research papers
Stoichiometry-dependent structures: an X-ray and neutron single-crystal diffraction study of the effect of reaction stoichiometry on the crystalline products formed in the potassium–cyanurate system
aSchool of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, England, and bISIS Neutron Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, England
*Correspondence e-mail: w.clegg@ncl.ac.uk
Reaction of cyanuric acid (C3H3N3O3; neutral form CYH3; anionic form CYH; dianionic form CYH2−) with K2CO3 or KOH in aqueous solution gave three different crystalline products, according to the reaction stoichiometry used. The structures of two products were easily determined by single-crystal X-ray diffraction: [K(CYH2)(H2O)], (1), of which the is already known [Marsh, R. E. et al. (2002). Acta Cryst. B58, 62–77], and [K2(CYH)], (2), a highly symmetrical and dense structure. Further stoichiometric variation produced another new complex, (3), and reaction of Rb2CO3 with CYH3 yielded a further product, (4), which was found to be isostructural with (3). Determination of the structures of (3) and (4) by X-ray diffraction gave a result that was chemically unreasonable owing to a charge imbalance, with the apparently containing 2− against 1.5+ (partial charges as the result of crystallographic mirror symmetry). A single-crystal neutron carried out on a fully deuterated sample of (3) revealed the presence of a with the c axis doubled compared with the X-ray result. Subsequent of the structure with this showed that it is the result of just two D atoms breaking crystallographically imposed mirror symmetry, which is otherwise essentially observed by the rest of the structure. This minor deviation from pseudo-symmetry could not be identified by X-ray diffraction. Thus, single-crystal neutron diffraction data revealed that the true chemical formula of the structure of (3) [and presumably also of the isostructural (4) with Rb instead of K and H instead of D], is [K3(C3D2N3O3)3(C3D3N3O3)(D2O)4], the deuterated form of [K3(CYH2)3(CYH3)(H2O)4].
1. Introduction
Cyanuric acid (C3H3N3O3; neutral form CYH3; anionic form CYH; dianionic form CYH2−) is a sturdy, robust and relatively unreactive small molecule which nevertheless has had a diverse role to play in chemistry, particular with regard to commercial or industrial use, for many years. It has featured in products ranging from flame retardants (Blount, 2000) and plant growth feed (Hudec et al., 1987) to a catalyst for NOx removal from exhaust gases (Siebers & Caton, 1990) and lavatory cleaning blocks (Barford et al., 1989). It is a mildly acidic compound with pKa values of 6.85, 10.91 and >12 for the generation of the mono-, di- and trianionic forms, respectively (Aoki et al., 2000); whilst mono-deprotonation is easily achieved and double deprotonation can be achieved by careful control of the reaction equilibrium, triple deprotonation is much more uncommon and forms unstable complexes.
Despite the relative ease with which CYH3 can be singly deprotonated its use as an anionic ligand in coordination chemistry has so far been surprisingly restricted. With a few exceptions, reported coordination complexes have largely been confined to the first-row transition elements (Falvello et al., 1999, 1995, 1997; Server-Carrio et al., 1998; Slade et al., 1973) with the notable exception of work on silver complexes (Brunner et al., 2001; Munakata et al., 2001a,b; Rao et al., 2000). Of particular interest is work by Aoki et al. (2000) detailing the synthesis and structural characterization of macrocycle-stabilized zinc complexes of CYH3 in all three anionic forms.
By contrast to its coordination chemistry, the use of CYH3 in organic supramolecular chemistry has been investigated to a far deeper level. The molecule has D3h symmetry and is a complementary hydrogen-bond partner for melamine, which also has D3h symmetry, forming very strong hydrogen bonds. The formation of these bonds is predictable and reliable and has been well exploited in the formation of supramolecular compounds (Arduini et al., 2003; Berl et al., 2002; Felix et al., 2003; Mascal et al., 1999; Seto et al., 1993; Seto & Whitesides, 1993; Whitesides et al., 1995; Zerkowski et al., 1994). One-dimensional and two-dimensional motifs predominate throughout.
We became interested in the coordination chemistry of CYH3 as part of our work on s-block metal complexes of pyridones, and related ligands (Nichol & Clegg, 2006a,b). Whilst the composition of coordination complexes of all the alkaline-earth metals, and most of the alkali metals, is independent of the reaction stoichiometry used, we found that the potassium and caesium reaction systems were sensitive to the relative amounts of acid and base used. In particular, three different potassium cyanurate complexes can by obtained by simple variation of the amount of base used in the reaction. Whilst two of these complexes are straightforward with metal–ligand ratios of 1:1 {[K(CYH2)(H2O)]∞, compound (1)} and 2:1 {[K2(CYH)]∞, compound (2)}, the initial formulation of a third complex, [K3(CYD2)3(CYD3)(D2O)4]∞, (3), exhibited charge balance problems as the number of potassium cations did not equal the number of cyanurate anions in the The equivalent rubidium analogue, [Rb3(CYH2)3(CYH3)(H2O)4]∞, (4), was found to be isostructural with (3).
A single-crystal neutron diffraction data set was collected on a fully deuterated form of (3) in order to study the H-atom behaviour and hence to try to solve the charge balance problem. Crystals of (4) could not be grown large enough to permit neutron diffraction.2. Experimental
2.1. Synthesis
2.1.1. Compound (1)
CYH3 (0.132 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of distilled water, with heating and stirring. Solid K2CO3 (0.142 g, 1 mmol, 2 equivalents) was added to the reaction solution, resulting in instant effervescence. The solution was boiled until ca 15 ml remained, when the hot solution was transferred to a fresh sample vial, sealed and allowed to stand at room temperature. Large colourless crystals of (1) grew over a period of 2–3 d (0.076 g, 40%). CHN analysis found: C 19.59, H 1.92, N 22.18%; calc.: C 19.46, H 2.18, N 22.69%.
2.1.2. Compound (2)
CYH3 (0.134 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of water along with KOH (0.27 g, 4.8 mmol, 4.8 equivalents). The reaction mixture was boiled until everything had dissolved. Slow evaporation of a small portion of the solution on a watchglass at room temperature yielded colourless crystals of (2). The amount of product obtained was too small to permit calculation of the yield or CHN analysis.
2.1.3. Compound (3)
Under an atmosphere of dry nitrogen, CYH3 (0.134 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of deuterated water, with heating. Solid K2CO3 (0.071 g, 0.5 mmol, 0.5 equivalents) was added; the solution was boiled until all the solid reagents had dissolved and was then allowed to stand, undisturbed, at room temperature. Very large colourless block crystals of (3) formed over a period of around 1 week (0.059 g, 17%). CDN analysis found: C 19.91, D 4.51, N 22.88%; calc.: C 20.02, D 4.74, N 23.36%.
2.1.4. Compound (4)
Rb2CO3 (0.309 g, 1.3 mmol, 1 equivalent) and CYH3 (0.356 g, 2.75 mmol, 2.1 equivalent) were dissolved in 40 ml of boiling water. After 5 min of boiling the heat was removed and the flask sealed. A crop of large colourless crystals of (4) grew over a period of 2 d (0.111 g, 10.16%). CHN analysis found: C 17.25, H 1.91, N 20.40%; calc.: C 17.12, H 2.03, N 19.97%.
2.2. Crystallography
2.2.1. Single-crystal X-ray diffraction
Crystallographic experimental parameters for all data collections are summarized in Table 1.1 Tables 2–5 give details of selected geometric and hydrogen-bonding parameters. Details of the single-crystal neutron data collection are given in the following paragraph. For the X-ray data sets, data collection and reduction was by COLLECT (Nonius, 1999) and EvalCCD (Duisenberg et al., 2003) for (1), or SMART and SAINT (Bruker, 2001) for (2)–(4). For all four structures semi-empirical absorption correction from symmetry-equivalent and repeated reflections was by SADABS (Sheldrick, 2003); structure solution (direct methods) and was by SHELXTL (Sheldrick, 2001), using all unique F2 values. DIAMOND3 (Brandenburg & Putz, 2004) and WinGX (Farrugia, 1999) were used to produce the molecular graphics.
|
|
|
|
2.2.2. Single-crystal neutron diffraction
Very large deuterated crystals (by normal X-ray diffraction standards) of compound (3) were prepared for the collection of a single-crystal neutron diffraction data set on instrument SXD at the ISIS spallation neutron source, Rutherford Appleton Laboratories, Oxfordshire, UK (https://www.isis.rl.ac.uk/crystallography/sxd/ ). SXD uses the time-of-flight Laue technique to obtain reflections from large amounts of in a single measurement with a stationary crystal (Wilson, 2005; Keen et al., 2006). Data were collected from eight crystal orientations to a resolution of 0.37 Å, each experiment taking around 10 h, giving a total data collection time of just over 3 d.
The program SXD-2001 (Gutmann & Wilson, 2001) was used to collect and process the neutron diffraction data. The structure was determined by using trial structures determined by X-ray analysis as a starting point and the remaining atoms located by carrying out successive Fourier and least-squares refinements with SHELXTL.
Carrying out the reaction using D2O as the solvent allows for deuterium–hydrogen exchange and incorporation of D2O in the structure. Deuterated samples have three important advantages over standard samples. Firstly, deuterium scatters neutrons over twice as strongly as hydrogen, giving an improvement in the intensity of the diffracted neutron beams. Secondly, hydrogen is one of the few nuclei which scatters neutrons out-of-phase, giving holes rather than peaks in a difference map. This property allows for easy checking that full deuteration has taken place, and makes difference map analysis more straightforward. Finally, hydrogen contributes significantly to incoherent and background scattering; using deuterium significantly reduces this problem.
3. Results and discussion
3.1. Compound (1)
As noted in the Experimental section this compound was synthesized using equimolar amounts of K2CO3 and CYH3. Thus, the K:CYH3 ratio was 2:1. The of this compound was first reported by Sysoeva et al. (1990) in Cm, subsequently corrected to C2/m by Marsh et al. (2002). We present here a low-temperature redetermination, for the purpose of comparison with the other compounds. The compound does indeed crystallize in C2/m and shows no structural effect as a result of the cooling, other than a slight reduction in unit-cell volume, consistent with the effect of reduced temperature. The structure is shown in Fig. 1. There are two crystallographically independent K+ cations and two crystallographically independent CYH anions in the along with two molecules of water. Both cations and both water molecules are located on crystallographic mirror planes, and both anions are located on twofold rotation axes, so there are few unique atoms in this highly symmetrical structure. The two independent potassium cations have rather different coordination environments. Atom K1 is coordinated exclusively by O atoms from the carbonyl groups of both anions, and also by both water molecules. By contrast K2 is coordinated by an even combination of N and O atoms (four each). Atoms K1 and K2 are bridged by both water molecules, whilst K1 is bridged to its symmetry equivalents via carbonyl O atoms only and K2 is bridged to its symmetry equivalents via N atoms only. Both K1 and K2 are related to their symmetry equivalents by twofold rotation axes, the same axes which also pass through the CYH anions. K—O and K—N bond lengths are unexceptional, as is the geometry of the CYH anions. Table 2 gives selected geometrical parameters for compound (1).
Alongside this extensive coordination is a degree of predictable hydrogen bonding. The R22(8) motif (Bernstein et al., 1995) linking the CYH2− anions together via N—H⋯O interactions is one of the most regular and persistent motifs in cyanuric structural chemistry (Falvello et al., 1997), so its appearance here, linking the anions into a tape, is unsurprising.
3.2. Compound (2)
As CYH3 can be potentially deprotonated at all three NH sites we experimented with the reaction conditions to see if we could doubly deprotonate the acid and observe the effect on the coordination chemistry. The instability of CY3− complexes has already been mentioned so we considered that a [K3(CY)] complex would be difficult or impossible to synthesize. The relatively high pKa of the second deprotonation meant that hydroxide was preferable to carbonate as base. Double deprotonation and the formation of [K2(CYH)·xH2O] was achieved using approximately 5:1 KOH:CYH in aqueous solution. Somewhat surprisingly, there is no water present in this compound and the structure is highly symmetrical, crystallizing in the orthorhombic Cmcm with only seven unique atoms in the (Fig. 2).
Removal of the second proton means that the R22(8) motif is not formed and, as a result, this is one of only a handful of cyanuric structures not to feature this hydrogen-bonding motif. Instead there is a lone N—H⋯O interaction forming a C6 motif which, because of the links the anions into linear chains. As hydrogen bonding is of little importance now, the structure is held together by a very dense network of coordination bonds. The calculated crystal density is 2.313 Mg m−3 and there are only 30 other compounds which contain potassium as the only metal in the Cambridge Structural Database (version 5.27 with January 2006 update; Allen, 2002) with a higher density. Atom O1 links four potassium centres and N2 bridges across two potassium centres, whilst atom O2, as the hydrogen-bond acceptor, does not coordinate to the metal at all. The unique potassium centre is thus six-coordinate and its geometry can best be described as distorted pentagonal bipyramidal with one of the equatorial points removed. As with (1), the bond lengths and angles in this structure are unexceptional; selected bond lengths are given in Table 3.
A c-axis projection of the crystal packing (Fig. 3) shows quite neatly both the dense coordination bonding and its symmetrical nature in this structure. The CYH2− rings are stacked along the c axis with a lateral displacement between adjacent rings of approximately 1/3 of a ring along the b axis. The stacking distance between the rings is approximately 3.4 Å; this distance and the ring displacement are good indicators of ring-stacking stabilization. However, given the extent of metal–ligand coordination in this structure, it is unlikely that the ring stacking is a significant directing influence in the crystal packing. The lone hydrogen bond runs parallel to the b axis but is omitted from Fig. 3.
3.3. Compounds (3) and (4)
Our experiments with the reaction stoichiometry thus far yielded two different chemical compounds. We experimented with this ratio further by using 0.5 equivalents of K2CO3 with 1 equivalent of CYH3 to give a K:CYH3 ratio of 1:1. This change in reaction stoichiometry yielded a third complex, compound (3), this time with coordinated water. To be sure that this was not a one-off observation the reaction was repeated many times at both 1:1 and 2:1 K:CYH3 with the same two results being achieved each time.
Compound (4), the rubidium analogue of (3), was also prepared. Unlike potassium, rubidium showed no change in the structure of the product as a result of varying the stoichoimetries and the same product resulted after many experiments with different reaction stoichoiometries. Compound (4) is isostructural with compound (3) but the crystals grown were not large enough for neutron diffraction, so only the X-ray structure was determined. Thus, the following discussion relates to (3) but the conclusions are equally applicable to (4). Table 1 contains a summary of the experimental parameters for (4).
The . [The structure and subsequent discussions hereafter relate to a deuterated sample which was prepared especially for neutron diffraction and investigated also by X-ray diffraction to confirm that deuteration did not change the structure; although the initial discovery was made using data collected from a non-deuterated sample, it is the X-ray data pertaining to this deuterated structure which are reported.] The was determined as C2/m and three potassium cations and four water molecules lie on a crystallographic mirror plane. The atoms of the two CYH ligands all lie on general positions. It was quickly realized that the structure as determined did not make chemical sense. If all the cations are lying on a mirror plane, then they each can be considered to have a charge of 0.5+ in the giving an overall positive charge of 1.5+. By contrast each anion is singly deprotonated and so gives a total negative charge of 2−. Thus, the charges do not balance and there is 0.5+ missing somewhere. The difference-Fourier map contained no large peaks indicating a fourth unassigned potassium ion, so attention focused on the only other atoms that could affect the charge of the compound, the D atoms.
of (3) as determined by X-ray diffraction is presented in Fig. 4A difference-Fourier map of the environment around atoms N3 and N6 was examined for any indication of a missed H atom. As can be seen in Fig. 5, the residual electron density surrounding atom N3 is insignificant and is no greater than the electron density found within the bonds of the cyanurate ring. On the other hand, the residual electron density around the N6 atom is much clearer and more concentrated, more so than that around N3 and more so than the residual bonding electron density of the ligand. This indicated that an H atom might be located here. However, whilst selection of this peak as an H atom and of its coordinates may improve the result, it does not solve the chemical problem with the charges. Placing an H atom here results in a charge imbalance with 0.5+ in excess. In order to resolve this problem we tried two different approaches.
(1) Assume that the mirror plane is only a pseudo-symmetry element and remove it, assigning the structure to C2. This assumption doubles the size of the such that it contains three potassium centres (now in general positions), four cyanuric ligands and four water molecules, also in general positions. The strategy was then to examine difference Fourier maps for every cyanuric ligand to determine if one of the four definitely showed three strong N—D deuterium peaks whilst the other three showed only two strong N—D deuterium peaks.
This approach failed for two important reasons. Firstly, it was not overwhelmingly clear from any of the difference maps which ligand was C3D3N3O3 and which were C3D2N3O3. Secondly, the of at least half the non-D atoms in the was unstable, with many becoming `non-positive definite', indicating that the inversion centre should be present in the structural model to fit this set of data. Given the unconvincing Fourier analyses, and poor of the anisotropic displacement parameters of several atoms that should be well defined, this model was rejected.
(2) Assume the mirror plane is a genuine R1 value of 0.0335 implies that the problem had been resolved. However, this was not the case. Fig. 6 shows the result of applying the mirror plane on which the potassium cations and water molecules reside. Because of the mirror symmetry, water D atoms must be symmetry-equivalent and either both lie on the mirror plane or each lies on one side of it. The latter is apparently the case for all water molecules in this structure. However, as shown in Fig. 6, this brings D7 within a very close distance (1.31 Å) of the disordered D6N and its symmetry equivalent. No two D atoms can be brought this close in a correct structure; one would expect some sort of twisting of the water molecule to relieve the However, such twisting would necessitate breaking the mirror symmetry and, as was noted above, a model in which the mirror symmetry is removed does not refine satisfactorily.
requiring the additional `missing' H atom to be disordered on either side of it, with an occupancy of 50% on each site. This approach makes chemical sense, as the charges balance properly and no restraints were needed on any of the anisotropic displacement parameters. The finalA more complicated model containing disordered water H atoms could also be constructed. Unfortunately, as the positions and occupancies of H atoms are unreliable when determined by X-ray diffraction, such a model would be unsuccessful.
In order to investigate further the behaviour of these D atoms we collected a full single-crystal neutron diffraction data set, with the aim of refining the occupancies of the D atoms. Several independent batches of deuterated complexes of (3) were prepared and taken to the ISIS neutron source for single-crystal neutron diffraction experiments. A crystal with a total volume of approximately 4 mm3 was selected and mounted. Initial tests showed good diffraction recorded on each detector, and even a relatively intense back-scattering was detected. To determine the around 100 strong reflections were collected by each detector and the data were then indexed to automatically give a that matched that determined by X-ray analysis. When a sufficient amount of data had been collected to facilitate an attempt to refine the structure, a trial model was used based on the atomic coordinates from the X-ray structure. Starting without the D atoms, initial least-squares was rather unsatisfactory, not particularly unusual since deuterium is the second strongest neutron scatter in this compound. As D atoms bonded to N1, N2, N4, N5 and all the water molecules, except for those on O7, were located in successive Fourier maps the improved markedly to a respectable R1 = 0.1039. There remained, however, a lot of residual diffraction density around the O7 atom, with two very large peaks about 0.96 Å away from O7, subtending an angle of 113° at O7. One of these peaks was located exactly on the mirror plane; the second was not. Selection of these peaks as D atoms, followed by anisotropic least-squares further improved the result to R1 = 0.0756. This was, however, the best result that could be obtained with this and The anisotropic displacement parameters of the D atoms attached to atom O7 remained rather unstable during further cycles.
Aside from the steric crowding around this water molecule the charge balance problem still remained to be dealt with. Difference maps did show a relatively strong peak corresponding to a D atom bonded to N6. This peak was selected as deuterium and refined, with the site occupation factor for the atom freely refined. Rather than refining to give an occupancy of ∼0.5 and a sensible displacement ellipsoid, the occupancy refined to ∼1 with a rather large and elongated ellipsoid. Thus, simply using the trial model determined by X-ray analysis coupled with the data integrated so far did not as yet offer an acceptable explanation of the problem.
As data collection proceeded further it was noticed that there were many rather weak unindexed reflections with half-integer values of l. These suggest a corresponding to the with the c axis doubled in length. The data were thus reindexed on this and re-integrated. Examination of the new reflection data suggested that the could be either Ia or I2/a. Trial models without D atoms were created in both space groups then refined using this second set of neutron data. in Ia was very poor; however, in I2/a was rather more satisfactory and, with the addition of D atoms, quickly converged. Least-squares restraints were used on some of the C and O atoms to control their anisotropic displacement parameters. The model now contained three potassium cations, four water molecules and four cyanuric ligands. Each cyanuric ligand was examined in turn using observed and difference-Fourier maps to identify which one was in fact neutral. As shown in Fig. 7, the ligand containing N4, N5 and N6 showed three distinct peaks corresponding to deuterium in the observed Fourier map, identifying this ligand as CYD3. The remaining three ligands showed no significant unaccounted diffraction density in either observed or difference maps, so we were confident that we had located the CYD3 ligand as distinct from the remaining three CYD ligands, and the charges now balanced, as the chemical formula is [K3(CYD2)3(CYD3)(D2O)4].
With the charge balance problem solved our attention then turned to the question of the unfavourable steric interactions between the D atoms of one water molecule and the CYD3 ligand. As noted above the first model (in C2/m) used in the analysis of the neutron diffraction data showed that one of the water molecules did not obey the mirror symmetry of that instead placing one D atom exactly on the crystallographic mirror plane. In this new model all atoms lie in general positions and the relative orientation of all water D atoms is the same as in the first model, with three water molecules obeying pseudo-mirror symmetry and one molecule breaking it. As Fig. 8 shows, the presence of D5 causes D16A and D16B to twist away, allowing an N—D⋯O interaction to form, and breaking the pseudo-symmetry. The D atoms attached to atom O15 suffer no such from their deprotonated CYD2− neighbours and thus can form two pseudo-symmetrical O—D⋯N interactions.
To summarize: the crystallographic mirror symmetry determined by X-ray diffraction is actually false, broken by the presence of D5 within the structure, which, to minimize . The structures of (3) and (4) determined by X-ray diffraction are not completely correct, as they have been determined in a sub-cell with the incorrect as a consequence of the very weak scattering of X-rays by H or D atoms. Although the results are shown here for comparison with the true structure determined with neutrons, and the CIFs are available as supplementary material, these have not been deposited in the Cambridge Structural Database since it is considered inappropriate to include in the database structures that are known to be strictly incorrect.
and maximize hydrogen-bonding interactions, causes a twist of the water molecule O16, which in turn breaks the mirror symmetry observed by the remaining water molecules. Atom D5 also causes atoms N2 and N5 to be symmetry-inequivalent and these thus also break the mirror pseudo-symmetry. This breaking of the symmetry results in the formation of a caused only by the difference in D-atom positions. It is thus no surprise that this was not detected at all by X-ray diffraction, given the poor scattering of X-rays by the electron density associated with D atoms. This turned out to be the true The correct structure of (3), as determined by neutron diffraction, is shown in Fig. 9The 2− anions, one neutral CYD3 molecule and four water molecules, all on general positions. The coordination environments of all three metal centres are shown in Fig. 10. Atoms K1 and K3 are both eight-coordinate but their coordination geometries are rather different, with K1 having a typical square-antiprismatic coordination environment whilst K3 has a square-antiprismatic environment that is rather more distorted, as if one side of the antiprism has been flattened out, such that the O14—K3—O13 angle is approximately 143° and the O3—K3—O5 angle is approximately 121°; ideally these would be 90° for undistorted geometry. The environment of seven-coordinate K2 is rather more difficult to describe quantitatively, as it does not have a typical seven-coordinate geometry. Five of the coordinating O atoms form an approximate pentagon, to which addition of an apical coordinated O atom generates a pentagonal-based pyramid. The seventh O atom, rather than occupying the second axial site (which would give a regular pentagonal-based bipyramid), is distorted well away from this ideal position to bridge atoms K2 and K3 (this is the bridging water molecule in Fig. 10). It is worthy of note that, unlike compounds (1) and (2), there is no K—N coordination in this structure; with four water molecules in the structure the N atoms are used as hydrogen-bonding acceptors and so cannot coordinate to the metal. The crystal packing of (3) is rather unexceptional for a cyanurate complex. Polymeric water coordination to the potassium centres forms a thin two-dimensional sheet; tapes of R22(8) hydrogen-bonded CYD2 and CYD3 ligands are linked to this sheet via coordination and hydrogen bonding to form an overall three-dimensional structure. Such crystal packing is very common in cyanurate complexes.
contains three crystallographically independent potassium cations, three CYD4. Conclusion
The potassium–cyanuric acid reaction in aqueous solution was found to be particularly sensitive to stoichiometry, with three different complexes formed depending on the relative amount and type of base used. Using equimolar amounts of CYH3 and K2CO3 (and so an effective K:CYH3 ratio of 2:1) always resulted in the product [K+(CYH2−)(H2O)], (1), which was first reported some 15 years ago. By using a large excess of KOH we synthesized a new compound, [K+2(CYH2−)], (2). This compact dense structure features doubly deprotonated cyanuric acid and, surprisingly, no water is present. A direct result of the double deprotonation is the loss of the R22(8) hydrogen-bonding motif, which is almost always found in cyanuric structural chemistry. The most interesting compound formed, however, was (3). Single-crystal X-ray diffraction gave a result which, although crystallographically largely sound, did not make chemical sense as a result of a charge imbalance between three cations and two anions and, in an attempt to rectify this by inclusion of a disordered H atom, an impossibly short contact between two H-atom sites. Resolution of these issues was achieved through a single-crystal neutron diffraction study carried out on a deuterated sample of this compound, leading to a model with all atoms in general positions, the assignment of one neutral and three deprotonated organic ligands, and an ordered arrangement of D atoms with sensible interactions; the true structure has only pseudo-mirror symmetry, which is significantly broken by only two D atoms, an effect essentially invisible to X-ray diffraction.
Supporting information
10.1107/S0108768106025171/bs5033sup1.cif
contains datablocks 1, 2, 3_Xray, 3_neutron, 4. DOI:Structure factors: contains datablock gsn112. DOI: 10.1107/S0108768106025171/bs50331sup2.hkl
Structure factors: contains datablock dmt51. DOI: 10.1107/S0108768106025171/bs50332sup3.hkl
Structure factors: contains datablock gsnisis. DOI: 10.1107/S0108768106025171/bs5033_neutronsup4.hkl
Supporting information file. DOI: 10.1107/S0108768106025171/bs5033sup5.txt
Supporting information file. DOI: 10.1107/S0108768106025171/bs5033sup6.txt
Supporting information file. DOI: 10.1107/S0108768106025171/bs5033sup7.txt
Data collection: Nonius COLLECT for (1); Bruker SMART for (2), 3_Xray, (4); SXD2001 for 3_neutron. Cell
EVALCCD for (1); Bruker SAINT for (2), 3_Xray, (4); SXD2001 for 3_neutron. Data reduction: EVALCCD for (1); Bruker SAINT for (2), 3_Xray, (4); SXD2001 for 3_neutron. Program(s) used to solve structure: Bruker SHELXTL for (1), (2), 3_Xray, (4); using coords of known structure for 3_neutron. For all compounds, program(s) used to refine structure: Bruker SHELXTL; molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL and local programs.C3H4KN3O4 | F(000) = 752 |
Mr = 185.19 | Dx = 1.954 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 5462 reflections |
a = 11.037 (2) Å | θ = 2.5–27.5° |
b = 16.419 (3) Å | µ = 0.81 mm−1 |
c = 7.1497 (14) Å | T = 150 K |
β = 103.68 (3)° | Block, colourless |
V = 1258.9 (4) Å3 | 0.22 × 0.16 × 0.11 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 1216 independent reflections |
Radiation source: sealed tube | 982 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
ϕ and ω scans | θmax = 25.5°, θmin = 4.8° |
Absorption correction: multi-scan SADABS; Sheldrick, 2003 | h = −13→13 |
Tmin = 0.842, Tmax = 0.916 | k = −19→19 |
10612 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.151 | Only H-atom coordinates refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1091P)2] where P = (Fo2 + 2Fc2)/3 |
1216 reflections | (Δ/σ)max < 0.001 |
121 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.93 e Å−3 |
C3H4KN3O4 | V = 1258.9 (4) Å3 |
Mr = 185.19 | Z = 8 |
Monoclinic, C2/m | Mo Kα radiation |
a = 11.037 (2) Å | µ = 0.81 mm−1 |
b = 16.419 (3) Å | T = 150 K |
c = 7.1497 (14) Å | 0.22 × 0.16 × 0.11 mm |
β = 103.68 (3)° |
Nonius KappaCCD diffractometer | 1216 independent reflections |
Absorption correction: multi-scan SADABS; Sheldrick, 2003 | 982 reflections with I > 2σ(I) |
Tmin = 0.842, Tmax = 0.916 | Rint = 0.088 |
10612 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.151 | Only H-atom coordinates refined |
S = 1.06 | Δρmax = 0.85 e Å−3 |
1216 reflections | Δρmin = −0.93 e Å−3 |
121 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.07998 (8) | 0.0000 | 0.25778 (12) | 0.0248 (4) | |
K2 | 0.42367 (8) | 0.0000 | 0.25455 (12) | 0.0230 (4) | |
O1 | 0.0000 | 0.12659 (15) | 0.0000 | 0.0269 (7) | |
O2 | 0.19766 (18) | 0.36493 (11) | 0.1904 (3) | 0.0253 (6) | |
O3 | 0.30627 (18) | 0.15675 (12) | 0.2989 (3) | 0.0273 (6) | |
O4 | 0.5000 | 0.39576 (16) | 0.5000 | 0.0260 (7) | |
O5 | 0.3059 (3) | 0.0000 | 0.5514 (5) | 0.0269 (7) | |
H5 | 0.295 (3) | 0.0334 (18) | 0.616 (4) | 0.032* | |
O6 | 0.1953 (3) | 0.0000 | −0.0351 (5) | 0.0274 (8) | |
H6 | 0.220 (3) | 0.0300 (19) | −0.087 (5) | 0.033* | |
N1 | 0.0995 (2) | 0.24638 (15) | 0.0967 (3) | 0.0217 (6) | |
H1N | 0.164 (3) | 0.217 (2) | 0.149 (4) | 0.026* | |
N2 | 0.0000 | 0.37320 (19) | 0.0000 | 0.0211 (8) | |
N3 | 0.5000 | 0.14879 (19) | 0.5000 | 0.0214 (8) | |
N4 | 0.4011 (2) | 0.27577 (15) | 0.4039 (3) | 0.0230 (6) | |
H4N | 0.336 (3) | 0.305 (2) | 0.344 (4) | 0.028* | |
C1 | 0.0000 | 0.2008 (2) | 0.0000 | 0.0224 (9) | |
C2 | 0.1003 (3) | 0.33052 (17) | 0.0964 (4) | 0.0217 (7) | |
C3 | 0.4005 (3) | 0.19107 (17) | 0.3995 (4) | 0.0218 (7) | |
C4 | 0.5000 | 0.3210 (2) | 0.5000 | 0.0207 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0283 (6) | 0.0195 (5) | 0.0307 (6) | 0.000 | 0.0151 (4) | 0.000 |
K2 | 0.0237 (6) | 0.0175 (5) | 0.0313 (6) | 0.000 | 0.0135 (4) | 0.000 |
O1 | 0.0268 (16) | 0.0143 (15) | 0.0399 (17) | 0.000 | 0.0085 (13) | 0.000 |
O2 | 0.0206 (11) | 0.0183 (11) | 0.0385 (13) | −0.0032 (8) | 0.0103 (9) | −0.0015 (9) |
O3 | 0.0215 (11) | 0.0195 (11) | 0.0415 (13) | −0.0005 (9) | 0.0088 (9) | 0.0005 (9) |
O4 | 0.0272 (16) | 0.0186 (15) | 0.0356 (16) | 0.000 | 0.0145 (13) | 0.000 |
O5 | 0.0346 (18) | 0.0181 (16) | 0.0343 (18) | 0.000 | 0.0207 (14) | 0.000 |
O6 | 0.0330 (18) | 0.0184 (16) | 0.0380 (19) | 0.000 | 0.0229 (15) | 0.000 |
N1 | 0.0206 (14) | 0.0183 (13) | 0.0288 (14) | 0.0025 (10) | 0.0111 (11) | 0.0015 (10) |
N2 | 0.0176 (17) | 0.0216 (18) | 0.0280 (18) | 0.000 | 0.0131 (14) | 0.000 |
N3 | 0.0169 (17) | 0.0191 (17) | 0.0312 (19) | 0.000 | 0.0118 (15) | 0.000 |
N4 | 0.0199 (14) | 0.0190 (13) | 0.0320 (14) | 0.0023 (10) | 0.0099 (11) | 0.0017 (10) |
C1 | 0.020 (2) | 0.020 (2) | 0.029 (2) | 0.000 | 0.0111 (17) | 0.000 |
C2 | 0.0237 (15) | 0.0184 (15) | 0.0278 (16) | −0.0014 (12) | 0.0155 (13) | 0.0001 (12) |
C3 | 0.0240 (16) | 0.0178 (15) | 0.0280 (16) | −0.0011 (12) | 0.0148 (12) | −0.0028 (12) |
C4 | 0.020 (2) | 0.022 (2) | 0.024 (2) | 0.000 | 0.0142 (17) | 0.000 |
K1—O1 | 2.780 (2) | O4—K1viii | 2.7260 (18) |
K1—O1i | 2.780 (2) | O4—C4 | 1.228 (5) |
K1—O4ii | 2.7260 (18) | O5—K2v | 2.979 (4) |
K1—O4iii | 2.7260 (18) | O5—H5 | 0.74 (3) |
K1—O5 | 2.855 (4) | O6—K1i | 3.079 (4) |
K1—O6 | 2.696 (4) | O6—H6 | 0.71 (3) |
K1—O6i | 3.079 (4) | N1—H1N | 0.87 (3) |
K2—O3 | 2.932 (2) | N1—C1 | 1.374 (3) |
K2—O3iv | 2.932 (2) | N1—C2 | 1.382 (4) |
K2—O5 | 2.738 (3) | N2—K2ix | 3.014 (2) |
K2—O5v | 2.979 (4) | N2—K2vii | 3.014 (2) |
K2—O6 | 2.859 (4) | N2—C2 | 1.353 (3) |
K2—N2vi | 3.014 (2) | N2—C2x | 1.353 (3) |
K2—N2vii | 3.014 (2) | N3—K2v | 3.010 (3) |
K2—N3 | 3.010 (3) | N3—C3 | 1.353 (3) |
K2—N3v | 3.010 (3) | N3—C3xi | 1.353 (3) |
O1—K1i | 2.780 (2) | N4—H4N | 0.88 (3) |
O1—C1 | 1.218 (5) | N4—C3 | 1.391 (4) |
O2—C2 | 1.258 (4) | N4—C4 | 1.364 (3) |
O3—C3 | 1.250 (3) | C1—N1x | 1.374 (3) |
O4—K1ii | 2.7260 (18) | C4—N4xi | 1.364 (3) |
O1—K1—O1i | 96.79 (8) | N2vii—K2—N3 | 73.24 (5) |
O1i—K1—O4ii | 142.27 (4) | N3—K2—N3v | 108.53 (8) |
O1i—K1—O4iii | 81.49 (5) | K1—O1—K1i | 83.21 (8) |
O1—K1—O4ii | 81.49 (5) | K1—O1—C1 | 138.40 (4) |
O1—K1—O4iii | 142.27 (4) | K1i—O1—C1 | 138.40 (4) |
O1—K1—O5 | 124.94 (5) | K2—O3—C3 | 97.41 (17) |
O1i—K1—O5 | 124.94 (5) | K1ii—O4—K1viii | 102.21 (9) |
O1—K1—O6 | 67.62 (5) | K1ii—O4—C4 | 128.89 (5) |
O1i—K1—O6 | 67.62 (5) | K1viii—O4—C4 | 128.89 (5) |
O1i—K1—O6i | 62.44 (5) | K1—O5—K2 | 85.53 (10) |
O1—K1—O6i | 62.44 (5) | K1—O5—K2v | 161.30 (14) |
O4ii—K1—O4iii | 77.78 (9) | K1—O5—H5 | 102 (2) |
O4ii—K1—O5 | 83.72 (6) | K2—O5—K2v | 75.77 (9) |
O4iii—K1—O5 | 83.72 (6) | K2—O5—H5 | 131 (3) |
O4ii—K1—O6 | 140.98 (5) | K2v—O5—H5 | 90 (3) |
O4iii—K1—O6 | 140.98 (5) | K1—O6—K1i | 79.16 (9) |
O4ii—K1—O6i | 84.27 (6) | K1—O6—K2 | 86.25 (11) |
O4iii—K1—O6i | 84.27 (6) | K1i—O6—K2 | 165.41 (14) |
O5—K1—O6 | 94.61 (10) | K1—O6—H6 | 136 (3) |
O5—K1—O6i | 164.56 (12) | K1i—O6—H6 | 100 (3) |
O6—K1—O6i | 100.84 (9) | K2—O6—H6 | 90 (3) |
O3—K2—O3iv | 122.74 (8) | H1N—N1—C1 | 113 (2) |
O3—K2—O5 | 67.25 (5) | H1N—N1—C2 | 124 (2) |
O3iv—K2—O5 | 67.25 (5) | C1—N1—C2 | 123.3 (3) |
O3iv—K2—O5v | 111.67 (5) | K2ix—N2—K2vii | 92.60 (9) |
O3—K2—O5v | 111.67 (5) | K2ix—N2—C2 | 111.24 (14) |
O3—K2—O6 | 75.05 (5) | K2ix—N2—C2x | 110.69 (14) |
O3iv—K2—O6 | 75.05 (5) | K2vii—N2—C2 | 110.69 (14) |
O3iv—K2—N2vi | 69.68 (6) | K2vii—N2—C2x | 111.23 (14) |
O3—K2—N2vi | 149.94 (6) | C2—N2—C2x | 117.6 (3) |
O3iv—K2—N2vii | 149.94 (6) | K2—N3—K2v | 71.47 (8) |
O3—K2—N2vii | 69.68 (6) | K2—N3—C3 | 91.53 (14) |
O3—K2—N3 | 45.12 (5) | K2v—N3—C3xi | 91.53 (14) |
O3iv—K2—N3v | 45.12 (5) | K2v—N3—C3 | 143.74 (16) |
O3—K2—N3v | 135.99 (6) | K2—N3—C3xi | 143.74 (16) |
O3iv—K2—N3 | 136.00 (6) | C3—N3—C3xi | 118.3 (3) |
O5—K2—O5v | 104.23 (9) | H4N—N4—C3 | 122 (2) |
O5—K2—O6 | 93.61 (10) | H4N—N4—C4 | 114 (2) |
O5v—K2—O6 | 162.16 (12) | C3—N4—C4 | 123.7 (3) |
O5—K2—N2vi | 136.04 (5) | O1—C1—N1 | 123.05 (18) |
O5v—K2—N2vi | 83.62 (6) | O1—C1—N1x | 123.05 (18) |
O5—K2—N2vii | 136.04 (5) | N1—C1—N1x | 113.9 (4) |
O5v—K2—N2vii | 83.62 (6) | O2—C2—N1 | 116.9 (3) |
O5—K2—N3 | 70.53 (4) | O2—C2—N2 | 122.1 (3) |
O5—K2—N3v | 70.53 (4) | N1—C2—N2 | 120.9 (3) |
O5v—K2—N3v | 67.48 (4) | K2—C3—O3 | 60.75 (14) |
O5v—K2—N3 | 67.48 (4) | K2—C3—N3 | 64.53 (15) |
O6—K2—N2vi | 83.51 (6) | K2—C3—N4 | 161.45 (19) |
O6—K2—N2vii | 83.51 (6) | O3—C3—N3 | 122.3 (3) |
O6—K2—N3 | 119.98 (4) | O3—C3—N4 | 117.5 (3) |
O6—K2—N3v | 119.98 (4) | N3—C3—N4 | 120.2 (3) |
N2vi—K2—N2vii | 87.39 (9) | O4—C4—N4 | 122.97 (18) |
N2vi—K2—N3v | 73.24 (5) | O4—C4—N4xi | 122.98 (18) |
N2vi—K2—N3 | 146.43 (4) | N4—C4—N4xi | 114.0 (4) |
N2vii—K2—N3v | 146.43 (4) | ||
O1i—K1—O1—K1i | 0.0 | O5v—K2—O6—K1 | 180.0 |
O1i—K1—O1—C1 | 180.0 | O5—K2—O6—K1i | 0.0 |
O4ii—K1—O1—K1i | −141.96 (4) | O5v—K2—O6—K1i | 180.0 |
O4iii—K1—O1—K1i | −84.85 (9) | N2vi—K2—O6—K1 | 135.95 (5) |
O4ii—K1—O1—C1 | 38.04 (4) | N2vii—K2—O6—K1 | −135.95 (5) |
O4iii—K1—O1—C1 | 95.15 (9) | N2vi—K2—O6—K1i | 135.95 (5) |
O5—K1—O1—K1i | 141.90 (10) | N2vii—K2—O6—K1i | −135.95 (5) |
O5—K1—O1—C1 | −38.10 (10) | N3—K2—O6—K1 | −69.57 (5) |
O6—K1—O1—K1i | 62.37 (7) | N3v—K2—O6—K1 | 69.57 (5) |
O6i—K1—O1—K1i | −54.01 (7) | N3v—K2—O6—K1i | 69.57 (5) |
O6—K1—O1—C1 | −117.63 (7) | N3—K2—O6—K1i | −69.57 (5) |
O6i—K1—O1—C1 | 125.99 (7) | O3iv—K2—N3—K2v | 43.59 (7) |
O3iv—K2—O3—C3 | 135.28 (15) | O3—K2—N3—K2v | 137.46 (7) |
O5—K2—O3—C3 | 95.47 (18) | O3—K2—N3—C3 | −9.86 (13) |
O5v—K2—O3—C3 | −1.43 (19) | O3iv—K2—N3—C3xi | 109.4 (2) |
O6—K2—O3—C3 | −164.00 (18) | O3—K2—N3—C3xi | −156.7 (3) |
N2vi—K2—O3—C3 | −118.05 (18) | O3iv—K2—N3—C3 | −103.73 (15) |
N2vii—K2—O3—C3 | −75.49 (16) | O5—K2—N3—K2v | 60.58 (7) |
N3—K2—O3—C3 | 10.77 (15) | O5v—K2—N3—K2v | −54.81 (7) |
N3v—K2—O3—C3 | 78.09 (18) | O5—K2—N3—C3 | −86.75 (14) |
O3—K2—O5—K1 | 72.13 (5) | O5—K2—N3—C3xi | 126.4 (3) |
O3iv—K2—O5—K1 | −72.13 (5) | O5v—K2—N3—C3xi | 11.0 (3) |
O3iv—K2—O5—K2v | 107.87 (5) | O5v—K2—N3—C3 | 157.86 (15) |
O3—K2—O5—K2v | −107.87 (5) | O6—K2—N3—K2v | 143.29 (10) |
O5v—K2—O5—K1 | 180.0 | O6—K2—N3—C3 | −4.03 (16) |
O5v—K2—O5—K2v | 0.0 | O6—K2—N3—C3xi | −150.9 (3) |
O6—K2—O5—K1 | 0.0 | N2vi—K2—N3—K2v | −87.42 (10) |
O6—K2—O5—K2v | 180.0 | N2vii—K2—N3—K2v | −144.77 (4) |
N2vi—K2—O5—K1 | −84.39 (8) | N2vi—K2—N3—C3xi | −21.6 (3) |
N2vii—K2—O5—K1 | 84.39 (8) | N2vii—K2—N3—C3xi | −78.9 (3) |
N2vi—K2—O5—K2v | 95.61 (8) | N2vi—K2—N3—C3 | 125.25 (15) |
N2vii—K2—O5—K2v | −95.61 (8) | N2vii—K2—N3—C3 | 67.91 (13) |
N3—K2—O5—K1 | 120.58 (4) | N3v—K2—N3—K2v | 0.0 |
N3v—K2—O5—K1 | −120.58 (4) | N3v—K2—N3—C3xi | 65.8 (3) |
N3v—K2—O5—K2v | 59.42 (4) | N3v—K2—N3—C3 | −147.33 (13) |
N3—K2—O5—K2v | −59.42 (4) | K1—O1—C1—N1 | 40.28 (12) |
C3—K2—O5—K1 | 95.20 (6) | K1i—O1—C1—N1 | −139.72 (12) |
C3iv—K2—O5—K1 | −95.20 (6) | K1i—O1—C1—N1x | 40.28 (12) |
C3iv—K2—O5—K2v | 84.80 (6) | K1—O1—C1—N1x | −139.72 (12) |
C3—K2—O5—K2v | −84.80 (6) | C2—N1—C1—O1 | 179.63 (19) |
O1—K1—O5—K2 | −65.81 (6) | C2—N1—C1—N1x | −0.37 (19) |
O1i—K1—O5—K2 | 65.81 (6) | K2ix—N2—C2—O2 | −50.7 (3) |
O1i—K1—O5—K2v | 65.81 (6) | K2vii—N2—C2—O2 | 50.8 (3) |
O1—K1—O5—K2v | −65.81 (6) | K2ix—N2—C2—N1 | 128.8 (2) |
O4ii—K1—O5—K2 | −140.83 (5) | K2vii—N2—C2—N1 | −129.8 (2) |
O4iii—K1—O5—K2 | 140.83 (5) | C2x—N2—C2—O2 | −179.8 (3) |
O4ii—K1—O5—K2v | −140.83 (5) | C2x—N2—C2—N1 | −0.36 (18) |
O4iii—K1—O5—K2v | 140.83 (5) | C1—N1—C2—O2 | −179.8 (2) |
O6—K1—O5—K2 | 0.0 | C1—N1—C2—N2 | 0.8 (4) |
O6i—K1—O5—K2 | 180.0 | K2—O3—C3—N3 | −20.4 (3) |
O6—K1—O5—K2v | 0.0 | K2—O3—C3—N4 | 159.0 (2) |
O6i—K1—O5—K2v | 180.0 | K2v—N3—C3—K2 | −59.9 (2) |
O1i—K1—O6—K1i | 53.97 (4) | K2—N3—C3—O3 | 19.7 (3) |
O1—K1—O6—K1i | −53.97 (4) | K2v—N3—C3—O3 | −40.2 (4) |
O1—K1—O6—K2 | 126.03 (4) | K2—N3—C3—N4 | −159.7 (2) |
O1i—K1—O6—K2 | −126.03 (4) | K2v—N3—C3—N4 | 140.4 (2) |
O4ii—K1—O6—K1i | −94.29 (10) | C3xi—N3—C3—K2 | 158.45 (7) |
O4iii—K1—O6—K1i | 94.29 (10) | C3xi—N3—C3—O3 | 178.1 (3) |
O4ii—K1—O6—K2 | 85.71 (10) | C3xi—N3—C3—N4 | −1.23 (18) |
O4iii—K1—O6—K2 | −85.71 (10) | C4—N4—C3—K2 | −97.0 (6) |
O5—K1—O6—K1i | 180.0 | C4—N4—C3—O3 | −176.8 (2) |
O5—K1—O6—K2 | 0.0 | C4—N4—C3—N3 | 2.6 (4) |
O6i—K1—O6—K1i | 0.0 | K1ii—O4—C4—N4 | 88.16 (12) |
O6i—K1—O6—K2 | 180.0 | K1viii—O4—C4—N4 | −91.84 (12) |
O3—K2—O6—K1 | −65.30 (5) | K1ii—O4—C4—N4xi | −91.85 (12) |
O3iv—K2—O6—K1 | 65.30 (5) | K1viii—O4—C4—N4xi | 88.16 (12) |
O3iv—K2—O6—K1i | 65.30 (5) | C3—N4—C4—O4 | 178.71 (19) |
O3—K2—O6—K1i | −65.30 (5) | C3—N4—C4—N4xi | −1.29 (19) |
O5—K2—O6—K1 | 0.0 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, y−1/2, z; (iv) x, −y, z; (v) −x+1, −y, −z+1; (vi) x+1/2, y−1/2, z; (vii) −x+1/2, −y+1/2, −z; (viii) x+1/2, y+1/2, z; (ix) x−1/2, y+1/2, z; (x) −x, y, −z; (xi) −x+1, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O2ii | 0.74 (3) | 2.16 (3) | 2.892 (3) | 169 (4) |
O6—H6···O2vii | 0.71 (3) | 2.16 (3) | 2.858 (3) | 168 (3) |
N1—H1N···O3 | 0.87 (3) | 1.95 (3) | 2.811 (3) | 172 (3) |
N4—H4N···O2 | 0.88 (3) | 1.93 (3) | 2.809 (3) | 175 (3) |
Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (vii) −x+1/2, −y+1/2, −z. |
C3HK2N3O3 | F(000) = 408 |
Mr = 205.27 | Dx = 2.313 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 1837 reflections |
a = 13.062 (4) Å | θ = 3.0–28.2° |
b = 6.620 (2) Å | µ = 1.56 mm−1 |
c = 6.817 (2) Å | T = 150 K |
V = 589.4 (3) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.21 × 0.18 mm |
Bruker SMART 1K CCD diffractometer | 412 independent reflections |
Radiation source: sealed tube | 370 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
thin–slice ω scans | θmax = 28.3°, θmin = 3.1° |
Absorption correction: multi-scan SADABS; Sheldrick, 2003 | h = −17→16 |
Tmin = 0.716, Tmax = 0.767 | k = −8→8 |
2536 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0329P)2 + 0.7482P] where P = (Fo2 + 2Fc2)/3 |
412 reflections | (Δ/σ)max < 0.001 |
38 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
C3HK2N3O3 | V = 589.4 (3) Å3 |
Mr = 205.27 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 13.062 (4) Å | µ = 1.56 mm−1 |
b = 6.620 (2) Å | T = 150 K |
c = 6.817 (2) Å | 0.23 × 0.21 × 0.18 mm |
Bruker SMART 1K CCD diffractometer | 412 independent reflections |
Absorption correction: multi-scan SADABS; Sheldrick, 2003 | 370 reflections with I > 2σ(I) |
Tmin = 0.716, Tmax = 0.767 | Rint = 0.028 |
2536 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.15 | Δρmax = 0.26 e Å−3 |
412 reflections | Δρmin = −0.48 e Å−3 |
38 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K | 0.32199 (3) | 0.5000 | 0.5000 | 0.01181 (19) | |
O1 | 0.17320 (10) | 0.6499 (2) | 0.2500 | 0.0110 (3) | |
N1 | 0.0000 | 0.6430 (4) | 0.2500 | 0.0103 (5) | |
N2 | 0.09318 (13) | 0.3413 (2) | 0.2500 | 0.0094 (4) | |
O2 | 0.0000 | 0.0552 (3) | 0.2500 | 0.0150 (5) | |
C1 | 0.09272 (15) | 0.5441 (3) | 0.2500 | 0.0076 (4) | |
C2 | 0.0000 | 0.2483 (4) | 0.2500 | 0.0104 (6) | |
H1N | 0.0000 | 0.766 (8) | 0.2500 | 0.032 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0116 (3) | 0.0122 (3) | 0.0116 (3) | 0.000 | 0.000 | 0.00027 (14) |
O1 | 0.0060 (7) | 0.0115 (7) | 0.0154 (7) | −0.0021 (5) | 0.000 | 0.000 |
N1 | 0.0089 (12) | 0.0036 (11) | 0.0185 (13) | 0.000 | 0.000 | 0.000 |
N2 | 0.0082 (8) | 0.0075 (8) | 0.0125 (8) | 0.0015 (6) | 0.000 | 0.000 |
O2 | 0.0149 (11) | 0.0047 (9) | 0.0255 (12) | 0.000 | 0.000 | 0.000 |
C1 | 0.0076 (9) | 0.0071 (8) | 0.0081 (8) | 0.0006 (7) | 0.000 | 0.000 |
C2 | 0.0136 (14) | 0.0094 (13) | 0.0080 (12) | 0.000 | 0.000 | 0.000 |
K—O1 | 2.7688 (13) | N1—C1ix | 1.377 (2) |
K—O1i | 2.7688 (13) | N1—H1N | 0.81 (5) |
K—O1ii | 2.8773 (14) | N2—Kx | 3.0390 (15) |
K—O1iii | 2.8774 (14) | N2—Kv | 3.0390 (15) |
K—N2iv | 3.0390 (15) | N2—C1 | 1.343 (3) |
K—N2v | 3.0390 (15) | N2—C2 | 1.364 (2) |
K—O2vi | 2.9058 (8) | O2—Kxi | 2.9059 (8) |
K—O2v | 2.9058 (8) | O2—Kv | 2.9059 (8) |
O1—Kvii | 2.7688 (13) | O2—Kxii | 2.9059 (8) |
O1—Kii | 2.8773 (14) | O2—Kx | 2.9059 (8) |
O1—Kviii | 2.8773 (14) | O2—C2 | 1.278 (4) |
O1—C1 | 1.263 (2) | C2—N2ix | 1.364 (2) |
N1—C1 | 1.377 (2) | ||
O1—K—O1i | 90.83 (5) | K—O1—Kviii | 129.63 (5) |
O1i—K—O1ii | 86.53 (3) | Kii—O1—Kviii | 72.64 (4) |
O1—K—O1ii | 95.23 (3) | K—O1—C1 | 112.67 (9) |
O1i—K—O1iii | 95.23 (3) | Kvii—O1—C1 | 112.67 (9) |
O1—K—O1iii | 86.53 (3) | Kii—O1—C1 | 117.70 (9) |
O1ii—K—O1iii | 177.50 (6) | Kviii—O1—C1 | 117.70 (9) |
O1i—K—N2iv | 150.17 (5) | C1—N1—C1ix | 123.2 (2) |
O1—K—N2iv | 69.17 (4) | C1—N1—H1N | 118.39 (12) |
O1ii—K—N2iv | 74.06 (4) | C1ix—N1—H1N | 118.40 (13) |
O1iii—K—N2iv | 104.99 (4) | Kx—N2—Kv | 68.21 (4) |
O1i—K—N2v | 69.17 (4) | Kx—N2—C1 | 138.16 (8) |
O1—K—N2v | 150.17 (5) | Kv—N2—C1 | 138.16 (8) |
O1ii—K—N2v | 104.99 (4) | Kx—N2—C2 | 89.42 (11) |
O1iii—K—N2v | 74.06 (4) | Kv—N2—C2 | 89.42 (11) |
O1i—K—O2vi | 165.40 (5) | C1—N2—C2 | 116.58 (19) |
O1—K—O2vi | 98.95 (3) | Kxi—O2—Kv | 165.54 (9) |
O1ii—K—O2vi | 103.21 (5) | Kxi—O2—Kxii | 71.81 (3) |
O1iii—K—O2vi | 74.73 (4) | Kv—O2—Kxii | 106.29 (3) |
O1i—K—O2v | 98.95 (3) | Kxi—O2—Kx | 106.29 (3) |
O1—K—O2v | 165.40 (5) | Kv—O2—Kx | 71.81 (3) |
O1ii—K—O2v | 74.73 (4) | Kxii—O2—Kx | 165.54 (9) |
O1iii—K—O2v | 103.21 (5) | Kxi—O2—C2 | 97.23 (4) |
N2iv—K—N2v | 137.23 (7) | Kv—O2—C2 | 97.23 (4) |
N2iv—K—O2vi | 44.43 (5) | Kxii—O2—C2 | 97.23 (4) |
N2iv—K—O2v | 97.51 (5) | Kx—O2—C2 | 97.23 (4) |
N2v—K—O2vi | 97.51 (5) | O1—C1—N1 | 117.93 (18) |
N2v—K—O2v | 44.43 (5) | O1—C1—N2 | 123.42 (18) |
K—O1—Kvii | 75.97 (4) | N1—C1—N2 | 118.65 (19) |
Kvii—O1—Kii | 129.63 (5) | N2—C2—N2ix | 126.3 (3) |
K—O1—Kii | 84.77 (3) | N2—C2—O2 | 116.83 (13) |
Kvii—O1—Kviii | 84.77 (3) | N2ix—C2—O2 | 116.83 (13) |
O1i—K—O1—Kvii | −140.32 (5) | Kvii—O1—C1—N1 | −138.16 (5) |
O1ii—K—O1—Kvii | 133.09 (4) | Kii—O1—C1—N1 | 41.98 (5) |
O1iii—K—O1—Kvii | −45.13 (4) | Kviii—O1—C1—N1 | −41.98 (5) |
O1i—K—O1—Kii | 86.59 (3) | K—O1—C1—N2 | −41.84 (5) |
O1ii—K—O1—Kii | 0.001 (2) | Kvii—O1—C1—N2 | 41.84 (5) |
O1iii—K—O1—Kii | −178.22 (4) | Kii—O1—C1—N2 | −138.02 (5) |
O1i—K—O1—Kviii | 148.88 (7) | Kviii—O1—C1—N2 | 138.02 (5) |
O1ii—K—O1—Kviii | 62.29 (5) | Kx—N2—C1—O1 | −57.21 (14) |
O1iii—K—O1—Kviii | −115.93 (7) | Kv—N2—C1—O1 | 57.21 (14) |
O1i—K—O1—C1 | −31.29 (7) | Kx—N2—C1—N1 | 122.79 (14) |
O1ii—K—O1—C1 | −117.88 (9) | Kv—N2—C1—N1 | −122.79 (14) |
O1iii—K—O1—C1 | 63.90 (7) | C2—N2—C1—O1 | 180.0 |
N2iv—K—O1—Kvii | 62.35 (3) | C2—N2—C1—N1 | 0.0 |
N2v—K—O1—Kvii | −93.92 (6) | C1ix—N1—C1—O1 | 180.0 |
N2iv—K—O1—Kii | −70.74 (4) | C1ix—N1—C1—N2 | 0.0 |
N2v—K—O1—Kii | 132.99 (6) | Kxi—O2—C2—N2ix | 36.238 (13) |
N2iv—K—O1—Kviii | −8.45 (4) | Kv—O2—C2—N2ix | −143.762 (14) |
N2v—K—O1—Kviii | −164.72 (5) | Kxii—O2—C2—N2ix | −36.238 (13) |
N2iv—K—O1—C1 | 171.38 (9) | Kx—O2—C2—N2ix | 143.762 (14) |
N2v—K—O1—C1 | 15.11 (11) | Kxi—O2—C2—N2 | −143.762 (14) |
O2vi—K—O1—Kvii | 28.80 (5) | Kv—O2—C2—N2 | 36.238 (13) |
O2v—K—O1—Kvii | 87.36 (10) | Kxii—O2—C2—N2 | 143.762 (14) |
O2vi—K—O1—Kii | −104.28 (5) | Kx—O2—C2—N2 | −36.238 (13) |
O2v—K—O1—Kii | −45.73 (10) | Kx—N2—C2—N2ix | −145.89 (2) |
O2vi—K—O1—Kviii | −41.99 (6) | Kv—N2—C2—N2ix | 145.89 (2) |
O2v—K—O1—Kviii | 16.56 (12) | Kx—N2—C2—O2 | 34.11 (2) |
O2vi—K—O1—C1 | 137.84 (9) | Kv—N2—C2—O2 | −34.11 (2) |
O2v—K—O1—C1 | −163.61 (9) | C1—N2—C2—N2ix | 0.0 |
K—O1—C1—N1 | 138.16 (5) | C1—N2—C2—O2 | 180.0 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z+1; (vi) x+1/2, y+1/2, z; (vii) x, y, −z+1/2; (viii) −x+1/2, −y+3/2, z−1/2; (ix) −x, y, −z+1/2; (x) −x+1/2, −y+1/2, z−1/2; (xi) x−1/2, y−1/2, −z+1/2; (xii) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2xiii | 0.81 (5) | 1.91 (6) | 2.729 (3) | 180 |
Symmetry code: (xiii) x, y+1, z. |
C12D17K3N12O16 | F(000) = 1432 |
Mr = 719.71 | Dx = 1.946 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8143 (15) Å | Cell parameters from 7146 reflections |
b = 16.3214 (19) Å | θ = 2.5–28.1° |
c = 11.8498 (14) Å | µ = 0.66 mm−1 |
β = 97.520 (2)° | T = 150 K |
V = 2457.0 (5) Å3 | Plate, colourless |
Z = 4 | 0.70 × 0.20 × 0.05 mm |
Bruker SMART 1K CCD diffractometer | 2926 independent reflections |
Radiation source: sealed tube | 2425 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
thin–slice ω scans | θmax = 28.5°, θmin = 1.7° |
Absorption correction: multi-scan SADABS | h = −16→17 |
Tmin = 0.655, Tmax = 0.968 | k = −20→20 |
10491 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.034 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2767P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2926 reflections | Δρmax = 0.64 e Å−3 |
232 parameters | Δρmin = −0.45 e Å−3 |
C12D17K3N12O16 | V = 2457.0 (5) Å3 |
Mr = 719.71 | Z = 4 |
Monoclinic, C2/m | Mo Kα radiation |
a = 12.8143 (15) Å | µ = 0.66 mm−1 |
b = 16.3214 (19) Å | T = 150 K |
c = 11.8498 (14) Å | 0.70 × 0.20 × 0.05 mm |
β = 97.520 (2)° |
Bruker SMART 1K CCD diffractometer | 2926 independent reflections |
Absorption correction: multi-scan SADABS | 2425 reflections with I > 2σ(I) |
Tmin = 0.655, Tmax = 0.968 | Rint = 0.029 |
10491 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 232 parameters |
wR(F2) = 0.095 | 0 restraints |
S = 1.07 | Δρmax = 0.64 e Å−3 |
2926 reflections | Δρmin = −0.45 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
K1 | 0.57585 (4) | 0.5000 | 0.87603 (4) | 0.01848 (14) | |
K2 | 0.28021 (4) | 0.5000 | 0.65303 (5) | 0.02235 (15) | |
K3 | 0.03827 (4) | 0.5000 | 0.34925 (5) | 0.02167 (14) | |
O1 | 0.36192 (9) | 0.34845 (7) | 0.60425 (9) | 0.0162 (3) | |
O2 | 0.38952 (9) | 0.10816 (7) | 0.41946 (9) | 0.0170 (3) | |
O3 | 0.37484 (10) | 0.34798 (7) | 0.22327 (9) | 0.0181 (3) | |
O4 | 0.11489 (10) | 0.34507 (7) | 0.27492 (9) | 0.0187 (3) | |
O5 | 0.10581 (10) | 0.10292 (7) | 0.08414 (9) | 0.0197 (3) | |
O6 | 0.14092 (11) | 0.34212 (8) | −0.10245 (9) | 0.0224 (3) | |
O7 | 0.79380 (16) | 0.5000 | 0.86355 (17) | 0.0213 (4) | |
D7 | 0.8155 (18) | 0.5334 (13) | 0.8793 (18) | 0.026* | |
O8 | 0.49315 (15) | 0.5000 | 0.64870 (16) | 0.0215 (4) | |
D8 | 0.5180 (16) | 0.5384 (12) | 0.6209 (17) | 0.026* | |
O9 | −0.13646 (18) | 0.5000 | 0.18744 (15) | 0.0290 (5) | |
D9 | −0.1413 (18) | 0.5385 (13) | 0.1479 (18) | 0.035* | |
O10 | 0.24823 (14) | 0.5000 | 0.37824 (16) | 0.0203 (4) | |
D10 | 0.2829 (17) | 0.4618 (12) | 0.3935 (17) | 0.024* | |
N1 | 0.37629 (10) | 0.22902 (8) | 0.51198 (11) | 0.0124 (3) | |
D1N | 0.3771 (15) | 0.2066 (12) | 0.5762 (17) | 0.015* | |
N2 | 0.37868 (11) | 0.22837 (9) | 0.31979 (11) | 0.0146 (3) | |
D2N | 0.3774 (15) | 0.2035 (13) | 0.2561 (18) | 0.018* | |
N3 | 0.37088 (11) | 0.35545 (8) | 0.41406 (10) | 0.0135 (3) | |
N4 | 0.11454 (11) | 0.22362 (8) | 0.18226 (11) | 0.0145 (3) | |
D4N | 0.1159 (15) | 0.2005 (12) | 0.2479 (18) | 0.017* | |
N5 | 0.12358 (11) | 0.22276 (9) | −0.01043 (11) | 0.0145 (3) | |
D5N | 0.1220 (15) | 0.2002 (13) | −0.0720 (17) | 0.017* | |
N6 | 0.12729 (12) | 0.34764 (9) | 0.08610 (11) | 0.0169 (3) | |
D6N | 0.142 (3) | 0.395 (3) | 0.093 (3) | 0.020* | 0.50 |
C1 | 0.36941 (12) | 0.31380 (10) | 0.51209 (12) | 0.0115 (3) | |
C2 | 0.38181 (12) | 0.18288 (10) | 0.41726 (12) | 0.0122 (3) | |
C3 | 0.37456 (12) | 0.31315 (10) | 0.31680 (12) | 0.0129 (3) | |
C4 | 0.11879 (13) | 0.30779 (10) | 0.18513 (13) | 0.0145 (3) | |
C5 | 0.11459 (12) | 0.17721 (10) | 0.08533 (13) | 0.0142 (3) | |
C6 | 0.13108 (13) | 0.30684 (10) | −0.01222 (12) | 0.0147 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0256 (3) | 0.0164 (3) | 0.0146 (2) | 0.000 | 0.00713 (19) | 0.000 |
K2 | 0.0193 (3) | 0.0146 (3) | 0.0344 (3) | 0.000 | 0.0082 (2) | 0.000 |
K3 | 0.0186 (3) | 0.0191 (3) | 0.0289 (3) | 0.000 | 0.0089 (2) | 0.000 |
O1 | 0.0275 (7) | 0.0141 (6) | 0.0077 (5) | 0.0018 (5) | 0.0049 (4) | −0.0018 (4) |
O2 | 0.0229 (6) | 0.0136 (6) | 0.0152 (5) | 0.0015 (5) | 0.0051 (5) | −0.0014 (4) |
O3 | 0.0286 (7) | 0.0185 (6) | 0.0080 (5) | 0.0008 (5) | 0.0056 (4) | 0.0025 (4) |
O4 | 0.0327 (7) | 0.0158 (6) | 0.0089 (5) | 0.0002 (5) | 0.0071 (5) | −0.0011 (4) |
O5 | 0.0296 (7) | 0.0156 (6) | 0.0149 (5) | −0.0022 (5) | 0.0071 (5) | −0.0015 (4) |
O6 | 0.0415 (8) | 0.0192 (6) | 0.0078 (5) | 0.0044 (5) | 0.0090 (5) | 0.0029 (5) |
O7 | 0.0311 (11) | 0.0087 (9) | 0.0239 (9) | 0.000 | 0.0028 (8) | 0.000 |
O8 | 0.0233 (9) | 0.0147 (9) | 0.0278 (10) | 0.000 | 0.0080 (7) | 0.000 |
O9 | 0.0505 (13) | 0.0205 (10) | 0.0157 (9) | 0.000 | 0.0035 (8) | 0.000 |
O10 | 0.0189 (9) | 0.0122 (9) | 0.0297 (10) | 0.000 | 0.0027 (7) | 0.000 |
N1 | 0.0181 (7) | 0.0132 (7) | 0.0066 (6) | 0.0011 (5) | 0.0039 (5) | 0.0006 (5) |
N2 | 0.0234 (8) | 0.0145 (7) | 0.0064 (6) | 0.0013 (5) | 0.0041 (5) | −0.0026 (5) |
N3 | 0.0196 (7) | 0.0131 (7) | 0.0086 (6) | 0.0010 (5) | 0.0038 (5) | −0.0003 (5) |
N4 | 0.0240 (7) | 0.0143 (7) | 0.0062 (6) | −0.0011 (5) | 0.0054 (5) | 0.0013 (5) |
N5 | 0.0220 (7) | 0.0160 (7) | 0.0060 (6) | 0.0002 (5) | 0.0037 (5) | −0.0022 (5) |
N6 | 0.0314 (8) | 0.0120 (7) | 0.0084 (6) | −0.0010 (6) | 0.0066 (5) | −0.0001 (5) |
C1 | 0.0125 (7) | 0.0134 (8) | 0.0087 (7) | 0.0007 (6) | 0.0024 (5) | 0.0001 (6) |
C2 | 0.0120 (7) | 0.0147 (8) | 0.0101 (7) | −0.0002 (6) | 0.0025 (5) | −0.0014 (6) |
C3 | 0.0140 (8) | 0.0155 (8) | 0.0094 (7) | 0.0004 (6) | 0.0025 (6) | 0.0001 (6) |
C4 | 0.0179 (8) | 0.0156 (8) | 0.0107 (7) | −0.0011 (6) | 0.0044 (6) | −0.0006 (6) |
C5 | 0.0150 (8) | 0.0169 (8) | 0.0112 (7) | −0.0011 (6) | 0.0038 (6) | −0.0009 (6) |
C6 | 0.0201 (8) | 0.0158 (8) | 0.0081 (7) | 0.0017 (6) | 0.0016 (6) | −0.0003 (6) |
K1—O3i | 2.8520 (12) | O3—C3 | 1.2461 (18) |
K1—O3ii | 2.8520 (12) | O4—C4 | 1.2323 (19) |
K1—O5iii | 2.9583 (13) | O5—K1iii | 2.9582 (13) |
K1—O5iv | 2.9583 (13) | O5—K1xii | 2.9669 (12) |
K1—O5v | 2.9669 (12) | O5—C5 | 1.218 (2) |
K1—O5vi | 2.9669 (12) | O6—C6 | 1.2353 (19) |
K1—O7 | 2.816 (2) | O7—D7 | 0.63 (2) |
K1—O8 | 2.7627 (19) | O8—D8 | 0.794 (19) |
K2—O1 | 2.7761 (12) | O9—K2viii | 2.807 (2) |
K2—O1vii | 2.7762 (12) | O9—D9 | 0.78 (2) |
K2—O2iii | 2.8453 (13) | O10—D10 | 0.773 (19) |
K2—O2iv | 2.8453 (13) | N1—D1N | 0.84 (2) |
K2—O8 | 2.736 (2) | N1—C1 | 1.387 (2) |
K2—O9viii | 2.807 (2) | N1—C2 | 1.3611 (19) |
K2—O10 | 3.228 (2) | N2—D2N | 0.85 (2) |
K3—O2ix | 2.8030 (12) | N2—C2 | 1.369 (2) |
K3—O2x | 2.8030 (12) | N2—C3 | 1.385 (2) |
K3—O2iii | 3.2895 (12) | N3—C1 | 1.3482 (19) |
K3—O2iv | 3.2895 (12) | N3—C3 | 1.3496 (19) |
K3—O4 | 2.8914 (12) | N4—D4N | 0.86 (2) |
K3—O4vii | 2.8914 (12) | N4—C4 | 1.375 (2) |
K3—O9 | 2.751 (2) | N4—C5 | 1.376 (2) |
K3—O10 | 2.6674 (19) | N5—D5N | 0.81 (2) |
O1—C1 | 1.2446 (18) | N5—C5 | 1.374 (2) |
O2—K2iii | 2.8453 (13) | N5—C6 | 1.376 (2) |
O2—K3xi | 2.8030 (12) | N6—D6N | 0.80 (4) |
O2—K3iii | 3.2895 (12) | N6—C4 | 1.359 (2) |
O2—C2 | 1.224 (2) | N6—C6 | 1.348 (2) |
O3—K1ii | 2.8521 (12) | ||
O3i—K1—O3ii | 120.91 (5) | O2ix—K3—O10 | 132.49 (3) |
O3i—K1—O5iii | 78.07 (3) | O2x—K3—O10 | 132.49 (3) |
O3ii—K1—O5iii | 141.37 (4) | O2iii—K3—O10 | 73.96 (4) |
O3i—K1—O5iv | 141.37 (4) | O2iv—K3—O10 | 73.96 (4) |
O3ii—K1—O5iv | 78.07 (3) | O4—K3—O4vii | 121.98 (5) |
O3i—K1—O5v | 80.72 (3) | O4—K3—O9 | 93.76 (3) |
O3ii—K1—O5v | 145.48 (4) | O4vii—K3—O9 | 93.76 (3) |
O3i—K1—O5vi | 145.48 (4) | O4—K3—O10 | 70.26 (3) |
O3ii—K1—O5vi | 80.72 (3) | O4vii—K3—O10 | 70.26 (3) |
O3i—K1—O7 | 72.76 (3) | O9—K3—O10 | 143.62 (6) |
O3ii—K1—O7 | 72.76 (3) | K2—O1—C1 | 131.46 (10) |
O3i—K1—O8 | 71.04 (3) | K2iii—O2—K3xi | 92.43 (4) |
O3ii—K1—O8 | 71.04 (3) | K2iii—O2—K3iii | 92.24 (3) |
O5iii—K1—O5iv | 69.20 (5) | K2iii—O2—C2 | 123.75 (10) |
O5iii—K1—O5v | 64.20 (5) | K3xi—O2—K3iii | 77.36 (3) |
O5iv—K1—O5v | 101.99 (3) | K3xi—O2—C2 | 132.66 (10) |
O5iii—K1—O5vi | 101.99 (3) | K3iii—O2—C2 | 124.45 (9) |
O5iv—K1—O5vi | 64.20 (5) | K1ii—O3—C3 | 142.22 (10) |
O5v—K1—O5vi | 68.97 (5) | K3—O4—C4 | 138.47 (11) |
O5iii—K1—O7 | 144.58 (3) | K1iii—O5—K1xii | 78.01 (3) |
O5iv—K1—O7 | 144.58 (3) | K1iii—O5—C5 | 129.57 (11) |
O5v—K1—O7 | 91.28 (4) | K1xii—O5—C5 | 125.11 (10) |
O5vi—K1—O7 | 91.28 (4) | K1—O7—D7 | 113 (2) |
O5iii—K1—O8 | 86.91 (4) | K1—O8—K2 | 103.77 (6) |
O5iv—K1—O8 | 86.91 (4) | K1—O8—D8 | 106.4 (15) |
O5v—K1—O8 | 143.31 (3) | K2—O8—D8 | 117.5 (15) |
O5vi—K1—O8 | 143.31 (3) | K2viii—O9—K3 | 94.39 (6) |
O7—K1—O8 | 101.85 (6) | K2viii—O9—D9 | 113.4 (17) |
O1—K2—O1vii | 125.99 (5) | K3—O9—D9 | 114.3 (17) |
O1—K2—O2iii | 71.25 (4) | K2—O10—K3 | 97.04 (6) |
O1vii—K2—O2iii | 141.64 (4) | K2—O10—D10 | 76.8 (15) |
O1—K2—O2iv | 141.65 (4) | K3—O10—D10 | 124.7 (16) |
O1vii—K2—O2iv | 71.25 (4) | D1N—N1—C1 | 115.2 (14) |
O1—K2—O8 | 65.91 (3) | D1N—N1—C2 | 120.5 (14) |
O1vii—K2—O8 | 65.91 (3) | C1—N1—C2 | 124.28 (13) |
O1—K2—O9viii | 116.03 (3) | D2N—N2—C2 | 118.8 (14) |
O1vii—K2—O9viii | 116.03 (3) | D2N—N2—C3 | 117.1 (14) |
O1—K2—O10 | 77.97 (3) | C2—N2—C3 | 124.06 (13) |
O1vii—K2—O10 | 77.97 (3) | C1—N3—C3 | 118.94 (14) |
O2iii—K2—O2iv | 76.70 (5) | D4N—N4—C4 | 114.8 (13) |
O2iii—K2—O8 | 135.99 (3) | D4N—N4—C5 | 120.6 (13) |
O2iv—K2—O8 | 135.99 (3) | C4—N4—C5 | 124.50 (13) |
O2iii—K2—O9viii | 70.13 (4) | D5N—N5—C5 | 120.0 (14) |
O2iv—K2—O9viii | 70.13 (4) | D5N—N5—C6 | 115.5 (14) |
O2iii—K2—O10 | 72.81 (3) | C5—N5—C6 | 124.47 (13) |
O2iv—K2—O10 | 72.81 (3) | D6N—N6—C4 | 115 (3) |
O8—K2—O9viii | 139.17 (6) | D6N—N6—C6 | 122 (3) |
O8—K2—O10 | 88.65 (5) | C4—N6—C6 | 121.74 (15) |
O9viii—K2—O10 | 132.18 (6) | O1—C1—N1 | 117.81 (13) |
O2ix—K3—O2x | 78.07 (5) | O1—C1—N3 | 122.57 (14) |
O2ix—K3—O2iii | 62.79 (4) | N1—C1—N3 | 119.62 (13) |
O2x—K3—O2iii | 102.64 (3) | O2—C2—N1 | 123.14 (14) |
O2ix—K3—O2iv | 102.64 (3) | O2—C2—N2 | 123.49 (14) |
O2x—K3—O2iv | 62.79 (4) | N1—C2—N2 | 113.37 (14) |
O2iii—K3—O2iv | 64.91 (4) | O3—C3—N2 | 118.29 (14) |
O2ix—K3—O4vii | 155.84 (4) | O3—C3—N3 | 122.05 (15) |
O2x—K3—O4vii | 79.10 (3) | N2—C3—N3 | 119.65 (13) |
O2ix—K3—O4 | 79.10 (3) | O4—C4—N4 | 120.58 (14) |
O2x—K3—O4 | 155.84 (4) | O4—C4—N6 | 121.76 (15) |
O2iii—K3—O4vii | 130.80 (4) | N4—C4—N6 | 117.66 (14) |
O2iii—K3—O4 | 73.43 (3) | O5—C5—N4 | 123.22 (14) |
O2iv—K3—O4vii | 73.43 (3) | O5—C5—N5 | 123.15 (14) |
O2iv—K3—O4 | 130.80 (4) | N4—C5—N5 | 113.62 (14) |
O2ix—K3—O9 | 71.56 (4) | O6—C6—N5 | 119.57 (14) |
O2x—K3—O9 | 71.56 (4) | O6—C6—N6 | 122.48 (15) |
O2iii—K3—O9 | 134.06 (4) | N5—C6—N6 | 117.96 (14) |
O2iv—K3—O9 | 134.06 (4) | ||
O1vii—K2—O1—C1 | −66.54 (16) | O2iv—K2—O10—K3 | −40.50 (3) |
O2iii—K2—O1—C1 | 74.45 (13) | O8—K2—O10—K3 | 180.0 |
O2iv—K2—O1—C1 | 39.59 (16) | O9viii—K2—O10—K3 | 0.0 |
O8—K2—O1—C1 | −95.21 (14) | K2—O1—C1—N1 | −156.14 (10) |
O9viii—K2—O1—C1 | 130.03 (14) | K2—O1—C1—N3 | 23.8 (2) |
O10—K2—O1—C1 | −1.26 (13) | C3—N3—C1—O1 | −177.13 (14) |
O2ix—K3—O4—C4 | 107.23 (16) | C3—N3—C1—N1 | 2.8 (2) |
O2x—K3—O4—C4 | 87.92 (18) | C2—N1—C1—O1 | 178.06 (14) |
O2iii—K3—O4—C4 | 171.86 (17) | C2—N1—C1—N3 | −1.9 (2) |
O2iv—K3—O4—C4 | −155.41 (15) | K2iii—O2—C2—N1 | 103.99 (15) |
O4vii—K3—O4—C4 | −59.98 (18) | K2iii—O2—C2—N2 | −76.52 (18) |
O9—K3—O4—C4 | 36.82 (17) | K3xi—O2—C2—N1 | −122.79 (14) |
O10—K3—O4—C4 | −109.65 (17) | K3iii—O2—C2—N1 | −17.0 (2) |
O1—K2—O8—K1 | −102.58 (3) | K3xi—O2—C2—N2 | 56.7 (2) |
O1vii—K2—O8—K1 | 102.58 (3) | K3iii—O2—C2—N2 | 162.45 (11) |
O2iii—K2—O8—K1 | −116.75 (5) | C1—N1—C2—O2 | 178.80 (15) |
O2iv—K2—O8—K1 | 116.75 (5) | C1—N1—C2—N2 | −0.7 (2) |
O9viii—K2—O8—K1 | 0.0 | C3—N2—C2—O2 | −177.08 (15) |
O10—K2—O8—K1 | 180.0 | C3—N2—C2—N1 | 2.5 (2) |
O3i—K1—O8—K2 | 113.10 (3) | K1ii—O3—C3—N2 | −156.67 (12) |
O3ii—K1—O8—K2 | −113.10 (3) | K1ii—O3—C3—N3 | 23.0 (3) |
O5iii—K1—O8—K2 | 34.66 (2) | C1—N3—C3—O3 | 179.14 (15) |
O5iv—K1—O8—K2 | −34.66 (2) | C1—N3—C3—N2 | −1.2 (2) |
O5v—K1—O8—K2 | 71.36 (7) | C2—N2—C3—O3 | 178.10 (15) |
O5vi—K1—O8—K2 | −71.36 (7) | C2—N2—C3—N3 | −1.6 (2) |
O7—K1—O8—K2 | 180.0 | K3—O4—C4—N4 | −148.45 (12) |
O2ix—K3—O9—K2viii | 41.60 (3) | K3—O4—C4—N6 | 31.5 (3) |
O2x—K3—O9—K2viii | −41.60 (3) | C6—N6—C4—O4 | −179.70 (16) |
O2iii—K3—O9—K2viii | 48.31 (4) | C6—N6—C4—N4 | 0.3 (2) |
O2iv—K3—O9—K2viii | −48.31 (4) | C5—N4—C4—O4 | 177.57 (15) |
O4vii—K3—O9—K2viii | −118.79 (3) | C5—N4—C4—N6 | −2.4 (2) |
O4—K3—O9—K2viii | 118.79 (3) | K1iii—O5—C5—N4 | 66.6 (2) |
O10—K3—O9—K2viii | 180.0 | K1xii—O5—C5—N4 | 171.19 (11) |
O2ix—K3—O10—K2 | −58.66 (5) | K1iii—O5—C5—N5 | −112.16 (15) |
O2x—K3—O10—K2 | 58.66 (5) | K1xii—O5—C5—N5 | −7.6 (2) |
O2iii—K3—O10—K2 | −33.95 (2) | C6—N5—C5—O5 | 178.37 (16) |
O2iv—K3—O10—K2 | 33.95 (2) | C6—N5—C5—N4 | −0.5 (2) |
O4—K3—O10—K2 | −111.70 (3) | C4—N4—C5—O5 | −176.44 (16) |
O4vii—K3—O10—K2 | 111.70 (3) | C4—N4—C5—N5 | 2.4 (2) |
O9—K3—O10—K2 | 180.0 | C4—N6—C6—O6 | −178.51 (16) |
O1—K2—O10—K3 | 114.36 (3) | C4—N6—C6—N5 | 1.5 (2) |
O1vii—K2—O10—K3 | −114.36 (3) | C5—N5—C6—O6 | 178.63 (15) |
O2iii—K2—O10—K3 | 40.50 (3) | C5—N5—C6—N6 | −1.4 (2) |
Symmetry codes: (i) −x+1, y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, −y+1/2, −z+1; (iv) −x+1/2, y+1/2, −z+1; (v) x+1/2, −y+1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x, −y+1, z; (viii) −x, −y+1, −z+1; (ix) x−1/2, −y+1/2, z; (x) x−1/2, y+1/2, z; (xi) x+1/2, y−1/2, z; (xii) x−1/2, y−1/2, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—D7···N6ii | 0.63 (2) | 2.10 (2) | 2.7211 (17) | 172 (3) |
O8—D8···N3ii | 0.79 (2) | 2.31 (2) | 3.0812 (18) | 163 (2) |
O10—D10···N3 | 0.77 (2) | 2.07 (2) | 2.8358 (17) | 173 (2) |
O9—D9···O6xiii | 0.78 (2) | 2.02 (2) | 2.7646 (14) | 159 (2) |
N2—D2N···O6xiv | 0.85 (2) | 1.95 (2) | 2.8019 (18) | 172 (2) |
N1—D1N···O4iii | 0.84 (2) | 1.95 (2) | 2.7889 (18) | 178 (2) |
N5—D5N···O3xiv | 0.81 (2) | 1.96 (2) | 2.7763 (18) | 176 (2) |
N4—D4N···O1iii | 0.86 (2) | 1.91 (2) | 2.7704 (17) | 173 (2) |
N6—D6N···O7ii | 0.80 (4) | 1.94 (4) | 2.7211 (17) | 166 (4) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, −y+1/2, −z+1; (xiii) −x, −y+1, −z; (xiv) −x+1/2, −y+1/2, −z. |
C12D17K3N12O16 | Z = 8 |
Mr = 719.71 | F(000) = 3275 |
Monoclinic, I2/a | Dx = 1.942 Mg m−3 |
Hall symbol: -I 2ya | Neutron radiation, λ = 0.5-7.0 Å |
a = 12.824 (2) Å | Cell parameters from 11000 reflections |
b = 16.332 (3) Å | µ = 0.07+0.00475 mm−1 |
c = 23.713 (4) Å | T = 150 K |
β = 97.514 (3)° | Block, colourless |
V = 4923.8 (15) Å3 | 2.00 × 2.00 × 1.00 mm |
SXD at ISIS neutron source diffractometer | 2545 independent reflections |
Radiation source: ISIS spallation neutron source | 2535 reflections with I > 2σ(I) |
None monochromator | Rint = 0.091 |
time–of–flight Laue diffraction scans | θmax = 83.2°, θmin = 8.7° |
Absorption correction: numerical Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001. | h = −19→17 |
Tmin = 0.123, Tmax = 0.497 | k = −37→37 |
8194 measured reflections | l = −62→42 |
Refinement on F2 | Primary atom site location: using coords of known structure |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.068 | w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.182 | (Δ/σ)max = 0.048 |
S = 1.03 | Δρmax = 2.01 e Å−3 |
8194 reflections | Δρmin = −2.20 e Å−3 |
651 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
40 restraints | Extinction coefficient: 0.000083 (3) |
C12D17K3N12O16 | V = 4923.8 (15) Å3 |
Mr = 719.71 | Z = 8 |
Monoclinic, I2/a | Neutron radiation, λ = 0.5-7.0 Å |
a = 12.824 (2) Å | µ = 0.07+0.00475 mm−1 |
b = 16.332 (3) Å | T = 150 K |
c = 23.713 (4) Å | 2.00 × 2.00 × 1.00 mm |
β = 97.514 (3)° |
SXD at ISIS neutron source diffractometer | 2545 independent reflections |
Absorption correction: numerical Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001. | 2535 reflections with I > 2σ(I) |
Tmin = 0.123, Tmax = 0.497 | Rint = 0.091 |
8194 measured reflections |
R[F2 > 2σ(F2)] = 0.068 | 40 restraints |
wR(F2) = 0.182 | w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | Δρmax = 2.01 e Å−3 |
8194 reflections | Δρmin = −2.20 e Å−3 |
651 parameters |
Experimental. For peak integration a local UB matrix refined for each frame, using approximately 100 reflections per run from each of the 11 detectors. Hence _cell_measurement_reflns_used 11000 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31 _refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = −4% of Carbon Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.1743 (8) | 0.7470 (9) | 0.3123 (2) | 0.022 (2) | |
K2 | 0.4689 (7) | 0.7496 (7) | 0.4233 (2) | 0.022 (2) | |
K3 | 0.7869 (8) | 0.7466 (8) | 0.4246 (2) | 0.021 (2) | |
O1 | 0.1437 (14) | 0.8506 (3) | 0.2088 (4) | 0.024 (3) | |
O2 | 0.1201 (12) | 1.0890 (4) | 0.3025 (4) | 0.015 (3) | |
O3 | 0.1383 (12) | 1.0958 (4) | 0.1142 (4) | 0.008 (2) | |
N1 | 0.1295 (8) | 0.9712 (3) | 0.2550 (2) | 0.0150 (18) | |
N2 | 0.1261 (9) | 1.0981 (2) | 0.2095 (3) | 0.018 (2) | |
N3 | 0.1363 (8) | 0.9725 (3) | 0.1588 (3) | 0.016 (2) | |
C1 | 0.1364 (10) | 0.9262 (3) | 0.2083 (3) | 0.010 (2) | |
C2 | 0.1253 (11) | 1.0557 (3) | 0.2557 (3) | 0.0148 (18) | |
C3 | 0.1330 (11) | 1.0566 (4) | 0.1573 (3) | 0.018 (3) | |
D1 | 0.1261 (15) | 0.9408 (4) | 0.2921 (4) | 0.025 (3) | |
D3 | 0.1396 (12) | 0.9431 (4) | 0.1198 (4) | 0.018 (3) | |
O4 | 0.3570 (12) | 0.8549 (3) | 0.2929 (3) | 0.016 (2) | |
O5 | 0.3696 (15) | 1.0946 (5) | 0.3893 (4) | 0.027 (4) | |
O6 | 0.4002 (13) | 1.0961 (4) | 0.1998 (4) | 0.014 (2) | |
N4 | 0.3665 (8) | 0.9744 (2) | 0.3406 (2) | 0.016 (2) | |
N5 | 0.3803 (9) | 1.0979 (2) | 0.2954 (3) | 0.0148 (19) | |
N6 | 0.3777 (8) | 0.9741 (3) | 0.2442 (2) | 0.0119 (17) | |
C4 | 0.3656 (11) | 0.9289 (3) | 0.2937 (3) | 0.016 (2) | |
C5 | 0.3702 (11) | 1.0588 (4) | 0.3424 (3) | 0.011 (3) | |
C6 | 0.3869 (10) | 1.0582 (3) | 0.2435 (3) | 0.0090 (18) | |
D4 | 0.3677 (14) | 0.9442 (5) | 0.3791 (3) | 0.030 (4) | |
D5 | 0.4018 (6) | 1.1606 (2) | 0.29823 (15) | 0.0234 (17) | |
D6 | 0.3738 (15) | 0.9450 (4) | 0.2042 (4) | 0.023 (3) | |
O7 | 0.6401 (15) | 0.8588 (5) | 0.4578 (4) | 0.019 (2) | |
O8 | 0.6110 (13) | 1.0994 (4) | 0.5516 (4) | 0.0129 (17) | |
O9 | 0.6248 (12) | 1.1012 (4) | 0.3623 (3) | 0.0118 (19) | |
N7 | 0.6267 (10) | 0.9789 (2) | 0.5062 (3) | 0.017 (2) | |
N8 | 0.6208 (9) | 1.1058 (3) | 0.4569 (2) | 0.018 (3) | |
N9 | 0.6307 (10) | 0.9807 (2) | 0.4092 (2) | 0.012 (2) | |
C7 | 0.6324 (12) | 0.9346 (4) | 0.4561 (3) | 0.012 (2) | |
C8 | 0.6193 (12) | 1.0635 (3) | 0.5076 (3) | 0.0130 (17) | |
C9 | 0.6254 (13) | 1.0646 (3) | 0.4082 (3) | 0.0116 (19) | |
D7 | 0.6254 (10) | 0.9478 (3) | 0.5444 (3) | 0.016 (3) | |
D9 | 0.6340 (14) | 0.9505 (4) | 0.3710 (4) | 0.026 (3) | |
O10 | 0.3878 (14) | 0.5968 (4) | 0.4474 (4) | 0.019 (3) | |
O11 | 0.3607 (13) | 0.3577 (4) | 0.5390 (3) | 0.0114 (17) | |
O12 | 0.3750 (13) | 0.5945 (4) | 0.6389 (4) | 0.021 (3) | |
N10 | 0.3743 (9) | 0.4789 (2) | 0.4940 (3) | 0.0078 (14) | |
N11 | 0.3726 (12) | 0.4753 (2) | 0.5899 (3) | 0.017 (2) | |
N12 | 0.3781 (8) | 0.6043 (3) | 0.5425 (2) | 0.010 (2) | |
C10 | 0.3803 (11) | 0.5637 (3) | 0.4952 (3) | 0.0076 (14) | |
C11 | 0.3678 (11) | 0.4319 (4) | 0.5391 (3) | 0.0110 (17) | |
C12 | 0.3767 (13) | 0.5618 (3) | 0.5914 (3) | 0.013 (2) | |
D10 | 0.3713 (12) | 0.4507 (4) | 0.4549 (3) | 0.027 (4) | |
D11 | 0.3767 (13) | 0.4455 (4) | 0.6281 (4) | 0.022 (3) | |
O13 | 0.9996 (5) | 0.7486 (6) | 0.43930 (15) | 0.0242 (14) | |
D13A | 1.0456 (11) | 0.7965 (3) | 0.4469 (3) | 0.019 (3) | |
D13B | 1.0423 (13) | 0.6998 (5) | 0.4456 (3) | 0.033 (4) | |
O14 | 0.6125 (6) | 0.7541 (6) | 0.34356 (14) | 0.0282 (16) | |
D14A | 0.6116 (13) | 0.8020 (5) | 0.3207 (4) | 0.040 (4) | |
D14B | 0.6053 (13) | 0.7073 (5) | 0.3187 (3) | 0.040 (4) | |
O15 | 0.2550 (5) | 0.7476 (6) | 0.42625 (14) | 0.0225 (14) | |
D15A | 0.2261 (10) | 0.7002 (4) | 0.4417 (3) | 0.027 (3) | |
D15B | 0.2266 (12) | 0.7941 (4) | 0.4419 (3) | 0.041 (4) | |
O16 | −0.0452 (5) | 0.7505 (5) | 0.31794 (12) | 0.0237 (14) | |
D16A | −0.0771 (6) | 0.6982 (2) | 0.30659 (17) | 0.0248 (17) | |
D16B | −0.0310 (5) | 0.7485 (5) | 0.35901 (12) | 0.0287 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.036 (7) | 0.013 (2) | 0.0171 (19) | 0.000 (7) | 0.008 (3) | −0.003 (4) |
K2 | 0.021 (7) | 0.0107 (18) | 0.038 (3) | 0.011 (7) | 0.012 (3) | 0.011 (4) |
K3 | 0.021 (7) | 0.015 (2) | 0.031 (2) | 0.005 (7) | 0.015 (3) | 0.002 (4) |
O1 | 0.041 (9) | 0.0066 (18) | 0.024 (3) | 0.000 (3) | 0.008 (4) | 0.0012 (18) |
O2 | 0.027 (8) | 0.0085 (17) | 0.010 (2) | 0.004 (3) | 0.005 (3) | 0.0029 (14) |
O3 | 0.007 (7) | 0.009 (2) | 0.007 (2) | 0.004 (3) | −0.002 (3) | 0.0033 (17) |
N1 | 0.031 (5) | 0.0100 (12) | 0.0039 (14) | 0.0017 (16) | 0.0022 (19) | 0.0012 (9) |
N2 | 0.037 (7) | 0.0090 (13) | 0.0070 (17) | −0.006 (2) | 0.004 (2) | 0.0012 (10) |
N3 | 0.023 (7) | 0.0150 (19) | 0.011 (2) | 0.005 (3) | 0.010 (3) | −0.0025 (16) |
C1 | 0.006 (6) | 0.0112 (17) | 0.013 (2) | −0.004 (2) | 0.001 (3) | 0.0000 (16) |
C2 | 0.031 (5) | 0.0104 (12) | 0.0030 (14) | 0.0017 (17) | 0.0023 (19) | 0.0013 (10) |
C3 | 0.034 (10) | 0.010 (2) | 0.014 (3) | −0.001 (3) | 0.018 (4) | 0.002 (2) |
D1 | 0.038 (10) | 0.019 (2) | 0.019 (3) | 0.001 (4) | 0.003 (4) | 0.005 (2) |
D3 | 0.021 (9) | 0.014 (2) | 0.020 (3) | 0.000 (3) | 0.009 (4) | 0.003 (2) |
O4 | 0.033 (7) | 0.0106 (17) | 0.0050 (17) | −0.006 (2) | 0.004 (3) | −0.0017 (13) |
O5 | 0.056 (12) | 0.019 (3) | 0.008 (3) | 0.008 (4) | 0.009 (4) | 0.001 (2) |
O6 | 0.023 (7) | 0.016 (2) | 0.0025 (18) | −0.005 (3) | 0.000 (2) | 0.0010 (15) |
N4 | 0.032 (7) | 0.0074 (16) | 0.006 (2) | 0.005 (2) | −0.004 (3) | −0.0013 (13) |
N5 | 0.030 (6) | 0.0112 (14) | 0.0033 (13) | −0.008 (2) | 0.0015 (18) | 0.0001 (9) |
N6 | 0.010 (5) | 0.0122 (14) | 0.0145 (19) | −0.0007 (17) | 0.006 (2) | 0.0008 (12) |
C4 | 0.033 (7) | 0.0107 (17) | 0.0054 (18) | −0.006 (2) | 0.004 (3) | −0.0015 (13) |
C5 | 0.015 (9) | 0.011 (2) | 0.006 (2) | −0.002 (3) | −0.005 (3) | 0.0018 (19) |
C6 | 0.004 (5) | 0.0132 (17) | 0.010 (2) | 0.002 (2) | 0.005 (2) | 0.0022 (13) |
D4 | 0.060 (12) | 0.020 (3) | 0.011 (3) | −0.001 (4) | 0.009 (4) | 0.007 (2) |
D5 | 0.034 (5) | 0.0171 (14) | 0.0191 (15) | −0.003 (2) | 0.0035 (19) | 0.0014 (12) |
D6 | 0.045 (10) | 0.018 (2) | 0.009 (2) | 0.002 (3) | 0.012 (3) | −0.0004 (17) |
O7 | 0.022 (8) | 0.015 (2) | 0.024 (3) | 0.006 (3) | 0.013 (4) | −0.0007 (18) |
O8 | 0.022 (5) | 0.0115 (16) | 0.0067 (18) | −0.006 (2) | 0.006 (2) | −0.0009 (13) |
O9 | 0.017 (6) | 0.0120 (15) | 0.006 (2) | −0.003 (2) | 0.001 (3) | 0.0001 (13) |
N7 | 0.028 (6) | 0.0120 (16) | 0.011 (2) | −0.006 (2) | 0.004 (3) | 0.0011 (14) |
N8 | 0.033 (8) | 0.014 (2) | 0.006 (2) | −0.004 (3) | 0.005 (3) | 0.0008 (14) |
N9 | 0.023 (6) | 0.0087 (12) | 0.0038 (17) | 0.0041 (19) | 0.002 (2) | 0.0000 (10) |
C7 | 0.013 (6) | 0.017 (2) | 0.009 (2) | 0.004 (2) | 0.006 (2) | 0.0026 (13) |
C8 | 0.022 (5) | 0.0114 (15) | 0.0068 (18) | −0.007 (2) | 0.005 (2) | −0.0012 (12) |
C9 | 0.017 (6) | 0.0118 (15) | 0.006 (2) | −0.003 (2) | 0.001 (3) | 0.0001 (13) |
D7 | 0.023 (9) | 0.0087 (19) | 0.018 (3) | 0.004 (3) | 0.007 (4) | −0.006 (2) |
D9 | 0.039 (10) | 0.020 (3) | 0.019 (3) | 0.000 (4) | 0.009 (4) | −0.007 (2) |
O10 | 0.033 (8) | 0.011 (2) | 0.016 (3) | −0.010 (3) | 0.008 (3) | 0.0014 (17) |
O11 | 0.024 (5) | 0.0056 (14) | 0.0051 (15) | 0.0008 (19) | 0.002 (2) | 0.0005 (10) |
O12 | 0.046 (8) | 0.0098 (19) | 0.010 (2) | −0.006 (3) | 0.010 (3) | 0.0001 (15) |
N10 | 0.011 (4) | 0.0076 (12) | 0.0055 (16) | −0.0055 (17) | 0.0021 (19) | −0.0003 (11) |
N11 | 0.028 (7) | 0.0103 (14) | 0.012 (2) | 0.006 (2) | 0.006 (3) | 0.0015 (13) |
N12 | 0.015 (7) | 0.0058 (16) | 0.011 (3) | −0.005 (3) | 0.005 (3) | 0.0010 (13) |
C10 | 0.011 (4) | 0.0072 (12) | 0.0052 (16) | −0.0052 (17) | 0.0016 (19) | 0.0004 (10) |
C11 | 0.023 (5) | 0.0053 (13) | 0.0044 (14) | 0.0014 (18) | 0.0022 (19) | 0.0011 (9) |
C12 | 0.020 (7) | 0.0102 (17) | 0.009 (2) | −0.007 (3) | 0.006 (3) | −0.0027 (16) |
D10 | 0.044 (11) | 0.023 (3) | 0.013 (3) | 0.004 (4) | 0.004 (4) | −0.008 (2) |
D11 | 0.036 (10) | 0.020 (2) | 0.009 (3) | 0.000 (3) | 0.004 (4) | 0.002 (2) |
O13 | 0.030 (5) | 0.0130 (13) | 0.0303 (16) | 0.000 (6) | 0.006 (2) | −0.010 (3) |
D13A | 0.016 (8) | 0.011 (2) | 0.029 (3) | −0.002 (3) | 0.004 (4) | −0.007 (2) |
D13B | 0.050 (12) | 0.023 (3) | 0.028 (4) | −0.001 (5) | 0.009 (5) | −0.007 (2) |
O14 | 0.055 (5) | 0.0145 (18) | 0.0154 (12) | −0.002 (4) | 0.0040 (17) | −0.002 (3) |
D14A | 0.065 (12) | 0.024 (3) | 0.030 (4) | 0.014 (4) | 0.007 (5) | 0.002 (2) |
D14B | 0.072 (11) | 0.030 (3) | 0.019 (3) | 0.007 (4) | 0.007 (4) | −0.008 (2) |
O15 | 0.029 (4) | 0.0112 (14) | 0.0278 (14) | 0.003 (5) | 0.0049 (18) | −0.003 (3) |
D15A | 0.032 (10) | 0.022 (2) | 0.032 (4) | −0.006 (3) | 0.015 (5) | 0.005 (2) |
D15B | 0.069 (13) | 0.0107 (19) | 0.042 (5) | −0.001 (4) | −0.002 (6) | 0.000 (2) |
O16 | 0.041 (5) | 0.0134 (12) | 0.0163 (12) | 0.005 (6) | 0.0028 (17) | −0.005 (4) |
D16A | 0.031 (6) | 0.0156 (14) | 0.0266 (18) | 0.000 (2) | 0.001 (2) | −0.0021 (13) |
D16B | 0.036 (4) | 0.0286 (15) | 0.0220 (11) | 0.006 (6) | 0.0054 (15) | 0.001 (4) |
K1—O1 | 2.965 (13) | N5—C5 | 1.306 (10) |
K1—O1i | 2.92 (2) | N5—C6 | 1.403 (10) |
K1—O4 | 3.01 (2) | N5—D5 | 1.060 (6) |
K1—O4i | 2.983 (11) | N6—C4 | 1.411 (9) |
K1—O9ii | 2.856 (15) | N6—C6 | 1.380 (7) |
K1—O12iii | 2.853 (16) | N6—D6 | 1.056 (9) |
K1—O15 | 2.764 (6) | O7—C7 | 1.242 (10) |
K1—O16 | 2.836 (12) | O8—K2iv | 2.765 (14) |
K2—O7 | 2.86 (2) | O8—C8 | 1.214 (12) |
K2—O8iv | 2.765 (14) | O9—K1vii | 2.856 (15) |
K2—O10 | 2.791 (14) | O9—C9 | 1.239 (11) |
K2—O11v | 2.852 (16) | N7—C7 | 1.401 (10) |
K2—O14 | 2.808 (9) | N7—C8 | 1.385 (8) |
K2—O15 | 2.753 (11) | N7—D7 | 1.042 (10) |
K3—O3vi | 2.840 (16) | N8—C8 | 1.390 (9) |
K3—O5vii | 2.964 (17) | N8—C9 | 1.345 (9) |
K3—O7 | 2.812 (17) | N9—C7 | 1.340 (9) |
K3—O11v | 2.768 (17) | N9—C9 | 1.372 (7) |
K3—O13 | 2.704 (12) | N9—D9 | 1.039 (11) |
K3—O14 | 2.755 (11) | O10—C10 | 1.269 (12) |
O1—K1i | 2.92 (2) | O11—K2v | 2.852 (16) |
O1—C1 | 1.239 (8) | O11—K3v | 2.768 (17) |
O2—C2 | 1.244 (12) | O11—C11 | 1.215 (9) |
O3—K3viii | 2.840 (16) | O12—K1iii | 2.853 (16) |
O3—C3 | 1.216 (12) | O12—C12 | 1.248 (11) |
N1—C1 | 1.342 (10) | N10—C10 | 1.387 (7) |
N1—C2 | 1.381 (7) | N10—C11 | 1.329 (8) |
N1—D1 | 1.014 (9) | N10—D10 | 1.030 (10) |
N2—C2 | 1.299 (9) | N11—C11 | 1.391 (10) |
N2—C3 | 1.424 (10) | N11—C12 | 1.413 (7) |
N3—C1 | 1.397 (10) | N11—D11 | 1.024 (10) |
N3—C3 | 1.374 (8) | N12—C10 | 1.308 (9) |
N3—D3 | 1.046 (10) | N12—C12 | 1.353 (9) |
O4—K1i | 2.983 (11) | O13—D13A | 0.982 (12) |
O4—C4 | 1.214 (8) | O13—D13B | 0.968 (13) |
O5—K3ii | 2.964 (17) | O14—D14A | 0.952 (10) |
O5—C5 | 1.255 (13) | O14—D14B | 0.963 (10) |
O6—C6 | 1.239 (12) | O15—D15A | 0.952 (10) |
N4—C4 | 1.336 (9) | O15—D15B | 0.940 (11) |
N4—C5 | 1.380 (8) | O16—D16A | 0.969 (9) |
N4—D4 | 1.036 (9) | O16—D16B | 0.968 (4) |
O1—K1—O1i | 101.1 (4) | K1i—O4—C4 | 124.8 (7) |
O1—K1—O4 | 64.0 (4) | K3ii—O5—C5 | 134.5 (8) |
O1i—K1—O4i | 64.9 (3) | C4—N4—C5 | 125.3 (6) |
O1—K1—O4i | 68.70 (13) | C4—N4—D4 | 117.8 (7) |
O1i—K1—O4 | 68.8 (2) | C5—N4—D4 | 116.9 (8) |
O1i—K1—O9ii | 140.4 (6) | C5—N5—C6 | 123.2 (4) |
O1—K1—O9ii | 80.6 (4) | C5—N5—D5 | 118.2 (6) |
O1i—K1—O12iii | 79.5 (5) | C6—N5—D5 | 117.1 (7) |
O1—K1—O12iii | 145.3 (5) | C4—N6—C6 | 123.3 (5) |
O1—K1—O15 | 143.1 (6) | C4—N6—D6 | 121.0 (6) |
O1i—K1—O15 | 87.9 (4) | C6—N6—D6 | 115.5 (6) |
O1—K1—O16 | 90.2 (4) | O4—C4—N4 | 123.8 (8) |
O1i—K1—O16 | 147.0 (6) | O4—C4—N6 | 121.8 (7) |
O4—K1—O4i | 102.8 (3) | N4—C4—N6 | 114.3 (5) |
O4i—K1—O9ii | 145.0 (5) | O5—C5—N4 | 119.2 (7) |
O4—K1—O9ii | 77.0 (5) | O5—C5—N5 | 122.7 (7) |
O4i—K1—O12iii | 80.8 (4) | N4—C5—N5 | 117.9 (6) |
O4—K1—O12iii | 142.2 (6) | O6—C6—N5 | 122.3 (6) |
O4—K1—O15 | 87.0 (4) | O6—C6—N6 | 122.0 (7) |
O4i—K1—O15 | 144.3 (6) | N5—C6—N6 | 115.7 (5) |
O4—K1—O16 | 142.3 (6) | K2—O7—K3 | 91.8 (4) |
O4i—K1—O16 | 91.4 (4) | K2—O7—C7 | 123.9 (12) |
O9ii—K1—O12iii | 121.1 (3) | K3—O7—C7 | 133.9 (11) |
O9ii—K1—O15 | 70.5 (4) | K2iv—O8—C8 | 133.8 (8) |
O9ii—K1—O16 | 71.7 (4) | K1vii—O9—C9 | 143.8 (7) |
O12iii—K1—O15 | 71.4 (4) | C7—N7—C8 | 123.2 (6) |
O12iii—K1—O16 | 74.0 (5) | C7—N7—D7 | 119.6 (5) |
O15—K1—O16 | 101.6 (3) | C8—N7—D7 | 117.2 (7) |
O7—K2—O8iv | 71.0 (5) | C8—N8—C9 | 120.1 (5) |
O7—K2—O10 | 142.3 (4) | C7—N9—C9 | 124.9 (6) |
O7—K2—O11v | 76.4 (2) | C7—N9—D9 | 117.3 (6) |
O7—K2—O14 | 68.3 (4) | C9—N9—D9 | 117.8 (7) |
O7—K2—O15 | 136.8 (5) | O7—C7—N7 | 120.0 (6) |
O8iv—K2—O10 | 126.5 (3) | O7—C7—N9 | 125.4 (7) |
O8iv—K2—O11v | 140.4 (5) | N7—C7—N9 | 114.5 (6) |
O8iv—K2—O14 | 114.5 (5) | O8—C8—N7 | 121.1 (7) |
O8iv—K2—O15 | 66.8 (4) | O8—C8—N8 | 121.1 (6) |
O10—K2—O11v | 71.2 (5) | N7—C8—N8 | 117.8 (6) |
O10—K2—O14 | 117.2 (5) | O9—C9—N8 | 121.0 (6) |
O10—K2—O15 | 65.5 (5) | O9—C9—N9 | 119.5 (7) |
O11v—K2—O14 | 71.6 (3) | N8—C9—N9 | 119.5 (6) |
O11v—K2—O15 | 135.3 (5) | K2—O10—C10 | 129.6 (7) |
O14—K2—O15 | 139.5 (3) | K2v—O11—K3v | 93.0 (4) |
O3vi—K3—O5vii | 121.3 (3) | K2v—O11—C11 | 123.8 (11) |
O3vi—K3—O7 | 157.3 (6) | K3v—O11—C11 | 131.9 (11) |
O3vi—K3—O11v | 80.8 (5) | K1iii—O12—C12 | 140.4 (7) |
O3vi—K3—O13 | 71.0 (4) | C10—N10—C11 | 124.8 (6) |
O3vi—K3—O14 | 95.2 (4) | C10—N10—D10 | 117.4 (7) |
O5vii—K3—O7 | 77.7 (5) | C11—N10—D10 | 117.8 (6) |
O5vii—K3—O11v | 155.7 (6) | C11—N11—C12 | 122.0 (6) |
O5vii—K3—O13 | 68.5 (5) | C11—N11—D11 | 120.9 (6) |
O5vii—K3—O14 | 93.0 (4) | C12—N11—D11 | 117.1 (7) |
O7—K3—O11v | 78.6 (3) | C10—N12—C12 | 118.7 (5) |
O7—K3—O13 | 131.1 (6) | O10—C10—N10 | 114.7 (6) |
O7—K3—O14 | 69.7 (4) | O10—C10—N12 | 124.3 (6) |
O11v—K3—O13 | 133.4 (5) | N10—C10—N12 | 121.0 (6) |
O11v—K3—O14 | 73.7 (4) | O11—C11—N10 | 125.9 (6) |
O13—K3—O14 | 143.4 (3) | O11—C11—N11 | 120.4 (6) |
K1—O1—K1i | 78.9 (4) | N10—C11—N11 | 113.6 (6) |
K1—O1—C1 | 125.3 (7) | O12—C12—N11 | 116.5 (6) |
K1i—O1—C1 | 127.2 (11) | O12—C12—N12 | 123.8 (6) |
K3viii—O3—C3 | 142.0 (8) | N11—C12—N12 | 119.6 (6) |
C1—N1—C2 | 124.3 (5) | K3—O13—D13A | 127.2 (8) |
C1—N1—D1 | 117.5 (7) | K3—O13—D13B | 123.4 (10) |
C2—N1—D1 | 118.2 (7) | D13A—O13—D13B | 108.3 (8) |
C2—N2—C3 | 119.2 (4) | K2—O14—K3 | 94.2 (3) |
C1—N3—C3 | 124.0 (6) | K2—O14—D14A | 116.5 (10) |
C1—N3—D3 | 119.8 (6) | K2—O14—D14B | 111.9 (10) |
C3—N3—D3 | 116.2 (7) | K3—O14—D14A | 112.5 (11) |
O1—C1—N1 | 123.5 (8) | K3—O14—D14B | 113.3 (10) |
O1—C1—N3 | 122.6 (8) | D14A—O14—D14B | 108.1 (5) |
N1—C1—N3 | 113.9 (5) | K1—O15—K2 | 102.9 (3) |
O2—C2—N1 | 117.0 (6) | K1—O15—D15A | 105.0 (8) |
O2—C2—N2 | 121.8 (6) | K1—O15—D15B | 105.9 (8) |
N1—C2—N2 | 121.2 (6) | K2—O15—D15A | 117.3 (9) |
O3—C3—N2 | 119.8 (6) | K2—O15—D15B | 116.1 (11) |
O3—C3—N3 | 122.9 (7) | D15A—O15—D15B | 108.2 (7) |
N2—C3—N3 | 117.4 (6) | K1—O16—D16A | 110.8 (7) |
K1—O4—K1i | 77.2 (3) | K1—O16—D16B | 89.4 (5) |
K1—O4—C4 | 130.6 (11) | D16A—O16—D16B | 105.5 (8) |
O1i—K1—O1—K1i | 0.0 | C7—N9—C9—O9 | 179.6 (19) |
O1i—K1—O1—C1 | −128.0 (16) | C7—N9—C9—N8 | −1 (2) |
O4i—K1—O1—K1i | −57.3 (4) | D9—N9—C9—O9 | 0 (3) |
O4—K1—O1—K1i | 59.7 (3) | D9—N9—C9—N8 | 180 (2) |
O4—K1—O1—C1 | −68.3 (15) | O7—K2—O10—C10 | 42 (2) |
O4i—K1—O1—C1 | 174.7 (18) | O8iv—K2—O10—C10 | −64.8 (15) |
O9ii—K1—O1—K1i | 139.8 (6) | O11v—K2—O10—C10 | 74.8 (15) |
O9ii—K1—O1—C1 | 11.7 (15) | O14—K2—O10—C10 | 131.5 (14) |
O12iii—K1—O1—K1i | −87.5 (11) | O15—K2—O10—C10 | −93.7 (15) |
O12iii—K1—O1—C1 | 144.5 (14) | K2—O10—C10—N10 | −156.7 (10) |
O15—K1—O1—K1i | 101.4 (8) | K2—O10—C10—N12 | 23 (3) |
O15—K1—O1—C1 | −26.6 (19) | C12—N12—C10—O10 | −175.8 (17) |
O16—K1—O1—K1i | −148.8 (6) | C12—N12—C10—N10 | 4 (2) |
O16—K1—O1—C1 | 83.2 (15) | C11—N10—C10—O10 | 178.8 (15) |
K1—O1—C1—N1 | −8 (2) | C11—N10—C10—N12 | −1.2 (18) |
K1i—O1—C1—N1 | −111.8 (14) | D10—N10—C10—O10 | −4 (2) |
K1—O1—C1—N3 | 171.1 (10) | D10—N10—C10—N12 | 175.9 (17) |
K1i—O1—C1—N3 | 67.1 (16) | K2v—O11—C11—N10 | 103.3 (13) |
C2—N1—C1—O1 | 177.4 (15) | K2v—O11—C11—N11 | −75.1 (17) |
C2—N1—C1—N3 | −1.5 (19) | K3v—O11—C11—N10 | −123.5 (12) |
D1—N1—C1—O1 | −4 (3) | K3v—O11—C11—N11 | 58 (2) |
D1—N1—C1—N3 | 177.5 (15) | C10—N10—C11—O11 | 178.6 (16) |
C3—N3—C1—O1 | −177.0 (15) | C10—N10—C11—N11 | −2.9 (19) |
C3—N3—C1—N1 | 2.0 (18) | D10—N10—C11—O11 | 2 (2) |
D3—N3—C1—O1 | 2 (2) | D10—N10—C11—N11 | −179.9 (18) |
D3—N3—C1—N1 | −178.6 (16) | C12—N11—C11—O11 | −177.4 (14) |
C3—N2—C2—O2 | 179.5 (16) | C12—N11—C11—N10 | 4 (2) |
C3—N2—C2—N1 | −1 (2) | D11—N11—C11—O11 | 5 (3) |
C1—N1—C2—O2 | −179.2 (15) | D11—N11—C11—N10 | −173.1 (18) |
C1—N1—C2—N2 | 1 (2) | K1iii—O12—C12—N11 | −158.2 (13) |
D1—N1—C2—O2 | 2 (2) | K1iii—O12—C12—N12 | 19 (3) |
D1—N1—C2—N2 | −177.9 (19) | C10—N12—C12—O12 | 179.7 (17) |
K3viii—O3—C3—N2 | 30 (3) | C10—N12—C12—N11 | −3 (2) |
K3viii—O3—C3—N3 | −147.7 (12) | C11—N11—C12—O12 | 176.3 (19) |
C1—N3—C3—O3 | 176.2 (16) | C11—N11—C12—N12 | −1 (2) |
C1—N3—C3—N2 | −1.9 (18) | D11—N11—C12—O12 | −7 (3) |
D3—N3—C3—O3 | −3 (2) | D11—N11—C12—N12 | 176 (2) |
D3—N3—C3—N2 | 178.6 (16) | O3vi—K3—O13—D13A | 164.8 (7) |
C2—N2—C3—O3 | −176.9 (16) | O3vi—K3—O13—D13B | −28.4 (6) |
C2—N2—C3—N3 | 1.3 (19) | O5vii—K3—O13—D13A | 28.3 (7) |
O1i—K1—O4—K1i | 56.4 (4) | O5vii—K3—O13—D13B | −164.9 (7) |
O1—K1—O4—K1i | −58.3 (3) | O7—K3—O13—D13A | −21.3 (8) |
O1—K1—O4—C4 | 66.8 (9) | O7—K3—O13—D13B | 145.4 (7) |
O1i—K1—O4—C4 | −178.5 (11) | O11v—K3—O13—D13A | −139.0 (8) |
O4i—K1—O4—K1i | 0.0 | O11v—K3—O13—D13B | 27.7 (8) |
O4i—K1—O4—C4 | 125.2 (10) | O14—K3—O13—D13A | 92.5 (10) |
O9ii—K1—O4—K1i | −144.1 (5) | O14—K3—O13—D13B | −100.8 (11) |
O9ii—K1—O4—C4 | −18.9 (9) | O3vi—K3—O14—K2 | 118.1 (4) |
O12iii—K1—O4—K1i | 91.4 (8) | O3vi—K3—O14—D14A | −121.0 (10) |
O12iii—K1—O4—C4 | −143.4 (9) | O3vi—K3—O14—D14B | 2.1 (10) |
O15—K1—O4—K1i | 145.3 (6) | O5vii—K3—O14—K2 | −120.1 (5) |
O15—K1—O4—C4 | −89.6 (9) | O5vii—K3—O14—D14A | 0.8 (10) |
O16—K1—O4—K1i | −109.6 (4) | O5vii—K3—O14—D14B | 123.8 (10) |
O16—K1—O4—C4 | 15.6 (11) | O7—K3—O14—K2 | −44.4 (4) |
K1—O4—C4—N4 | 67.5 (17) | O7—K3—O14—D14A | 76.5 (9) |
K1i—O4—C4—N4 | 171.4 (10) | O7—K3—O14—D14B | −160.5 (9) |
K1—O4—C4—N6 | −113.9 (13) | O11v—K3—O14—K2 | 39.2 (4) |
K1i—O4—C4—N6 | −10 (2) | O11v—K3—O14—D14A | 160.2 (9) |
C5—N4—C4—O4 | −176.1 (15) | O11v—K3—O14—D14B | −76.8 (9) |
C5—N4—C4—N6 | 5.1 (19) | O13—K3—O14—K2 | −177.1 (9) |
D4—N4—C4—O4 | 6 (2) | O13—K3—O14—D14A | −56.2 (14) |
D4—N4—C4—N6 | −172.3 (16) | O13—K3—O14—D14B | 66.9 (14) |
C6—N6—C4—O4 | 179.5 (14) | O7—K2—O14—K3 | 44.0 (4) |
C6—N6—C4—N4 | −1.7 (19) | O7—K2—O14—D14A | −73.8 (10) |
D6—N6—C4—O4 | 5 (3) | O7—K2—O14—D14B | 161.2 (10) |
D6—N6—C4—N4 | −176.5 (15) | O8iv—K2—O14—K3 | 99.5 (5) |
K3ii—O5—C5—N4 | −148.1 (11) | O8iv—K2—O14—D14A | −18.3 (11) |
K3ii—O5—C5—N5 | 36 (3) | O8iv—K2—O14—D14B | −143.3 (10) |
C6—N5—C5—O5 | 176.3 (16) | O10—K2—O14—K3 | −94.8 (5) |
C6—N5—C5—N4 | 0 (2) | O10—K2—O14—D14A | 147.4 (10) |
D5—N5—C5—O5 | 11 (2) | O10—K2—O14—D14B | 22.4 (10) |
D5—N5—C5—N4 | −165.2 (10) | O11v—K2—O14—K3 | −38.4 (4) |
C4—N4—C5—O5 | 179.3 (17) | O11v—K2—O14—D14A | −156.1 (11) |
C4—N4—C5—N5 | −4.6 (19) | O11v—K2—O14—D14B | 78.9 (10) |
D4—N4—C5—O5 | −3 (2) | O15—K2—O14—K3 | −178.1 (8) |
D4—N4—C5—N5 | 172.8 (17) | O15—K2—O14—D14A | 64.2 (13) |
C4—N6—C6—O6 | 178.1 (16) | O15—K2—O14—D14B | −60.9 (13) |
C4—N6—C6—N5 | −1.9 (17) | O7—K2—O15—K1 | 116.1 (6) |
D6—N6—C6—O6 | −7 (2) | O7—K2—O15—D15A | −129.2 (8) |
D6—N6—C6—N5 | 173.2 (17) | O7—K2—O15—D15B | 1.0 (9) |
C5—N5—C6—O6 | −177.4 (17) | O8iv—K2—O15—K1 | 102.8 (5) |
C5—N5—C6—N6 | 2.6 (19) | O8iv—K2—O15—D15A | −142.5 (7) |
D5—N5—C6—O6 | −12 (2) | O8iv—K2—O15—D15B | −12.4 (7) |
D5—N5—C6—N6 | 168.3 (11) | O10—K2—O15—K1 | −102.2 (5) |
O3vi—K3—O7—K2 | −7.5 (11) | O10—K2—O15—D15A | 12.5 (7) |
O3vi—K3—O7—C7 | −151.0 (12) | O10—K2—O15—D15B | 142.6 (7) |
O5vii—K3—O7—K2 | 141.1 (4) | O11v—K2—O15—K1 | −117.8 (6) |
O5vii—K3—O7—C7 | −2.3 (12) | O11v—K2—O15—D15A | −3.1 (9) |
O11v—K3—O7—K2 | −33.4 (3) | O11v—K2—O15—D15B | 127.0 (9) |
O11v—K3—O7—C7 | −176.8 (14) | O14—K2—O15—K1 | 1.6 (10) |
O13—K3—O7—K2 | −172.3 (4) | O14—K2—O15—D15A | 116.2 (8) |
O13—K3—O7—C7 | 44.2 (14) | O14—K2—O15—D15B | −113.6 (9) |
O14—K3—O7—K2 | 43.3 (3) | O1—K1—O15—K2 | −72.0 (9) |
O14—K3—O7—C7 | −100.2 (12) | O1i—K1—O15—K2 | 33.7 (6) |
O8iv—K2—O7—K3 | −170.3 (4) | O1—K1—O15—D15A | 164.7 (11) |
O8iv—K2—O7—C7 | −21.5 (7) | O1i—K1—O15—D15A | −89.5 (9) |
O10—K2—O7—K3 | 64.0 (8) | O1—K1—O15—D15B | 50.3 (13) |
O10—K2—O7—C7 | −147.2 (8) | O1i—K1—O15—D15B | 156.1 (10) |
O11v—K2—O7—K3 | 32.6 (3) | O4—K1—O15—K2 | −35.2 (5) |
O11v—K2—O7—C7 | −178.6 (9) | O4i—K1—O15—K2 | 72.7 (9) |
O14—K2—O7—K3 | −42.8 (3) | O4—K1—O15—D15A | −158.4 (9) |
O14—K2—O7—C7 | 106.1 (7) | O4i—K1—O15—D15A | −50.6 (12) |
O15—K2—O7—K3 | 176.7 (4) | O4—K1—O15—D15B | 87.1 (10) |
O15—K2—O7—C7 | −34.4 (10) | O4i—K1—O15—D15B | −165.0 (12) |
K2—O7—C7—N7 | 103.0 (12) | O9ii—K1—O15—K2 | −112.5 (5) |
K2—O7—C7—N9 | −78.2 (19) | O9ii—K1—O15—D15A | 124.3 (10) |
K3—O7—C7—N7 | −122.8 (12) | O9ii—K1—O15—D15B | 9.9 (11) |
K3—O7—C7—N9 | 56 (2) | O12iii—K1—O15—K2 | 113.3 (5) |
C9—N9—C7—O7 | −177.9 (15) | O12iii—K1—O15—D15A | −9.9 (10) |
C9—N9—C7—N7 | 1 (2) | O12iii—K1—O15—D15B | −124.3 (11) |
D9—N9—C7—O7 | 2 (3) | O16—K1—O15—K2 | −178.1 (4) |
D9—N9—C7—N7 | −179.5 (16) | O16—K1—O15—D15A | 58.6 (11) |
C8—N7—C7—O7 | 179.3 (16) | O16—K1—O15—D15B | −55.8 (12) |
C8—N7—C7—N9 | 0.3 (19) | O1—K1—O16—D16A | 106.5 (5) |
D7—N7—C7—O7 | −3 (2) | O1i—K1—O16—D16A | −4.4 (8) |
D7—N7—C7—N9 | 178.2 (18) | O1—K1—O16—D16B | −147.2 (7) |
K2iv—O8—C8—N7 | −156.2 (10) | O1i—K1—O16—D16B | 101.9 (9) |
K2iv—O8—C8—N8 | 23 (3) | O4—K1—O16—D16A | 151.0 (5) |
C7—N7—C8—O8 | 177.5 (17) | O4i—K1—O16—D16A | 37.8 (5) |
C7—N7—C8—N8 | −2.0 (18) | O4—K1—O16—D16B | −102.7 (8) |
D7—N7—C8—O8 | 0 (2) | O4i—K1—O16—D16B | 144.1 (7) |
D7—N7—C8—N8 | −179.8 (17) | O9ii—K1—O16—D16A | −173.5 (5) |
C9—N8—C8—O8 | −177.1 (17) | O9ii—K1—O16—D16B | −67.1 (7) |
C9—N8—C8—N7 | 2 (2) | O12iii—K1—O16—D16A | −42.2 (5) |
K1vii—O9—C9—N8 | 26 (3) | O12iii—K1—O16—D16B | 64.2 (7) |
K1vii—O9—C9—N9 | −154.5 (13) | O15—K1—O16—D16A | −108.7 (5) |
C8—N8—C9—O9 | 178.6 (16) | O15—K1—O16—D16B | −2.4 (8) |
C8—N8—C9—N9 | −1 (2) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1/2; (ii) x−1/2, −y+2, z; (iii) −x+1/2, y, −z+1; (iv) −x+1, −y+2, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x+1/2, −y+2, z; (viii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—D1···O9ii | 1.02 (1) | 1.80 (1) | 2.809 (10) | 174 (1) |
N3—D3···O10i | 1.05 (1) | 1.70 (1) | 2.734 (12) | 166 (2) |
N4—D4···O8iv | 1.03 (1) | 1.79 (1) | 2.807 (10) | 171 (2) |
N5—D5···O16vii | 1.06 (1) | 1.65 (1) | 2.690 (12) | 165 (1) |
N6—D6···O12ix | 1.06 (1) | 1.68 (1) | 2.738 (11) | 175 (1) |
N7—D7···O5iv | 1.04 (1) | 1.71 (1) | 2.746 (12) | 173 (1) |
N9—D9···O2vii | 1.03 (1) | 1.74 (1) | 2.763 (11) | 172 (1) |
N10—D10···O3i | 1.02 (1) | 1.80 (1) | 2.825 (10) | 178 (1) |
N11—D11···O6x | 1.02 (1) | 1.82 (1) | 2.828 (11) | 168 (2) |
O13—D13A···N8vii | 0.97 (1) | 1.87 (1) | 2.830 (12) | 174 (1) |
O14—D14A···O2vii | 0.96 (1) | 1.84 (1) | 2.756 (13) | 158 (1) |
O14—D14B···O6vi | 0.96 (1) | 1.87 (1) | 2.768 (13) | 156 (1) |
O15—D15A···N12iii | 0.95 (1) | 2.12 (1) | 3.042 (12) | 164 (1) |
O15—D15B···N8ii | 0.95 (1) | 2.19 (2) | 3.098 (11) | 160 (1) |
O16—D16A···N2xi | 0.96 (1) | 1.77 (1) | 2.733 (12) | 175 (1) |
O16—D16A···O3xi | 0.96 (1) | 2.71 (1) | 3.293 (13) | 120 (1) |
O16—D16B···O13xii | 0.97 (1) | 1.90 (1) | 2.864 (6) | 178 (1) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1/2; (ii) x−1/2, −y+2, z; (iii) −x+1/2, y, −z+1; (iv) −x+1, −y+2, −z+1; (vi) −x+1, y−1/2, −z+1/2; (vii) x+1/2, −y+2, z; (ix) x, −y+3/2, z−1/2; (x) x, −y+3/2, z+1/2; (xi) −x, y−1/2, −z+1/2; (xii) x−1, y, z. |
C12H16N12O16Rb3 | F(000) = 1644 |
Mr = 840.78 | Dx = 2.188 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 4184 reflections |
a = 13.1499 (15) Å | θ = 2.5–28.1° |
b = 16.6185 (19) Å | µ = 5.83 mm−1 |
c = 11.8444 (13) Å | T = 150 K |
β = 99.584 (2)° | Plate, colourless |
V = 2552.2 (5) Å3 | 0.20 × 0.20 × 0.05 mm |
Z = 4 |
Bruker SMART 1K CCD diffractometer | 2324 independent reflections |
Radiation source: sealed tube | 1898 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
thin–slice ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan SADABS | h = −15→15 |
Tmin = 0.388, Tmax = 0.759 | k = −19→19 |
9291 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0253P)2 + 9.2128P] where P = (Fo2 + 2Fc2)/3 |
2324 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.97 e Å−3 |
4 restraints | Δρmin = −0.98 e Å−3 |
C12H16N12O16Rb3 | V = 2552.2 (5) Å3 |
Mr = 840.78 | Z = 4 |
Monoclinic, C2/m | Mo Kα radiation |
a = 13.1499 (15) Å | µ = 5.83 mm−1 |
b = 16.6185 (19) Å | T = 150 K |
c = 11.8444 (13) Å | 0.20 × 0.20 × 0.05 mm |
β = 99.584 (2)° |
Bruker SMART 1K CCD diffractometer | 2324 independent reflections |
Absorption correction: multi-scan SADABS | 1898 reflections with I > 2σ(I) |
Tmin = 0.388, Tmax = 0.759 | Rint = 0.045 |
9291 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 4 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.97 e Å−3 |
2324 reflections | Δρmin = −0.98 e Å−3 |
229 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.28616 (5) | 0.5000 | 0.67207 (5) | 0.02017 (17) | |
Rb2 | 0.58400 (5) | 0.5000 | 0.88045 (5) | 0.01854 (16) | |
Rb3 | 0.95888 (5) | 0.5000 | 0.64691 (5) | 0.01889 (16) | |
O1 | 0.3660 (2) | 0.34729 (17) | 0.6021 (2) | 0.0179 (7) | |
O2 | 0.3732 (2) | 0.34641 (18) | 0.2202 (2) | 0.0195 (7) | |
O3 | 0.3868 (2) | 0.11087 (17) | 0.4177 (2) | 0.0154 (6) | |
O4 | 0.8842 (2) | 0.65589 (17) | 0.7222 (2) | 0.0186 (7) | |
O5 | 0.8907 (2) | 0.89393 (17) | 0.9118 (2) | 0.0183 (7) | |
O6 | 0.8620 (3) | 0.65894 (18) | 1.0995 (2) | 0.0238 (7) | |
O7 | 0.8071 (4) | 0.5000 | 0.8620 (4) | 0.0225 (10) | |
H7 | 0.835 (3) | 0.5439 (15) | 0.873 (4) | 0.027* | |
O8 | 0.7440 (3) | 0.5000 | 0.6236 (4) | 0.0226 (10) | |
H8 | 0.701 (3) | 0.536 (2) | 0.609 (4) | 0.027* | |
O9 | 0.4961 (3) | 0.5000 | 0.6408 (4) | 0.0218 (10) | |
H9 | 0.523 (3) | 0.5375 (19) | 0.613 (4) | 0.026* | |
O10 | 1.1346 (4) | 0.5000 | 0.8270 (4) | 0.0327 (12) | |
H10 | 1.142 (4) | 0.465 (2) | 0.876 (3) | 0.039* | |
N1 | 0.3723 (3) | 0.3541 (2) | 0.4122 (3) | 0.0129 (7) | |
N2 | 0.3775 (3) | 0.2288 (2) | 0.3180 (3) | 0.0148 (8) | |
H2N | 0.372 (4) | 0.209 (3) | 0.261 (4) | 0.018* | |
N3 | 0.3767 (3) | 0.2299 (2) | 0.5097 (3) | 0.0131 (8) | |
H3N | 0.373 (3) | 0.208 (3) | 0.564 (4) | 0.016* | |
N4 | 0.8846 (3) | 0.7751 (2) | 0.8149 (3) | 0.0141 (8) | |
H4N | 0.885 (3) | 0.798 (3) | 0.757 (4) | 0.017* | |
N5 | 0.8770 (3) | 0.7765 (2) | 1.0074 (3) | 0.0150 (8) | |
H5N | 0.869 (3) | 0.797 (3) | 1.067 (4) | 0.018* | |
N6 | 0.8746 (3) | 0.6527 (2) | 0.9110 (3) | 0.0155 (8) | |
C1 | 0.3710 (3) | 0.3132 (2) | 0.5102 (3) | 0.0108 (8) | |
C2 | 0.3739 (3) | 0.3124 (2) | 0.3146 (3) | 0.0126 (9) | |
C3 | 0.3803 (3) | 0.1841 (3) | 0.4152 (3) | 0.0103 (8) | |
C4 | 0.8815 (3) | 0.6926 (2) | 0.8121 (3) | 0.0138 (9) | |
C5 | 0.8839 (3) | 0.8207 (3) | 0.9111 (3) | 0.0132 (9) | |
C6 | 0.8707 (3) | 0.6937 (2) | 1.0090 (3) | 0.0145 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0195 (3) | 0.0137 (3) | 0.0280 (4) | 0.000 | 0.0057 (3) | 0.000 |
Rb2 | 0.0292 (3) | 0.0146 (3) | 0.0131 (3) | 0.000 | 0.0071 (2) | 0.000 |
Rb3 | 0.0189 (3) | 0.0158 (3) | 0.0236 (3) | 0.000 | 0.0081 (2) | 0.000 |
O1 | 0.0310 (18) | 0.0159 (16) | 0.0072 (15) | 0.0004 (13) | 0.0040 (12) | −0.0023 (12) |
O2 | 0.0336 (18) | 0.0191 (17) | 0.0061 (14) | 0.0007 (14) | 0.0039 (13) | 0.0029 (13) |
O3 | 0.0220 (16) | 0.0116 (17) | 0.0126 (15) | 0.0021 (12) | 0.0031 (12) | −0.0020 (12) |
O4 | 0.0355 (18) | 0.0134 (16) | 0.0081 (15) | 0.0007 (13) | 0.0067 (13) | −0.0005 (12) |
O5 | 0.0282 (18) | 0.0122 (17) | 0.0151 (16) | −0.0028 (13) | 0.0053 (13) | −0.0050 (12) |
O6 | 0.042 (2) | 0.0224 (17) | 0.0081 (15) | 0.0061 (15) | 0.0077 (14) | 0.0029 (13) |
O7 | 0.038 (3) | 0.005 (2) | 0.026 (3) | 0.000 | 0.010 (2) | 0.000 |
O8 | 0.020 (3) | 0.012 (2) | 0.033 (3) | 0.000 | −0.002 (2) | 0.000 |
O9 | 0.023 (2) | 0.014 (3) | 0.029 (3) | 0.000 | 0.007 (2) | 0.000 |
O10 | 0.054 (3) | 0.031 (3) | 0.015 (3) | 0.000 | 0.013 (2) | 0.000 |
N1 | 0.0213 (19) | 0.0100 (18) | 0.0072 (17) | −0.0006 (14) | 0.0021 (14) | 0.0021 (14) |
N2 | 0.022 (2) | 0.016 (2) | 0.0062 (18) | 0.0009 (16) | 0.0029 (15) | −0.0032 (15) |
N3 | 0.0196 (19) | 0.0114 (19) | 0.0084 (18) | 0.0007 (15) | 0.0027 (15) | 0.0047 (15) |
N4 | 0.026 (2) | 0.0106 (19) | 0.0063 (18) | 0.0000 (15) | 0.0043 (15) | 0.0018 (14) |
N5 | 0.023 (2) | 0.0150 (19) | 0.0072 (17) | 0.0013 (15) | 0.0035 (15) | −0.0028 (15) |
N6 | 0.026 (2) | 0.0142 (19) | 0.0069 (17) | 0.0009 (15) | 0.0051 (15) | −0.0015 (14) |
C1 | 0.0088 (19) | 0.011 (2) | 0.012 (2) | −0.0006 (16) | 0.0009 (16) | −0.0015 (17) |
C2 | 0.013 (2) | 0.014 (2) | 0.010 (2) | 0.0034 (17) | 0.0007 (16) | −0.0004 (17) |
C3 | 0.009 (2) | 0.014 (2) | 0.008 (2) | 0.0012 (16) | 0.0007 (15) | 0.0002 (16) |
C4 | 0.017 (2) | 0.012 (2) | 0.012 (2) | 0.0002 (18) | 0.0014 (17) | 0.0018 (17) |
C5 | 0.014 (2) | 0.018 (3) | 0.007 (2) | 0.0010 (17) | −0.0010 (16) | 0.0010 (17) |
C6 | 0.016 (2) | 0.015 (2) | 0.012 (2) | 0.0025 (18) | 0.0011 (17) | 0.0005 (18) |
Rb1—O1 | 2.919 (3) | O3—Rb3v | 3.287 (3) |
Rb1—O1i | 2.919 (3) | O3—C3 | 1.221 (5) |
Rb1—O3ii | 2.982 (3) | O4—C4 | 1.232 (5) |
Rb1—O3iii | 2.982 (3) | O5—Rb1xiv | 3.429 (3) |
Rb1—O5iv | 3.429 (3) | O5—Rb2ix | 3.000 (3) |
Rb1—O5v | 3.429 (3) | O5—Rb2xiv | 3.165 (3) |
Rb1—O8vi | 3.458 (5) | O5—C5 | 1.220 (5) |
Rb1—O9 | 2.845 (5) | O6—C6 | 1.239 (5) |
Rb1—O10vii | 2.925 (5) | O7—H7 | 0.816 (10) |
Rb2—O2viii | 2.912 (3) | O8—Rb1vi | 3.458 (5) |
Rb2—O2vi | 2.912 (3) | O8—H8 | 0.820 (10) |
Rb2—O5ix | 3.000 (3) | O9—H9 | 0.818 (10) |
Rb2—O5x | 3.000 (3) | O10—Rb1xv | 2.925 (5) |
Rb2—O5v | 3.165 (3) | O10—H10 | 0.821 (10) |
Rb2—O5iv | 3.165 (3) | N1—C1 | 1.348 (5) |
Rb2—O7 | 2.977 (5) | N1—C2 | 1.351 (5) |
Rb2—O9 | 2.881 (5) | N2—H2N | 0.74 (5) |
Rb3—O3xi | 2.935 (3) | N2—C2 | 1.390 (5) |
Rb3—O3xii | 2.935 (3) | N2—C3 | 1.365 (5) |
Rb3—O3xiii | 3.287 (3) | N3—H3N | 0.74 (5) |
Rb3—O3xiv | 3.287 (3) | N3—C1 | 1.386 (5) |
Rb3—O4 | 2.960 (3) | N3—C3 | 1.361 (5) |
Rb3—O4i | 2.960 (3) | N4—H4N | 0.78 (5) |
Rb3—O7 | 3.488 (5) | N4—C4 | 1.372 (5) |
Rb3—O8 | 2.793 (4) | N4—C5 | 1.370 (5) |
Rb3—O10 | 2.873 (5) | N5—H5N | 0.80 (5) |
O1—C1 | 1.239 (5) | N5—C5 | 1.373 (5) |
O2—Rb2vi | 2.912 (3) | N5—C6 | 1.378 (5) |
O2—C2 | 1.251 (5) | N6—C4 | 1.362 (5) |
O3—Rb1ii | 2.982 (3) | N6—C6 | 1.355 (5) |
O3—Rb3xii | 2.935 (3) | ||
O1—Rb1—O1i | 120.81 (11) | O3xiii—Rb3—O7 | 118.80 (8) |
O1—Rb1—O3ii | 69.55 (8) | O3xiv—Rb3—O7 | 118.80 (8) |
O1i—Rb1—O3ii | 136.46 (8) | O3xi—Rb3—O8 | 134.92 (7) |
O1—Rb1—O3iii | 136.46 (8) | O3xii—Rb3—O8 | 134.92 (7) |
O1i—Rb1—O3iii | 69.55 (8) | O3xiii—Rb3—O8 | 76.73 (9) |
O1—Rb1—O5iv | 124.64 (8) | O3xiv—Rb3—O8 | 76.73 (9) |
O1i—Rb1—O5iv | 71.00 (7) | O3xi—Rb3—O10 | 71.83 (9) |
O1—Rb1—O5v | 71.00 (7) | O3xii—Rb3—O10 | 71.83 (9) |
O1i—Rb1—O5v | 124.64 (8) | O3xiii—Rb3—O10 | 134.35 (8) |
O1—Rb1—O8vi | 72.46 (6) | O3xiv—Rb3—O10 | 134.35 (8) |
O1i—Rb1—O8vi | 72.46 (6) | O4—Rb3—O4i | 122.14 (11) |
O1—Rb1—O9 | 63.93 (6) | O4—Rb3—O7 | 61.39 (6) |
O1i—Rb1—O9 | 63.93 (6) | O4i—Rb3—O7 | 61.39 (6) |
O1—Rb1—O10vii | 119.53 (6) | O4—Rb3—O8 | 69.44 (7) |
O1i—Rb1—O10vii | 119.53 (6) | O4i—Rb3—O8 | 69.44 (7) |
O3ii—Rb1—O3iii | 76.31 (11) | O4—Rb3—O10 | 92.44 (7) |
O3ii—Rb1—O5iv | 142.16 (7) | O4i—Rb3—O10 | 92.44 (7) |
O3iii—Rb1—O5iv | 98.89 (7) | O7—Rb3—O8 | 51.66 (13) |
O3ii—Rb1—O5v | 98.89 (7) | O7—Rb3—O10 | 86.85 (13) |
O3iii—Rb1—O5v | 142.16 (7) | O8—Rb3—O10 | 138.51 (14) |
O3ii—Rb1—O8vi | 71.74 (8) | Rb1—O1—C1 | 136.2 (3) |
O3iii—Rb1—O8vi | 71.74 (8) | Rb2vi—O2—C2 | 142.1 (3) |
O3ii—Rb1—O9 | 130.72 (8) | Rb1ii—O3—Rb3xii | 92.21 (8) |
O3iii—Rb1—O9 | 130.72 (8) | Rb1ii—O3—Rb3v | 92.64 (8) |
O3ii—Rb1—O10vii | 70.43 (9) | Rb1ii—O3—C3 | 124.1 (2) |
O3iii—Rb1—O10vii | 70.43 (9) | Rb3xii—O3—Rb3v | 75.33 (7) |
O5iv—Rb1—O5v | 61.87 (9) | Rb3xii—O3—C3 | 132.0 (2) |
O5iv—Rb1—O8vi | 143.23 (6) | Rb3v—O3—C3 | 126.1 (2) |
O5v—Rb1—O8vi | 143.23 (6) | Rb3—O4—C4 | 138.7 (3) |
O5iv—Rb1—O9 | 81.02 (9) | Rb1xiv—O5—Rb2ix | 110.58 (9) |
O5v—Rb1—O9 | 81.02 (9) | Rb1xiv—O5—Rb2xiv | 80.55 (7) |
O5iv—Rb1—O10vii | 72.64 (10) | Rb1xiv—O5—C5 | 119.2 (2) |
O5v—Rb1—O10vii | 72.64 (10) | Rb2ix—O5—Rb2xiv | 77.73 (7) |
O8vi—Rb1—O9 | 79.54 (12) | Rb2ix—O5—C5 | 126.1 (2) |
O8vi—Rb1—O10vii | 131.31 (13) | Rb2xiv—O5—C5 | 127.9 (3) |
O9—Rb1—O10vii | 149.15 (14) | Rb2—O7—Rb3 | 138.09 (16) |
O2viii—Rb2—O2vi | 122.47 (11) | Rb2—O7—H7 | 114 (4) |
O2viii—Rb2—O5ix | 148.04 (8) | Rb3—O7—H7 | 80 (3) |
O2vi—Rb2—O5ix | 79.53 (8) | Rb1vi—O8—Rb3 | 92.51 (13) |
O2viii—Rb2—O5x | 79.53 (8) | Rb1vi—O8—H8 | 80 (3) |
O2vi—Rb2—O5x | 148.04 (8) | Rb3—O8—H8 | 132 (3) |
O2viii—Rb2—O5v | 76.92 (8) | Rb1—O9—Rb2 | 96.35 (14) |
O2vi—Rb2—O5v | 138.60 (8) | Rb1—O9—H9 | 124 (3) |
O2viii—Rb2—O5iv | 138.60 (8) | Rb2—O9—H9 | 106 (3) |
O2vi—Rb2—O5iv | 76.92 (8) | Rb1xv—O10—Rb3 | 94.69 (13) |
O2viii—Rb2—O7 | 73.13 (7) | Rb1xv—O10—H10 | 116 (4) |
O2vi—Rb2—O7 | 73.13 (7) | Rb3—O10—H10 | 121 (4) |
O2viii—Rb2—O9 | 70.72 (6) | C1—N1—C2 | 118.8 (4) |
O2vi—Rb2—O9 | 70.72 (6) | H2N—N2—C2 | 115 (4) |
O5ix—Rb2—O5x | 71.96 (11) | H2N—N2—C3 | 121 (4) |
O5ix—Rb2—O5v | 102.27 (7) | C2—N2—C3 | 124.3 (4) |
O5x—Rb2—O5v | 63.78 (10) | H3N—N3—C1 | 118 (4) |
O5ix—Rb2—O5iv | 63.78 (10) | H3N—N3—C3 | 117 (4) |
O5x—Rb2—O5iv | 102.27 (7) | C1—N3—C3 | 124.8 (4) |
O5v—Rb2—O5iv | 67.68 (11) | H4N—N4—C4 | 118 (3) |
O5ix—Rb2—O7 | 94.83 (9) | H4N—N4—C5 | 117 (3) |
O5x—Rb2—O7 | 94.83 (9) | C4—N4—C5 | 124.7 (4) |
O5v—Rb2—O7 | 145.97 (5) | H5N—N5—C5 | 123 (3) |
O5iv—Rb2—O7 | 145.97 (5) | H5N—N5—C6 | 113 (3) |
O5ix—Rb2—O9 | 141.22 (7) | C5—N5—C6 | 123.9 (4) |
O5x—Rb2—O9 | 141.22 (7) | C4—N6—C6 | 120.7 (4) |
O5v—Rb2—O9 | 85.24 (9) | O1—C1—N1 | 122.5 (4) |
O5iv—Rb2—O9 | 85.24 (9) | O1—C1—N3 | 118.1 (4) |
O7—Rb2—O9 | 99.58 (13) | N1—C1—N3 | 119.4 (4) |
O3xi—Rb3—O3xii | 77.77 (11) | O2—C2—N1 | 122.2 (4) |
O3xi—Rb3—O3xiii | 104.67 (7) | O2—C2—N2 | 118.2 (4) |
O3xii—Rb3—O3xiii | 63.22 (10) | N1—C2—N2 | 119.6 (4) |
O3xi—Rb3—O3xiv | 63.22 (9) | O3—C3—N2 | 123.7 (4) |
O3xii—Rb3—O3xiv | 104.67 (7) | O3—C3—N3 | 123.3 (4) |
O3xiii—Rb3—O3xiv | 68.18 (10) | N2—C3—N3 | 113.0 (4) |
O3xi—Rb3—O4i | 155.01 (8) | O4—C4—N4 | 120.7 (4) |
O3xii—Rb3—O4i | 78.91 (8) | O4—C4—N6 | 121.2 (4) |
O3xi—Rb3—O4 | 78.91 (8) | N4—C4—N6 | 118.1 (4) |
O3xii—Rb3—O4 | 155.01 (8) | O5—C5—N4 | 123.2 (4) |
O3xiii—Rb3—O4i | 72.16 (7) | O5—C5—N5 | 122.9 (4) |
O3xiii—Rb3—O4 | 132.44 (8) | N4—C5—N5 | 113.9 (4) |
O3xiv—Rb3—O4i | 132.44 (8) | O6—C6—N5 | 119.5 (4) |
O3xiv—Rb3—O4 | 72.16 (7) | O6—C6—N6 | 121.9 (4) |
O3xi—Rb3—O7 | 134.03 (7) | N5—C6—N6 | 118.6 (4) |
O3xii—Rb3—O7 | 134.03 (7) |
Symmetry codes: (i) x, −y+1, z; (ii) −x+1/2, −y+1/2, −z+1; (iii) −x+1/2, y+1/2, −z+1; (iv) x−1/2, −y+3/2, z; (v) x−1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (vii) x−1, y, z; (viii) −x+1, y, −z+1; (ix) −x+3/2, −y+3/2, −z+2; (x) −x+3/2, y−1/2, −z+2; (xi) −x+3/2, y+1/2, −z+1; (xii) −x+3/2, −y+1/2, −z+1; (xiii) x+1/2, −y+1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···N1vi | 0.82 (1) | 2.06 (2) | 2.860 (4) | 164 (5) |
O9—H9···N1vi | 0.82 (1) | 2.31 (2) | 3.103 (4) | 163 (5) |
O10—H10···O6xvi | 0.82 (1) | 2.08 (3) | 2.779 (3) | 143 (5) |
N2—H2N···O6xvii | 0.74 (5) | 2.07 (5) | 2.813 (5) | 176 (5) |
N3—H3N···O4v | 0.74 (5) | 2.05 (5) | 2.788 (4) | 172 (5) |
N4—H4N···O1xiv | 0.78 (5) | 1.99 (5) | 2.765 (4) | 172 (5) |
N5—H5N···O2xviii | 0.80 (5) | 1.99 (5) | 2.783 (4) | 171 (5) |
O7—H7···N6 | 0.82 (1) | 1.92 (2) | 2.720 (4) | 168 (5) |
Symmetry codes: (v) x−1/2, y−1/2, z; (vi) −x+1, −y+1, −z+1; (xiv) x+1/2, y+1/2, z; (xvi) −x+2, −y+1, −z+2; (xvii) x−1/2, y−1/2, z−1; (xviii) x+1/2, y+1/2, z+1. |
Experimental details
(1) | (2) | (3_Xray) | (3_neutron) | |
Crystal data | ||||
Chemical formula | C3H4KN3O4 | C3HK2N3O3 | C12D17K3N12O16 | C12D17K3N12O16 |
Mr | 185.19 | 205.27 | 719.71 | 719.71 |
Crystal system, space group | Monoclinic, C2/m | Orthorhombic, Cmcm | Monoclinic, C2/m | Monoclinic, I2/a |
Temperature (K) | 150 | 150 | 150 | 150 |
a, b, c (Å) | 11.037 (2), 16.419 (3), 7.1497 (14) | 13.062 (4), 6.620 (2), 6.817 (2) | 12.8143 (15), 16.3214 (19), 11.8498 (14) | 12.824 (2), 16.332 (3), 23.713 (4) |
α, β, γ (°) | 90, 103.68 (3), 90 | 90, 90, 90 | 90, 97.520 (2), 90 | 90, 97.514 (3), 90 |
V (Å3) | 1258.9 (4) | 589.4 (3) | 2457.0 (5) | 4923.8 (15) |
Z | 8 | 4 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Neutron, λ = 0.5-7.0 Å |
µ (mm−1) | 0.81 | 1.56 | 0.66 | 0.07+0.00475 |
Crystal size (mm) | 0.22 × 0.16 × 0.11 | 0.23 × 0.21 × 0.18 | 0.70 × 0.20 × 0.05 | 2.00 × 2.00 × 1.00 |
Data collection | ||||
Diffractometer | Nonius KappaCCD diffractometer | Bruker SMART 1K CCD diffractometer | Bruker SMART 1K CCD diffractometer | SXD at ISIS neutron source diffractometer |
Absorption correction | Multi-scan SADABS; Sheldrick, 2003 | Multi-scan SADABS; Sheldrick, 2003 | Multi-scan SADABS | Numerical Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001. |
Tmin, Tmax | 0.842, 0.916 | 0.716, 0.767 | 0.655, 0.968 | 0.123, 0.497 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10612, 1216, 982 | 2536, 412, 370 | 10491, 2926, 2425 | 8194, 2545, 2535 |
Rint | 0.088 | 0.028 | 0.029 | 0.091 |
(sin θ/λ)max (Å−1) | 0.607 | 0.667 | 0.671 | – |
Distance from specimen to detector (mm) | – | – | – | h = −19→17, k = −37→37, l = −62→42 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.151, 1.06 | 0.024, 0.064, 1.15 | 0.034, 0.095, 1.07 | 0.068, 0.182, 1.03 |
No. of reflections | 1216 | 412 | 2926 | 8194 |
No. of parameters | 121 | 38 | 232 | 651 |
No. of restraints | 0 | 0 | 0 | 40 |
H-atom treatment | Only H-atom coordinates refined | All H-atom parameters refined | – | – |
w = 1/[σ2(Fo2) + (0.1091P)2] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0329P)2 + 0.7482P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2767P] where P = (Fo2 + 2Fc2)/3 | w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.85, −0.93 | 0.26, −0.48 | 0.64, −0.45 | 2.01, −2.20 |
(4) | |
Crystal data | |
Chemical formula | C12H16N12O16Rb3 |
Mr | 840.78 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 150 |
a, b, c (Å) | 13.1499 (15), 16.6185 (19), 11.8444 (13) |
α, β, γ (°) | 90, 99.584 (2), 90 |
V (Å3) | 2552.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.83 |
Crystal size (mm) | 0.20 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD diffractometer |
Absorption correction | Multi-scan SADABS |
Tmin, Tmax | 0.388, 0.759 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9291, 2324, 1898 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.595 |
Distance from specimen to detector (mm) | – |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.077, 1.14 |
No. of reflections | 2324 |
No. of parameters | 229 |
No. of restraints | 4 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0253P)2 + 9.2128P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.97, −0.98 |
Computer programs: Nonius COLLECT, Bruker SMART, SXD2001, EVALCCD, Bruker SAINT, using coords of known structure, Bruker SHELXTL and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O2i | 0.74 (3) | 2.16 (3) | 2.892 (3) | 169 (4) |
O6—H6···O2ii | 0.71 (3) | 2.16 (3) | 2.858 (3) | 168 (3) |
N1—H1N···O3 | 0.87 (3) | 1.95 (3) | 2.811 (3) | 172 (3) |
N4—H4N···O2 | 0.88 (3) | 1.93 (3) | 2.809 (3) | 175 (3) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.81 (5) | 1.91 (6) | 2.729 (3) | 180.0 |
Symmetry code: (i) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—D7···N6i | 0.63 (2) | 2.10 (2) | 2.7211 (17) | 172 (3) |
O8—D8···N3i | 0.794 (19) | 2.314 (19) | 3.0812 (18) | 163 (2) |
O10—D10···N3 | 0.773 (19) | 2.07 (2) | 2.8358 (17) | 173 (2) |
O9—D9···O6ii | 0.78 (2) | 2.02 (2) | 2.7646 (14) | 159 (2) |
N2—D2N···O6iii | 0.85 (2) | 1.95 (2) | 2.8019 (18) | 171.9 (19) |
N1—D1N···O4iv | 0.84 (2) | 1.95 (2) | 2.7889 (18) | 177.7 (19) |
N5—D5N···O3iii | 0.81 (2) | 1.96 (2) | 2.7763 (18) | 176 (2) |
N4—D4N···O1iv | 0.86 (2) | 1.91 (2) | 2.7704 (17) | 172.6 (19) |
N6—D6N···O7i | 0.80 (4) | 1.94 (4) | 2.7211 (17) | 166 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) −x+1/2, −y+1/2, −z; (iv) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—D1···O9i | 1.017 (11) | 1.796 (11) | 2.809 (10) | 173.6 (9) |
N3—D3···O10ii | 1.054 (12) | 1.701 (13) | 2.734 (12) | 165.5 (16) |
N4—D4···O8iii | 1.027 (11) | 1.787 (11) | 2.807 (10) | 170.9 (16) |
N5—D5···O16iv | 1.059 (7) | 1.654 (11) | 2.690 (12) | 164.6 (7) |
N6—D6···O12v | 1.060 (10) | 1.681 (11) | 2.738 (11) | 175.0 (8) |
N7—D7···O5iii | 1.043 (12) | 1.708 (12) | 2.746 (12) | 173.2 (11) |
N9—D9···O2iv | 1.034 (11) | 1.736 (12) | 2.763 (11) | 172.1 (14) |
N10—D10···O3ii | 1.022 (10) | 1.804 (11) | 2.825 (10) | 177.9 (11) |
N11—D11···O6vi | 1.022 (11) | 1.821 (13) | 2.828 (11) | 167.9 (15) |
O13—D13A···N8iv | 0.968 (12) | 1.866 (12) | 2.830 (12) | 174.1 (12) |
O14—D14A···O2iv | 0.964 (12) | 1.838 (12) | 2.756 (13) | 158.3 (10) |
O14—D14B···O6vii | 0.959 (11) | 1.866 (12) | 2.768 (13) | 155.6 (10) |
O15—D15A···N12viii | 0.945 (11) | 2.123 (12) | 3.042 (12) | 163.6 (11) |
O15—D15B···N8i | 0.946 (12) | 2.190 (15) | 3.098 (11) | 160.4 (13) |
O16—D16A···N2ix | 0.964 (10) | 1.771 (8) | 2.733 (12) | 174.9 (8) |
O16—D16A···O3ix | 0.964 (10) | 2.705 (11) | 3.293 (13) | 119.9 (5) |
O16—D16B···O13x | 0.969 (6) | 1.895 (7) | 2.864 (6) | 178.4 (10) |
Symmetry codes: (i) x−1/2, −y+2, z; (ii) −x+1/2, −y+3/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x+1/2, −y+2, z; (v) x, −y+3/2, z−1/2; (vi) x, −y+3/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1/2, y, −z+1; (ix) −x, y−1/2, −z+1/2; (x) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···N1i | 0.820 (10) | 2.063 (17) | 2.860 (4) | 164 (5) |
O9—H9···N1i | 0.818 (10) | 2.312 (18) | 3.103 (4) | 163 (5) |
O10—H10···O6ii | 0.821 (10) | 2.08 (3) | 2.779 (3) | 143 (5) |
N2—H2N···O6iii | 0.74 (5) | 2.07 (5) | 2.813 (5) | 176 (5) |
N3—H3N···O4iv | 0.74 (5) | 2.05 (5) | 2.788 (4) | 172 (5) |
N4—H4N···O1v | 0.78 (5) | 1.99 (5) | 2.765 (4) | 172 (5) |
N5—H5N···O2vi | 0.80 (5) | 1.99 (5) | 2.783 (4) | 171 (5) |
O7—H7···N6 | 0.816 (10) | 1.915 (15) | 2.720 (4) | 168 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) x−1/2, y−1/2, z−1; (iv) x−1/2, y−1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1. |
Acknowledgements
We thank the EPSRC for funding and the CCLRC for the allocation of neutron beam-time at ISIS.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Aoki, S., Shiro, M., Koike, T. & Kimura, E. (2000). J. Am. Chem. Soc. 122, 576–584. Web of Science CSD CrossRef CAS Google Scholar
Arduini, M., Crego-Calama, M., Timmerman, P. & Reinhoudt, D. N. (2003). J. Org. Chem. 68, 1097–1106. Web of Science CrossRef PubMed CAS Google Scholar
Barford, E. D., Jeffrey, D. J., Marshall, J. & Raynor, P. A. (1989). Lavatory Cleansing Blocks Containing Chlorinated Cyanuric Acid Derivatives and Metal Salts. UK Patent 2 217 343. Google Scholar
Berl, V., Schmutz, M., Krische, M. J., Khoury, R. G. & Lehn, J.-M. (2002). Chem. Eur. J. 8, 1227–1244. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blount, D. H. (2000). Flame Retardant Compositions Utilizing a Mixture of Cyanuric Acid and Cyamelide Compounds. US Patent 6 423 250. Google Scholar
Brandenburg, K. & Putz, H. (2004). DIAMOND3. University of Bonn, Germany. Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Brunner, H., Hollman, A., Nuber, B. & Zabel, M. (2001). J. Organomet. Chem. 633, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Falvello, L. R., Hitchman, M. A., Palacio, F., Pascual, I., Schultz, A. J., Stratemeier, H., Tomas, M., Urriolabeitia, E. P. & Young, D. M. (1999). J. Am. Chem. Soc. 121, 2808–2819. Web of Science CSD CrossRef CAS Google Scholar
Falvello, L. R., Pascual, I. & Tomas, M. (1995). Inorg. Chim. Acta, 229, 135–142. CSD CrossRef CAS Web of Science Google Scholar
Falvello, L. R., Pascual, I., Tomas, M. & Urrioldbeitia, E. P. (1997). J. Am. Chem. Soc. 119, 11894–11902. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Felix, O., Crego-Calama, M., Lutyen, I., Timmerman, P. & Reinhoudt, D. N. (2003). Eur. J. Org. Chem. pp. 1463–1474. Google Scholar
Gutmann, M. J. & Wilson, C. C. (2001). SXD-2001. ISIS, Rutherford Appleton Laboratories, Oxfordshire, England. Google Scholar
Hudec, J., Macho, V. & Hudec, J. (1987). Cyanuric Acid as a Plant Growth Regulator. Czech Patent 240 375. Google Scholar
Keen, D. A., Gutmann, M. J. & Wilson, C. C. (2006). J. Appl. Cryst. 39, 714–722. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77. CSD CrossRef CAS IUCr Journals Google Scholar
Mascal, M., Hansen, J., Fallon, P. S., Blake, A. J., Heywood, B. R., Moore, M. H. & Turkenburg, J. P. (1999). Chem. Eur. J. 5, 381–384. CrossRef CAS Google Scholar
Munakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001a). Polyhedron, 20, 2037–2043. Web of Science CSD CrossRef CAS Google Scholar
Munakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001b). Polyhedron, 20, 2321–2327. Web of Science CSD CrossRef CAS Google Scholar
Nichol, G. S. & Clegg, W. (2006a). Inorg. Chim. Acta. 359, 3474–3480. CrossRef CAS Google Scholar
Nichol, G. S. & Clegg, W. (2006b). Polyhedron, 25, 1043–1056. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Rao, C. N. R., Ranganathan, A., Pedireddi, V. R. & Raju, A. R. (2000). Chem. Commun. pp. 39–40. Web of Science CSD CrossRef Google Scholar
Server-Carrio, J., Escriva, E. & Folgado, J.-V. (1998). Polyhedron, 17, 1495–1501. Web of Science CSD CrossRef CAS Google Scholar
Seto, C. T., Mathias, J. P. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1321–1329. CrossRef CAS Web of Science Google Scholar
Seto, C. T. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1330–1340. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Siebers, D. L. & Caton, J. A. (1990). Combust. Flame, 79, 31–46. CrossRef CAS Web of Science Google Scholar
Slade, P. G., Raupach, M. & Radoslovich, E. W. (1973). Acta Cryst. B29, 279–286. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sysoeva, T. F., Branzburg, M. Z., Gurevich, M. Z. & Starikova, Z. A. (1990). Russ. J. Struct. Chem. 31, 90–94. CAS Google Scholar
Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D. N., Mammen, M. & Gordon, D. M. (1995). Acc. Chem. Res. 28, 37–44. CrossRef CAS Web of Science Google Scholar
Wilson, C. C. (2005). Z. Kristallogr. 220, 385–398. Web of Science CrossRef CAS Google Scholar
Zerkowski, J. A., MacDonald, J. C., Seto, C. T., Wierda, D. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 2382–2391. CSD CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.