research papers
Structural characterization of selenium and selenium-diiodine analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives
aSection of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece, and bSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
*Correspondence e-mail: a.j.blake@nottingham.ac.uk
The structures of four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil [systematic name: 2,3-dihydro-6-n-propyl-2-thioxopyrimidin-4(1H)-one], namely 6-methyl-2-selenouracil, C5H6N2OSe (1), 6-ethyl-2-selenouracil, C6H8N2OSe (2), 6-n-propyl-2-selenouracil, C7H10N2OSe (3), and 6-isopropyl-2-selenouracil, C7H10N2OSe (4), are described, along with that of the dichloromethane monosolvate of 6-isopropyl-2-selenouracil, C7H10N2OSe·CH2Cl2 (4·CH2Cl2). The extended structure of (1) is a two-dimensional sheet of topology 63 with a brick-wall architecture. The extended structures of (2) and (4) are analogous, being based on a chain of eight-membered R86(32) hydrogen-bonded rings. In (3) and (4·CH2Cl2), R22(8) hydrogen bonding links molecules into chains. 6-n-Propyl-2-selenouracil·I2, C7H10N2OSe·I2 (7), is a with a `spoke' structure, the extended structure of which is based on a linear chain formed principally by intermolecular N—H⋯O hydrogen bonds. Re-crystallization of 6-ethyl-2-selenouracil or (7) from acetone gave crystals of the diselenides [N-(6′-ethyl-4′-pyrimidone)(6-ethyl-2-selenouracil)2(Se—Se)]·2H2O (9·2H2O) or [N-(6′-n-propyl-4′-pyrimidone)(6-n-propyl-2-selenouracil)2(Se—Se)] (10), respectively: these have similar extended chain structures formed via N—H⋯O and C—H⋯O hydrogen bonds, stacked to give two-dimensional sheets. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to the formation of crystals of 6-n-propyl-2-uracil (11), in which six symmetry-related molecules combine to form a six-membered R66(24) hydrogen-bonded ring, with each pair of molecules linked by an R22(8) motif.
Keywords: selenouracil; hydrogen bonding; charge-transfer complex; antithyroid drug.
1. Introduction
Prior to 1960, no uncharged covalent compounds between selenium and iodine had been discovered (Dasent, 1965). It was during the decade 1960–1969 that the structures of the first selenoether–iodine complexes were first reported (Chao & McCullough, 1961; Hope & McCullough, 1962; Maddox & McCullough, 1966; Bjorvatten, 1963; Dahl & Hassel, 1965; Holmesland & Römming, 1966; Bent, 1968). Currently, organic and/or selenoamides are recognized as potential donors towards diiodine and some iodine-containing compounds, generating charge-transfer complexes that are generally more stable than those of the corresponding sulfur ligands (e.g. du Mont et al., 2001). The reactions between or selenoamides with diiodine I2 or interhalogens I—X (X = Br or Cl) lead to the formation of iodine charge-transfer complexes (Aragoni et al., 1999, and references therein), which adopt a number of structures including:
et al., 1995; Blake, Devillanova, Garau et al., 1998; Blake, Devillanova, Gould et al., 1998; Blake, Li et al., 1998), we report herein the structures of 6-n-propyl-2-selenouracil·I2, 6-n-propyl-2-selenouracil itself, some selenium analogues of 6-alkyl-2-thiouracils, two diselenides and the deselenation product 6-n-propyl-2-uracil.2. Experimental
2.1. Synthesis and crystal growth
The preparative details for all nine compounds [see Scheme (I)] have been reported previously (Antoniadis et al., 2006). Compounds (1), (2), (3) and (4) were re-crystallized from water to give colourless crystals, while re-crystallization of (4)
from dichloromethane gave crystals of (4·CH2Cl2). Crystals of (7) were grown from chloroform solutions, while re-crystallization of (6) and (7) from acetone gave the oxidation products (9·2H2O) and (10), respectively. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to crystals of 6-n-propyl-2-uracil (11).2.2. Data collection, structure solution and refinement
Details of cell data, data collection and structure solution and 1. Except for (9·2H2O), which was solved using SIR92 (Altomare et al., 1994), the structures were solved by using SHELXS97 (Sheldrick, 1990) and developed by difference Fourier methods using SHELXL97 (Sheldrick, 1998). With the exception of the sp2-bound methyl group in (1), where they were located from a circular difference Fourier synthesis and refined as part of a rigid rotating group, all carbon- and nitrogen-bound H atoms were placed in geometrically calculated positions and refined using riding models (SHELXL97; Sheldrick, 1998). Crystals of (9·2H2O) are affected by principally by a 180° rotation about [001] for which the twin fraction was 0.291 (2). The water H atoms in (9·2H2O) were not located.
are summarized in Table 1The
of (3) posed particular difficulties: the crystals were very small in two dimensions (10 and 20 µm) and efforts to obtain a dataset using a sealed X-ray tube or a rotating-anode source gave no significant diffraction. However, we were able to obtain a weak dataset on Station 9.8 of the Daresbury Synchrotron Radiation Source, although even this did not overcome all of the limitations imposed by the poor crystal quality. We found that only the Se atoms could be refined with anisotropic displacement parameters, and a total of 99 geometric, planarity and similarity restraints were necessary for a stable Although we cannot therefore discuss the fine details of the molecular geometry, it did prove possible to obtain reliable information about the extended structure of (3).3. Results and discussion
3.1. Molecular structures of (1)–(4), (4·CH2Cl2) and (11)
Displacement ellipsoid plots of (1)–(4), (4·CH2Cl2) and (11) are shown in Figs. 1–6 while selected interatomic distances and angles are listed in Tables 2 and 4. Although the asymmetric units of (1) and (11) each comprise single molecules, those of (2), (3), (4) and (4·CH2Cl2) comprise three, two, three and two molecules, respectively. The molecular structures of the alkylselenouracils and of 6-n-propyluracil are unremarkable, and the molecular structure of (4) is not affected by recrystallization as (4·CH2Cl2) from dichloromethane. The C—Se bond distances in (1)–(4) and in (4·CH2Cl2) vary from 1.824 (2) to 1.848 (6) Å (Table 2). The two C=O bond distances found in (11) are almost equal [1.2286 (16), 1.2387 (16) Å; Table 4] and are within the range of the C=O bonds found for other similar compounds such as 1,3-dimethyl-6-R-trisubstituted uracils [R = Me, 1.233 (3) Å; R = Et, 1.224 (2) Å; R = nPr, 1.212 (3), 1.221 (3), 1.220 (3) Å; R = nBu, 1.220 (5), 1.226 (5) Å; Suwinska, 1995] and triethylammonium 2,4-dioxo-6-(1,1,2,2,3,3-hexafluoropropyl)-5-benzylsulfonyl-3H-2,4-dihydropyrimidine [1.235 (3), 1.237 (2) Å] (Timoshenko et al., 2002).
|
3.2. Extended structures of (1)–(4), (4·CH2Cl2) and (11)
The extended structures formed by the alkylselenouracils are worthy of comment; they depend primarily on hydrogen-bonding interactions between the two N—H donor sites and the oxygen and selenium acceptor sites of the heteroatomic ring [see Scheme (II)]. Pertinent distances and angles associated with the hydrogen-bonding interactions in (1)–(4), (4·CH2Cl2) and (11) are included in Table 3.
|
Analysis of the hydrogen-bonding parameters in these compounds confirms a range of intermolecular contacts with similar numbers of N1—H⋯O and N3—H⋯O and of N1—H⋯Se and N3—H⋯Se interactions.
The extended structure of (1) is a two-dimensional sheet of topology 63 (Fig. 7). A centrosymmetrically related pair of N3—H⋯Se contacts form an R22(8) ring which links two molecules, thereby forming a dimeric unit. Each dimeric unit is bridged to four adjacent dimeric units through four single N1—H⋯O contacts to give a sheet of six-membered rings, each of which involves an R66(28) hydrogen-bonded motif (Table 3). The 63 topology of the sheet, which is aligned parallel to the () plane, results in a brick-wall architecture (Fig. 7).
The extended structures of (2) and (4) are analogous. They crystallize in the same ) is based on a chain of eight-membered rings which is aligned in the [101] direction in the () plane. The three molecules in the are involved in different hydrogen-bonding motifs; the first (numbered C11 etc.) acts as a two-donor one-acceptor (2D–1A) species; the second (numbered C21 etc.) acts as a two-donor three-acceptor species (2D–3A); the third (numbered C31 etc.) acts as a two-donor two-acceptor species (2D–2A). Each eight-membered ring is centrosymmetric and comprises two 2D–1A molecules, two 2D–2A molecules and four 2D–3A molecules. Pairs of centrosymmetrically related 2D–3A molecules are common to two adjacent rings, thereby giving the correct stoichiometry. The hydrogen-bonding interactions leading to the eight-membered ring comprise an R86(32) motif (Table 3). The aliphatic residues of the two 2D–1A and two 2D–2A molecules are located on the edges of the chain, preventing inter-chain hydrogen-bond formation (Fig. 8).
with similar cell dimensions, the only difference being the alkyl group. Their extended structure (Fig. 8In (3), R22(8) hydrogen-bonding motifs link the two molecules of the which alternate along the b axis to form a one-dimensional chain (Fig. 9). The R22(8) motifs differ in that one has oxygen acceptors and the other has selenium acceptors. The 1:1 adduct (4·CH2Cl2) has a similar extended structure (Fig. 10) to that of (3). In this case, however, the chain is aligned along the b axis. One of the dichloromethane molecules is locked in position by a relatively short C—H⋯O contact (Table 3).
It is interesting to note that a different extended structure is adopted by 6-n-propyluracil (11), the uracil corresponding to (3). The of (11) comprises a single molecule (Fig. 6), six of which combine to form a six-membered ring (Fig. 11). Linking each pair of molecules is an R22(8) hydrogen-bonding motif, which forms part of the R66(24) hydrogen-bonding motif (Table 3), generating the inner diameter of the six-membered ring. The rings assemble on a sheet parallel to the (001) plane. The only inter-ring interactions are a centrosymmetric pair of relatively long C—H⋯O contacts between the pendant CH3 groups and carbonyl O atoms (Table 3). Six-membered ring formation is possible owing to the fact that the R22(8) motifs in (11) [see Scheme (IIIa)], which comprise two N—H⋯O contacts, are symmetrical and generate an internal ring angle of 120°. If (3) were to adopt a similar structure, the corresponding R22(8) motifs would be unsymmetrical as they would comprise one short N—H⋯O contact and one long N—H⋯Se contact. Analysis of the structure of (2), which contains such assemblies, gives a value of 133° for the internal ring angle [see Scheme (IIIb)], which does not permit ring formation as it falls between the values required for seven- and eight-membered rings, namely 128.6 and 135°, respectively. Hence, (3) adopts a one-dimensional chain architecture with alternating R22(8) rings with pairs of oxygen and selenium acceptors (Fig. 9).
3.3. Molecular structures of (7), (9·2H2O) and (10)
Displacement ellipsoid plots of compounds (7), (9·2H2O) and (10) are shown in Figs. 12, 13 and 14, while their selected bond lengths and angles are listed in Table 4. Compound (7) exhibits the so-called `spoke' structure typical of iodine adducts of selenium-containing compounds. The I—Se—C—N torsion angles [−0.5 (6)° and −179.3 (6)° for (7)], together with the C—Se—I and Se—I—I angles (Table 4), are consistent with a planar arrangement. This planarity, which is typical of charge-transfer complexes with a `spoke' structure, is enhanced by an intramolecular N—H⋯I hydrogen bond between N3 and I1 (Table 5; Fig. 15).
|
|
The I—I interatomic distance of 2.8928 (10) Å in (7) is longer than that in either the gas phase (2.677 Å: Pauling, 1960) or crystalline diiodine [2.715 (6) Å at 110 K: van Bolhuis et al., 1967], presumably owing to the Se⋯I interaction. It is, however, the shortest such distance measured for a diiodine–selenoamide complex (Antoniadis et al., 2006) suggesting minimal perturbation resulting from the long Se⋯I contact. Interestingly, correlation of the available Se⋯I and I⋯I distance data (see Antoniadis et al., 2006) shows there to be a linear relationship between the two, which is quantified by the expression: d(Se⋯I) = −0.7981d(I⋯I) + 5.0983, R2 = 0.9805. The I—I bond order of 0.547 calculated for (7) using the expression of Pauling (1960) is the highest such bond order for selenoamide–diiodine complexes. All these data are consistent with a very weak Se⋯I interaction. Bigoli et al. (1996, 1999) have separated iodine adducts of sulfur donors into three classes on the basis of I⋯I bond order. Applying the same criteria to iodine adducts of selenium donors, (7) falls into the intermediate, rather than the weakest, classification which would require an I⋯I distance of 3.92 Å, which is close to double the van der Waals radius of iodine (1.98 Å). Therefore, a third type of Se—I adduct seems very unlikely. Although the C—Se distance in (7) [1.876 (6) Å] is slightly longer than that for the corresponding free selenouracil (3) [average 1.836 (11) Å; Table 2], it is similar to the C—Se distances found for the other charge-transfer complexes (see Antoniadis et al., 2006).
Re-crystallization of (6) and (7) from acetone solutions results in the formation of the diselenides (9·2H2O) and (10), respectively [see Scheme (I)]. Their molecular structures consist of two centrosymmetrically related selenoamide ligands, which have been N-substituted by a deselenated ligand molecule, linked through an Se—Se bond to form the diselenide (Figs. 13 and 14). The presence of a crystallographic inversion centre between the selenoamides fixes the C—Se—Se—C torsion angle at 180°, which is unusual for diselenoamides. The majority of those listed have torsion angles between 50 and 93°, the only other example of a 180° angle being that in N,N,N′,N′-tetraethylthiuramdiselenide (Dietzsch et al., 1998).
The Se—Se bond distances in (9·2H2O) [2.4328 (9) Å] and (10) [2.4427 (6) Å] fall within the range observed in other diselenoamides (2.34–2.59 Å; Antoniadis et al., 2006). The C—Se bond lengths in (9·2H2O) [1.925 (4) Å] and (10) [1.922 (4) Å], although longer than those of the corresponding free ligands (2) [mean C—Se 1.838 (5) Å] and (3) [mean C—Se 1.836 (11) Å], fall in the range of other such compounds (1.874−1.952 Å; Antoniadis et al., 2006). Molecules (9·2H2O) and (10) are neutral diselenoamides with two unequal C—N bond distances, as expected for such compounds. These bond distances become equal in the case of ionic diselenoamides. The Se—Se—C bond angles in (9·2H2O) [88.99 (14)°] and (10) [89.44 (8)°] are at the lower end of the range found for diselenoamides.
3.4. Extended structures of (7), (9·2H2O) and (10)
The extended structure of (7) is based on a linear chain aligned along the b axis (Fig. 15). The principal contact between adduct molecules is an intermolecular N—H⋯O hydrogen bond (Table 5). It is supported by an interaction between the terminal iodine and the selenium atom [Se⋯I2 (x − 1, y, z) 3.862 (2) Å; I1—I2⋯Se (1 + x, y, z) 87.02 (3); C2—Se⋯I2 (x − 1, y, z) 171.3 (2); I1—Se⋯I2 (x − 1, y, z) 83.82 (3); C2—Se⋯I1 96.9 (2)°].
The extended structures of (9·2H2O) and (10) are similar. They form chains aligned along the [210] and [101] directions, respectively, as shown in Figs. 16 and 17, respectively. The principal links between molecules in (9·2H2O) are N—H⋯O and in (10) are C—H⋯O hydrogen bonds. The reason for the difference is not clear. In the case of (9·2H2O), the N—H⋯O contact is quite long at 3.166 (5) Å, and by inference weak, owing to bifurcation of the hydrogen bond, the other contact being an intramolecular interaction of 2.560 (5) Å. The intermolecular contact is supported by a relatively short C—H⋯O hydrogen bond [C⋯O 3.304 (5) Å]. In the case of (10), the N—H⋯O intramolecular contact [N⋯O 2.534 (3) Å] is an independent interaction, the molecules being linked by a pair of centrosymmetrically related, somewhat long, C—H⋯O hydrogen bonds [C⋯O 3.535 (4) Å] which form an R22(8) motif (Fig. 17).
In both structures the chains are stacked to give two-dimensional sheet architectures parallel to () for (9·2H2O) and to () for (10). In the case of (9·2H2O) the chains are linked through hydrogen-bonded water molecules which not only form the sheet but also link the sheets into a three-dimensional structure. Although it was not possible to locate the water H atoms, the proposed interactions are supported by the geometries around the O atoms. Thus, O⋯O distances range from 2.741 (5) through 2.770 (5) to 2.861 (5) Å, while O⋯O⋯O angles range from 109.9 (2) through 122.5 (3) to 123.7 (2)°. There are no aromatic stacking interactions owing to a staggered molecular arrangement. The only other possible interaction linking the sheets is an Se⋯Se contact, but the interatomic distance is extremely long [4.125 (2) Å]. In the case of (10) the chains are linked into two-dimensional sheets by relatively long C—H⋯O contacts [C⋯O 3.562 (4) Å; Table 5]. Hydrogen-bonded contacts between sheets are not feasible and the staggered molecular arrangement precludes aromatic stacking interactions. The only possible interaction is an Se⋯Se contact, but the interatomic distance of 3.961 (2) Å is rather long.
4. Concluding remarks
The architectures of the extended structures of the 6-alkyl-2-selenouracils (1)–(4) and (4·CH2Cl2) rely heavily on R22(8) hydrogen-bonded rings. All three types of rings, namely those based on two oxygen acceptors [O/O; see Scheme (IVa)], two selenium acceptors [Se/Se; see Scheme (IVb)] and a mixture of one oxygen and one selenium acceptor [O/Se; see Scheme (IVc)], are found in the 6-alkyl-2-selenouracils. The most common is the Se/Se ring; it appears in the extended structures of all five compounds [(1)–(4) and (4·CH2Cl2)]. The other two types of ring appear twice only, the O/O ring in (3) and (4·CH2Cl2) and the O/Se ring in (2) and (4). The simplest structures are those of (3) and (4·CH2Cl2), where alternating Se/Se and O/O rings give rise to one-dimensional chain constructs (Figs. 9 and 10). In (1), Se/Se rings form dimers which are linked through N—H⋯O hydrogen bonds to give a two-dimensional sheet of topology 63 (Fig. 7). In (2) and (4), Se/Se and O/Se rings alternate to form chains of 6-alkyl-2-selenouracils, which are linked through N—H⋯O hydrogen bonds to give a two-dimensional sheet (Fig. 8). O/O R22(8) hydrogen-bonded rings are also found in the extended structure of 6-n-propyl-2-uracil (11), where they generate a six-membered paddle-wheel ring with pendant propyl groups (Fig. 11).
