research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Isomeric N-(iodo­phenyl)nitrobenzamides form different three-dimensional framework structures

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 23 May 2006; accepted 26 July 2006)

The isomeric N-(iodophenyl)nitrobenzamides, C13H9IN2O3, all form different three-dimensional framework structures. Molecules of N-(2-iodophenyl)-3-nitrobenzamide (II) are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds and a two-centre iodo⋯carbonyl interaction. The supramolecular structure of N-(2-iodophenyl)-4-nitrobenzamide (III) is built from one N—H⋯O and two C—H⋯O hydrogen bonds, but short I⋯O contacts are absent from the structure. In N-(3-iodophenyl)-2-nitrobenzamide (IV), which crystallizes with Z′ = 2 in space group P21, the structure contains two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds, two two-centre iodo⋯nitro interactions and an aromatic ππ stacking interaction. The structure of N-(3-iodophenyl)-3-nitrobenzamide (V) contains one N—H⋯O hydrogen bond and three C—H⋯O hydrogen bonds, together with a two-centre iodo⋯nitro interaction and an aromatic ππ stacking interaction, while in N-(3-iodophenyl)-4-nitrobenzamide (VI), the combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds is augmented not only by a two-centre iodo⋯nitro interaction and an aromatic ππ stacking interaction, but also by a dipolar carbonyl⋯carbonyl interaction. In the supramolecular structure of N-(4-iodophenyl)-4-nitrobenzamide (IX), which crystallizes with Z′ = 2 in space group [P\overline 1], there are two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds and two three-centre iodo⋯nitro interactions.

1. Introduction

As part of a general study of the interplay of hydrogen bonds, iodo⋯nitro interactions and aromatic ππ stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species (see Scheme 1[link]) containing a variety of spacer units X, including the two isomeric series of arenesulfonamides (A) and (B) (Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]), the two isomeric series of Schiff-base imines (C)

[Scheme 1]
(Wardell et al., 2002[Wardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428-o430.]) and (D) (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]; Ferguson et al., 2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445-o449.]), benzylanilines (E) (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]), a single example of a benzamide (F) (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]), and 2,3-diazabutadienes (G) (Glidewell, Low, Skakle & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312-o316.]; Low et al., 2006[Low, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1399-o1401.]).

In the case of the Schiff-base imines of type (D), we were able to study the supramolecular aggregation modes in eight of the possible nine isomers (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]); in the benzylaniline series (E) we were able to study the structures of six of the possible nine isomers (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]); and in the diazabutadiene series (G), we have been able to study four of the six possible isomers (Glidewell, Low, Skakle & Wardell, 2005<[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312-o316.]; Low et al., 2006[Low, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1399-o1401.]). In each of these series, the interplay of the various weak intermolecular interactions is such that neither the supramolecular structure nor even the range of interactions involved can readily be predicted for any single example from a detailed knowledge of all the rest of the series. With this in mind, we have now expanded our preliminary study (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]) of the benzamide series (F) to incorporate a total of seven isomers of this series, compounds (I)–(VI) and (IX).[link]

[Scheme 2]

This series of isomers offers, within a fairly compact mol­ecular constitution, a wide variety of potential intermolecular interactions; these include N—H⋯O and C—H⋯O hydrogen bonds, in each of which the acceptor could be either a carbonyl O or a nitro O atom; N—H⋯π(arene) and C—H⋯π(arene) hydrogen bonds; iodo⋯carbonyl and iodo⋯nitro interactions, of which the latter could be of either two-centre or three-centre type; aromatic ππ stacking interactions; and dipolar carbonyl⋯carbonyl and nitro⋯nitro interactions.

2. Experimental

2.1. Synthesis

For the preparation of compounds (II)–(IX), equimolar quantities of the appropriate nitrobenzoyl chloride and the appropriate iodoaniline (2 mmol of each component) were dissolved in chloroform (50 cm3), and these mixtures were heated under reflux for 1 h. After cooling the mixtures, the solvent was removed under reduced pressure, and the resulting products were recrystallized from ethanol, yielding the pure compounds (II)–(IX): m.p. (II) 441–443 K, (III) 469–471 K (decomposes), (IV) 431–432 K, (V) 450–452 K, (VI) 471–472 K, (VII) 426–427 K, (VIII) 464–466 K, (IX) > 510 K. IR (KBr disk, cm−1): (II) 3249, 1658, 1639, 1587, 1522, 1343; (III) 3278, 1654, 1586, 1522, 1353; (IV) 3378, 3321, 1680, 1648, 1582, 1524, 1347; (V) 3309, 1656, 1589, 1521, 1346; (VI) 3298, 1645, 1587, 1525, 1346; (VII) 3281, 1655, 1574, 1525, 1347; (VIII) 3409, 1677, 1587, 1516, 1344; (IX) 3290, 1652, 1585, 1510, 1349. Crystals of isomers (II)–(VI) suitable for single-crystal X-ray diffraction were grown from solutions in ethanol; suitable crystals of isomer (IX) could not be obtained in this way, but were grown from a solution in acetone. Repeated attempts were made to obtain adequate crystals of isomers (VII) and (VIII), and for both isomers crystallization was attempted from each of acetone, acetonitrile, chloroform, ethanol, methanol and various ethanol–water mixtures, all without success.

2.2. Data collection, structure solution and refinement

Diffraction data for isomers (II)–(VI) were collected at 120 (2) K using a Nonius KappaCCD diffractometer; in all these cases graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was employed. Data for isomer (IX) were collected at 120 (2) K on Daresbury SRS Station 9.8 (Cernik et al., 1997[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat, S. J. (1997). J. Synchotron Rad. 4, 279-286.]; Clegg, 2000[Clegg, W. (2000). J. Chem. Soc. Dalton Trans. pp. 3223-3232.]) using a Bruker SMART APEXII diffractometer and synchrotron radiation (λ = 0.6712 Å) Other details of cell data, data collection and refinement are summarized in Table 1[link], together with details of the software employed (Bruker, 2001[Bruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.], 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]; Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]; Hooft, 1999[Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.]; McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.]). For isomer (VIII) no usable diffraction data could be obtained even using synchrotron radiation.

Table 1
Experimental details

  (II) (III) (IV) (V) (VI) (IX)
Crystal data
Chemical formula C13H9IN2O3 C13H9IN2O3 C13H9IN2O3 C13H9IN2O3 C13H9IN2O3 C13H9IN2O3
Mr 368.12 368.12 368.12 368.12 368.12 368.12
Cell setting, space group Monoclinic, P21/c Monoclinic, Pc Monoclinic, P21 Monoclinic, Cc Monoclinic, P21/n Triclinic, [P\overline1]
Temperature (K) 120 (2) 120 (2) 120 (2) 120 (2) 120 (2) 120 (2)
a, b, c (Å) 13.1804 (3), 7.5099 (2), 13.8849 (3) 10.0528 (3), 4.8703 (10), 13.5719 (3) 11.0552 (3), 8.9521 (2), 12.8921 (3) 13.8494 (4), 10.0495 (3), 9.4203 (3) 7.4798 (2), 14.0889 (7), 11.8138 (6) 5.1047 (3), 15.3015 (9), 16.4806 (9)
α, β, γ (°) 90.00, 111.1634 (12), 90.00 90.00, 109.9452 (17), 90.00 90.00, 96.3899 (10), 90.00 90.00, 105.2353 (16), 90.00 90.00, 93.259 (3), 90.00 95.356 (2), 95.498 (2), 91.150 (2)
V3) 1281.68 (5) 624.63 (13) 1267.97 (5) 1265.03 (7) 1242.95 (9) 1275.23 (13)
Z 4 2 4 4 4 4
Dx (Mg m−3) 1.908 1.957 1.928 1.933 1.967 1.917
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα Synchrotron
μ (mm–1) 2.50 2.57 2.53 2.54 2.58 2.52
Crystal form, colour Plate, colourless Plate, brown Plate, colourless Block, brown Needle, brown Needle, colourless
Crystal size (mm) 0.50 × 0.10 × 0.02 0.42 × 0.30 × 0.08 0.40 × 0.20 × 0.08 0.46 × 0.34 × 0.16 0.48 × 0.09 × 0.07 0.09 × 0.04 × 0.02
             
Data collection
Diffractometer Bruker–Nonius KappaCCD Bruker–Nonius KappaCCD Bruker–Nonius KappaCCD Bruker–Nonius KappaCCD Bruker–Nonius KappaCCD Bruker SMART APEXII CCD
Data collection method φ and ω scans φ and ω scans φ and ω scans φ and ω scans φ and ω scans Fine–slice ω scans
Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan Multi-scan Multi-scan
Tmin 0.368 0.412 0.431 0.376 0.370 0.805
Tmax 0.952 0.821 0.823 0.666 0.840 0.951
No. of measured, independent and observed reflections 15 482, 2942, 2549 10 157, 2767, 2624 16 241, 5672, 5506 7022, 2797, 2752 13 030, 2843, 2529 13 690, 7348, 6485
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.038 0.026 0.024 0.023 0.060 0.020
θmax (°) 27.6 27.5 27.5 27.5 27.6 28.7
             
Refinement
Refinement on F2 F2 F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.07 0.019, 0.048, 1.21 0.020, 0.046, 1.11 0.018, 0.053, 1.24 0.084, 0.286, 1.17 0.029, 0.074, 1.04
No. of reflections 2942 2767 5672 2797 2843 7348
No. of parameters 172 173 344 172 161 337
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0327P)2 + 0.5883P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.022P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1391P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0227P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6363P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 <0.0001 0.001 <0.0001 <0.0001 0.002
Δρmax, Δρmin (e Å−3) 0.58, −0.98 0.67, −0.62 0.66, −0.80 0.56, −1.09 3.92, −2.57 0.91, −1.02
Extinction method None SHELXL97 SHELXL97 None None None
Extinction coefficient 0.0225 (11) 0.0075 (3)
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1328 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2565 Friedel pairs Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1349 Friedel pairs
Flack parameter −0.006 (17) −0.008 (11) 0.013 (17)
Computer programs used: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.]), APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]), OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]), SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]), SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.]).

For isomers (II) and (VI) the space groups P21/c and P21/n, respectively, were uniquely assigned from the systematic absences; crystals of isomer (IX) are triclinic and the space group [P\overline 1] was selected, and subsequently confirmed by the successful structure analysis. For each of (III)–(V) the systematic absences provided a choice of space groups: Pc or P2/c for isomer (III), P21 or P21/m for isomer (IV), and Cc or C2/c for isomer (V). The space groups Pc, P21 and Cc, respectively, were selected, and confirmed by the subsequent structure analyses.

The structures were solved by direct methods and refined with all data on F2. A weighting scheme based on P = (Fo2 + 2Fc2)/3 was employed in order to reduce statistical bias (Wilson, 1976[Wilson, A. J. C. (1976). Acta Cryst. A32, 994-996.]). All H atoms were located from difference maps and then treated as riding atoms with C—H distances of 0.95 Å and N—H distances of 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). The correct absolute configuration for the molecules in the crystal of isomer (IV) selected for data collection was determined by means of the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter; for isomers (III) and (V) the correct orientations of the structures with respect to the polar axis directions were established by means of their Flack parameters. For compound (VI), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) indicated the presence of non-merohedral twinning, and the refined twin fractions were 0.323 (4) and 0.677 (4).

Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Details of molecular conformations are given in Table 2[link], details of hydrogen-bond dimensions are given in Table 3[link], and details of short I⋯O interactions are given in Table 4[link].1 Figs. 1[link][link][link][link][link]–6[link] show the molecular components, with the atom-labelling schemes, and Figs. 7[link][link][link][link][link]–12[link] show aspects of the supramolecular structures.

Table 2
Selected torsion angles (°)

(a) Isomers with Z′ = 1.

Parameter (I) (II) (III) (V) (VI)
C11—C17—N1—C21 −173.38 (16) −169.3 (2) −165.0 (3) 175.5 (2) 177.2 (10)
C12—C11—C17—N1 76.1 (2) −169.8 (2) 26.8 (4) −25.2 (4) 167.6 (10)
C22—C21—N1—C17 −143.98 (19) 116.5 (3) 138.7 (3) 25.7 (4) 18.3 (18)

(b) Isomers with Z′ = 2.

Parameter (IV) (IX)
C11—C17—N11—C21 −177.8 (3) 177.53 (18)
C31—C37—N31—C41 −170.2 (2) −179.62 (18)
C12—C11—C17—N11 96.5 (3) −144.7 (2)
C32—C31—C37—N31 71.4 (4) 146.52 (19)
C22—C21—N11—C17 −13.2 (4) −27.9 (3)
C42—C41—N31—C37 31.1 (4) −38.8 (3)
†Data for compound (I) are taken from Wardell et al. (2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]).

Table 3
Hydrogen-bond parameters (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A Motif Direction
(II)
N1—H1⋯O17i 0.88 2.16 2.950 (3) 149 C(4) [010]
C23—H23⋯O31ii 0.95 2.45 3.385 (4) 169 C(11) [100]
             
(III)
N1—H1⋯O17iii 0.88 2.07 2.920 (3) 164 C(4) [010]
C24—H24⋯O42iv 0.95 2.34 3.175 (5) 147 C(13) [20[\overline1]]
C26—H26⋯Cg1v 0.95 2.95 3.800 (3) 149 [001]
             
(IV)
N11—H11⋯O17vi 0.88 2.28 2.977 (3) 137 C(4) [010]
N31—H31⋯O37vii 0.88 2.01 2.863 (3) 162 C(4) [010]
C14—H14⋯O321viii 0.95 2.48 3.244 (4) 137 C22(7) [010]
C15—H15⋯O322 0.95 2.41 3.245 (4) 147 D
C16—H16⋯O121vi 0.95 2.55 3.416 (4) 151 C(6) [010]
C35—H35⋯O122ix 0.95 2.44 3.251 (5) 143 C22(14) [1[\overline1]0]
             
(V)
N1—H1⋯O17v 0.88 2.08 2.937 (3) 165 C(4) [001]
C12—H12⋯.O17v 0.95 2.48 3.266 (4) 140 C(5) [001]
C24—H24⋯O31x 0.95 2.48 3.371 (4) 157 C(12) [10[\overline1]]
C26—H26⋯O17v 0.95 2.51 3.256 (5) 136 C(6) [001]
             
(VI)
N1—H1⋯O41xi 0.88 2.33 3.191 (13) 167 C(9) [101]
C16—H16⋯O41xi 0.95 2.40 3.291 (14) 155 C(6) [101]
C24—H24⋯O17xii 0.95 2.36 3.192 (15) 147 C(8) [101]
             
(IX)
N11—H11⋯O17ii 0.90 2.06 2.936 (2) 163 C(4) [100]
N31—H31⋯O37xiii 0.90 2.04 2.915 (2) 164 C(4) [100]
C13—H13⋯O141xiv 0.95 2.41 3.233 (4) 145 R22(10)
C15—H15⋯O342 0.95 2.40 3.305 (4) 159 D
C33—H33⋯O341xv 0.95 2.50 3.231 (3) 134 R22(10)
C35—H35⋯O142 0.95 2.36 3.254 (3) 157 D
Symmetry codes: (i) [1 - x, {1\over2} + y, {1\over2} - z]; (ii) 1 + x, y, z; (iii) x, -1 + y, z; (iv) [1 + x, 1 - y, -{1\over2} + z]; (v) [x, 1 - y, -{1\over2} + z]; (vi) [1 - x, {1\over2} + y, 1 - z]; (vii) [-x, -{1\over2} + y, -z]; (viii) [1 - x, -{1\over2} + y, -z]; (ix) -1 + x, 1 + y, z; (x) [-{1\over2} + x, {1\over2} - y, {1\over2} + z]; (xi) [-{1\over2} + x, {3\over2} - y, -{1\over2} + z]; (xii) [-{1\over2} + x, {1\over2} - y, -{1\over2} + z]; (xiii) -1 + x, y, z; (xiv) -x, 1 - y, 1 - z; (xv) 3 - x, -y, 1 - z.
Cg1 is the centroid of ring C11–C16.

Table 4
Geometric parameters (Å, o) for I⋯O contacts

C—I⋯O C—I I⋯O C—I⋯O Motif Direction
(II)
C22—I22⋯.O17i 2.101 (2) 3.069 (2) 175.6  (2) C(6) [001]
           
(IV)
C23—I23⋯O37ii 2.103 (3) 3.164 (2) 173.7 (2) C22(16) [01[\overline 1]]
C43—I43⋯O17iii 2.108 (3) 3.233 (2) 166.6 (2) C22(16) [01[\overline 1]]
           
(V)
C23—I23⋯O32iv 2.103 (4) 3.190 (3) 160.5 (2) C(11) [11[\overline 2]]
           
(VI)
C23—I23⋯O42v 2.106 (11) 3.243 (8) 157.7 (3) C(12) [010]
           
(IX)
C24—I24⋯O141vi 2.095 (2) 3.438 (2) 155.4 (2) C(13) [001]
C24—I24⋯O142vi 2.095 (2) 3.394 (2) 167.5 (2) C(13) [001]
C44—I44⋯O341vii 2.096 (2) 3.512 (2) 154.6 (2) C(13) [001]
C44—I44⋯O342vii 2.096 (2) 3.368 (2) 166.1 (2) C(13) [001]
Symmetry codes: (i) [x, {1\over2} - y, -{1\over2} + z]; (ii) x, -1 + y, 1 + z; (iii) x, 1 + y, -1 + z; (iv) [-{1\over2} + x, -{1\over2} + y, 1 + z]; (v) x, -1 + y, z; (vi) x, y, 1 + z; (vii) x, y, -1 + z.
[Figure 1]
Figure 1
A molecule of isomer (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A molecule of isomer (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The two independent molecules in isomer (IV) showing the atom-labelling scheme and the C—H⋯O hydrogen bond within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
A molecule of isomer (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
A molecule of isomer (VI) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The two independent molecules of isomer (IX) showing the atom-labelling scheme and the hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 7]
Figure 7
(a) Part of the crystal structure of isomer (II) showing the formation of a sheet of R44(28) rings parallel to (001) generated by the N—H⋯O and C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or an `at' sign (@) are at the symmetry positions (1 − x, [1\over2] + y, [1\over2]z), (1 + x, y, z), (2 − x, −[1\over2] + y, [1\over2]z), (1 − x, −[1\over2] + y, [1\over2]z) and (2 − x, [1\over2] + y, [1\over2]z), respectively. (b) Part of the crystal structure of isomer (II) showing the formation of the C(6) iodo⋯carbonyl chain along [001]. For the sake of clarity, all of the H atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, [1\over2]y, −[1\over2] + z) and (x, [1\over2]y, [1\over2] + z), respectively.
[Figure 8]
Figure 8
(a) Part of the crystal structure of isomer (III) showing the formation of a sheet of R44(32) rings parallel to (102) generated by the N—H⋯O and C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($), an ampersand (&) or an `at' sign (@) are at the symmetry positions (x, −1 + y, z), (1 + x, 1 − y, −[1\over2] + z), (1 + x, −y, −[1\over2] + z), (x, 1 + y, z) and (1 + x, 2 − y, −[1\over2] + z), respectively. (b) Part of the crystal structure of isomer (III) showing the formation of a chain along [001] generated by the C—H⋯π(arene) hydrogen bond. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 − y, −[1\over2] + z) and (x, 1 − y, [1\over2] + z), respectively.
[Figure 9]
Figure 9
(a) A stereoview of part of the crystal structure of isomer (IV) showing the formation of a sheet of R66(34) rings parallel to (10[\overline 1]) generated by the two N—H⋯O hydrogen bonds and the C—H⋯O hydrogen bond within the asymmetric unit. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. (b) Part of the crystal structure of isomer (IV) showing the formation of a C22(14) chain along [1[\overline 1]0] generated by two C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−1 + x, 1 + y, z) and (1 + x, −1 + y, z), respectively. (c) A stereoview of part of the crystal structure of isomer (IV) showing the formation of a C22(16)C22(16)[R22(14)] chain of rings along [01[\overline 1]] generated by one C—H⋯O hydrogen bond and two iodo⋯carbonyl interactions. For the sake of clarity, the H atoms other than H15 have been omitted.
[Figure 10]
Figure 10
(a) Part of the crystal structure of isomer (V) showing the formation of a chain of rings along [001] generated by one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, 1 − y, −[1\over2] + z) and (x, 1 − y, [1\over2] + z), respectively. (b). Part of the crystal structure of isomer (V) showing the formation of a C(12) chain along [10[\overline 1]] generated by a single C—H⋯O hydrogen bond. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[1\over2] + x, [1\over2]y, [1\over2] + z) and ([1\over2] + x, [1\over2]y, −[1\over2] + z), respectively. (c) Part of the crystal structure of isomer (V) showing the formation of a C(11) chain along [11[\overline2]] generated by a two-centre iodo⋯nitro interaction. For the sake of clarity, all of the H atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−[1\over2] + x, −[1\over2] + y, 1 + z) and ([1\over2] + x, [1\over2] + y, −1 + z), respectively. (d) A stereoview of part of the crystal structure of isomer (V) showing the formation of a π-stacked chain along [110]. For the sake of clarity, all of the H atoms have been omitted.
[Figure 11]
Figure 11
A stereoview of part of the crystal structure of isomer (VI) showing the formation of a hydrogen-bonded sheet parallel to (10[\overline1]), which is reinforced by a two-centre iodo⋯nitro interaction. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted
[Figure 12]
Figure 12
(a) A stereoview of part of the crystal structure of isomer (IX) showing the formation of a chain along [100] comprising edge-fused R22(10) and R44(30) rings. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. (b) A stereoview of part of the crystal structure of isomer (IX) showing the formation of a chain along [3[\overline 1]0] containing three types of R22(10) ring. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. (c) A stereoview of part of the crystal structure of isomer (IX) showing the formation of a chain along [001] comprising edge-fused R22(10) and R42(24) rings. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.

3. Results and discussion

3.1. Molecular conformations

In each isomer (Figs. 1[link][link][link][link][link]–6[link]) the central amidic portion adopts a nearly planar trans conformation, as shown by the C11—C17—N1—C21 torsion angles in the isomers (I)–(III), (V) and (VI) having Z′ = 1, and the corresponding angles C11—C17—N11—C21 and C31—C37—N31—C41 for the isomers (IV) and (IX) having Z′ = 2 (Table 2[link]). However, the two independent torsion angles defining the orientation of the two aryl rings relative to the central amide group show a very wide range of values, such that none of the molecular skeletons even approaches planarity. In addition, the nitro groups make modest non-zero dihedral angles with the adjacent aryl rings, ranging from 1.4 (2)° in isomer (IV) to 16.1 (2)° in isomer (III).

The range of molecular conformations in the crystalline state indicates that the direction-specific intermolecular forces, in particular the hydrogen bonds and the iodo⋯oxygen interactions, are capable of overcoming the rotational barriers associated with the bonds linking the rings to the central spacer unit. Despite the marked non-planarity, it is still possible to identify in each isomer two distinct edges of the elongated molecules, while the 4- and 4′-positions can be regarded as forming the ends of the molecules. Where neither the iodo nor the nitro substituent occupies a 4- or 4′-site, the ring orientations are such that in isomers (I), (II) and (V) these substituents are on opposite edges of the molecule, while in isomer (IV) they are on the same edge. Since in each of these isomers the rings are involved in direction-specific intermolecular interactions, it may be concluded that the sum of the resultant forces in any isomer can overcome the two independent intramolecular rotational barriers constraining the orientations of the aryl rings relative to the central amide spacer unit.

3.2. Supramolecular structures

3.2.1. Isomer (I), N-(2-iodophenyl)-2-nitrobenzamide

The molecules of (I) are linked into a three-dimensional structure, which was described (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]) in terms of three simple one-dimensional sub-structures built, respectively, from an N—H⋯O hydrogen bond, a combination of a C—H⋯O hydrogen bond and a two-centre iodo⋯nitro interaction, and a C—H⋯π(arene) hydrogen bond, and running, respectively, along the [100], [010] and [001] directions.

3.2.2. Isomer (II), N-(2-iodophenyl)-3-nitrobenzamide

The molecules of isomer (II) (Fig. 1[link]) are linked into sheets by a combination of two hydrogen bonds, one each of N—H⋯O and C—H⋯O types (Table 3[link]), and the hydrogen-bonded sheets are linked into a three-dimensional framework structure by a single two-centre iodo⋯carbonyl interaction (Table 4[link]).

Atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the amidic atom O17 in the molecule at (1 − x, [1\over2] + y, [1\over2]z), so forming a C(4) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain typical of carboxamides, running parallel to the [010] direction and generated by the 21 screw axis along ([1\over2], y, [1\over2]). In addition, atom C23 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro atom O31 in the molecule at (1 + x, y, z), so generating by translation a C(11) chain running parallel to the [100] direction. The combination of the C(4) and C(11) chains along [010] and [100], respectively, then generates a (001) sheet in the form of a (4,4)-net built from a single type of R44(28) ring (Fig. 7[link]a).

Adjacent sheets are linked by the iodo⋯carbonyl interaction (Table 3[link]). Atom I22 in the molecule at (x, y, z), which lies in the (001) sheet generated by the screw axes at z = [1\over4], makes a short two-centre contact with the amidic atom O17 in the molecule at (x, [1\over2]y, −[1\over2] + z), which forms part of the (001) sheet generated by the screw axes at z = −[1\over4]. Propagation of this interaction forms a C(6) (Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]) chain running parallel to the [001] direction and generated by the c-glide plane at y = [1\over4] (Fig. 7[link]b). The combination of the (001) hydrogen-bonded sheets and the [001] iodo⋯carbonyl chain is sufficient to generate a continuous framework structure.

3.2.3. Isomer (III), N-(2-iodophenyl)-4-nitrobenzamide

The molecules of isomer (III) (Fig. 2[link]) are linked into a three-dimensional framework by three hydrogen bonds, one each of N—H⋯O, C—H⋯O and C—H⋯π(arene) types (Table 3[link]), and the formation of the framework can readily be analysed in terms of three one-dimensional sub-structures, each containing just a single type of hydrogen bond.

In the simplest of the three sub-structures, atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to amidic atom O17 in the molecule at (x, −1 + y, z), so generating by translation the C(4) chain motif characteristic of carboxamides, here running parallel to the [010] direction. The second sub-structure is generated by the C—H⋯O hydrogen bond; atom C24 in the molecule at (x, y, z) acts as a donor to the nitro atom O42 in the molecule at (1 − x, 1 − y, −[1\over2] + z), so forming a C(13) chain running parallel to the [20[\overline 1]] direction and generated by the c-glide plane at y = [1\over2]. The combination of the C(4) and C(13) chains generates a (102) sheet in the form of a (4,4)-net built from a single type of R44(32) ring (Fig. 8[link]a). In the final sub-structure, atom C26 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the aryl ring C11–C16 of the molecule at (x, 1 − y, −[1\over2] + z), so producing a chain running parallel to the [001] direction, again generated by the c-glide plane at y = [1\over2] (Fig. 8[link]b). The combination of all three of the one-dimensional sub-structures then generates a three-dimensional framework structure.

3.2.4. Isomer (IV), N-(3-iodophenyl)-2-nitrobenzamide

Isomer (IV) crystallizes with Z′ = 2 in space group P21, and the molecules are linked into a three-dimensional framework of considerable complexity by means of two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds (Table 3[link]), two iodo⋯nitro interactions, both of two-centre type (Table 4[link]), and a single aromatic ππ stacking interaction; C—H⋯π(arene) hydrogen bonds are, however, absent.

The asymmetric unit (Fig. 3[link]) was selected to contain the C—H⋯O hydrogen bond with the shortest H⋯O distance, and there are thus seven independent interactions linking these two-molecule aggregates. Each of the independent molecules, type 1 containing N11 and type 2 containing N31, forms a C(4) chain running parallel to the [010] direction and containing a single type of N—H⋯O hydrogen bond (Table 3[link]). The chain of type 1 molecules is generated by the 21 screw axis along ([1\over2], y, [1\over2]), while the chain of type 2 molecules is generated by the 21 screw axis along (0, y, 0). The formation of the type 1 chain is weakly augmented by an aromatic ππ stacking interaction. The nitrated ring C11–C16 of the type 1 molecule at (x, y, z) and the iodinated ring C21–C26 of the type 1 molecule at (1 − x, −[1\over2] + y, 1 − z) are inclined to one another at only 5.1 (2)°: the corresponding ring-centroid separation is 3.735 (2) Å with an interplanar spacing of ca 3.40 Å and a ring offset of ca 1.55 Å.

In combination with the C—H⋯O hydrogen bond within the asymmetric unit, the two C(4) chains generate a (10[\overline1]) sheet containing a single type of R66(34) ring (Fig. 9[link]a). The (10[\overline1]) sheets are linked to form the overall three-dimensional framework by two readily identifiable and rather simple one-dimensional sub-structures, one built from two C—H⋯O hydrogen bonds, and the other built from two iodo⋯carbonyl interactions.

Atom C35 in the type 2 molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro atom O122 in the type 1 molecule at (−1 + x, 1 + y, z): in combination with the C—H⋯O hydrogen bond within the asymmetric unit, this interaction then generates by translation a C22(14) chain running parallel to the [1[\overline1]0] direction (Fig. 9[link]b). Finally, atoms I23 and I43 in the aggregate at (x, y, z) form nearly linear two-centre contacts with, respectively, the carbonyl atoms O37 at (x, −1 + y, 1 + z) and O17 at (x, 1 + y, −1 + z) which, in combination with the C—H⋯O hydrogen bond within the asymmetric unit, generates by translation a C22(16)C22(16)[R22(14)] chain of rings running parallel to the [01[\overline1]] direction (Fig. 9[link]c). Either of these chain motifs is sufficient to link adjacent (10[\overline 1]) sheets into a single three-dimensional framework.

3.2.5. Isomer (V), N-(3-iodophenyl)-3-nitrobenzamide

In the supramol­ecular structure of isomer (V) (Fig. 4[link]), which is three-dimensional, it is possible to identify four independent one-dimensional sub-structures: one is built from an N—H⋯O hydrogen bond, augmented by two C—H⋯O hydrogen bonds, where all three interactions utilize a single acceptor (Table 3[link]); another is built from just a single C—H⋯O hydrogen bond (Table 3[link]); a third sub-structure is built from a two-centre iodo⋯nitro interaction (Table 4[link]); finally, there is a one-dimensional sub-structure built from an aromatic ππ stacking interaction.

Atoms N1, C12 and C26 in the molecule at (x, y, z) all act as hydrogen-bond donors to the amidic atom O17 in the mol­ecule at (x, 1 − y, −[1\over2] + z). These hydrogen bonds individually give rise to chains of C(4), C(5) and C(6) types, respectively, all running parallel to the [001] direction and generated by the c-glide plane at y = [1\over2]; together they generate a C(4)C(5)C(6)[R21(6)][R21(7)] chain of rings (Fig. 10[link]a). The remaining C—H⋯O hydrogen bond (Table 2[link]) generates a simple chain motif; atom C24 in the molecule at (x, y, z) acts as a donor to the nitro atom O31 in the molecule at (−[1\over2] + x, [1\over2]y, [1\over2] + z), so forming a C(12) chain running parallel to the [10[\overline 1]] direction and generated by the n-glide plane at y = [1\over4] (Fig. 10[link]b).

The iodo⋯nitro interaction (Table 4[link]) likewise generates a simple chain. Atom I23 in the molecule at (x, y, z) forms a two-centre contact with the nitro atom O32 in the molecule at (−[1\over2] + x, −[1\over2] + y, 1 + z), so generating by translation a C(11) chain running parallel to the [11[\overline 2]] direction (Fig. 10[link]c). Finally, the nitrated ring C11–C16 in the molecule at (x, y, z) and the iodinated ring C21–C26 in the molecule at ([1\over2] + x, [1\over2] + y, z) are almost parallel, with a dihedral angle between them of only 2.5 (2)°. The corresponding ring-centroid separation is 3.858(2) Å and the interplanar spacing is ca 3.48 Å, corresponding to a ring offset of ca 1.66 Å. Propagation by translation of this stacking interaction then generates a π-stacked chain running parallel to the [110] direction (Fig. 10[link]d). The combination of [001], [10[\overline1]], [11[\overline 2]] and [110] chains suffices to generate a complex three-dimensional framework.

3.2.6. Isomer (VI), N-(3-iodophenyl)-4-nitrobenzamide

The molecules of isomer (VI) (Fig. 5[link]) are linked into sheets by a combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds (Table 3[link]), reinforced by a two-centre iodo⋯nitro interaction (Table 4[link]), and these sheets are linked into a three-dimensional framework structure by a combination of an aromatic ππ stacking interaction and a dipolar carbonyl⋯carbonyl interaction.

Atoms N1 and C126 in the molecule at (x, y, z) both act as hydrogen-bond donors to the atom O41 in the molecule at (−[1\over2] + x, [3\over2]y, −[1\over2] + z), so forming a C(6)C(9)[R21(7)] chain of rings running parallel to the [101] direction and generated by the n-glide plane at y = [3\over4] (Fig. 11[link]). At the same time, atom C24 at (x, y, z) acts as a hydrogen-bond donor to atom O17 in the molecule at −[1\over2] + x, [1\over2]y, −[1\over2] + z), thus forming a simple C(8) chain, also parallel to [101] but this time generated by the n-glide plane at y = [1\over4]. The combination of these two [101] chains generates a (10[\overline1]) sheet (Fig. 11[link]) which also includes a nearly linear two-centre iodo⋯nitro interaction between atom I23 in the molecule at (x, y, z) and atom O42 in the molecule at (x, −1 + y, z) (Table 4[link]), so forming a sheet containing three distinct types of ring, R21(7), R33(17) and R23(18) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]).

The nitrated ring C11–C16 in the molecule at (x, y, z) makes dihedral angles of only 2.8 (2)° with the iodinated ring C21–C26 in each of the two molecules at (−x, 1 − y, 1 − z) and (1 − x, 1 − y, 1 − z). The ring-centroid separations are 3.714 (7) and 3.808 (7) Å, respectively, and the interplanar spacings are ca 3.49 and 3.44 Å, corresponding to ring offsets of ca 1.27 and 1.63 Å. The action of the weaker of the two π stacking interactions is reinforced by an antiparallel type (II) (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]) dipolar interaction between the carbonyl groups in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z), with O⋯C(1 − x, 1 − y, 1 − z) = 3.195 (14) Å and C—O⋯C(1 − x, 1 − y, 1 − z) = 76.6 (7)°. The effect of these two types of interaction is the linking of each (10[\overline1]) sheet to its two immediate neighbours, so forming a continuous three-dimensional structure.

3.2.7. Isomer (IX), N-(4-iodophenyl)-4-nitrobenzamide

Isomer (IX) crystallizes with Z′ = 2 in space group [P\overline 1]; the molecules containing atoms N11 and N31 (Fig. 6[link]) are denoted as types 1 and 2, respectively. The molecules are linked into a complex three-dimensional framework by a combination of two N—H⋯O and four C—H⋯O hydrogen bonds (Table 3[link]) and two independent three-centre iodo⋯nitro interactions (Table 4[link]).

Within the selected asymmetric unit the molecules are linked by C—H⋯O hydrogen bonds defining an R22(10) motif, and it is convenient to regard this compact bimolecular aggregate as the basic building block in the overall structure. The first of the one-dimensional sub-structures is built from two independent N—H⋯O hydrogen bonds. Atoms N11 and N31 at (x, y, z) acts as hydrogen-bond donors, respectively, to atoms O17 at (1 + x, y, z) and O37 at (−1 + x, y, z). These two hydrogen bonds individually generate by translation two independent antiparallel C(4) chains running parallel to the [100] direction, one built exclusively of type 1 molecules and the other containing only type 2 molecules. In combination with the two C—H⋯O hydrogen bonds within the asymmetric unit, the N—H⋯O hydrogen bonds generate a [100] chain of edge-fused R22(10) and R44(30) rings (Fig. 12[link]a).

The second one-dimensional motif is built solely from C—H⋯O hydrogen bonds. Atom C13 at (x, y, z) acts as a hydrogen-bond donor to atom O141 at (−x, 1 − y, 1 − z), so generating by inversion an R22(10) dimer of type 1 molecules centred at (0, [1\over2], [1\over2]); similarly, atom C33 at (x, y, z) acts as a donor to atom O341 at (3 − x, −y, 1 − z), generating a second centrosymmetric R22(10) dimer, this time containing type 2 molecules and centred at ([3\over2], 0, [1\over2]). These motifs combine with the hydrogen bonds within the asymmetric unit to generate a chain of edge-fused rings running parallel to the [3[\overline1]0] direction, and containing three distinct types of R22(10) ring (Fig. 12[link]b).

The final one-dimensional sub-structure is built from two independent three-centre iodo⋯nitro interactions, each involving just one type of molecule (Table 3[link]). Atom I24 at (x, y, z) forms a nearly symmetrical I⋯(O)2 contact with atoms O141 and O142 at (x, y, 1 + z), while atom I44 at (x, y, z) forms a similar, although less symmetrical, contact with atoms O341 and O342 at (x, y, −1 + z). The individual interactions generate by translation two independent antiparallel C(13)C(13)[R21(4)] motifs (Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]), while the two together, in combination with the hydrogen bonds within the asymmetric unit, generate a chain of edge-fused R22(10) and R42(24) rings parallel to [001] (Fig. 12[link]c).

The combination of the chains along [100], [001] and [3[\overline1]0] suffices to generate a three-dimensional structure of considerable complexity.

3.3. General comparison of the structures

Although the isomers described here all adopt three-dimensional supramolecular structures, the range and identity of the direction-specific intermolecular forces is different in each isomer.

Taking firstly the isomers (I)–(III), (V) and (VI), which crystallize with Z′ = 1, these all contain a single N—H⋯O hydrogen bond but, as noted above (see §3.2[link]), this involves a carbonyl O atom as the acceptor, except in isomer (VI), where a nitro O atom acts as the acceptor. The structures of all these isomers contain C—H⋯O hydrogen bonds, one in isomer (II), two in each of (I), (III) and (VI), and three in isomer (V); while these usually have nitro O atoms as the acceptor, carbonyl O atoms participate in isomers (V) and (VI). Iodo⋯carbonyl interactions are present only in isomer (II), while two-centre iodo⋯nitro interactions are present in each of (I), (V) and (VI); by contrast, there are no short I⋯O contacts of any sort in isomer (III). Isomer (II) does, however, present the sole example amongst all of these isomers of C—H⋯π(arene) hydrogen bonding. Aromatic ππ stacking interactions are present in each of the isomers (V) and (VI), but in none of the other Z′ = 1 isomers, while dipolar carbonyl⋯carbonyl interactions are observed only in the structure of isomer (VI).

Of the two isomers, (IV) and (IX), having Z′ = 2, both contain two independent N—H⋯O hydrogen bonds, all with carbonyl O acceptors, and both contain four independent C—H⋯O hydrogen bonds, all with nitro O acceptors. However, the iodo⋯nitro interactions are of two-centre type in isomer (IV), but of three-centre type in isomer (IX), while only the structure of isomer (IV) contains aromatic ππ stacking interactions.

Just as the range and number of distinct intermolecular interactions in any one of these isomers could not readily be predicted, even given a detailed knowledge of each of the other isomers, so too the detailed construction of the three-dimensional framework structure of any given isomer is not predictable from the structures of all of the others. Allied to this, even the crystallization characteristics show no discernible pattern; with the exception of isomers (II) and (VI), which have been analysed in two different settings of the same space group, no two of the isomers reported here adopt the same space group (Table 1[link]), while isomer (I) crystallizes in P212121 (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]); of the seven isomers whose structure are now known, no fewer than four crystallize in non-centrosymmetric space groups.

4. Concluding discussion

We have found in several earlier studies of closely related series of compounds, in particular in series of geometric isomers, that every member of a given series manifests in its crystal structure a different range of direction-specific intermolecular interactions, such that no individual structure could readily be predicted even with full a knowledge of the structures of every other member of the same series (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864-876.]; Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.], 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]). The same conclusion must be drawn from the structures described here: neither the molecular conformations nor the supramolecular aggregation patterns are readily predictable from one isomer to another. Equally, the variations in the space groups (Table 1[link]) from one isomer to another are not readily explicable, nor whether the space group is centrosymmetric or non-centrosymmetric, nor whether the non-centrosymmetric structures are polar or non-polar. We have suggested above (§3.1[link]) that in the present series the direction-specific intermolecular forces are well able to overcome the intramolecular rotational barriers defining the molecular conformations; consistent with this proposition is the observation of conformational polymorphism in the related series (D) (Ferguson et al., 2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445-o449.]), where the conformations are clearly determined by the intermolecular forces.

A particular puzzle is posed by the three-centre iodo⋯nitro interaction, where a series of elegant structures containing symmetrical or nearly symmetrical three-centre interactions have been reported by others; the earlier examples serve as the archetypes for this interaction, which rapidly came to be regarded as a robust supramolecular synthon for crystal engineering (Allen et al., 1994[Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729-2730.]; Thalladi et al., 1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]; Masciocchi et al., 1998[Masciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347-1348.]; George et al., 2004[George, S., Nangia, A., Lam, C.-K., Mak, T. C. W. & Nicoud, J.-F. (2004). Chem. Commun. pp. 1202-1203.]). However, these reports each refer to a single geometrical isomer and these structures all happen to involve molecular components with the substituents at the distal ends, namely the 1:1 adduct of 1,4-diiodobenzene and 1,4-dinitrobenzene (Allen et al., 1994[Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729-2730.]), 4-iodonitrobenzene (Thalladi et al., 1996[Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401-402.]), 4-iodo-4′-nitrobiphenyl (Masciocchi et al., 1998[Masciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347-1348.]) and N-4-iodophenyl-N′-4′-nitrophenylurea (George et al., 2004[George, S., Nangia, A., Lam, C.-K., Mak, T. C. W. & Nicoud, J.-F. (2004). Chem. Commun. pp. 1202-1203.]). Likewise, we have observed this interaction in N-(4-iodophenylsulfonyl)-4-nitroaniline and in N-(4′-nitrodophenylsulfonyl)-4-iodoaniline, but not in any of the other isomers in these series; indeed, in the series (A)–(G) noted above (see §1[link]), wherever one or other of the iodo or nitro substituents is in the 2- or 3-positions, three-centre iodo⋯nitro interactions are absent. Consistent with these observations, in 2,4,6-trinitro­iodo­benzene (picryl iodide), a three-centre interaction is formed by the 4-nitro substituent but not by the other two nitro groups (Weiss et al., 1999[Weiss, R., Schwab, O. & Hampel, F. (1999). Chem. Eur. J. 5, 968-974.]), while in 1,2-diiodo-4-nitro-5-(butylamino)benzene, the 1-iodosubstituent participates in a three-centre iodo⋯nitro interaction, while the 2-iodo substituent is involved only in a two-centre iodo⋯nitro interaction (Senskey et al., 1995[Senskey, M. D., Bradshaw, J. D., Tessier, C. A. & Youngs, W. J. (1995). Tetrahedron Lett. 35, 6127-6220.]). Hence, it may be that the initial acceptance of the three-centre iodo⋯nitro synthon owes less to its intrinsic utility than to the chance selection of the isomeric forms of the compounds used in the initial studies. On the other hand, there is a three-centre iodo⋯nitro interaction in N-(4-iodophenyl)-3-nitrophthalimide, but there are no iodo⋯nitro interactions at all in N-(4-iodophenyl)-2-nitrophthalimide (Glidewell, Low, Skakle, Wardell & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]). Thus, in substituted aryl systems this synthon appears to behave predictably only for specific isomeric forms, but normally to be absent for the remaining isomeric forms. Reported examples of structures that are described as having been specifically and deliberately engineered by the application of particular supramolecular synthons are often restricted to specific isomer forms of their molecular components, sometimes to a single isomer; in some of these cases there must arise at least a suspicion of an element of post hoc rationalization as opposed to reliable supramolecular design.

The difficulty of structure prediction appears to be entirely characteristic of the crystal structures of molecular compounds where all of the intermolecular forces are comparatively weak, but of comparable magnitudes to the rotational energy barriers associated with single bonds, so that the molecular conformations are a direct reflection of the intermolecular interactions. For this reason alone, molecular conformations computed for isolated molecules are unlikely ever to reproduce the conformations observed experimentally in the crystalline state. More disturbing is the fact that, to date, attempts to make computed predictions of the crystal and molecular structures of even rather simple compounds have met with only limited success (Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]; Motherwell et al., 2002[Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647-761.]; Day et al., 2005[Day, G. M,, Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. & Verwer, P. (2005). Acta Cryst. B61, 511-527.]). Compounds whose molecules contain internal degrees of freedom, such as rotations about single bonds, particularly where aryl rings are connected to a semi-rigid unit, as in the examples discussed here, seem to pose particular difficulty, possibly associated with the delicate interplay of intramolecular and intermolecular forces.

Supporting information


Comment top

In full text version

Experimental top

In full text version

Refinement top

In full text version

Computing details top

Data collection: COLLECT (Hooft, 1999) for (II), (III), (IV), (V), (VI); Bruker APEX2 (Bruker, 2003) for (IX). Cell refinement: DENZO (Otwinowski & Minor, 1997) & COLLECT for (II), (III), (IV), (V), (VI); Bruker APEX2 for (IX). Data reduction: DENZO & COLLECT) for (II), (III), (IV), (V), (VI); Bruker SAINT (Bruker, 2001) for (IX). For all compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003) & SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL & SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
In full text version
(II) N-(2-iodophenyl)-3-nitrobenzamide top
Crystal data top
C13H9IN2O3F(000) = 712
Mr = 368.12Dx = 1.908 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2942 reflections
a = 13.1804 (3) Åθ = 3.1–27.6°
b = 7.5099 (2) ŵ = 2.50 mm1
c = 13.8849 (3) ÅT = 120 K
β = 111.1634 (12)°Plate, colourless
V = 1281.68 (5) Å30.50 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2942 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ & ω scansh = 1717
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 89
Tmin = 0.368, Tmax = 0.952l = 1817
15482 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.5883P]
where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
C13H9IN2O3V = 1281.68 (5) Å3
Mr = 368.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1804 (3) ŵ = 2.50 mm1
b = 7.5099 (2) ÅT = 120 K
c = 13.8849 (3) Å0.50 × 0.10 × 0.02 mm
β = 111.1634 (12)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2942 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2549 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.952Rint = 0.038
15482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
2942 reflectionsΔρmin = 0.98 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.34050 (18)0.3979 (3)0.22656 (17)0.0165 (5)
C120.2645 (2)0.3309 (3)0.26521 (19)0.0181 (5)
C130.1560 (2)0.3293 (3)0.2003 (2)0.0203 (5)
C140.12062 (19)0.3921 (3)0.09994 (18)0.0240 (6)
C150.1966 (2)0.4630 (3)0.06389 (19)0.0243 (6)
C160.3064 (2)0.4653 (3)0.12638 (19)0.0212 (5)
C170.45825 (19)0.3785 (3)0.29447 (17)0.0160 (5)
O170.48528 (14)0.2787 (2)0.36966 (13)0.0192 (4)
N10.53075 (16)0.4677 (3)0.26480 (15)0.0172 (4)
C210.64506 (18)0.4398 (3)0.31075 (18)0.0159 (5)
C220.70234 (19)0.3733 (3)0.25189 (18)0.0182 (5)
C230.8148 (2)0.3501 (3)0.2958 (2)0.0228 (5)
C240.86881 (19)0.3922 (4)0.3987 (2)0.0263 (6)
C250.8122 (2)0.4585 (3)0.4580 (2)0.0256 (6)
C260.7005 (2)0.4836 (3)0.41364 (19)0.0211 (5)
N130.07543 (18)0.2512 (3)0.23890 (18)0.0274 (5)
O310.01542 (16)0.2189 (3)0.17566 (17)0.0407 (6)
O320.10257 (17)0.2218 (3)0.33156 (17)0.0395 (5)
I220.619735 (13)0.30348 (2)0.096580 (11)0.02094 (7)
H120.28620.28740.33400.022*
H140.04590.38660.05700.029*
H150.17390.51060.00400.029*
H160.35840.51300.10050.025*
H10.51030.53120.20770.021*
H230.85390.30580.25530.027*
H240.94530.37550.42900.032*
H250.84980.48670.52870.031*
H260.66180.53090.45380.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0178 (11)0.0154 (11)0.0155 (11)0.0022 (9)0.0049 (9)0.0025 (9)
C120.0206 (12)0.0184 (11)0.0151 (12)0.0007 (9)0.0061 (10)0.0029 (9)
C130.0194 (12)0.0177 (12)0.0246 (14)0.0002 (9)0.0090 (11)0.0030 (9)
C140.0200 (12)0.0221 (14)0.0230 (14)0.0029 (10)0.0006 (11)0.0025 (10)
C150.0277 (13)0.0230 (12)0.0175 (13)0.0028 (10)0.0025 (10)0.0032 (10)
C160.0251 (13)0.0186 (12)0.0189 (12)0.0005 (9)0.0066 (10)0.0017 (9)
C170.0214 (12)0.0146 (11)0.0121 (11)0.0003 (9)0.0060 (9)0.0041 (9)
O170.0198 (9)0.0214 (9)0.0146 (9)0.0011 (7)0.0042 (7)0.0039 (7)
N10.0179 (9)0.0199 (10)0.0141 (10)0.0026 (8)0.0063 (8)0.0049 (8)
C210.0190 (11)0.0133 (11)0.0155 (11)0.0010 (8)0.0062 (9)0.0027 (8)
C220.0224 (12)0.0169 (11)0.0150 (11)0.0005 (9)0.0065 (10)0.0026 (9)
C230.0209 (12)0.0210 (12)0.0288 (14)0.0004 (10)0.0119 (11)0.0037 (10)
C240.0182 (12)0.0242 (14)0.0320 (15)0.0030 (10)0.0037 (11)0.0058 (11)
C250.0248 (13)0.0250 (13)0.0205 (13)0.0049 (10)0.0004 (11)0.0020 (10)
C260.0260 (12)0.0207 (12)0.0184 (12)0.0040 (10)0.0104 (10)0.0001 (9)
N130.0199 (11)0.0346 (11)0.0303 (14)0.0004 (10)0.0121 (10)0.0049 (10)
O310.0157 (10)0.0685 (16)0.0367 (13)0.0086 (9)0.0079 (9)0.0122 (10)
O320.0287 (11)0.0626 (15)0.0294 (12)0.0065 (10)0.0132 (9)0.0041 (10)
I220.02866 (11)0.02113 (10)0.01452 (11)0.00124 (6)0.00959 (8)0.00036 (6)
Geometric parameters (Å, º) top
C11—C121.390 (3)N1—H10.88
C11—C161.393 (3)C21—C261.389 (3)
C11—C171.504 (3)C21—C221.390 (3)
C12—C131.389 (3)C22—C231.395 (3)
C12—H120.95C22—I222.101 (2)
C13—C141.383 (4)C23—C241.383 (4)
C13—N131.473 (3)C23—H230.95
C14—C151.377 (4)C24—C251.389 (4)
C14—H140.95C24—H240.95
C15—C161.394 (3)C25—C261.389 (4)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—O171.229 (3)N13—O321.225 (3)
C17—N11.348 (3)N13—O311.227 (3)
N1—C211.424 (3)
C12—C11—C16120.0 (2)C21—N1—H1114.5
C12—C11—C17116.5 (2)C26—C21—C22119.6 (2)
C16—C11—C17123.3 (2)C26—C21—N1120.3 (2)
C13—C12—C11118.0 (2)C22—C21—N1120.1 (2)
C13—C12—H12121.0C21—C22—C23120.3 (2)
C11—C12—H12121.0C21—C22—I22120.19 (17)
C14—C13—C12123.0 (2)C23—C22—I22119.51 (19)
C14—C13—N13118.5 (2)C24—C23—C22119.5 (2)
C12—C13—N13118.4 (2)C24—C23—H23120.2
C15—C14—C13118.3 (2)C22—C23—H23120.2
C15—C14—H14120.9C23—C24—C25120.5 (2)
C13—C14—H14120.9C23—C24—H24119.7
C14—C15—C16120.4 (2)C25—C24—H24119.7
C14—C15—H15119.8C24—C25—C26119.7 (2)
C16—C15—H15119.8C24—C25—H25120.1
C11—C16—C15120.3 (2)C26—C25—H25120.1
C11—C16—H16119.8C25—C26—C21120.3 (2)
C15—C16—H16119.8C25—C26—H26119.9
O17—C17—N1122.9 (2)C21—C26—H26119.9
O17—C17—C11120.6 (2)O32—N13—O31123.8 (2)
N1—C17—C11116.4 (2)O32—N13—C13118.6 (2)
C17—N1—C21122.84 (19)O31—N13—C13117.6 (2)
C17—N1—H1121.6
C16—C11—C12—C131.7 (3)C17—N1—C21—C22116.5 (3)
C17—C11—C12—C13173.2 (2)C26—C21—C22—C230.2 (3)
C11—C12—C13—C140.4 (4)N1—C21—C22—C23178.3 (2)
C11—C12—C13—N13177.3 (2)C26—C21—C22—I22179.28 (17)
C12—C13—C14—C151.5 (4)N1—C21—C22—I222.6 (3)
N13—C13—C14—C15179.2 (2)C21—C22—C23—C240.6 (4)
C13—C14—C15—C162.1 (4)I22—C22—C23—C24178.50 (18)
C12—C11—C16—C151.1 (4)C22—C23—C24—C250.6 (4)
C17—C11—C16—C15173.5 (2)C23—C24—C25—C260.3 (4)
C14—C15—C16—C110.8 (4)C24—C25—C26—C211.1 (4)
C12—C11—C17—O1713.8 (3)C22—C21—C26—C251.0 (3)
C16—C11—C17—O17161.0 (2)N1—C21—C26—C25179.1 (2)
C12—C11—C17—N1169.8 (2)C14—C13—N13—O32168.4 (2)
C16—C11—C17—N115.5 (3)C12—C13—N13—O3213.8 (4)
O17—C17—N1—C217.1 (3)C14—C13—N13—O3111.7 (4)
C11—C17—N1—C21169.3 (2)C12—C13—N13—O31166.1 (2)
C17—N1—C21—C2665.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.882.162.950 (3)149
C23—H23···O31ii0.952.453.385 (4)169
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
(III) N-(2-iodophenyl)-4-nitrobenzamide top
Crystal data top
C13H9IN2O3F(000) = 356
Mr = 368.12Dx = 1.957 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2767 reflections
a = 10.0528 (3) Åθ = 3.2–27.5°
b = 4.8703 (10) ŵ = 2.57 mm1
c = 13.5719 (3) ÅT = 120 K
β = 109.9452 (17)°Plate, brown
V = 624.63 (13) Å30.42 × 0.30 × 0.08 mm
Z = 2
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2767 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1313
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 66
Tmin = 0.412, Tmax = 0.821l = 1717
10157 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max < 0.001
S = 1.21Δρmax = 0.67 e Å3
2767 reflectionsΔρmin = 0.62 e Å3
173 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0225 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1328 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.006 (17)
Crystal data top
C13H9IN2O3V = 624.63 (13) Å3
Mr = 368.12Z = 2
Monoclinic, PcMo Kα radiation
a = 10.0528 (3) ŵ = 2.57 mm1
b = 4.8703 (10) ÅT = 120 K
c = 13.5719 (3) Å0.42 × 0.30 × 0.08 mm
β = 109.9452 (17)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2767 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2624 reflections with I > 2σ(I)
Tmin = 0.412, Tmax = 0.821Rint = 0.026
10157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.67 e Å3
S = 1.21Δρmin = 0.62 e Å3
2767 reflectionsAbsolute structure: Flack (1983), 1328 Friedel pairs
173 parametersAbsolute structure parameter: 0.006 (17)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5752 (3)0.3044 (6)0.4647 (2)0.0166 (6)
C120.6262 (3)0.0947 (5)0.5369 (2)0.0178 (6)
C130.5580 (3)0.0257 (6)0.6070 (2)0.0203 (6)
C140.4401 (3)0.1752 (6)0.6040 (2)0.0193 (6)
C150.3863 (4)0.3834 (6)0.5336 (3)0.0219 (7)
C160.4536 (3)0.4493 (6)0.4629 (2)0.0227 (6)
C170.6533 (3)0.3998 (5)0.3944 (3)0.0162 (6)
O170.6439 (3)0.6401 (3)0.3643 (2)0.0222 (5)
N10.7377 (3)0.2097 (5)0.37238 (19)0.0170 (5)
C210.8439 (3)0.2622 (5)0.3288 (2)0.0174 (5)
C220.9731 (3)0.1242 (5)0.3667 (3)0.0191 (6)
C231.0798 (4)0.1711 (6)0.3246 (3)0.0275 (7)
C241.0584 (4)0.3658 (6)0.2466 (3)0.0326 (9)
C250.9320 (4)0.5056 (7)0.2088 (3)0.0299 (7)
C260.8237 (3)0.4548 (6)0.2474 (2)0.0243 (6)
N140.3713 (3)0.1070 (5)0.6813 (2)0.0242 (6)
O410.4000 (3)0.1124 (4)0.7272 (2)0.0316 (6)
O420.2887 (3)0.2714 (6)0.6949 (2)0.0413 (6)
I221.01765 (2)0.13097 (3)0.49856 (2)0.02465 (8)
H120.70880.00290.53850.021*
H130.59170.12030.65560.024*
H150.30430.48090.53320.026*
H160.41750.59220.41330.027*
H10.72430.03430.38130.020*
H231.16590.07080.34930.033*
H241.13140.40330.21880.039*
H250.91900.63930.15540.036*
H260.73620.54910.21920.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0155 (15)0.0154 (11)0.0191 (15)0.0022 (12)0.0060 (12)0.0037 (11)
C120.0159 (14)0.0184 (13)0.0186 (15)0.0033 (10)0.0053 (12)0.0011 (10)
C130.0198 (14)0.0210 (13)0.0197 (14)0.0018 (11)0.0059 (11)0.0005 (11)
C140.0155 (15)0.0253 (14)0.0200 (16)0.0037 (11)0.0097 (12)0.0076 (11)
C150.0164 (18)0.0217 (16)0.030 (2)0.0024 (10)0.0104 (15)0.0065 (10)
C160.0204 (15)0.0183 (13)0.0298 (16)0.0044 (12)0.0093 (12)0.0018 (12)
C170.0142 (14)0.0139 (13)0.0191 (17)0.0014 (9)0.0038 (12)0.0015 (9)
O170.0265 (13)0.0120 (10)0.0301 (13)0.0017 (7)0.0120 (10)0.0010 (7)
N10.0210 (13)0.0117 (10)0.0207 (13)0.0007 (10)0.0103 (10)0.0008 (10)
C210.0221 (15)0.0119 (13)0.0188 (14)0.0050 (11)0.0079 (11)0.0033 (10)
C220.0189 (15)0.0194 (14)0.0195 (16)0.0046 (10)0.0070 (12)0.0056 (9)
C230.0209 (16)0.0362 (18)0.0272 (19)0.0065 (13)0.0105 (13)0.0131 (12)
C240.036 (2)0.039 (2)0.032 (2)0.0234 (15)0.0233 (18)0.0142 (13)
C250.045 (2)0.0234 (16)0.0261 (17)0.0110 (14)0.0188 (15)0.0024 (13)
C260.0358 (18)0.0173 (13)0.0203 (15)0.0044 (13)0.0101 (13)0.0018 (11)
N140.0184 (14)0.0339 (16)0.0231 (15)0.0065 (11)0.0110 (12)0.0102 (11)
O410.0297 (14)0.0405 (14)0.0285 (14)0.0006 (9)0.0150 (11)0.0077 (9)
O420.0415 (16)0.0378 (14)0.0598 (17)0.0025 (12)0.0368 (14)0.0075 (13)
I220.02063 (10)0.02722 (11)0.02339 (11)0.00400 (9)0.00399 (6)0.00105 (9)
Geometric parameters (Å, º) top
C11—C121.387 (4)N1—H10.88
C11—C161.404 (4)C21—C221.395 (4)
C11—C171.501 (4)C21—C261.411 (4)
C12—C131.390 (4)C22—C231.395 (5)
C12—H120.95C22—I222.097 (3)
C13—C141.380 (4)C23—C241.383 (5)
C13—H130.95C23—H230.95
C14—C151.372 (5)C24—C251.377 (6)
C14—N141.478 (4)C24—H240.95
C15—C161.387 (5)C25—C261.381 (4)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—O171.233 (3)N14—O421.212 (4)
C17—N11.356 (4)N14—O411.221 (3)
N1—C211.410 (4)
C12—C11—C16119.5 (3)C21—N1—H1114.0
C12—C11—C17122.0 (3)C22—C21—N1120.1 (2)
C16—C11—C17118.3 (3)C22—C21—C26118.5 (3)
C11—C12—C13120.8 (3)N1—C21—C26121.5 (3)
C11—C12—H12119.6C21—C22—C23121.2 (3)
C13—C12—H12119.6C21—C22—I22120.1 (2)
C14—C13—C12118.2 (3)C23—C22—I22118.4 (2)
C14—C13—H13120.9C24—C23—C22119.1 (3)
C12—C13—H13120.9C24—C23—H23120.5
C15—C14—C13122.7 (3)C22—C23—H23120.5
C15—C14—N14119.5 (3)C25—C24—C23120.4 (3)
C13—C14—N14117.8 (3)C25—C24—H24119.8
C14—C15—C16118.9 (3)C23—C24—H24119.8
C14—C15—H15120.5C24—C25—C26121.1 (3)
C16—C15—H15120.5C24—C25—H25119.4
C15—C16—C11119.9 (3)C26—C25—H25119.4
C15—C16—H16120.1C25—C26—C21119.6 (3)
C11—C16—H16120.1C25—C26—H26120.2
O17—C17—N1123.9 (3)C21—C26—H26120.2
O17—C17—C11120.5 (3)O42—N14—O41123.7 (3)
N1—C17—C11115.5 (2)O42—N14—C14118.1 (3)
C17—N1—C21126.1 (2)O41—N14—C14118.2 (2)
C17—N1—H1119.7
C16—C11—C12—C130.3 (4)C17—N1—C21—C2640.7 (4)
C17—C11—C12—C13174.6 (3)N1—C21—C22—C23179.7 (3)
C11—C12—C13—C141.3 (4)C26—C21—C22—C230.9 (4)
C12—C13—C14—C151.5 (4)N1—C21—C22—I226.3 (3)
C12—C13—C14—N14177.8 (3)C26—C21—C22—I22173.15 (19)
C13—C14—C15—C160.7 (5)C21—C22—C23—C242.4 (4)
N14—C14—C15—C16178.6 (3)I22—C22—C23—C24171.7 (2)
C14—C15—C16—C110.4 (5)C22—C23—C24—C251.9 (5)
C12—C11—C16—C150.5 (4)C23—C24—C25—C260.3 (5)
C17—C11—C16—C15174.0 (3)C24—C25—C26—C211.8 (5)
C12—C11—C17—O17150.0 (3)C22—C21—C26—C251.2 (4)
C16—C11—C17—O1724.4 (4)N1—C21—C26—C25178.2 (3)
C12—C11—C17—N126.8 (4)C15—C14—N14—O4215.2 (4)
C16—C11—C17—N1158.8 (3)C13—C14—N14—O42164.2 (3)
O17—C17—N1—C2111.6 (5)C15—C14—N14—O41164.2 (3)
C11—C17—N1—C21165.0 (3)C13—C14—N14—O4116.4 (4)
C17—N1—C21—C22138.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.882.062.920 (3)164
C24—H24···O42ii0.952.343.175 (4)147
C26—H26···Cg1iii0.952.953.800 (3)149
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2; (iii) x, y+1, z1/2.
(IV) N-(3-iodophenyl)-2-nitrobenzamide top
Crystal data top
C13H9IN2O3F(000) = 712
Mr = 368.12Dx = 1.928 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5672 reflections
a = 11.0552 (3) Åθ = 3.2–27.5°
b = 8.9521 (2) ŵ = 2.53 mm1
c = 12.8921 (3) ÅT = 120 K
β = 96.3899 (10)°Plate, colourless
V = 1267.97 (5) Å30.40 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5672 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
ϕ & ω scansh = 1412
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1111
Tmin = 0.431, Tmax = 0.823l = 1616
16241 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1391P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.66 e Å3
5672 reflectionsΔρmin = 0.80 e Å3
344 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0075 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2565 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.008 (11)
Crystal data top
C13H9IN2O3V = 1267.97 (5) Å3
Mr = 368.12Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.0552 (3) ŵ = 2.53 mm1
b = 8.9521 (2) ÅT = 120 K
c = 12.8921 (3) Å0.40 × 0.20 × 0.08 mm
β = 96.3899 (10)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5672 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
5506 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.823Rint = 0.024
16241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.046Δρmax = 0.66 e Å3
S = 1.11Δρmin = 0.80 e Å3
5672 reflectionsAbsolute structure: Flack (1983), 2565 Friedel pairs
344 parametersAbsolute structure parameter: 0.008 (11)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.5361 (2)0.0339 (3)0.3889 (2)0.0140 (6)
C120.6294 (2)0.0495 (3)0.3519 (2)0.0171 (6)
N120.7028 (2)0.1510 (3)0.42213 (19)0.0232 (5)
O1210.6803 (2)0.1627 (2)0.51257 (16)0.0269 (5)
O1220.7834 (3)0.2232 (4)0.38748 (19)0.0673 (10)
C130.6588 (3)0.0378 (3)0.2506 (2)0.0208 (6)
C140.5935 (3)0.0629 (3)0.1842 (2)0.0234 (7)
C150.5032 (3)0.1482 (3)0.2182 (2)0.0241 (7)
C160.4744 (3)0.1339 (3)0.3209 (2)0.0196 (6)
C170.4965 (3)0.0170 (3)0.4971 (2)0.0147 (6)
O170.41838 (18)0.0745 (2)0.51331 (15)0.0180 (4)
N110.5480 (2)0.1177 (2)0.56613 (16)0.0170 (5)
C210.5354 (2)0.1321 (3)0.6736 (2)0.0155 (6)
C220.4459 (2)0.0584 (3)0.7217 (2)0.0165 (6)
C230.4390 (3)0.0853 (3)0.8276 (2)0.0166 (6)
I230.300637 (19)0.021189 (19)0.899446 (13)0.02235 (6)
C240.5187 (3)0.1804 (3)0.8850 (2)0.0202 (6)
C250.6085 (3)0.2506 (3)0.8364 (2)0.0212 (7)
C260.6169 (3)0.2271 (3)0.7309 (2)0.0168 (6)
C310.0663 (3)0.6213 (3)0.1153 (2)0.0149 (6)
C320.1448 (2)0.5035 (3)0.1487 (2)0.0157 (6)
N320.2162 (2)0.4294 (3)0.07455 (19)0.0216 (5)
O3210.2260 (2)0.4905 (3)0.00874 (15)0.0295 (5)
O3220.2637 (2)0.3094 (3)0.09954 (18)0.0433 (6)
C330.1612 (3)0.4573 (3)0.2516 (2)0.0199 (6)
C340.0992 (3)0.5298 (3)0.3236 (2)0.0232 (7)
C350.0238 (3)0.6478 (4)0.2939 (2)0.0257 (7)
C360.0063 (3)0.6926 (3)0.1900 (2)0.0201 (6)
C370.0462 (3)0.6776 (3)0.0046 (2)0.0146 (6)
O370.08278 (17)0.8034 (2)0.01673 (14)0.0199 (4)
N310.0173 (2)0.5866 (3)0.06381 (16)0.0169 (5)
C410.0326 (2)0.6045 (3)0.1738 (2)0.0151 (5)
C420.0577 (2)0.6711 (3)0.22596 (19)0.0141 (5)
C430.0390 (2)0.6796 (3)0.3340 (2)0.0156 (5)
I430.171754 (17)0.788540 (17)0.411901 (13)0.01903 (6)
C440.0636 (3)0.6223 (3)0.3909 (2)0.0184 (6)
C450.1510 (3)0.5536 (3)0.3375 (2)0.0211 (7)
C460.1361 (3)0.5457 (3)0.2301 (2)0.0190 (6)
H130.72170.09700.22720.025*
H140.61190.07270.11420.028*
H150.45980.21720.17210.029*
H160.41170.19390.34400.023*
H110.59610.18350.54080.020*
H220.39100.00850.68350.020*
H240.51200.19740.95690.024*
H250.66470.31520.87530.025*
H260.67850.27610.69790.020*
H330.21450.37670.27220.024*
H340.10870.49790.39430.028*
H350.01660.69900.34460.031*
H360.04740.77300.17000.024*
H310.05250.50890.03820.020*
H420.12990.70950.18850.017*
H440.07430.62950.46490.022*
H450.22160.51190.37530.025*
H460.19690.49970.19440.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0146 (15)0.0140 (12)0.0134 (13)0.0027 (10)0.0020 (11)0.0012 (10)
C120.0157 (14)0.0190 (14)0.0161 (13)0.0000 (10)0.0014 (11)0.0002 (10)
N120.0177 (14)0.0325 (13)0.0196 (13)0.0068 (11)0.0025 (10)0.0037 (11)
O1210.0282 (13)0.0332 (12)0.0204 (11)0.0074 (9)0.0066 (9)0.0109 (9)
O1220.0556 (19)0.111 (3)0.0368 (15)0.062 (2)0.0144 (14)0.0134 (17)
C130.0202 (15)0.0269 (16)0.0165 (13)0.0008 (12)0.0079 (11)0.0040 (12)
C140.0258 (17)0.0322 (17)0.0128 (13)0.0007 (13)0.0046 (12)0.0015 (12)
C150.0310 (19)0.0258 (16)0.0154 (14)0.0064 (13)0.0028 (13)0.0041 (12)
C160.0203 (16)0.0157 (15)0.0236 (15)0.0040 (11)0.0066 (12)0.0002 (11)
C170.0137 (14)0.0154 (16)0.0149 (13)0.0053 (11)0.0017 (11)0.0035 (10)
O170.0187 (11)0.0189 (10)0.0173 (10)0.0051 (8)0.0060 (8)0.0032 (7)
N110.0214 (14)0.0183 (12)0.0117 (11)0.0083 (9)0.0042 (10)0.0006 (9)
C210.0194 (16)0.0158 (14)0.0119 (13)0.0044 (11)0.0040 (11)0.0008 (10)
C220.0220 (16)0.0145 (14)0.0132 (13)0.0038 (11)0.0034 (11)0.0007 (10)
C230.0219 (16)0.0143 (13)0.0145 (13)0.0008 (12)0.0064 (11)0.0029 (11)
I230.02843 (11)0.02374 (10)0.01655 (10)0.00318 (9)0.00992 (7)0.00057 (8)
C240.0264 (17)0.0229 (15)0.0110 (13)0.0018 (12)0.0004 (12)0.0026 (11)
C250.0221 (17)0.0197 (16)0.0211 (15)0.0060 (11)0.0009 (13)0.0068 (12)
C260.0179 (15)0.0182 (13)0.0145 (14)0.0037 (11)0.0026 (12)0.0004 (11)
C310.0148 (14)0.0162 (14)0.0136 (12)0.0047 (10)0.0017 (11)0.0015 (10)
C320.0148 (14)0.0161 (14)0.0159 (13)0.0034 (11)0.0001 (11)0.0001 (11)
N320.0180 (14)0.0231 (13)0.0234 (13)0.0012 (10)0.0010 (10)0.0020 (10)
O3210.0309 (13)0.0389 (13)0.0207 (11)0.0116 (11)0.0110 (9)0.0060 (11)
O3220.0540 (17)0.0332 (13)0.0439 (14)0.0267 (12)0.0111 (12)0.0099 (11)
C330.0203 (16)0.0174 (15)0.0207 (14)0.0033 (12)0.0034 (12)0.0056 (12)
C340.0285 (19)0.0291 (17)0.0114 (14)0.0115 (14)0.0011 (13)0.0064 (12)
C350.0272 (18)0.0357 (18)0.0156 (14)0.0068 (14)0.0092 (13)0.0035 (12)
C360.0204 (16)0.0209 (15)0.0196 (14)0.0001 (12)0.0049 (12)0.0044 (11)
C370.0131 (15)0.0155 (13)0.0159 (14)0.0021 (11)0.0040 (11)0.0005 (11)
O370.0291 (11)0.0136 (10)0.0181 (9)0.0028 (9)0.0070 (8)0.0005 (8)
N310.0188 (13)0.0181 (11)0.0139 (11)0.0045 (9)0.0030 (9)0.0021 (9)
C410.0168 (15)0.0154 (13)0.0134 (13)0.0023 (10)0.0028 (11)0.0015 (10)
C420.0110 (13)0.0154 (13)0.0153 (13)0.0000 (10)0.0012 (10)0.0006 (11)
C430.0155 (15)0.0153 (13)0.0165 (13)0.0020 (11)0.0039 (11)0.0003 (11)
I430.02118 (10)0.02265 (10)0.01419 (9)0.00036 (8)0.00611 (7)0.00229 (7)
C440.0200 (15)0.0223 (15)0.0123 (13)0.0016 (11)0.0012 (11)0.0006 (11)
C450.0170 (16)0.0249 (15)0.0205 (15)0.0045 (12)0.0022 (13)0.0037 (12)
C460.0173 (16)0.0193 (14)0.0209 (15)0.0022 (12)0.0051 (12)0.0022 (11)
Geometric parameters (Å, º) top
C11—C161.379 (4)C31—C361.384 (4)
C11—C121.400 (4)C31—C321.402 (4)
C11—C171.516 (4)C31—C371.507 (4)
C12—C131.383 (4)C32—C331.382 (4)
C12—N121.463 (3)C32—N321.465 (4)
N12—O1211.224 (3)N32—O3211.220 (3)
N12—O1221.224 (3)N32—O3221.223 (3)
C13—C141.389 (4)C33—C341.376 (4)
C13—H130.95C33—H330.95
C14—C151.368 (4)C34—C351.373 (4)
C14—H140.95C34—H340.95
C15—C161.402 (4)C35—C361.392 (4)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O171.225 (4)C37—O371.238 (3)
C17—N111.347 (4)C37—N311.340 (4)
N11—C211.414 (3)N31—C411.418 (3)
N11—H110.88N31—H310.88
C21—C261.390 (4)C41—C461.389 (4)
C21—C221.391 (4)C41—C421.398 (4)
C22—C231.397 (3)C42—C431.387 (3)
C22—H220.95C42—H420.95
C23—C241.380 (4)C43—C441.379 (4)
C23—I232.102 (3)C43—I432.108 (3)
C24—C251.383 (4)C44—C451.390 (4)
C24—H240.95C44—H440.95
C25—C261.389 (4)C45—C461.378 (4)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C16—C11—C12117.4 (2)C36—C31—C32117.5 (2)
C16—C11—C17118.5 (2)C36—C31—C37118.2 (3)
C12—C11—C17124.1 (2)C32—C31—C37124.3 (2)
C13—C12—C11122.7 (2)C33—C32—C31122.0 (3)
C13—C12—N12117.3 (2)C33—C32—N32117.9 (2)
C11—C12—N12119.9 (2)C31—C32—N32120.0 (2)
O121—N12—O122122.4 (3)O321—N32—O322123.2 (3)
O121—N12—C12119.1 (2)O321—N32—C32118.6 (2)
O122—N12—C12118.5 (2)O322—N32—C32118.2 (2)
C12—C13—C14118.1 (3)C34—C33—C32118.9 (3)
C12—C13—H13121.0C34—C33—H33120.5
C14—C13—H13121.0C32—C33—H33120.5
C15—C14—C13120.8 (3)C35—C34—C33120.5 (3)
C15—C14—H14119.6C35—C34—H34119.8
C13—C14—H14119.6C33—C34—H34119.8
C14—C15—C16120.2 (3)C34—C35—C36120.3 (3)
C14—C15—H15119.9C34—C35—H35119.8
C16—C15—H15119.9C36—C35—H35119.8
C11—C16—C15120.8 (3)C31—C36—C35120.7 (3)
C11—C16—H16119.6C31—C36—H36119.7
C15—C16—H16119.6C35—C36—H36119.7
O17—C17—N11126.1 (3)O37—C37—N31124.6 (2)
O17—C17—C11120.3 (3)O37—C37—C31119.8 (2)
N11—C17—C11113.4 (2)N31—C37—C31115.6 (2)
C17—N11—C21128.9 (2)C37—N31—C41125.8 (2)
C17—N11—H11115.5C37—N31—H31117.1
C21—N11—H11115.5C41—N31—H31117.1
C26—C21—C22120.3 (2)C46—C41—C42120.1 (2)
C26—C21—N11116.7 (2)C46—C41—N31118.7 (2)
C22—C21—N11123.1 (2)C42—C41—N31121.1 (2)
C21—C22—C23118.2 (2)C43—C42—C41118.2 (2)
C21—C22—H22120.9C43—C42—H42120.9
C23—C22—H22120.9C41—C42—H42120.9
C24—C23—C22121.9 (3)C44—C43—C42122.4 (3)
C24—C23—I23119.75 (19)C44—C43—I43119.56 (19)
C22—C23—I23118.3 (2)C42—C43—I43118.0 (2)
C23—C24—C25119.0 (3)C43—C44—C45118.4 (3)
C23—C24—H24120.5C43—C44—H44120.8
C25—C24—H24120.5C45—C44—H44120.8
C24—C25—C26120.3 (3)C46—C45—C44120.6 (3)
C24—C25—H25119.9C46—C45—H45119.7
C26—C25—H25119.9C44—C45—H45119.7
C25—C26—C21120.2 (3)C45—C46—C41120.3 (3)
C25—C26—H26119.9C45—C46—H46119.8
C21—C26—H26119.9C41—C46—H46119.8
C16—C11—C12—C131.8 (4)C36—C31—C32—C331.0 (4)
C17—C11—C12—C13176.2 (3)C37—C31—C32—C33179.2 (3)
C16—C11—C12—N12176.4 (2)C36—C31—C32—N32176.5 (2)
C17—C11—C12—N125.7 (4)C37—C31—C32—N321.7 (4)
C13—C12—N12—O121179.1 (3)C33—C32—N32—O321162.4 (3)
C11—C12—N12—O1210.9 (4)C31—C32—N32—O32115.2 (4)
C13—C12—N12—O1222.2 (4)C33—C32—N32—O32217.2 (4)
C11—C12—N12—O122179.6 (3)C31—C32—N32—O322165.2 (3)
C11—C12—C13—C141.0 (4)C31—C32—C33—C340.4 (4)
N12—C12—C13—C14177.2 (3)N32—C32—C33—C34177.1 (3)
C12—C13—C14—C150.2 (4)C32—C33—C34—C351.1 (4)
C13—C14—C15—C160.5 (5)C33—C34—C35—C362.0 (5)
C12—C11—C16—C151.4 (4)C32—C31—C36—C350.1 (4)
C17—C11—C16—C15176.7 (3)C37—C31—C36—C35178.4 (3)
C14—C15—C16—C110.3 (5)C34—C35—C36—C311.4 (4)
C16—C11—C17—O1789.6 (3)C36—C31—C37—O3766.4 (4)
C12—C11—C17—O1788.4 (4)C32—C31—C37—O37111.8 (3)
C16—C11—C17—N1185.6 (3)C36—C31—C37—N31110.4 (3)
C12—C11—C17—N1196.5 (3)C32—C31—C37—N3171.4 (4)
O17—C17—N11—C217.4 (5)O37—C37—N31—C4113.1 (5)
C11—C17—N11—C21177.8 (3)C31—C37—N31—C41170.2 (2)
C17—N11—C21—C26167.8 (3)C37—N31—C41—C46153.1 (3)
C17—N11—C21—C2213.2 (4)C37—N31—C41—C4231.1 (4)
C26—C21—C22—C231.4 (4)C46—C41—C42—C431.6 (4)
N11—C21—C22—C23177.6 (2)N31—C41—C42—C43177.4 (2)
C21—C22—C23—C240.9 (4)C41—C42—C43—C441.3 (4)
C21—C22—C23—I23178.28 (19)C41—C42—C43—I43177.36 (19)
C22—C23—C24—C250.3 (4)C42—C43—C44—C450.0 (4)
I23—C23—C24—C25179.4 (2)I43—C43—C44—C45178.7 (2)
C23—C24—C25—C260.9 (5)C43—C44—C45—C461.1 (4)
C24—C25—C26—C210.4 (4)C44—C45—C46—C410.8 (4)
C22—C21—C26—C250.8 (4)C42—C41—C46—C450.6 (4)
N11—C21—C26—C25178.2 (3)N31—C41—C46—C45176.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O17i0.882.282.978 (3)137
N31—H31···O37ii0.882.012.863 (3)162
C14—H14···O321iii0.952.483.243 (4)137
C15—H15···O3220.952.413.245 (4)147
C16—H16···O121i0.952.553.415 (3)151
C35—H35···O122iv0.952.443.251 (4)143
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x1, y+1, z.
(V) N-(3-iodophenyl)-3-nitrobenzamide top
Crystal data top
C13H9IN2O3F(000) = 712
Mr = 368.12Dx = 1.933 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2797 reflections
a = 13.8494 (4) Åθ = 4.1–27.5°
b = 10.0495 (3) ŵ = 2.54 mm1
c = 9.4203 (3) ÅT = 120 K
β = 105.2353 (16)°Block, brown
V = 1265.03 (7) Å30.46 × 0.34 × 0.16 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2797 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.1°
ϕ & ω scansh = 1717
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1312
Tmin = 0.376, Tmax = 0.666l = 1212
7022 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0227P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
2797 reflectionsΔρmax = 0.56 e Å3
172 parametersΔρmin = 1.09 e Å3
2 restraintsAbsolute structure: Flack (1983), 1349 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (17)
Crystal data top
C13H9IN2O3V = 1265.03 (7) Å3
Mr = 368.12Z = 4
Monoclinic, CcMo Kα radiation
a = 13.8494 (4) ŵ = 2.54 mm1
b = 10.0495 (3) ÅT = 120 K
c = 9.4203 (3) Å0.46 × 0.34 × 0.16 mm
β = 105.2353 (16)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2797 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2752 reflections with I > 2σ(I)
Tmin = 0.376, Tmax = 0.666Rint = 0.023
7022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.053Δρmax = 0.56 e Å3
S = 1.24Δρmin = 1.09 e Å3
2797 reflectionsAbsolute structure: Flack (1983), 1349 Friedel pairs
172 parametersAbsolute structure parameter: 0.013 (17)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7797 (2)0.6833 (3)0.7339 (3)0.0116 (6)
C120.8261 (2)0.6561 (3)0.6247 (3)0.0117 (5)
C130.8695 (4)0.7603 (3)0.5672 (6)0.0134 (8)
C140.8706 (2)0.8902 (3)0.6162 (3)0.0176 (6)
C150.8241 (2)0.9169 (3)0.7266 (3)0.0160 (6)
C160.7794 (2)0.8146 (3)0.7857 (3)0.0152 (6)
C170.72916 (19)0.5797 (3)0.8039 (3)0.0125 (5)
O170.71903 (16)0.5977 (2)0.92908 (19)0.0143 (4)
N10.69589 (15)0.4705 (2)0.7215 (2)0.0122 (4)
C210.6521 (2)0.3559 (3)0.7658 (3)0.0131 (6)
C220.6025 (2)0.3578 (3)0.8765 (3)0.0141 (6)
C230.5646 (3)0.2390 (2)0.9152 (4)0.0134 (7)
C240.5712 (2)0.1206 (3)0.8434 (3)0.0172 (7)
C250.6176 (2)0.1212 (3)0.7283 (4)0.0189 (7)
C260.6584 (4)0.2369 (3)0.6902 (6)0.0173 (9)
N130.9173 (3)0.7305 (2)0.4484 (4)0.0178 (6)
O310.91357 (17)0.6161 (2)0.4020 (2)0.0254 (5)
O320.95718 (19)0.8224 (2)0.3990 (3)0.0297 (5)
I230.50081 (5)0.240359 (12)1.09460 (7)0.01576 (7)
H120.82840.56790.58950.014*
H140.90220.95880.57540.021*
H150.82281.00520.76200.019*
H160.74830.83350.86210.018*
H10.70880.46460.63510.015*
H220.59460.43860.92460.017*
H240.54490.04060.87170.021*
H250.62110.04140.67580.023*
H260.69070.23610.61280.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0119 (14)0.0093 (14)0.0125 (14)0.0008 (11)0.0011 (11)0.0001 (11)
C120.0131 (12)0.0117 (14)0.0106 (12)0.0015 (10)0.0035 (11)0.0022 (10)
C130.014 (2)0.0163 (18)0.012 (2)0.0029 (10)0.0072 (18)0.0003 (11)
C140.0189 (15)0.0138 (14)0.0204 (14)0.0044 (11)0.0057 (12)0.0035 (11)
C150.0221 (15)0.0087 (14)0.0181 (14)0.0047 (12)0.0068 (12)0.0010 (11)
C160.0191 (15)0.0123 (15)0.0145 (15)0.0001 (12)0.0048 (13)0.0024 (12)
C170.0134 (12)0.0105 (13)0.0124 (12)0.0026 (10)0.0013 (10)0.0021 (11)
O170.0228 (10)0.0140 (11)0.0081 (8)0.0029 (8)0.0077 (8)0.0014 (7)
N10.0174 (12)0.0123 (11)0.0087 (10)0.0031 (9)0.0067 (9)0.0001 (8)
C210.0151 (15)0.0123 (14)0.0109 (13)0.0007 (11)0.0017 (11)0.0020 (10)
C220.0156 (15)0.0125 (14)0.0144 (15)0.0005 (11)0.0041 (12)0.0008 (11)
C230.0116 (18)0.0179 (17)0.0123 (18)0.0014 (10)0.0061 (14)0.0008 (9)
C240.0196 (18)0.0134 (15)0.0202 (16)0.0027 (12)0.0077 (14)0.0024 (13)
C250.0214 (17)0.0140 (15)0.0231 (16)0.0017 (12)0.0088 (13)0.0031 (13)
C260.028 (3)0.0145 (17)0.012 (2)0.0006 (12)0.0097 (19)0.0016 (12)
N130.0184 (16)0.0208 (14)0.0174 (16)0.0051 (11)0.0102 (13)0.0042 (11)
O310.0309 (13)0.0216 (13)0.0295 (13)0.0015 (10)0.0181 (11)0.0044 (11)
O320.0404 (14)0.0252 (13)0.0339 (13)0.0011 (11)0.0279 (12)0.0093 (11)
I230.01521 (11)0.01944 (10)0.01474 (11)0.00027 (18)0.00768 (7)0.00355 (17)
Geometric parameters (Å, º) top
C11—C121.377 (4)N1—H10.88
C11—C161.407 (5)C21—C221.392 (4)
C11—C171.500 (4)C21—C261.406 (4)
C12—C131.386 (4)C22—C231.391 (4)
C12—H120.95C22—H220.95
C13—C141.383 (4)C23—C241.384 (4)
C13—N131.473 (6)C23—I232.103 (4)
C14—C151.386 (4)C24—C251.397 (5)
C14—H140.95C24—H240.95
C15—C161.390 (4)C25—C261.381 (4)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—O171.237 (3)N13—O311.226 (3)
C17—N11.353 (3)N13—O321.228 (4)
N1—C211.415 (3)
C12—C11—C16119.3 (3)C21—N1—H1115.2
C12—C11—C17123.7 (2)C22—C21—C26120.0 (3)
C16—C11—C17117.1 (2)C22—C21—N1123.0 (3)
C11—C12—C13118.6 (3)C26—C21—N1117.0 (3)
C11—C12—H12120.7C23—C22—C21118.6 (3)
C13—C12—H12120.7C23—C22—H22120.7
C14—C13—C12123.4 (4)C21—C22—H22120.7
C14—C13—N13118.5 (3)C24—C23—C22122.2 (4)
C12—C13—N13118.1 (3)C24—C23—I23119.6 (2)
C13—C14—C15117.8 (3)C22—C23—I23118.2 (2)
C13—C14—H14121.1C23—C24—C25118.6 (3)
C15—C14—H14121.1C23—C24—H24120.7
C14—C15—C16120.1 (3)C25—C24—H24120.7
C14—C15—H15120.0C26—C25—C24120.5 (3)
C16—C15—H15120.0C26—C25—H25119.7
C15—C16—C11120.9 (3)C24—C25—H25119.7
C15—C16—H16119.6C25—C26—C21120.0 (4)
C11—C16—H16119.6C25—C26—H26120.0
O17—C17—N1124.0 (2)C21—C26—H26120.0
O17—C17—C11120.0 (2)O31—N13—O32123.4 (3)
N1—C17—C11116.0 (2)O31—N13—C13118.4 (3)
C17—N1—C21126.7 (2)O32—N13—C13118.1 (3)
C17—N1—H1117.7
C16—C11—C12—C131.3 (4)C17—N1—C21—C2225.7 (4)
C17—C11—C12—C13179.4 (3)C17—N1—C21—C26155.9 (3)
C11—C12—C13—C141.5 (6)C26—C21—C22—C233.5 (5)
C11—C12—C13—N13178.8 (3)N1—C21—C22—C23178.1 (3)
C12—C13—C14—C151.2 (6)C21—C22—C23—C242.7 (5)
N13—C13—C14—C15179.1 (3)C21—C22—C23—I23174.8 (2)
C13—C14—C15—C160.7 (4)C22—C23—C24—C250.0 (5)
C14—C15—C16—C110.6 (4)I23—C23—C24—C25177.4 (2)
C12—C11—C16—C150.9 (4)C23—C24—C25—C261.8 (5)
C17—C11—C16—C15179.7 (3)C24—C25—C26—C211.0 (6)
C12—C11—C17—O17155.7 (3)C22—C21—C26—C251.7 (6)
C16—C11—C17—O1723.7 (4)N1—C21—C26—C25179.7 (4)
C12—C11—C17—N125.2 (4)C14—C13—N13—O31177.8 (4)
C16—C11—C17—N1155.5 (2)C12—C13—N13—O312.5 (6)
O17—C17—N1—C215.4 (4)C14—C13—N13—O320.8 (6)
C11—C17—N1—C21175.5 (2)C12—C13—N13—O32178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O17i0.882.082.937 (2)165
C12—H12···O17i0.952.483.266 (4)140
C24—H24···O31ii0.952.483.371 (4)157
C26—H26···O17i0.952.513.256 (5)136
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z+1/2.
(VI) N-(3-iodophenyl)-4-nitrobenzamide top
Crystal data top
C13H9IN2O3F(000) = 712
Mr = 368.12Dx = 1.967 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2843 reflections
a = 7.4798 (2) Åθ = 3.1–27.6°
b = 14.0889 (7) ŵ = 2.58 mm1
c = 11.8138 (6) ÅT = 120 K
β = 93.259 (3)°Needle, brown
V = 1242.95 (9) Å30.48 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2843 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.1°
ϕ & ω scansh = 99
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1818
Tmin = 0.370, Tmax = 0.840l = 1415
13030 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.286H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P]
where P = (Fo2 + 2Fc2)/3
2843 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 3.92 e Å3
0 restraintsΔρmin = 2.57 e Å3
Crystal data top
C13H9IN2O3V = 1242.95 (9) Å3
Mr = 368.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4798 (2) ŵ = 2.58 mm1
b = 14.0889 (7) ÅT = 120 K
c = 11.8138 (6) Å0.48 × 0.09 × 0.07 mm
β = 93.259 (3)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
2843 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
2529 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.840Rint = 0.060
13030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.286H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P]
where P = (Fo2 + 2Fc2)/3
2843 reflectionsΔρmax = 3.92 e Å3
161 parametersΔρmin = 2.57 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.3258 (15)0.5880 (7)0.5948 (9)0.0106 (14)
C120.4060 (16)0.6008 (8)0.7037 (9)0.014 (2)
C130.4265 (15)0.6925 (8)0.7479 (9)0.014 (2)
C140.3651 (15)0.7682 (8)0.6808 (9)0.012 (2)
N140.3894 (13)0.8652 (7)0.7271 (8)0.0131 (18)
O410.4817 (12)0.8751 (6)0.8151 (7)0.0200 (18)
O420.3173 (15)0.9308 (6)0.6748 (7)0.023 (2)
C150.2832 (15)0.7573 (8)0.5738 (9)0.0132 (15)
C160.2686 (15)0.6662 (8)0.5310 (9)0.0132 (15)
C170.3143 (15)0.4872 (8)0.5541 (9)0.0106 (14)
O170.3981 (12)0.4241 (6)0.6054 (7)0.0178 (17)
N10.2070 (12)0.4695 (7)0.4587 (7)0.0108 (18)
C210.1813 (15)0.3821 (8)0.4027 (9)0.013 (2)
C220.2234 (15)0.2955 (8)0.4531 (9)0.011 (2)
C230.1860 (15)0.2123 (8)0.3906 (9)0.0106 (19)
I230.24533 (11)0.08091 (5)0.46912 (6)0.0189 (3)
C240.1113 (17)0.2132 (9)0.2805 (9)0.018 (2)
C250.0722 (16)0.3011 (9)0.2320 (9)0.016 (2)
C260.1025 (16)0.3847 (8)0.2913 (9)0.016 (2)
H120.44640.54760.74730.016*
H130.48070.70280.82150.016*
H150.23860.81030.53130.016*
H160.21820.65690.45630.016*
H10.14740.51820.42920.013*
H220.27620.29250.52810.013*
H240.08780.15600.23990.022*
H250.02340.30380.15600.019*
H260.07020.44380.25720.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.010 (3)0.011 (4)0.010 (3)0.002 (3)0.000 (3)0.002 (3)
C120.017 (5)0.014 (5)0.010 (4)0.000 (4)0.002 (4)0.004 (4)
C130.012 (5)0.019 (6)0.010 (4)0.001 (4)0.001 (4)0.002 (4)
C140.011 (5)0.010 (5)0.016 (5)0.001 (4)0.001 (4)0.001 (4)
N140.011 (4)0.016 (5)0.012 (4)0.000 (4)0.002 (3)0.003 (3)
O410.022 (5)0.020 (4)0.017 (4)0.001 (4)0.006 (3)0.006 (3)
O420.043 (6)0.011 (4)0.016 (4)0.002 (4)0.004 (4)0.001 (3)
C150.016 (4)0.008 (3)0.015 (3)0.005 (3)0.005 (3)0.001 (3)
C160.016 (4)0.008 (3)0.015 (3)0.005 (3)0.005 (3)0.001 (3)
C170.010 (3)0.011 (4)0.010 (3)0.002 (3)0.000 (3)0.002 (3)
O170.018 (4)0.018 (4)0.015 (4)0.005 (4)0.008 (3)0.003 (3)
N10.013 (4)0.008 (4)0.011 (4)0.000 (3)0.006 (3)0.001 (3)
C210.013 (5)0.013 (5)0.013 (5)0.001 (4)0.001 (4)0.000 (4)
C220.014 (5)0.009 (5)0.011 (4)0.001 (4)0.001 (4)0.001 (4)
C230.011 (5)0.008 (4)0.012 (4)0.001 (4)0.003 (4)0.000 (4)
I230.0298 (5)0.0087 (4)0.0179 (5)0.0005 (4)0.0002 (3)0.0002 (2)
C240.020 (6)0.021 (6)0.013 (5)0.000 (5)0.004 (4)0.003 (4)
C250.014 (5)0.021 (6)0.011 (4)0.003 (4)0.003 (4)0.004 (4)
C260.018 (6)0.015 (5)0.014 (5)0.003 (4)0.006 (4)0.001 (4)
Geometric parameters (Å, º) top
C11—C161.389 (14)C17—N11.369 (13)
C11—C121.400 (14)N1—C211.406 (14)
C11—C171.501 (15)N1—H10.88
C12—C131.398 (16)C21—C221.386 (15)
C12—H120.95C21—C261.412 (15)
C13—C141.392 (15)C22—C231.406 (14)
C13—H130.95C22—H220.95
C14—C151.381 (15)C23—C241.385 (14)
C14—N141.480 (14)C23—I232.106 (11)
N14—O421.220 (13)C24—C251.388 (18)
N14—O411.223 (13)C24—H240.95
C15—C161.381 (15)C25—C261.383 (16)
C15—H150.95C25—H250.95
C16—H160.95C26—H260.95
C17—O171.227 (14)
C16—C11—C12119.9 (10)N1—C17—C11117.2 (9)
C16—C11—C17124.5 (10)C17—N1—C21127.2 (9)
C12—C11—C17115.5 (9)C17—N1—H1116.4
C13—C12—C11119.7 (10)C21—N1—H1116.4
C13—C12—H12120.2C22—C21—N1123.2 (10)
C11—C12—H12120.2C22—C21—C26119.8 (10)
C14—C13—C12118.0 (10)N1—C21—C26117.0 (10)
C14—C13—H13121.0C21—C22—C23118.3 (10)
C12—C13—H13121.0C21—C22—H22120.8
C15—C14—C13123.4 (10)C23—C22—H22120.8
C15—C14—N14118.7 (9)C24—C23—C22122.9 (10)
C13—C14—N14117.9 (10)C24—C23—I23119.1 (8)
O42—N14—O41123.8 (10)C22—C23—I23118.1 (7)
O42—N14—C14118.1 (9)C23—C24—C25117.4 (11)
O41—N14—C14118.1 (9)C23—C24—H24121.3
C14—C15—C16117.4 (10)C25—C24—H24121.3
C14—C15—H15121.3C26—C25—C24121.7 (10)
C16—C15—H15121.3C26—C25—H25119.1
C15—C16—C11121.5 (10)C24—C25—H25119.1
C15—C16—H16119.2C25—C26—C21119.8 (11)
C11—C16—H16119.2C25—C26—H26120.1
O17—C17—N1122.3 (10)C21—C26—H26120.1
O17—C17—C11120.5 (10)
C16—C11—C12—C130.6 (18)C16—C11—C17—N114.6 (16)
C17—C11—C12—C13178.5 (10)C12—C11—C17—N1167.6 (10)
C11—C12—C13—C140.1 (17)O17—C17—N1—C213.0 (17)
C12—C13—C14—C150.9 (17)C11—C17—N1—C21177.2 (10)
C12—C13—C14—N14179.1 (10)C17—N1—C21—C2218.3 (18)
C15—C14—N14—O428.5 (16)C17—N1—C21—C26164.1 (11)
C13—C14—N14—O42171.4 (10)N1—C21—C22—C23177.7 (10)
C15—C14—N14—O41170.9 (11)C26—C21—C22—C230.2 (17)
C13—C14—N14—O419.2 (15)C21—C22—C23—C240.9 (17)
C13—C14—C15—C162.5 (18)C21—C22—C23—I23178.7 (8)
N14—C14—C15—C16177.6 (10)C22—C23—C24—C250.3 (18)
C14—C15—C16—C113.1 (17)I23—C23—C24—C25179.3 (8)
C12—C11—C16—C152.2 (18)C23—C24—C25—C261.4 (18)
C17—C11—C16—C15180.0 (11)C24—C25—C26—C212.4 (19)
C16—C11—C17—O17165.6 (11)C22—C21—C26—C251.8 (18)
C12—C11—C17—O1712.2 (16)N1—C21—C26—C25179.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O41i0.882.333.191 (13)167
C16—H16···O41i0.952.403.291 (14)155
C24—H24···O17ii0.952.363.192 (15)147
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z1/2.
(IX) N-(4-iodophenyl)-4-nitrobenzamide top
Crystal data top
C13H9IN2O3Z = 4
Mr = 368.12F(000) = 712
Triclinic, P1Dx = 1.917 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6712 Å
a = 5.1047 (3) ÅCell parameters from 7348 reflections
b = 15.3015 (9) Åθ = 2.5–28.7°
c = 16.4806 (9) ŵ = 2.52 mm1
α = 95.356 (2)°T = 120 K
β = 95.498 (2)°Needle, colourless
γ = 91.150 (2)°0.09 × 0.04 × 0.02 mm
V = 1275.23 (13) Å3
Data collection top
Bruker SMART APEX2 CCD
diffractometer
7348 independent reflections
Radiation source: Daresbury SRS station 9.8, Cernik et al., 1997, Clegg, 20036485 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.020
fine–slice ω scansθmax = 28.7°, θmin = 2.5°
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
h = 77
Tmin = 0.805, Tmax = 0.951k = 2121
13690 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6363P]
where P = (Fo2 + 2Fc2)/3
7348 reflections(Δ/σ)max = 0.002
337 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
C13H9IN2O3γ = 91.150 (2)°
Mr = 368.12V = 1275.23 (13) Å3
Triclinic, P1Z = 4
a = 5.1047 (3) ÅSynchrotron radiation, λ = 0.6712 Å
b = 15.3015 (9) ŵ = 2.52 mm1
c = 16.4806 (9) ÅT = 120 K
α = 95.356 (2)°0.09 × 0.04 × 0.02 mm
β = 95.498 (2)°
Data collection top
Bruker SMART APEX2 CCD
diffractometer
7348 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
6485 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.951Rint = 0.020
13690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.91 e Å3
7348 reflectionsΔρmin = 1.02 e Å3
337 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.2703 (4)0.36705 (13)0.72743 (12)0.0181 (4)
C120.1069 (4)0.41652 (15)0.67819 (13)0.0236 (4)
C130.1433 (5)0.41921 (16)0.59626 (14)0.0276 (5)
C140.3419 (4)0.37023 (15)0.56525 (13)0.0239 (4)
N140.3903 (5)0.37564 (15)0.47910 (13)0.0336 (5)
O1410.2650 (5)0.42717 (18)0.44014 (13)0.0617 (5)
O1420.5530 (5)0.32985 (18)0.44984 (13)0.0617 (5)
C150.5012 (5)0.31757 (15)0.61120 (14)0.0261 (4)
C160.4655 (4)0.31683 (14)0.69373 (13)0.0229 (4)
C170.2285 (4)0.37138 (13)0.81642 (12)0.0173 (3)
O170.0057 (3)0.37990 (11)0.83855 (10)0.0237 (3)
N110.4492 (3)0.36757 (11)0.86863 (10)0.0175 (3)
C210.4595 (4)0.37373 (12)0.95521 (12)0.0162 (3)
C220.2756 (4)0.41979 (13)0.99830 (12)0.0191 (4)
C230.2917 (4)0.42302 (13)1.08301 (12)0.0197 (4)
C240.4927 (4)0.38031 (13)1.12518 (12)0.0186 (4)
I240.49134 (3)0.377222 (9)1.251935 (8)0.02616 (5)
C250.6842 (4)0.33725 (13)1.08288 (13)0.0192 (4)
C260.6668 (4)0.33385 (13)0.99815 (12)0.0178 (3)
C311.1985 (4)0.13179 (13)0.28880 (12)0.0169 (3)
C321.3693 (4)0.08409 (14)0.33724 (13)0.0212 (4)
C331.3397 (4)0.08116 (15)0.41934 (14)0.0252 (4)
C341.1387 (4)0.12822 (14)0.45198 (13)0.0223 (4)
N341.0972 (4)0.12133 (14)0.53831 (12)0.0295 (4)
O3411.2305 (5)0.07091 (17)0.57634 (12)0.0538 (6)
O3420.9268 (5)0.16422 (17)0.56791 (12)0.0517 (6)
C350.9719 (4)0.17910 (15)0.40647 (13)0.0238 (4)
C361.0020 (4)0.18036 (14)0.32363 (13)0.0219 (4)
C371.2340 (4)0.12830 (13)0.19952 (12)0.0175 (3)
O371.4553 (3)0.12042 (11)0.17583 (9)0.0225 (3)
N311.0101 (3)0.13254 (11)0.14847 (10)0.0176 (3)
C411.0029 (4)0.12971 (12)0.06208 (12)0.0161 (3)
C421.1965 (4)0.17243 (13)0.02499 (12)0.0180 (4)
C431.1850 (4)0.16889 (13)0.05934 (12)0.0188 (4)
C440.9775 (4)0.12365 (13)0.10744 (12)0.0179 (4)
I440.97313 (3)0.119495 (9)0.235056 (8)0.02594 (5)
C450.7802 (4)0.08235 (13)0.07119 (12)0.0198 (4)
C460.7942 (4)0.08527 (13)0.01351 (12)0.0188 (4)
H120.03040.44860.70090.028*
H130.03510.45370.56240.033*
H150.63120.28290.58720.031*
H160.57410.28210.72720.028*
H110.60800.36610.84910.021*
H220.13870.44910.96950.023*
H230.16580.45431.11220.024*
H250.82570.31041.11200.023*
H260.79630.30430.96910.021*
H321.50750.05320.31370.025*
H331.45380.04780.45260.030*
H350.84020.21230.43110.029*
H360.88880.21430.29070.026*
H310.85060.12780.16690.021*
H421.33680.20410.05780.022*
H431.31860.19730.08450.023*
H450.63710.05240.10410.024*
H460.66050.05680.03860.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0171 (8)0.0214 (9)0.0165 (9)0.0027 (7)0.0043 (7)0.0024 (7)
C120.0235 (10)0.0283 (10)0.0205 (10)0.0104 (8)0.0060 (8)0.0049 (8)
C130.0315 (11)0.0332 (12)0.0199 (10)0.0152 (9)0.0048 (9)0.0073 (8)
C140.0288 (11)0.0291 (11)0.0157 (9)0.0094 (8)0.0064 (8)0.0055 (8)
N140.0426 (12)0.0407 (12)0.0197 (9)0.0171 (10)0.0083 (9)0.0062 (8)
O1410.0834 (12)0.0837 (12)0.0269 (7)0.0569 (10)0.0249 (8)0.0211 (8)
O1420.0834 (12)0.0837 (12)0.0269 (7)0.0569 (10)0.0249 (8)0.0211 (8)
C150.0282 (11)0.0315 (11)0.0201 (10)0.0133 (9)0.0069 (8)0.0028 (8)
C160.0231 (10)0.0264 (10)0.0203 (10)0.0092 (8)0.0047 (8)0.0029 (8)
C170.0147 (8)0.0200 (9)0.0177 (9)0.0019 (7)0.0041 (7)0.0024 (7)
O170.0141 (6)0.0377 (9)0.0195 (7)0.0034 (6)0.0043 (5)0.0017 (6)
N110.0132 (7)0.0230 (8)0.0169 (8)0.0016 (6)0.0048 (6)0.0012 (6)
C210.0141 (8)0.0179 (8)0.0170 (8)0.0007 (6)0.0038 (7)0.0022 (6)
C220.0170 (8)0.0227 (9)0.0179 (9)0.0039 (7)0.0031 (7)0.0009 (7)
C230.0182 (9)0.0224 (9)0.0191 (9)0.0034 (7)0.0062 (7)0.0009 (7)
C240.0202 (9)0.0193 (9)0.0165 (9)0.0014 (7)0.0032 (7)0.0013 (7)
I240.03405 (9)0.02879 (8)0.01610 (7)0.00239 (6)0.00462 (5)0.00208 (5)
C250.0156 (8)0.0210 (9)0.0213 (9)0.0012 (7)0.0028 (7)0.0021 (7)
C260.0139 (8)0.0207 (9)0.0195 (9)0.0027 (6)0.0038 (7)0.0029 (7)
C310.0153 (8)0.0215 (9)0.0145 (8)0.0026 (7)0.0028 (7)0.0022 (7)
C320.0188 (9)0.0266 (10)0.0195 (9)0.0078 (7)0.0034 (7)0.0052 (7)
C330.0250 (10)0.0328 (11)0.0196 (10)0.0114 (8)0.0039 (8)0.0078 (8)
C340.0248 (10)0.0275 (10)0.0156 (9)0.0044 (8)0.0056 (8)0.0028 (7)
N340.0365 (11)0.0372 (11)0.0171 (8)0.0124 (9)0.0090 (8)0.0064 (7)
O3410.0720 (15)0.0742 (15)0.0228 (9)0.0454 (13)0.0180 (9)0.0223 (10)
O3420.0624 (14)0.0757 (15)0.0234 (9)0.0443 (12)0.0199 (9)0.0130 (9)
C350.0247 (10)0.0281 (11)0.0194 (10)0.0084 (8)0.0058 (8)0.0010 (8)
C360.0205 (9)0.0274 (10)0.0180 (9)0.0092 (8)0.0030 (7)0.0015 (7)
C370.0169 (8)0.0198 (9)0.0159 (8)0.0025 (7)0.0013 (7)0.0020 (7)
O370.0142 (6)0.0349 (8)0.0190 (7)0.0031 (6)0.0040 (5)0.0026 (6)
N310.0126 (7)0.0262 (8)0.0143 (7)0.0016 (6)0.0029 (6)0.0018 (6)
C410.0166 (8)0.0183 (8)0.0139 (8)0.0038 (6)0.0031 (7)0.0021 (6)
C420.0157 (8)0.0198 (9)0.0186 (9)0.0010 (7)0.0012 (7)0.0028 (7)
C430.0190 (9)0.0195 (9)0.0188 (9)0.0015 (7)0.0050 (7)0.0032 (7)
C440.0207 (9)0.0183 (9)0.0151 (8)0.0056 (7)0.0026 (7)0.0017 (6)
I440.03629 (9)0.02770 (8)0.01409 (7)0.00052 (6)0.00410 (5)0.00192 (5)
C450.0174 (8)0.0233 (9)0.0186 (9)0.0009 (7)0.0022 (7)0.0014 (7)
C460.0170 (8)0.0225 (9)0.0171 (9)0.0000 (7)0.0034 (7)0.0016 (7)
Geometric parameters (Å, º) top
C11—C121.392 (3)C31—C321.390 (3)
C11—C161.396 (3)C31—C361.396 (3)
C11—C171.498 (3)C31—C371.496 (3)
C12—C131.385 (3)C32—C331.380 (3)
C12—H120.95C32—H320.95
C13—C141.381 (3)C33—C341.387 (3)
C13—H130.95C33—H330.95
C14—C151.381 (3)C34—C351.381 (3)
C14—N141.474 (3)C34—N341.471 (3)
N14—O1421.204 (3)N34—O3421.212 (3)
N14—O1411.216 (3)N34—O3411.217 (3)
C15—C161.391 (3)C35—C361.390 (3)
C15—H150.95C35—H350.95
C16—H160.95C36—H360.95
C17—O171.233 (2)C37—O371.235 (2)
C17—N111.356 (2)C37—N311.359 (2)
N11—C211.417 (2)N31—C411.417 (2)
N11—H110.90N31—H310.90
C21—C221.394 (3)C41—C421.394 (3)
C21—C261.398 (3)C41—C461.394 (3)
C22—C231.387 (3)C42—C431.381 (3)
C22—H220.95C42—H420.95
C23—C241.392 (3)C43—C441.391 (3)
C23—H230.95C43—H430.95
C24—C251.395 (3)C44—C451.390 (3)
C24—I242.095 (2)C44—I442.096 (2)
C25—C261.387 (3)C45—C461.387 (3)
C25—H250.95C45—H450.95
C26—H260.95C46—H460.95
C12—C11—C16120.15 (19)C32—C31—C36120.14 (19)
C12—C11—C17117.27 (18)C32—C31—C37117.55 (17)
C16—C11—C17122.57 (18)C36—C31—C37122.31 (18)
C13—C12—C11120.37 (19)C33—C32—C31120.50 (19)
C13—C12—H12119.8C33—C32—H32119.8
C11—C12—H12119.8C31—C32—H32119.8
C14—C13—C12118.0 (2)C32—C33—C34118.18 (19)
C14—C13—H13121.0C32—C33—H33120.9
C12—C13—H13121.0C34—C33—H33120.9
C15—C14—C13123.4 (2)C35—C34—C33122.9 (2)
C15—C14—N14118.08 (19)C35—C34—N34118.74 (19)
C13—C14—N14118.48 (19)C33—C34—N34118.33 (19)
O142—N14—O141122.2 (2)O342—N34—O341122.7 (2)
O142—N14—C14119.3 (2)O342—N34—C34118.70 (19)
O141—N14—C14118.4 (2)O341—N34—C34118.53 (19)
C14—C15—C16117.89 (19)C34—C35—C36118.16 (19)
C14—C15—H15121.1C34—C35—H35120.9
C16—C15—H15121.1C36—C35—H35120.9
C15—C16—C11120.10 (19)C35—C36—C31120.03 (19)
C15—C16—H16119.9C35—C36—H36120.0
C11—C16—H16119.9C31—C36—H36120.0
O17—C17—N11123.95 (19)O37—C37—N31123.80 (18)
O17—C17—C11120.44 (18)O37—C37—C31120.40 (18)
N11—C17—C11115.59 (17)N31—C37—C31115.78 (17)
C17—N11—C21125.68 (16)C37—N31—C41124.21 (16)
C17—N11—H11119.9C37—N31—H31121.0
C21—N11—H11114.2C41—N31—H31114.0
C22—C21—C26119.56 (18)C42—C41—C46119.51 (18)
C22—C21—N11122.32 (17)C42—C41—N31121.22 (18)
C26—C21—N11118.10 (17)C46—C41—N31119.25 (17)
C23—C22—C21120.24 (18)C43—C42—C41120.18 (18)
C23—C22—H22119.9C43—C42—H42119.9
C21—C22—H22119.9C41—C42—H42119.9
C22—C23—C24119.89 (18)C42—C43—C44119.97 (19)
C22—C23—H23120.1C42—C43—H43120.0
C24—C23—H23120.1C44—C43—H43120.0
C23—C24—C25120.26 (19)C45—C44—C43120.42 (19)
C23—C24—I24118.76 (15)C45—C44—I44121.40 (15)
C25—C24—I24120.92 (15)C43—C44—I44118.19 (15)
C26—C25—C24119.64 (18)C46—C45—C44119.40 (19)
C26—C25—H25120.2C46—C45—H45120.3
C24—C25—H25120.2C44—C45—H45120.3
C25—C26—C21120.31 (18)C45—C46—C41120.50 (19)
C25—C26—H26119.8C45—C46—H46119.8
C21—C26—H26119.8C41—C46—H46119.8
C16—C11—C12—C132.6 (3)C36—C31—C32—C332.8 (3)
C17—C11—C12—C13176.7 (2)C37—C31—C32—C33177.0 (2)
C11—C12—C13—C141.2 (4)C31—C32—C33—C341.1 (3)
C12—C13—C14—C151.4 (4)C32—C33—C34—C351.5 (4)
C12—C13—C14—N14177.3 (2)C32—C33—C34—N34176.6 (2)
C15—C14—N14—O1425.1 (4)C35—C34—N34—O3423.9 (4)
C13—C14—N14—O142176.1 (3)C33—C34—N34—O342177.9 (3)
C15—C14—N14—O141174.2 (3)C35—C34—N34—O341174.1 (3)
C13—C14—N14—O1414.6 (4)C33—C34—N34—O3414.1 (4)
C13—C14—C15—C162.6 (4)C33—C34—C35—C362.4 (4)
N14—C14—C15—C16176.1 (2)N34—C34—C35—C36175.8 (2)
C14—C15—C16—C111.1 (4)C34—C35—C36—C310.7 (3)
C12—C11—C16—C151.4 (3)C32—C31—C36—C351.8 (3)
C17—C11—C16—C15177.8 (2)C37—C31—C36—C35177.9 (2)
C12—C11—C17—O1733.7 (3)C32—C31—C37—O3732.2 (3)
C16—C11—C17—O17147.0 (2)C36—C31—C37—O37148.1 (2)
C12—C11—C17—N11144.7 (2)C32—C31—C37—N31146.52 (19)
C16—C11—C17—N1134.6 (3)C36—C31—C37—N3133.2 (3)
O17—C17—N11—C210.8 (3)O37—C37—N31—C410.9 (3)
C11—C17—N11—C21177.53 (18)C31—C37—N31—C41179.62 (18)
C17—N11—C21—C2227.9 (3)C37—N31—C41—C4238.8 (3)
C17—N11—C21—C26153.85 (19)C37—N31—C41—C46142.9 (2)
C26—C21—C22—C232.6 (3)C46—C41—C42—C431.6 (3)
N11—C21—C22—C23179.15 (19)N31—C41—C42—C43179.87 (17)
C21—C22—C23—C240.2 (3)C41—C42—C43—C440.9 (3)
C22—C23—C24—C252.6 (3)C42—C43—C44—C450.4 (3)
C22—C23—C24—I24174.65 (15)C42—C43—C44—I44179.36 (14)
C23—C24—C25—C262.9 (3)C43—C44—C45—C461.1 (3)
I24—C24—C25—C26174.33 (15)I44—C44—C45—C46178.65 (15)
C24—C25—C26—C210.4 (3)C44—C45—C46—C410.5 (3)
C22—C21—C26—C252.4 (3)C42—C41—C46—C450.9 (3)
N11—C21—C26—C25179.33 (18)N31—C41—C46—C45179.20 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O17i0.902.062.935 (2)163
N31—H31···O37ii0.902.042.915 (2)164
C13—H13···O141iii0.952.413.233 (4)145
C15—H15···O3420.952.403.305 (4)159
C33—H33···O341iv0.952.503.231 (3)134
C35—H35···O1420.952.363.254 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+3, y, z+1.

Experimental details

(II)(III)(IV)(V)
Crystal data
Chemical formulaC13H9IN2O3C13H9IN2O3C13H9IN2O3C13H9IN2O3
Mr368.12368.12368.12368.12
Crystal system, space groupMonoclinic, P21/cMonoclinic, PcMonoclinic, P21Monoclinic, Cc
Temperature (K)120120120120
a, b, c (Å)13.1804 (3), 7.5099 (2), 13.8849 (3)10.0528 (3), 4.8703 (10), 13.5719 (3)11.0552 (3), 8.9521 (2), 12.8921 (3)13.8494 (4), 10.0495 (3), 9.4203 (3)
α, β, γ (°)90, 111.1634 (12), 9090, 109.9452 (17), 9090, 96.3899 (10), 9090, 105.2353 (16), 90
V3)1281.68 (5)624.63 (13)1267.97 (5)1265.03 (7)
Z4244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.502.572.532.54
Crystal size (mm)0.50 × 0.10 × 0.020.42 × 0.30 × 0.080.40 × 0.20 × 0.080.46 × 0.34 × 0.16
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Bruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.368, 0.9520.412, 0.8210.431, 0.8230.376, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
15482, 2942, 2549 10157, 2767, 2624 16241, 5672, 5506 7022, 2797, 2752
Rint0.0380.0260.0240.023
(sin θ/λ)max1)0.6510.6500.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.07 0.019, 0.048, 1.21 0.020, 0.046, 1.11 0.018, 0.053, 1.24
No. of reflections2942276756722797
No. of parameters172173344172
No. of restraints0212
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0327P)2 + 0.5883P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1391P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0227P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.58, 0.980.67, 0.620.66, 0.800.56, 1.09
Absolute structure?Flack (1983), 1328 Friedel pairsFlack (1983), 2565 Friedel pairsFlack (1983), 1349 Friedel pairs
Absolute structure parameter?0.006 (17)0.008 (11)0.013 (17)


(VI)(IX)
Crystal data
Chemical formulaC13H9IN2O3C13H9IN2O3
Mr368.12368.12
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)120120
a, b, c (Å)7.4798 (2), 14.0889 (7), 11.8138 (6)5.1047 (3), 15.3015 (9), 16.4806 (9)
α, β, γ (°)90, 93.259 (3), 9095.356 (2), 95.498 (2), 91.150 (2)
V3)1242.95 (9)1275.23 (13)
Z44
Radiation typeMo KαSynchrotron, λ = 0.6712 Å
µ (mm1)2.582.52
Crystal size (mm)0.48 × 0.09 × 0.070.09 × 0.04 × 0.02
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Bruker SMART APEX2 CCD
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Multi-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.370, 0.8400.805, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
13030, 2843, 2529 13690, 7348, 6485
Rint0.0600.020
(sin θ/λ)max1)0.6520.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.286, 1.17 0.029, 0.074, 1.04
No. of reflections28437348
No. of parameters161337
No. of restraints00
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6363P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.92, 2.570.91, 1.02
Absolute structure??
Absolute structure parameter??

Computer programs: COLLECT (Hooft, 1999), Bruker APEX2 (Bruker, 2003), DENZO (Otwinowski & Minor, 1997) & COLLECT, Bruker APEX2, DENZO & COLLECT), Bruker SAINT (Bruker, 2001), OSCAIL (McArdle, 2003) & SHELXS97 (Sheldrick, 1997), OSCAIL & SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5035 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK, and at the Daresbury SRS Station 9.8, Warrington, UK; the authors thank the staff of these facilities for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729–2730.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat, S. J. (1997). J. Synchotron Rad. 4, 279–286.  CrossRef CAS Web of Science Google Scholar
First citationClegg, W. (2000). J. Chem. Soc. Dalton Trans. pp. 3223–3232.  Web of Science CrossRef Google Scholar
First citationDay, G. M,, Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. & Verwer, P. (2005). Acta Cryst. B61, 511–527.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445–o449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGeorge, S., Nangia, A., Lam, C.-K., Mak, T. C. W. & Nicoud, J.-F. (2004). Chem. Commun. pp. 1202–1203.  Web of Science CSD CrossRef Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312–o316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLow, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1399–o1401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMasciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347–1348.  Web of Science CSD CrossRef Google Scholar
First citationMotherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSenskey, M. D., Bradshaw, J. D., Tessier, C. A. & Youngs, W. J. (1995). Tetrahedron Lett. 35, 6127–6220.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar
First citationThalladi, V. R., Goud, B. S., Hoy, V. J., Allen F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402.  Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428–o430.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, R., Schwab, O. & Hampel, F. (1999). Chem. Eur. J. 5, 968–974.  CrossRef CAS Google Scholar
First citationWilson, A. J. C. (1976). Acta Cryst. A32, 994–996.  CrossRef IUCr Journals Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds