research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Two-dimensional metal-organic frameworks containing linear di­carboxylates

aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: lee.brammer@sheffield.ac.uk

(Received 14 June 2006; accepted 18 August 2006)

The solvothermal synthesis of four two-dimensional metal-organic frameworks containing linear dicarboxylic acids as ligands for ZnII centres is described. Zn(BDC)(DMF) [(1) where BDC = benzene-1,4-dicarboxylic acid; DMF = N,N-dimethylformamide] adopts a common paddlewheel motif leading to a 44 grid network, whereas Zn3(BDC)3(EtOH)2 (2), Zn3(BDC)3(H2O)2·4DMF (3) and Zn3(BPDC)3(DMF)2·4DMF (4) each form networks with the relatively uncommon 36 topology based upon Zn3(O2CR)6 secondary building units. All contain coordinated solvent molecules, namely DMF [(1) and (4)], ethanol (2) or H2O (3). Comparison of structures (2) and (3) illustrates a clay-like flexibility in interplanar spacing which sheds light on the ability of the Zn3(BDC)3 framework to undergo desolvation and uptake of small solvent and gas molecules.

1. Introduction

Research concerning metal-organic frameworks (or coordination networks) has become increasingly important in recent years (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Eddaoudi et al., 2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]; Janiak, 2003[Janiak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781-2804.]; James, 2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]; Rowsell & Yaghi, 2004[Rowsell, J. L. C. & Yaghi, O. M. (2004). Micropor. Mesopor. Mater. 73, 3-14.]; Lin, 2005[Lin, W. (2005). Coord. Chem. Rev. 178, 2486-2490.]) owing to their potential application in a number of areas, including gas storage (Noro et al., 2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]; Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N. L., Vodak, D. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]; Férey et al., 2003[Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976-2977.]; Rowsell et al., 2004[Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666-5667.]) and catalysis (Fujita et al., 1994[Fujita, M., Kwon, Y.-J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]; Seo et al., 2000[Seo, J. S., Wand, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature, 404, 982-986.]; Wu et al., 2005[Wu, C.-D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940-8941.]). Prominent among this class of materials are frameworks that involve dicarboxylate ligands spanning network nodes, comprising one or more (transition) metal ions. An advantage of this approach over methods using neutral ligands such as 4,4-bipyridyl to link metal centres is that the anionic dicarboxylate ligand typically leads to networks in which it is not necessary to accommodate other counterions to achieve electroneutrality.

The simplest type of linear aromatic dicarboxylic acid is terephthalic acid (benzene-1,4-dicarboxylic acid; BDC), and this has been used extensively in the synthesis of metal-organic frameworks. Indeed, terephthalic acid was the first acid reported by Yaghi and coworkers in the series of structures subsequently referred to as isoreticular metal-organic frameworks (IRMOFs; Li et al., 1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature, 402, 276-279.]). We report here the syntheses and crystal structures of three two-dimensional zinc-BDC metal-organic frameworks: Zn(BDC)(DMF) (1); Zn3(BDC)3(EtOH)2 (2); Zn3(BDC)3(H2O)2·4DMF (3); and also a two-dimensional framework containing the extended dicarboxylate linker 4,4-biphenyldicarboxylate (BPDC): Zn3(BPDC)3(DMF)2·4DMF (4). The square-grid (44) structure of (1) is constructed from the common M2(O2CR)4 paddlewheel motif. Structures (2), (3) and (4) are isoreticular and all adopt the relatively uncommon 36 network involving M3(O2CR)6 nodes.

2. Experimental

2.1. General

All reagents (purchased from Aldrich) and solvents were used as received. Reactions were performed under autogeneous pressure in a Parr 23 ml pressure vessel equipped with a Teflon liner. Heating and cooling was controlled using a Carbolite programmable oven fitted with a Eurotherm 3216 temperature controller. Elemental analyses were conducted by the Elemental Analysis service, Department of Chemistry, University of Sheffield. Thermogravimetric analysis (TGA) was conducted using a Perkin–Elmer Pyris 1 TGA instrument with heating under N2 at 20 K min−1 to 673 K for (1) and at 10 K min−1 to 873 K for (2).

2.2. Crystal syntheses

2.2.1. Zn(BDC)(DMF) (1)

Zn(NO3)2·6H2O (0.079 g, 0.26 mmol), terephthalic acid (0.033 g, 0.20 mmol) and DMF (8 ml) were heated to 373 K, held at this temperature for 24 h and then cooled to room temperature at 0.1 K min−1. Colourless crystals of (1) were isolated from the reaction mixture. Yield: 0.011 g (18.2%). Calc. for Zn(C6H4(CO2)2)(C3H7NO): C 43.66, H 3.66, N 4.63; found: C 42.52, H 3.72, N 5.16%.

2.2.2. Zn3(BDC)3(EtOH)2 (2)

Zn(NO3)2·6H2O (0.179 g, 0.60 mmol), terephthalic acid (0.033 g, 0.20 mmol), L-(−)-malic acid (0.027 g, 0.20 mmol) and ethanol (8 ml) were heated to 368 K, held at this temperature for 20 h then cooled to room temperature at 0.1 K min−1. Colourless crystals of (2) were isolated from the reaction mixture. Yield 0.031 g (19.9%). Calc. for Zn3(C6H4(CO2)2)3(C2H5OH)2: C 43.08, H 3.10; found C 43.42, H 2.51%.

2.2.3. Zn3(BDC)3(H2O)2·4DMF (3)

Zn(NO3)2·6H2O (0.034 g, 0.11 mmol), terephthalic acid containing ca 30% benzil-4,4-dicarboxylic acid (0.030 g, 0.10 mmol) and DMF (5 ml) were heated to 368 K, held at this temperature for 48 h before being cooled down to room temperature at 0.1 K min−1. The small amount of colourless crystalline product was collected by filtration. The quantity of product obtained was insufficient to undertake bulk analyses, but yielded a few crystals suitable for single-crystal diffraction study.

2.2.4. Zn3(BPDC)3(DMF)2·4DMF (4)

Zn(NO3)2·6H2O (0.079 g, 0.26 mmol), 4,4′-biphenyldicarboxylic acid (0.048 g, 0.20 mmol) and DMF (8 ml) were heated to 373 K, held at this temperature for 24 h then cooled to room temperature at 0.1 K min−1. Colourless crystals of (4) were isolated from the reaction mixture. Yield 0.035 g (12.9%). A number of attempts to obtain satisfactory elemental analysis have proved to be unsuccessful, possibly because of facile solvent loss.

2.3. Crystallography

Crystals of (1), (2) and (4) were mounted on glass fibres using a viscous hydrocarbon oil to coat the crystal and then transferred directly to the cold nitrogen stream of an Oxford Cryostream cryostat (for data collection at 150 K) on a Bruker SMART 1000 CCD diffractometer operating with a sealed-tube X-ray source. X-ray data for (1), (2) and (4) were collected using Mo Kα radiation (Bruker AXS Inc., 2003a[Bruker AXS Inc. (2003a). SMART5.040. Bruker AXS Inc., Madison, Wisconsin, USA.],b[Bruker AXS Inc. (2003b). SAINT6.458/6/03. Bruker AXS Inc., Madison, Wisconsin, USA.]). A crystal of (3) was mounted using a similar oil on a thin carbon fibre attached to the end of a borosilicate glass capillary. X-ray data were collected on synchrotron beamline 16.2smx at the SRS at the CCLRC Daresbury Laboratory at 100 K using a Bruker APEX-II diffractometer equipped with an Oxford Cryostream cryostat. The crystal of (3) was found to be twinned as two domains related by a rotation of 180° about the c axis. For each compound, data were corrected for absorption using empirical methods (SADABS or TWINABS) based upon symmetry-equivalent reflections combined with measurements at different azimuthal angles (Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Sheldrick, 2002[Sheldrick, G. M. (2002). TWINABS and CELL_NOW. University of Göttingen, Germany.]). Crystal structures were solved and refined against all F2 values using the SHELXTL suite of programs (Bruker AXS Inc., 1998[Bruker AXS Inc. (1998). SHELXTL5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]). Non-H atoms were refined anisotropically (when no disorder was present) and H atoms associated with O atoms [in (2) and (3)] were located from the difference map and the O—H distance fixed at 0.96 Å. All other H atoms were placed in calculated positions with idealized geometries and refined using a riding model. In (2) the methyl group of the coordinated ethanol solvent molecule is disordered and has been modelled with two orientations in a 71 (2):29 (2) ratio. Refinement of the twin model in (3) indicated an approximately 50:50 twin [0.506 (1):0.494 (1)]. Substantial disorder is present in the structure of (4). Two of the three unique half-ligands of BPDC all have six C atoms of the phenyl ring and one of the carboxylate O atoms disordered, and have been modelled in two orientations with a 61.8 (6):38.2 (6) and 62.9 (8):37.1 (8) ratio. One of the other carboxylate O atoms is also disordered over two sites and has also been modelled with a 63.4 (6):36.6 (6) ratio. The DMF solvent molecules also exhibit disorder. The coordinated DMF molecule has both methyl groups rotationally disordered and these have been successfully modelled in a 72 (2):28 (2) ratio. Of the two uncoordinated DMF molecules, one has both methyl groups disordered [in a 52 (1):48 (1) ratio] and the other has both methyl groups and the carbonyl oxygen disordered [modelled with a 53 (2):47 (2) ratio]. A summary of crystal data and structure refinements is provided in Table 1[link].1

Table 1
Experimental details

  (1) (2) (3) (4)
Crystal data
Chemical formula C11H11NO5Zn C28H24O14Zn3 C24H16O14Zn3·4C3H7NO C48H38N2O14Zn3·4C3H7NO
Mr 302.58 780.58 1016.86 1355.30
Cell setting, space group Triclinic, [P\bar 1] Monoclinic, C2/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 150 (2) 150 (2) 100 (2) 150 (2)
a, b, c (Å) 7.9853 (18), 8.959 (2), 9.055 (2) 19.236 (4), 10.588 (2), 16.247 (3) 12.968 (2), 9.761 (3), 18.336 (2) 11.777 (4), 14.727 (6), 19.487 (7)
α, β, γ (°) 103.228 (3), 100.715 (3), 99.844 (4) 90.00, 109.109 (3), 90.00 90.00, 108.69 (3), 90.00 90.00, 101.748 (7), 90.00
V3) 604.0 (2) 3126.6 (10) 2198.7 (8) 3309 (2)
Z 2 4 2 2
Dx (Mg m−3) 1.664 1.658 1.536 1.360
Radiation type, wavelength Mo Kα, 0.71073 Mo Kα, 0.71073 Synchrotron, 0.84600 Mo Kα, 0.71073
μ (mm−1) 2.04 2.35 1.70 1.15
Crystal form, colour Block, colourless Block, colourless Plate, colourless Prism, colourless
Crystal size (mm) 0.21 × 0.14 × 0.12 0.16 × 0.15 × 0.10 0.10 × 0.04 × 0.03 0.33 × 0.29 × 0.15
         
Data collection
Diffractometer Bruker SMART 1000 Bruker SMART 1000 CCD area detector Bruker SMART 1000
Data collection method ω scans ω scans φ and ω scans ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements)
Tmin 0.673 0.705 0.848 0.703
Tmax 0.791 0.799 0.951 0.847
No. of measured, independent and observed reflections 6736, 2684, 2354 17 033, 3571, 2542 26 356, 8551, 4219 36 004, 7694, 4816
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.042 0.091 0.117 0.073
θmax (°) 27.6 27.6 32.2 28.0
         
Refinement
Refinement on F2 F2 F2 F2
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.17 0.042, 0.102, 1.05 0.064, 0.133, 0.82 0.071, 0.207, 1.04
No. of reflections 2684 3571 8551 7694
No. of parameters 165 205 282 315
H-atom treatment Constrained to parent site Constrained to parent site Constrained to parent site Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.0772P)2 + 1.7052P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0P)2 + 5.358P], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0422P)2], where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0987P)2 + 5.3224P], where P = (Fo2 + 2Fc2)/3
(Δ/σ)max 0.001 0.001 <0.0001 <0.0001
Δρmax, Δρmin (e Å−3) 1.98, −0.75 0.63, −0.65 1.61, −1.01 1.58, −0.93

3. Results

The reaction of Zn(NO3)2·6H2O with either terephthalic acid or 4,4′-biphenyldicarboxylic acid under a variety of different solvothermal conditions affords crystals of the two-dimensional metal-organic frameworks (1)–(4). These structures have been characterized using single-crystal X-ray diffraction.

3.1. Crystal structure of Zn(BDC)(DMF) (1)

The structure of (1) is shown in Fig. 1[link](a) and comprises a two-dimensional square-grid (44 topology). In this structure, the terephthalate groups bridge between nodes of a Zn2(DMF)2 unit. The overall secondary building unit (SBU) is a Zn2(CO2)4(DMF)2 paddle-wheel (Fig. 1[link]b).

[Figure 1]
Figure 1
(a) The two-dimensional square-grid adopted by (1); (b) the Zn2(CO2)4(DMF)2 paddle-wheel SBU.

The asymmetric unit of (1) contains one unique ZnII centre, two independent half terephthalate anions and a DMF solvent molecule. The coordination sphere of the Zn centre comprises four different carboxylate O atoms as well as the oxygen of a DMF solvent molecule. All Zn—O bond lengths fall in the range 1.995 (4)–2.057 (4) Å. Although the Zn⋯Zn distance of 2.951 (1) Å is indicative of some metal–metal interaction, it is too long to be considered a bond. The channels in the structure of (1) have the dimensions 10.935 × 10.903 Å (measured between the midpoints of the Zn2 units within four paddlewheels), and are filled by coordinated DMF molecules that protrude into them from layers above and below. TGA analysis of (1) shows that the coordinated DMF solvent molecule is removed (expected loss 22.8%, found 21.4%) in the temperature range 383–483 K and no further weight loss is observed up to 673 K. Confusingly, the TGA trace also shows a weight loss between 328 and 373 K, which can be assigned to the loss of a water molecule [expected loss if formula were Zn(BDC)(DMF)·H2O 5.6%, found 5.1%]. However, no crystallographic evidence of an incorporated water molecule can be found, which suggests that (1) may have absorbed water from the air.

3.2. The SBU in structures (2), (3) and (4)

As previously noted, structures (2), (3) and (4) are isoreticular (Eddaoudi, Kim, Rosi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N. L., Vodak, D. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]), meaning that they all adopt the same network, in this case one with a 36 topology. The SBU for the construction of this 36 network in all three structures is the trinuclear Zn3(O2CR)6(L)2 unit (L = DMF, EtOH or H2O), which is shown in Fig. 2[link].

[Figure 2]
Figure 2
The trinuclear Zn SBU for (a) (2), (4) and (b) (3) showing the bridging carboxylate groups and the terminal O atom of a coordinated solvent molecule. The remainder of the dicarboxylic acid and solvent molecule are removed for clarity. Zn atoms are shown in pink, O atoms in red and C atoms in grey.

The Zn3(O2CR)6 SBU contains two crystallographically equivalent four-coordinate terminal Zn centres [five-coordinate in (3)], to each of which the O atom of a solvent molecule is axially bonded, and a central six-coordinate Zn atom. Three dicarboxylate moieties link each pair of Zn centres, and bridge either using solely monodentate coordination [central Zn in all structures and terminal Zn in (2) and (4)] or a combination of monodentate and asymmetric chelating bidentate [terminal Zn in (3)]. In all cases the central Zn atom and one of the dicarboxylate ligands lie on inversion centres.

3.3. Structure of Zn3(BDC)3(EtOH)2 (2)

The two-dimensional 36 network structure of (2) is shown in Fig. 3[link].

[Figure 3]
Figure 3
The 36 two-dimensional net of (2). Coordinated EtOH solvent molecules are not shown.

The three Zn—O (carboxylate) distances for the terminal Zn centres lie in the range 1.932 (2)–1.968 (2) Å, whereas for the central Zn atom they are between 2.057 (3) and 2.096 (2) Å. The separation of the trinuclear units, given by the Zn⋯Zn distance between the central ZnII centres in neighbouring SBUs, ranges from 9.696 to 10.588 Å. The hydroxyl proton of the coordinated ethanol solvent molecule is involved in the formation of a hydrogen bond to a carboxylate oxygen in an adjacent layer [(O)H⋯O 1.77 Å; O—H⋯O 174°]. This results in the formation of an R22(8) hydrogen-bonded ring (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) linking adjacent trinuclear Zn3(O2CR)6 SBUs, and is shown in Fig. 4[link].

[Figure 4]
Figure 4
The hydrogen bonding linking adjacent layers observed in (3). Only the bridging carboxylate groups of the SBU are shown – the remainder of the terephthalate ligand is removed for clarity.

TGA analysis of (2) shows two distinct mass losses, each of which may arise from the loss of coordinated ethanol solvent molecules, although these mass losses are gradual rather than occurring at a sharply defined temperature. The first is observed from 373–428 K (expected loss 5.9%, found 7.6%) and the second loss from 473–598 K (expected 5.9%, found 6.5%). The framework then starts to decompose at 628 K.

3.4. Structure of Zn3(BDC)3(H2O)2·4DMF (3)

The crystal structure of (3) has been previously determined at room temperature (Edgar et al., 2001[Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168-5175.]; Zhao et al., 2005[Zhao, D., Chen, Z., Liu, Z., Sun, J., Weng, L., Yu, T. & Zhou, Y. (2005). Private Communication to CSD (Refcode: IFACAT01).]), but only a very brief structural description was provided. The low-temperature structure reported here is described in more detail and in the context of the related structures of (2) and (4). In (3) there are four Zn—O (carboxylate) bonds to the terminal Zn centres, with lengths in the range 1.962 (3) to 2.365 (3) Å. The longest of these distances are the additional asymmetric chelating bidentate bonds shown in Fig. 2[link](b), which are not present in the structures of (2) or (4). For the central Zn atom, the Zn—O bond lengths lie between 2.038 (3) and 2.166 (3) Å. As would be expected, the separation of the trinuclear units, in the range 9.761–10.386 Å, is very similar to that observed for (2). The H atoms of the coordinated water molecules are involved in the formation of hydrogen bonds. Each interacts with the carbonyl O atoms of a separate DMF solvent molecule [(O)H⋯O 1.73, 1.80 Å; O—H⋯O 152, 143°], as illustrated in Fig. 5[link]. In contrast to (2), these hydrogen bonds do not provide a bridge between adjacent layers. The interlayer spacing in (3) (determined using planes comprising the central Zn atoms of the Zn3 SBUs) measures 12.285 Å, which is considerably larger than the 9.088 Å for the analogous spacing in (2). This difference can be explained by the fact that (3) contains more solvent molecules per formula unit than (2), despite identical frameworks.

[Figure 5]
Figure 5
The hydrogen bonding observed in (3) between the coordinated water molecules and incorporated DMF solvent molecules. The remainder of the terephthalate ligands have been removed for clarity.

3.5. Structure of Zn3(BPDC)3(DMF)2·4DMF (4)

The two-dimensional 36 network structure of (4) is shown in Fig. 6[link]. In (4) the three Zn—O(carboxylate) distances for the terminal Zn centres lie in the range 1.929 (4)–1.948 (4) Å, whereas for the central Zn atom they are between 2.009 (11) and 2.088 (5) Å. As would be expected owing to the longer dicarboxylate linker used in (4), the Zn⋯Zn separation between trinuclear SBUs is larger than that seen in (2) and (3) and ranges from 14.394 to 14.727 Å. The channels in (4) are filled by disordered free DMF solvent molecules and also by coordinated DMF molecules from adjacent layers.

[Figure 6]
Figure 6
The 36 two-dimensional net of (4). Disordered carboxylate O atoms and DMF solvent molecules (both coordinated and free) are not shown.

4. Discussion

The M2(O2CR)4 paddlewheel moiety is a relatively common SBU for framework construction and it has been applied in the generation of some highly porous materials (Chen et al., 2001[Chen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021-1023.]; Chui et al., 1999[Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]). A number of square-grid framework structures (44 networks) related to that in (1) have been previously reported (Takamaizawa et al., 1998[Takamaizawa, S., Mori, W., Furihata, M., Takeda, S. & Yamaguchi, K. (1998). Inorg. Chim. Acta, 283, 268-274.], 2000[Takamaizawa, S., Furihata, M., Takeda, S., Yamaguchi, K. & Mori, W. (2000). Macromolecules, 33, 6222-6227.]; Braun et al., 2001[Braun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532-2533.]; Eddaoudi, Kim, Vodak et al., 2002[Eddaoudi, M., Kim, J., Vodak, D., Sudik, A., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Proc. Natl. Acad. Sci. USA, 99, 4900-4904.]). Several years ago, Yaghi and coworkers described the related two-dimensional framework complex Zn(BDC)(H2O)·(DMF) (Li et al. 1998[Abourahma, H., Coleman, A. W., Moulton, B., Rather, B., Shahgaldian, P. & Zaworotko, M. J. (2001). Chem. Commun. pp. 2380-2381.]), which has the same framework as (1) but contains an axially coordinated H2O molecule at each Zn centre rather than the DMF molecule observed in (1). Each water molecule then forms two hydrogen bonds, one to the DMF molecule and a second to the carboxylate O atom of an adjacent layer to extend the structure along the a axis. The microporosity of this framework was established through the use of N2 and CO2 sorption isotherms, with rapid sorption of these gases into the pores observed. The TGA analysis of this complex is identical to that observed for (1), with two well separated weight losses. Rather surprisingly, this means that the coordinated water ligands are removed well before the DMF molecules found in the channels. A further report describes the synthesis of a structure analogous to (1), with a DMSO molecule coordinated to the Zn centre rather than DMF as seen in (1) (Yang et al., 2005[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2005). Acta Cryst. E61, m1671-m1673.]). This structure also contains five incorporated DMSO solvent molecules per Zn2 paddlewheel unit. Other reports describe the use of a diamine or diimine linker to join two-dimensional paddlewheel layers. For a comparison with the structure observed in (1), a pair of coordinated DMF solvent molecules in the latter would be replaced by a bridging ligand such as pyrazine, DABCO (1,4-diazabicyclo[2.2.2]octane) or 4,4′-bipyridine. Kim described the framework [Zn2(BDC)2(DABCO)]·4DMF·0.5H2O (Dybtsev et al., 2004[Dybtsev, D. N., Chun, H. & Kim, K. (2004). Angew. Chem. Int. Ed. 43, 5033-5036.]), which shows unusual guest-dependent behaviour: the framework shrinks upon inclusion of guest solvent molecules and expands upon release. This study was extended (Chun et al., 2005[Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521-3529.]) to include different dicarboxylic acids and diamine or diimine linker molecules, all of which formed structures that adopt the paddlewheel motif. The H2 sorption of this family of complexes was also investigated and a maximum uptake of 2.1 wt % was observed at 1 atm H2 pressure. Paddlewheel complexes have also been used in the synthesis of coordination polygons, for example molecular squares (Cotton et al., 2001[Cotton, F. A., Lin, C. & Murillo, C. A. (2001). Acc. Chem. Res. 34, 759-771.]; Abourahma et al., 2001[Abourahma, H., Coleman, A. W., Moulton, B., Rather, B., Shahgaldian, P. & Zaworotko, M. J. (2001). Chem. Commun. pp. 2380-2381.]).

The two-dimensional 36 net observed in (2), (3) and (4) is a relatively uncommon structural motif. However, a few examples can be found in the literature, the majority of which involve the M3(terephthalate)3 SBU. Some years ago, Yaghi reported the synthesis and structure of [Zn3(terephthalate)3(MeOH)4]·2MeOH (Li et al., 1998[Li, H., Davis, C. E., Groy, T. L., Kelley, D. G. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 2186-2187.]). The structure resembles that of (2) and (3), but the two terminal Zn centres are each coordinated by two methanol ligands rather than the single ethanol molecule in (2) or the single water ligand present in (3). Uncoordinated MeOH molecules are also present. Thermal properties of this complex were investigated, as well as the propensity of the evacuated solid to selectively incorporate different alcohols. In the past year we have been aware of six reports of this type of network. Schröder reported the complex [Zn3(terephthalate)3(DEF)2]·DEF (Williams et al., 2005[Williams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435-5437.]; where DEF is N, N′-diethylformamide), in which the coordinated solvent molecules in (2) or (3) are replaced by DEF molecules leaving space for only one uncoordinated DEF molecule per Zn3 unit. The previous report of the room-temperature structure of (3) has already been noted (Edgar et al., 2001[Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168-5175.]; Zhao et al., 2005[Zhao, D., Chen, Z., Liu, Z., Sun, J., Weng, L., Yu, T. & Zhou, Y. (2005). Private Communication to CSD (Refcode: IFACAT01).]). Burrows' study of DEF hydrolysis in solvothermal reactions of Zn(NO3)2·6H2O with terephthalic acid led to the preparation of the compound (NH2Et2)2[Zn3(terephthalate)4]·2.5DEF, whose structure contains a network of this type (Burrows et al., 2005[Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm, 7, 548-550.]). However, in this case the two-dimensional 36 net is linked to neighbouring layers via additional terephthalate ligands, which coordinate to the axial ligand sites in (2) and (3). A structure containing Ni rather than Zn that has the formula [Ni3(terephthalate)3(2,2′-bipy)2] was reported by Jacobson (Go et al., 2005[Go, Y. B., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2005). Inorg. Chem. 44, 8265-8571.]) as part of a systematic study of how the reaction temperature and pH influence the binding modes of the terephthalate ligand. Two structures containing 2,6-naphthalenedicarboxylate (NDC) have been described by Long (Dincă & Long, 2005[Dincă, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376-9377.]) in their work on complexes for use as H2 storage materials. These have the formulae Mg3(NDC)3(DEF)4 and Zn3(NDC)3(MeOH)2·2DMF·H2O. To our knowledge, (4) is the first occurrence of this 36 network using 4,4′-biphenyldicarboxylate as the ligand and leads to a more open framework than with the shorter terephthalate or NDC ligands.

The relatively large difference in interlayer spacing for structures (2) and (3) is indicative of the responsiveness of this framework to flexibility in the spacing between the strongly internally bonded layers, and is presumably important in the solvent desorption and uptake of small alcohols and amines reported by Yaghi and coworkers (Li et al., 1998[Li, H., Davis, C. E., Groy, T. L., Kelley, D. G. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 2186-2187.]). This type of dynamic structural transformation is also described in more detail in reviews by Kitagawa (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Kitagawa & Uemura, 2005[Kitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109-119.]).

5. Conclusions

The solvothermal synthesis of four two-dimensional metal-organic frameworks containing linear dicarboxylic acids as ligands for ZnII centres has been described. All contain coordinated solvent molecules, namely DMF [(1) and (4)], ethanol (2) or H2O (3). Structure (1) adopts a common paddlewheel motif leading to a 44 grid network, whereas (2), (3) and (4) all form networks with the relatively uncommon 36 topology based upon Zn3(O2CR)6 secondary building units. Comparison of structures (2) and (3) illustrates a flexibility in interplanar spacing which is probably related to the ability of this framework to undergo desolvation and uptake of small solvent and gas molecules.

Supporting information


Computing details top

For all compounds, data collection: Bruker SMART; cell refinement: Bruker SMART. Data reduction: Bruker SHELXTL for (1); Bruker SMART for (2), (4); Bruker SAINT for (3). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(1) top
Crystal data top
C11H11NO5ZnZ = 2
Mr = 302.58F(000) = 308
Triclinic, P1Dx = 1.664 Mg m3
a = 7.9853 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.959 (2) ÅCell parameters from 3803 reflections
c = 9.055 (2) Åθ = 4.8–55.1°
α = 103.228 (3)°µ = 2.05 mm1
β = 100.715 (3)°T = 150 K
γ = 99.844 (4)°Block, colourless
V = 604.0 (2) Å30.21 × 0.14 × 0.12 mm
Data collection top
Bruker SMART 1000
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
SADABS
k = 1111
Tmin = 0.673, Tmax = 0.791l = 1111
6736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0772P)2 + 1.7052P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 1.98 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C11H11NO5Znγ = 99.844 (4)°
Mr = 302.58V = 604.0 (2) Å3
Triclinic, P1Z = 2
a = 7.9853 (18) ÅMo Kα radiation
b = 8.959 (2) ŵ = 2.05 mm1
c = 9.055 (2) ÅT = 150 K
α = 103.228 (3)°0.21 × 0.14 × 0.12 mm
β = 100.715 (3)°
Data collection top
Bruker SMART 1000
diffractometer
2684 independent reflections
Absorption correction: multi-scan
SADABS
2354 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.791Rint = 0.042
6736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.17Δρmax = 1.98 e Å3
2684 reflectionsΔρmin = 0.75 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.07874 (6)0.39634 (6)0.39517 (6)0.0181 (2)
C10.7844 (6)0.5095 (6)0.2564 (6)0.0265 (10)
C20.6371 (6)0.5043 (6)0.1213 (6)0.0254 (10)
C30.4719 (7)0.5036 (7)0.1449 (6)0.0326 (11)
H30.45170.50710.24570.039*
C40.6659 (7)0.5022 (7)0.0233 (6)0.0341 (12)
H40.77990.50470.04060.041*
O10.7800 (6)0.5874 (5)0.3878 (5)0.0415 (10)
O20.9001 (5)0.4375 (6)0.2252 (5)0.0435 (10)
C110.7679 (6)0.2643 (6)0.5054 (6)0.0266 (10)
C120.6293 (6)0.1271 (6)0.5019 (6)0.0256 (10)
C130.4737 (7)0.1522 (6)0.5423 (8)0.0364 (13)
H130.45530.25600.56980.044*
C140.6532 (8)0.0268 (7)0.4575 (8)0.0398 (14)
H140.75730.04480.42710.048*
O110.7625 (5)0.3965 (4)0.5869 (5)0.0390 (10)
O120.8802 (6)0.2383 (5)0.4295 (6)0.0438 (10)
C1S1.1129 (9)0.0941 (7)0.2369 (7)0.0406 (13)
H1S1.02350.06450.28760.049*
C2S1.0900 (16)0.1828 (10)0.1267 (11)0.087 (3)
H2S11.06840.23870.01610.131*
H2S20.97950.19300.15970.131*
H2S31.17110.22800.18900.131*
C3S1.3073 (13)0.0203 (13)0.0761 (13)0.091 (3)
H3S11.29460.06210.02000.136*
H3S21.41900.02940.14790.136*
H3S31.30450.12080.05120.136*
O1S1.1722 (5)0.2388 (5)0.2588 (5)0.0355 (9)
N1S1.1649 (9)0.0200 (7)0.1490 (7)0.0545 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0157 (3)0.0169 (3)0.0183 (3)0.00170 (18)0.00090 (19)0.00568 (19)
C10.024 (2)0.026 (2)0.024 (2)0.0008 (19)0.0051 (19)0.0095 (19)
C20.024 (2)0.021 (2)0.025 (2)0.0024 (18)0.0050 (19)0.0060 (18)
C30.030 (3)0.048 (3)0.018 (2)0.008 (2)0.002 (2)0.009 (2)
C40.024 (2)0.050 (3)0.024 (3)0.012 (2)0.002 (2)0.004 (2)
O10.042 (2)0.051 (2)0.0242 (19)0.0174 (19)0.0090 (17)0.0051 (17)
O20.034 (2)0.061 (3)0.032 (2)0.023 (2)0.0068 (17)0.0089 (19)
C110.025 (2)0.021 (2)0.030 (3)0.0060 (18)0.002 (2)0.0109 (19)
C120.021 (2)0.023 (2)0.028 (2)0.0069 (18)0.0009 (19)0.0102 (19)
C130.029 (3)0.020 (2)0.059 (4)0.002 (2)0.015 (3)0.007 (2)
C140.029 (3)0.027 (3)0.061 (4)0.001 (2)0.020 (3)0.004 (3)
O110.036 (2)0.0215 (18)0.054 (3)0.0093 (15)0.0160 (19)0.0063 (17)
O120.037 (2)0.032 (2)0.059 (3)0.0098 (17)0.025 (2)0.0077 (19)
C1S0.048 (4)0.034 (3)0.039 (3)0.015 (3)0.010 (3)0.004 (2)
C2S0.137 (9)0.040 (4)0.068 (6)0.033 (5)0.001 (6)0.007 (4)
C3S0.076 (6)0.091 (7)0.096 (7)0.031 (6)0.042 (6)0.019 (6)
O1S0.0300 (19)0.036 (2)0.037 (2)0.0087 (16)0.0108 (17)0.0007 (16)
N1S0.068 (4)0.044 (3)0.050 (3)0.027 (3)0.013 (3)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O1S1.995 (4)C12—C131.399 (8)
Zn1—O11i2.014 (4)C12—C141.401 (8)
Zn1—O1i2.035 (4)C13—C14iii1.379 (7)
Zn1—O22.040 (4)C13—H130.9500
Zn1—O122.057 (4)C14—C13iii1.379 (7)
Zn1—Zn1i2.9510 (11)C14—H140.9500
C1—O11.245 (7)O11—Zn1i2.014 (4)
C1—O21.252 (7)C1S—O1S1.257 (7)
C1—C21.517 (6)C1S—N1S1.322 (8)
C2—C41.368 (8)C1S—H1S0.9500
C2—C31.374 (8)C2S—N1S1.431 (11)
C3—C4ii1.389 (7)C2S—H2S10.9800
C3—H30.9500C2S—H2S20.9800
C4—C3ii1.389 (7)C2S—H2S30.9800
C4—H40.9500C3S—N1S1.451 (12)
O1—Zn1i2.035 (4)C3S—H3S10.9800
C11—O121.248 (7)C3S—H3S20.9800
C11—O111.256 (6)C3S—H3S30.9800
C11—C121.497 (6)
O1S—Zn1—O11i103.83 (17)O11—C11—C12116.8 (5)
O1S—Zn1—O1i102.44 (17)C13—C12—C14119.5 (5)
O11i—Zn1—O1i85.91 (19)C13—C12—C11119.8 (5)
O1S—Zn1—O298.23 (17)C14—C12—C11120.7 (5)
O11i—Zn1—O289.38 (19)C14iii—C13—C12120.2 (5)
O1i—Zn1—O2159.33 (18)C14iii—C13—H13119.9
O1S—Zn1—O1296.68 (17)C12—C13—H13119.9
O11i—Zn1—O12159.48 (18)C13iii—C14—C12120.3 (5)
O1i—Zn1—O1289.1 (2)C13iii—C14—H14119.9
O2—Zn1—O1288.4 (2)C12—C14—H14119.9
O1S—Zn1—Zn1i174.45 (13)C11—O11—Zn1i126.1 (3)
O11i—Zn1—Zn1i81.55 (12)C11—O12—Zn1128.9 (4)
O1i—Zn1—Zn1i76.34 (12)O1S—C1S—N1S125.2 (7)
O2—Zn1—Zn1i83.07 (12)O1S—C1S—H1S117.4
O12—Zn1—Zn1i77.93 (13)N1S—C1S—H1S117.4
O1—C1—O2126.1 (5)N1S—C2S—H2S1109.5
O1—C1—C2116.7 (5)N1S—C2S—H2S2109.5
O2—C1—C2117.2 (5)H2S1—C2S—H2S2109.5
C4—C2—C3119.2 (5)N1S—C2S—H2S3109.5
C4—C2—C1121.2 (5)H2S1—C2S—H2S3109.5
C3—C2—C1119.5 (5)H2S2—C2S—H2S3109.5
C2—C3—C4ii120.8 (5)N1S—C3S—H3S1109.5
C2—C3—H3119.6N1S—C3S—H3S2109.5
C4ii—C3—H3119.6H3S1—C3S—H3S2109.5
C2—C4—C3ii119.9 (5)N1S—C3S—H3S3109.5
C2—C4—H4120.0H3S1—C3S—H3S3109.5
C3ii—C4—H4120.0H3S2—C3S—H3S3109.5
C1—O1—Zn1i131.5 (4)C1S—O1S—Zn1120.2 (4)
C1—O2—Zn1121.9 (4)C1S—N1S—C2S122.5 (8)
O12—C11—O11125.4 (5)C1S—N1S—C3S119.1 (7)
O12—C11—C12117.8 (5)C2S—N1S—C3S118.4 (7)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
(2) top
Crystal data top
C28H24O14Zn3F(000) = 1576
Mr = 780.58Dx = 1.658 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.236 (4) ÅCell parameters from 3878 reflections
b = 10.588 (2) Åθ = 4.5–54.6°
c = 16.247 (3) ŵ = 2.35 mm1
β = 109.109 (3)°T = 150 K
V = 3126.6 (10) Å3BLOCK, colourless
Z = 40.16 × 0.15 × 0.10 mm
Data collection top
Bruker SMART 1000
diffractometer
3571 independent reflections
Radiation source: fine-focus sealed tube2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 2.2°
ω scansh = 2424
Absorption correction: multi-scan
SADABS
k = 1313
Tmin = 0.705, Tmax = 0.799l = 2120
17033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.P)2 + 5.358P]
where P = (Fo2 + 2Fc2)/3
3571 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.63 e Å3
2 restraintsΔρmin = 0.65 e Å3
Crystal data top
C28H24O14Zn3V = 3126.6 (10) Å3
Mr = 780.58Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.236 (4) ŵ = 2.35 mm1
b = 10.588 (2) ÅT = 150 K
c = 16.247 (3) Å0.16 × 0.15 × 0.10 mm
β = 109.109 (3)°
Data collection top
Bruker SMART 1000
diffractometer
3571 independent reflections
Absorption correction: multi-scan
SADABS
2542 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.799Rint = 0.091
17033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.63 e Å3
3571 reflectionsΔρmin = 0.65 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.43103 (2)0.66284 (4)1.08941 (3)0.01481 (13)
Zn20.25000.75001.00000.01269 (15)
O10.44074 (15)0.7830 (2)1.00289 (17)0.0221 (6)
O20.32420 (15)0.7310 (2)0.93401 (16)0.0202 (6)
O30.41432 (14)1.2452 (2)0.68652 (15)0.0172 (6)
O40.32007 (14)1.1377 (2)0.59660 (16)0.0180 (6)
C10.3804 (2)0.7945 (3)0.9397 (2)0.0194 (9)
C20.3782 (2)0.8870 (3)0.8700 (2)0.0162 (8)
C30.3143 (2)0.8982 (4)0.7979 (3)0.0242 (9)
H30.27270.84690.79360.029*
C40.3117 (2)0.9837 (4)0.7328 (2)0.0232 (9)
H40.26890.98890.68290.028*
C50.3712 (2)1.0623 (3)0.7400 (2)0.0174 (8)
C60.4342 (2)1.0525 (3)0.8126 (2)0.0191 (8)
H60.47481.10700.81840.023*
C70.4380 (2)0.9643 (3)0.8763 (2)0.0205 (9)
H70.48180.95630.92470.025*
C80.36692 (19)1.1542 (3)0.6689 (2)0.0139 (8)
O50.28784 (14)0.5805 (2)1.06612 (15)0.0171 (6)
O60.39110 (15)0.4960 (2)1.05591 (16)0.0205 (6)
C100.3233 (2)0.4897 (3)1.0496 (2)0.0172 (8)
C110.2853 (2)0.3650 (3)1.0241 (2)0.0200 (9)
C120.2123 (2)0.3528 (4)1.0172 (3)0.0271 (10)
H120.18640.42291.02920.033*
C130.1766 (2)0.2376 (4)0.9928 (3)0.0278 (10)
H130.12620.22930.98760.033*
O1S0.53518 (16)0.6245 (3)1.16045 (17)0.0291 (7)
H3S0.55530.67281.21290.035*
C1S0.5837 (3)0.5284 (5)1.1489 (3)0.0494 (14)
H1S10.55600.47701.09780.059*
H1S20.62410.57051.13430.059*
C2S0.6160 (6)0.4439 (7)1.2199 (5)0.045 (2)*0.709 (16)
H2S10.64760.38341.20330.068*0.709 (16)
H2S20.57710.39831.23410.068*0.709 (16)
H2S30.64550.49221.27080.068*0.709 (16)
C2S'0.5732 (15)0.4243 (16)1.2075 (13)0.053 (4)*0.291 (16)
H2S40.60430.35201.20480.080*0.291 (16)
H2S50.52150.39811.18810.080*0.291 (16)
H2S60.58720.45531.26750.080*0.291 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0204 (3)0.0110 (2)0.0105 (2)0.00203 (18)0.00165 (18)0.00021 (16)
Zn20.0156 (3)0.0103 (3)0.0087 (3)0.0020 (2)0.0007 (2)0.0008 (2)
O10.0246 (16)0.0199 (14)0.0173 (15)0.0030 (11)0.0007 (13)0.0062 (11)
O20.0290 (17)0.0162 (14)0.0181 (14)0.0051 (12)0.0113 (12)0.0001 (11)
O30.0222 (15)0.0144 (12)0.0110 (13)0.0012 (11)0.0001 (11)0.0028 (10)
O40.0217 (15)0.0142 (13)0.0123 (13)0.0034 (11)0.0025 (11)0.0030 (10)
C10.033 (3)0.0111 (17)0.015 (2)0.0002 (17)0.0093 (18)0.0026 (15)
C20.020 (2)0.0149 (18)0.0134 (19)0.0001 (15)0.0055 (16)0.0014 (14)
C30.020 (2)0.027 (2)0.025 (2)0.0061 (17)0.0060 (18)0.0076 (17)
C40.020 (2)0.027 (2)0.016 (2)0.0049 (17)0.0021 (17)0.0070 (17)
C50.022 (2)0.0150 (18)0.0136 (19)0.0016 (16)0.0044 (16)0.0009 (15)
C60.018 (2)0.0192 (19)0.017 (2)0.0064 (16)0.0018 (16)0.0041 (16)
C70.022 (2)0.023 (2)0.0126 (19)0.0022 (16)0.0001 (16)0.0051 (16)
C80.013 (2)0.0145 (18)0.0115 (19)0.0046 (15)0.0010 (15)0.0030 (14)
O50.0249 (15)0.0107 (12)0.0128 (13)0.0005 (11)0.0021 (11)0.0005 (10)
O60.0240 (16)0.0128 (13)0.0216 (15)0.0042 (11)0.0030 (12)0.0010 (11)
C100.028 (2)0.0096 (17)0.0100 (18)0.0032 (16)0.0007 (16)0.0001 (14)
C110.025 (2)0.0134 (18)0.018 (2)0.0030 (16)0.0033 (17)0.0011 (15)
C120.029 (3)0.014 (2)0.037 (3)0.0002 (17)0.009 (2)0.0062 (17)
C130.025 (2)0.017 (2)0.040 (3)0.0023 (18)0.010 (2)0.0054 (18)
O1S0.0280 (17)0.0329 (16)0.0186 (15)0.0079 (13)0.0033 (13)0.0095 (12)
C1S0.041 (3)0.067 (4)0.038 (3)0.023 (3)0.010 (2)0.007 (3)
Geometric parameters (Å, º) top
Zn1—O61.932 (2)C6—C71.378 (5)
Zn1—O11.949 (3)C6—H60.9500
Zn1—O3i1.968 (2)C7—H70.9500
Zn1—O1S1.999 (3)O5—C101.258 (4)
Zn2—O2ii2.057 (3)O6—C101.276 (5)
Zn2—O22.057 (3)C10—C111.500 (5)
Zn2—O4iii2.076 (2)C11—C121.377 (6)
Zn2—O4i2.076 (2)C11—C13vi1.388 (5)
Zn2—O52.096 (2)C12—C131.392 (5)
Zn2—O5ii2.096 (2)C12—H120.9500
O1—C11.279 (5)C13—C11vi1.388 (5)
O2—C11.250 (5)C13—H130.9500
O3—C81.292 (4)O1S—C1S1.434 (5)
O3—Zn1iv1.968 (2)O1S—H3S0.9600
O4—C81.237 (4)C1S—C2S1.430 (8)
O4—Zn2v2.076 (2)C1S—C2S'1.511 (15)
C1—C21.487 (5)C1S—H1S10.9900
C2—C71.388 (5)C1S—H1S20.9900
C2—C31.398 (5)C2S—H2S10.9800
C3—C41.380 (5)C2S—H2S20.9800
C3—H30.9500C2S—H2S30.9800
C4—C51.389 (5)C2S'—H2S40.9800
C4—H40.9500C2S'—H2S50.9800
C5—C61.391 (5)C2S'—H2S60.9800
C5—C81.492 (5)
O6—Zn1—O1121.10 (11)C6—C7—H7119.8
O6—Zn1—O3i121.61 (11)C2—C7—H7119.8
O1—Zn1—O3i109.55 (11)O4—C8—O3123.9 (3)
O6—Zn1—O1S102.00 (11)O4—C8—C5118.8 (3)
O1—Zn1—O1S103.55 (12)O3—C8—C5117.3 (3)
O3i—Zn1—O1S91.91 (11)C10—O5—Zn2131.8 (2)
O2ii—Zn2—O2180.000 (1)C10—O6—Zn1111.8 (2)
O2ii—Zn2—O4iii93.47 (10)O5—C10—O6123.7 (3)
O2—Zn2—O4iii86.53 (10)O5—C10—C11118.8 (4)
O2ii—Zn2—O4i86.53 (10)O6—C10—C11117.5 (3)
O2—Zn2—O4i93.47 (10)C12—C11—C13vi120.0 (3)
O4iii—Zn2—O4i180.0C12—C11—C10119.8 (3)
O2ii—Zn2—O590.02 (10)C13vi—C11—C10120.1 (4)
O2—Zn2—O589.98 (10)C11—C12—C13120.0 (4)
O4iii—Zn2—O585.85 (9)C11—C12—H12120.0
O4i—Zn2—O594.15 (9)C13—C12—H12120.0
O2ii—Zn2—O5ii89.98 (10)C11vi—C13—C12119.9 (4)
O2—Zn2—O5ii90.02 (10)C11vi—C13—H13120.0
O4iii—Zn2—O5ii94.15 (9)C12—C13—H13120.0
O4i—Zn2—O5ii85.85 (9)C1S—O1S—Zn1129.8 (3)
O5—Zn2—O5ii180.000 (1)C1S—O1S—H3S113.8
C1—O1—Zn1111.4 (2)Zn1—O1S—H3S116.1
C1—O2—Zn2129.8 (2)C2S—C1S—O1S118.0 (5)
C8—O3—Zn1iv118.7 (2)O1S—C1S—C2S'102.1 (9)
C8—O4—Zn2v136.7 (2)C2S—C1S—H1S1107.8
O2—C1—O1123.0 (3)O1S—C1S—H1S1107.8
O2—C1—C2119.3 (4)C2S'—C1S—H1S189.0
O1—C1—C2117.8 (3)C2S—C1S—H1S2107.8
C7—C2—C3119.4 (3)O1S—C1S—H1S2107.8
C7—C2—C1121.1 (3)C2S'—C1S—H1S2139.1
C3—C2—C1119.5 (3)H1S1—C1S—H1S2107.1
C4—C3—C2119.9 (4)C1S—C2S—H2S1109.5
C4—C3—H3120.0C1S—C2S—H2S2109.5
C2—C3—H3120.0H2S1—C2S—H2S2109.5
C3—C4—C5120.5 (4)C1S—C2S—H2S3109.5
C3—C4—H4119.8H2S1—C2S—H2S3109.5
C5—C4—H4119.8H2S2—C2S—H2S3109.5
C4—C5—C6119.4 (3)C1S—C2S'—H2S4109.5
C4—C5—C8119.4 (3)C1S—C2S'—H2S5109.5
C6—C5—C8121.2 (3)H2S4—C2S'—H2S5109.5
C7—C6—C5120.3 (3)C1S—C2S'—H2S6109.5
C7—C6—H6119.9H2S4—C2S'—H2S6109.5
C5—C6—H6119.9H2S5—C2S'—H2S6109.5
C6—C7—C2120.4 (4)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z+2; (iii) x+1/2, y1/2, z+3/2; (iv) x, y+2, z1/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H3S···O3vii0.961.772.729 (4)174
Symmetry code: (vii) x+1, y+2, z+2.
(3) top
Crystal data top
C24H16O14Zn3·4(C3H7NO)F(000) = 1044
Mr = 1016.86Dx = 1.536 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.84600 Å
a = 12.968 (2) ÅCell parameters from 1451 reflections
b = 9.761 (3) Åθ = 7.5–44.7°
c = 18.336 (2) ŵ = 1.70 mm1
β = 108.69 (3)°T = 100 K
V = 2198.7 (8) Å3Plate, colourless
Z = 20.10 × 0.04 × 0.03 mm
Data collection top
CCD area detector
diffractometer
8551 independent reflections
Radiation source: fine-focus sealed tube4219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
phi and ω scansθmax = 32.2°, θmin = 3.7°
Absorption correction: multi-scan
SADABS
h = 1615
Tmin = 0.848, Tmax = 0.951k = 012
26356 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
8551 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 1.61 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
C24H16O14Zn3·4(C3H7NO)V = 2198.7 (8) Å3
Mr = 1016.86Z = 2
Monoclinic, P21/cSynchrotron radiation, λ = 0.84600 Å
a = 12.968 (2) ŵ = 1.70 mm1
b = 9.761 (3) ÅT = 100 K
c = 18.336 (2) Å0.10 × 0.04 × 0.03 mm
β = 108.69 (3)°
Data collection top
CCD area detector
diffractometer
8551 independent reflections
Absorption correction: multi-scan
SADABS
4219 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.951Rint = 0.117
26356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.82Δρmax = 1.61 e Å3
8551 reflectionsΔρmin = 1.01 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.76557 (5)0.05221 (5)0.06460 (3)0.01967 (16)
Zn20.50000.00000.00000.0188 (2)
O10.5684 (3)0.0444 (3)0.11715 (19)0.0299 (9)
O20.7527 (3)0.0459 (3)0.15464 (18)0.0245 (9)
O30.5898 (3)0.3593 (3)0.4645 (2)0.0256 (9)
O40.7620 (3)0.4258 (3)0.47858 (18)0.0228 (9)
C10.6617 (5)0.0709 (5)0.1636 (3)0.0230 (13)
C20.6644 (4)0.1422 (5)0.2386 (3)0.0217 (13)
C30.5693 (4)0.1675 (5)0.2548 (3)0.0299 (14)
H30.50150.13820.22000.036*
C40.5729 (4)0.2364 (5)0.3223 (3)0.0285 (14)
H40.50790.25290.33410.034*
C50.6725 (4)0.2805 (5)0.3721 (3)0.0223 (13)
C60.7678 (4)0.2539 (5)0.3566 (3)0.0239 (13)
H60.83550.28440.39100.029*
C70.7641 (4)0.1820 (5)0.2902 (3)0.0236 (13)
H70.82960.16030.28010.028*
C80.6737 (5)0.3630 (5)0.4443 (3)0.0254 (14)
O100.6226 (3)0.1538 (3)0.00540 (19)0.0261 (9)
O110.7326 (3)0.2773 (3)0.0994 (2)0.0350 (10)
C100.6448 (4)0.2689 (5)0.0447 (3)0.0240 (13)
C110.5691 (4)0.3882 (5)0.0206 (3)0.0216 (12)
C120.5824 (5)0.4994 (5)0.0707 (3)0.0333 (14)
H120.63840.49840.11920.040*
C130.4867 (4)0.3887 (5)0.0492 (3)0.0230 (13)
H130.47730.31210.08270.028*
O1W0.9194 (3)0.1030 (3)0.0860 (2)0.0347 (10)
H1WA0.98300.04600.09850.042*
H1WB0.95890.18340.10920.042*
O1S0.9733 (3)0.3638 (4)0.0933 (2)0.0431 (11)
N1S0.9143 (4)0.5693 (5)0.1243 (3)0.0390 (13)
C1S0.9490 (5)0.4420 (7)0.1399 (4)0.0456 (17)
H1S0.95600.40710.18960.055*
C2S0.8851 (6)0.6538 (6)0.1809 (4)0.060 (2)
H2S10.80710.67420.16180.091*
H2S20.92650.73960.18890.091*
H2S30.90230.60400.22970.091*
C3S0.8886 (6)0.6236 (6)0.0465 (4)0.062 (2)
H3S10.93710.58220.02120.093*
H3S20.89860.72320.04880.093*
H3S30.81290.60190.01720.093*
O2S0.0720 (3)0.9293 (4)0.1568 (2)0.0460 (12)
N2S0.1872 (4)0.7607 (5)0.1466 (3)0.0384 (13)
C4S0.1128 (5)0.8567 (6)0.1162 (4)0.0388 (17)
H4S0.08970.87090.06210.047*
C5S0.2249 (6)0.7342 (7)0.2277 (3)0.076 (3)
H5S10.21600.81670.25550.113*
H5S20.30200.70860.24370.113*
H5S30.18260.65900.23940.113*
C6S0.2296 (6)0.6747 (6)0.0970 (4)0.058 (2)
H6S10.19240.69820.04290.087*
H6S20.21660.57810.10550.087*
H6S30.30790.69060.10930.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0307 (4)0.0105 (3)0.0180 (3)0.0020 (3)0.0080 (3)0.0009 (3)
Zn20.0313 (5)0.0097 (4)0.0158 (5)0.0041 (4)0.0079 (4)0.0005 (4)
O10.040 (3)0.028 (2)0.020 (2)0.0074 (19)0.0077 (19)0.0067 (18)
O20.030 (2)0.018 (2)0.024 (2)0.0011 (18)0.0070 (18)0.0054 (16)
O30.045 (3)0.013 (2)0.026 (2)0.0026 (17)0.020 (2)0.0044 (16)
O40.029 (2)0.018 (2)0.021 (2)0.0027 (17)0.0069 (18)0.0058 (16)
C10.042 (4)0.010 (3)0.016 (3)0.001 (3)0.008 (3)0.003 (2)
C20.034 (4)0.012 (3)0.020 (3)0.002 (2)0.010 (3)0.002 (2)
C30.027 (3)0.033 (3)0.027 (4)0.001 (3)0.005 (3)0.011 (3)
C40.027 (4)0.031 (4)0.032 (3)0.004 (3)0.014 (3)0.004 (3)
C50.032 (4)0.013 (3)0.022 (3)0.002 (2)0.009 (3)0.001 (2)
C60.027 (3)0.018 (3)0.027 (3)0.002 (3)0.007 (3)0.009 (2)
C70.034 (4)0.022 (3)0.018 (3)0.002 (3)0.012 (3)0.001 (2)
C80.043 (4)0.012 (3)0.022 (3)0.007 (3)0.012 (3)0.006 (2)
O100.044 (2)0.008 (2)0.029 (2)0.0041 (16)0.0148 (19)0.0014 (16)
O110.041 (3)0.019 (2)0.043 (3)0.0063 (18)0.010 (2)0.0007 (19)
C100.029 (4)0.015 (3)0.027 (3)0.002 (2)0.007 (3)0.002 (3)
C110.037 (3)0.004 (2)0.025 (3)0.001 (2)0.012 (3)0.000 (2)
C120.056 (4)0.019 (3)0.022 (3)0.001 (3)0.008 (3)0.001 (3)
C130.037 (4)0.006 (3)0.025 (3)0.008 (2)0.010 (3)0.000 (2)
O1W0.024 (2)0.019 (2)0.056 (3)0.0028 (16)0.006 (2)0.003 (2)
O1S0.048 (3)0.026 (2)0.058 (3)0.001 (2)0.022 (2)0.007 (2)
N1S0.058 (4)0.016 (3)0.047 (3)0.003 (2)0.023 (3)0.003 (2)
C1S0.048 (4)0.042 (4)0.047 (4)0.001 (4)0.016 (4)0.001 (4)
C2S0.085 (6)0.041 (4)0.064 (5)0.003 (4)0.037 (4)0.015 (4)
C3S0.089 (6)0.039 (4)0.047 (5)0.003 (4)0.005 (4)0.012 (4)
O2S0.066 (3)0.022 (2)0.045 (3)0.010 (2)0.011 (2)0.006 (2)
N2S0.066 (4)0.026 (3)0.024 (3)0.016 (3)0.015 (3)0.009 (3)
C4S0.051 (5)0.027 (4)0.037 (4)0.002 (3)0.011 (3)0.005 (3)
C5S0.106 (7)0.084 (6)0.033 (5)0.049 (5)0.019 (4)0.002 (4)
C6S0.093 (6)0.042 (4)0.051 (5)0.022 (4)0.040 (4)0.014 (3)
Geometric parameters (Å, º) top
Zn1—O21.962 (3)C10—C111.496 (6)
Zn1—O1W1.969 (3)C11—C131.379 (6)
Zn1—O4i1.992 (3)C11—C121.397 (6)
Zn1—O102.076 (3)C12—C13vi1.388 (6)
Zn1—O112.365 (3)C12—H120.9500
Zn2—O3i2.038 (3)C13—C12vi1.388 (6)
Zn2—O3ii2.038 (3)C13—H130.9500
Zn2—O12.090 (3)O1W—H1WA0.9599
Zn2—O1iii2.090 (3)O1W—H1WB0.9600
Zn2—O10iii2.166 (3)O1S—C1S1.259 (7)
Zn2—O102.166 (3)N1S—C1S1.322 (7)
O1—C11.263 (6)N1S—C3S1.456 (7)
O2—C11.267 (6)N1S—C2S1.467 (7)
O3—C81.257 (6)C1S—H1S0.9500
O3—Zn2iv2.038 (3)C2S—H2S10.9800
O4—C81.274 (6)C2S—H2S20.9800
O4—Zn1v1.992 (3)C2S—H2S30.9800
C1—C21.531 (6)C3S—H3S10.9800
C2—C31.380 (7)C3S—H3S20.9800
C2—C71.390 (7)C3S—H3S30.9800
C3—C41.397 (6)O2S—C4S1.261 (6)
C3—H30.9500N2S—C4S1.332 (7)
C4—C51.389 (7)N2S—C5S1.432 (6)
C4—H40.9500N2S—C6S1.468 (7)
C5—C61.379 (7)C4S—H4S0.9500
C5—C81.546 (7)C5S—H5S10.9800
C6—C71.393 (6)C5S—H5S20.9800
C6—H60.9500C5S—H5S30.9800
C7—H70.9500C6S—H6S10.9800
O10—C101.315 (6)C6S—H6S20.9800
O11—C101.256 (5)C6S—H6S30.9800
O2—Zn1—O1W108.00 (15)C10—O10—Zn2130.2 (3)
O2—Zn1—O4i112.18 (13)Zn1—O10—Zn2102.26 (13)
O1W—Zn1—O4i94.50 (15)C10—O11—Zn185.4 (3)
O2—Zn1—O10111.77 (14)O11—C10—O10118.4 (5)
O1W—Zn1—O10131.45 (13)O11—C10—C11121.7 (5)
O4i—Zn1—O1095.27 (14)O10—C10—C11119.7 (5)
O2—Zn1—O1198.94 (14)C13—C11—C12120.3 (5)
O1W—Zn1—O1188.38 (13)C13—C11—C10121.1 (5)
O4i—Zn1—O11145.99 (13)C12—C11—C10118.6 (5)
O10—Zn1—O1159.25 (13)C13vi—C12—C11119.5 (5)
O3i—Zn2—O3ii180.0 (2)C13vi—C12—H12120.3
O3i—Zn2—O195.18 (14)C11—C12—H12120.3
O3ii—Zn2—O184.82 (14)C11—C13—C12vi120.3 (5)
O3i—Zn2—O1iii84.82 (14)C11—C13—H13119.9
O3ii—Zn2—O1iii95.18 (14)C12vi—C13—H13119.9
O1—Zn2—O1iii180.00 (9)Zn1—O1W—H1WA129.8
O3i—Zn2—O10iii90.26 (13)Zn1—O1W—H1WB131.1
O3ii—Zn2—O10iii89.74 (13)H1WA—O1W—H1WB94.1
O1—Zn2—O10iii88.10 (13)C1S—N1S—C3S120.6 (5)
O1iii—Zn2—O10iii91.90 (13)C1S—N1S—C2S121.5 (5)
O3i—Zn2—O1089.74 (13)C3S—N1S—C2S117.3 (5)
O3ii—Zn2—O1090.26 (13)O1S—C1S—N1S124.4 (6)
O1—Zn2—O1091.90 (13)O1S—C1S—H1S117.8
O1iii—Zn2—O1088.10 (13)N1S—C1S—H1S117.8
O10iii—Zn2—O10180.0 (2)N1S—C2S—H2S1109.5
C1—O1—Zn2137.3 (3)N1S—C2S—H2S2109.5
C1—O2—Zn1122.5 (3)H2S1—C2S—H2S2109.5
C8—O3—Zn2iv135.4 (3)N1S—C2S—H2S3109.5
C8—O4—Zn1v118.5 (3)H2S1—C2S—H2S3109.5
O1—C1—O2127.1 (5)H2S2—C2S—H2S3109.5
O1—C1—C2116.1 (5)N1S—C3S—H3S1109.5
O2—C1—C2116.7 (5)N1S—C3S—H3S2109.5
C3—C2—C7120.2 (5)H3S1—C3S—H3S2109.5
C3—C2—C1120.6 (5)N1S—C3S—H3S3109.5
C7—C2—C1119.1 (5)H3S1—C3S—H3S3109.5
C2—C3—C4119.9 (5)H3S2—C3S—H3S3109.5
C2—C3—H3120.1C4S—N2S—C5S121.5 (5)
C4—C3—H3120.1C4S—N2S—C6S120.5 (5)
C5—C4—C3119.5 (5)C5S—N2S—C6S117.9 (5)
C5—C4—H4120.2O2S—C4S—N2S122.2 (6)
C3—C4—H4120.2O2S—C4S—H4S118.9
C6—C5—C4120.8 (5)N2S—C4S—H4S118.9
C6—C5—C8120.7 (5)N2S—C5S—H5S1109.5
C4—C5—C8118.5 (5)N2S—C5S—H5S2109.5
C5—C6—C7119.5 (5)H5S1—C5S—H5S2109.5
C5—C6—H6120.2N2S—C5S—H5S3109.5
C7—C6—H6120.2H5S1—C5S—H5S3109.5
C2—C7—C6120.0 (5)H5S2—C5S—H5S3109.5
C2—C7—H7120.0N2S—C6S—H6S1109.5
C6—C7—H7120.0N2S—C6S—H6S2109.5
O3—C8—O4126.5 (5)H6S1—C6S—H6S2109.5
O3—C8—C5117.7 (5)N2S—C6S—H6S3109.5
O4—C8—C5115.7 (5)H6S1—C6S—H6S3109.5
C10—O10—Zn196.9 (3)H6S2—C6S—H6S3109.5
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Svii0.961.732.614 (5)152
O1W—H1WB···O1S0.961.802.632 (5)143
Symmetry code: (vii) x+1, y1, z.
(4) top
Crystal data top
C48H38N2O14Zn3·4(C3H7NO)F(000) = 1404
Mr = 1355.30Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.777 (4) ÅCell parameters from 7218 reflections
b = 14.727 (6) Åθ = 4.5–51.0°
c = 19.487 (7) ŵ = 1.15 mm1
β = 101.748 (7)°T = 150 K
V = 3309 (2) Å3PRISM, colourless
Z = 20.33 × 0.29 × 0.15 mm
Data collection top
Bruker SMART 1000
diffractometer
7694 independent reflections
Radiation source: fine-focus sealed tube4816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 100 pixels mm-1θmax = 28.0°, θmin = 1.8°
ω scansh = 1515
Absorption correction: multi-scan
SADABS
k = 1819
Tmin = 0.703, Tmax = 0.847l = 2525
36004 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0987P)2 + 5.3224P]
where P = (Fo2 + 2Fc2)/3
7694 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 1.58 e Å3
38 restraintsΔρmin = 0.93 e Å3
Crystal data top
C48H38N2O14Zn3·4(C3H7NO)V = 3309 (2) Å3
Mr = 1355.30Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.777 (4) ŵ = 1.15 mm1
b = 14.727 (6) ÅT = 150 K
c = 19.487 (7) Å0.33 × 0.29 × 0.15 mm
β = 101.748 (7)°
Data collection top
Bruker SMART 1000
diffractometer
7694 independent reflections
Absorption correction: multi-scan
SADABS
4816 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.847Rint = 0.073
36004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07138 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.04Δρmax = 1.58 e Å3
7694 reflectionsΔρmin = 0.93 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.74053 (5)0.46143 (4)0.87834 (3)0.03589 (18)
Zn21.00000.50001.00000.02932 (19)
O10.9703 (5)0.5843 (5)0.9154 (3)0.0514 (15)*0.615 (6)
O1'1.0152 (10)0.5344 (8)0.9025 (6)0.062 (2)*0.385 (6)
O20.8386 (3)0.5279 (3)0.82786 (19)0.0529 (9)
C10.9318 (6)0.5688 (5)0.8503 (3)0.0633 (17)
C20.9795 (4)0.6257 (4)0.79959 (18)0.044 (6)*0.615 (6)
C30.9302 (4)0.6195 (4)0.7286 (2)0.0391 (19)*0.615 (6)
H30.86690.57950.71300.047*0.615 (6)
C40.9735 (4)0.6719 (4)0.68039 (15)0.044 (2)*0.615 (6)
H40.93980.66770.63190.053*0.615 (6)
C51.0661 (4)0.7304 (4)0.70317 (19)0.045 (8)*0.615 (6)
C61.1154 (5)0.7366 (4)0.7742 (2)0.0539 (17)*0.615 (6)
H61.17870.77660.78970.065*0.615 (6)
C71.0721 (5)0.6842 (5)0.82237 (15)0.0539 (17)*0.615 (6)
H71.10580.68840.87090.065*0.615 (6)
C2'0.9846 (4)0.6184 (4)0.79653 (19)0.060 (12)*0.385 (6)
C3'0.9117 (3)0.6469 (4)0.7350 (2)0.043 (3)*0.385 (6)
H3'0.83230.62950.72530.052*0.385 (6)
C4'0.9548 (3)0.7007 (4)0.6876 (2)0.042 (3)*0.385 (6)
H4'0.90500.72020.64550.050*0.385 (6)
C5'1.0709 (4)0.7261 (4)0.70173 (19)0.055 (16)*0.385 (6)
C6'1.1439 (3)0.6976 (5)0.7633 (2)0.052 (2)*0.385 (6)
H6'1.22320.71500.77290.063*0.385 (6)
C7'1.1007 (3)0.6437 (4)0.8107 (2)0.053 (2)*0.385 (6)
H7'1.15060.62430.85270.064*0.385 (6)
O110.8313 (5)0.5109 (5)1.0161 (3)0.0575 (16)*0.636 (8)
O11'0.8464 (9)0.5743 (8)0.9885 (5)0.053 (2)*0.364 (8)
O120.6675 (4)0.5271 (3)0.9443 (2)0.0566 (10)
C110.7349 (5)0.5516 (4)0.9969 (3)0.0597 (16)
C120.6918 (5)0.6066 (4)1.0513 (3)0.0514 (13)
C130.7682 (5)0.6429 (6)1.1069 (4)0.084 (3)
H130.84900.63161.11210.101*
C140.7278 (5)0.6963 (6)1.1556 (4)0.084 (2)
H140.78170.72181.19370.100*
C150.6105 (5)0.7131 (4)1.1500 (3)0.0500 (13)
C160.5345 (5)0.6736 (4)1.0946 (3)0.0518 (14)
H160.45340.68221.09020.062*
C170.5749 (5)0.6216 (4)1.0455 (3)0.0527 (14)
H170.52130.59601.00730.063*
O211.0476 (5)0.6173 (3)1.0590 (3)0.0890 (17)
O221.2278 (3)0.6658 (2)1.0980 (2)0.0564 (10)
C211.1261 (5)0.6783 (4)1.0664 (3)0.0526 (14)
C221.0959 (4)0.7748 (2)1.0460 (2)0.040 (6)*0.419 (9)
C230.9962 (5)0.7906 (2)0.9954 (3)0.0499 (19)*0.419 (9)
H230.95220.74100.97300.060*0.419 (9)
C240.9609 (5)0.8791 (3)0.9777 (3)0.0495 (19)*0.419 (9)
H240.89280.89000.94320.059*0.419 (9)
C251.0254 (4)0.9518 (2)1.0105 (2)0.043 (7)*0.419 (9)
C261.1251 (4)0.9360 (2)1.0610 (3)0.043 (3)*0.419 (9)
H261.16920.98561.08340.051*0.419 (9)
C271.1604 (4)0.8475 (3)1.0787 (3)0.040 (3)*0.419 (9)
H271.22860.83671.11330.048*0.419 (9)
C22'1.0821 (4)0.77428 (19)1.0457 (2)0.056 (6)*0.581 (9)
C23'0.9650 (4)0.7946 (3)1.0239 (4)0.0498 (17)*0.581 (9)
H23'0.90860.74811.02180.060*0.581 (9)
C24'0.9306 (3)0.8831 (3)1.0054 (4)0.0495 (17)*0.581 (9)
H24'0.85060.89690.99050.059*0.581 (9)
C25'1.0132 (4)0.9512 (2)1.0086 (2)0.060 (7)*0.581 (9)
C26'1.1303 (4)0.9308 (3)1.0303 (4)0.056 (3)*0.581 (9)
H26'1.18670.97741.03250.067*0.581 (9)
C27'1.1647 (3)0.8424 (3)1.0488 (4)0.058 (3)*0.581 (9)
H27'1.24470.82851.06370.069*0.581 (9)
N1S0.4237 (7)0.4997 (7)0.7433 (5)0.132 (3)
O1S0.6037 (4)0.4566 (3)0.7977 (2)0.0703 (12)
C1S0.5086 (7)0.4902 (6)0.7975 (5)0.092 (3)
H1S0.49530.51170.84110.110*
C2S0.2949 (17)0.512 (4)0.721 (3)0.147 (8)*0.274 (17)
H2S10.27280.50910.66970.220*0.274 (17)
H2S20.27290.57150.73690.220*0.274 (17)
H2S30.25490.46410.74150.220*0.274 (17)
C2S'0.3124 (14)0.5462 (13)0.7580 (11)0.145 (6)*0.726 (17)
H2S40.25390.54990.71440.217*0.726 (17)
H2S50.33140.60760.77630.217*0.726 (17)
H2S60.28160.51060.79260.217*0.726 (17)
C3S0.424 (4)0.539 (3)0.6717 (15)0.146 (8)*0.274 (17)
H3S10.34490.53800.64340.219*0.274 (17)
H3S20.47500.50290.64850.219*0.274 (17)
H3S30.45190.60190.67680.219*0.274 (17)
C3S'0.4486 (16)0.4613 (14)0.6760 (9)0.147 (6)*0.726 (17)
H3S40.38110.47060.63800.221*0.726 (17)
H3S50.46480.39620.68190.221*0.726 (17)
H3S60.51600.49220.66460.221*0.726 (17)
N2S0.5313 (16)0.1097 (13)0.0672 (9)0.203 (6)
C4S0.4388 (19)0.1187 (13)0.0245 (12)0.206 (8)
H4S0.42300.15120.01850.248*
C5S0.6218 (14)0.1642 (19)0.0613 (10)0.289 (14)
H5S10.68970.14770.09720.433*
H5S20.60110.22770.06780.433*
H5S30.63990.15670.01470.433*
O2S0.361 (2)0.0658 (17)0.0579 (18)0.205 (7)*0.473 (19)
C6S0.579 (4)0.058 (3)0.1302 (16)0.214 (12)*0.473 (19)
H6S10.66190.07120.14460.321*0.473 (19)
H6S20.56730.00660.12060.321*0.473 (19)
H6S30.53910.07610.16770.321*0.473 (19)
O2S'0.3365 (19)0.0669 (16)0.0027 (16)0.200 (7)*0.527 (19)
C6S'0.494 (4)0.031 (2)0.104 (2)0.215 (11)*0.527 (19)
H6S40.55900.01120.14120.323*0.527 (19)
H6S50.47130.01870.07090.323*0.527 (19)
H6S60.42860.04850.12500.323*0.527 (19)
N3S0.8600 (12)0.2796 (8)0.6971 (7)0.149 (4)
O3S1.0519 (13)0.2246 (14)0.7011 (10)0.377 (12)
C7S0.936 (3)0.228 (2)0.6694 (17)0.347 (15)*
H7S0.90910.19490.62760.417*
C8S0.7593 (19)0.3254 (17)0.7024 (14)0.163 (7)*0.540 (13)
H8S10.76610.34840.75030.244*0.540 (13)
H8S20.69310.28390.69130.244*0.540 (13)
H8S30.74760.37640.66940.244*0.540 (13)
C9S0.939 (3)0.329 (2)0.7447 (18)0.226 (12)*0.540 (13)
H9S11.01730.30540.74680.339*0.540 (13)
H9S20.91970.32540.79110.339*0.540 (13)
H9S30.93640.39320.72980.339*0.540 (13)
C8S'0.779 (2)0.252 (2)0.6395 (13)0.159 (8)*0.460 (13)
H8S40.78810.28770.59860.238*0.460 (13)
H8S50.70100.26090.64850.238*0.460 (13)
H8S60.79080.18740.63050.238*0.460 (13)
C9S'0.900 (4)0.252 (3)0.7650 (14)0.229 (12)*0.460 (13)
H9S40.96170.29260.78800.344*0.460 (13)
H9S50.92990.18980.76520.344*0.460 (13)
H9S60.83590.25330.79030.344*0.460 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0419 (3)0.0326 (3)0.0348 (3)0.0007 (2)0.0115 (2)0.0006 (2)
Zn20.0361 (4)0.0247 (4)0.0278 (4)0.0020 (3)0.0079 (3)0.0020 (3)
O20.058 (2)0.062 (3)0.041 (2)0.0061 (19)0.0144 (17)0.0118 (18)
C10.069 (4)0.076 (4)0.040 (3)0.016 (3)0.001 (3)0.024 (3)
O120.064 (3)0.053 (2)0.058 (3)0.0013 (19)0.024 (2)0.0164 (19)
C110.054 (3)0.067 (4)0.063 (4)0.016 (3)0.022 (3)0.015 (3)
C120.053 (3)0.052 (3)0.052 (3)0.006 (3)0.016 (3)0.012 (3)
C130.042 (3)0.125 (7)0.083 (5)0.021 (4)0.009 (3)0.050 (5)
C140.049 (4)0.124 (7)0.072 (4)0.015 (4)0.000 (3)0.051 (4)
C150.048 (3)0.056 (3)0.048 (3)0.004 (2)0.015 (2)0.011 (3)
C160.044 (3)0.056 (3)0.061 (3)0.009 (2)0.021 (3)0.020 (3)
C170.048 (3)0.057 (3)0.057 (3)0.010 (3)0.022 (3)0.021 (3)
O210.112 (4)0.035 (2)0.101 (4)0.002 (2)0.023 (3)0.005 (2)
O220.056 (2)0.036 (2)0.078 (3)0.0055 (17)0.016 (2)0.0067 (19)
C210.077 (4)0.028 (3)0.048 (3)0.001 (3)0.003 (3)0.002 (2)
N1S0.077 (5)0.165 (8)0.132 (7)0.004 (5)0.029 (5)0.049 (6)
O1S0.059 (3)0.087 (3)0.058 (3)0.013 (2)0.005 (2)0.002 (2)
C1S0.078 (5)0.079 (5)0.100 (6)0.014 (4)0.024 (5)0.019 (5)
N2S0.159 (12)0.265 (19)0.184 (14)0.014 (13)0.033 (11)0.079 (12)
C4S0.195 (18)0.191 (17)0.23 (2)0.034 (15)0.035 (16)0.054 (15)
C5S0.160 (16)0.50 (4)0.21 (2)0.10 (2)0.036 (14)0.06 (2)
N3S0.180 (10)0.127 (8)0.152 (10)0.016 (8)0.063 (9)0.005 (7)
O3S0.192 (12)0.46 (3)0.39 (2)0.063 (15)0.134 (14)0.03 (2)
Geometric parameters (Å, º) top
Zn1—O21.929 (4)C25—C25iv1.562 (6)
Zn1—O121.944 (4)C26—C271.3900
Zn1—O22i1.948 (4)C26—H260.9500
Zn1—O1S2.010 (4)C27—H270.9500
Zn2—O1'i2.009 (11)C22'—C23'1.3900
Zn2—O1'2.009 (11)C22'—C27'1.3900
Zn2—O1i2.037 (6)C23'—C24'1.3900
Zn2—O12.037 (6)C23'—H23'0.9500
Zn2—O112.080 (6)C24'—C25'1.3900
Zn2—O11i2.080 (6)C24'—H24'0.9500
Zn2—O11'2.087 (10)C25'—C26'1.3900
Zn2—O11'i2.087 (10)C25'—C25'iv1.495 (5)
Zn2—O21i2.088 (5)C26'—C27'1.3900
Zn2—O212.088 (5)C26'—H26'0.9500
O1—C11.277 (8)C27'—H27'0.9500
O1'—C11.360 (12)N1S—C1S1.305 (10)
O2—C11.251 (7)N1S—C2S1.502 (18)
C1—C21.490 (6)N1S—C3S'1.510 (14)
C1—C2'1.511 (6)N1S—C3S1.512 (18)
C2—C31.3900N1S—C2S'1.557 (13)
C2—C71.3900O1S—C1S1.225 (9)
C3—C41.3900C1S—H1S0.9500
C3—H30.9500C2S—H2S10.9800
C4—C51.3900C2S—H2S20.9800
C4—H40.9500C2S—H2S30.9800
C5—C61.3900C2S'—H2S40.9800
C5—C15ii1.503 (6)C2S'—H2S50.9800
C6—C71.3900C2S'—H2S60.9800
C6—H60.9500C3S—H3S10.9800
C7—H70.9500C3S—H3S20.9800
C2'—C3'1.3900C3S—H3S30.9800
C2'—C7'1.3900C3S'—H3S40.9800
C3'—C4'1.3900C3S'—H3S50.9800
C3'—H3'0.9500C3S'—H3S60.9800
C4'—C5'1.3900N2S—C4S1.24 (2)
C4'—H4'0.9500N2S—C5S1.36 (2)
C5'—C6'1.3900N2S—C6S1.452 (18)
C5'—C15ii1.492 (6)N2S—C6S'1.476 (18)
C6'—C7'1.3900C4S—O2S'1.416 (17)
C6'—H6'0.9500C4S—O2S1.457 (17)
C7'—H7'0.9500C4S—H4S0.9500
O11—C111.271 (8)C5S—H5S10.9800
O11'—C111.397 (12)C5S—H5S20.9800
O12—C111.216 (7)C5S—H5S30.9800
C11—C121.503 (7)C6S—H6S10.9800
C12—C131.368 (8)C6S—H6S20.9800
C12—C171.376 (8)C6S—H6S30.9800
C13—C141.390 (8)C6S'—H6S40.9800
C13—H130.9500C6S'—H6S50.9800
C14—C151.385 (8)C6S'—H6S60.9800
C14—H140.9500N3S—C7S1.37 (3)
C15—C161.383 (7)N3S—C9S'1.372 (19)
C15—C5'iii1.49 (3)N3S—C8S'1.378 (18)
C15—C5iii1.50 (3)N3S—C9S1.384 (18)
C16—C171.383 (7)N3S—C8S1.387 (16)
C16—H160.9500O3S—C7S1.38 (3)
C17—H170.9500C7S—H7S0.9500
O21—C211.276 (7)C8S—H8S10.9800
O22—C211.244 (7)C8S—H8S20.9800
O22—Zn1i1.948 (4)C8S—H8S30.9800
C21—C221.499 (6)C9S—H9S10.9800
C21—C22'1.531 (6)C9S—H9S20.9800
C22—C231.3900C9S—H9S30.9800
C22—C271.3900C8S'—H8S40.9800
C23—C241.3900C8S'—H8S50.9800
C23—H230.9500C8S'—H8S60.9800
C24—C251.3900C9S'—H9S40.9800
C24—H240.9500C9S'—H9S50.9800
C25—C261.3900C9S'—H9S60.9800
O2—Zn1—O12118.44 (18)C23—C22—C21117.9 (4)
O2—Zn1—O22i120.21 (17)C27—C22—C21122.0 (4)
O12—Zn1—O22i114.29 (18)C22—C23—C24120.0
O2—Zn1—O1S94.99 (18)C22—C23—H23120.0
O12—Zn1—O1S98.2 (2)C24—C23—H23120.0
O22i—Zn1—O1S103.61 (19)C25—C24—C23120.0
O1'i—Zn2—O1'180.000 (3)C25—C24—H24120.0
O1'i—Zn2—O1i27.7 (3)C23—C24—H24120.0
O1'—Zn2—O1i152.3 (3)C24—C25—C26120.0
O1'i—Zn2—O1152.3 (3)C24—C25—C25iv115.8 (6)
O1'—Zn2—O127.7 (3)C26—C25—C25iv124.1 (6)
O1i—Zn2—O1180.000 (2)C27—C26—C25120.0
O1'i—Zn2—O1166.7 (4)C27—C26—H26120.0
O1'—Zn2—O11113.3 (4)C25—C26—H26120.0
O1i—Zn2—O1186.4 (3)C26—C27—C22120.0
O1—Zn2—O1193.6 (3)C26—C27—H27120.0
O1'i—Zn2—O11i113.3 (4)C22—C27—H27120.0
O1'—Zn2—O11i66.7 (4)C23'—C22'—C27'120.0
O1i—Zn2—O11i93.6 (3)C23'—C22'—C21122.7 (4)
O1—Zn2—O11i86.4 (3)C27'—C22'—C21117.3 (4)
O11—Zn2—O11i180.000 (2)C24'—C23'—C22'120.0
O1'i—Zn2—O11'89.5 (4)C24'—C23'—H23'120.0
O1'—Zn2—O11'90.5 (4)C22'—C23'—H23'120.0
O1i—Zn2—O11'114.1 (4)C25'—C24'—C23'120.0
O1—Zn2—O11'65.9 (3)C25'—C24'—H24'120.0
O11—Zn2—O11'30.9 (3)C23'—C24'—H24'120.0
O11i—Zn2—O11'149.1 (3)C24'—C25'—C26'120.0
O1'i—Zn2—O11'i90.5 (4)C24'—C25'—C25'iv124.9 (6)
O1'—Zn2—O11'i89.5 (4)C26'—C25'—C25'iv115.0 (6)
O1i—Zn2—O11'i65.9 (3)C27'—C26'—C25'120.0
O1—Zn2—O11'i114.1 (4)C27'—C26'—H26'120.0
O11—Zn2—O11'i149.1 (3)C25'—C26'—H26'120.0
O11i—Zn2—O11'i30.9 (3)C26'—C27'—C22'120.0
O11'—Zn2—O11'i180.000 (4)C26'—C27'—H27'120.0
O1'i—Zn2—O21i104.3 (4)C22'—C27'—H27'120.0
O1'—Zn2—O21i75.7 (4)C1S—N1S—C2S144 (2)
O1i—Zn2—O21i85.6 (2)C1S—N1S—C3S'114.2 (11)
O1—Zn2—O21i94.4 (2)C1S—N1S—C3S130 (2)
O11—Zn2—O21i89.4 (2)C2S—N1S—C3S83 (3)
O11i—Zn2—O21i90.6 (2)C1S—N1S—C2S'115.7 (12)
O11'—Zn2—O21i104.2 (3)C3S'—N1S—C2S'130.1 (13)
O11'i—Zn2—O21i75.8 (3)C1S—O1S—Zn1125.1 (5)
O1'i—Zn2—O2175.7 (4)O1S—C1S—N1S126.5 (10)
O1'—Zn2—O21104.3 (4)O1S—C1S—H1S116.7
O1i—Zn2—O2194.4 (2)N1S—C1S—H1S116.7
O1—Zn2—O2185.6 (2)N1S—C2S—H2S1109.5
O11—Zn2—O2190.6 (2)N1S—C2S—H2S2109.5
O11i—Zn2—O2189.4 (2)H2S1—C2S—H2S2109.5
O11'—Zn2—O2175.8 (3)N1S—C2S—H2S3109.5
O11'i—Zn2—O21104.2 (3)H2S1—C2S—H2S3109.5
O21i—Zn2—O21180.000 (2)H2S2—C2S—H2S3109.5
C1—O1—Zn2131.5 (5)N1S—C2S'—H2S4109.5
C1—O1'—Zn2127.7 (8)N1S—C2S'—H2S5109.5
C1—O2—Zn1129.8 (4)H2S4—C2S'—H2S5109.5
O2—C1—O1122.8 (6)N1S—C2S'—H2S6109.5
O2—C1—O1'122.1 (7)H2S4—C2S'—H2S6109.5
O2—C1—C2117.5 (4)H2S5—C2S'—H2S6109.5
O1—C1—C2116.9 (6)N1S—C3S—H3S1109.5
O1'—C1—C2113.2 (7)N1S—C3S—H3S2109.5
O2—C1—C2'116.5 (5)H3S1—C3S—H3S2109.5
O1—C1—C2'119.3 (6)N1S—C3S—H3S3109.5
O1'—C1—C2'111.3 (7)H3S1—C3S—H3S3109.5
C3—C2—C7120.0H3S2—C3S—H3S3109.5
C3—C2—C1119.1 (4)N1S—C3S'—H3S4109.5
C7—C2—C1120.9 (3)N1S—C3S'—H3S5109.5
C4—C3—C2120.0H3S4—C3S'—H3S5109.5
C4—C3—H3120.0N1S—C3S'—H3S6109.5
C2—C3—H3120.0H3S4—C3S'—H3S6109.5
C3—C4—C5120.0H3S5—C3S'—H3S6109.5
C3—C4—H4120.0C4S—N2S—C5S118.7 (17)
C5—C4—H4120.0C4S—N2S—C6S139 (3)
C6—C5—C4120.0C5S—N2S—C6S102 (2)
C6—C5—C15ii121.1 (3)C4S—N2S—C6S'96 (2)
C4—C5—C15ii118.9 (3)C5S—N2S—C6S'145 (3)
C7—C6—C5120.0N2S—C4S—O2S'136 (2)
C7—C6—H6120.0N2S—C4S—O2S101 (2)
C5—C6—H6120.0N2S—C4S—H4S129.4
C6—C7—C2120.0O2S—C4S—H4S129.4
C6—C7—H7120.0N2S—C5S—H5S1109.5
C2—C7—H7120.0N2S—C5S—H5S2109.5
C3'—C2'—C7'120.0H5S1—C5S—H5S2109.5
C3'—C2'—C1118.3 (3)N2S—C5S—H5S3109.5
C7'—C2'—C1121.3 (3)H5S1—C5S—H5S3109.5
C4'—C3'—C2'120.0H5S2—C5S—H5S3109.5
C4'—C3'—H3'120.0N2S—C6S—H6S1109.5
C2'—C3'—H3'120.0N2S—C6S—H6S2109.5
C3'—C4'—C5'120.0H6S1—C6S—H6S2109.5
C3'—C4'—H4'120.0N2S—C6S—H6S3109.5
C5'—C4'—H4'120.0H6S1—C6S—H6S3109.5
C6'—C5'—C4'120.0H6S2—C6S—H6S3109.5
C6'—C5'—C15ii122.7 (3)N2S—C6S'—H6S4109.5
C4'—C5'—C15ii117.2 (3)N2S—C6S'—H6S5109.5
C7'—C6'—C5'120.0H6S4—C6S'—H6S5109.5
C7'—C6'—H6'120.0N2S—C6S'—H6S6109.5
C5'—C6'—H6'120.0H6S4—C6S'—H6S6109.5
C6'—C7'—C2'120.0H6S5—C6S'—H6S6109.5
C6'—C7'—H7'120.0C7S—N3S—C9S'95 (2)
C2'—C7'—H7'120.0C7S—N3S—C8S'85.1 (19)
C11—O11—Zn2144.6 (6)C9S'—N3S—C8S'138 (3)
C11—O11'—Zn2132.6 (8)C7S—N3S—C9S99 (2)
C11—O12—Zn1113.8 (4)C7S—N3S—C8S160 (2)
O12—C11—O11120.0 (6)C9S—N3S—C8S99 (2)
O12—C11—O11'116.2 (6)N3S—C7S—O3S121 (3)
O11—C11—O11'48.9 (5)O3S—C7S—C9S'88 (2)
O12—C11—C12119.9 (5)N3S—C7S—H7S119.5
O11—C11—C12117.1 (6)O3S—C7S—H7S119.5
O11'—C11—C12114.5 (7)C9S'—C7S—H7S141.3
C13—C12—C17119.3 (5)N3S—C8S—H8S1109.5
C13—C12—C11120.4 (5)N3S—C8S—H8S2109.5
C17—C12—C11120.3 (5)H8S1—C8S—H8S2109.5
C12—C13—C14120.0 (5)N3S—C8S—H8S3109.5
C12—C13—H13120.0H8S1—C8S—H8S3109.5
C14—C13—H13120.0H8S2—C8S—H8S3109.5
C15—C14—C13121.4 (6)N3S—C9S—H9S1109.5
C15—C14—H14119.3N3S—C9S—H9S2109.5
C13—C14—H14119.3H9S1—C9S—H9S2109.5
C16—C15—C14117.6 (5)N3S—C9S—H9S3109.5
C16—C15—C5'iii122.6 (16)H9S1—C9S—H9S3109.5
C14—C15—C5'iii119.8 (16)H9S2—C9S—H9S3109.5
C16—C15—C5iii120.7 (16)N3S—C8S'—H8S4109.5
C14—C15—C5iii121.7 (16)N3S—C8S'—H8S5109.5
C17—C16—C15121.0 (5)H8S4—C8S'—H8S5109.5
C17—C16—H16119.5N3S—C8S'—H8S6109.5
C15—C16—H16119.5H8S4—C8S'—H8S6109.5
C12—C17—C16120.7 (5)H8S5—C8S'—H8S6109.5
C12—C17—H17119.7N3S—C9S'—H9S4109.5
C16—C17—H17119.7C7S—C9S'—H9S4104.3
C21—O21—Zn2138.8 (5)N3S—C9S'—H9S5109.5
C21—O22—Zn1i112.2 (4)C7S—C9S'—H9S572.5
O22—C21—O21123.7 (5)H9S4—C9S'—H9S5109.5
O22—C21—C22115.0 (5)N3S—C9S'—H9S6109.5
O21—C21—C22120.7 (5)C7S—C9S'—H9S6142.7
O22—C21—C22'120.4 (5)H9S4—C9S'—H9S6109.5
O21—C21—C22'114.9 (5)H9S5—C9S'—H9S6109.5
C23—C22—C27120.0
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1/2, y+3/2, z1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+2, y+2, z+2.

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC11H11NO5ZnC28H24O14Zn3C24H16O14Zn3·4(C3H7NO)C48H38N2O14Zn3·4(C3H7NO)
Mr302.58780.581016.861355.30
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)150150100150
a, b, c (Å)7.9853 (18), 8.959 (2), 9.055 (2)19.236 (4), 10.588 (2), 16.247 (3)12.968 (2), 9.761 (3), 18.336 (2)11.777 (4), 14.727 (6), 19.487 (7)
α, β, γ (°)103.228 (3), 100.715 (3), 99.844 (4)90, 109.109 (3), 9090, 108.69 (3), 9090, 101.748 (7), 90
V3)604.0 (2)3126.6 (10)2198.7 (8)3309 (2)
Z2422
Radiation typeMo KαMo KαSynchrotron, λ = 0.84600 ÅMo Kα
µ (mm1)2.052.351.701.15
Crystal size (mm)0.21 × 0.14 × 0.120.16 × 0.15 × 0.100.10 × 0.04 × 0.030.33 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART 1000
diffractometer
Bruker SMART 1000
diffractometer
CCD area detector
diffractometer
Bruker SMART 1000
diffractometer
Absorption correctionMulti-scan
SADABS
Multi-scan
SADABS
Multi-scan
SADABS
Multi-scan
SADABS
Tmin, Tmax0.673, 0.7910.705, 0.7990.848, 0.9510.703, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
6736, 2684, 2354 17033, 3571, 2542 26356, 8551, 4219 36004, 7694, 4816
Rint0.0420.0910.1170.073
(sin θ/λ)max1)0.6510.6520.6300.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.17 0.042, 0.102, 1.05 0.064, 0.133, 0.82 0.071, 0.207, 1.04
No. of reflections2684357185517694
No. of parameters165205282315
No. of restraints02038
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.98, 0.750.63, 0.651.61, 1.011.58, 0.93

Computer programs: Bruker SMART, Bruker SHELXTL, Bruker SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
O1S—H3S···O3i0.961.772.729 (4)174.3
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Si0.961.732.614 (5)152.0
O1W—H1WB···O1S0.961.802.632 (5)142.6
Symmetry code: (i) x+1, y1, z.
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5038 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

Support from the EPSRC and the University of Sheffield is gratefully acknowledged. We are grateful to Dr Tim Prior at the CCLRC Daresbury Laboratory SRS station 16.2smx for his assistance during the time in which data for (3) were collected.

References

First citationAbourahma, H., Coleman, A. W., Moulton, B., Rather, B., Shahgaldian, P. & Zaworotko, M. J. (2001). Chem. Commun. pp. 2380–2381.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). Chem. Commun. pp. 2532–2533.  Web of Science CSD CrossRef Google Scholar
First citationBruker AXS Inc. (1998). SHELXTL5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker AXS Inc. (2003a). SMART5.040. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker AXS Inc. (2003b). SAINT6.458/6/03. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm, 7, 548–550.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, B., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 1021–1023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521–3529.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCotton, F. A., Lin, C. & Murillo, C. A. (2001). Acc. Chem. Res. 34, 759–771.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDincă, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376–9377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDybtsev, D. N., Chun, H. & Kim, K. (2004). Angew. Chem. Int. Ed. 43, 5033–5036.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N. L., Vodak, D. T., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Kim, J., Vodak, D., Sudik, A., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Proc. Natl. Acad. Sci. USA, 99, 4900–4904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168–5175.  CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFérey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976–2977.  Google Scholar
First citationFujita, M., Kwon, Y.-J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationGo, Y. B., Wang, X., Anokhina, E. V. & Jacobson, A. J. (2005). Inorg. Chem. 44, 8265–8571.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2003). J. Chem. Soc. Dalton Trans. pp. 2781–2804.  CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev. 34, 109–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H., Davis, C. E., Groy, T. L., Kelley, D. G. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 2186–2187.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature, 402, 276–279.  CSD CrossRef CAS Google Scholar
First citationLin, W. (2005). Coord. Chem. Rev. 178, 2486–2490.  CAS Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2004). Micropor. Mesopor. Mater. 73, 3–14.  Web of Science CrossRef CAS Google Scholar
First citationRowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666–5667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeo, J. S., Wand, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature, 404, 982–986.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). TWINABS and CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationTakamaizawa, S., Furihata, M., Takeda, S., Yamaguchi, K. & Mori, W. (2000). Macromolecules, 33, 6222–6227.  Web of Science CrossRef CAS Google Scholar
First citationTakamaizawa, S., Mori, W., Furihata, M., Takeda, S. & Yamaguchi, K. (1998). Inorg. Chim. Acta, 283, 268–274.  Web of Science CrossRef Google Scholar
First citationWilliams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435–5437.  Web of Science CSD CrossRef Google Scholar
First citationWu, C.-D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940–8941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2005). Acta Cryst. E61, m1671–m1673.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhao, D., Chen, Z., Liu, Z., Sun, J., Weng, L., Yu, T. & Zhou, Y. (2005). Private Communication to CSD (Refcode: IFACAT01).  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds