Geometric parameters (Å, º) top
C1—C21.3963 (18)C5—C61.3820 (19)
C1—C61.4000 (19)C5—H50.95
C1—C71.4663 (19)C6—H60.95
C2—C31.386 (2)N4—O411.2225 (16)
C2—H20.95N4—O421.2288 (15)
C3—C41.3816 (19)C7—N11.2775 (18)
C3—H30.95C7—H70.95
C4—C51.3919 (18)N1—N1i1.411 (2)
C4—N41.4679 (17)
C2—C1—C6119.65 (12)C6—C5—H5121.1
C2—C1—C7119.21 (12)C4—C5—H5121.1
C6—C1—C7121.13 (12)C5—C6—C1120.83 (12)
C3—C2—C1120.39 (12)C5—C6—H6119.6
C3—C2—H2119.8C1—C6—H6119.6
C1—C2—H2119.8O41—N4—O42123.26 (12)
C4—C3—C2118.29 (12)O41—N4—C4118.43 (12)
C4—C3—H3120.9O42—N4—C4118.31 (11)
C2—C3—H3120.9N1—C7—C1121.27 (13)
C3—C4—C5123.10 (12)N1—C7—H7119.4
C3—C4—N4118.15 (12)C1—C7—H7119.4
C5—C4—N4118.75 (12)C7—N1—N1i111.35 (14)
C6—C5—C4117.73 (12)
C6—C1—C2—C30.0 (2)C7—C1—C6—C5179.24 (13)
C7—C1—C2—C3179.01 (12)C3—C4—N4—O419.71 (19)
C1—C2—C3—C40.3 (2)C5—C4—N4—O41170.66 (13)
C2—C3—C4—C50.3 (2)C3—C4—N4—O42170.44 (12)
C2—C3—C4—N4179.26 (12)C5—C4—N4—O429.19 (19)
C3—C4—C5—C60.1 (2)C2—C1—C7—N1178.82 (13)
N4—C4—C5—C6179.50 (12)C6—C1—C7—N12.2 (2)
C4—C5—C6—C10.2 (2)C1—C7—N1—N1i179.48 (13)
C2—C1—C6—C50.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O41ii0.952.503.186 (2)129
C7—H7···O42iii0.952.473.343 (2)152
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y1, z.

Experimental details

(Ia)(Ib)(II)(III)
Crystal data
Chemical formulaC14H10N4O4C14H10N4O4C14H10N4O4C14H10N4O4
Mr298.26298.26298.26298.26
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21Monoclinic, P21/n
Temperature (K)120120120120
a, b, c (Å)9.1379 (4), 6.1776 (3), 11.7682 (4)7.7809 (2), 14.7825 (6), 6.2196 (2)7.8036 (2), 7.0914 (3), 12.3424 (4)7.0128 (4), 7.6318 (5), 12.8037 (5)
β (°) 93.853 (3) 113.106 (2) 101.742 (2) 105.825 (3)
V3)662.82 (5)658.00 (4)668.72 (4)659.29 (6)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.110.110.110.11
Crystal size (mm)0.46 × 0.34 × 0.180.48 × 0.22 × 0.080.50 × 0.32 × 0.120.43 × 0.30 × 0.08
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
SADABS V2.10 (Sheldrick, 2003)
Multi-scan
SADABS V2.10 (Sheldrick, 2003)
Multi-scan
SADABS V2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.967, 0.9800.957, 0.9910.936, 0.9870.969, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8093, 1511, 1232 10780, 1503, 1222 7771, 1653, 1519 7854, 1507, 1095
Rint0.0340.0430.0310.061
(sin θ/λ)max1)0.6490.6490.6490.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.124, 1.00 0.060, 0.160, 1.02 0.040, 0.107, 1.25 0.044, 0.122, 1.04
No. of reflections1511150316531507
No. of parameters100100199100
No. of restraints0010
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.291.44, 0.310.27, 0.310.20, 0.35


(IV)(V)
Crystal data
Chemical formulaC14H10N4O4C14H10N4O4
Mr298.26298.26
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)120120
a, b, c (Å)30.865 (3), 4.7660 (5), 21.736 (2)3.7318 (2), 7.2442 (3), 23.9367 (10)
β (°) 123.926 (2) 94.053 (2)
V3)2653.1 (5)645.48 (5)
Z82
Radiation typeSynchrotron, λ = 0.6778 ÅMo Kα
µ (mm1)0.110.12
Crystal size (mm)0.10 × 0.06 × 0.010.40 × 0.10 × 0.01
Data collection
DiffractometerBruker SMART APEX2 CCD
diffractometer
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.980, 0.9990.949, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
14589, 3961, 2817 6443, 1479, 1239
Rint0.0340.049
(sin θ/λ)max1)0.7150.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.170, 1.09 0.041, 0.110, 1.06
No. of reflections39611479
No. of parameters199100
No. of restraints00
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.260.24, 0.24

Computer programs: COLLECT (Hooft, 1999), Bruker APEX2, DENZO (Otwinowski & Minor, 1997) & COLLECT, Bruker SAINT, DENZO & COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 macro PRPKAPPA (Ferguson, 1999), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.952.893.568 (2)129
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O232i0.952.453.178 (3)134
C22—H22···O231ii0.952.513.289 (3)139
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O32i0.952.503.448 (2)176
Symmetry code: (i) x1, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O132i0.952.443.309 (3)151
C17—H17···O242ii0.952.423.262 (2)147
C22—H22···O131iii0.952.513.363 (3)149
C27—H27···O131iii0.952.533.383 (3)149
Symmetry codes: (i) x+1, y2, z+1; (ii) x+3/2, y+3/2, z+1; (iii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O41i0.952.503.186 (2)129
C7—H7···O42ii0.952.473.343 (2)152
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y1, z.
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5032 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK, and at the Daresbury SRS station 9.8: the authors thank the staff of these facilities for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker AXS Inc. (2004). APEX2 and SAINT, Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA – a WordPerfect-5.1 Macro to Formulate and Polish CIF Format Files from the SHELXL-97 Refinement of Kappa-CCD Data. University of Guelph, Canada.  Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445–o449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312–o316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHsu, L.-Y., Nordman, C. E. & Kenny, D. H. (1993). Acta Cryst. C49, 394–398.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds