research papers
Isomeric N-(iodophenyl)nitrobenzamides form different three-dimensional framework structures
aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk
The isomeric N-(iodophenyl)nitrobenzamides, C13H9IN2O3, all form different three-dimensional framework structures. Molecules of N-(2-iodophenyl)-3-nitrobenzamide (II) are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds and a two-centre iodo⋯carbonyl interaction. The supramolecular structure of N-(2-iodophenyl)-4-nitrobenzamide (III) is built from one N—H⋯O and two C—H⋯O hydrogen bonds, but short I⋯O contacts are absent from the structure. In N-(3-iodophenyl)-2-nitrobenzamide (IV), which crystallizes with Z′ = 2 in P21, the structure contains two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds, two two-centre iodo⋯nitro interactions and an aromatic π⋯π stacking interaction. The structure of N-(3-iodophenyl)-3-nitrobenzamide (V) contains one N—H⋯O hydrogen bond and three C—H⋯O hydrogen bonds, together with a two-centre iodo⋯nitro interaction and an aromatic π⋯π stacking interaction, while in N-(3-iodophenyl)-4-nitrobenzamide (VI), the combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds is augmented not only by a two-centre iodo⋯nitro interaction and an aromatic π⋯π stacking interaction, but also by a dipolar carbonyl⋯carbonyl interaction. In the supramolecular structure of N-(4-iodophenyl)-4-nitrobenzamide (IX), which crystallizes with Z′ = 2 in , there are two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds and two three-centre iodo⋯nitro interactions.
Keywords: N-(iodophenyl)nitrobenzamides.
1. Introduction
As part of a general study of the interplay of hydrogen bonds, iodo⋯nitro interactions and aromatic π⋯π stacking interactions in aromatic systems containing both iodo and nitro substituents, we have recently reported the molecular and supramolecular structures of a range of diaryl species (see Scheme 1) containing a variety of spacer units X, including the two isomeric series of arenesulfonamides (A) and (B) (Kelly et al., 2002), the two isomeric series of Schiff-base (C)
(Wardell et al., 2002) and (D) (Glidewell, Howie et al., 2002; Ferguson et al., 2005), benzylanilines (E) (Glidewell, Low et al., 2002, 2004), a single example of a benzamide (F) (Wardell et al., 2005), and 2,3-diazabutadienes (G) (Glidewell, Low, Skakle & Wardell, 2005; Low et al., 2006).In the case of the Schiff-base D), we were able to study the supramolecular aggregation modes in eight of the possible nine isomers (Glidewell, Howie et al., 2002); in the benzylaniline series (E) we were able to study the structures of six of the possible nine isomers (Glidewell, Low et al., 2002, 2004); and in the diazabutadiene series (G), we have been able to study four of the six possible isomers (Glidewell, Low, Skakle & Wardell, 2005<; Low et al., 2006). In each of these series, the interplay of the various weak intermolecular interactions is such that neither the supramolecular structure nor even the range of interactions involved can readily be predicted for any single example from a detailed knowledge of all the rest of the series. With this in mind, we have now expanded our preliminary study (Wardell et al., 2005) of the benzamide series (F) to incorporate a total of seven isomers of this series, compounds (I)–(VI) and (IX).
of type (This series of isomers offers, within a fairly compact molecular constitution, a wide variety of potential intermolecular interactions; these include N—H⋯O and C—H⋯O hydrogen bonds, in each of which the acceptor could be either a carbonyl O or a nitro O atom; N—H⋯π(arene) and C—H⋯π(arene) hydrogen bonds; iodo⋯carbonyl and iodo⋯nitro interactions, of which the latter could be of either two-centre or three-centre type; aromatic π⋯π stacking interactions; and dipolar carbonyl⋯carbonyl and nitro⋯nitro interactions.
2. Experimental
2.1. Synthesis
For the preparation of compounds (II)–(IX), equimolar quantities of the appropriate nitrobenzoyl chloride and the appropriate iodoaniline (2 mmol of each component) were dissolved in chloroform (50 cm3), and these mixtures were heated under reflux for 1 h. After cooling the mixtures, the solvent was removed under reduced pressure, and the resulting products were recrystallized from ethanol, yielding the pure compounds (II)–(IX): m.p. (II) 441–443 K, (III) 469–471 K (decomposes), (IV) 431–432 K, (V) 450–452 K, (VI) 471–472 K, (VII) 426–427 K, (VIII) 464–466 K, (IX) > 510 K. IR (KBr disk, cm−1): (II) 3249, 1658, 1639, 1587, 1522, 1343; (III) 3278, 1654, 1586, 1522, 1353; (IV) 3378, 3321, 1680, 1648, 1582, 1524, 1347; (V) 3309, 1656, 1589, 1521, 1346; (VI) 3298, 1645, 1587, 1525, 1346; (VII) 3281, 1655, 1574, 1525, 1347; (VIII) 3409, 1677, 1587, 1516, 1344; (IX) 3290, 1652, 1585, 1510, 1349. Crystals of isomers (II)–(VI) suitable for single-crystal X-ray diffraction were grown from solutions in ethanol; suitable crystals of isomer (IX) could not be obtained in this way, but were grown from a solution in acetone. Repeated attempts were made to obtain adequate crystals of isomers (VII) and (VIII), and for both isomers crystallization was attempted from each of acetone, acetonitrile, chloroform, ethanol, methanol and various ethanol–water mixtures, all without success.
2.2. Data collection, structure solution and refinement
Diffraction data for isomers (II)–(VI) were collected at 120 (2) K using a Nonius KappaCCD diffractometer; in all these cases graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) was employed. Data for isomer (IX) were collected at 120 (2) K on Daresbury SRS Station 9.8 (Cernik et al., 1997; Clegg, 2000) using a Bruker SMART APEXII diffractometer and synchrotron radiation (λ = 0.6712 Å) Other details of cell data, data collection and are summarized in Table 1, together with details of the software employed (Bruker, 2001, 2003; Ferguson, 1999; Hooft, 1999; McArdle, 2003; Otwinowski & Minor, 1997; Sheldrick, 1997; Sheldrick, 2003). For isomer (VIII) no usable diffraction data could be obtained even using synchrotron radiation.
For isomers (II) and (VI) the space groups P21/c and P21/n, respectively, were uniquely assigned from the crystals of isomer (IX) are triclinic and the was selected, and subsequently confirmed by the successful structure analysis. For each of (III)–(V) the provided a choice of space groups: Pc or P2/c for isomer (III), P21 or P21/m for isomer (IV), and Cc or C2/c for isomer (V). The space groups Pc, P21 and Cc, respectively, were selected, and confirmed by the subsequent structure analyses.
The structures were solved by F2. A weighting scheme based on P = (Fo2 + 2Fc2)/3 was employed in order to reduce statistical bias (Wilson, 1976). All H atoms were located from difference maps and then treated as riding atoms with C—H distances of 0.95 Å and N—H distances of 0.88–0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). The correct for the molecules in the crystal of isomer (IV) selected for data collection was determined by means of the Flack (1983) parameter; for isomers (III) and (V) the correct orientations of the structures with respect to the polar axis directions were established by means of their Flack parameters. For compound (VI), PLATON (Spek, 2003) indicated the presence of non-merohedral and the refined twin fractions were 0.323 (4) and 0.677 (4).
and refined with all data onSupramolecular analyses were made and the diagrams were prepared with the aid of PLATON (Spek, 2003). Details of molecular conformations are given in Table 2, details of hydrogen-bond dimensions are given in Table 3, and details of short I⋯O interactions are given in Table 4.1 Figs. 1–6 show the molecular components, with the atom-labelling schemes, and Figs. 7–12 show aspects of the supramolecular structures.
|
|
|
3. Results and discussion
3.1. Molecular conformations
In each isomer (Figs. 1–6) the central amidic portion adopts a nearly planar trans conformation, as shown by the C11—C17—N1—C21 torsion angles in the isomers (I)–(III), (V) and (VI) having Z′ = 1, and the corresponding angles C11—C17—N11—C21 and C31—C37—N31—C41 for the isomers (IV) and (IX) having Z′ = 2 (Table 2). However, the two independent torsion angles defining the orientation of the two aryl rings relative to the central amide group show a very wide range of values, such that none of the molecular skeletons even approaches planarity. In addition, the nitro groups make modest non-zero dihedral angles with the adjacent aryl rings, ranging from 1.4 (2)° in isomer (IV) to 16.1 (2)° in isomer (III).
The range of molecular conformations in the crystalline state indicates that the direction-specific intermolecular forces, in particular the hydrogen bonds and the iodo⋯oxygen interactions, are capable of overcoming the rotational barriers associated with the bonds linking the rings to the central spacer unit. Despite the marked non-planarity, it is still possible to identify in each isomer two distinct edges of the elongated molecules, while the 4- and 4′-positions can be regarded as forming the ends of the molecules. Where neither the iodo nor the nitro substituent occupies a 4- or 4′-site, the ring orientations are such that in isomers (I), (II) and (V) these substituents are on opposite edges of the molecule, while in isomer (IV) they are on the same edge. Since in each of these isomers the rings are involved in direction-specific intermolecular interactions, it may be concluded that the sum of the resultant forces in any isomer can overcome the two independent intramolecular rotational barriers constraining the orientations of the aryl rings relative to the central amide spacer unit.
3.2. Supramolecular structures
3.2.1. Isomer (I), N-(2-iodophenyl)-2-nitrobenzamide
The molecules of (I) are linked into a three-dimensional structure, which was described (Wardell et al., 2005) in terms of three simple one-dimensional sub-structures built, respectively, from an N—H⋯O hydrogen bond, a combination of a C—H⋯O hydrogen bond and a two-centre iodo⋯nitro interaction, and a C—H⋯π(arene) hydrogen bond, and running, respectively, along the [100], [010] and [001] directions.
3.2.2. Isomer (II), N-(2-iodophenyl)-3-nitrobenzamide
The molecules of isomer (II) (Fig. 1) are linked into sheets by a combination of two hydrogen bonds, one each of N—H⋯O and C—H⋯O types (Table 3), and the hydrogen-bonded sheets are linked into a three-dimensional framework structure by a single two-centre iodo⋯carbonyl interaction (Table 4).
Atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the amidic atom O17 in the molecule at (1 − x, + y, − z), so forming a C(4) (Bernstein et al., 1995) chain typical of running parallel to the [010] direction and generated by the 21 screw axis along (, y, ). In addition, atom C23 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro atom O31 in the molecule at (1 + x, y, z), so generating by translation a C(11) chain running parallel to the [100] direction. The combination of the C(4) and C(11) chains along [010] and [100], respectively, then generates a (001) sheet in the form of a (4,4)-net built from a single type of R44(28) ring (Fig. 7a).
Adjacent sheets are linked by the iodo⋯carbonyl interaction (Table 3). Atom I22 in the molecule at (x, y, z), which lies in the (001) sheet generated by the screw axes at z = , makes a short two-centre contact with the amidic atom O17 in the molecule at (x, − y, − + z), which forms part of the (001) sheet generated by the screw axes at z = −. Propagation of this interaction forms a C(6) (Starbuck et al., 1999) chain running parallel to the [001] direction and generated by the c-glide plane at y = (Fig. 7b). The combination of the (001) hydrogen-bonded sheets and the [001] iodo⋯carbonyl chain is sufficient to generate a continuous framework structure.
3.2.3. Isomer (III), N-(2-iodophenyl)-4-nitrobenzamide
The molecules of isomer (III) (Fig. 2) are linked into a three-dimensional framework by three hydrogen bonds, one each of N—H⋯O, C—H⋯O and C—H⋯π(arene) types (Table 3), and the formation of the framework can readily be analysed in terms of three one-dimensional sub-structures, each containing just a single type of hydrogen bond.
In the simplest of the three sub-structures, atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to amidic atom O17 in the molecule at (x, −1 + y, z), so generating by translation the C(4) chain motif characteristic of here running parallel to the [010] direction. The second sub-structure is generated by the C—H⋯O hydrogen bond; atom C24 in the molecule at (x, y, z) acts as a donor to the nitro atom O42 in the molecule at (1 − x, 1 − y, − + z), so forming a C(13) chain running parallel to the [20] direction and generated by the c-glide plane at y = . The combination of the C(4) and C(13) chains generates a (102) sheet in the form of a (4,4)-net built from a single type of R44(32) ring (Fig. 8a). In the final sub-structure, atom C26 in the molecule at (x, y, z) acts as a hydrogen-bond donor to the aryl ring C11–C16 of the molecule at (x, 1 − y, − + z), so producing a chain running parallel to the [001] direction, again generated by the c-glide plane at y = (Fig. 8b). The combination of all three of the one-dimensional sub-structures then generates a three-dimensional framework structure.
3.2.4. Isomer (IV), N-(3-iodophenyl)-2-nitrobenzamide
Isomer (IV) crystallizes with Z′ = 2 in P21, and the molecules are linked into a three-dimensional framework of considerable complexity by means of two N—H⋯O hydrogen bonds, four C—H⋯O hydrogen bonds (Table 3), two iodo⋯nitro interactions, both of two-centre type (Table 4), and a single aromatic π⋯π stacking interaction; C—H⋯π(arene) hydrogen bonds are, however, absent.
The ) was selected to contain the C—H⋯O hydrogen bond with the shortest H⋯O distance, and there are thus seven independent interactions linking these two-molecule aggregates. Each of the independent molecules, type 1 containing N11 and type 2 containing N31, forms a C(4) chain running parallel to the [010] direction and containing a single type of N—H⋯O hydrogen bond (Table 3). The chain of type 1 molecules is generated by the 21 screw axis along (, y, ), while the chain of type 2 molecules is generated by the 21 screw axis along (0, y, 0). The formation of the type 1 chain is weakly augmented by an aromatic π⋯π stacking interaction. The nitrated ring C11–C16 of the type 1 molecule at (x, y, z) and the iodinated ring C21–C26 of the type 1 molecule at (1 − x, − + y, 1 − z) are inclined to one another at only 5.1 (2)°: the corresponding ring-centroid separation is 3.735 (2) Å with an of ca 3.40 Å and a ring offset of ca 1.55 Å.
(Fig. 3In combination with the C—H⋯O hydrogen bond within the C(4) chains generate a (10) sheet containing a single type of R66(34) ring (Fig. 9a). The (10) sheets are linked to form the overall three-dimensional framework by two readily identifiable and rather simple one-dimensional sub-structures, one built from two C—H⋯O hydrogen bonds, and the other built from two iodo⋯carbonyl interactions.
the twoAtom C35 in the type 2 molecule at (x, y, z) acts as a hydrogen-bond donor to the nitro atom O122 in the type 1 molecule at (−1 + x, 1 + y, z): in combination with the C—H⋯O hydrogen bond within the this interaction then generates by translation a C22(14) chain running parallel to the [10] direction (Fig. 9b). Finally, atoms I23 and I43 in the aggregate at (x, y, z) form nearly linear two-centre contacts with, respectively, the carbonyl atoms O37 at (x, −1 + y, 1 + z) and O17 at (x, 1 + y, −1 + z) which, in combination with the C—H⋯O hydrogen bond within the generates by translation a C22(16)C22(16)[R22(14)] chain of rings running parallel to the [01] direction (Fig. 9c). Either of these chain motifs is sufficient to link adjacent (10) sheets into a single three-dimensional framework.
3.2.5. Isomer (V), N-(3-iodophenyl)-3-nitrobenzamide
In the supramolecular structure of isomer (V) (Fig. 4), which is three-dimensional, it is possible to identify four independent one-dimensional sub-structures: one is built from an N—H⋯O hydrogen bond, augmented by two C—H⋯O hydrogen bonds, where all three interactions utilize a single acceptor (Table 3); another is built from just a single C—H⋯O hydrogen bond (Table 3); a third sub-structure is built from a two-centre iodo⋯nitro interaction (Table 4); finally, there is a one-dimensional sub-structure built from an aromatic π⋯π stacking interaction.
Atoms N1, C12 and C26 in the molecule at (x, y, z) all act as hydrogen-bond donors to the amidic atom O17 in the molecule at (x, 1 − y, − + z). These hydrogen bonds individually give rise to chains of C(4), C(5) and C(6) types, respectively, all running parallel to the [001] direction and generated by the c-glide plane at y = ; together they generate a C(4)C(5)C(6)[R21(6)][R21(7)] chain of rings (Fig. 10a). The remaining C—H⋯O hydrogen bond (Table 2) generates a simple chain motif; atom C24 in the molecule at (x, y, z) acts as a donor to the nitro atom O31 in the molecule at (− + x, − y, + z), so forming a C(12) chain running parallel to the [10] direction and generated by the n-glide plane at y = (Fig. 10b).
The iodo⋯nitro interaction (Table 4) likewise generates a simple chain. Atom I23 in the molecule at (x, y, z) forms a two-centre contact with the nitro atom O32 in the molecule at (− + x, − + y, 1 + z), so generating by translation a C(11) chain running parallel to the [11] direction (Fig. 10c). Finally, the nitrated ring C11–C16 in the molecule at (x, y, z) and the iodinated ring C21–C26 in the molecule at ( + x, + y, z) are almost parallel, with a dihedral angle between them of only 2.5 (2)°. The corresponding ring-centroid separation is 3.858(2) Å and the is ca 3.48 Å, corresponding to a ring offset of ca 1.66 Å. Propagation by translation of this stacking interaction then generates a π-stacked chain running parallel to the [110] direction (Fig. 10d). The combination of [001], [10], [11] and [110] chains suffices to generate a complex three-dimensional framework.
3.2.6. Isomer (VI), N-(3-iodophenyl)-4-nitrobenzamide
The molecules of isomer (VI) (Fig. 5) are linked into sheets by a combination of one N—H⋯O hydrogen bond and two C—H⋯O hydrogen bonds (Table 3), reinforced by a two-centre iodo⋯nitro interaction (Table 4), and these sheets are linked into a three-dimensional framework structure by a combination of an aromatic π⋯π stacking interaction and a dipolar carbonyl⋯carbonyl interaction.
Atoms N1 and C126 in the molecule at (x, y, z) both act as hydrogen-bond donors to the atom O41 in the molecule at (− + x, − y, − + z), so forming a C(6)C(9)[R21(7)] chain of rings running parallel to the [101] direction and generated by the n-glide plane at y = (Fig. 11). At the same time, atom C24 at (x, y, z) acts as a hydrogen-bond donor to atom O17 in the molecule at − + x, − y, − + z), thus forming a simple C(8) chain, also parallel to [101] but this time generated by the n-glide plane at y = . The combination of these two [101] chains generates a (10) sheet (Fig. 11) which also includes a nearly linear two-centre iodo⋯nitro interaction between atom I23 in the molecule at (x, y, z) and atom O42 in the molecule at (x, −1 + y, z) (Table 4), so forming a sheet containing three distinct types of ring, R21(7), R33(17) and R23(18) (Bernstein et al., 1995; Starbuck et al., 1999).
The nitrated ring C11–C16 in the molecule at (x, y, z) makes dihedral angles of only 2.8 (2)° with the iodinated ring C21–C26 in each of the two molecules at (−x, 1 − y, 1 − z) and (1 − x, 1 − y, 1 − z). The ring-centroid separations are 3.714 (7) and 3.808 (7) Å, respectively, and the interplanar spacings are ca 3.49 and 3.44 Å, corresponding to ring offsets of ca 1.27 and 1.63 Å. The action of the weaker of the two π stacking interactions is reinforced by an antiparallel type (II) (Allen et al., 1998) dipolar interaction between the carbonyl groups in the molecules at (x, y, z) and (1 − x, 1 − y, 1 − z), with O⋯C(1 − x, 1 − y, 1 − z) = 3.195 (14) Å and C—O⋯C(1 − x, 1 − y, 1 − z) = 76.6 (7)°. The effect of these two types of interaction is the linking of each (10) sheet to its two immediate neighbours, so forming a continuous three-dimensional structure.
3.2.7. Isomer (IX), N-(4-iodophenyl)-4-nitrobenzamide
Isomer (IX) crystallizes with Z′ = 2 in ; the molecules containing atoms N11 and N31 (Fig. 6) are denoted as types 1 and 2, respectively. The molecules are linked into a complex three-dimensional framework by a combination of two N—H⋯O and four C—H⋯O hydrogen bonds (Table 3) and two independent three-centre iodo⋯nitro interactions (Table 4).
Within the selected R22(10) motif, and it is convenient to regard this compact bimolecular aggregate as the basic building block in the overall structure. The first of the one-dimensional sub-structures is built from two independent N—H⋯O hydrogen bonds. Atoms N11 and N31 at (x, y, z) acts as hydrogen-bond donors, respectively, to atoms O17 at (1 + x, y, z) and O37 at (−1 + x, y, z). These two hydrogen bonds individually generate by translation two independent antiparallel C(4) chains running parallel to the [100] direction, one built exclusively of type 1 molecules and the other containing only type 2 molecules. In combination with the two C—H⋯O hydrogen bonds within the the N—H⋯O hydrogen bonds generate a [100] chain of edge-fused R22(10) and R44(30) rings (Fig. 12a).
the molecules are linked by C—H⋯O hydrogen bonds defining anThe second one-dimensional motif is built solely from C—H⋯O hydrogen bonds. Atom C13 at (x, y, z) acts as a hydrogen-bond donor to atom O141 at (−x, 1 − y, 1 − z), so generating by inversion an R22(10) dimer of type 1 molecules centred at (0, , ); similarly, atom C33 at (x, y, z) acts as a donor to atom O341 at (3 − x, −y, 1 − z), generating a second centrosymmetric R22(10) dimer, this time containing type 2 molecules and centred at (, 0, ). These motifs combine with the hydrogen bonds within the to generate a chain of edge-fused rings running parallel to the [30] direction, and containing three distinct types of R22(10) ring (Fig. 12b).
The final one-dimensional sub-structure is built from two independent three-centre iodo⋯nitro interactions, each involving just one type of molecule (Table 3). Atom I24 at (x, y, z) forms a nearly symmetrical I⋯(O)2 contact with atoms O141 and O142 at (x, y, 1 + z), while atom I44 at (x, y, z) forms a similar, although less symmetrical, contact with atoms O341 and O342 at (x, y, −1 + z). The individual interactions generate by translation two independent antiparallel C(13)C(13)[R21(4)] motifs (Starbuck et al., 1999), while the two together, in combination with the hydrogen bonds within the generate a chain of edge-fused R22(10) and R42(24) rings parallel to [001] (Fig. 12c).
The combination of the chains along [100], [001] and [30] suffices to generate a three-dimensional structure of considerable complexity.
3.3. General comparison of the structures
Although the isomers described here all adopt three-dimensional supramolecular structures, the range and identity of the direction-specific intermolecular forces is different in each isomer.
Taking firstly the isomers (I)–(III), (V) and (VI), which crystallize with Z′ = 1, these all contain a single N—H⋯O hydrogen bond but, as noted above (see §3.2), this involves a carbonyl O atom as the acceptor, except in isomer (VI), where a nitro O atom acts as the acceptor. The structures of all these isomers contain C—H⋯O hydrogen bonds, one in isomer (II), two in each of (I), (III) and (VI), and three in isomer (V); while these usually have nitro O atoms as the acceptor, carbonyl O atoms participate in isomers (V) and (VI). Iodo⋯carbonyl interactions are present only in isomer (II), while two-centre iodo⋯nitro interactions are present in each of (I), (V) and (VI); by contrast, there are no short I⋯O contacts of any sort in isomer (III). Isomer (II) does, however, present the sole example amongst all of these isomers of C—H⋯π(arene) hydrogen bonding. Aromatic π⋯π stacking interactions are present in each of the isomers (V) and (VI), but in none of the other Z′ = 1 isomers, while dipolar carbonyl⋯carbonyl interactions are observed only in the structure of isomer (VI).
Of the two isomers, (IV) and (IX), having Z′ = 2, both contain two independent N—H⋯O hydrogen bonds, all with carbonyl O acceptors, and both contain four independent C—H⋯O hydrogen bonds, all with nitro O acceptors. However, the iodo⋯nitro interactions are of two-centre type in isomer (IV), but of three-centre type in isomer (IX), while only the structure of isomer (IV) contains aromatic π⋯π stacking interactions.
Just as the range and number of distinct intermolecular interactions in any one of these isomers could not readily be predicted, even given a detailed knowledge of each of the other isomers, so too the detailed construction of the three-dimensional framework structure of any given isomer is not predictable from the structures of all of the others. Allied to this, even the crystallization characteristics show no discernible pattern; with the exception of isomers (II) and (VI), which have been analysed in two different settings of the same ), while isomer (I) crystallizes in P212121 (Wardell et al., 2005); of the seven isomers whose structure are now known, no fewer than four crystallize in non-centrosymmetric space groups.
no two of the isomers reported here adopt the same (Table 14. Concluding discussion
We have found in several earlier studies of closely related series of compounds, in particular in series of geometric isomers, that every member of a given series manifests in its et al., 2002; Glidewell, Low et al., 2002, 2004). The same conclusion must be drawn from the structures described here: neither the molecular conformations nor the supramolecular aggregation patterns are readily predictable from one isomer to another. Equally, the variations in the space groups (Table 1) from one isomer to another are not readily explicable, nor whether the is centrosymmetric or non-centrosymmetric, nor whether the non-centrosymmetric structures are polar or non-polar. We have suggested above (§3.1) that in the present series the direction-specific intermolecular forces are well able to overcome the intramolecular rotational barriers defining the molecular conformations; consistent with this proposition is the observation of conformational in the related series (D) (Ferguson et al., 2005), where the conformations are clearly determined by the intermolecular forces.
a different range of direction-specific intermolecular interactions, such that no individual structure could readily be predicted even with full a knowledge of the structures of every other member of the same series (Glidewell, HowieA particular puzzle is posed by the three-centre iodo⋯nitro interaction, where a series of elegant structures containing symmetrical or nearly symmetrical three-centre interactions have been reported by others; the earlier examples serve as the archetypes for this interaction, which rapidly came to be regarded as a robust supramolecular synthon for crystal engineering (Allen et al., 1994; Thalladi et al., 1996; Masciocchi et al., 1998; George et al., 2004). However, these reports each refer to a single geometrical isomer and these structures all happen to involve molecular components with the substituents at the distal ends, namely the 1:1 adduct of 1,4-diiodobenzene and 1,4-dinitrobenzene (Allen et al., 1994), 4-iodonitrobenzene (Thalladi et al., 1996), 4-iodo-4′-nitrobiphenyl (Masciocchi et al., 1998) and N-4-iodophenyl-N′-4′-nitrophenylurea (George et al., 2004). Likewise, we have observed this interaction in N-(4-iodophenylsulfonyl)-4-nitroaniline and in N-(4′-nitrodophenylsulfonyl)-4-iodoaniline, but not in any of the other isomers in these series; indeed, in the series (A)–(G) noted above (see §1), wherever one or other of the iodo or nitro substituents is in the 2- or 3-positions, three-centre iodo⋯nitro interactions are absent. Consistent with these observations, in 2,4,6-trinitroiodobenzene (picryl iodide), a three-centre interaction is formed by the 4-nitro substituent but not by the other two nitro groups (Weiss et al., 1999), while in 1,2-diiodo-4-nitro-5-(butylamino)benzene, the 1-iodosubstituent participates in a three-centre iodo⋯nitro interaction, while the 2-iodo substituent is involved only in a two-centre iodo⋯nitro interaction (Senskey et al., 1995). Hence, it may be that the initial acceptance of the three-centre iodo⋯nitro synthon owes less to its intrinsic utility than to the chance selection of the isomeric forms of the compounds used in the initial studies. On the other hand, there is a three-centre iodo⋯nitro interaction in N-(4-iodophenyl)-3-nitrophthalimide, but there are no iodo⋯nitro interactions at all in N-(4-iodophenyl)-2-nitrophthalimide (Glidewell, Low, Skakle, Wardell & Wardell, 2005). Thus, in substituted aryl systems this synthon appears to behave predictably only for specific isomeric forms, but normally to be absent for the remaining isomeric forms. Reported examples of structures that are described as having been specifically and deliberately engineered by the application of particular supramolecular synthons are often restricted to specific isomer forms of their molecular components, sometimes to a single isomer; in some of these cases there must arise at least a suspicion of an element of post hoc rationalization as opposed to reliable supramolecular design.
The difficulty of structure prediction appears to be entirely characteristic of the crystal structures of molecular compounds where all of the intermolecular forces are comparatively weak, but of comparable magnitudes to the rotational energy barriers associated with single bonds, so that the molecular conformations are a direct reflection of the intermolecular interactions. For this reason alone, molecular conformations computed for isolated molecules are unlikely ever to reproduce the conformations observed experimentally in the crystalline state. More disturbing is the fact that, to date, attempts to make computed predictions of the crystal and molecular structures of even rather simple compounds have met with only limited success (Lommerse et al., 2000; Motherwell et al., 2002; Day et al., 2005). Compounds whose molecules contain internal such as rotations about single bonds, particularly where aryl rings are connected to a semi-rigid unit, as in the examples discussed here, seem to pose particular difficulty, possibly associated with the delicate interplay of intramolecular and intermolecular forces.
Supporting information
10.1107/S0108768106029053/bm5035sup1.cif
contains datablocks global, II, III, IV, V, VI, IX. DOI:Structure factors: contains datablock 758. DOI: 10.1107/S0108768106029053/bm5035IIsup2.hkl
Structure factors: contains datablock 747. DOI: 10.1107/S0108768106029053/bm5035IIIsup3.hkl
Structure factors: contains datablock 763. DOI: 10.1107/S0108768106029053/bm5035IVsup4.hkl
Structure factors: contains datablock 761. DOI: 10.1107/S0108768106029053/bm5035Vsup5.hkl
Structure factors: contains datablock 746t. DOI: 10.1107/S0108768106029053/bm5035VIsup6.hkl
Structure factors: contains datablock 748. DOI: 10.1107/S0108768106029053/bm5035IXsup7.hkl
Data collection: COLLECT (Hooft, 1999) for (II), (III), (IV), (V), (VI); Bruker APEX2 (Bruker, 2003) for (IX). Cell
DENZO (Otwinowski & Minor, 1997) & COLLECT for (II), (III), (IV), (V), (VI); Bruker APEX2 for (IX). Data reduction: DENZO & COLLECT) for (II), (III), (IV), (V), (VI); Bruker SAINT (Bruker, 2001) for (IX). For all compounds, program(s) used to solve structure: OSCAIL (McArdle, 2003) & SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL & SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C13H9IN2O3 | F(000) = 712 |
Mr = 368.12 | Dx = 1.908 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2942 reflections |
a = 13.1804 (3) Å | θ = 3.1–27.6° |
b = 7.5099 (2) Å | µ = 2.50 mm−1 |
c = 13.8849 (3) Å | T = 120 K |
β = 111.1634 (12)° | Plate, colourless |
V = 1281.68 (5) Å3 | 0.50 × 0.10 × 0.02 mm |
Z = 4 |
Bruker-Nonius KappaCCD diffractometer | 2942 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2549 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.1° |
ϕ & ω scans | h = −17→17 |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | k = −8→9 |
Tmin = 0.368, Tmax = 0.952 | l = −18→17 |
15482 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.5883P] where P = (Fo2 + 2Fc2)/3 |
2942 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.98 e Å−3 |
C13H9IN2O3 | V = 1281.68 (5) Å3 |
Mr = 368.12 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.1804 (3) Å | µ = 2.50 mm−1 |
b = 7.5099 (2) Å | T = 120 K |
c = 13.8849 (3) Å | 0.50 × 0.10 × 0.02 mm |
β = 111.1634 (12)° |
Bruker-Nonius KappaCCD diffractometer | 2942 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 2549 reflections with I > 2σ(I) |
Tmin = 0.368, Tmax = 0.952 | Rint = 0.038 |
15482 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.58 e Å−3 |
2942 reflections | Δρmin = −0.98 e Å−3 |
172 parameters |
x | y | z | Uiso*/Ueq | ||
C11 | 0.34050 (18) | 0.3979 (3) | 0.22656 (17) | 0.0165 (5) | |
C12 | 0.2645 (2) | 0.3309 (3) | 0.26521 (19) | 0.0181 (5) | |
C13 | 0.1560 (2) | 0.3293 (3) | 0.2003 (2) | 0.0203 (5) | |
C14 | 0.12062 (19) | 0.3921 (3) | 0.09994 (18) | 0.0240 (6) | |
C15 | 0.1966 (2) | 0.4630 (3) | 0.06389 (19) | 0.0243 (6) | |
C16 | 0.3064 (2) | 0.4653 (3) | 0.12638 (19) | 0.0212 (5) | |
C17 | 0.45825 (19) | 0.3785 (3) | 0.29447 (17) | 0.0160 (5) | |
O17 | 0.48528 (14) | 0.2787 (2) | 0.36966 (13) | 0.0192 (4) | |
N1 | 0.53075 (16) | 0.4677 (3) | 0.26480 (15) | 0.0172 (4) | |
C21 | 0.64506 (18) | 0.4398 (3) | 0.31075 (18) | 0.0159 (5) | |
C22 | 0.70234 (19) | 0.3733 (3) | 0.25189 (18) | 0.0182 (5) | |
C23 | 0.8148 (2) | 0.3501 (3) | 0.2958 (2) | 0.0228 (5) | |
C24 | 0.86881 (19) | 0.3922 (4) | 0.3987 (2) | 0.0263 (6) | |
C25 | 0.8122 (2) | 0.4585 (3) | 0.4580 (2) | 0.0256 (6) | |
C26 | 0.7005 (2) | 0.4836 (3) | 0.41364 (19) | 0.0211 (5) | |
N13 | 0.07543 (18) | 0.2512 (3) | 0.23890 (18) | 0.0274 (5) | |
O31 | −0.01542 (16) | 0.2189 (3) | 0.17566 (17) | 0.0407 (6) | |
O32 | 0.10257 (17) | 0.2218 (3) | 0.33156 (17) | 0.0395 (5) | |
I22 | 0.619735 (13) | 0.30348 (2) | 0.096580 (11) | 0.02094 (7) | |
H12 | 0.2862 | 0.2874 | 0.3340 | 0.022* | |
H14 | 0.0459 | 0.3866 | 0.0570 | 0.029* | |
H15 | 0.1739 | 0.5106 | −0.0040 | 0.029* | |
H16 | 0.3584 | 0.5130 | 0.1005 | 0.025* | |
H1 | 0.5103 | 0.5312 | 0.2077 | 0.021* | |
H23 | 0.8539 | 0.3058 | 0.2553 | 0.027* | |
H24 | 0.9453 | 0.3755 | 0.4290 | 0.032* | |
H25 | 0.8498 | 0.4867 | 0.5287 | 0.031* | |
H26 | 0.6618 | 0.5309 | 0.4538 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0178 (11) | 0.0154 (11) | 0.0155 (11) | 0.0022 (9) | 0.0049 (9) | −0.0025 (9) |
C12 | 0.0206 (12) | 0.0184 (11) | 0.0151 (12) | 0.0007 (9) | 0.0061 (10) | −0.0029 (9) |
C13 | 0.0194 (12) | 0.0177 (12) | 0.0246 (14) | −0.0002 (9) | 0.0090 (11) | −0.0030 (9) |
C14 | 0.0200 (12) | 0.0221 (14) | 0.0230 (14) | 0.0029 (10) | −0.0006 (11) | −0.0025 (10) |
C15 | 0.0277 (13) | 0.0230 (12) | 0.0175 (13) | 0.0028 (10) | 0.0025 (10) | 0.0032 (10) |
C16 | 0.0251 (13) | 0.0186 (12) | 0.0189 (12) | 0.0005 (9) | 0.0066 (10) | 0.0017 (9) |
C17 | 0.0214 (12) | 0.0146 (11) | 0.0121 (11) | 0.0003 (9) | 0.0060 (9) | −0.0041 (9) |
O17 | 0.0198 (9) | 0.0214 (9) | 0.0146 (9) | −0.0011 (7) | 0.0042 (7) | 0.0039 (7) |
N1 | 0.0179 (9) | 0.0199 (10) | 0.0141 (10) | 0.0026 (8) | 0.0063 (8) | 0.0049 (8) |
C21 | 0.0190 (11) | 0.0133 (11) | 0.0155 (11) | −0.0010 (8) | 0.0062 (9) | 0.0027 (8) |
C22 | 0.0224 (12) | 0.0169 (11) | 0.0150 (11) | −0.0005 (9) | 0.0065 (10) | 0.0026 (9) |
C23 | 0.0209 (12) | 0.0210 (12) | 0.0288 (14) | 0.0004 (10) | 0.0119 (11) | 0.0037 (10) |
C24 | 0.0182 (12) | 0.0242 (14) | 0.0320 (15) | −0.0030 (10) | 0.0037 (11) | 0.0058 (11) |
C25 | 0.0248 (13) | 0.0250 (13) | 0.0205 (13) | −0.0049 (10) | 0.0004 (11) | 0.0020 (10) |
C26 | 0.0260 (12) | 0.0207 (12) | 0.0184 (12) | −0.0040 (10) | 0.0104 (10) | 0.0001 (9) |
N13 | 0.0199 (11) | 0.0346 (11) | 0.0303 (14) | 0.0004 (10) | 0.0121 (10) | −0.0049 (10) |
O31 | 0.0157 (10) | 0.0685 (16) | 0.0367 (13) | −0.0086 (9) | 0.0079 (9) | −0.0122 (10) |
O32 | 0.0287 (11) | 0.0626 (15) | 0.0294 (12) | −0.0065 (10) | 0.0132 (9) | 0.0041 (10) |
I22 | 0.02866 (11) | 0.02113 (10) | 0.01452 (11) | 0.00124 (6) | 0.00959 (8) | 0.00036 (6) |
C11—C12 | 1.390 (3) | N1—H1 | 0.88 |
C11—C16 | 1.393 (3) | C21—C26 | 1.389 (3) |
C11—C17 | 1.504 (3) | C21—C22 | 1.390 (3) |
C12—C13 | 1.389 (3) | C22—C23 | 1.395 (3) |
C12—H12 | 0.95 | C22—I22 | 2.101 (2) |
C13—C14 | 1.383 (4) | C23—C24 | 1.383 (4) |
C13—N13 | 1.473 (3) | C23—H23 | 0.95 |
C14—C15 | 1.377 (4) | C24—C25 | 1.389 (4) |
C14—H14 | 0.95 | C24—H24 | 0.95 |
C15—C16 | 1.394 (3) | C25—C26 | 1.389 (4) |
C15—H15 | 0.95 | C25—H25 | 0.95 |
C16—H16 | 0.95 | C26—H26 | 0.95 |
C17—O17 | 1.229 (3) | N13—O32 | 1.225 (3) |
C17—N1 | 1.348 (3) | N13—O31 | 1.227 (3) |
N1—C21 | 1.424 (3) | ||
C12—C11—C16 | 120.0 (2) | C21—N1—H1 | 114.5 |
C12—C11—C17 | 116.5 (2) | C26—C21—C22 | 119.6 (2) |
C16—C11—C17 | 123.3 (2) | C26—C21—N1 | 120.3 (2) |
C13—C12—C11 | 118.0 (2) | C22—C21—N1 | 120.1 (2) |
C13—C12—H12 | 121.0 | C21—C22—C23 | 120.3 (2) |
C11—C12—H12 | 121.0 | C21—C22—I22 | 120.19 (17) |
C14—C13—C12 | 123.0 (2) | C23—C22—I22 | 119.51 (19) |
C14—C13—N13 | 118.5 (2) | C24—C23—C22 | 119.5 (2) |
C12—C13—N13 | 118.4 (2) | C24—C23—H23 | 120.2 |
C15—C14—C13 | 118.3 (2) | C22—C23—H23 | 120.2 |
C15—C14—H14 | 120.9 | C23—C24—C25 | 120.5 (2) |
C13—C14—H14 | 120.9 | C23—C24—H24 | 119.7 |
C14—C15—C16 | 120.4 (2) | C25—C24—H24 | 119.7 |
C14—C15—H15 | 119.8 | C24—C25—C26 | 119.7 (2) |
C16—C15—H15 | 119.8 | C24—C25—H25 | 120.1 |
C11—C16—C15 | 120.3 (2) | C26—C25—H25 | 120.1 |
C11—C16—H16 | 119.8 | C25—C26—C21 | 120.3 (2) |
C15—C16—H16 | 119.8 | C25—C26—H26 | 119.9 |
O17—C17—N1 | 122.9 (2) | C21—C26—H26 | 119.9 |
O17—C17—C11 | 120.6 (2) | O32—N13—O31 | 123.8 (2) |
N1—C17—C11 | 116.4 (2) | O32—N13—C13 | 118.6 (2) |
C17—N1—C21 | 122.84 (19) | O31—N13—C13 | 117.6 (2) |
C17—N1—H1 | 121.6 | ||
C16—C11—C12—C13 | 1.7 (3) | C17—N1—C21—C22 | 116.5 (3) |
C17—C11—C12—C13 | −173.2 (2) | C26—C21—C22—C23 | 0.2 (3) |
C11—C12—C13—C14 | −0.4 (4) | N1—C21—C22—C23 | 178.3 (2) |
C11—C12—C13—N13 | 177.3 (2) | C26—C21—C22—I22 | 179.28 (17) |
C12—C13—C14—C15 | −1.5 (4) | N1—C21—C22—I22 | −2.6 (3) |
N13—C13—C14—C15 | −179.2 (2) | C21—C22—C23—C24 | 0.6 (4) |
C13—C14—C15—C16 | 2.1 (4) | I22—C22—C23—C24 | −178.50 (18) |
C12—C11—C16—C15 | −1.1 (4) | C22—C23—C24—C25 | −0.6 (4) |
C17—C11—C16—C15 | 173.5 (2) | C23—C24—C25—C26 | −0.3 (4) |
C14—C15—C16—C11 | −0.8 (4) | C24—C25—C26—C21 | 1.1 (4) |
C12—C11—C17—O17 | 13.8 (3) | C22—C21—C26—C25 | −1.0 (3) |
C16—C11—C17—O17 | −161.0 (2) | N1—C21—C26—C25 | −179.1 (2) |
C12—C11—C17—N1 | −169.8 (2) | C14—C13—N13—O32 | −168.4 (2) |
C16—C11—C17—N1 | 15.5 (3) | C12—C13—N13—O32 | 13.8 (4) |
O17—C17—N1—C21 | 7.1 (3) | C14—C13—N13—O31 | 11.7 (4) |
C11—C17—N1—C21 | −169.3 (2) | C12—C13—N13—O31 | −166.1 (2) |
C17—N1—C21—C26 | −65.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O17i | 0.88 | 2.16 | 2.950 (3) | 149 |
C23—H23···O31ii | 0.95 | 2.45 | 3.385 (4) | 169 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, y, z. |
C13H9IN2O3 | F(000) = 356 |
Mr = 368.12 | Dx = 1.957 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 2767 reflections |
a = 10.0528 (3) Å | θ = 3.2–27.5° |
b = 4.8703 (10) Å | µ = 2.57 mm−1 |
c = 13.5719 (3) Å | T = 120 K |
β = 109.9452 (17)° | Plate, brown |
V = 624.63 (13) Å3 | 0.42 × 0.30 × 0.08 mm |
Z = 2 |
Bruker-Nonius KappaCCD diffractometer | 2767 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ϕ & ω scans | h = −13→13 |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | k = −6→6 |
Tmin = 0.412, Tmax = 0.821 | l = −17→17 |
10157 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.022P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max < 0.001 |
S = 1.21 | Δρmax = 0.67 e Å−3 |
2767 reflections | Δρmin = −0.62 e Å−3 |
173 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0225 (11) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1328 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.006 (17) |
C13H9IN2O3 | V = 624.63 (13) Å3 |
Mr = 368.12 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 10.0528 (3) Å | µ = 2.57 mm−1 |
b = 4.8703 (10) Å | T = 120 K |
c = 13.5719 (3) Å | 0.42 × 0.30 × 0.08 mm |
β = 109.9452 (17)° |
Bruker-Nonius KappaCCD diffractometer | 2767 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 2624 reflections with I > 2σ(I) |
Tmin = 0.412, Tmax = 0.821 | Rint = 0.026 |
10157 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.048 | Δρmax = 0.67 e Å−3 |
S = 1.21 | Δρmin = −0.62 e Å−3 |
2767 reflections | Absolute structure: Flack (1983), 1328 Friedel pairs |
173 parameters | Absolute structure parameter: −0.006 (17) |
2 restraints |
x | y | z | Uiso*/Ueq | ||
C11 | 0.5752 (3) | 0.3044 (6) | 0.4647 (2) | 0.0166 (6) | |
C12 | 0.6262 (3) | 0.0947 (5) | 0.5369 (2) | 0.0178 (6) | |
C13 | 0.5580 (3) | 0.0257 (6) | 0.6070 (2) | 0.0203 (6) | |
C14 | 0.4401 (3) | 0.1752 (6) | 0.6040 (2) | 0.0193 (6) | |
C15 | 0.3863 (4) | 0.3834 (6) | 0.5336 (3) | 0.0219 (7) | |
C16 | 0.4536 (3) | 0.4493 (6) | 0.4629 (2) | 0.0227 (6) | |
C17 | 0.6533 (3) | 0.3998 (5) | 0.3944 (3) | 0.0162 (6) | |
O17 | 0.6439 (3) | 0.6401 (3) | 0.3643 (2) | 0.0222 (5) | |
N1 | 0.7377 (3) | 0.2097 (5) | 0.37238 (19) | 0.0170 (5) | |
C21 | 0.8439 (3) | 0.2622 (5) | 0.3288 (2) | 0.0174 (5) | |
C22 | 0.9731 (3) | 0.1242 (5) | 0.3667 (3) | 0.0191 (6) | |
C23 | 1.0798 (4) | 0.1711 (6) | 0.3246 (3) | 0.0275 (7) | |
C24 | 1.0584 (4) | 0.3658 (6) | 0.2466 (3) | 0.0326 (9) | |
C25 | 0.9320 (4) | 0.5056 (7) | 0.2088 (3) | 0.0299 (7) | |
C26 | 0.8237 (3) | 0.4548 (6) | 0.2474 (2) | 0.0243 (6) | |
N14 | 0.3713 (3) | 0.1070 (5) | 0.6813 (2) | 0.0242 (6) | |
O41 | 0.4000 (3) | −0.1124 (4) | 0.7272 (2) | 0.0316 (6) | |
O42 | 0.2887 (3) | 0.2714 (6) | 0.6949 (2) | 0.0413 (6) | |
I22 | 1.01765 (2) | −0.13097 (3) | 0.49856 (2) | 0.02465 (8) | |
H12 | 0.7088 | −0.0029 | 0.5385 | 0.021* | |
H13 | 0.5917 | −0.1203 | 0.6556 | 0.024* | |
H15 | 0.3043 | 0.4809 | 0.5332 | 0.026* | |
H16 | 0.4175 | 0.5922 | 0.4133 | 0.027* | |
H1 | 0.7243 | 0.0343 | 0.3813 | 0.020* | |
H23 | 1.1659 | 0.0708 | 0.3493 | 0.033* | |
H24 | 1.1314 | 0.4033 | 0.2188 | 0.039* | |
H25 | 0.9190 | 0.6393 | 0.1554 | 0.036* | |
H26 | 0.7362 | 0.5491 | 0.2192 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0155 (15) | 0.0154 (11) | 0.0191 (15) | −0.0022 (12) | 0.0060 (12) | −0.0037 (11) |
C12 | 0.0159 (14) | 0.0184 (13) | 0.0186 (15) | 0.0033 (10) | 0.0053 (12) | −0.0011 (10) |
C13 | 0.0198 (14) | 0.0210 (13) | 0.0197 (14) | 0.0018 (11) | 0.0059 (11) | 0.0005 (11) |
C14 | 0.0155 (15) | 0.0253 (14) | 0.0200 (16) | −0.0037 (11) | 0.0097 (12) | −0.0076 (11) |
C15 | 0.0164 (18) | 0.0217 (16) | 0.030 (2) | 0.0024 (10) | 0.0104 (15) | −0.0065 (10) |
C16 | 0.0204 (15) | 0.0183 (13) | 0.0298 (16) | 0.0044 (12) | 0.0093 (12) | 0.0018 (12) |
C17 | 0.0142 (14) | 0.0139 (13) | 0.0191 (17) | −0.0014 (9) | 0.0038 (12) | −0.0015 (9) |
O17 | 0.0265 (13) | 0.0120 (10) | 0.0301 (13) | 0.0017 (7) | 0.0120 (10) | 0.0010 (7) |
N1 | 0.0210 (13) | 0.0117 (10) | 0.0207 (13) | −0.0007 (10) | 0.0103 (10) | 0.0008 (10) |
C21 | 0.0221 (15) | 0.0119 (13) | 0.0188 (14) | −0.0050 (11) | 0.0079 (11) | −0.0033 (10) |
C22 | 0.0189 (15) | 0.0194 (14) | 0.0195 (16) | −0.0046 (10) | 0.0070 (12) | −0.0056 (9) |
C23 | 0.0209 (16) | 0.0362 (18) | 0.0272 (19) | −0.0065 (13) | 0.0105 (13) | −0.0131 (12) |
C24 | 0.036 (2) | 0.039 (2) | 0.032 (2) | −0.0234 (15) | 0.0233 (18) | −0.0142 (13) |
C25 | 0.045 (2) | 0.0234 (16) | 0.0261 (17) | −0.0110 (14) | 0.0188 (15) | −0.0024 (13) |
C26 | 0.0358 (18) | 0.0173 (13) | 0.0203 (15) | −0.0044 (13) | 0.0101 (13) | −0.0018 (11) |
N14 | 0.0184 (14) | 0.0339 (16) | 0.0231 (15) | −0.0065 (11) | 0.0110 (12) | −0.0102 (11) |
O41 | 0.0297 (14) | 0.0405 (14) | 0.0285 (14) | 0.0006 (9) | 0.0150 (11) | 0.0077 (9) |
O42 | 0.0415 (16) | 0.0378 (14) | 0.0598 (17) | 0.0025 (12) | 0.0368 (14) | −0.0075 (13) |
I22 | 0.02063 (10) | 0.02722 (11) | 0.02339 (11) | 0.00400 (9) | 0.00399 (6) | 0.00105 (9) |
C11—C12 | 1.387 (4) | N1—H1 | 0.88 |
C11—C16 | 1.404 (4) | C21—C22 | 1.395 (4) |
C11—C17 | 1.501 (4) | C21—C26 | 1.411 (4) |
C12—C13 | 1.390 (4) | C22—C23 | 1.395 (5) |
C12—H12 | 0.95 | C22—I22 | 2.097 (3) |
C13—C14 | 1.380 (4) | C23—C24 | 1.383 (5) |
C13—H13 | 0.95 | C23—H23 | 0.95 |
C14—C15 | 1.372 (5) | C24—C25 | 1.377 (6) |
C14—N14 | 1.478 (4) | C24—H24 | 0.95 |
C15—C16 | 1.387 (5) | C25—C26 | 1.381 (4) |
C15—H15 | 0.95 | C25—H25 | 0.95 |
C16—H16 | 0.95 | C26—H26 | 0.95 |
C17—O17 | 1.233 (3) | N14—O42 | 1.212 (4) |
C17—N1 | 1.356 (4) | N14—O41 | 1.221 (3) |
N1—C21 | 1.410 (4) | ||
C12—C11—C16 | 119.5 (3) | C21—N1—H1 | 114.0 |
C12—C11—C17 | 122.0 (3) | C22—C21—N1 | 120.1 (2) |
C16—C11—C17 | 118.3 (3) | C22—C21—C26 | 118.5 (3) |
C11—C12—C13 | 120.8 (3) | N1—C21—C26 | 121.5 (3) |
C11—C12—H12 | 119.6 | C21—C22—C23 | 121.2 (3) |
C13—C12—H12 | 119.6 | C21—C22—I22 | 120.1 (2) |
C14—C13—C12 | 118.2 (3) | C23—C22—I22 | 118.4 (2) |
C14—C13—H13 | 120.9 | C24—C23—C22 | 119.1 (3) |
C12—C13—H13 | 120.9 | C24—C23—H23 | 120.5 |
C15—C14—C13 | 122.7 (3) | C22—C23—H23 | 120.5 |
C15—C14—N14 | 119.5 (3) | C25—C24—C23 | 120.4 (3) |
C13—C14—N14 | 117.8 (3) | C25—C24—H24 | 119.8 |
C14—C15—C16 | 118.9 (3) | C23—C24—H24 | 119.8 |
C14—C15—H15 | 120.5 | C24—C25—C26 | 121.1 (3) |
C16—C15—H15 | 120.5 | C24—C25—H25 | 119.4 |
C15—C16—C11 | 119.9 (3) | C26—C25—H25 | 119.4 |
C15—C16—H16 | 120.1 | C25—C26—C21 | 119.6 (3) |
C11—C16—H16 | 120.1 | C25—C26—H26 | 120.2 |
O17—C17—N1 | 123.9 (3) | C21—C26—H26 | 120.2 |
O17—C17—C11 | 120.5 (3) | O42—N14—O41 | 123.7 (3) |
N1—C17—C11 | 115.5 (2) | O42—N14—C14 | 118.1 (3) |
C17—N1—C21 | 126.1 (2) | O41—N14—C14 | 118.2 (2) |
C17—N1—H1 | 119.7 | ||
C16—C11—C12—C13 | 0.3 (4) | C17—N1—C21—C26 | −40.7 (4) |
C17—C11—C12—C13 | 174.6 (3) | N1—C21—C22—C23 | 179.7 (3) |
C11—C12—C13—C14 | −1.3 (4) | C26—C21—C22—C23 | −0.9 (4) |
C12—C13—C14—C15 | 1.5 (4) | N1—C21—C22—I22 | −6.3 (3) |
C12—C13—C14—N14 | −177.8 (3) | C26—C21—C22—I22 | 173.15 (19) |
C13—C14—C15—C16 | −0.7 (5) | C21—C22—C23—C24 | 2.4 (4) |
N14—C14—C15—C16 | 178.6 (3) | I22—C22—C23—C24 | −171.7 (2) |
C14—C15—C16—C11 | −0.4 (5) | C22—C23—C24—C25 | −1.9 (5) |
C12—C11—C16—C15 | 0.5 (4) | C23—C24—C25—C26 | −0.3 (5) |
C17—C11—C16—C15 | −174.0 (3) | C24—C25—C26—C21 | 1.8 (5) |
C12—C11—C17—O17 | −150.0 (3) | C22—C21—C26—C25 | −1.2 (4) |
C16—C11—C17—O17 | 24.4 (4) | N1—C21—C26—C25 | 178.2 (3) |
C12—C11—C17—N1 | 26.8 (4) | C15—C14—N14—O42 | −15.2 (4) |
C16—C11—C17—N1 | −158.8 (3) | C13—C14—N14—O42 | 164.2 (3) |
O17—C17—N1—C21 | 11.6 (5) | C15—C14—N14—O41 | 164.2 (3) |
C11—C17—N1—C21 | −165.0 (3) | C13—C14—N14—O41 | −16.4 (4) |
C17—N1—C21—C22 | 138.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O17i | 0.88 | 2.06 | 2.920 (3) | 164 |
C24—H24···O42ii | 0.95 | 2.34 | 3.175 (4) | 147 |
C26—H26···Cg1iii | 0.95 | 2.95 | 3.800 (3) | 149 |
Symmetry codes: (i) x, y−1, z; (ii) x+1, −y+1, z−1/2; (iii) x, −y+1, z−1/2. |
C13H9IN2O3 | F(000) = 712 |
Mr = 368.12 | Dx = 1.928 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 5672 reflections |
a = 11.0552 (3) Å | θ = 3.2–27.5° |
b = 8.9521 (2) Å | µ = 2.53 mm−1 |
c = 12.8921 (3) Å | T = 120 K |
β = 96.3899 (10)° | Plate, colourless |
V = 1267.97 (5) Å3 | 0.40 × 0.20 × 0.08 mm |
Z = 4 |
Bruker-Nonius KappaCCD diffractometer | 5672 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 5506 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ϕ & ω scans | h = −14→12 |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | k = −11→11 |
Tmin = 0.431, Tmax = 0.823 | l = −16→16 |
16241 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1391P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.046 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.66 e Å−3 |
5672 reflections | Δρmin = −0.80 e Å−3 |
344 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0075 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2565 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.008 (11) |
C13H9IN2O3 | V = 1267.97 (5) Å3 |
Mr = 368.12 | Z = 4 |
Monoclinic, P21 | Mo Kα radiation |
a = 11.0552 (3) Å | µ = 2.53 mm−1 |
b = 8.9521 (2) Å | T = 120 K |
c = 12.8921 (3) Å | 0.40 × 0.20 × 0.08 mm |
β = 96.3899 (10)° |
Bruker-Nonius KappaCCD diffractometer | 5672 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 5506 reflections with I > 2σ(I) |
Tmin = 0.431, Tmax = 0.823 | Rint = 0.024 |
16241 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.046 | Δρmax = 0.66 e Å−3 |
S = 1.11 | Δρmin = −0.80 e Å−3 |
5672 reflections | Absolute structure: Flack (1983), 2565 Friedel pairs |
344 parameters | Absolute structure parameter: −0.008 (11) |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C11 | 0.5361 (2) | 0.0339 (3) | 0.3889 (2) | 0.0140 (6) | |
C12 | 0.6294 (2) | −0.0495 (3) | 0.3519 (2) | 0.0171 (6) | |
N12 | 0.7028 (2) | −0.1510 (3) | 0.42213 (19) | 0.0232 (5) | |
O121 | 0.6803 (2) | −0.1627 (2) | 0.51257 (16) | 0.0269 (5) | |
O122 | 0.7834 (3) | −0.2232 (4) | 0.38748 (19) | 0.0673 (10) | |
C13 | 0.6588 (3) | −0.0378 (3) | 0.2506 (2) | 0.0208 (6) | |
C14 | 0.5935 (3) | 0.0629 (3) | 0.1842 (2) | 0.0234 (7) | |
C15 | 0.5032 (3) | 0.1482 (3) | 0.2182 (2) | 0.0241 (7) | |
C16 | 0.4744 (3) | 0.1339 (3) | 0.3209 (2) | 0.0196 (6) | |
C17 | 0.4965 (3) | 0.0170 (3) | 0.4971 (2) | 0.0147 (6) | |
O17 | 0.41838 (18) | −0.0745 (2) | 0.51331 (15) | 0.0180 (4) | |
N11 | 0.5480 (2) | 0.1177 (2) | 0.56613 (16) | 0.0170 (5) | |
C21 | 0.5354 (2) | 0.1321 (3) | 0.6736 (2) | 0.0155 (6) | |
C22 | 0.4459 (2) | 0.0584 (3) | 0.7217 (2) | 0.0165 (6) | |
C23 | 0.4390 (3) | 0.0853 (3) | 0.8276 (2) | 0.0166 (6) | |
I23 | 0.300637 (19) | −0.021189 (19) | 0.899446 (13) | 0.02235 (6) | |
C24 | 0.5187 (3) | 0.1804 (3) | 0.8850 (2) | 0.0202 (6) | |
C25 | 0.6085 (3) | 0.2506 (3) | 0.8364 (2) | 0.0212 (7) | |
C26 | 0.6169 (3) | 0.2271 (3) | 0.7309 (2) | 0.0168 (6) | |
C31 | 0.0663 (3) | 0.6213 (3) | 0.1153 (2) | 0.0149 (6) | |
C32 | 0.1448 (2) | 0.5035 (3) | 0.1487 (2) | 0.0157 (6) | |
N32 | 0.2162 (2) | 0.4294 (3) | 0.07455 (19) | 0.0216 (5) | |
O321 | 0.2260 (2) | 0.4905 (3) | −0.00874 (15) | 0.0295 (5) | |
O322 | 0.2637 (2) | 0.3094 (3) | 0.09954 (18) | 0.0433 (6) | |
C33 | 0.1612 (3) | 0.4573 (3) | 0.2516 (2) | 0.0199 (6) | |
C34 | 0.0992 (3) | 0.5298 (3) | 0.3236 (2) | 0.0232 (7) | |
C35 | 0.0238 (3) | 0.6478 (4) | 0.2939 (2) | 0.0257 (7) | |
C36 | 0.0063 (3) | 0.6926 (3) | 0.1900 (2) | 0.0201 (6) | |
C37 | 0.0462 (3) | 0.6776 (3) | 0.0046 (2) | 0.0146 (6) | |
O37 | 0.08278 (17) | 0.8034 (2) | −0.01673 (14) | 0.0199 (4) | |
N31 | −0.0173 (2) | 0.5866 (3) | −0.06381 (16) | 0.0169 (5) | |
C41 | −0.0326 (2) | 0.6045 (3) | −0.1738 (2) | 0.0151 (5) | |
C42 | 0.0577 (2) | 0.6711 (3) | −0.22596 (19) | 0.0141 (5) | |
C43 | 0.0390 (2) | 0.6796 (3) | −0.3340 (2) | 0.0156 (5) | |
I43 | 0.171754 (17) | 0.788540 (17) | −0.411901 (13) | 0.01903 (6) | |
C44 | −0.0636 (3) | 0.6223 (3) | −0.3909 (2) | 0.0184 (6) | |
C45 | −0.1510 (3) | 0.5536 (3) | −0.3375 (2) | 0.0211 (7) | |
C46 | −0.1361 (3) | 0.5457 (3) | −0.2301 (2) | 0.0190 (6) | |
H13 | 0.7217 | −0.0970 | 0.2272 | 0.025* | |
H14 | 0.6119 | 0.0727 | 0.1142 | 0.028* | |
H15 | 0.4598 | 0.2172 | 0.1721 | 0.029* | |
H16 | 0.4117 | 0.1939 | 0.3440 | 0.023* | |
H11 | 0.5961 | 0.1835 | 0.5408 | 0.020* | |
H22 | 0.3910 | −0.0085 | 0.6835 | 0.020* | |
H24 | 0.5120 | 0.1974 | 0.9569 | 0.024* | |
H25 | 0.6647 | 0.3152 | 0.8753 | 0.025* | |
H26 | 0.6785 | 0.2761 | 0.6979 | 0.020* | |
H33 | 0.2145 | 0.3767 | 0.2722 | 0.024* | |
H34 | 0.1087 | 0.4979 | 0.3943 | 0.028* | |
H35 | −0.0166 | 0.6990 | 0.3446 | 0.031* | |
H36 | −0.0474 | 0.7730 | 0.1700 | 0.024* | |
H31 | −0.0525 | 0.5089 | −0.0382 | 0.020* | |
H42 | 0.1299 | 0.7095 | −0.1885 | 0.017* | |
H44 | −0.0743 | 0.6295 | −0.4649 | 0.022* | |
H45 | −0.2216 | 0.5119 | −0.3753 | 0.025* | |
H46 | −0.1969 | 0.4997 | −0.1944 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0146 (15) | 0.0140 (12) | 0.0134 (13) | −0.0027 (10) | 0.0020 (11) | −0.0012 (10) |
C12 | 0.0157 (14) | 0.0190 (14) | 0.0161 (13) | 0.0000 (10) | −0.0014 (11) | 0.0002 (10) |
N12 | 0.0177 (14) | 0.0325 (13) | 0.0196 (13) | 0.0068 (11) | 0.0025 (10) | 0.0037 (11) |
O121 | 0.0282 (13) | 0.0332 (12) | 0.0204 (11) | 0.0074 (9) | 0.0066 (9) | 0.0109 (9) |
O122 | 0.0556 (19) | 0.111 (3) | 0.0368 (15) | 0.062 (2) | 0.0144 (14) | 0.0134 (17) |
C13 | 0.0202 (15) | 0.0269 (16) | 0.0165 (13) | 0.0008 (12) | 0.0079 (11) | −0.0040 (12) |
C14 | 0.0258 (17) | 0.0322 (17) | 0.0128 (13) | 0.0007 (13) | 0.0046 (12) | 0.0015 (12) |
C15 | 0.0310 (19) | 0.0258 (16) | 0.0154 (14) | 0.0064 (13) | 0.0028 (13) | 0.0041 (12) |
C16 | 0.0203 (16) | 0.0157 (15) | 0.0236 (15) | 0.0040 (11) | 0.0066 (12) | −0.0002 (11) |
C17 | 0.0137 (14) | 0.0154 (16) | 0.0149 (13) | 0.0053 (11) | 0.0017 (11) | 0.0035 (10) |
O17 | 0.0187 (11) | 0.0189 (10) | 0.0173 (10) | −0.0051 (8) | 0.0060 (8) | −0.0032 (7) |
N11 | 0.0214 (14) | 0.0183 (12) | 0.0117 (11) | −0.0083 (9) | 0.0042 (10) | 0.0006 (9) |
C21 | 0.0194 (16) | 0.0158 (14) | 0.0119 (13) | 0.0044 (11) | 0.0040 (11) | −0.0008 (10) |
C22 | 0.0220 (16) | 0.0145 (14) | 0.0132 (13) | −0.0038 (11) | 0.0034 (11) | −0.0007 (10) |
C23 | 0.0219 (16) | 0.0143 (13) | 0.0145 (13) | 0.0008 (12) | 0.0064 (11) | 0.0029 (11) |
I23 | 0.02843 (11) | 0.02374 (10) | 0.01655 (10) | −0.00318 (9) | 0.00992 (7) | 0.00057 (8) |
C24 | 0.0264 (17) | 0.0229 (15) | 0.0110 (13) | 0.0018 (12) | 0.0004 (12) | 0.0026 (11) |
C25 | 0.0221 (17) | 0.0197 (16) | 0.0211 (15) | −0.0060 (11) | −0.0009 (13) | −0.0068 (12) |
C26 | 0.0179 (15) | 0.0182 (13) | 0.0145 (14) | −0.0037 (11) | 0.0026 (12) | 0.0004 (11) |
C31 | 0.0148 (14) | 0.0162 (14) | 0.0136 (12) | −0.0047 (10) | 0.0017 (11) | −0.0015 (10) |
C32 | 0.0148 (14) | 0.0161 (14) | 0.0159 (13) | −0.0034 (11) | −0.0001 (11) | −0.0001 (11) |
N32 | 0.0180 (14) | 0.0231 (13) | 0.0234 (13) | 0.0012 (10) | 0.0010 (10) | −0.0020 (10) |
O321 | 0.0309 (13) | 0.0389 (13) | 0.0207 (11) | 0.0116 (11) | 0.0110 (9) | 0.0060 (11) |
O322 | 0.0540 (17) | 0.0332 (13) | 0.0439 (14) | 0.0267 (12) | 0.0111 (12) | 0.0099 (11) |
C33 | 0.0203 (16) | 0.0174 (15) | 0.0207 (14) | −0.0033 (12) | −0.0034 (12) | 0.0056 (12) |
C34 | 0.0285 (19) | 0.0291 (17) | 0.0114 (14) | −0.0115 (14) | −0.0011 (13) | 0.0064 (12) |
C35 | 0.0272 (18) | 0.0357 (18) | 0.0156 (14) | −0.0068 (14) | 0.0092 (13) | −0.0035 (12) |
C36 | 0.0204 (16) | 0.0209 (15) | 0.0196 (14) | −0.0001 (12) | 0.0049 (12) | −0.0044 (11) |
C37 | 0.0131 (15) | 0.0155 (13) | 0.0159 (14) | 0.0021 (11) | 0.0040 (11) | 0.0005 (11) |
O37 | 0.0291 (11) | 0.0136 (10) | 0.0181 (9) | −0.0028 (9) | 0.0070 (8) | −0.0005 (8) |
N31 | 0.0188 (13) | 0.0181 (11) | 0.0139 (11) | −0.0045 (9) | 0.0030 (9) | 0.0021 (9) |
C41 | 0.0168 (15) | 0.0154 (13) | 0.0134 (13) | 0.0023 (10) | 0.0028 (11) | 0.0015 (10) |
C42 | 0.0110 (13) | 0.0154 (13) | 0.0153 (13) | 0.0000 (10) | −0.0012 (10) | −0.0006 (11) |
C43 | 0.0155 (15) | 0.0153 (13) | 0.0165 (13) | 0.0020 (11) | 0.0039 (11) | 0.0003 (11) |
I43 | 0.02118 (10) | 0.02265 (10) | 0.01419 (9) | −0.00036 (8) | 0.00611 (7) | 0.00229 (7) |
C44 | 0.0200 (15) | 0.0223 (15) | 0.0123 (13) | 0.0016 (11) | −0.0012 (11) | 0.0006 (11) |
C45 | 0.0170 (16) | 0.0249 (15) | 0.0205 (15) | −0.0045 (12) | −0.0022 (13) | −0.0037 (12) |
C46 | 0.0173 (16) | 0.0193 (14) | 0.0209 (15) | −0.0022 (12) | 0.0051 (12) | 0.0022 (11) |
C11—C16 | 1.379 (4) | C31—C36 | 1.384 (4) |
C11—C12 | 1.400 (4) | C31—C32 | 1.402 (4) |
C11—C17 | 1.516 (4) | C31—C37 | 1.507 (4) |
C12—C13 | 1.383 (4) | C32—C33 | 1.382 (4) |
C12—N12 | 1.463 (3) | C32—N32 | 1.465 (4) |
N12—O121 | 1.224 (3) | N32—O321 | 1.220 (3) |
N12—O122 | 1.224 (3) | N32—O322 | 1.223 (3) |
C13—C14 | 1.389 (4) | C33—C34 | 1.376 (4) |
C13—H13 | 0.95 | C33—H33 | 0.95 |
C14—C15 | 1.368 (4) | C34—C35 | 1.373 (4) |
C14—H14 | 0.95 | C34—H34 | 0.95 |
C15—C16 | 1.402 (4) | C35—C36 | 1.392 (4) |
C15—H15 | 0.95 | C35—H35 | 0.95 |
C16—H16 | 0.95 | C36—H36 | 0.95 |
C17—O17 | 1.225 (4) | C37—O37 | 1.238 (3) |
C17—N11 | 1.347 (4) | C37—N31 | 1.340 (4) |
N11—C21 | 1.414 (3) | N31—C41 | 1.418 (3) |
N11—H11 | 0.88 | N31—H31 | 0.88 |
C21—C26 | 1.390 (4) | C41—C46 | 1.389 (4) |
C21—C22 | 1.391 (4) | C41—C42 | 1.398 (4) |
C22—C23 | 1.397 (3) | C42—C43 | 1.387 (3) |
C22—H22 | 0.95 | C42—H42 | 0.95 |
C23—C24 | 1.380 (4) | C43—C44 | 1.379 (4) |
C23—I23 | 2.102 (3) | C43—I43 | 2.108 (3) |
C24—C25 | 1.383 (4) | C44—C45 | 1.390 (4) |
C24—H24 | 0.95 | C44—H44 | 0.95 |
C25—C26 | 1.389 (4) | C45—C46 | 1.378 (4) |
C25—H25 | 0.95 | C45—H45 | 0.95 |
C26—H26 | 0.95 | C46—H46 | 0.95 |
C16—C11—C12 | 117.4 (2) | C36—C31—C32 | 117.5 (2) |
C16—C11—C17 | 118.5 (2) | C36—C31—C37 | 118.2 (3) |
C12—C11—C17 | 124.1 (2) | C32—C31—C37 | 124.3 (2) |
C13—C12—C11 | 122.7 (2) | C33—C32—C31 | 122.0 (3) |
C13—C12—N12 | 117.3 (2) | C33—C32—N32 | 117.9 (2) |
C11—C12—N12 | 119.9 (2) | C31—C32—N32 | 120.0 (2) |
O121—N12—O122 | 122.4 (3) | O321—N32—O322 | 123.2 (3) |
O121—N12—C12 | 119.1 (2) | O321—N32—C32 | 118.6 (2) |
O122—N12—C12 | 118.5 (2) | O322—N32—C32 | 118.2 (2) |
C12—C13—C14 | 118.1 (3) | C34—C33—C32 | 118.9 (3) |
C12—C13—H13 | 121.0 | C34—C33—H33 | 120.5 |
C14—C13—H13 | 121.0 | C32—C33—H33 | 120.5 |
C15—C14—C13 | 120.8 (3) | C35—C34—C33 | 120.5 (3) |
C15—C14—H14 | 119.6 | C35—C34—H34 | 119.8 |
C13—C14—H14 | 119.6 | C33—C34—H34 | 119.8 |
C14—C15—C16 | 120.2 (3) | C34—C35—C36 | 120.3 (3) |
C14—C15—H15 | 119.9 | C34—C35—H35 | 119.8 |
C16—C15—H15 | 119.9 | C36—C35—H35 | 119.8 |
C11—C16—C15 | 120.8 (3) | C31—C36—C35 | 120.7 (3) |
C11—C16—H16 | 119.6 | C31—C36—H36 | 119.7 |
C15—C16—H16 | 119.6 | C35—C36—H36 | 119.7 |
O17—C17—N11 | 126.1 (3) | O37—C37—N31 | 124.6 (2) |
O17—C17—C11 | 120.3 (3) | O37—C37—C31 | 119.8 (2) |
N11—C17—C11 | 113.4 (2) | N31—C37—C31 | 115.6 (2) |
C17—N11—C21 | 128.9 (2) | C37—N31—C41 | 125.8 (2) |
C17—N11—H11 | 115.5 | C37—N31—H31 | 117.1 |
C21—N11—H11 | 115.5 | C41—N31—H31 | 117.1 |
C26—C21—C22 | 120.3 (2) | C46—C41—C42 | 120.1 (2) |
C26—C21—N11 | 116.7 (2) | C46—C41—N31 | 118.7 (2) |
C22—C21—N11 | 123.1 (2) | C42—C41—N31 | 121.1 (2) |
C21—C22—C23 | 118.2 (2) | C43—C42—C41 | 118.2 (2) |
C21—C22—H22 | 120.9 | C43—C42—H42 | 120.9 |
C23—C22—H22 | 120.9 | C41—C42—H42 | 120.9 |
C24—C23—C22 | 121.9 (3) | C44—C43—C42 | 122.4 (3) |
C24—C23—I23 | 119.75 (19) | C44—C43—I43 | 119.56 (19) |
C22—C23—I23 | 118.3 (2) | C42—C43—I43 | 118.0 (2) |
C23—C24—C25 | 119.0 (3) | C43—C44—C45 | 118.4 (3) |
C23—C24—H24 | 120.5 | C43—C44—H44 | 120.8 |
C25—C24—H24 | 120.5 | C45—C44—H44 | 120.8 |
C24—C25—C26 | 120.3 (3) | C46—C45—C44 | 120.6 (3) |
C24—C25—H25 | 119.9 | C46—C45—H45 | 119.7 |
C26—C25—H25 | 119.9 | C44—C45—H45 | 119.7 |
C25—C26—C21 | 120.2 (3) | C45—C46—C41 | 120.3 (3) |
C25—C26—H26 | 119.9 | C45—C46—H46 | 119.8 |
C21—C26—H26 | 119.9 | C41—C46—H46 | 119.8 |
C16—C11—C12—C13 | −1.8 (4) | C36—C31—C32—C33 | 1.0 (4) |
C17—C11—C12—C13 | 176.2 (3) | C37—C31—C32—C33 | 179.2 (3) |
C16—C11—C12—N12 | 176.4 (2) | C36—C31—C32—N32 | −176.5 (2) |
C17—C11—C12—N12 | −5.7 (4) | C37—C31—C32—N32 | 1.7 (4) |
C13—C12—N12—O121 | 179.1 (3) | C33—C32—N32—O321 | −162.4 (3) |
C11—C12—N12—O121 | 0.9 (4) | C31—C32—N32—O321 | 15.2 (4) |
C13—C12—N12—O122 | −2.2 (4) | C33—C32—N32—O322 | 17.2 (4) |
C11—C12—N12—O122 | 179.6 (3) | C31—C32—N32—O322 | −165.2 (3) |
C11—C12—C13—C14 | 1.0 (4) | C31—C32—C33—C34 | −0.4 (4) |
N12—C12—C13—C14 | −177.2 (3) | N32—C32—C33—C34 | 177.1 (3) |
C12—C13—C14—C15 | 0.2 (4) | C32—C33—C34—C35 | −1.1 (4) |
C13—C14—C15—C16 | −0.5 (5) | C33—C34—C35—C36 | 2.0 (5) |
C12—C11—C16—C15 | 1.4 (4) | C32—C31—C36—C35 | −0.1 (4) |
C17—C11—C16—C15 | −176.7 (3) | C37—C31—C36—C35 | −178.4 (3) |
C14—C15—C16—C11 | −0.3 (5) | C34—C35—C36—C31 | −1.4 (4) |
C16—C11—C17—O17 | 89.6 (3) | C36—C31—C37—O37 | 66.4 (4) |
C12—C11—C17—O17 | −88.4 (4) | C32—C31—C37—O37 | −111.8 (3) |
C16—C11—C17—N11 | −85.6 (3) | C36—C31—C37—N31 | −110.4 (3) |
C12—C11—C17—N11 | 96.5 (3) | C32—C31—C37—N31 | 71.4 (4) |
O17—C17—N11—C21 | 7.4 (5) | O37—C37—N31—C41 | 13.1 (5) |
C11—C17—N11—C21 | −177.8 (3) | C31—C37—N31—C41 | −170.2 (2) |
C17—N11—C21—C26 | 167.8 (3) | C37—N31—C41—C46 | −153.1 (3) |
C17—N11—C21—C22 | −13.2 (4) | C37—N31—C41—C42 | 31.1 (4) |
C26—C21—C22—C23 | 1.4 (4) | C46—C41—C42—C43 | 1.6 (4) |
N11—C21—C22—C23 | −177.6 (2) | N31—C41—C42—C43 | 177.4 (2) |
C21—C22—C23—C24 | −0.9 (4) | C41—C42—C43—C44 | −1.3 (4) |
C21—C22—C23—I23 | 178.28 (19) | C41—C42—C43—I43 | 177.36 (19) |
C22—C23—C24—C25 | −0.3 (4) | C42—C43—C44—C45 | 0.0 (4) |
I23—C23—C24—C25 | −179.4 (2) | I43—C43—C44—C45 | −178.7 (2) |
C23—C24—C25—C26 | 0.9 (5) | C43—C44—C45—C46 | 1.1 (4) |
C24—C25—C26—C21 | −0.4 (4) | C44—C45—C46—C41 | −0.8 (4) |
C22—C21—C26—C25 | −0.8 (4) | C42—C41—C46—C45 | −0.6 (4) |
N11—C21—C26—C25 | 178.2 (3) | N31—C41—C46—C45 | −176.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O17i | 0.88 | 2.28 | 2.978 (3) | 137 |
N31—H31···O37ii | 0.88 | 2.01 | 2.863 (3) | 162 |
C14—H14···O321iii | 0.95 | 2.48 | 3.243 (4) | 137 |
C15—H15···O322 | 0.95 | 2.41 | 3.245 (4) | 147 |
C16—H16···O121i | 0.95 | 2.55 | 3.415 (3) | 151 |
C35—H35···O122iv | 0.95 | 2.44 | 3.251 (4) | 143 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x−1, y+1, z. |
C13H9IN2O3 | F(000) = 712 |
Mr = 368.12 | Dx = 1.933 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 2797 reflections |
a = 13.8494 (4) Å | θ = 4.1–27.5° |
b = 10.0495 (3) Å | µ = 2.54 mm−1 |
c = 9.4203 (3) Å | T = 120 K |
β = 105.2353 (16)° | Block, brown |
V = 1265.03 (7) Å3 | 0.46 × 0.34 × 0.16 mm |
Z = 4 |
Bruker-Nonius KappaCCD diffractometer | 2797 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2752 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 4.1° |
ϕ & ω scans | h = −17→17 |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | k = −13→12 |
Tmin = 0.376, Tmax = 0.666 | l = −12→12 |
7022 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0227P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
2797 reflections | Δρmax = 0.56 e Å−3 |
172 parameters | Δρmin = −1.09 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1349 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.013 (17) |
C13H9IN2O3 | V = 1265.03 (7) Å3 |
Mr = 368.12 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 13.8494 (4) Å | µ = 2.54 mm−1 |
b = 10.0495 (3) Å | T = 120 K |
c = 9.4203 (3) Å | 0.46 × 0.34 × 0.16 mm |
β = 105.2353 (16)° |
Bruker-Nonius KappaCCD diffractometer | 2797 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 2752 reflections with I > 2σ(I) |
Tmin = 0.376, Tmax = 0.666 | Rint = 0.023 |
7022 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.053 | Δρmax = 0.56 e Å−3 |
S = 1.24 | Δρmin = −1.09 e Å−3 |
2797 reflections | Absolute structure: Flack (1983), 1349 Friedel pairs |
172 parameters | Absolute structure parameter: 0.013 (17) |
2 restraints |
x | y | z | Uiso*/Ueq | ||
C11 | 0.7797 (2) | 0.6833 (3) | 0.7339 (3) | 0.0116 (6) | |
C12 | 0.8261 (2) | 0.6561 (3) | 0.6247 (3) | 0.0117 (5) | |
C13 | 0.8695 (4) | 0.7603 (3) | 0.5672 (6) | 0.0134 (8) | |
C14 | 0.8706 (2) | 0.8902 (3) | 0.6162 (3) | 0.0176 (6) | |
C15 | 0.8241 (2) | 0.9169 (3) | 0.7266 (3) | 0.0160 (6) | |
C16 | 0.7794 (2) | 0.8146 (3) | 0.7857 (3) | 0.0152 (6) | |
C17 | 0.72916 (19) | 0.5797 (3) | 0.8039 (3) | 0.0125 (5) | |
O17 | 0.71903 (16) | 0.5977 (2) | 0.92908 (19) | 0.0143 (4) | |
N1 | 0.69589 (15) | 0.4705 (2) | 0.7215 (2) | 0.0122 (4) | |
C21 | 0.6521 (2) | 0.3559 (3) | 0.7658 (3) | 0.0131 (6) | |
C22 | 0.6025 (2) | 0.3578 (3) | 0.8765 (3) | 0.0141 (6) | |
C23 | 0.5646 (3) | 0.2390 (2) | 0.9152 (4) | 0.0134 (7) | |
C24 | 0.5712 (2) | 0.1206 (3) | 0.8434 (3) | 0.0172 (7) | |
C25 | 0.6176 (2) | 0.1212 (3) | 0.7283 (4) | 0.0189 (7) | |
C26 | 0.6584 (4) | 0.2369 (3) | 0.6902 (6) | 0.0173 (9) | |
N13 | 0.9173 (3) | 0.7305 (2) | 0.4484 (4) | 0.0178 (6) | |
O31 | 0.91357 (17) | 0.6161 (2) | 0.4020 (2) | 0.0254 (5) | |
O32 | 0.95718 (19) | 0.8224 (2) | 0.3990 (3) | 0.0297 (5) | |
I23 | 0.50081 (5) | 0.240359 (12) | 1.09460 (7) | 0.01576 (7) | |
H12 | 0.8284 | 0.5679 | 0.5895 | 0.014* | |
H14 | 0.9022 | 0.9588 | 0.5754 | 0.021* | |
H15 | 0.8228 | 1.0052 | 0.7620 | 0.019* | |
H16 | 0.7483 | 0.8335 | 0.8621 | 0.018* | |
H1 | 0.7088 | 0.4646 | 0.6351 | 0.015* | |
H22 | 0.5946 | 0.4386 | 0.9246 | 0.017* | |
H24 | 0.5449 | 0.0406 | 0.8717 | 0.021* | |
H25 | 0.6211 | 0.0414 | 0.6758 | 0.023* | |
H26 | 0.6907 | 0.2361 | 0.6128 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0119 (14) | 0.0093 (14) | 0.0125 (14) | 0.0008 (11) | 0.0011 (11) | 0.0001 (11) |
C12 | 0.0131 (12) | 0.0117 (14) | 0.0106 (12) | 0.0015 (10) | 0.0035 (11) | 0.0022 (10) |
C13 | 0.014 (2) | 0.0163 (18) | 0.012 (2) | 0.0029 (10) | 0.0072 (18) | 0.0003 (11) |
C14 | 0.0189 (15) | 0.0138 (14) | 0.0204 (14) | −0.0044 (11) | 0.0057 (12) | 0.0035 (11) |
C15 | 0.0221 (15) | 0.0087 (14) | 0.0181 (14) | −0.0047 (12) | 0.0068 (12) | −0.0010 (11) |
C16 | 0.0191 (15) | 0.0123 (15) | 0.0145 (15) | 0.0001 (12) | 0.0048 (13) | −0.0024 (12) |
C17 | 0.0134 (12) | 0.0105 (13) | 0.0124 (12) | 0.0026 (10) | 0.0013 (10) | 0.0021 (11) |
O17 | 0.0228 (10) | 0.0140 (11) | 0.0081 (8) | −0.0029 (8) | 0.0077 (8) | 0.0014 (7) |
N1 | 0.0174 (12) | 0.0123 (11) | 0.0087 (10) | −0.0031 (9) | 0.0067 (9) | 0.0001 (8) |
C21 | 0.0151 (15) | 0.0123 (14) | 0.0109 (13) | 0.0007 (11) | 0.0017 (11) | 0.0020 (10) |
C22 | 0.0156 (15) | 0.0125 (14) | 0.0144 (15) | 0.0005 (11) | 0.0041 (12) | 0.0008 (11) |
C23 | 0.0116 (18) | 0.0179 (17) | 0.0123 (18) | −0.0014 (10) | 0.0061 (14) | 0.0008 (9) |
C24 | 0.0196 (18) | 0.0134 (15) | 0.0202 (16) | −0.0027 (12) | 0.0077 (14) | 0.0024 (13) |
C25 | 0.0214 (17) | 0.0140 (15) | 0.0231 (16) | −0.0017 (12) | 0.0088 (13) | −0.0031 (13) |
C26 | 0.028 (3) | 0.0145 (17) | 0.012 (2) | −0.0006 (12) | 0.0097 (19) | 0.0016 (12) |
N13 | 0.0184 (16) | 0.0208 (14) | 0.0174 (16) | 0.0051 (11) | 0.0102 (13) | 0.0042 (11) |
O31 | 0.0309 (13) | 0.0216 (13) | 0.0295 (13) | −0.0015 (10) | 0.0181 (11) | −0.0044 (11) |
O32 | 0.0404 (14) | 0.0252 (13) | 0.0339 (13) | 0.0011 (11) | 0.0279 (12) | 0.0093 (11) |
I23 | 0.01521 (11) | 0.01944 (10) | 0.01474 (11) | −0.00027 (18) | 0.00768 (7) | 0.00355 (17) |
C11—C12 | 1.377 (4) | N1—H1 | 0.88 |
C11—C16 | 1.407 (5) | C21—C22 | 1.392 (4) |
C11—C17 | 1.500 (4) | C21—C26 | 1.406 (4) |
C12—C13 | 1.386 (4) | C22—C23 | 1.391 (4) |
C12—H12 | 0.95 | C22—H22 | 0.95 |
C13—C14 | 1.383 (4) | C23—C24 | 1.384 (4) |
C13—N13 | 1.473 (6) | C23—I23 | 2.103 (4) |
C14—C15 | 1.386 (4) | C24—C25 | 1.397 (5) |
C14—H14 | 0.95 | C24—H24 | 0.95 |
C15—C16 | 1.390 (4) | C25—C26 | 1.381 (4) |
C15—H15 | 0.95 | C25—H25 | 0.95 |
C16—H16 | 0.95 | C26—H26 | 0.95 |
C17—O17 | 1.237 (3) | N13—O31 | 1.226 (3) |
C17—N1 | 1.353 (3) | N13—O32 | 1.228 (4) |
N1—C21 | 1.415 (3) | ||
C12—C11—C16 | 119.3 (3) | C21—N1—H1 | 115.2 |
C12—C11—C17 | 123.7 (2) | C22—C21—C26 | 120.0 (3) |
C16—C11—C17 | 117.1 (2) | C22—C21—N1 | 123.0 (3) |
C11—C12—C13 | 118.6 (3) | C26—C21—N1 | 117.0 (3) |
C11—C12—H12 | 120.7 | C23—C22—C21 | 118.6 (3) |
C13—C12—H12 | 120.7 | C23—C22—H22 | 120.7 |
C14—C13—C12 | 123.4 (4) | C21—C22—H22 | 120.7 |
C14—C13—N13 | 118.5 (3) | C24—C23—C22 | 122.2 (4) |
C12—C13—N13 | 118.1 (3) | C24—C23—I23 | 119.6 (2) |
C13—C14—C15 | 117.8 (3) | C22—C23—I23 | 118.2 (2) |
C13—C14—H14 | 121.1 | C23—C24—C25 | 118.6 (3) |
C15—C14—H14 | 121.1 | C23—C24—H24 | 120.7 |
C14—C15—C16 | 120.1 (3) | C25—C24—H24 | 120.7 |
C14—C15—H15 | 120.0 | C26—C25—C24 | 120.5 (3) |
C16—C15—H15 | 120.0 | C26—C25—H25 | 119.7 |
C15—C16—C11 | 120.9 (3) | C24—C25—H25 | 119.7 |
C15—C16—H16 | 119.6 | C25—C26—C21 | 120.0 (4) |
C11—C16—H16 | 119.6 | C25—C26—H26 | 120.0 |
O17—C17—N1 | 124.0 (2) | C21—C26—H26 | 120.0 |
O17—C17—C11 | 120.0 (2) | O31—N13—O32 | 123.4 (3) |
N1—C17—C11 | 116.0 (2) | O31—N13—C13 | 118.4 (3) |
C17—N1—C21 | 126.7 (2) | O32—N13—C13 | 118.1 (3) |
C17—N1—H1 | 117.7 | ||
C16—C11—C12—C13 | −1.3 (4) | C17—N1—C21—C22 | 25.7 (4) |
C17—C11—C12—C13 | 179.4 (3) | C17—N1—C21—C26 | −155.9 (3) |
C11—C12—C13—C14 | 1.5 (6) | C26—C21—C22—C23 | 3.5 (5) |
C11—C12—C13—N13 | −178.8 (3) | N1—C21—C22—C23 | −178.1 (3) |
C12—C13—C14—C15 | −1.2 (6) | C21—C22—C23—C24 | −2.7 (5) |
N13—C13—C14—C15 | 179.1 (3) | C21—C22—C23—I23 | 174.8 (2) |
C13—C14—C15—C16 | 0.7 (4) | C22—C23—C24—C25 | 0.0 (5) |
C14—C15—C16—C11 | −0.6 (4) | I23—C23—C24—C25 | −177.4 (2) |
C12—C11—C16—C15 | 0.9 (4) | C23—C24—C25—C26 | 1.8 (5) |
C17—C11—C16—C15 | −179.7 (3) | C24—C25—C26—C21 | −1.0 (6) |
C12—C11—C17—O17 | 155.7 (3) | C22—C21—C26—C25 | −1.7 (6) |
C16—C11—C17—O17 | −23.7 (4) | N1—C21—C26—C25 | 179.7 (4) |
C12—C11—C17—N1 | −25.2 (4) | C14—C13—N13—O31 | −177.8 (4) |
C16—C11—C17—N1 | 155.5 (2) | C12—C13—N13—O31 | 2.5 (6) |
O17—C17—N1—C21 | −5.4 (4) | C14—C13—N13—O32 | 0.8 (6) |
C11—C17—N1—C21 | 175.5 (2) | C12—C13—N13—O32 | −178.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O17i | 0.88 | 2.08 | 2.937 (2) | 165 |
C12—H12···O17i | 0.95 | 2.48 | 3.266 (4) | 140 |
C24—H24···O31ii | 0.95 | 2.48 | 3.371 (4) | 157 |
C26—H26···O17i | 0.95 | 2.51 | 3.256 (5) | 136 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x−1/2, −y+1/2, z+1/2. |
C13H9IN2O3 | F(000) = 712 |
Mr = 368.12 | Dx = 1.967 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2843 reflections |
a = 7.4798 (2) Å | θ = 3.1–27.6° |
b = 14.0889 (7) Å | µ = 2.58 mm−1 |
c = 11.8138 (6) Å | T = 120 K |
β = 93.259 (3)° | Needle, brown |
V = 1242.95 (9) Å3 | 0.48 × 0.09 × 0.07 mm |
Z = 4 |
Bruker-Nonius KappaCCD diffractometer | 2843 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 2529 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.1° |
ϕ & ω scans | h = −9→9 |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | k = −18→18 |
Tmin = 0.370, Tmax = 0.840 | l = −14→15 |
13030 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.084 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.286 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P] where P = (Fo2 + 2Fc2)/3 |
2843 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 3.92 e Å−3 |
0 restraints | Δρmin = −2.57 e Å−3 |
C13H9IN2O3 | V = 1242.95 (9) Å3 |
Mr = 368.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.4798 (2) Å | µ = 2.58 mm−1 |
b = 14.0889 (7) Å | T = 120 K |
c = 11.8138 (6) Å | 0.48 × 0.09 × 0.07 mm |
β = 93.259 (3)° |
Bruker-Nonius KappaCCD diffractometer | 2843 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 2529 reflections with I > 2σ(I) |
Tmin = 0.370, Tmax = 0.840 | Rint = 0.060 |
13030 measured reflections |
R[F2 > 2σ(F2)] = 0.084 | 0 restraints |
wR(F2) = 0.286 | H-atom parameters constrained |
S = 1.17 | w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P] where P = (Fo2 + 2Fc2)/3 |
2843 reflections | Δρmax = 3.92 e Å−3 |
161 parameters | Δρmin = −2.57 e Å−3 |
x | y | z | Uiso*/Ueq | ||
C11 | 0.3258 (15) | 0.5880 (7) | 0.5948 (9) | 0.0106 (14) | |
C12 | 0.4060 (16) | 0.6008 (8) | 0.7037 (9) | 0.014 (2) | |
C13 | 0.4265 (15) | 0.6925 (8) | 0.7479 (9) | 0.014 (2) | |
C14 | 0.3651 (15) | 0.7682 (8) | 0.6808 (9) | 0.012 (2) | |
N14 | 0.3894 (13) | 0.8652 (7) | 0.7271 (8) | 0.0131 (18) | |
O41 | 0.4817 (12) | 0.8751 (6) | 0.8151 (7) | 0.0200 (18) | |
O42 | 0.3173 (15) | 0.9308 (6) | 0.6748 (7) | 0.023 (2) | |
C15 | 0.2832 (15) | 0.7573 (8) | 0.5738 (9) | 0.0132 (15) | |
C16 | 0.2686 (15) | 0.6662 (8) | 0.5310 (9) | 0.0132 (15) | |
C17 | 0.3143 (15) | 0.4872 (8) | 0.5541 (9) | 0.0106 (14) | |
O17 | 0.3981 (12) | 0.4241 (6) | 0.6054 (7) | 0.0178 (17) | |
N1 | 0.2070 (12) | 0.4695 (7) | 0.4587 (7) | 0.0108 (18) | |
C21 | 0.1813 (15) | 0.3821 (8) | 0.4027 (9) | 0.013 (2) | |
C22 | 0.2234 (15) | 0.2955 (8) | 0.4531 (9) | 0.011 (2) | |
C23 | 0.1860 (15) | 0.2123 (8) | 0.3906 (9) | 0.0106 (19) | |
I23 | 0.24533 (11) | 0.08091 (5) | 0.46912 (6) | 0.0189 (3) | |
C24 | 0.1113 (17) | 0.2132 (9) | 0.2805 (9) | 0.018 (2) | |
C25 | 0.0722 (16) | 0.3011 (9) | 0.2320 (9) | 0.016 (2) | |
C26 | 0.1025 (16) | 0.3847 (8) | 0.2913 (9) | 0.016 (2) | |
H12 | 0.4464 | 0.5476 | 0.7473 | 0.016* | |
H13 | 0.4807 | 0.7028 | 0.8215 | 0.016* | |
H15 | 0.2386 | 0.8103 | 0.5313 | 0.016* | |
H16 | 0.2182 | 0.6569 | 0.4563 | 0.016* | |
H1 | 0.1474 | 0.5182 | 0.4292 | 0.013* | |
H22 | 0.2762 | 0.2925 | 0.5281 | 0.013* | |
H24 | 0.0878 | 0.1560 | 0.2399 | 0.022* | |
H25 | 0.0234 | 0.3038 | 0.1560 | 0.019* | |
H26 | 0.0702 | 0.4438 | 0.2572 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.010 (3) | 0.011 (4) | 0.010 (3) | 0.002 (3) | 0.000 (3) | 0.002 (3) |
C12 | 0.017 (5) | 0.014 (5) | 0.010 (4) | 0.000 (4) | −0.002 (4) | −0.004 (4) |
C13 | 0.012 (5) | 0.019 (6) | 0.010 (4) | 0.001 (4) | −0.001 (4) | 0.002 (4) |
C14 | 0.011 (5) | 0.010 (5) | 0.016 (5) | 0.001 (4) | 0.001 (4) | −0.001 (4) |
N14 | 0.011 (4) | 0.016 (5) | 0.012 (4) | 0.000 (4) | 0.002 (3) | −0.003 (3) |
O41 | 0.022 (5) | 0.020 (4) | 0.017 (4) | −0.001 (4) | −0.006 (3) | −0.006 (3) |
O42 | 0.043 (6) | 0.011 (4) | 0.016 (4) | 0.002 (4) | −0.004 (4) | 0.001 (3) |
C15 | 0.016 (4) | 0.008 (3) | 0.015 (3) | 0.005 (3) | −0.005 (3) | 0.001 (3) |
C16 | 0.016 (4) | 0.008 (3) | 0.015 (3) | 0.005 (3) | −0.005 (3) | 0.001 (3) |
C17 | 0.010 (3) | 0.011 (4) | 0.010 (3) | 0.002 (3) | 0.000 (3) | 0.002 (3) |
O17 | 0.018 (4) | 0.018 (4) | 0.015 (4) | 0.005 (4) | −0.008 (3) | −0.003 (3) |
N1 | 0.013 (4) | 0.008 (4) | 0.011 (4) | 0.000 (3) | −0.006 (3) | 0.001 (3) |
C21 | 0.013 (5) | 0.013 (5) | 0.013 (5) | 0.001 (4) | −0.001 (4) | 0.000 (4) |
C22 | 0.014 (5) | 0.009 (5) | 0.011 (4) | 0.001 (4) | −0.001 (4) | −0.001 (4) |
C23 | 0.011 (5) | 0.008 (4) | 0.012 (4) | 0.001 (4) | −0.003 (4) | 0.000 (4) |
I23 | 0.0298 (5) | 0.0087 (4) | 0.0179 (5) | −0.0005 (4) | 0.0002 (3) | 0.0002 (2) |
C24 | 0.020 (6) | 0.021 (6) | 0.013 (5) | 0.000 (5) | −0.004 (4) | −0.003 (4) |
C25 | 0.014 (5) | 0.021 (6) | 0.011 (4) | −0.003 (4) | −0.003 (4) | −0.004 (4) |
C26 | 0.018 (6) | 0.015 (5) | 0.014 (5) | −0.003 (4) | −0.006 (4) | 0.001 (4) |
C11—C16 | 1.389 (14) | C17—N1 | 1.369 (13) |
C11—C12 | 1.400 (14) | N1—C21 | 1.406 (14) |
C11—C17 | 1.501 (15) | N1—H1 | 0.88 |
C12—C13 | 1.398 (16) | C21—C22 | 1.386 (15) |
C12—H12 | 0.95 | C21—C26 | 1.412 (15) |
C13—C14 | 1.392 (15) | C22—C23 | 1.406 (14) |
C13—H13 | 0.95 | C22—H22 | 0.95 |
C14—C15 | 1.381 (15) | C23—C24 | 1.385 (14) |
C14—N14 | 1.480 (14) | C23—I23 | 2.106 (11) |
N14—O42 | 1.220 (13) | C24—C25 | 1.388 (18) |
N14—O41 | 1.223 (13) | C24—H24 | 0.95 |
C15—C16 | 1.381 (15) | C25—C26 | 1.383 (16) |
C15—H15 | 0.95 | C25—H25 | 0.95 |
C16—H16 | 0.95 | C26—H26 | 0.95 |
C17—O17 | 1.227 (14) | ||
C16—C11—C12 | 119.9 (10) | N1—C17—C11 | 117.2 (9) |
C16—C11—C17 | 124.5 (10) | C17—N1—C21 | 127.2 (9) |
C12—C11—C17 | 115.5 (9) | C17—N1—H1 | 116.4 |
C13—C12—C11 | 119.7 (10) | C21—N1—H1 | 116.4 |
C13—C12—H12 | 120.2 | C22—C21—N1 | 123.2 (10) |
C11—C12—H12 | 120.2 | C22—C21—C26 | 119.8 (10) |
C14—C13—C12 | 118.0 (10) | N1—C21—C26 | 117.0 (10) |
C14—C13—H13 | 121.0 | C21—C22—C23 | 118.3 (10) |
C12—C13—H13 | 121.0 | C21—C22—H22 | 120.8 |
C15—C14—C13 | 123.4 (10) | C23—C22—H22 | 120.8 |
C15—C14—N14 | 118.7 (9) | C24—C23—C22 | 122.9 (10) |
C13—C14—N14 | 117.9 (10) | C24—C23—I23 | 119.1 (8) |
O42—N14—O41 | 123.8 (10) | C22—C23—I23 | 118.1 (7) |
O42—N14—C14 | 118.1 (9) | C23—C24—C25 | 117.4 (11) |
O41—N14—C14 | 118.1 (9) | C23—C24—H24 | 121.3 |
C14—C15—C16 | 117.4 (10) | C25—C24—H24 | 121.3 |
C14—C15—H15 | 121.3 | C26—C25—C24 | 121.7 (10) |
C16—C15—H15 | 121.3 | C26—C25—H25 | 119.1 |
C15—C16—C11 | 121.5 (10) | C24—C25—H25 | 119.1 |
C15—C16—H16 | 119.2 | C25—C26—C21 | 119.8 (11) |
C11—C16—H16 | 119.2 | C25—C26—H26 | 120.1 |
O17—C17—N1 | 122.3 (10) | C21—C26—H26 | 120.1 |
O17—C17—C11 | 120.5 (10) | ||
C16—C11—C12—C13 | 0.6 (18) | C16—C11—C17—N1 | −14.6 (16) |
C17—C11—C12—C13 | 178.5 (10) | C12—C11—C17—N1 | 167.6 (10) |
C11—C12—C13—C14 | 0.1 (17) | O17—C17—N1—C21 | −3.0 (17) |
C12—C13—C14—C15 | 0.9 (17) | C11—C17—N1—C21 | 177.2 (10) |
C12—C13—C14—N14 | −179.1 (10) | C17—N1—C21—C22 | 18.3 (18) |
C15—C14—N14—O42 | 8.5 (16) | C17—N1—C21—C26 | −164.1 (11) |
C13—C14—N14—O42 | −171.4 (10) | N1—C21—C22—C23 | 177.7 (10) |
C15—C14—N14—O41 | −170.9 (11) | C26—C21—C22—C23 | 0.2 (17) |
C13—C14—N14—O41 | 9.2 (15) | C21—C22—C23—C24 | 0.9 (17) |
C13—C14—C15—C16 | −2.5 (18) | C21—C22—C23—I23 | −178.7 (8) |
N14—C14—C15—C16 | 177.6 (10) | C22—C23—C24—C25 | −0.3 (18) |
C14—C15—C16—C11 | 3.1 (17) | I23—C23—C24—C25 | 179.3 (8) |
C12—C11—C16—C15 | −2.2 (18) | C23—C24—C25—C26 | −1.4 (18) |
C17—C11—C16—C15 | −180.0 (11) | C24—C25—C26—C21 | 2.4 (19) |
C16—C11—C17—O17 | 165.6 (11) | C22—C21—C26—C25 | −1.8 (18) |
C12—C11—C17—O17 | −12.2 (16) | N1—C21—C26—C25 | −179.4 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O41i | 0.88 | 2.33 | 3.191 (13) | 167 |
C16—H16···O41i | 0.95 | 2.40 | 3.291 (14) | 155 |
C24—H24···O17ii | 0.95 | 2.36 | 3.192 (15) | 147 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x−1/2, −y+1/2, z−1/2. |
C13H9IN2O3 | Z = 4 |
Mr = 368.12 | F(000) = 712 |
Triclinic, P1 | Dx = 1.917 Mg m−3 |
Hall symbol: -P 1 | Synchrotron radiation, λ = 0.6712 Å |
a = 5.1047 (3) Å | Cell parameters from 7348 reflections |
b = 15.3015 (9) Å | θ = 2.5–28.7° |
c = 16.4806 (9) Å | µ = 2.52 mm−1 |
α = 95.356 (2)° | T = 120 K |
β = 95.498 (2)° | Needle, colourless |
γ = 91.150 (2)° | 0.09 × 0.04 × 0.02 mm |
V = 1275.23 (13) Å3 |
Bruker SMART APEX2 CCD diffractometer | 7348 independent reflections |
Radiation source: Daresbury SRS station 9.8, Cernik et al., 1997, Clegg, 2003 | 6485 reflections with I > 2σ(I) |
Silicon 111 monochromator | Rint = 0.020 |
fine–slice ω scans | θmax = 28.7°, θmin = 2.5° |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | h = −7→7 |
Tmin = 0.805, Tmax = 0.951 | k = −21→21 |
13690 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6363P] where P = (Fo2 + 2Fc2)/3 |
7348 reflections | (Δ/σ)max = 0.002 |
337 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −1.02 e Å−3 |
C13H9IN2O3 | γ = 91.150 (2)° |
Mr = 368.12 | V = 1275.23 (13) Å3 |
Triclinic, P1 | Z = 4 |
a = 5.1047 (3) Å | Synchrotron radiation, λ = 0.6712 Å |
b = 15.3015 (9) Å | µ = 2.52 mm−1 |
c = 16.4806 (9) Å | T = 120 K |
α = 95.356 (2)° | 0.09 × 0.04 × 0.02 mm |
β = 95.498 (2)° |
Bruker SMART APEX2 CCD diffractometer | 7348 independent reflections |
Absorption correction: multi-scan SADABS 2.10 (Sheldrick, 2003) | 6485 reflections with I > 2σ(I) |
Tmin = 0.805, Tmax = 0.951 | Rint = 0.020 |
13690 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.91 e Å−3 |
7348 reflections | Δρmin = −1.02 e Å−3 |
337 parameters |
x | y | z | Uiso*/Ueq | ||
C11 | 0.2703 (4) | 0.36705 (13) | 0.72743 (12) | 0.0181 (4) | |
C12 | 0.1069 (4) | 0.41652 (15) | 0.67819 (13) | 0.0236 (4) | |
C13 | 0.1433 (5) | 0.41921 (16) | 0.59626 (14) | 0.0276 (5) | |
C14 | 0.3419 (4) | 0.37023 (15) | 0.56525 (13) | 0.0239 (4) | |
N14 | 0.3903 (5) | 0.37564 (15) | 0.47910 (13) | 0.0336 (5) | |
O141 | 0.2650 (5) | 0.42717 (18) | 0.44014 (13) | 0.0617 (5) | |
O142 | 0.5530 (5) | 0.32985 (18) | 0.44984 (13) | 0.0617 (5) | |
C15 | 0.5012 (5) | 0.31757 (15) | 0.61120 (14) | 0.0261 (4) | |
C16 | 0.4655 (4) | 0.31683 (14) | 0.69373 (13) | 0.0229 (4) | |
C17 | 0.2285 (4) | 0.37138 (13) | 0.81642 (12) | 0.0173 (3) | |
O17 | 0.0057 (3) | 0.37990 (11) | 0.83855 (10) | 0.0237 (3) | |
N11 | 0.4492 (3) | 0.36757 (11) | 0.86863 (10) | 0.0175 (3) | |
C21 | 0.4595 (4) | 0.37373 (12) | 0.95521 (12) | 0.0162 (3) | |
C22 | 0.2756 (4) | 0.41979 (13) | 0.99830 (12) | 0.0191 (4) | |
C23 | 0.2917 (4) | 0.42302 (13) | 1.08301 (12) | 0.0197 (4) | |
C24 | 0.4927 (4) | 0.38031 (13) | 1.12518 (12) | 0.0186 (4) | |
I24 | 0.49134 (3) | 0.377222 (9) | 1.251935 (8) | 0.02616 (5) | |
C25 | 0.6842 (4) | 0.33725 (13) | 1.08288 (13) | 0.0192 (4) | |
C26 | 0.6668 (4) | 0.33385 (13) | 0.99815 (12) | 0.0178 (3) | |
C31 | 1.1985 (4) | 0.13179 (13) | 0.28880 (12) | 0.0169 (3) | |
C32 | 1.3693 (4) | 0.08409 (14) | 0.33724 (13) | 0.0212 (4) | |
C33 | 1.3397 (4) | 0.08116 (15) | 0.41934 (14) | 0.0252 (4) | |
C34 | 1.1387 (4) | 0.12822 (14) | 0.45198 (13) | 0.0223 (4) | |
N34 | 1.0972 (4) | 0.12133 (14) | 0.53831 (12) | 0.0295 (4) | |
O341 | 1.2305 (5) | 0.07091 (17) | 0.57634 (12) | 0.0538 (6) | |
O342 | 0.9268 (5) | 0.16422 (17) | 0.56791 (12) | 0.0517 (6) | |
C35 | 0.9719 (4) | 0.17910 (15) | 0.40647 (13) | 0.0238 (4) | |
C36 | 1.0020 (4) | 0.18036 (14) | 0.32363 (13) | 0.0219 (4) | |
C37 | 1.2340 (4) | 0.12830 (13) | 0.19952 (12) | 0.0175 (3) | |
O37 | 1.4553 (3) | 0.12042 (11) | 0.17583 (9) | 0.0225 (3) | |
N31 | 1.0101 (3) | 0.13254 (11) | 0.14847 (10) | 0.0176 (3) | |
C41 | 1.0029 (4) | 0.12971 (12) | 0.06208 (12) | 0.0161 (3) | |
C42 | 1.1965 (4) | 0.17243 (13) | 0.02499 (12) | 0.0180 (4) | |
C43 | 1.1850 (4) | 0.16889 (13) | −0.05934 (12) | 0.0188 (4) | |
C44 | 0.9775 (4) | 0.12365 (13) | −0.10744 (12) | 0.0179 (4) | |
I44 | 0.97313 (3) | 0.119495 (9) | −0.235056 (8) | 0.02594 (5) | |
C45 | 0.7802 (4) | 0.08235 (13) | −0.07119 (12) | 0.0198 (4) | |
C46 | 0.7942 (4) | 0.08527 (13) | 0.01351 (12) | 0.0188 (4) | |
H12 | −0.0304 | 0.4486 | 0.7009 | 0.028* | |
H13 | 0.0351 | 0.4537 | 0.5624 | 0.033* | |
H15 | 0.6312 | 0.2829 | 0.5872 | 0.031* | |
H16 | 0.5741 | 0.2821 | 0.7272 | 0.028* | |
H11 | 0.6080 | 0.3661 | 0.8491 | 0.021* | |
H22 | 0.1387 | 0.4491 | 0.9695 | 0.023* | |
H23 | 0.1658 | 0.4543 | 1.1122 | 0.024* | |
H25 | 0.8257 | 0.3104 | 1.1120 | 0.023* | |
H26 | 0.7963 | 0.3043 | 0.9691 | 0.021* | |
H32 | 1.5075 | 0.0532 | 0.3137 | 0.025* | |
H33 | 1.4538 | 0.0478 | 0.4526 | 0.030* | |
H35 | 0.8402 | 0.2123 | 0.4311 | 0.029* | |
H36 | 0.8888 | 0.2143 | 0.2907 | 0.026* | |
H31 | 0.8506 | 0.1278 | 0.1669 | 0.021* | |
H42 | 1.3368 | 0.2041 | 0.0578 | 0.022* | |
H43 | 1.3186 | 0.1973 | −0.0845 | 0.023* | |
H45 | 0.6371 | 0.0524 | −0.1041 | 0.024* | |
H46 | 0.6605 | 0.0568 | 0.0386 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0171 (8) | 0.0214 (9) | 0.0165 (9) | 0.0027 (7) | 0.0043 (7) | 0.0024 (7) |
C12 | 0.0235 (10) | 0.0283 (10) | 0.0205 (10) | 0.0104 (8) | 0.0060 (8) | 0.0049 (8) |
C13 | 0.0315 (11) | 0.0332 (12) | 0.0199 (10) | 0.0152 (9) | 0.0048 (9) | 0.0073 (8) |
C14 | 0.0288 (11) | 0.0291 (11) | 0.0157 (9) | 0.0094 (8) | 0.0064 (8) | 0.0055 (8) |
N14 | 0.0426 (12) | 0.0407 (12) | 0.0197 (9) | 0.0171 (10) | 0.0083 (9) | 0.0062 (8) |
O141 | 0.0834 (12) | 0.0837 (12) | 0.0269 (7) | 0.0569 (10) | 0.0249 (8) | 0.0211 (8) |
O142 | 0.0834 (12) | 0.0837 (12) | 0.0269 (7) | 0.0569 (10) | 0.0249 (8) | 0.0211 (8) |
C15 | 0.0282 (11) | 0.0315 (11) | 0.0201 (10) | 0.0133 (9) | 0.0069 (8) | 0.0028 (8) |
C16 | 0.0231 (10) | 0.0264 (10) | 0.0203 (10) | 0.0092 (8) | 0.0047 (8) | 0.0029 (8) |
C17 | 0.0147 (8) | 0.0200 (9) | 0.0177 (9) | 0.0019 (7) | 0.0041 (7) | 0.0024 (7) |
O17 | 0.0141 (6) | 0.0377 (9) | 0.0195 (7) | 0.0034 (6) | 0.0043 (5) | 0.0017 (6) |
N11 | 0.0132 (7) | 0.0230 (8) | 0.0169 (8) | 0.0016 (6) | 0.0048 (6) | 0.0012 (6) |
C21 | 0.0141 (8) | 0.0179 (8) | 0.0170 (8) | 0.0007 (6) | 0.0038 (7) | 0.0022 (6) |
C22 | 0.0170 (8) | 0.0227 (9) | 0.0179 (9) | 0.0039 (7) | 0.0031 (7) | 0.0009 (7) |
C23 | 0.0182 (9) | 0.0224 (9) | 0.0191 (9) | 0.0034 (7) | 0.0062 (7) | 0.0009 (7) |
C24 | 0.0202 (9) | 0.0193 (9) | 0.0165 (9) | −0.0014 (7) | 0.0032 (7) | 0.0013 (7) |
I24 | 0.03405 (9) | 0.02879 (8) | 0.01610 (7) | 0.00239 (6) | 0.00462 (5) | 0.00208 (5) |
C25 | 0.0156 (8) | 0.0210 (9) | 0.0213 (9) | 0.0012 (7) | 0.0028 (7) | 0.0021 (7) |
C26 | 0.0139 (8) | 0.0207 (9) | 0.0195 (9) | 0.0027 (6) | 0.0038 (7) | 0.0029 (7) |
C31 | 0.0153 (8) | 0.0215 (9) | 0.0145 (8) | 0.0026 (7) | 0.0028 (7) | 0.0022 (7) |
C32 | 0.0188 (9) | 0.0266 (10) | 0.0195 (9) | 0.0078 (7) | 0.0034 (7) | 0.0052 (7) |
C33 | 0.0250 (10) | 0.0328 (11) | 0.0196 (10) | 0.0114 (8) | 0.0039 (8) | 0.0078 (8) |
C34 | 0.0248 (10) | 0.0275 (10) | 0.0156 (9) | 0.0044 (8) | 0.0056 (8) | 0.0028 (7) |
N34 | 0.0365 (11) | 0.0372 (11) | 0.0171 (8) | 0.0124 (9) | 0.0090 (8) | 0.0064 (7) |
O341 | 0.0720 (15) | 0.0742 (15) | 0.0228 (9) | 0.0454 (13) | 0.0180 (9) | 0.0223 (10) |
O342 | 0.0624 (14) | 0.0757 (15) | 0.0234 (9) | 0.0443 (12) | 0.0199 (9) | 0.0130 (9) |
C35 | 0.0247 (10) | 0.0281 (11) | 0.0194 (10) | 0.0084 (8) | 0.0058 (8) | 0.0010 (8) |
C36 | 0.0205 (9) | 0.0274 (10) | 0.0180 (9) | 0.0092 (8) | 0.0030 (7) | 0.0015 (7) |
C37 | 0.0169 (8) | 0.0198 (9) | 0.0159 (8) | 0.0025 (7) | 0.0013 (7) | 0.0020 (7) |
O37 | 0.0142 (6) | 0.0349 (8) | 0.0190 (7) | 0.0031 (6) | 0.0040 (5) | 0.0026 (6) |
N31 | 0.0126 (7) | 0.0262 (8) | 0.0143 (7) | 0.0016 (6) | 0.0029 (6) | 0.0018 (6) |
C41 | 0.0166 (8) | 0.0183 (8) | 0.0139 (8) | 0.0038 (6) | 0.0031 (7) | 0.0021 (6) |
C42 | 0.0157 (8) | 0.0198 (9) | 0.0186 (9) | −0.0010 (7) | 0.0012 (7) | 0.0028 (7) |
C43 | 0.0190 (9) | 0.0195 (9) | 0.0188 (9) | 0.0015 (7) | 0.0050 (7) | 0.0032 (7) |
C44 | 0.0207 (9) | 0.0183 (9) | 0.0151 (8) | 0.0056 (7) | 0.0026 (7) | 0.0017 (6) |
I44 | 0.03629 (9) | 0.02770 (8) | 0.01409 (7) | −0.00052 (6) | 0.00410 (5) | 0.00192 (5) |
C45 | 0.0174 (8) | 0.0233 (9) | 0.0186 (9) | 0.0009 (7) | 0.0022 (7) | 0.0014 (7) |
C46 | 0.0170 (8) | 0.0225 (9) | 0.0171 (9) | 0.0000 (7) | 0.0034 (7) | 0.0016 (7) |
C11—C12 | 1.392 (3) | C31—C32 | 1.390 (3) |
C11—C16 | 1.396 (3) | C31—C36 | 1.396 (3) |
C11—C17 | 1.498 (3) | C31—C37 | 1.496 (3) |
C12—C13 | 1.385 (3) | C32—C33 | 1.380 (3) |
C12—H12 | 0.95 | C32—H32 | 0.95 |
C13—C14 | 1.381 (3) | C33—C34 | 1.387 (3) |
C13—H13 | 0.95 | C33—H33 | 0.95 |
C14—C15 | 1.381 (3) | C34—C35 | 1.381 (3) |
C14—N14 | 1.474 (3) | C34—N34 | 1.471 (3) |
N14—O142 | 1.204 (3) | N34—O342 | 1.212 (3) |
N14—O141 | 1.216 (3) | N34—O341 | 1.217 (3) |
C15—C16 | 1.391 (3) | C35—C36 | 1.390 (3) |
C15—H15 | 0.95 | C35—H35 | 0.95 |
C16—H16 | 0.95 | C36—H36 | 0.95 |
C17—O17 | 1.233 (2) | C37—O37 | 1.235 (2) |
C17—N11 | 1.356 (2) | C37—N31 | 1.359 (2) |
N11—C21 | 1.417 (2) | N31—C41 | 1.417 (2) |
N11—H11 | 0.90 | N31—H31 | 0.90 |
C21—C22 | 1.394 (3) | C41—C42 | 1.394 (3) |
C21—C26 | 1.398 (3) | C41—C46 | 1.394 (3) |
C22—C23 | 1.387 (3) | C42—C43 | 1.381 (3) |
C22—H22 | 0.95 | C42—H42 | 0.95 |
C23—C24 | 1.392 (3) | C43—C44 | 1.391 (3) |
C23—H23 | 0.95 | C43—H43 | 0.95 |
C24—C25 | 1.395 (3) | C44—C45 | 1.390 (3) |
C24—I24 | 2.095 (2) | C44—I44 | 2.096 (2) |
C25—C26 | 1.387 (3) | C45—C46 | 1.387 (3) |
C25—H25 | 0.95 | C45—H45 | 0.95 |
C26—H26 | 0.95 | C46—H46 | 0.95 |
C12—C11—C16 | 120.15 (19) | C32—C31—C36 | 120.14 (19) |
C12—C11—C17 | 117.27 (18) | C32—C31—C37 | 117.55 (17) |
C16—C11—C17 | 122.57 (18) | C36—C31—C37 | 122.31 (18) |
C13—C12—C11 | 120.37 (19) | C33—C32—C31 | 120.50 (19) |
C13—C12—H12 | 119.8 | C33—C32—H32 | 119.8 |
C11—C12—H12 | 119.8 | C31—C32—H32 | 119.8 |
C14—C13—C12 | 118.0 (2) | C32—C33—C34 | 118.18 (19) |
C14—C13—H13 | 121.0 | C32—C33—H33 | 120.9 |
C12—C13—H13 | 121.0 | C34—C33—H33 | 120.9 |
C15—C14—C13 | 123.4 (2) | C35—C34—C33 | 122.9 (2) |
C15—C14—N14 | 118.08 (19) | C35—C34—N34 | 118.74 (19) |
C13—C14—N14 | 118.48 (19) | C33—C34—N34 | 118.33 (19) |
O142—N14—O141 | 122.2 (2) | O342—N34—O341 | 122.7 (2) |
O142—N14—C14 | 119.3 (2) | O342—N34—C34 | 118.70 (19) |
O141—N14—C14 | 118.4 (2) | O341—N34—C34 | 118.53 (19) |
C14—C15—C16 | 117.89 (19) | C34—C35—C36 | 118.16 (19) |
C14—C15—H15 | 121.1 | C34—C35—H35 | 120.9 |
C16—C15—H15 | 121.1 | C36—C35—H35 | 120.9 |
C15—C16—C11 | 120.10 (19) | C35—C36—C31 | 120.03 (19) |
C15—C16—H16 | 119.9 | C35—C36—H36 | 120.0 |
C11—C16—H16 | 119.9 | C31—C36—H36 | 120.0 |
O17—C17—N11 | 123.95 (19) | O37—C37—N31 | 123.80 (18) |
O17—C17—C11 | 120.44 (18) | O37—C37—C31 | 120.40 (18) |
N11—C17—C11 | 115.59 (17) | N31—C37—C31 | 115.78 (17) |
C17—N11—C21 | 125.68 (16) | C37—N31—C41 | 124.21 (16) |
C17—N11—H11 | 119.9 | C37—N31—H31 | 121.0 |
C21—N11—H11 | 114.2 | C41—N31—H31 | 114.0 |
C22—C21—C26 | 119.56 (18) | C42—C41—C46 | 119.51 (18) |
C22—C21—N11 | 122.32 (17) | C42—C41—N31 | 121.22 (18) |
C26—C21—N11 | 118.10 (17) | C46—C41—N31 | 119.25 (17) |
C23—C22—C21 | 120.24 (18) | C43—C42—C41 | 120.18 (18) |
C23—C22—H22 | 119.9 | C43—C42—H42 | 119.9 |
C21—C22—H22 | 119.9 | C41—C42—H42 | 119.9 |
C22—C23—C24 | 119.89 (18) | C42—C43—C44 | 119.97 (19) |
C22—C23—H23 | 120.1 | C42—C43—H43 | 120.0 |
C24—C23—H23 | 120.1 | C44—C43—H43 | 120.0 |
C23—C24—C25 | 120.26 (19) | C45—C44—C43 | 120.42 (19) |
C23—C24—I24 | 118.76 (15) | C45—C44—I44 | 121.40 (15) |
C25—C24—I24 | 120.92 (15) | C43—C44—I44 | 118.19 (15) |
C26—C25—C24 | 119.64 (18) | C46—C45—C44 | 119.40 (19) |
C26—C25—H25 | 120.2 | C46—C45—H45 | 120.3 |
C24—C25—H25 | 120.2 | C44—C45—H45 | 120.3 |
C25—C26—C21 | 120.31 (18) | C45—C46—C41 | 120.50 (19) |
C25—C26—H26 | 119.8 | C45—C46—H46 | 119.8 |
C21—C26—H26 | 119.8 | C41—C46—H46 | 119.8 |
C16—C11—C12—C13 | −2.6 (3) | C36—C31—C32—C33 | 2.8 (3) |
C17—C11—C12—C13 | 176.7 (2) | C37—C31—C32—C33 | −177.0 (2) |
C11—C12—C13—C14 | 1.2 (4) | C31—C32—C33—C34 | −1.1 (3) |
C12—C13—C14—C15 | 1.4 (4) | C32—C33—C34—C35 | −1.5 (4) |
C12—C13—C14—N14 | −177.3 (2) | C32—C33—C34—N34 | 176.6 (2) |
C15—C14—N14—O142 | 5.1 (4) | C35—C34—N34—O342 | −3.9 (4) |
C13—C14—N14—O142 | −176.1 (3) | C33—C34—N34—O342 | 177.9 (3) |
C15—C14—N14—O141 | −174.2 (3) | C35—C34—N34—O341 | 174.1 (3) |
C13—C14—N14—O141 | 4.6 (4) | C33—C34—N34—O341 | −4.1 (4) |
C13—C14—C15—C16 | −2.6 (4) | C33—C34—C35—C36 | 2.4 (4) |
N14—C14—C15—C16 | 176.1 (2) | N34—C34—C35—C36 | −175.8 (2) |
C14—C15—C16—C11 | 1.1 (4) | C34—C35—C36—C31 | −0.7 (3) |
C12—C11—C16—C15 | 1.4 (3) | C32—C31—C36—C35 | −1.8 (3) |
C17—C11—C16—C15 | −177.8 (2) | C37—C31—C36—C35 | 177.9 (2) |
C12—C11—C17—O17 | 33.7 (3) | C32—C31—C37—O37 | −32.2 (3) |
C16—C11—C17—O17 | −147.0 (2) | C36—C31—C37—O37 | 148.1 (2) |
C12—C11—C17—N11 | −144.7 (2) | C32—C31—C37—N31 | 146.52 (19) |
C16—C11—C17—N11 | 34.6 (3) | C36—C31—C37—N31 | −33.2 (3) |
O17—C17—N11—C21 | −0.8 (3) | O37—C37—N31—C41 | −0.9 (3) |
C11—C17—N11—C21 | 177.53 (18) | C31—C37—N31—C41 | −179.62 (18) |
C17—N11—C21—C22 | −27.9 (3) | C37—N31—C41—C42 | −38.8 (3) |
C17—N11—C21—C26 | 153.85 (19) | C37—N31—C41—C46 | 142.9 (2) |
C26—C21—C22—C23 | −2.6 (3) | C46—C41—C42—C43 | −1.6 (3) |
N11—C21—C22—C23 | 179.15 (19) | N31—C41—C42—C43 | −179.87 (17) |
C21—C22—C23—C24 | 0.2 (3) | C41—C42—C43—C44 | 0.9 (3) |
C22—C23—C24—C25 | 2.6 (3) | C42—C43—C44—C45 | 0.4 (3) |
C22—C23—C24—I24 | −174.65 (15) | C42—C43—C44—I44 | −179.36 (14) |
C23—C24—C25—C26 | −2.9 (3) | C43—C44—C45—C46 | −1.1 (3) |
I24—C24—C25—C26 | 174.33 (15) | I44—C44—C45—C46 | 178.65 (15) |
C24—C25—C26—C21 | 0.4 (3) | C44—C45—C46—C41 | 0.5 (3) |
C22—C21—C26—C25 | 2.4 (3) | C42—C41—C46—C45 | 0.9 (3) |
N11—C21—C26—C25 | −179.33 (18) | N31—C41—C46—C45 | 179.20 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O17i | 0.90 | 2.06 | 2.935 (2) | 163 |
N31—H31···O37ii | 0.90 | 2.04 | 2.915 (2) | 164 |
C13—H13···O141iii | 0.95 | 2.41 | 3.233 (4) | 145 |
C15—H15···O342 | 0.95 | 2.40 | 3.305 (4) | 159 |
C33—H33···O341iv | 0.95 | 2.50 | 3.231 (3) | 134 |
C35—H35···O142 | 0.95 | 2.36 | 3.254 (3) | 157 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) −x+3, −y, −z+1. |
Experimental details
(II) | (III) | (IV) | (V) | |
Crystal data | ||||
Chemical formula | C13H9IN2O3 | C13H9IN2O3 | C13H9IN2O3 | C13H9IN2O3 |
Mr | 368.12 | 368.12 | 368.12 | 368.12 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, Pc | Monoclinic, P21 | Monoclinic, Cc |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 13.1804 (3), 7.5099 (2), 13.8849 (3) | 10.0528 (3), 4.8703 (10), 13.5719 (3) | 11.0552 (3), 8.9521 (2), 12.8921 (3) | 13.8494 (4), 10.0495 (3), 9.4203 (3) |
α, β, γ (°) | 90, 111.1634 (12), 90 | 90, 109.9452 (17), 90 | 90, 96.3899 (10), 90 | 90, 105.2353 (16), 90 |
V (Å3) | 1281.68 (5) | 624.63 (13) | 1267.97 (5) | 1265.03 (7) |
Z | 4 | 2 | 4 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 2.50 | 2.57 | 2.53 | 2.54 |
Crystal size (mm) | 0.50 × 0.10 × 0.02 | 0.42 × 0.30 × 0.08 | 0.40 × 0.20 × 0.08 | 0.46 × 0.34 × 0.16 |
Data collection | ||||
Diffractometer | Bruker-Nonius KappaCCD diffractometer | Bruker-Nonius KappaCCD diffractometer | Bruker-Nonius KappaCCD diffractometer | Bruker-Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan SADABS 2.10 (Sheldrick, 2003) | Multi-scan SADABS 2.10 (Sheldrick, 2003) | Multi-scan SADABS 2.10 (Sheldrick, 2003) | Multi-scan SADABS 2.10 (Sheldrick, 2003) |
Tmin, Tmax | 0.368, 0.952 | 0.412, 0.821 | 0.431, 0.823 | 0.376, 0.666 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15482, 2942, 2549 | 10157, 2767, 2624 | 16241, 5672, 5506 | 7022, 2797, 2752 |
Rint | 0.038 | 0.026 | 0.024 | 0.023 |
(sin θ/λ)max (Å−1) | 0.651 | 0.650 | 0.650 | 0.649 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.062, 1.07 | 0.019, 0.048, 1.21 | 0.020, 0.046, 1.11 | 0.018, 0.053, 1.24 |
No. of reflections | 2942 | 2767 | 5672 | 2797 |
No. of parameters | 172 | 173 | 344 | 172 |
No. of restraints | 0 | 2 | 1 | 2 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0327P)2 + 0.5883P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.022P)2] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0177P)2 + 0.1391P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0227P)2] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.58, −0.98 | 0.67, −0.62 | 0.66, −0.80 | 0.56, −1.09 |
Absolute structure | ? | Flack (1983), 1328 Friedel pairs | Flack (1983), 2565 Friedel pairs | Flack (1983), 1349 Friedel pairs |
Absolute structure parameter | ? | −0.006 (17) | −0.008 (11) | 0.013 (17) |
(VI) | (IX) | |
Crystal data | ||
Chemical formula | C13H9IN2O3 | C13H9IN2O3 |
Mr | 368.12 | 368.12 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 7.4798 (2), 14.0889 (7), 11.8138 (6) | 5.1047 (3), 15.3015 (9), 16.4806 (9) |
α, β, γ (°) | 90, 93.259 (3), 90 | 95.356 (2), 95.498 (2), 91.150 (2) |
V (Å3) | 1242.95 (9) | 1275.23 (13) |
Z | 4 | 4 |
Radiation type | Mo Kα | Synchrotron, λ = 0.6712 Å |
µ (mm−1) | 2.58 | 2.52 |
Crystal size (mm) | 0.48 × 0.09 × 0.07 | 0.09 × 0.04 × 0.02 |
Data collection | ||
Diffractometer | Bruker-Nonius KappaCCD diffractometer | Bruker SMART APEX2 CCD diffractometer |
Absorption correction | Multi-scan SADABS 2.10 (Sheldrick, 2003) | Multi-scan SADABS 2.10 (Sheldrick, 2003) |
Tmin, Tmax | 0.370, 0.840 | 0.805, 0.951 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13030, 2843, 2529 | 13690, 7348, 6485 |
Rint | 0.060 | 0.020 |
(sin θ/λ)max (Å−1) | 0.652 | 0.715 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.084, 0.286, 1.17 | 0.029, 0.074, 1.04 |
No. of reflections | 2843 | 7348 |
No. of parameters | 161 | 337 |
No. of restraints | 0 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.1676P)2 + 25.4085P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6363P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 3.92, −2.57 | 0.91, −1.02 |
Absolute structure | ? | ? |
Absolute structure parameter | ? | ? |
Computer programs: COLLECT (Hooft, 1999), Bruker APEX2 (Bruker, 2003), DENZO (Otwinowski & Minor, 1997) & COLLECT, Bruker APEX2, DENZO & COLLECT), Bruker SAINT (Bruker, 2001), OSCAIL (McArdle, 2003) & SHELXS97 (Sheldrick, 1997), OSCAIL & SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK, and at the Daresbury SRS Station 9.8, Warrington, UK; the authors thank the staff of these facilities for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.
References
Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729–2730. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. & Teat, S. J. (1997). J. Synchotron Rad. 4, 279–286. CrossRef CAS Web of Science Google Scholar
Clegg, W. (2000). J. Chem. Soc. Dalton Trans. pp. 3223–3232. Web of Science CrossRef Google Scholar
Day, G. M,, Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., van Eijck, B. P., Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. & Verwer, P. (2005). Acta Cryst. B61, 511–527. CrossRef IUCr Journals Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445–o449. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
George, S., Nangia, A., Lam, C.-K., Mak, T. C. W. & Nicoud, J.-F. (2004). Chem. Commun. pp. 1202–1203. Web of Science CSD CrossRef Google Scholar
Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. B58, 864–876. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480. Web of Science CSD CrossRef IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312–o316. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hooft, R. W. W. (1999). Collect. Nonius BV, Delft, The Netherlands. Google Scholar
Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697–714. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Low, J. N., Skakle, J. M. S., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1399–o1401. Web of Science CSD CrossRef IUCr Journals Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Masciocchi, N., Bergamo, M. & Sironi, A. (1998). Chem. Commun. pp. 1347–1348. Web of Science CSD CrossRef Google Scholar
Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2002). Acta Cryst. B58, 647–761. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Senskey, M. D., Bradshaw, J. D., Tessier, C. A. & Youngs, W. J. (1995). Tetrahedron Lett. 35, 6127–6220. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS, Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972. Web of Science CrossRef Google Scholar
Thalladi, V. R., Goud, B. S., Hoy, V. J., Allen F. H., Howard, J. A. K. & Desiraju, G. R. (1996). Chem. Commun. pp. 401–402. Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428–o430. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Weiss, R., Schwab, O. & Hampel, F. (1999). Chem. Eur. J. 5, 968–974. CrossRef CAS Google Scholar
Wilson, A. J. C. (1976). Acta Cryst. A32, 994–996. CrossRef IUCr Journals Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
In full text version