The extended structures of the diselenide oxidation products (9·2H2O and 10) also depend on O/O R22(8) hydrogen-bonded rings. However, in (9·2H2O) the donors are a mixture of C—H and N—H moieties [see (IVd)] while in (10) they are exclusively C—H donors. In both cases the molecules are linked to give rise to chain architectures (Figs. 16 and 17).
The O atoms of all five 6-alkyl-2-selenouracil and of the single 6-n-propyl-2-uracil structures act as acceptors to just one hydrogen-bonded contact. The Se atoms behave similarly except in (2) and (4). Of the Se atoms of the three molecules in the of (2) and (4), one acts as a dual acceptor, one as a single acceptor while the third is not involved in any hydrogen bonds (Fig. 8). The situation in the oxidation products (9·2H2O and 10) is complicated by the existence of intramolecular N—H⋯O hydrogen bonds. In (9·2H2O) one oxygen acts as a dual acceptor to intra- and intermolecular N—H⋯O hydrogen bonds and a second oxygen acts as a single acceptor in an intermolecular C—H⋯O hydrogen bond. All three contacts generate the one-dimensional chain structure (Fig. 16). In (10), one oxygen acts as a dual acceptor to an intramolecular N—H⋯O and an intermolecular C—H⋯O hydrogen bond to generate the one-dimensional chain structure, while a second oxygen acts as a single acceptor in an interchain C—H⋯O hydrogen bond (Fig. 17).
Supporting information
10.1107/S0108768106011426/so5003sup1.cif
contains datablocks 1, 2, 3, 4, 4.CH2Cl2, 7, 9, 10, 11. DOI:Structure factors: contains datablock sepmme. DOI: 10.1107/S0108768106011426/so50031sup2.hkl
Structure factors: contains datablock etseno. DOI: 10.1107/S0108768106011426/so50032sup3.hkl
Structure factors: contains datablock sepmon. DOI: 10.1107/S0108768106011426/so50033sup4.hkl
Structure factors: contains datablock iprsen. DOI: 10.1107/S0108768106011426/so50034sup5.hkl
Structure factors: contains datablock i2mseu. DOI: 10.1107/S0108768106011426/so50034.CH2Cl2sup6.hkl
Structure factors: contains datablock i2sepr. DOI: 10.1107/S0108768106011426/so50037sup7.hkl
Structure factors: contains datablock etse2i_t. DOI: 10.1107/S0108768106011426/so50039sup8.hkl
Structure factors: contains datablock sepmoi. DOI: 10.1107/S0108768106011426/so500310sup9.hkl
Structure factors: contains datablock i2prse. DOI: 10.1107/S0108768106011426/so500311sup10.hkl
Data collection: Bruker APEX2 (Bruker, 2004) for (1), (3); Bruker SMART version 5.625 (Bruker, 2001) for (2), (4), 4.CH2Cl2, (11); Bruker SMART version 5.624 (Bruker, 2001) for (7); COLLECT (Hooft, 1998) for (9); Bruker APEX2 for (10). Cell
Bruker SAINT (Bruker, 2004) for (1), (3); Bruker SAINT version 6.36a (Bruker, 2000) for (2), (4), 4.CH2Cl2, (11); Bruker SAINT version 6.36a (Bruker, 2001) for (7); DIRAX (Duisenberg, 1992) for (9); Bruker SAINT for (10). Data reduction: Bruker SAINT for (1), (3); Bruker SAINT; Bruker SHELXTL (Bruker, 2001) for (2), (4), 4.CH2Cl2, (11); Bruker SAINT; Bruker SHELXTL for (7), (10); HKL (Otwinowski & Minor, 1997) for (9). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (1), (2), (3), (4), 4.CH2Cl2, (7), (10), (11); SIR92 (Altomare et al., 1994) for (9). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003). Software used to prepare material for publication: enCIFer (Allen et al., 2004); PLATON for (1), (2), (3), (4), 4.CH2Cl2, (9), (10), (11); enCIFer (Allen et al., 2004; PLATON) for (7).C5H6N2OSe | F(000) = 368 |
Mr = 189.08 | Dx = 2.023 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6775 Å |
a = 4.3411 (7) Å | Cell parameters from 4328 reflections |
b = 14.756 (2) Å | θ = 2.6–29.0° |
c = 9.690 (2) Å | µ = 5.96 mm−1 |
β = 90.157 (2)° | T = 120 K |
V = 620.71 (18) Å3 | Needle, colourless |
Z = 4 | 0.10 × 0.01 × 0.01 mm |
Bruker SMART APEXII CCD diffractometer | 1770 independent reflections |
Radiation source: Daresbury Laboratory Station 9.8 | 1642 reflections with I > 2σ(I) |
Silicone (111) monochromator | Rint = 0.027 |
fine–slice ω scans | θmax = 29.0°, θmin = 4.0° |
Absorption correction: multi-scan (SADABS version 2.10; Bruker, 2003) | h = −6→6 |
Tmin = 0.816, Tmax = 1.000 | k = −20→21 |
6350 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: methyl H atoms from delta-F; others placed geometrically |
wR(F2) = 0.074 | Rigid rotating group; riding model |
S = 0.80 | w = 1/[σ2(Fo2) + (0.079P)2] where P = (Fo2 + 2Fc2)/3 |
1770 reflections | (Δ/σ)max = 0.001 |
83 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
C5H6N2OSe | V = 620.71 (18) Å3 |
Mr = 189.08 | Z = 4 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.6775 Å |
a = 4.3411 (7) Å | µ = 5.96 mm−1 |
b = 14.756 (2) Å | T = 120 K |
c = 9.690 (2) Å | 0.10 × 0.01 × 0.01 mm |
β = 90.157 (2)° |
Bruker SMART APEXII CCD diffractometer | 1770 independent reflections |
Absorption correction: multi-scan (SADABS version 2.10; Bruker, 2003) | 1642 reflections with I > 2σ(I) |
Tmin = 0.816, Tmax = 1.000 | Rint = 0.027 |
6350 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.074 | Rigid rotating group; riding model |
S = 0.80 | Δρmax = 0.57 e Å−3 |
1770 reflections | Δρmin = −0.80 e Å−3 |
83 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2422 (3) | 0.73923 (8) | 0.10993 (12) | 0.0105 (2) | |
H1A | 0.3737 | 0.7485 | 0.1777 | 0.013* | |
C2 | 0.1605 (3) | 0.65292 (9) | 0.08020 (14) | 0.0104 (2) | |
Se2 | 0.32333 (3) | 0.556089 (10) | 0.173603 (14) | 0.01181 (9) | |
N3 | −0.0470 (3) | 0.64228 (8) | −0.02297 (12) | 0.0116 (2) | |
H3A | −0.1048 | 0.5866 | −0.0428 | 0.014* | |
C4 | −0.1767 (3) | 0.71205 (9) | −0.10027 (15) | 0.0119 (3) | |
O4 | −0.3644 (3) | 0.69250 (9) | −0.19136 (13) | 0.0180 (2) | |
C5 | −0.0765 (3) | 0.80120 (9) | −0.06473 (15) | 0.0119 (2) | |
H5A | −0.1540 | 0.8521 | −0.1139 | 0.014* | |
C6 | 0.1301 (3) | 0.81340 (9) | 0.03956 (14) | 0.0111 (2) | |
C7 | 0.2429 (3) | 0.90396 (9) | 0.08536 (16) | 0.0153 (3) | |
H7D | 0.2201 | 0.9475 | 0.0097 | 0.023* | |
H7A | 0.4606 | 0.8995 | 0.1116 | 0.023* | |
H7B | 0.1223 | 0.9243 | 0.1648 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0136 (5) | 0.0082 (5) | 0.0097 (5) | −0.0003 (4) | −0.0031 (4) | −0.0010 (4) |
C2 | 0.0119 (5) | 0.0100 (6) | 0.0093 (6) | 0.0011 (4) | −0.0006 (4) | 0.0007 (4) |
Se2 | 0.01526 (13) | 0.00869 (12) | 0.01146 (12) | 0.00109 (4) | −0.00368 (7) | 0.00126 (4) |
N3 | 0.0137 (5) | 0.0089 (5) | 0.0123 (5) | −0.0014 (4) | −0.0043 (4) | 0.0003 (4) |
C4 | 0.0126 (6) | 0.0115 (6) | 0.0116 (6) | 0.0009 (5) | −0.0018 (5) | 0.0011 (5) |
O4 | 0.0203 (5) | 0.0170 (6) | 0.0165 (5) | −0.0005 (4) | −0.0106 (4) | 0.0005 (4) |
C5 | 0.0140 (6) | 0.0100 (6) | 0.0116 (6) | 0.0008 (5) | −0.0032 (5) | 0.0014 (5) |
C6 | 0.0135 (6) | 0.0089 (6) | 0.0108 (6) | 0.0005 (4) | −0.0005 (5) | −0.0001 (4) |
C7 | 0.0198 (7) | 0.0093 (6) | 0.0169 (7) | −0.0004 (5) | −0.0052 (5) | −0.0013 (5) |
N1—C2 | 1.3528 (17) | C4—C5 | 1.427 (2) |
N1—C6 | 1.3776 (17) | C5—C6 | 1.361 (2) |
N1—H1A | 0.8800 | C5—H5A | 0.9500 |
C2—N3 | 1.3531 (18) | C6—C7 | 1.4904 (19) |
C2—Se2 | 1.8322 (14) | C7—H7D | 0.9800 |
N3—C4 | 1.3913 (18) | C7—H7A | 0.9800 |
N3—H3A | 0.8800 | C7—H7B | 0.9800 |
C4—O4 | 1.2338 (18) | ||
C2—N1—C6 | 123.40 (12) | C6—C5—C4 | 120.05 (13) |
C2—N1—H1A | 118.3 | C6—C5—H5A | 120.0 |
C6—N1—H1A | 118.3 | C4—C5—H5A | 120.0 |
N1—C2—N3 | 116.12 (12) | C5—C6—N1 | 119.57 (12) |
N1—C2—Se2 | 121.90 (10) | C5—C6—C7 | 123.70 (13) |
N3—C2—Se2 | 121.98 (10) | N1—C6—C7 | 116.72 (12) |
C2—N3—C4 | 125.41 (12) | C6—C7—H7D | 109.5 |
C2—N3—H3A | 117.3 | C6—C7—H7A | 109.5 |
C4—N3—H3A | 117.3 | H7D—C7—H7A | 109.5 |
O4—C4—N3 | 118.52 (13) | C6—C7—H7B | 109.5 |
O4—C4—C5 | 126.04 (14) | H7D—C7—H7B | 109.5 |
N3—C4—C5 | 115.44 (13) | H7A—C7—H7B | 109.5 |
C6H8N2OSe | Z = 6 |
Mr = 203.10 | F(000) = 600 |
Triclinic, P1 | Dx = 1.762 Mg m−3 |
a = 8.394 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.029 (2) Å | Cell parameters from 2232 reflections |
c = 14.931 (4) Å | θ = 2.7–24.8° |
α = 101.023 (4)° | µ = 4.84 mm−1 |
β = 100.893 (4)° | T = 150 K |
γ = 105.705 (4)° | Triangular prism, colourless |
V = 1148.5 (5) Å3 | 0.21 × 0.12 × 0.04 mm |
Bruker SMART APEX CCD area detector diffractometer | 4025 independent reflections |
Radiation source: normal-focus sealed tube | 3189 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 25.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS version 2.03; Bruker, 2001) | h = −10→10 |
Tmin = 0.687, Tmax = 1.000 | k = −11→11 |
8174 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.094P)2] where P = (Fo2 + 2Fc2)/3 |
4025 reflections | (Δ/σ)max = 0.001 |
271 parameters | Δρmax = 1.48 e Å−3 |
69 restraints | Δρmin = −1.02 e Å−3 |
C6H8N2OSe | γ = 105.705 (4)° |
Mr = 203.10 | V = 1148.5 (5) Å3 |
Triclinic, P1 | Z = 6 |
a = 8.394 (2) Å | Mo Kα radiation |
b = 10.029 (2) Å | µ = 4.84 mm−1 |
c = 14.931 (4) Å | T = 150 K |
α = 101.023 (4)° | 0.21 × 0.12 × 0.04 mm |
β = 100.893 (4)° |
Bruker SMART APEX CCD area detector diffractometer | 4025 independent reflections |
Absorption correction: multi-scan (SADABS version 2.03; Bruker, 2001) | 3189 reflections with I > 2σ(I) |
Tmin = 0.687, Tmax = 1.000 | Rint = 0.038 |
8174 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 69 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.48 e Å−3 |
4025 reflections | Δρmin = −1.02 e Å−3 |
271 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N11 | 0.3293 (6) | 0.8677 (5) | 1.0200 (3) | 0.0162 (10) | |
H11 | 0.3777 | 0.8461 | 1.0705 | 0.019* | |
C12 | 0.2680 (7) | 0.9799 (6) | 1.0320 (4) | 0.0170 (12) | |
Se12 | 0.27048 (8) | 1.08298 (6) | 1.14818 (4) | 0.0202 (2) | |
N13 | 0.2027 (6) | 1.0113 (5) | 0.9517 (3) | 0.0183 (11) | |
H13 | 0.1618 | 1.0836 | 0.9583 | 0.022* | |
C14 | 0.1931 (8) | 0.9420 (7) | 0.8602 (4) | 0.0198 (13) | |
O14 | 0.1350 (6) | 0.9862 (5) | 0.7932 (3) | 0.0254 (10) | |
C15 | 0.2547 (8) | 0.8195 (6) | 0.8531 (4) | 0.0194 (13) | |
H15 | 0.2494 | 0.7635 | 0.7929 | 0.023* | |
C16 | 0.3197 (8) | 0.7852 (6) | 0.9323 (4) | 0.0186 (13) | |
C17 | 0.3885 (8) | 0.6621 (6) | 0.9367 (5) | 0.0218 (14) | |
H17A | 0.3284 | 0.6041 | 0.9742 | 0.026* | |
H17B | 0.5112 | 0.7013 | 0.9706 | 0.026* | |
C18 | 0.3707 (9) | 0.5628 (7) | 0.8409 (5) | 0.0286 (16) | |
H18A | 0.4180 | 0.4859 | 0.8508 | 0.043* | |
H18B | 0.4334 | 0.6179 | 0.8037 | 0.043* | |
H18C | 0.2495 | 0.5211 | 0.8069 | 0.043* | |
N21 | 0.9297 (6) | 0.4151 (5) | 0.8474 (3) | 0.0188 (11) | |
H21 | 0.9349 | 0.4819 | 0.8967 | 0.023* | |
Se22 | 1.10728 (8) | 0.31656 (6) | 0.98373 (4) | 0.0199 (2) | |
C22 | 1.0003 (7) | 0.3140 (6) | 0.8630 (4) | 0.0163 (12) | |
N23 | 0.9863 (7) | 0.2112 (5) | 0.7863 (3) | 0.0185 (11) | |
H23 | 1.0347 | 0.1454 | 0.7947 | 0.022* | |
C24 | 0.9002 (8) | 0.2019 (7) | 0.6944 (4) | 0.0225 (14) | |
O24 | 0.8883 (6) | 0.0990 (5) | 0.6294 (3) | 0.0299 (11) | |
C25 | 0.8338 (8) | 0.3177 (6) | 0.6841 (4) | 0.0217 (14) | |
H25 | 0.7783 | 0.3210 | 0.6233 | 0.026* | |
C26 | 0.8502 (8) | 0.4215 (6) | 0.7606 (4) | 0.0192 (13) | |
C27 | 0.7818 (9) | 0.5460 (7) | 0.7603 (4) | 0.0248 (14) | |
H27A | 0.6857 | 0.5315 | 0.7908 | 0.030* | |
H27B | 0.8730 | 0.6344 | 0.7995 | 0.030* | |
C28 | 0.7202 (12) | 0.5692 (9) | 0.6649 (5) | 0.048 (2) | |
H28A | 0.6788 | 0.6521 | 0.6724 | 0.072* | |
H28B | 0.6268 | 0.4838 | 0.6258 | 0.072* | |
H28C | 0.8147 | 0.5867 | 0.6344 | 0.072* | |
N31 | 0.7033 (7) | 0.9832 (5) | 0.4380 (4) | 0.0222 (12) | |
H31 | 0.7555 | 1.0315 | 0.4968 | 0.027* | |
C32 | 0.6233 (8) | 1.0491 (7) | 0.3819 (4) | 0.0233 (14) | |
Se32 | 0.62624 (11) | 1.23434 (7) | 0.41986 (5) | 0.0368 (2) | |
N33 | 0.5403 (7) | 0.9682 (5) | 0.2936 (4) | 0.0212 (12) | |
H33 | 0.4826 | 1.0070 | 0.2566 | 0.025* | |
O34 | 0.4622 (6) | 0.7690 (4) | 0.1719 (3) | 0.0266 (11) | |
C34 | 0.5370 (8) | 0.8274 (6) | 0.2550 (4) | 0.0216 (14) | |
C35 | 0.6296 (8) | 0.7701 (6) | 0.3200 (4) | 0.0221 (14) | |
H35 | 0.6351 | 0.6762 | 0.2993 | 0.027* | |
C36 | 0.7090 (8) | 0.8454 (6) | 0.4098 (4) | 0.0203 (13) | |
C37 | 0.8074 (9) | 0.7937 (7) | 0.4832 (4) | 0.0259 (15) | |
H37A | 0.7522 | 0.7931 | 0.5362 | 0.031* | |
H37B | 0.9247 | 0.8627 | 0.5081 | 0.031* | |
C38 | 0.8198 (10) | 0.6442 (7) | 0.4475 (5) | 0.0326 (17) | |
H38A | 0.8854 | 0.6184 | 0.4993 | 0.049* | |
H38B | 0.8774 | 0.6441 | 0.3962 | 0.049* | |
H38C | 0.7045 | 0.5744 | 0.4242 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N11 | 0.020 (3) | 0.010 (2) | 0.018 (3) | 0.008 (2) | 0.002 (2) | 0.002 (2) |
C12 | 0.017 (3) | 0.009 (3) | 0.024 (3) | 0.003 (2) | 0.003 (2) | 0.003 (2) |
Se12 | 0.0299 (4) | 0.0105 (3) | 0.0217 (4) | 0.0122 (3) | 0.0052 (3) | 0.0006 (2) |
N13 | 0.025 (3) | 0.010 (3) | 0.022 (3) | 0.010 (2) | 0.004 (2) | 0.002 (2) |
C14 | 0.022 (3) | 0.016 (3) | 0.022 (3) | 0.008 (3) | 0.007 (3) | 0.003 (3) |
O14 | 0.041 (3) | 0.020 (2) | 0.023 (2) | 0.020 (2) | 0.009 (2) | 0.0068 (19) |
C15 | 0.029 (3) | 0.008 (3) | 0.022 (3) | 0.009 (3) | 0.007 (3) | 0.000 (2) |
C16 | 0.023 (3) | 0.010 (3) | 0.025 (3) | 0.006 (3) | 0.011 (3) | 0.003 (2) |
C17 | 0.023 (3) | 0.011 (3) | 0.032 (4) | 0.011 (3) | 0.004 (3) | 0.003 (3) |
C18 | 0.044 (4) | 0.010 (3) | 0.036 (4) | 0.017 (3) | 0.012 (3) | 0.000 (3) |
N21 | 0.031 (3) | 0.010 (3) | 0.015 (2) | 0.012 (2) | 0.003 (2) | −0.002 (2) |
Se22 | 0.0325 (4) | 0.0099 (3) | 0.0178 (3) | 0.0130 (3) | 0.0012 (3) | 0.0009 (2) |
C22 | 0.017 (3) | 0.010 (3) | 0.020 (3) | 0.003 (2) | 0.003 (2) | 0.004 (2) |
N23 | 0.031 (3) | 0.008 (2) | 0.019 (2) | 0.013 (2) | 0.004 (2) | 0.002 (2) |
C24 | 0.036 (4) | 0.017 (3) | 0.017 (3) | 0.012 (3) | 0.007 (3) | 0.003 (2) |
O24 | 0.053 (3) | 0.016 (2) | 0.023 (2) | 0.022 (2) | 0.004 (2) | 0.0002 (19) |
C25 | 0.036 (4) | 0.016 (3) | 0.017 (3) | 0.016 (3) | 0.005 (3) | 0.006 (2) |
C26 | 0.027 (3) | 0.014 (3) | 0.021 (3) | 0.011 (3) | 0.007 (3) | 0.008 (2) |
C27 | 0.034 (4) | 0.022 (4) | 0.021 (3) | 0.019 (3) | 0.005 (3) | 0.001 (3) |
C28 | 0.086 (7) | 0.041 (5) | 0.042 (5) | 0.052 (5) | 0.020 (4) | 0.022 (4) |
N31 | 0.034 (3) | 0.010 (3) | 0.018 (3) | 0.011 (2) | −0.001 (2) | −0.003 (2) |
C32 | 0.031 (4) | 0.016 (3) | 0.022 (3) | 0.011 (3) | 0.002 (3) | 0.002 (2) |
Se32 | 0.0651 (6) | 0.0163 (4) | 0.0275 (4) | 0.0273 (4) | −0.0039 (4) | −0.0026 (3) |
N33 | 0.036 (3) | 0.009 (2) | 0.022 (3) | 0.013 (2) | 0.004 (2) | 0.006 (2) |
O34 | 0.045 (3) | 0.012 (2) | 0.020 (2) | 0.015 (2) | 0.000 (2) | −0.0016 (18) |
C34 | 0.032 (4) | 0.012 (3) | 0.021 (3) | 0.009 (3) | 0.006 (3) | 0.002 (2) |
C35 | 0.039 (4) | 0.005 (3) | 0.023 (3) | 0.012 (3) | 0.006 (3) | 0.000 (2) |
C36 | 0.029 (4) | 0.013 (3) | 0.024 (3) | 0.012 (3) | 0.007 (3) | 0.007 (2) |
C37 | 0.043 (4) | 0.017 (3) | 0.021 (3) | 0.020 (3) | 0.003 (3) | 0.001 (3) |
C38 | 0.055 (5) | 0.022 (4) | 0.030 (4) | 0.025 (3) | 0.011 (3) | 0.009 (3) |
N11—C12 | 1.355 (7) | C25—C26 | 1.347 (9) |
N11—C16 | 1.384 (7) | C25—H25 | 0.9500 |
N11—H11 | 0.8800 | C26—C27 | 1.510 (8) |
C12—N13 | 1.351 (8) | C27—C28 | 1.504 (9) |
C12—Se12 | 1.835 (6) | C27—H27A | 0.9900 |
N13—C14 | 1.386 (8) | C27—H27B | 0.9900 |
N13—H13 | 0.8800 | C28—H28A | 0.9800 |
C14—O14 | 1.240 (7) | C28—H28B | 0.9800 |
C14—C15 | 1.450 (8) | C28—H28C | 0.9800 |
C15—C16 | 1.353 (9) | N31—C32 | 1.353 (8) |
C15—H15 | 0.9500 | N31—C36 | 1.382 (8) |
C16—C17 | 1.504 (8) | N31—H31 | 0.8800 |
C17—C18 | 1.534 (9) | C32—N33 | 1.349 (8) |
C17—H17A | 0.9900 | C32—Se32 | 1.828 (6) |
C17—H17B | 0.9900 | N33—C34 | 1.410 (8) |
C18—H18A | 0.9800 | N33—H33 | 0.8800 |
C18—H18B | 0.9800 | O34—C34 | 1.227 (7) |
C18—H18C | 0.9800 | C34—C35 | 1.431 (9) |
N21—C22 | 1.340 (7) | C35—C36 | 1.347 (9) |
N21—C26 | 1.363 (8) | C35—H35 | 0.9500 |
N21—H21 | 0.8800 | C36—C37 | 1.503 (8) |
Se22—C22 | 1.848 (6) | C37—C38 | 1.530 (8) |
C22—N23 | 1.350 (8) | C37—H37A | 0.9900 |
N23—C24 | 1.397 (8) | C37—H37B | 0.9900 |
N23—H23 | 0.8800 | C38—H38A | 0.9800 |
C24—O24 | 1.241 (7) | C38—H38B | 0.9800 |
C24—C25 | 1.439 (9) | C38—H38C | 0.9800 |
C12—N11—C16 | 123.3 (5) | C25—C26—N21 | 119.3 (6) |
C12—N11—H11 | 118.3 | C25—C26—C27 | 125.6 (6) |
C16—N11—H11 | 118.3 | N21—C26—C27 | 115.1 (5) |
N13—C12—N11 | 115.3 (5) | C28—C27—C26 | 115.9 (5) |
N13—C12—Se12 | 121.6 (4) | C28—C27—H27A | 108.3 |
N11—C12—Se12 | 123.2 (4) | C26—C27—H27A | 108.3 |
C12—N13—C14 | 127.1 (5) | C28—C27—H27B | 108.3 |
C12—N13—H13 | 116.4 | C26—C27—H27B | 108.3 |
C14—N13—H13 | 116.4 | H27A—C27—H27B | 107.4 |
O14—C14—N13 | 119.9 (5) | C27—C28—H28A | 109.5 |
O14—C14—C15 | 125.9 (6) | C27—C28—H28B | 109.5 |
N13—C14—C15 | 114.2 (5) | H28A—C28—H28B | 109.5 |
C16—C15—C14 | 119.8 (6) | C27—C28—H28C | 109.5 |
C16—C15—H15 | 120.1 | H28A—C28—H28C | 109.5 |
C14—C15—H15 | 120.1 | H28B—C28—H28C | 109.5 |
C15—C16—N11 | 120.1 (5) | C32—N31—C36 | 124.8 (5) |
C15—C16—C17 | 126.2 (5) | C32—N31—H31 | 117.6 |
N11—C16—C17 | 113.7 (5) | C36—N31—H31 | 117.6 |
C16—C17—C18 | 115.4 (5) | N33—C32—N31 | 115.0 (5) |
C16—C17—H17A | 108.4 | N33—C32—Se32 | 121.3 (5) |
C18—C17—H17A | 108.4 | N31—C32—Se32 | 123.7 (5) |
C16—C17—H17B | 108.4 | C32—N33—C34 | 126.3 (5) |
C18—C17—H17B | 108.4 | C32—N33—H33 | 116.9 |
H17A—C17—H17B | 107.5 | C34—N33—H33 | 116.9 |
C17—C18—H18A | 109.5 | O34—C34—N33 | 119.1 (6) |
C17—C18—H18B | 109.5 | O34—C34—C35 | 127.2 (6) |
H18A—C18—H18B | 109.5 | N33—C34—C35 | 113.7 (5) |
C17—C18—H18C | 109.5 | C36—C35—C34 | 121.9 (6) |
H18A—C18—H18C | 109.5 | C36—C35—H35 | 119.0 |
H18B—C18—H18C | 109.5 | C34—C35—H35 | 119.0 |
C22—N21—C26 | 124.5 (5) | C35—C36—N31 | 118.3 (5) |
C22—N21—H21 | 117.8 | C35—C36—C37 | 125.7 (6) |
C26—N21—H21 | 117.8 | N31—C36—C37 | 116.1 (5) |
N21—C22—N23 | 116.2 (5) | C36—C37—C38 | 114.5 (5) |
N21—C22—Se22 | 121.0 (4) | C36—C37—H37A | 108.6 |
N23—C22—Se22 | 122.8 (4) | C38—C37—H37A | 108.6 |
C22—N23—C24 | 124.6 (5) | C36—C37—H37B | 108.6 |
C22—N23—H23 | 117.7 | C38—C37—H37B | 108.6 |
C24—N23—H23 | 117.7 | H37A—C37—H37B | 107.6 |
O24—C24—N23 | 119.3 (6) | C37—C38—H38A | 109.5 |
O24—C24—C25 | 125.5 (6) | C37—C38—H38B | 109.5 |
N23—C24—C25 | 115.1 (5) | H38A—C38—H38B | 109.5 |
C26—C25—C24 | 120.1 (6) | C37—C38—H38C | 109.5 |
C26—C25—H25 | 120.0 | H38A—C38—H38C | 109.5 |
C24—C25—H25 | 120.0 | H38B—C38—H38C | 109.5 |
C7H10N2OSe | Dx = 1.684 Mg m−3 |
Mr = 217.13 | Synchrotron radiation, λ = 0.6775 Å |
Orthorhombic, Pbca | Cell parameters from 3142 reflections |
a = 10.568 (7) Å | θ = 2.6–27.5° |
b = 11.257 (7) Å | µ = 4.33 mm−1 |
c = 28.79 (2) Å | T = 120 K |
V = 3425 (4) Å3 | Lath, colourless |
Z = 16 | 0.20 × 0.02 × 0.01 mm |
F(000) = 1728 |
Bruker SMART APEXII CCD diffractometer | 3471 independent reflections |
Radiation source: Daresbury SRS station 9.8 | 2417 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.250 |
fine–slice ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −13→13 |
Tmin = 0.260, Tmax = 1.000 | k = −14→14 |
24855 measured reflections | l = −35→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.173 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.408 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.025P)2 + 367.0] where P = (Fo2 + 2Fc2)/3 |
3471 reflections | (Δ/σ)max = 0.002 |
99 parameters | Δρmax = 2.38 e Å−3 |
35 restraints | Δρmin = −2.33 e Å−3 |
C7H10N2OSe | V = 3425 (4) Å3 |
Mr = 217.13 | Z = 16 |
Orthorhombic, Pbca | Synchrotron radiation, λ = 0.6775 Å |
a = 10.568 (7) Å | µ = 4.33 mm−1 |
b = 11.257 (7) Å | T = 120 K |
c = 28.79 (2) Å | 0.20 × 0.02 × 0.01 mm |
Bruker SMART APEXII CCD diffractometer | 3471 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2417 reflections with I > 2σ(I) |
Tmin = 0.260, Tmax = 1.000 | Rint = 0.250 |
24855 measured reflections |
R[F2 > 2σ(F2)] = 0.173 | 35 restraints |
wR(F2) = 0.408 | H-atom parameters constrained |
S = 1.18 | Δρmax = 2.38 e Å−3 |
3471 reflections | Δρmin = −2.33 e Å−3 |
99 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Despite obtaining a synchrotron dataset from the Daresbury SRS, we could not overcome the limitations imposed by the poor crystal quality. As a result it was found that only the Se atoms could be refined anisotropically. Geometric restraints - similarity between the two independent molecules in the asymmetric unit and planarity of the aromatic ring - were found to be necessary. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.0749 (2) | 0.28948 (18) | 0.32853 (8) | 0.0333 (6) | |
C1 | 0.0909 (13) | 0.3523 (15) | 0.3871 (5) | 0.028 (5)* | |
N2 | 0.1159 (11) | 0.2874 (14) | 0.4243 (5) | 0.030 (4)* | |
H2N | 0.1205 | 0.2098 | 0.4209 | 0.036* | |
C3 | 0.1356 (10) | 0.3339 (16) | 0.4688 (6) | 0.029 (5)* | |
C4 | 0.1287 (11) | 0.4523 (16) | 0.4746 (6) | 0.031 (5)* | |
H4 | 0.1418 | 0.4851 | 0.5046 | 0.038* | |
C5 | 0.1019 (10) | 0.5304 (16) | 0.4361 (6) | 0.026 (4)* | |
O5 | 0.0948 (13) | 0.6397 (11) | 0.4387 (5) | 0.035 (4)* | |
N6 | 0.0851 (11) | 0.4741 (13) | 0.3950 (5) | 0.030 (4)* | |
H6N | 0.0688 | 0.5192 | 0.3708 | 0.036* | |
C11 | 0.1625 (16) | 0.2460 (17) | 0.5061 (6) | 0.033 (5)* | |
H11A | 0.2134 | 0.1807 | 0.4925 | 0.040* | |
H11B | 0.0812 | 0.2115 | 0.5165 | 0.040* | |
C12 | 0.232 (2) | 0.294 (2) | 0.5484 (7) | 0.042 (6)* | |
H12A | 0.3082 | 0.3376 | 0.5380 | 0.051* | |
H12B | 0.1765 | 0.3504 | 0.5650 | 0.051* | |
C13 | 0.272 (3) | 0.198 (2) | 0.5815 (8) | 0.049 (7)* | |
H13A | 0.3187 | 0.2328 | 0.6075 | 0.074* | |
H13B | 0.3262 | 0.1404 | 0.5653 | 0.074* | |
H13C | 0.1967 | 0.1566 | 0.5934 | 0.074* | |
Se21 | 0.0605 (2) | 0.98622 (17) | 0.42671 (9) | 0.0360 (7) | |
C21 | 0.0857 (14) | 0.9209 (16) | 0.3690 (6) | 0.038 (6)* | |
N22 | 0.1047 (11) | 0.9839 (14) | 0.3309 (5) | 0.032 (4)* | |
H22N | 0.1075 | 1.0617 | 0.3337 | 0.038* | |
C23 | 0.1207 (11) | 0.9360 (16) | 0.2866 (6) | 0.033 (5)* | |
C24 | 0.1164 (12) | 0.8173 (16) | 0.2817 (6) | 0.033 (5)* | |
H24 | 0.1262 | 0.7833 | 0.2517 | 0.040* | |
C25 | 0.0971 (11) | 0.7407 (18) | 0.3212 (7) | 0.073 (10)* | |
O25 | 0.0912 (12) | 0.6312 (11) | 0.3195 (4) | 0.027 (3)* | |
N26 | 0.0822 (11) | 0.7987 (14) | 0.3624 (5) | 0.034 (4)* | |
H26N | 0.0691 | 0.7545 | 0.3871 | 0.041* | |
C31 | 0.1410 (18) | 1.0226 (18) | 0.2482 (7) | 0.043 (6)* | |
H31A | 0.1761 | 1.0967 | 0.2615 | 0.051* | |
H31B | 0.0580 | 1.0421 | 0.2342 | 0.051* | |
C32 | 0.229 (2) | 0.979 (2) | 0.2099 (7) | 0.045 (6)* | |
H32A | 0.3116 | 0.9574 | 0.2237 | 0.054* | |
H32B | 0.1927 | 0.9074 | 0.1955 | 0.054* | |
C33 | 0.251 (2) | 1.071 (2) | 0.1729 (7) | 0.040 (6)* | |
H33A | 0.3081 | 1.0394 | 0.1493 | 0.060* | |
H33B | 0.2882 | 1.1425 | 0.1868 | 0.060* | |
H33C | 0.1697 | 1.0920 | 0.1584 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0392 (13) | 0.0120 (10) | 0.0486 (14) | −0.0005 (10) | −0.0017 (11) | 0.0015 (9) |
Se21 | 0.0482 (14) | 0.0083 (10) | 0.0516 (14) | −0.0012 (10) | 0.0005 (12) | 0.0001 (9) |
Se1—C1 | 1.837 (16) | Se21—C21 | 1.835 (16) |
C1—N2 | 1.32 (2) | C21—N22 | 1.32 (2) |
C1—N6 | 1.39 (2) | C21—N26 | 1.39 (2) |
N2—C3 | 1.40 (2) | N22—C23 | 1.40 (2) |
N2—H2N | 0.8800 | N22—H22N | 0.8800 |
C3—C4 | 1.34 (2) | C23—C24 | 1.34 (2) |
C3—C11 | 1.49 (2) | C23—C31 | 1.49 (2) |
C4—C5 | 1.44 (2) | C24—C25 | 1.44 (2) |
C4—H4 | 0.9500 | C24—H24 | 0.9500 |
C5—O5 | 1.23 (2) | C25—O25 | 1.24 (2) |
C5—N6 | 1.36 (2) | C25—N26 | 1.36 (2) |
N6—H6N | 0.8800 | N26—H26N | 0.8800 |
C11—C12 | 1.52 (2) | C31—C32 | 1.52 (2) |
C11—H11A | 0.9900 | C31—H31A | 0.9900 |
C11—H11B | 0.9900 | C31—H31B | 0.9900 |
C12—C13 | 1.50 (3) | C32—C33 | 1.50 (2) |
C12—H12A | 0.9900 | C32—H32A | 0.9900 |
C12—H12B | 0.9900 | C32—H32B | 0.9900 |
C13—H13A | 0.9800 | C33—H33A | 0.9800 |
C13—H13B | 0.9800 | C33—H33B | 0.9800 |
C13—H13C | 0.9800 | C33—H33C | 0.9800 |
N2—C1—N6 | 115.0 (15) | N22—C21—N26 | 114.9 (15) |
N2—C1—Se1 | 123.3 (13) | N22—C21—Se21 | 123.9 (13) |
N6—C1—Se1 | 121.7 (12) | N26—C21—Se21 | 121.2 (12) |
C1—N2—C3 | 124.3 (15) | C21—N22—C23 | 124.8 (15) |
C1—N2—H2N | 117.9 | C21—N22—H22N | 117.6 |
C3—N2—H2N | 117.9 | C23—N22—H22N | 117.6 |
C4—C3—N2 | 118.5 (16) | C24—C23—N22 | 118.4 (16) |
C4—C3—C11 | 125.4 (16) | C24—C23—C31 | 125.3 (17) |
N2—C3—C11 | 116.1 (15) | N22—C23—C31 | 116.3 (15) |
C3—C4—C5 | 121.2 (17) | C23—C24—C25 | 121.1 (17) |
C3—C4—H4 | 119.4 | C23—C24—H24 | 119.4 |
C5—C4—H4 | 119.4 | C25—C24—H24 | 119.4 |
O5—C5—N6 | 120.6 (17) | O25—C25—N26 | 120.4 (18) |
O5—C5—C4 | 125.0 (17) | O25—C25—C24 | 125.0 (18) |
N6—C5—C4 | 114.3 (16) | N26—C25—C24 | 114.6 (17) |
C5—N6—C1 | 126.7 (15) | C25—N26—C21 | 126.2 (16) |
C5—N6—H6N | 116.7 | C25—N26—H26N | 116.9 |
C1—N6—H6N | 116.7 | C21—N26—H26N | 116.9 |
C3—C11—C12 | 115.9 (15) | C23—C31—C32 | 114.7 (15) |
C3—C11—H11A | 108.3 | C23—C31—H31A | 108.6 |
C12—C11—H11A | 108.3 | C32—C31—H31A | 108.6 |
C3—C11—H11B | 108.3 | C23—C31—H31B | 108.6 |
C12—C11—H11B | 108.3 | C32—C31—H31B | 108.6 |
H11A—C11—H11B | 107.4 | H31A—C31—H31B | 107.6 |
C13—C12—C11 | 113.0 (17) | C33—C32—C31 | 112.8 (17) |
C13—C12—H12A | 109.0 | C33—C32—H32A | 109.0 |
C11—C12—H12A | 109.0 | C31—C32—H32A | 109.0 |
C13—C12—H12B | 109.0 | C33—C32—H32B | 109.0 |
C11—C12—H12B | 109.0 | C31—C32—H32B | 109.0 |
H12A—C12—H12B | 107.8 | H32A—C32—H32B | 107.8 |
C12—C13—H13A | 109.5 | C32—C33—H33A | 109.5 |
C12—C13—H13B | 109.5 | C32—C33—H33B | 109.5 |
H13A—C13—H13B | 109.5 | H33A—C33—H33B | 109.5 |
C12—C13—H13C | 109.5 | C32—C33—H33C | 109.5 |
H13A—C13—H13C | 109.5 | H33A—C33—H33C | 109.5 |
H13B—C13—H13C | 109.5 | H33B—C33—H33C | 109.5 |
C7H10N2OSe | Z = 6 |
Mr = 217.13 | F(000) = 648 |
Triclinic, P1 | Dx = 1.650 Mg m−3 |
a = 8.9192 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.6403 (10) Å | Cell parameters from 3689 reflections |
c = 15.1965 (15) Å | θ = 2.4–27.6° |
α = 106.019 (2)° | µ = 4.24 mm−1 |
β = 105.366 (2)° | T = 150 K |
γ = 96.166 (2)° | Tablet, colourless |
V = 1311.0 (2) Å3 | 0.25 × 0.14 × 0.06 mm |
Bruker SMART APEX CCD area detector diffractometer | 5780 independent reflections |
Radiation source: sealed tube | 4932 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ω scans | θmax = 27.6°, θmin = 2.4° |
Absorption correction: multi-scan Bruker SADABS v2.03 | h = −11→7 |
Tmin = 0.581, Tmax = 0.770 | k = −13→13 |
8163 measured reflections | l = −17→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: geometrically placed, NH from delta-F and then idealised |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.854P] where P = (Fo2 + 2Fc2)/3 |
5780 reflections | (Δ/σ)max = 0.001 |
298 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C7H10N2OSe | γ = 96.166 (2)° |
Mr = 217.13 | V = 1311.0 (2) Å3 |
Triclinic, P1 | Z = 6 |
a = 8.9192 (9) Å | Mo Kα radiation |
b = 10.6403 (10) Å | µ = 4.24 mm−1 |
c = 15.1965 (15) Å | T = 150 K |
α = 106.019 (2)° | 0.25 × 0.14 × 0.06 mm |
β = 105.366 (2)° |
Bruker SMART APEX CCD area detector diffractometer | 5780 independent reflections |
Absorption correction: multi-scan Bruker SADABS v2.03 | 4932 reflections with I > 2σ(I) |
Tmin = 0.581, Tmax = 0.770 | Rint = 0.013 |
8163 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.65 e Å−3 |
5780 reflections | Δρmin = −0.40 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Se1 | 1.07398 (3) | 0.80241 (2) | 0.489662 (16) | 0.02136 (7) | |
O1 | 0.9476 (2) | 0.59638 (17) | 0.12915 (12) | 0.0285 (4) | |
N1 | 0.9208 (2) | 0.89862 (18) | 0.34418 (13) | 0.0183 (4) | |
H1A | 0.9156 | 0.9646 | 0.3925 | 0.022* | |
C2 | 0.9924 (3) | 0.8001 (2) | 0.36425 (16) | 0.0176 (4) | |
N3 | 0.9998 (2) | 0.70197 (19) | 0.28899 (14) | 0.0196 (4) | |
H3A | 1.0503 | 0.6392 | 0.3014 | 0.024* | |
C4 | 0.9335 (3) | 0.6915 (2) | 0.19217 (17) | 0.0219 (5) | |
C5 | 0.8561 (3) | 0.7987 (2) | 0.17681 (17) | 0.0226 (5) | |
H5A | 0.8050 | 0.7969 | 0.1130 | 0.027* | |
C6 | 0.8549 (3) | 0.9013 (2) | 0.25115 (17) | 0.0193 (5) | |
C7 | 0.7970 (3) | 1.0269 (2) | 0.24404 (17) | 0.0218 (5) | |
H7A | 0.7532 | 1.0597 | 0.2985 | 0.026* | |
C8 | 0.6658 (3) | 1.0049 (3) | 0.15028 (19) | 0.0305 (6) | |
H8A | 0.5767 | 0.9373 | 0.1444 | 0.046* | |
H8B | 0.7066 | 0.9745 | 0.0958 | 0.046* | |
H8C | 0.6298 | 1.0888 | 0.1504 | 0.046* | |
C9 | 0.9385 (3) | 1.1326 (2) | 0.2569 (2) | 0.0304 (6) | |
H9A | 1.0200 | 1.1450 | 0.3180 | 0.046* | |
H9B | 0.9038 | 1.2170 | 0.2574 | 0.046* | |
H9C | 0.9824 | 1.1034 | 0.2036 | 0.046* | |
Se1A | 0.69491 (3) | 0.71890 (3) | −0.093473 (18) | 0.03059 (8) | |
O1A | 0.4581 (3) | 0.25574 (19) | −0.32509 (13) | 0.0393 (5) | |
N1A | 0.7470 (2) | 0.4752 (2) | −0.06506 (14) | 0.0236 (4) | |
H1AA | 0.8105 | 0.5243 | −0.0079 | 0.028* | |
C2A | 0.6681 (3) | 0.5381 (2) | −0.12369 (17) | 0.0238 (5) | |
N3A | 0.5675 (3) | 0.4566 (2) | −0.20863 (15) | 0.0264 (5) | |
H3AA | 0.5075 | 0.4945 | −0.2454 | 0.032* | |
C4A | 0.5493 (3) | 0.3187 (3) | −0.24379 (19) | 0.0294 (6) | |
C5A | 0.6407 (3) | 0.2611 (3) | −0.17789 (19) | 0.0288 (6) | |
H5AA | 0.6356 | 0.1675 | −0.1966 | 0.035* | |
C6A | 0.7335 (3) | 0.3383 (2) | −0.08979 (18) | 0.0244 (5) | |
C7A | 0.8227 (3) | 0.2883 (3) | −0.01137 (18) | 0.0282 (6) | |
H7AA | 0.9309 | 0.3458 | 0.0194 | 0.034* | |
C8A | 0.7373 (4) | 0.3039 (3) | 0.0660 (2) | 0.0383 (7) | |
H8AA | 0.7949 | 0.2717 | 0.1172 | 0.057* | |
H8AB | 0.6290 | 0.2517 | 0.0367 | 0.057* | |
H8AC | 0.7339 | 0.3981 | 0.0931 | 0.057* | |
C9A | 0.8418 (4) | 0.1441 (3) | −0.0491 (2) | 0.0366 (7) | |
H9AA | 0.8965 | 0.1363 | −0.0979 | 0.055* | |
H9AB | 0.7371 | 0.0855 | −0.0778 | 0.055* | |
H9AC | 0.9042 | 0.1181 | 0.0042 | 0.055* | |
Se1B | 0.75370 (3) | 0.45066 (2) | 0.338610 (18) | 0.02597 (7) | |
N1B | 0.6585 (2) | 0.63716 (19) | 0.47242 (14) | 0.0200 (4) | |
H1BA | 0.6238 | 0.6691 | 0.4248 | 0.024* | |
O1B | 0.8146 (3) | 0.48679 (19) | 0.68468 (14) | 0.0357 (5) | |
C2B | 0.7292 (3) | 0.5317 (2) | 0.45594 (17) | 0.0201 (5) | |
N3B | 0.7807 (2) | 0.4863 (2) | 0.53135 (14) | 0.0228 (4) | |
H3BA | 0.8293 | 0.4183 | 0.5221 | 0.027* | |
C4B | 0.7638 (3) | 0.5376 (2) | 0.62238 (18) | 0.0243 (5) | |
C5B | 0.6852 (3) | 0.6498 (2) | 0.63353 (18) | 0.0225 (5) | |
H5BA | 0.6675 | 0.6895 | 0.6931 | 0.027* | |
C6B | 0.6366 (3) | 0.6989 (2) | 0.56018 (17) | 0.0186 (5) | |
C7B | 0.5636 (3) | 0.8212 (2) | 0.56518 (18) | 0.0218 (5) | |
H7BA | 0.4642 | 0.7970 | 0.5096 | 0.026* | |
C8B | 0.6764 (3) | 0.9317 (2) | 0.5549 (2) | 0.0292 (6) | |
H8BA | 0.6281 | 1.0106 | 0.5581 | 0.044* | |
H8BB | 0.6966 | 0.9005 | 0.4929 | 0.044* | |
H8BC | 0.7766 | 0.9546 | 0.6073 | 0.044* | |
C9B | 0.5202 (4) | 0.8717 (3) | 0.6568 (2) | 0.0343 (6) | |
H9BA | 0.4477 | 0.8005 | 0.6625 | 0.051* | |
H9BB | 0.4684 | 0.9480 | 0.6549 | 0.051* | |
H9BC | 0.6165 | 0.8993 | 0.7123 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.03137 (14) | 0.01777 (11) | 0.01345 (11) | 0.00925 (9) | 0.00318 (9) | 0.00452 (9) |
O1 | 0.0422 (11) | 0.0256 (9) | 0.0151 (8) | 0.0135 (8) | 0.0060 (7) | 0.0025 (7) |
N1 | 0.0231 (10) | 0.0168 (9) | 0.0145 (9) | 0.0078 (8) | 0.0050 (8) | 0.0035 (7) |
C2 | 0.0208 (11) | 0.0162 (10) | 0.0140 (10) | 0.0028 (9) | 0.0038 (9) | 0.0037 (8) |
N3 | 0.0263 (11) | 0.0169 (9) | 0.0164 (9) | 0.0083 (8) | 0.0051 (8) | 0.0063 (8) |
C4 | 0.0256 (12) | 0.0211 (11) | 0.0166 (11) | 0.0024 (10) | 0.0047 (9) | 0.0049 (9) |
C5 | 0.0269 (13) | 0.0246 (11) | 0.0164 (11) | 0.0084 (10) | 0.0031 (9) | 0.0088 (9) |
C6 | 0.0177 (11) | 0.0228 (11) | 0.0181 (11) | 0.0052 (9) | 0.0033 (9) | 0.0093 (9) |
C7 | 0.0255 (12) | 0.0240 (11) | 0.0184 (12) | 0.0107 (10) | 0.0067 (10) | 0.0085 (9) |
C8 | 0.0265 (13) | 0.0338 (14) | 0.0315 (15) | 0.0098 (11) | 0.0013 (11) | 0.0166 (12) |
C9 | 0.0331 (14) | 0.0229 (12) | 0.0322 (14) | 0.0063 (11) | 0.0021 (11) | 0.0115 (11) |
Se1A | 0.04401 (17) | 0.02449 (13) | 0.01969 (13) | 0.01027 (11) | 0.00385 (11) | 0.00577 (10) |
O1A | 0.0535 (13) | 0.0277 (10) | 0.0237 (10) | 0.0024 (9) | −0.0071 (9) | 0.0079 (8) |
N1A | 0.0264 (11) | 0.0260 (10) | 0.0146 (10) | 0.0054 (9) | 0.0017 (8) | 0.0046 (8) |
C2A | 0.0270 (13) | 0.0258 (12) | 0.0201 (12) | 0.0072 (10) | 0.0089 (10) | 0.0073 (10) |
N3A | 0.0338 (12) | 0.0248 (10) | 0.0176 (10) | 0.0071 (9) | 0.0011 (9) | 0.0080 (8) |
C4A | 0.0379 (15) | 0.0269 (13) | 0.0231 (13) | 0.0050 (11) | 0.0060 (11) | 0.0113 (11) |
C5A | 0.0360 (15) | 0.0224 (12) | 0.0253 (13) | 0.0052 (11) | 0.0040 (11) | 0.0087 (10) |
C6A | 0.0266 (13) | 0.0279 (12) | 0.0211 (12) | 0.0068 (10) | 0.0076 (10) | 0.0107 (10) |
C7A | 0.0301 (14) | 0.0312 (13) | 0.0224 (13) | 0.0059 (11) | 0.0024 (10) | 0.0129 (11) |
C8A | 0.0487 (18) | 0.0440 (17) | 0.0297 (15) | 0.0100 (14) | 0.0134 (13) | 0.0216 (13) |
C9A | 0.0392 (16) | 0.0345 (15) | 0.0380 (16) | 0.0135 (13) | 0.0064 (13) | 0.0175 (13) |
Se1B | 0.03340 (15) | 0.02453 (13) | 0.01974 (13) | 0.00943 (10) | 0.00871 (10) | 0.00476 (10) |
N1B | 0.0211 (10) | 0.0196 (9) | 0.0193 (10) | 0.0048 (8) | 0.0049 (8) | 0.0074 (8) |
O1B | 0.0572 (13) | 0.0372 (10) | 0.0286 (10) | 0.0305 (10) | 0.0214 (9) | 0.0194 (9) |
C2B | 0.0203 (12) | 0.0181 (10) | 0.0217 (12) | 0.0035 (9) | 0.0063 (9) | 0.0064 (9) |
N3B | 0.0294 (11) | 0.0209 (10) | 0.0228 (10) | 0.0139 (9) | 0.0105 (9) | 0.0087 (8) |
C4B | 0.0295 (13) | 0.0236 (12) | 0.0245 (13) | 0.0101 (10) | 0.0105 (10) | 0.0110 (10) |
C5B | 0.0270 (13) | 0.0209 (11) | 0.0229 (12) | 0.0094 (10) | 0.0104 (10) | 0.0078 (10) |
C6B | 0.0164 (11) | 0.0159 (10) | 0.0241 (12) | 0.0038 (9) | 0.0070 (9) | 0.0061 (9) |
C7B | 0.0200 (12) | 0.0170 (10) | 0.0278 (13) | 0.0067 (9) | 0.0049 (10) | 0.0072 (9) |
C8B | 0.0283 (14) | 0.0208 (12) | 0.0409 (16) | 0.0061 (10) | 0.0102 (12) | 0.0135 (11) |
C9B | 0.0436 (17) | 0.0268 (13) | 0.0432 (17) | 0.0174 (12) | 0.0256 (14) | 0.0122 (12) |
Se1—C2 | 1.843 (2) | C7B—C8B | 1.533 (3) |
O1—C4 | 1.230 (3) | N1—H1A | 0.88 |
N1—C2 | 1.348 (3) | N3—H3A | 0.88 |
N1—C6 | 1.389 (3) | N1A—H1AA | 0.88 |
C2—N3 | 1.341 (3) | N3A—H3AA | 0.88 |
N3—C4 | 1.400 (3) | N1B—H1BA | 0.88 |
C4—C5 | 1.437 (3) | N3B—H3BA | 0.88 |
C5—C6 | 1.340 (3) | C5—H5A | 0.95 |
C6—C7 | 1.504 (3) | C7—H7A | 1.00 |
C7—C8 | 1.526 (3) | C8—H8C | 0.98 |
C7—C9 | 1.529 (4) | C8—H8B | 0.98 |
Se1A—C2A | 1.824 (2) | C8—H8A | 0.98 |
O1A—C4A | 1.237 (3) | C9—H9C | 0.98 |
N1A—C2A | 1.354 (3) | C9—H9A | 0.98 |
N1A—C6A | 1.383 (3) | C9—H9B | 0.98 |
C2A—N3A | 1.351 (3) | C5A—H5AA | 0.95 |
N3A—C4A | 1.391 (3) | C7A—H7AA | 1.00 |
C4A—C5A | 1.434 (3) | C8A—H8AB | 0.98 |
C5A—C6A | 1.346 (3) | C8A—H8AC | 0.98 |
C6A—C7A | 1.508 (3) | C8A—H8AA | 0.98 |
C7A—C9A | 1.528 (4) | C9A—H9AC | 0.98 |
C7A—C8A | 1.543 (4) | C9A—H9AA | 0.98 |
Se1B—C2B | 1.835 (2) | C9A—H9AB | 0.98 |
N1B—C2B | 1.342 (3) | C5B—H5BA | 0.95 |
N1B—C6B | 1.389 (3) | C7B—H7BA | 1.00 |
O1B—C4B | 1.226 (3) | C8B—H8BA | 0.98 |
C2B—N3B | 1.353 (3) | C8B—H8BB | 0.98 |
N3B—C4B | 1.395 (3) | C8B—H8BC | 0.98 |
C4B—C5B | 1.441 (3) | C9B—H9BA | 0.98 |
C5B—C6B | 1.348 (3) | C9B—H9BB | 0.98 |
C6B—C7B | 1.509 (3) | C9B—H9BC | 0.98 |
C7B—C9B | 1.515 (4) | ||
C2—N1—C6 | 123.3 (2) | C6B—N1B—H1BA | 118 |
N3—C2—N1 | 116.7 (2) | C4B—N3B—H3BA | 117 |
N3—C2—Se1 | 122.59 (17) | C2B—N3B—H3BA | 117 |
N1—C2—Se1 | 120.70 (17) | C4—C5—H5A | 120 |
C2—N3—C4 | 125.2 (2) | C6—C5—H5A | 119 |
O1—C4—N3 | 119.3 (2) | C9—C7—H7A | 108 |
O1—C4—C5 | 126.0 (2) | C6—C7—H7A | 108 |
N3—C4—C5 | 114.6 (2) | C8—C7—H7A | 108 |
C6—C5—C4 | 121.0 (2) | H8B—C8—H8C | 109 |
C5—C6—N1 | 119.0 (2) | C7—C8—H8A | 109 |
C5—C6—C7 | 125.6 (2) | H8A—C8—H8C | 109 |
N1—C6—C7 | 115.3 (2) | C7—C8—H8C | 109 |
C6—C7—C8 | 112.8 (2) | H8A—C8—H8B | 109 |
C6—C7—C9 | 108.6 (2) | C7—C8—H8B | 109 |
C8—C7—C9 | 111.5 (2) | H9A—C9—H9B | 110 |
C2A—N1A—C6A | 123.9 (2) | C7—C9—H9C | 109 |
N3A—C2A—N1A | 115.0 (2) | H9B—C9—H9C | 109 |
N3A—C2A—Se1A | 121.33 (18) | C7—C9—H9B | 109 |
N1A—C2A—Se1A | 123.65 (18) | H9A—C9—H9C | 109 |
C2A—N3A—C4A | 126.5 (2) | C7—C9—H9A | 109 |
O1A—C4A—N3A | 120.3 (2) | C4A—C5A—H5AA | 120 |
O1A—C4A—C5A | 125.3 (2) | C6A—C5A—H5AA | 120 |
N3A—C4A—C5A | 114.4 (2) | C9A—C7A—H7AA | 108 |
C6A—C5A—C4A | 120.7 (2) | C8A—C7A—H7AA | 108 |
C5A—C6A—N1A | 119.3 (2) | C6A—C7A—H7AA | 108 |
C5A—C6A—C7A | 125.4 (2) | H8AA—C8A—H8AB | 109 |
N1A—C6A—C7A | 115.2 (2) | C7A—C8A—H8AB | 109 |
C6A—C7A—C9A | 112.9 (2) | C7A—C8A—H8AC | 109 |
C6A—C7A—C8A | 109.1 (2) | H8AB—C8A—H8AC | 109 |
C9A—C7A—C8A | 110.6 (2) | H8AA—C8A—H8AC | 110 |
C2B—N1B—C6B | 123.9 (2) | C7A—C8A—H8AA | 109 |
N1B—C2B—N3B | 115.9 (2) | H9AA—C9A—H9AB | 110 |
N1B—C2B—Se1B | 122.91 (17) | H9AA—C9A—H9AC | 109 |
N3B—C2B—Se1B | 121.19 (17) | H9AB—C9A—H9AC | 109 |
C2B—N3B—C4B | 125.9 (2) | C7A—C9A—H9AC | 109 |
O1B—C4B—N3B | 119.7 (2) | C7A—C9A—H9AA | 109 |
O1B—C4B—C5B | 125.8 (2) | C7A—C9A—H9AB | 109 |
N3B—C4B—C5B | 114.5 (2) | C4B—C5B—H5BA | 120 |
C6B—C5B—C4B | 120.6 (2) | C6B—C5B—H5BA | 120 |
C5B—C6B—N1B | 119.2 (2) | C6B—C7B—H7BA | 108 |
C5B—C6B—C7B | 125.5 (2) | C8B—C7B—H7BA | 108 |
N1B—C6B—C7B | 115.4 (2) | C9B—C7B—H7BA | 108 |
C6B—C7B—C9B | 112.8 (2) | C7B—C8B—H8BA | 109 |
C6B—C7B—C8B | 110.0 (2) | C7B—C8B—H8BB | 109 |
C9B—C7B—C8B | 110.1 (2) | C7B—C8B—H8BC | 109 |
C6—N1—H1A | 118 | H8BA—C8B—H8BB | 110 |
C2—N1—H1A | 118 | H8BA—C8B—H8BC | 109 |
C4—N3—H3A | 117 | H8BB—C8B—H8BC | 110 |
C2—N3—H3A | 117 | C7B—C9B—H9BA | 109 |
C6A—N1A—H1AA | 118 | C7B—C9B—H9BB | 109 |
C2A—N1A—H1AA | 118 | C7B—C9B—H9BC | 109 |
C2A—N3A—H3AA | 117 | H9BA—C9B—H9BB | 109 |
C4A—N3A—H3AA | 117 | H9BA—C9B—H9BC | 109 |
C2B—N1B—H1BA | 118 | H9BB—C9B—H9BC | 109 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1Bi | 0.88 | 1.91 | 2.782 (3) | 169 |
N1A—H1AA···O1 | 0.88 | 2.00 | 2.860 (3) | 167 |
N1B—H1BA···O1Aii | 0.88 | 1.92 | 2.796 (3) | 177 |
N1—H1A···Se1iii | 0.88 | 2.60 | 3.460 (2) | 165 |
N3B—H3BA···Se1i | 0.88 | 2.56 | 3.428 (2) | 167 |
N3A—H3AA···Se1Bii | 0.88 | 2.60 | 3.430 (2) | 157 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+2, −z+1. |
C8H12Cl2N2OSe | Z = 4 |
Mr = 302.06 | F(000) = 600 |
Triclinic, P1 | Dx = 1.685 Mg m−3 |
a = 8.841 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.259 (3) Å | Cell parameters from 2249 reflections |
c = 12.424 (4) Å | θ = 2.4–24.6° |
α = 90.450 (5)° | µ = 3.57 mm−1 |
β = 105.350 (4)° | T = 150 K |
γ = 92.945 (5)° | Plate, colourless |
V = 1190.7 (6) Å3 | 0.36 × 0.22 × 0.02 mm |
Bruker SMART APEX CCD area detector diffractometer | 6193 independent reflections |
Radiation source: sealed tube | 4391 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (TWINABS version 1.02; Bruker, 2001) | h = −11→11 |
Tmin = 0.684, Tmax = 1.000 | k = −14→14 |
10743 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0305P)2] where P = (Fo2 + 2Fc2)/3 |
6193 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.87 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C8H12Cl2N2OSe | γ = 92.945 (5)° |
Mr = 302.06 | V = 1190.7 (6) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.841 (3) Å | Mo Kα radiation |
b = 11.259 (3) Å | µ = 3.57 mm−1 |
c = 12.424 (4) Å | T = 150 K |
α = 90.450 (5)° | 0.36 × 0.22 × 0.02 mm |
β = 105.350 (4)° |
Bruker SMART APEX CCD area detector diffractometer | 6193 independent reflections |
Absorption correction: multi-scan (TWINABS version 1.02; Bruker, 2001) | 4391 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 1.000 | Rint = 0.050 |
10743 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.87 e Å−3 |
6193 reflections | Δρmin = −0.51 e Å−3 |
254 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The crystal was found to be merohedrally twinned by 180 degree rotation about [001]. Data reduction employed two orientation matrices and the minor twin component refined to approximately 0.2. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.9470 (5) | 0.4519 (4) | 0.1485 (4) | 0.0199 (11) | |
H1 | 0.9432 | 0.3739 | 0.1409 | 0.024* | |
C2 | 0.8502 (6) | 0.5128 (5) | 0.0686 (5) | 0.0193 (13) | |
Se2 | 0.70612 (7) | 0.44056 (5) | −0.05032 (5) | 0.02365 (16) | |
N3 | 0.8650 (5) | 0.6324 (4) | 0.0822 (4) | 0.0211 (11) | |
H3 | 0.8029 | 0.6740 | 0.0308 | 0.025* | |
C4 | 0.9684 (6) | 0.6954 (5) | 0.1692 (5) | 0.0209 (13) | |
O4 | 0.9745 (4) | 0.8050 (3) | 0.1704 (3) | 0.0289 (10) | |
C5 | 1.0622 (6) | 0.6232 (5) | 0.2538 (4) | 0.0186 (13) | |
H5 | 1.1316 | 0.6601 | 0.3185 | 0.022* | |
C6 | 1.0522 (6) | 0.5038 (5) | 0.2419 (4) | 0.0175 (13) | |
C7 | 1.1449 (6) | 0.4176 (5) | 0.3218 (4) | 0.0187 (13) | |
H7 | 1.1803 | 0.3554 | 0.2776 | 0.022* | |
C8 | 1.2905 (6) | 0.4788 (5) | 0.4025 (5) | 0.0309 (15) | |
H8A | 1.3569 | 0.5178 | 0.3598 | 0.046* | |
H8B | 1.3500 | 0.4194 | 0.4509 | 0.046* | |
H8C | 1.2577 | 0.5384 | 0.4484 | 0.046* | |
C9 | 1.0398 (7) | 0.3559 (5) | 0.3887 (5) | 0.0315 (16) | |
H9A | 0.9469 | 0.3170 | 0.3369 | 0.047* | |
H9B | 1.0068 | 0.4154 | 0.4346 | 0.047* | |
H9C | 1.0990 | 0.2964 | 0.4370 | 0.047* | |
N11 | 0.6861 (5) | 1.1339 (4) | −0.0501 (4) | 0.0180 (11) | |
H11 | 0.6930 | 1.2121 | −0.0462 | 0.022* | |
C12 | 0.7948 (6) | 1.0748 (5) | 0.0249 (4) | 0.0208 (13) | |
Se12 | 0.95588 (7) | 1.14876 (5) | 0.13130 (5) | 0.02879 (18) | |
N13 | 0.7749 (5) | 0.9551 (4) | 0.0180 (3) | 0.0216 (11) | |
H13 | 0.8434 | 0.9145 | 0.0660 | 0.026* | |
C14 | 0.6542 (6) | 0.8899 (5) | −0.0593 (5) | 0.0238 (14) | |
O14 | 0.6489 (4) | 0.7804 (3) | −0.0561 (3) | 0.0331 (11) | |
C15 | 0.5490 (6) | 0.9598 (5) | −0.1357 (5) | 0.0241 (14) | |
H15 | 0.4645 | 0.9217 | −0.1908 | 0.029* | |
C16 | 0.5666 (6) | 1.0800 (5) | −0.1315 (4) | 0.0159 (12) | |
C17 | 0.4665 (6) | 1.1617 (5) | −0.2126 (4) | 0.0187 (13) | |
H17 | 0.4393 | 1.2285 | −0.1688 | 0.022* | |
C18 | 0.3155 (6) | 1.1015 (5) | −0.2820 (5) | 0.0312 (15) | |
H18A | 0.2548 | 1.0683 | −0.2327 | 0.047* | |
H18B | 0.3395 | 1.0375 | −0.3277 | 0.047* | |
H18C | 0.2541 | 1.1598 | −0.3308 | 0.047* | |
C19 | 0.5621 (7) | 1.2137 (5) | −0.2871 (5) | 0.0302 (15) | |
H19A | 0.6598 | 1.2525 | −0.2410 | 0.045* | |
H19B | 0.5014 | 1.2723 | −0.3359 | 0.045* | |
H19C | 0.5869 | 1.1500 | −0.3328 | 0.045* | |
C20 | 0.4146 (7) | 0.6182 (5) | −0.2314 (5) | 0.0339 (16) | |
H20A | 0.3578 | 0.6505 | −0.1798 | 0.041* | |
H20B | 0.5261 | 0.6128 | −0.1895 | 0.041* | |
Cl1 | 0.33267 (17) | 0.47388 (12) | −0.27928 (13) | 0.0310 (4) | |
Cl2 | 0.40267 (19) | 0.71468 (13) | −0.34259 (14) | 0.0392 (4) | |
C21 | 0.1276 (6) | −0.0082 (5) | 0.3734 (5) | 0.0302 (15) | |
H21A | 0.1037 | −0.0451 | 0.2977 | 0.036* | |
H21B | 0.0372 | 0.0382 | 0.3776 | 0.036* | |
Cl3 | 0.29574 (19) | 0.08815 (14) | 0.39413 (15) | 0.0431 (5) | |
Cl4 | 0.1519 (2) | −0.12112 (13) | 0.47302 (13) | 0.0420 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.024 (3) | 0.005 (2) | 0.027 (3) | −0.0004 (19) | 0.001 (2) | −0.003 (2) |
C2 | 0.019 (3) | 0.017 (3) | 0.019 (3) | −0.001 (2) | 0.001 (3) | 0.002 (2) |
Se2 | 0.0299 (4) | 0.0141 (3) | 0.0214 (3) | −0.0004 (3) | −0.0027 (3) | −0.0021 (3) |
N3 | 0.022 (3) | 0.012 (2) | 0.024 (3) | 0.003 (2) | −0.005 (2) | 0.004 (2) |
C4 | 0.026 (3) | 0.018 (3) | 0.018 (3) | 0.001 (3) | 0.004 (3) | −0.004 (3) |
O4 | 0.040 (3) | 0.010 (2) | 0.027 (2) | 0.0014 (18) | −0.007 (2) | −0.0035 (18) |
C5 | 0.018 (3) | 0.022 (3) | 0.012 (3) | 0.000 (2) | −0.002 (2) | −0.003 (2) |
C6 | 0.016 (3) | 0.022 (3) | 0.017 (3) | 0.001 (2) | 0.008 (3) | −0.004 (2) |
C7 | 0.016 (3) | 0.019 (3) | 0.021 (3) | 0.003 (2) | 0.005 (3) | 0.003 (2) |
C8 | 0.029 (4) | 0.028 (4) | 0.033 (4) | 0.006 (3) | 0.001 (3) | 0.005 (3) |
C9 | 0.045 (4) | 0.016 (3) | 0.031 (4) | 0.004 (3) | 0.005 (3) | 0.009 (3) |
N11 | 0.024 (3) | 0.006 (2) | 0.021 (3) | −0.0002 (19) | 0.001 (2) | −0.001 (2) |
C12 | 0.028 (3) | 0.015 (3) | 0.020 (3) | 0.001 (2) | 0.008 (3) | −0.002 (2) |
Se12 | 0.0347 (4) | 0.0138 (3) | 0.0279 (4) | −0.0002 (3) | −0.0089 (3) | −0.0023 (3) |
N13 | 0.026 (3) | 0.014 (3) | 0.017 (3) | 0.003 (2) | −0.007 (2) | −0.002 (2) |
C14 | 0.021 (3) | 0.024 (3) | 0.025 (4) | 0.003 (3) | 0.004 (3) | −0.003 (3) |
O14 | 0.035 (3) | 0.013 (2) | 0.041 (3) | −0.0010 (18) | −0.008 (2) | 0.001 (2) |
C15 | 0.024 (3) | 0.022 (3) | 0.023 (3) | −0.003 (3) | 0.002 (3) | −0.001 (3) |
C16 | 0.011 (3) | 0.022 (3) | 0.016 (3) | 0.002 (2) | 0.007 (2) | 0.001 (3) |
C17 | 0.023 (3) | 0.018 (3) | 0.014 (3) | 0.003 (2) | 0.004 (3) | −0.001 (2) |
C18 | 0.032 (4) | 0.032 (4) | 0.026 (4) | 0.004 (3) | −0.001 (3) | 0.005 (3) |
C19 | 0.043 (4) | 0.021 (3) | 0.023 (4) | 0.002 (3) | 0.003 (3) | 0.004 (3) |
C20 | 0.043 (4) | 0.018 (3) | 0.035 (4) | −0.002 (3) | 0.002 (3) | 0.005 (3) |
Cl1 | 0.0353 (9) | 0.0190 (8) | 0.0384 (10) | −0.0031 (6) | 0.0103 (8) | −0.0032 (7) |
Cl2 | 0.0533 (11) | 0.0247 (9) | 0.0368 (10) | −0.0058 (7) | 0.0085 (8) | 0.0053 (7) |
C21 | 0.037 (4) | 0.023 (3) | 0.024 (4) | −0.008 (3) | −0.001 (3) | 0.005 (3) |
Cl3 | 0.0420 (10) | 0.0348 (10) | 0.0516 (12) | −0.0095 (8) | 0.0132 (9) | −0.0035 (8) |
Cl4 | 0.0661 (12) | 0.0278 (9) | 0.0300 (10) | 0.0019 (8) | 0.0089 (9) | 0.0053 (7) |
N1—C2 | 1.346 (6) | C12—Se12 | 1.825 (5) |
N1—C6 | 1.383 (6) | N13—C14 | 1.402 (6) |
N1—H1 | 0.8800 | N13—H13 | 0.8800 |
C2—N3 | 1.351 (6) | C14—O14 | 1.233 (6) |
C2—Se2 | 1.829 (5) | C14—C15 | 1.416 (7) |
N3—C4 | 1.381 (6) | C15—C16 | 1.354 (7) |
N3—H3 | 0.8800 | C15—H15 | 0.9500 |
C4—O4 | 1.232 (6) | C16—C17 | 1.506 (7) |
C4—C5 | 1.440 (7) | C17—C18 | 1.508 (7) |
C5—C6 | 1.348 (7) | C17—C19 | 1.512 (7) |
C5—H5 | 0.9500 | C17—H17 | 1.0000 |
C6—C7 | 1.505 (7) | C18—H18A | 0.9800 |
C7—C8 | 1.534 (7) | C18—H18B | 0.9800 |
C7—C9 | 1.545 (7) | C18—H18C | 0.9800 |
C7—H7 | 1.0000 | C19—H19A | 0.9800 |
C8—H8A | 0.9800 | C19—H19B | 0.9800 |
C8—H8B | 0.9800 | C19—H19C | 0.9800 |
C8—H8C | 0.9800 | C20—Cl2 | 1.749 (6) |
C9—H9A | 0.9800 | C20—Cl1 | 1.776 (5) |
C9—H9B | 0.9800 | C20—H20A | 0.9900 |
C9—H9C | 0.9800 | C20—H20B | 0.9900 |
N11—C12 | 1.355 (6) | C21—Cl3 | 1.755 (5) |
N11—C16 | 1.366 (6) | C21—Cl4 | 1.763 (5) |
N11—H11 | 0.8800 | C21—H21A | 0.9900 |
C12—N13 | 1.350 (6) | C21—H21B | 0.9900 |
C2—N1—C6 | 124.3 (4) | C12—N13—C14 | 125.6 (5) |
C2—N1—H1 | 117.8 | C12—N13—H13 | 117.2 |
C6—N1—H1 | 117.8 | C14—N13—H13 | 117.2 |
N1—C2—N3 | 115.4 (5) | O14—C14—N13 | 119.0 (5) |
N1—C2—Se2 | 123.0 (4) | O14—C14—C15 | 126.3 (5) |
N3—C2—Se2 | 121.6 (4) | N13—C14—C15 | 114.7 (5) |
C2—N3—C4 | 126.1 (5) | C16—C15—C14 | 121.2 (5) |
C2—N3—H3 | 116.9 | C16—C15—H15 | 119.4 |
C4—N3—H3 | 116.9 | C14—C15—H15 | 119.4 |
O4—C4—N3 | 120.0 (5) | C15—C16—N11 | 118.8 (5) |
O4—C4—C5 | 125.1 (5) | C15—C16—C17 | 125.1 (5) |
N3—C4—C5 | 114.8 (5) | N11—C16—C17 | 116.0 (4) |
C6—C5—C4 | 120.5 (5) | C16—C17—C18 | 113.4 (4) |
C6—C5—H5 | 119.7 | C16—C17—C19 | 108.7 (4) |
C4—C5—H5 | 119.7 | C18—C17—C19 | 110.3 (5) |
C5—C6—N1 | 118.7 (5) | C16—C17—H17 | 108.1 |
C5—C6—C7 | 126.3 (5) | C18—C17—H17 | 108.1 |
N1—C6—C7 | 114.9 (4) | C19—C17—H17 | 108.1 |
C6—C7—C8 | 112.0 (4) | C17—C18—H18A | 109.5 |
C6—C7—C9 | 110.0 (4) | C17—C18—H18B | 109.5 |
C8—C7—C9 | 109.7 (5) | H18A—C18—H18B | 109.5 |
C6—C7—H7 | 108.4 | C17—C18—H18C | 109.5 |
C8—C7—H7 | 108.4 | H18A—C18—H18C | 109.5 |
C9—C7—H7 | 108.4 | H18B—C18—H18C | 109.5 |
C7—C8—H8A | 109.5 | C17—C19—H19A | 109.5 |
C7—C8—H8B | 109.5 | C17—C19—H19B | 109.5 |
H8A—C8—H8B | 109.5 | H19A—C19—H19B | 109.5 |
C7—C8—H8C | 109.5 | C17—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | H19A—C19—H19C | 109.5 |
H8B—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
C7—C9—H9A | 109.5 | Cl2—C20—Cl1 | 111.3 (3) |
C7—C9—H9B | 109.5 | Cl2—C20—H20A | 109.4 |
H9A—C9—H9B | 109.5 | Cl1—C20—H20A | 109.4 |
C7—C9—H9C | 109.5 | Cl2—C20—H20B | 109.4 |
H9A—C9—H9C | 109.5 | Cl1—C20—H20B | 109.4 |
H9B—C9—H9C | 109.5 | H20A—C20—H20B | 108.0 |
C12—N11—C16 | 124.4 (4) | Cl3—C21—Cl4 | 112.1 (3) |
C12—N11—H11 | 117.8 | Cl3—C21—H21A | 109.2 |
C16—N11—H11 | 117.8 | Cl4—C21—H21A | 109.2 |
N13—C12—N11 | 115.3 (5) | Cl3—C21—H21B | 109.2 |
N13—C12—Se12 | 121.1 (4) | Cl4—C21—H21B | 109.2 |
N11—C12—Se12 | 123.6 (4) | H21A—C21—H21B | 107.9 |
C7H10I2N2OSe | Z = 2 |
Mr = 470.93 | F(000) = 428 |
Triclinic, P1 | Dx = 2.542 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.603 (2) Å | Cell parameters from 1665 reflections |
b = 7.700 (3) Å | θ = 2.8–27.0° |
c = 13.037 (5) Å | µ = 8.04 mm−1 |
α = 75.969 (6)° | T = 150 K |
β = 86.808 (6)° | Column, red |
γ = 73.113 (6)° | 0.22 × 0.10 × 0.06 mm |
V = 615.3 (7) Å3 |
Bruker SMART1000 CCD area detector diffractometer | 2660 independent reflections |
Radiation source: normal-focus sealed tube | 1702 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SHELXTL version 2.10; Bruker, 2003) | h = −8→8 |
Tmin = 0.114, Tmax = 0.209 | k = −9→9 |
5463 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.048P)2P] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max = 0.001 |
2657 reflections | Δρmax = 1.26 e Å−3 |
118 parameters | Δρmin = −1.31 e Å−3 |
0 restraints |
C7H10I2N2OSe | γ = 73.113 (6)° |
Mr = 470.93 | V = 615.3 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.603 (2) Å | Mo Kα radiation |
b = 7.700 (3) Å | µ = 8.04 mm−1 |
c = 13.037 (5) Å | T = 150 K |
α = 75.969 (6)° | 0.22 × 0.10 × 0.06 mm |
β = 86.808 (6)° |
Bruker SMART1000 CCD area detector diffractometer | 2660 independent reflections |
Absorption correction: multi-scan (SHELXTL version 2.10; Bruker, 2003) | 1702 reflections with I > 2σ(I) |
Tmin = 0.114, Tmax = 0.209 | Rint = 0.061 |
5463 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 0.87 | Δρmax = 1.26 e Å−3 |
2657 reflections | Δρmin = −1.31 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.09128 (7) | 0.41491 (6) | 0.31637 (3) | 0.02543 (14) | |
I2 | 0.43796 (8) | 0.50358 (7) | 0.18987 (4) | 0.03713 (17) | |
Se | −0.22575 (10) | 0.31930 (10) | 0.44747 (5) | 0.02645 (19) | |
O4 | 0.4740 (7) | 0.0679 (8) | 0.6502 (4) | 0.0454 (15) | |
N1 | −0.1391 (8) | 0.1172 (7) | 0.6565 (4) | 0.0205 (12) | |
H1N | −0.2753 | 0.1273 | 0.6561 | 0.025* | |
C2 | −0.0547 (10) | 0.1938 (9) | 0.5683 (5) | 0.0219 (15) | |
N3 | 0.1527 (8) | 0.1734 (8) | 0.5710 (4) | 0.0244 (13) | |
H3N | 0.2093 | 0.2252 | 0.5133 | 0.029* | |
C4 | 0.2879 (10) | 0.0757 (10) | 0.6586 (6) | 0.0285 (17) | |
C5 | 0.1840 (11) | 0.0024 (10) | 0.7509 (5) | 0.0275 (16) | |
H5 | 0.2639 | −0.0611 | 0.8143 | 0.033* | |
C6 | −0.0229 (10) | 0.0216 (9) | 0.7496 (5) | 0.0237 (15) | |
C7 | −0.1515 (10) | −0.0472 (9) | 0.8397 (5) | 0.0246 (15) | |
H7A | −0.2483 | −0.1040 | 0.8131 | 0.029* | |
H7B | −0.2400 | 0.0615 | 0.8651 | 0.029* | |
C8 | −0.0249 (11) | −0.1896 (10) | 0.9333 (5) | 0.0309 (17) | |
H8A | 0.0641 | −0.2995 | 0.9092 | 0.037* | |
H8B | 0.0700 | −0.1337 | 0.9621 | 0.037* | |
C9 | −0.1684 (13) | −0.2508 (11) | 1.0184 (5) | 0.044 (2) | |
H9A | −0.0835 | −0.3427 | 1.0773 | 0.066* | |
H9B | −0.2614 | −0.3073 | 0.9901 | 0.066* | |
H9C | −0.2544 | −0.1424 | 1.0433 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0296 (3) | 0.0242 (3) | 0.0203 (2) | −0.00775 (19) | 0.00053 (19) | −0.00133 (18) |
I2 | 0.0323 (3) | 0.0342 (3) | 0.0368 (3) | −0.0074 (2) | 0.0084 (2) | 0.0024 (2) |
Se | 0.0238 (4) | 0.0321 (4) | 0.0199 (4) | −0.0080 (3) | −0.0031 (3) | 0.0013 (3) |
O4 | 0.023 (3) | 0.061 (4) | 0.045 (3) | −0.019 (3) | −0.007 (2) | 0.012 (3) |
N1 | 0.017 (3) | 0.024 (3) | 0.018 (3) | −0.004 (2) | −0.001 (2) | −0.001 (2) |
C2 | 0.020 (3) | 0.019 (3) | 0.024 (4) | −0.005 (3) | 0.001 (3) | −0.002 (3) |
N3 | 0.019 (3) | 0.026 (3) | 0.023 (3) | −0.005 (2) | 0.000 (2) | 0.001 (3) |
C4 | 0.019 (4) | 0.030 (4) | 0.034 (4) | −0.008 (3) | −0.008 (3) | 0.000 (3) |
C5 | 0.032 (4) | 0.028 (4) | 0.018 (4) | −0.004 (3) | −0.010 (3) | −0.001 (3) |
C6 | 0.028 (4) | 0.020 (4) | 0.024 (4) | −0.009 (3) | 0.000 (3) | −0.006 (3) |
C7 | 0.026 (4) | 0.023 (4) | 0.022 (4) | −0.004 (3) | 0.001 (3) | −0.004 (3) |
C8 | 0.039 (4) | 0.026 (4) | 0.024 (4) | −0.010 (3) | 0.000 (3) | 0.001 (3) |
C9 | 0.068 (6) | 0.038 (5) | 0.020 (4) | −0.020 (4) | −0.006 (4) | 0.009 (3) |
I1—Se | 2.7807 (11) | C5—H5 | 0.9500 |
I1—I2 | 2.8928 (10) | C6—C7 | 1.494 (9) |
Se—C2 | 1.876 (6) | C7—C8 | 1.524 (9) |
O4—C4 | 1.213 (8) | C7—H7A | 0.9900 |
N1—C2 | 1.331 (8) | C7—H7B | 0.9900 |
N1—C6 | 1.395 (8) | C8—C9 | 1.496 (10) |
N1—H1N | 0.8800 | C8—H8A | 0.9900 |
C2—N3 | 1.334 (8) | C8—H8B | 0.9900 |
N3—C4 | 1.405 (8) | C9—H9A | 0.9800 |
N3—H3N | 0.8800 | C9—H9B | 0.9800 |
C4—C5 | 1.429 (10) | C9—H9C | 0.9800 |
C5—C6 | 1.332 (9) | ||
Se—I1—I2 | 176.75 (2) | N1—C6—C7 | 114.2 (6) |
C2—Se—I1 | 96.9 (2) | C6—C7—C8 | 115.3 (5) |
C2—N1—C6 | 123.4 (5) | C6—C7—H7A | 108.4 |
C2—N1—H1N | 118.3 | C8—C7—H7A | 108.4 |
C6—N1—H1N | 118.3 | C6—C7—H7B | 108.4 |
N1—C2—N3 | 116.9 (6) | C8—C7—H7B | 108.4 |
N1—C2—Se | 119.9 (5) | H7A—C7—H7B | 107.5 |
N3—C2—Se | 123.2 (5) | C9—C8—C7 | 111.0 (6) |
C2—N3—C4 | 125.2 (6) | C9—C8—H8A | 109.4 |
C2—N3—H3N | 117.4 | C7—C8—H8A | 109.4 |
C4—N3—H3N | 117.4 | C9—C8—H8B | 109.4 |
O4—C4—N3 | 118.4 (6) | C7—C8—H8B | 109.4 |
O4—C4—C5 | 127.1 (6) | H8A—C8—H8B | 108.0 |
N3—C4—C5 | 114.4 (6) | C8—C9—H9A | 109.5 |
C6—C5—C4 | 121.1 (6) | C8—C9—H9B | 109.5 |
C6—C5—H5 | 119.5 | H9A—C9—H9B | 109.5 |
C4—C5—H5 | 119.5 | C8—C9—H9C | 109.5 |
C5—C6—N1 | 119.0 (6) | H9A—C9—H9C | 109.5 |
C5—C6—C7 | 126.8 (6) | H9B—C9—H9C | 109.5 |
C6—N1—C2—N3 | 1.1 (9) | N3—C4—C5—C6 | 2.5 (10) |
C6—N1—C2—Se | 180.0 (5) | C4—C5—C6—N1 | −0.8 (11) |
I1—Se—C2—N1 | −179.3 (5) | C4—C5—C6—C7 | −179.8 (6) |
I1—Se—C2—N3 | −0.5 (6) | C2—N1—C6—C5 | −1.1 (10) |
N1—C2—N3—C4 | 0.9 (10) | C2—N1—C6—C7 | 178.0 (6) |
Se—C2—N3—C4 | −177.9 (5) | C5—C6—C7—C8 | −14.8 (11) |
C2—N3—C4—O4 | 179.9 (7) | N1—C6—C7—C8 | 166.2 (6) |
C2—N3—C4—C5 | −2.7 (10) | C6—C7—C8—C9 | −179.3 (6) |
O4—C4—C5—C6 | 179.6 (8) |
C24H26N8O4Se2·2(H2O) | Z = 1 |
Mr = 684.48 | F(000) = 346 |
Triclinic, P1 | Dx = 1.712 Mg m−3 |
a = 4.8330 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7970 (5) Å | Cell parameters from 2951 reflections |
c = 14.1796 (8) Å | θ = 2.9–27.5° |
α = 83.490 (3)° | µ = 2.84 mm−1 |
β = 84.431 (3)° | T = 120 K |
γ = 89.353 (3)° | Needle, orange |
V = 663.91 (6) Å3 | 0.20 × 0.04 × 0.03 mm |
Bruker Nonius kappaCCD area detector diffractometer | 12058 reflections with I > 2σ(I) |
Radiation source: FR591 rotating anode | Rint = 0.060 |
ω and phi scans | θmax = 27.7°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −6→6 |
Tmin = 0.679, Tmax = 1.000 | k = −12→12 |
13298 measured reflections | l = −18→18 |
13281 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.084 | Hydrogen site location: placed geometrically |
wR(F2) = 0.221 | Riding model |
S = 1.04 | w = 1/[σ2(Fo2) + (0.098P)2 + 8.436P] where P = (Fo2 + 2Fc2)/3 |
13281 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 3.35 e Å−3 |
0 restraints | Δρmin = −2.06 e Å−3 |
C24H26N8O4Se2·2(H2O) | γ = 89.353 (3)° |
Mr = 684.48 | V = 663.91 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.8330 (2) Å | Mo Kα radiation |
b = 9.7970 (5) Å | µ = 2.84 mm−1 |
c = 14.1796 (8) Å | T = 120 K |
α = 83.490 (3)° | 0.20 × 0.04 × 0.03 mm |
β = 84.431 (3)° |
Bruker Nonius kappaCCD area detector diffractometer | 13281 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 12058 reflections with I > 2σ(I) |
Tmin = 0.679, Tmax = 1.000 | Rint = 0.060 |
13298 measured reflections |
R[F2 > 2σ(F2)] = 0.084 | 0 restraints |
wR(F2) = 0.221 | Riding model |
S = 1.04 | Δρmax = 3.35 e Å−3 |
13281 reflections | Δρmin = −2.06 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The crystal is affected by twinning, principally by a 180 degree rotation about [001]. The water H atoms were not located, but are included in the formula, formula weight, density, mu, etc. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6706 (7) | 0.1491 (4) | 0.6086 (3) | 0.0261 (8) | |
C2 | 0.7861 (8) | 0.1716 (4) | 0.5228 (3) | 0.0213 (9) | |
Se2 | 0.64806 (8) | 0.05982 (4) | 0.43430 (3) | 0.01942 (13) | |
N3 | 0.9985 (7) | 0.2698 (4) | 0.4937 (3) | 0.0237 (8) | |
C4 | 1.0998 (8) | 0.3449 (4) | 0.5642 (3) | 0.0228 (8) | |
O4 | 1.2814 (7) | 0.4333 (4) | 0.5408 (2) | 0.0368 (8) | |
C5 | 0.9727 (8) | 0.3122 (5) | 0.6585 (3) | 0.0264 (9) | |
H5A | 1.0339 | 0.3578 | 0.7084 | 0.032* | |
C6 | 0.7679 (8) | 0.2185 (4) | 0.6795 (3) | 0.0250 (9) | |
C7 | 0.6138 (9) | 0.1823 (5) | 0.7756 (3) | 0.0296 (10) | |
H7A | 0.5975 | 0.0810 | 0.7879 | 0.035* | |
H7B | 0.4233 | 0.2203 | 0.7747 | 0.035* | |
C8 | 0.7477 (10) | 0.2343 (5) | 0.8576 (3) | 0.0360 (11) | |
H8A | 0.6346 | 0.2063 | 0.9177 | 0.054* | |
H8B | 0.7601 | 0.3347 | 0.8473 | 0.054* | |
H8C | 0.9347 | 0.1953 | 0.8605 | 0.054* | |
N11 | 0.9880 (7) | 0.2203 (4) | 0.3389 (3) | 0.0267 (8) | |
C12 | 1.1022 (9) | 0.2925 (5) | 0.3959 (3) | 0.0258 (9) | |
N13 | 1.3078 (7) | 0.3826 (4) | 0.3670 (3) | 0.0281 (8) | |
H13A | 1.3749 | 0.4291 | 0.4093 | 0.034* | |
C14 | 1.4195 (9) | 0.4051 (4) | 0.2715 (3) | 0.0230 (9) | |
O14 | 1.6106 (6) | 0.4878 (3) | 0.2466 (2) | 0.0305 (7) | |
C15 | 1.2867 (9) | 0.3226 (5) | 0.2087 (3) | 0.0300 (10) | |
H15A | 1.3446 | 0.3320 | 0.1424 | 0.036* | |
C16 | 1.0852 (9) | 0.2345 (5) | 0.2442 (3) | 0.0269 (10) | |
C17 | 0.9424 (9) | 0.1403 (5) | 0.1876 (3) | 0.0298 (10) | |
H17A | 0.7429 | 0.1651 | 0.1898 | 0.036* | |
H17B | 0.9554 | 0.0452 | 0.2188 | 0.036* | |
C18 | 1.0575 (13) | 0.1433 (6) | 0.0841 (4) | 0.0494 (15) | |
H18A | 0.9521 | 0.0793 | 0.0529 | 0.074* | |
H18B | 1.2535 | 0.1159 | 0.0807 | 0.074* | |
H18C | 1.0411 | 0.2364 | 0.0517 | 0.074* | |
O1 | 0.7388 (8) | 0.5170 (5) | 0.0441 (3) | 0.0554 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0294 (19) | 0.0249 (19) | 0.025 (2) | 0.0052 (15) | −0.0022 (15) | −0.0069 (16) |
C2 | 0.022 (2) | 0.0173 (19) | 0.025 (2) | −0.0039 (16) | 0.0020 (17) | −0.0099 (17) |
Se2 | 0.01854 (19) | 0.01570 (19) | 0.0238 (2) | −0.00081 (13) | −0.00164 (15) | −0.00138 (16) |
N3 | 0.0214 (17) | 0.0253 (19) | 0.025 (2) | 0.0008 (14) | −0.0017 (14) | −0.0047 (16) |
C4 | 0.028 (2) | 0.0216 (19) | 0.021 (2) | −0.0046 (16) | −0.0062 (17) | −0.0063 (18) |
O4 | 0.0381 (18) | 0.043 (2) | 0.0282 (19) | −0.0176 (16) | 0.0025 (14) | −0.0013 (16) |
C5 | 0.022 (2) | 0.032 (2) | 0.025 (2) | 0.0013 (18) | −0.0018 (17) | −0.0016 (19) |
C6 | 0.023 (2) | 0.026 (2) | 0.026 (2) | 0.0051 (17) | −0.0062 (17) | −0.0043 (18) |
C7 | 0.028 (2) | 0.028 (2) | 0.031 (3) | −0.0036 (19) | 0.0029 (18) | 0.001 (2) |
C8 | 0.038 (3) | 0.044 (3) | 0.024 (3) | 0.005 (2) | 0.002 (2) | 0.001 (2) |
N11 | 0.0289 (19) | 0.0242 (19) | 0.029 (2) | −0.0042 (15) | −0.0023 (16) | −0.0111 (16) |
C12 | 0.024 (2) | 0.027 (2) | 0.025 (2) | 0.0049 (18) | −0.0006 (17) | 0.0030 (19) |
N13 | 0.030 (2) | 0.028 (2) | 0.026 (2) | 0.0003 (16) | 0.0026 (16) | −0.0046 (17) |
C14 | 0.023 (2) | 0.022 (2) | 0.023 (2) | 0.0028 (16) | 0.0000 (17) | −0.0016 (18) |
O14 | 0.0297 (16) | 0.0353 (18) | 0.0252 (18) | −0.0085 (14) | 0.0038 (13) | −0.0031 (14) |
C15 | 0.030 (2) | 0.032 (2) | 0.026 (3) | 0.0037 (19) | 0.0032 (18) | 0.001 (2) |
C16 | 0.024 (2) | 0.027 (2) | 0.031 (3) | −0.0015 (18) | −0.0012 (18) | −0.012 (2) |
C17 | 0.029 (2) | 0.029 (2) | 0.033 (3) | −0.0024 (19) | −0.0063 (19) | −0.006 (2) |
C18 | 0.085 (4) | 0.038 (3) | 0.028 (3) | −0.010 (3) | −0.013 (3) | −0.010 (2) |
O1 | 0.052 (2) | 0.078 (3) | 0.034 (2) | 0.004 (2) | 0.0036 (17) | −0.001 (2) |
N1—C2 | 1.284 (5) | C8—H8C | 0.9800 |
N1—C6 | 1.396 (6) | N11—C12 | 1.296 (6) |
C2—N3 | 1.414 (5) | N11—C16 | 1.371 (6) |
C2—Se2 | 1.926 (4) | C12—N13 | 1.339 (5) |
Se2—Se2i | 2.4328 (9) | N13—C14 | 1.402 (5) |
N3—C12 | 1.423 (6) | N13—H13A | 0.8800 |
N3—C4 | 1.433 (5) | C14—O14 | 1.234 (5) |
C4—O4 | 1.235 (5) | C14—C15 | 1.464 (6) |
C4—C5 | 1.420 (6) | C15—C16 | 1.331 (6) |
C5—C6 | 1.346 (6) | C15—H15A | 0.9500 |
C5—H5A | 0.9500 | C16—C17 | 1.504 (6) |
C6—C7 | 1.496 (6) | C17—C18 | 1.515 (7) |
C7—C8 | 1.522 (7) | C17—H17A | 0.9900 |
C7—H7A | 0.9900 | C17—H17B | 0.9900 |
C7—H7B | 0.9900 | C18—H18A | 0.9800 |
C8—H8A | 0.9800 | C18—H18B | 0.9800 |
C8—H8B | 0.9800 | C18—H18C | 0.9800 |
C2—N1—C6 | 119.2 (4) | C12—N11—C16 | 118.7 (4) |
N1—C2—N3 | 123.7 (4) | N11—C12—N13 | 123.6 (4) |
N1—C2—Se2 | 114.7 (3) | N11—C12—N3 | 116.0 (4) |
N3—C2—Se2 | 121.5 (3) | N13—C12—N3 | 120.5 (4) |
C2—Se2—Se2i | 88.97 (13) | C12—N13—C14 | 122.0 (4) |
C2—N3—C12 | 119.4 (4) | C12—N13—H13A | 119.0 |
C2—N3—C4 | 118.5 (4) | C14—N13—H13A | 119.0 |
C12—N3—C4 | 122.0 (4) | O14—C14—N13 | 120.9 (4) |
O4—C4—C5 | 124.5 (4) | O14—C14—C15 | 125.7 (4) |
O4—C4—N3 | 120.1 (4) | N13—C14—C15 | 113.3 (4) |
C5—C4—N3 | 115.4 (4) | C16—C15—C14 | 120.3 (4) |
C6—C5—C4 | 122.1 (4) | C16—C15—H15A | 119.8 |
C6—C5—H5A | 119.0 | C14—C15—H15A | 119.8 |
C4—C5—H5A | 119.0 | C15—C16—N11 | 122.1 (4) |
C5—C6—N1 | 121.0 (4) | C15—C16—C17 | 125.1 (4) |
C5—C6—C7 | 125.6 (4) | N11—C16—C17 | 112.8 (4) |
N1—C6—C7 | 113.3 (4) | C16—C17—C18 | 115.1 (4) |
C6—C7—C8 | 114.6 (4) | C16—C17—H17A | 108.5 |
C6—C7—H7A | 108.6 | C18—C17—H17A | 108.5 |
C8—C7—H7A | 108.6 | C16—C17—H17B | 108.5 |
C6—C7—H7B | 108.6 | C18—C17—H17B | 108.5 |
C8—C7—H7B | 108.6 | H17A—C17—H17B | 107.5 |
H7A—C7—H7B | 107.6 | C17—C18—H18A | 109.5 |
C7—C8—H8A | 109.5 | C17—C18—H18B | 109.5 |
C7—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | C17—C18—H18C | 109.5 |
C7—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 |
Symmetry code: (i) −x+1, −y, −z+1. |
C28H34N8O4Se2 | Z = 1 |
Mr = 704.55 | F(000) = 358 |
Triclinic, P1 | Dx = 1.660 Mg m−3 |
a = 5.0717 (6) Å | Synchrotron radiation, λ = 0.6775 Å |
b = 11.8615 (14) Å | Cell parameters from 1672 reflections |
c = 11.9385 (14) Å | θ = 2.2–27.0° |
α = 83.161 (2)° | µ = 2.67 mm−1 |
β = 82.785 (2)° | T = 120 K |
γ = 84.358 (2)° | Plate, colourless |
V = 704.90 (14) Å3 | 0.08 × 0.05 × 0.01 mm |
Bruker SMART APEXII CCD diffractometer | 4198 independent reflections |
Radiation source: Daresbury Laboratory Station 9.8 | 3144 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.038 |
fine–slice ω scans | θmax = 28.9°, θmin = 2.2° |
Absorption correction: multi-scan SADABS version 2.10; Bruker, 2003) | h = −7→7 |
Tmin = 0.804, Tmax = 1.000 | k = −16→16 |
8292 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0505P)2] where P = (Fo2 + 2Fc2)/3 |
4198 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.92 e Å−3 |
C28H34N8O4Se2 | γ = 84.358 (2)° |
Mr = 704.55 | V = 704.90 (14) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.0717 (6) Å | Synchrotron radiation, λ = 0.6775 Å |
b = 11.8615 (14) Å | µ = 2.67 mm−1 |
c = 11.9385 (14) Å | T = 120 K |
α = 83.161 (2)° | 0.08 × 0.05 × 0.01 mm |
β = 82.785 (2)° |
Bruker SMART APEXII CCD diffractometer | 4198 independent reflections |
Absorption correction: multi-scan SADABS version 2.10; Bruker, 2003) | 3144 reflections with I > 2σ(I) |
Tmin = 0.804, Tmax = 1.000 | Rint = 0.038 |
8292 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.59 e Å−3 |
4198 reflections | Δρmin = −0.92 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0981 (5) | −0.0445 (2) | 0.1979 (2) | 0.0214 (5) | |
C2 | 0.2181 (6) | 0.0405 (2) | 0.1429 (3) | 0.0210 (6) | |
Se2 | 0.14052 (6) | 0.07943 (3) | −0.01112 (3) | 0.01897 (9) | |
N3 | 0.3931 (5) | 0.1001 (2) | 0.1918 (2) | 0.0194 (5) | |
C4 | 0.4500 (6) | 0.0647 (3) | 0.3048 (2) | 0.0236 (6) | |
O4 | 0.6093 (5) | 0.1120 (2) | 0.34994 (19) | 0.0314 (5) | |
C5 | 0.3102 (6) | −0.0281 (3) | 0.3613 (3) | 0.0245 (6) | |
H5A | 0.3359 | −0.0544 | 0.4378 | 0.029* | |
C6 | 0.1422 (5) | −0.0795 (2) | 0.3089 (3) | 0.0209 (6) | |
C7 | −0.0107 (6) | −0.1780 (3) | 0.3649 (3) | 0.0236 (6) | |
H7A | 0.0355 | −0.2433 | 0.3195 | 0.028* | |
H7B | −0.2039 | −0.1558 | 0.3640 | 0.028* | |
C8 | 0.0425 (6) | −0.2165 (3) | 0.4867 (3) | 0.0255 (6) | |
H8A | −0.0072 | −0.1521 | 0.5329 | 0.031* | |
H8B | 0.2357 | −0.2381 | 0.4882 | 0.031* | |
C9 | −0.1119 (7) | −0.3171 (3) | 0.5394 (3) | 0.0313 (7) | |
H9A | −0.0665 | −0.3402 | 0.6167 | 0.047* | |
H9B | −0.0650 | −0.3810 | 0.4936 | 0.047* | |
H9C | −0.3037 | −0.2950 | 0.5419 | 0.047* | |
N11 | 0.4481 (5) | 0.2217 (2) | 0.0257 (2) | 0.0227 (5) | |
C12 | 0.5138 (6) | 0.1946 (3) | 0.1253 (3) | 0.0216 (6) | |
N13 | 0.6875 (5) | 0.2497 (2) | 0.1721 (2) | 0.0247 (5) | |
H13A | 0.7181 | 0.2278 | 0.2427 | 0.030* | |
C14 | 0.8191 (6) | 0.3401 (3) | 0.1118 (3) | 0.0232 (6) | |
O14 | 0.9837 (4) | 0.3836 (2) | 0.15667 (19) | 0.0316 (5) | |
C15 | 0.7378 (6) | 0.3730 (3) | 0.0002 (3) | 0.0241 (6) | |
H15A | 0.8101 | 0.4360 | −0.0461 | 0.029* | |
C16 | 0.5581 (6) | 0.3141 (3) | −0.0391 (3) | 0.0232 (6) | |
C17 | 0.4620 (6) | 0.3411 (3) | −0.1530 (3) | 0.0260 (6) | |
H17B | 0.2678 | 0.3628 | −0.1416 | 0.031* | |
H17A | 0.4877 | 0.2705 | −0.1912 | 0.031* | |
C18 | 0.5926 (6) | 0.4350 (3) | −0.2332 (3) | 0.0265 (6) | |
H18A | 0.7797 | 0.4135 | −0.2494 | 0.032* | |
H18B | 0.5728 | 0.5040 | −0.1973 | 0.032* | |
C19 | 0.4659 (7) | 0.4554 (3) | −0.3430 (3) | 0.0365 (8) | |
H19A | 0.5535 | 0.5152 | −0.3938 | 0.055* | |
H19B | 0.2758 | 0.4793 | −0.3266 | 0.055* | |
H19C | 0.4864 | 0.3848 | −0.3796 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0211 (12) | 0.0241 (13) | 0.0209 (13) | −0.0053 (9) | −0.0078 (10) | −0.0021 (10) |
C2 | 0.0197 (13) | 0.0227 (15) | 0.0232 (15) | −0.0029 (10) | −0.0088 (11) | −0.0063 (12) |
Se2 | 0.01838 (14) | 0.02263 (15) | 0.01808 (14) | −0.00510 (9) | −0.00676 (9) | −0.00343 (10) |
N3 | 0.0212 (12) | 0.0220 (12) | 0.0175 (12) | −0.0067 (9) | −0.0071 (9) | −0.0033 (10) |
C4 | 0.0268 (15) | 0.0265 (16) | 0.0191 (15) | −0.0048 (12) | −0.0062 (12) | −0.0026 (12) |
O4 | 0.0373 (13) | 0.0372 (13) | 0.0244 (12) | −0.0172 (10) | −0.0145 (10) | 0.0004 (10) |
C5 | 0.0273 (15) | 0.0255 (15) | 0.0219 (15) | −0.0055 (11) | −0.0085 (12) | 0.0008 (12) |
C6 | 0.0194 (13) | 0.0223 (14) | 0.0219 (14) | −0.0011 (10) | −0.0057 (11) | −0.0035 (11) |
C7 | 0.0246 (15) | 0.0243 (15) | 0.0234 (15) | −0.0061 (11) | −0.0079 (12) | −0.0002 (12) |
C8 | 0.0286 (15) | 0.0267 (15) | 0.0225 (15) | −0.0069 (12) | −0.0075 (12) | 0.0011 (12) |
C9 | 0.0329 (17) | 0.0331 (18) | 0.0293 (17) | −0.0108 (13) | −0.0082 (13) | 0.0027 (14) |
N11 | 0.0263 (13) | 0.0252 (13) | 0.0190 (12) | −0.0076 (10) | −0.0088 (10) | −0.0010 (10) |
C12 | 0.0214 (14) | 0.0211 (14) | 0.0241 (15) | −0.0047 (11) | −0.0041 (11) | −0.0053 (12) |
N13 | 0.0257 (13) | 0.0307 (14) | 0.0194 (13) | −0.0083 (10) | −0.0068 (10) | −0.0009 (11) |
C14 | 0.0236 (15) | 0.0258 (15) | 0.0229 (15) | −0.0075 (11) | −0.0048 (12) | −0.0067 (12) |
O14 | 0.0335 (12) | 0.0375 (13) | 0.0282 (12) | −0.0185 (10) | −0.0093 (10) | −0.0026 (10) |
C15 | 0.0223 (14) | 0.0232 (15) | 0.0279 (16) | −0.0075 (11) | −0.0032 (12) | −0.0026 (13) |
C16 | 0.0201 (14) | 0.0243 (15) | 0.0258 (15) | −0.0036 (11) | −0.0043 (11) | −0.0024 (12) |
C17 | 0.0244 (15) | 0.0321 (17) | 0.0229 (15) | −0.0094 (12) | −0.0034 (12) | −0.0017 (13) |
C18 | 0.0283 (16) | 0.0278 (16) | 0.0240 (16) | −0.0076 (12) | −0.0043 (12) | −0.0002 (13) |
C19 | 0.046 (2) | 0.039 (2) | 0.0265 (17) | −0.0169 (16) | −0.0099 (15) | 0.0041 (15) |
N1—C2 | 1.296 (4) | C9—H9C | 0.9800 |
N1—C6 | 1.379 (4) | N11—C12 | 1.272 (4) |
C2—N3 | 1.407 (3) | N11—C16 | 1.386 (4) |
C2—Se2 | 1.921 (3) | C12—N13 | 1.356 (3) |
Se2—Se2i | 2.4427 (6) | N13—C14 | 1.396 (4) |
N3—C4 | 1.421 (4) | N13—H13A | 0.8800 |
N3—C12 | 1.437 (4) | C14—O14 | 1.230 (3) |
C4—O4 | 1.236 (3) | C14—C15 | 1.443 (4) |
C4—C5 | 1.423 (4) | C15—C16 | 1.360 (4) |
C5—C6 | 1.348 (4) | C15—H15A | 0.9500 |
C5—H5A | 0.9500 | C16—C17 | 1.491 (4) |
C6—C7 | 1.509 (4) | C17—C18 | 1.526 (4) |
C7—C8 | 1.520 (4) | C17—H17B | 0.9900 |
C7—H7A | 0.9900 | C17—H17A | 0.9900 |
C7—H7B | 0.9900 | C18—C19 | 1.515 (4) |
C8—C9 | 1.522 (4) | C18—H18A | 0.96 |
C8—H8A | 0.9900 | C18—H18B | 0.96 |
C8—H8B | 0.9900 | C19—H19A | 0.9800 |
C9—H9A | 0.9800 | C19—H19B | 0.9800 |
C9—H9B | 0.9800 | C19—H19C | 0.9800 |
C2—N1—C6 | 119.6 (2) | C12—N11—C16 | 118.2 (2) |
N1—C2—N3 | 122.6 (3) | N11—C12—N13 | 124.1 (3) |
N1—C2—Se2 | 115.2 (2) | N11—C12—N3 | 117.2 (2) |
N3—C2—Se2 | 122.2 (2) | N13—C12—N3 | 118.6 (3) |
C2—Se2—Se2i | 89.43 (9) | C12—N13—C14 | 122.1 (3) |
C2—N3—C4 | 119.6 (2) | C12—N13—H13A | 119.0 |
C2—N3—C12 | 119.0 (2) | C14—N13—H13A | 119.0 |
C4—N3—C12 | 121.4 (2) | O14—C14—N13 | 119.3 (3) |
O4—C4—N3 | 121.9 (3) | O14—C14—C15 | 127.1 (3) |
O4—C4—C5 | 123.0 (3) | N13—C14—C15 | 113.6 (2) |
N3—C4—C5 | 115.1 (2) | C16—C15—C14 | 120.2 (3) |
C6—C5—C4 | 121.6 (3) | C16—C15—H15A | 119.9 |
C6—C5—H5A | 119.2 | C14—C15—H15A | 119.9 |
C4—C5—H5A | 119.2 | C15—C16—N11 | 121.7 (3) |
C5—C6—N1 | 121.4 (3) | C15—C16—C17 | 124.3 (3) |
C5—C6—C7 | 123.7 (3) | N11—C16—C17 | 114.0 (2) |
N1—C6—C7 | 114.9 (2) | C16—C17—C18 | 117.0 (2) |
C6—C7—C8 | 114.3 (2) | C16—C17—H17B | 108.1 |
C6—C7—H7A | 108.7 | C18—C17—H17B | 108.1 |
C8—C7—H7A | 108.7 | C16—C17—H17A | 108.1 |
C6—C7—H7B | 108.7 | C18—C17—H17A | 108.1 |
C8—C7—H7B | 108.7 | H17B—C17—H17A | 107.3 |
H7A—C7—H7B | 107.6 | C19—C18—C17 | 110.5 (3) |
C7—C8—C9 | 112.6 (2) | C19—C18—H18A | 111 |
C7—C8—H8A | 109.1 | C17—C18—H18A | 110 |
C9—C8—H8A | 109.1 | C19—C18—H18B | 110 |
C7—C8—H8B | 109.1 | C17—C18—H18B | 109 |
C9—C8—H8B | 109.1 | H18A—C18—H18B | 108 |
H8A—C8—H8B | 107.8 | C18—C19—H19A | 109.5 |
C8—C9—H9A | 109.5 | C18—C19—H19B | 109.5 |
C8—C9—H9B | 109.5 | H19A—C19—H19B | 109.5 |
H9A—C9—H9B | 109.5 | C18—C19—H19C | 109.5 |
C8—C9—H9C | 109.5 | H19A—C19—H19C | 109.5 |
H9A—C9—H9C | 109.5 | H19B—C19—H19C | 109.5 |
H9B—C9—H9C | 109.5 |
Symmetry code: (i) −x, −y, −z. |
C7H10N2O2 | F(000) = 1476 |
Mr = 154.17 | Dx = 1.352 Mg m−3 |
Rhombohedral, R3 | Mo Kα radiation, λ = 0.71073 Å |
a = 19.9444 (10) Å | Cell parameters from 1748 reflections |
c = 9.8918 (10) Å | θ = 2.4–27.4° |
α = 90° | µ = 0.10 mm−1 |
γ = 120° | T = 150 K |
V = 3407.6 (10) Å3 | Lens, orange |
Z = 18 | 0.52 × 0.17 × 0.17 mm |
Bruker SMART APEX CCD area detector diffractometer | 1297 reflections with I > 2σ(I) |
Radiation source: normal-focus sealed tube | Rint = 0.039 |
Graphite monochromator | θmax = 27.5°, θmin = 2.0° |
ω scans | h = −25→19 |
5827 measured reflections | k = −24→25 |
1750 independent reflections | l = −11→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3 |
1750 reflections | (Δ/σ)max = 0.001 |
100 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C7H10N2O2 | V = 3407.6 (10) Å3 |
Mr = 154.17 | Z = 18 |
Rhombohedral, R3 | Mo Kα radiation |
a = 19.9444 (10) Å | µ = 0.10 mm−1 |
c = 9.8918 (10) Å | T = 150 K |
α = 90° | 0.52 × 0.17 × 0.17 mm |
γ = 120° |
Bruker SMART APEX CCD area detector diffractometer | 1297 reflections with I > 2σ(I) |
5827 measured reflections | Rint = 0.039 |
1750 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.45 e Å−3 |
1750 reflections | Δρmin = −0.16 e Å−3 |
100 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.44496 (7) | 0.43728 (6) | 0.14328 (13) | 0.0258 (3) | |
H1A | 0.4950 | 0.4707 | 0.1438 | 0.031* | |
C2 | 0.39503 (8) | 0.46548 (8) | 0.14184 (15) | 0.0246 (3) | |
O2 | 0.41748 (6) | 0.53514 (5) | 0.14432 (11) | 0.0312 (3) | |
N3 | 0.31833 (6) | 0.41060 (7) | 0.14000 (12) | 0.0247 (3) | |
H3A | 0.2848 | 0.4270 | 0.1363 | 0.030* | |
C4 | 0.28878 (8) | 0.33105 (8) | 0.14348 (16) | 0.0239 (3) | |
O4 | 0.21781 (5) | 0.28696 (6) | 0.14833 (11) | 0.0302 (3) | |
C5 | 0.34551 (8) | 0.30687 (8) | 0.14229 (15) | 0.0242 (4) | |
H5A | 0.3292 | 0.2532 | 0.1403 | 0.029* | |
C6 | 0.42145 (8) | 0.35933 (8) | 0.14395 (15) | 0.0230 (3) | |
C7 | 0.48678 (8) | 0.34221 (8) | 0.14507 (16) | 0.0273 (4) | |
H7A | 0.5217 | 0.3708 | 0.2212 | 0.033* | |
H7B | 0.5168 | 0.3626 | 0.0605 | 0.033* | |
C8 | 0.46339 (9) | 0.25734 (8) | 0.15790 (17) | 0.0299 (4) | |
H8A | 0.4372 | 0.2372 | 0.2458 | 0.036* | |
H8B | 0.4263 | 0.2274 | 0.0852 | 0.036* | |
C9 | 0.53339 (10) | 0.24658 (9) | 0.1483 (2) | 0.0435 (5) | |
H9A | 0.5167 | 0.1915 | 0.1567 | 0.065* | |
H9B | 0.5698 | 0.2755 | 0.2211 | 0.065* | |
H9C | 0.5589 | 0.2658 | 0.0607 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0171 (6) | 0.0197 (6) | 0.0390 (8) | 0.0079 (5) | −0.0004 (5) | 0.0011 (5) |
C2 | 0.0220 (7) | 0.0226 (7) | 0.0291 (9) | 0.0111 (6) | 0.0000 (6) | 0.0007 (6) |
O2 | 0.0241 (5) | 0.0202 (5) | 0.0491 (7) | 0.0110 (4) | −0.0020 (5) | 0.0004 (5) |
N3 | 0.0189 (6) | 0.0208 (6) | 0.0351 (8) | 0.0105 (5) | −0.0007 (5) | 0.0003 (5) |
C4 | 0.0231 (7) | 0.0213 (7) | 0.0272 (8) | 0.0111 (6) | 0.0006 (6) | −0.0006 (6) |
O4 | 0.0190 (5) | 0.0219 (5) | 0.0466 (7) | 0.0080 (4) | 0.0018 (4) | −0.0013 (5) |
C5 | 0.0243 (7) | 0.0199 (7) | 0.0287 (9) | 0.0113 (6) | 0.0008 (6) | −0.0001 (6) |
C6 | 0.0240 (7) | 0.0201 (7) | 0.0250 (8) | 0.0112 (6) | −0.0006 (6) | −0.0002 (6) |
C7 | 0.0212 (7) | 0.0242 (7) | 0.0366 (9) | 0.0114 (6) | −0.0017 (6) | −0.0006 (6) |
C8 | 0.0270 (8) | 0.0253 (8) | 0.0408 (10) | 0.0156 (7) | 0.0004 (7) | 0.0001 (6) |
C9 | 0.0341 (9) | 0.0307 (9) | 0.0716 (13) | 0.0206 (7) | 0.0018 (9) | 0.0003 (8) |
N1—C2 | 1.3670 (17) | N1—H1A | 0.88 |
N1—C6 | 1.3812 (16) | N3—H3A | 0.88 |
C2—O2 | 1.2286 (16) | C5—H5A | 0.95 |
C2—N3 | 1.3652 (17) | C7—H7A | 0.99 |
N3—C4 | 1.3894 (17) | C7—H7B | 0.99 |
C4—O4 | 1.2387 (16) | C8—H8A | 0.99 |
C4—C5 | 1.4348 (18) | C8—H8B | 0.99 |
C5—C6 | 1.3432 (18) | C9—H9A | 0.98 |
C6—C7 | 1.5031 (19) | C9—H9B | 0.98 |
C7—C8 | 1.5195 (19) | C9—H9C | 0.98 |
C8—C9 | 1.518 (2) | ||
C2—N1—C6 | 123.79 (11) | C4—C5—H5A | 120 |
O2—C2—N3 | 122.39 (12) | C6—C5—H5A | 120 |
O2—C2—N1 | 122.45 (12) | C6—C7—H7A | 108 |
N3—C2—N1 | 115.14 (11) | C6—C7—H7B | 108 |
C2—N3—C4 | 125.50 (11) | C8—C7—H7A | 108 |
O4—C4—N3 | 119.57 (12) | C8—C7—H7B | 108 |
O4—C4—C5 | 125.09 (12) | H7A—C7—H7B | 107 |
N3—C4—C5 | 115.34 (11) | C7—C8—H8A | 109 |
C6—C5—C4 | 120.64 (12) | C7—C8—H8B | 109 |
C5—C6—N1 | 119.51 (12) | C9—C8—H8A | 109 |
C5—C6—C7 | 126.23 (12) | C9—C8—H8B | 109 |
N1—C6—C7 | 114.26 (11) | H8A—C8—H8B | 108 |
C6—C7—C8 | 115.82 (12) | C8—C9—H9A | 109 |
C9—C8—C7 | 111.13 (13) | C8—C9—H9B | 110 |
C6—N1—H1A | 118 | C8—C9—H9C | 110 |
C2—N1—H1A | 118 | H9A—C9—H9B | 110 |
C2—N3—H3A | 117 | H9A—C9—H9C | 109 |
C4—N3—H3A | 117 | H9B—C9—H9C | 109 |
Experimental details
(1) | (2) | (3) | (4) | |
Crystal data | ||||
Chemical formula | C5H6N2OSe | C6H8N2OSe | C7H10N2OSe | C7H10N2OSe |
Mr | 189.08 | 203.10 | 217.13 | 217.13 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P1 | Orthorhombic, Pbca | Triclinic, P1 |
Temperature (K) | 120 | 150 | 120 | 150 |
a, b, c (Å) | 4.3411 (7), 14.756 (2), 9.690 (2) | 8.394 (2), 10.029 (2), 14.931 (4) | 10.568 (7), 11.257 (7), 28.79 (2) | 8.9192 (9), 10.6403 (10), 15.1965 (15) |
α, β, γ (°) | 90, 90.157 (2), 90 | 101.023 (4), 100.893 (4), 105.705 (4) | 90, 90, 90 | 106.019 (2), 105.366 (2), 96.166 (2) |
V (Å3) | 620.71 (18) | 1148.5 (5) | 3425 (4) | 1311.0 (2) |
Z | 4 | 6 | 16 | 6 |
Radiation type | Synchrotron, λ = 0.6775 Å | Mo Kα | Synchrotron, λ = 0.6775 Å | Mo Kα |
µ (mm−1) | 5.96 | 4.84 | 4.33 | 4.24 |
Crystal size (mm) | 0.10 × 0.01 × 0.01 | 0.21 × 0.12 × 0.04 | 0.20 × 0.02 × 0.01 | 0.25 × 0.14 × 0.06 |
Data collection | ||||
Diffractometer | Bruker SMART APEXII CCD diffractometer | Bruker SMART APEX CCD area detector diffractometer | Bruker SMART APEXII CCD diffractometer | Bruker SMART APEX CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS version 2.10; Bruker, 2003) | Multi-scan (SADABS version 2.03; Bruker, 2001) | Multi-scan (SADABS; Bruker, 2004) | Multi-scan Bruker SADABS v2.03 |
Tmin, Tmax | 0.816, 1.000 | 0.687, 1.000 | 0.260, 1.000 | 0.581, 0.770 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6350, 1770, 1642 | 8174, 4025, 3189 | 24855, 3471, 2417 | 8163, 5780, 4932 |
Rint | 0.027 | 0.038 | 0.250 | 0.013 |
(sin θ/λ)max (Å−1) | 0.716 | 0.596 | 0.624 | 0.651 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.074, 0.80 | 0.056, 0.146, 1.03 | 0.173, 0.408, 1.18 | 0.028, 0.071, 1.04 |
No. of reflections | 1770 | 4025 | 3471 | 5780 |
No. of parameters | 83 | 271 | 99 | 298 |
No. of restraints | 0 | 69 | 35 | 0 |
H-atom treatment | Rigid rotating group; riding model | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.80 | 1.48, −1.02 | 2.38, −2.33 | 0.65, −0.40 |
(4.CH2Cl2) | (7) | (9) | (10) | |
Crystal data | ||||
Chemical formula | C8H12Cl2N2OSe | C7H10I2N2OSe | C24H26N8O4Se2·2(H2O) | C28H34N8O4Se2 |
Mr | 302.06 | 470.93 | 684.48 | 704.55 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 150 | 150 | 120 | 120 |
a, b, c (Å) | 8.841 (3), 11.259 (3), 12.424 (4) | 6.603 (2), 7.700 (3), 13.037 (5) | 4.8330 (2), 9.7970 (5), 14.1796 (8) | 5.0717 (6), 11.8615 (14), 11.9385 (14) |
α, β, γ (°) | 90.450 (5), 105.350 (4), 92.945 (5) | 75.969 (6), 86.808 (6), 73.113 (6) | 83.490 (3), 84.431 (3), 89.353 (3) | 83.161 (2), 82.785 (2), 84.358 (2) |
V (Å3) | 1190.7 (6) | 615.3 (7) | 663.91 (6) | 704.90 (14) |
Z | 4 | 2 | 1 | 1 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Synchrotron, λ = 0.6775 Å |
µ (mm−1) | 3.57 | 8.04 | 2.84 | 2.67 |
Crystal size (mm) | 0.36 × 0.22 × 0.02 | 0.22 × 0.10 × 0.06 | 0.20 × 0.04 × 0.03 | 0.08 × 0.05 × 0.01 |
Data collection | ||||
Diffractometer | Bruker SMART APEX CCD area detector diffractometer | Bruker SMART1000 CCD area detector diffractometer | Bruker Nonius kappaCCD area detector diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (TWINABS version 1.02; Bruker, 2001) | Multi-scan (SHELXTL version 2.10; Bruker, 2003) | Multi-scan (SADABS; Bruker, 2003) | Multi-scan SADABS version 2.10; Bruker, 2003) |
Tmin, Tmax | 0.684, 1.000 | 0.114, 0.209 | 0.679, 1.000 | 0.804, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10743, 6193, 4391 | 5463, 2660, 1702 | 13298, 13281, 12058 | 8292, 4198, 3144 |
Rint | 0.050 | 0.061 | 0.060 | 0.038 |
(sin θ/λ)max (Å−1) | 0.650 | 0.650 | 0.654 | 0.714 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.099, 0.97 | 0.038, 0.091, 0.87 | 0.084, 0.221, 1.04 | 0.042, 0.097, 0.98 |
No. of reflections | 6193 | 2657 | 13281 | 4198 |
No. of parameters | 254 | 118 | 182 | 190 |
No. of restraints | 0 | 0 | 0 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | Riding model | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.51 | 1.26, −1.31 | 3.35, −2.06 | 0.59, −0.92 |
(11) | |
Crystal data | |
Chemical formula | C7H10N2O2 |
Mr | 154.17 |
Crystal system, space group | Rhombohedral, R3 |
Temperature (K) | 150 |
a, b, c (Å) | 19.9444 (10), 19.9444 (10), 9.8918 (10) |
α, β, γ (°) | 90, 90, 120 |
V (Å3) | 3407.6 (10) |
Z | 18 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.52 × 0.17 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area detector diffractometer |
Absorption correction | – |
Tmin, Tmax | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5827, 1750, 1297 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.131, 1.05 |
No. of reflections | 1750 |
No. of parameters | 100 |
No. of restraints | 0 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.16 |
Computer programs: Bruker APEX2 (Bruker, 2004), Bruker SMART version 5.625 (Bruker, 2001), Bruker SMART version 5.624 (Bruker, 2001), COLLECT (Hooft, 1998), Bruker APEX2, Bruker SAINT (Bruker, 2004), Bruker SAINT version 6.36a (Bruker, 2000), Bruker SAINT version 6.36a (Bruker, 2001), DIRAX (Duisenberg, 1992), Bruker SAINT; Bruker SHELXTL (Bruker, 2001), Bruker SAINT; Bruker SHELXTL, HKL (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), enCIFer (Allen et al., 2004); PLATON, enCIFer (Allen et al., 2004; PLATON).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1Bi | 0.88 | 1.91 | 2.782 (3) | 169 |
N1A—H1AA···O1 | 0.88 | 2.00 | 2.860 (3) | 167 |
N1B—H1BA···O1Aii | 0.88 | 1.92 | 2.796 (3) | 177 |
N1—H1A···Se1iii | 0.88 | 2.60 | 3.460 (2) | 165 |
N3B—H3BA···Se1i | 0.88 | 2.56 | 3.428 (2) | 167 |
N3A—H3AA···Se1Bii | 0.88 | 2.60 | 3.430 (2) | 157 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) −x+2, −y+2, −z+1. |
Acknowledgements
We thank the Marie Curie Foundation for funding (to CDA) as part of the Marie Curie Host Fellowship HPMT-CT-2001-00376 COSMIC, and the graduate program in Bioinorganic Chemistry based at Ioannina, Greece and coordinated by NH. We thank EPSRC (UK) for the award of diffractometers and for data collection by the EPSRC National Service for Crystallography at the University of Southampton, UK, and at the Daresbury Laboratory Synchrotron Radiation Source. MS acknowledges receipt of a Royal Society–Leverhulme Trust Senior Research Fellowship and of a Royal Society Wolfson Merit Award.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Antoniadis, C. D., Hadjikakou, S. K., Hadjiliadis, N., Baril, M. & Butler, I. S. (2006). Chem. Eur. J. DOI: 10.1002/chem.200501455. Google Scholar
Aragoni, M. C., Arca, A., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lippolis, V. & Verani, G. (1999). Trends Inorg. Chem. 6, 1–18. CAS Google Scholar
Aragoni, M. C., Arca, M., Blake, A. J., Devillanova, F. A., Du Mont, W.-W., Garau, A., Isaia, F., Lippolis, V., Verani, G. & Wilson, C. (2001). Angew. Chem. Int. Ed. 40, 4229–4232. CrossRef CAS Google Scholar
Bent, H. A. (1968). Chem. Rev. 68, 587–648. CrossRef CAS Web of Science Google Scholar
Bigoli, F., Deplano, P., Ienco, A., Mealli, C., Mercuri, M. L., Pellinghelli, M. A., Pintus, G., Saba, G. & Trogu, E. F. (1999). Inorg. Chem. 38, 4626–4636. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Sabatini, A., Trogu, E. F. & Vacca, A. (1996). J. Chem. Soc. Dalton Trans. pp. 3583–3589. CSD CrossRef Web of Science Google Scholar
Blake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037–2046. Web of Science CSD CrossRef Google Scholar
Blake, A. J., Devillanova, F. A., Gould, R. O., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Chem. Soc. Rev. 27, 195–205. CrossRef CAS Google Scholar
Blake, A. J., Gould, R. O., Parsons, S., Radek, C. & Schröder, M. (1995). Angew. Chem. Int. Ed. Engl. 34, 2374–2376. CrossRef CAS Web of Science Google Scholar
Blake, A. J., Li, W.-S., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). Angew. Chem. Int. Ed. Engl. 37, 293–296. CrossRef CAS Google Scholar
Bjorvatten, T. (1963). Acta Chem. Scand. 17, 2292–2300. CrossRef CAS Google Scholar
Bolhuis, F. van, Koster, P. B. & Migchelsen, T. (1967). Acta Cryst. 23, 90–91. CrossRef IUCr Journals Web of Science Google Scholar
Bruker (2000). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001a). SMART. Version 5.624 or 5.625. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Version 1.0–27. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, G. Y. & McCullough, J. D. (1961). Acta Cryst. 14, 940–945. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Dahl, T. & Hassel, O. (1965). Acta Chem. Scand. 19, 2000–2001. CrossRef CAS Google Scholar
Dasent, W. E. (1965). Non-Existent Compounds, p. 162. New York: Marcel Dekker. Google Scholar
Dietzsch, W., Sieler, J., Meiler, W. & Robien, W. (1998). Phosphorus, Sulfur Silicon Relat. Elem. 38, 293. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Holmesland, O. & Römming, C. (1966). Acta Chem. Scand. 20, 2601. CrossRef Google Scholar
Hooft, R. W. W. (1998). Collect. Nonius BV, Delft, The Netherlands. Google Scholar
Hope, H. & McCullough, J. D. (1962). Acta Cryst. 15, 806–807. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Maddox, H. & McCullough, J. D. (1966). Inorg. Chem. 5, 522–526. CSD CrossRef CAS Web of Science Google Scholar
Mont, W.-W. du, von Salzen, A. M., Ruthe, F., Seppala, E., Mugesh, G., Devillanova, F. A., Lippolis, V. & Kuhn, N. (2001). J. Organomet. Chem. 623, 14–28. Web of Science CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. CrossRef CAS Web of Science Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press. Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1998). SHELXL97–2. University of Göttingen, Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suwinska, K. (1995). Acta Cryst. B51, 248–254. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Timoshenko, V. M., Nikolin, Y. V., Chernega, A. N. & Shermolovich, Y. G. (2002). Eur. J. Org. Chem. pp. 1619–1627. CrossRef Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.