research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Stoichiometry-dependent structures: an X-ray and neutron single-crystal diffraction study of the effect of reaction stoichiometry on the crystalline products formed in the potassium–cyanurate system

aSchool of Natural Sciences (Chemistry), Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, England, and bISIS Neutron Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 31 March 2006; accepted 29 June 2006)

Reaction of cyanuric acid (C3H3N3O3; neutral form CYH3; anionic form CYH[_2^-]; dianionic form CYH2−) with K2CO3 or KOH in aqueous solution gave three different crystalline products, according to the reaction stoichiometry used. The structures of two products were easily determined by single-crystal X-ray diffraction: [K(CYH2)(H2O)], (1), of which the crystal structure is already known [Marsh, R. E. et al. (2002). Acta Cryst. B58, 62–77], and [K2(CYH)], (2), a highly symmetrical and dense structure. Further stoichiometric variation produced another new complex, (3), and reaction of Rb2CO3 with CYH3 yielded a further product, (4), which was found to be isostructural with (3). Determination of the structures of (3) and (4) by X-ray diffraction gave a result that was chemically unreasonable owing to a charge imbalance, with the asymmetric unit apparently containing 2− against 1.5+ (partial charges as the result of crystallographic mirror symmetry). A single-crystal neutron diffraction analysis carried out on a fully deuterated sample of (3) revealed the presence of a supercell, with the c axis doubled compared with the X-ray result. Subsequent refinement of the structure with this supercell showed that it is the result of just two D atoms breaking crystallographically imposed mirror symmetry, which is otherwise essentially observed by the rest of the structure. This minor deviation from pseudo-symmetry could not be identified by X-ray diffraction. Thus, single-crystal neutron diffraction data revealed that the true chemical formula of the structure of (3) [and presumably also of the isostructural (4) with Rb instead of K and H instead of D], is [K3(C3D2N3O3)3(C3D3N3O3)(D2O)4], the deuterated form of [K3(CYH2)3(CYH3)(H2O)4].

1. Introduction

Cyanuric acid (C3H3N3O3; neutral form CYH3; anionic form CYH[_2^-]; dianionic form CYH2−) is a sturdy, robust and relatively unreactive small molecule which nevertheless has had a diverse role to play in chemistry, particular with regard to commercial or industrial use, for many years. It has featured in products ranging from flame retardants (Blount, 2000[Blount, D. H. (2000). Flame Retardant Compositions Utilizing a Mixture of Cyanuric Acid and Cyamelide Compounds. US Patent 6 423 250.]) and plant growth feed (Hudec et al., 1987[Hudec, J., Macho, V. & Hudec, J. (1987). Cyanuric Acid as a Plant Growth Regulator. Czech Patent 240 375.]) to a catalyst for NOx removal from exhaust gases (Siebers & Caton, 1990[Siebers, D. L. & Caton, J. A. (1990). Combust. Flame, 79, 31-46.]) and lavatory cleaning blocks (Barford et al., 1989[Barford, E. D., Jeffrey, D. J., Marshall, J. & Raynor, P. A. (1989). Lavatory Cleansing Blocks Containing Chlorinated Cyanuric Acid Derivatives and Metal Salts. UK Patent 2 217 343.]). It is a mildly acidic compound with pKa values of 6.85, 10.91 and >12 for the generation of the mono-, di- and trianionic forms, respectively (Aoki et al., 2000[Aoki, S., Shiro, M., Koike, T. & Kimura, E. (2000). J. Am. Chem. Soc. 122, 576-584.]); whilst mono-deprotonation is easily achieved and double deprotonation can be achieved by careful control of the reaction equilibrium, triple deprotonation is much more uncommon and forms unstable complexes.

Despite the relative ease with which CYH3 can be singly deprotonated its use as an anionic ligand in coordination chemistry has so far been surprisingly restricted. With a few exceptions, reported coordination complexes have largely been confined to the first-row transition elements (Falvello et al., 1999[Falvello, L. R., Hitchman, M. A., Palacio, F., Pascual, I., Schultz, A. J., Stratemeier, H., Tomas, M., Urriolabeitia, E. P. & Young, D. M. (1999). J. Am. Chem. Soc. 121, 2808-2819.], 1995[Falvello, L. R., Pascual, I. & Tomas, M. (1995). Inorg. Chim. Acta, 229, 135-142.], 1997[Falvello, L. R., Pascual, I., Tomas, M. & Urrioldbeitia, E. P. (1997). J. Am. Chem. Soc. 119, 11894-11902.]; Server-Carrio et al., 1998[Server-Carrio, J., Escriva, E. & Folgado, J.-V. (1998). Polyhedron, 17, 1495-1501.]; Slade et al., 1973[Slade, P. G., Raupach, M. & Radoslovich, E. W. (1973). Acta Cryst. B29, 279-286.]) with the notable exception of work on silver complexes (Brunner et al., 2001[Brunner, H., Hollman, A., Nuber, B. & Zabel, M. (2001). J. Organomet. Chem. 633, 1-6.]; Munakata et al., 2001a[Munakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001a). Polyhedron, 20, 2037-2043.],b[Munakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001b). Polyhedron, 20, 2321-2327.]; Rao et al., 2000[Rao, C. N. R., Ranganathan, A., Pedireddi, V. R. & Raju, A. R. (2000). Chem. Commun. pp. 39-40.]). Of particular interest is work by Aoki et al. (2000[Aoki, S., Shiro, M., Koike, T. & Kimura, E. (2000). J. Am. Chem. Soc. 122, 576-584.]) detailing the synthesis and structural characterization of macrocycle-stabilized zinc complexes of CYH3 in all three anionic forms.

By contrast to its coordination chemistry, the use of CYH3 in organic supramolecular chemistry has been investigated to a far deeper level. The molecule has D3h symmetry and is a complementary hydrogen-bond partner for melamine, which also has D3h symmetry, forming very strong hydrogen bonds. The formation of these bonds is predictable and reliable and has been well exploited in the formation of supramolecular compounds (Arduini et al., 2003[Arduini, M., Crego-Calama, M., Timmerman, P. & Reinhoudt, D. N. (2003). J. Org. Chem. 68, 1097-1106.]; Berl et al., 2002[Berl, V., Schmutz, M., Krische, M. J., Khoury, R. G. & Lehn, J.-M. (2002). Chem. Eur. J. 8, 1227-1244.]; Felix et al., 2003[Felix, O., Crego-Calama, M., Lutyen, I., Timmerman, P. & Reinhoudt, D. N. (2003). Eur. J. Org. Chem. pp. 1463-1474.]; Mascal et al., 1999[Mascal, M., Hansen, J., Fallon, P. S., Blake, A. J., Heywood, B. R., Moore, M. H. & Turkenburg, J. P. (1999). Chem. Eur. J. 5, 381-384.]; Seto et al., 1993[Seto, C. T., Mathias, J. P. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1321-1329.]; Seto & Whitesides, 1993[Seto, C. T. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1330-1340.]; Whitesides et al., 1995[Whitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D. N., Mammen, M. & Gordon, D. M. (1995). Acc. Chem. Res. 28, 37-44.]; Zerkowski et al., 1994[Zerkowski, J. A., MacDonald, J. C., Seto, C. T., Wierda, D. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 2382-2391.]). One-dimensional and two-dimensional motifs predominate throughout.

We became interested in the coordination chemistry of CYH3 as part of our work on s-block metal complexes of pyridones, barbiturates and related ligands (Nichol & Clegg, 2006a[Nichol, G. S. & Clegg, W. (2006a). Inorg. Chim. Acta. 359, 3474-3480.],b[Nichol, G. S. & Clegg, W. (2006b). Polyhedron, 25, 1043-1056.]). Whilst the composition of coordination complexes of all the alkaline-earth metals, and most of the alkali metals, is independent of the reaction stoichiometry used, we found that the potassium and caesium reaction systems were sensitive to the relative amounts of acid and base used. In particular, three different potassium cyanurate complexes can by obtained by simple variation of the amount of base used in the reaction. Whilst two of these complexes are straightforward with metal–ligand ratios of 1:1 {[K(CYH2)(H2O)], compound (1)} and 2:1 {[K2(CYH)], compound (2)}, the initial formulation of a third complex, [K3(CYD2)3(CYD3)(D2O)4], (3), exhibited charge balance problems as the number of potassium cations did not equal the number of cyanurate anions in the asymmetric unit. The equivalent rubidium analogue, [Rb3(CYH2)3(CYH3)(H2O)4], (4), was found to be isostructural with (3).

[Scheme 1]
A single-crystal neutron diffraction data set was collected on a fully deuterated form of (3) in order to study the H-atom behaviour and hence to try to solve the charge balance problem. Crystals of (4) could not be grown large enough to permit neutron diffraction.

2. Experimental

2.1. Synthesis

2.1.1. Compound (1)

CYH3 (0.132 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of distilled water, with heating and stirring. Solid K2CO3 (0.142 g, 1 mmol, 2 equivalents) was added to the reaction solution, resulting in instant effervescence. The solution was boiled until ca 15 ml remained, when the hot solution was transferred to a fresh sample vial, sealed and allowed to stand at room temperature. Large colourless crystals of (1) grew over a period of 2–3 d (0.076 g, 40%). CHN analysis found: C 19.59, H 1.92, N 22.18%; calc.: C 19.46, H 2.18, N 22.69%.

2.1.2. Compound (2)

CYH3 (0.134 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of water along with KOH (0.27 g, 4.8 mmol, 4.8 equivalents). The reaction mixture was boiled until everything had dissolved. Slow evaporation of a small portion of the solution on a watchglass at room temperature yielded colourless crystals of (2). The amount of product obtained was too small to permit calculation of the yield or CHN analysis.

2.1.3. Compound (3)

Under an atmosphere of dry nitrogen, CYH3 (0.134 g, 1 mmol, 1 equivalent) was dissolved in 30 ml of deuterated water, with heating. Solid K2CO3 (0.071 g, 0.5 mmol, 0.5 equivalents) was added; the solution was boiled until all the solid reagents had dissolved and was then allowed to stand, undisturbed, at room temperature. Very large colourless block crystals of (3) formed over a period of around 1 week (0.059 g, 17%). CDN analysis found: C 19.91, D 4.51, N 22.88%; calc.: C 20.02, D 4.74, N 23.36%.

2.1.4. Compound (4)

Rb2CO3 (0.309 g, 1.3 mmol, 1 equivalent) and CYH3 (0.356 g, 2.75 mmol, 2.1 equivalent) were dissolved in 40 ml of boiling water. After 5 min of boiling the heat was removed and the flask sealed. A crop of large colourless crystals of (4) grew over a period of 2 d (0.111 g, 10.16%). CHN analysis found: C 17.25, H 1.91, N 20.40%; calc.: C 17.12, H 2.03, N 19.97%.

2.2. Crystallography

2.2.1. Single-crystal X-ray diffraction

Crystallographic experimental parameters for all data collections are summarized in Table 1[link].1 Tables 2[link][link][link]–5[link] give details of selected geometric and hydrogen-bonding parameters. Details of the single-crystal neutron data collection are given in the following paragraph. For the X-ray data sets, data collection and reduction was by COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]) and EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]) for (1), or SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) for (2)–(4). For all four structures semi-empirical absorption correction from symmetry-equivalent and repeated reflections was by SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]); structure solution (direct methods) and refinement was by SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]), using all unique F2 values. DIAMOND3 (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND3. University of Bonn, Germany.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) were used to produce the molecular graphics.

Table 1
Summary of crystallographic experimental parameters for all data collections

  (1) (2) (3) X-ray (3) neutron (4)
Crystal data
Chemical formula C3H4KN3O4 C3HK2N3O3 C12D17K3N12O16 C12D17K3N12O16 C12H16N12O16Rb3
Mr 185.19 205.27 719.71 719.71 840.78
Cell setting, space group Monoclinic, C2/m Orthorhombic, Cmcm Monoclinic, C2/m Monoclinic, I2/a Monoclinic, C2/m
Temperature (K) 150 (2) 150 (2) 150 (2) 150 (2) 150 (2)
a, b, c (Å) 11.037 (2), 16.419 (3), 7.1497 (14) 13.062 (4), 6.620 (2), 6.817 (2) 12.8143 (15), 16.3214 (19), 11.8498 (14) 12.824 (2), 16.332 (3), 23.713 (4) 13.1499 (15), 16.6185 (19), 11.8444 (13)
α, β, γ (°) 90.00, 103.68 (3), 90.00 90.00, 90.00, 90.00 90.00, 97.520 (2), 90.00 90.00, 97.514 (3), 90.00 90.00, 99.584 (2), 90.00
V3) 1258.9 (4) 589.4 (3) 2457.0 (5) 4923.8 (15) 2552.2 (5)
Z 8 4 4 8 4
Dx (Mg m−3) 1.954 2.313 1.946 1.942 2.188
Radiation type Mo Kα Mo Kα Mo Kα Neutron Mo Kα
μ (mm−1) 0.81 1.55 0.66 0.0652 + 0.00475 5.83
Crystal form, colour Block, colourless Block, colourless Plate, colourless Block, colourless Plate, colourless
Crystal size (mm) 0.22 × 0.16 × 0.11 0.23 × 0.21 × 0.18 0.70 × 0.20 × 0.05 2.00 × 2.00 × 1.00 0.20 × 0.20 × 0.05
           
Data collection
Diffractometer Nonius KappaCCD diffractometer Bruker SMART 1K CCD diffractometer Bruker SMART 1K CCD diffractometer SXD at ISIS neutron source Bruker SMART 1K CCD diffractometer
Data collection method φ and ω scans Thin-slice ω scans Thin-slice ω scans Time-of-flight Laue diffraction Thin-slice ω scans
Absorption correction Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Multi-scan (based on symmetry-related measurements) Numerical Multi-scan (based on symmetry-related measurements)
Tmin 0.842 0.716 0.655 0.123 0.388
Tmax 0.916 0.767 0.968 0.497 0.759
No. of measured, independent and observed reflections 10 612, 1216, 982 2536, 412, 370 10 491, 2926, 2425 8194, 2545, 2535 9291, 2324, 1898
Criterion for observed reflections I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I) I > 2σ(I)
Rint 0.088 0.028 0.029 0.091 0.045
θmax (°) 25.5 28.3 28.5 Resolution 0.37 Å 25.0
           
Refinement
Refinement on F2 F2 F2 F2 F2
R[F2> 2σ(F2)], wR(F2), S 0.058, 0.151, 1.06 0.024, 0.064, 1.15 0.034, 0.095, 1.07 0.068, 0.182, 1.03 0.034, 0.077, 1.14
No. of reflections 1216 412 2926 8194 2324
No. of parameters 121 38 232 651 229
H/D-atom treatment Only coordinates refined Refined independently Only coordinates refined Anisotropic Constrained to parent site
Weighting scheme w = 1/[σ2(Fo2) + (0.1091P)2] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.7482P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2767P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P] where P = (Fo2 + 2Fc2)/3 w = 1/[σ2(Fo2) + (0.0253P)2 + 9.2128P] where P = (Fo2 + 2Fc2)/3
(Δ/σ)max <0.0001 <0.0001 0.001 0.048 <0.0001
Δρmax, Δρmin (e Å−3) 0.85, −0.93 0.26, −0.48 0.64, −0.45 2.01, −2.20 0.97, −0.98
Extinction method None None None SHELXL97 None
Extinction coefficient 8.3 (3) × 10−5
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SXD2001 (Gutmann & Wilson, 2001[Gutmann, M. J. & Wilson, C. C. (2001). SXD-2001. ISIS, Rutherford Appleton Laboratories, Oxfordshire, England.]), EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]) and local programs.

Table 2
Selected bond lengths (Å) for (1)

K1—O1 2.780 (2) K1—O4ii 2.726 (18)
K1—O5 2.855 (4) K1—O6 2.696 (4)
K1—O6i 3.079 (4) K2—O3 2.932 (2)
K2—O5 2.738 (3) K2—O5iii 2.979 (4)
K2—O6 2.859 (4) K2—N2iv 3.014 (2)
K2—N3 3.010 (3) O1—C1 1.218 (5)
O2—C2 1.258 (4) O3—C3 1.250 (3)
O4—C4 1.228 (5)    
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{1\over2}, -y+{1\over2}, -z+1]; (iii) -x+1, -y, -z+1; (iv) [x+{1\over2}, y-{1\over2}, z].

Table 3
Selected bond lengths (Å) in (2)

K—O1 2.7688 (13) K—O1i 2.8773 (14)
K—N2ii 3.0390 (15) K—O2iii 2.9058 (8)
O1—C1 1.263 (2) O2—C2 1.278 (4)
Symmetry codes: (i) [-x+{1\over2}, -y+{3\over2}, -z+1]; (ii) [-x+{1\over2}, y+{1\over2}, -z+{1\over2}]; (iii) [-x+{1\over2}, -y+{1\over2}, -z+1].

Table 4
Selected bond lengths (Å) in the neutron-determined structure of (3)

K1—O1 2.965 (15) K1—O1i 2.91 (2) O1—C1 1.240 (9)
K1—O4 3.01 (2) K1—O4i 2.975 (13) O2—C2 1.244 (12)
K1—O9ii 2.863 (16) K1—O12iii 2.857 (17) O3—C3 1.207 (12)
K1—O15 2.762 (9) K1—O16 2.841 (15) O4—C4 1.209 (9)
K2—O8iv 2.751 (16) K2—O7 2.84 (2) O5—C5 1.262 (14)
K2—O11v 2.853 (19) K2—O10 2.800 (15) O6—C6 1.240 (12)
K2—O15 2.761 (14) K2—O14 2.816 (12) O7—C7 1.256 (11)
K3—O3vi 2.831 (16) K3—O11v 2.748 (18) O8—C8 1.213 (11)
K3—O7 2.833 (18) K3—O13 2.707 (16) O9—C9 1.230 (11)
O10—C10 1.278 (12) O11—C11 1.209 (9) O12—C12 1.255 (12)
Symmetry codes: (i) [-x+{1\over2}, -y+{3\over2}, -z+{1\over2}]; (ii) [x-{1\over2}, -y+2, z]; (iii) [-x+{1\over2}, y, -z+1]; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y-{1\over2}, -z+{1\over2}].

Table 5
Hydrogen-bonding geometry (Å, °) in the neutron-determined structure of (3)

D—D⋯A D—D DA DA D—D⋯A
N1—D1⋯O9ii 1.017 (11) 1.796 (11) 2.809 (10) 174 (1)
N3—D3⋯O10i 1.054 (12) 1.701 (13) 2.734 (12) 165 (2)
N4—D4⋯O8iv 1.027 (11) 1.787 (11) 2.807 (10) 171 (2)
N5—D5⋯O16vii 1.059 (7) 1.654 (11) 2.690 (12) 165 (1)
N6—D6⋯O12viii 1.060 (10) 1.681 (11) 2.738 (11) 175 (1)
N7—D7⋯O5iv 1.043 (12) 1.708 (12) 2.746 (12) 173 (1)
N9—D9⋯O2vii 1.034 (11) 1.736 (12) 2.763 (11) 172 (1)
N10—D10⋯O3i 1.022 (10) 1.804 (11) 2.825 (10) 178 (1)
N11—D11⋯O6ix 1.022 (11) 1.821 (13) 2.828 (11) 168 (1)
O13—D13A⋯N8vii 0.968 (12) 1.866 (12) 2.830 (12) 174 (1)
O14—D14A⋯O2vii 0.964 (12) 1.838(12) 2.756(13) 158 (1)
O14—D14B⋯O6vi 0.959 (11) 1.866 (12) 2.768(13) 156 (1)
O15—D15A⋯N12iii 0.945 (11) 2.123 (12) 3.042(12) 164 (1)
O15—D15B⋯N8ii 0.946 (12) 2.190 (15) 3.098(11) 160 (1)
O16—D16A⋯N2x 0.964 (10) 1.771 (8) 2.733(12) 175 (1)
O16—D16A⋯O3x 0.964 (10) 2.705 (11) 3.293(13) 120 (1)
O16—D16B⋯O13xi 0.969 (6) 1.895 (7) 2.864(6) 178 (1)
Symmetry codes: (i) [-x+{1\over 2}, -y+{3\over 2}, -z+{1\over 2}]; (ii) [x-{1\over 2}, -y+2, z]; (iii) [-x+{1\over 2}, y, -z+1]; (iv) -x+1, -y+2, -z+1; (vi) [-x+1, y-{1\over 2}, -z+{1\over 2}]; (vii) [x+{1\over 2}, -y+2, z]; (viii) [x, -y+{3\over 2}, z-{1\over 2}]; (ix) [x, -y+{3\over 2}, z+{1\over 2}]; (x) [-x, y-{1\over 2}, -z+{1\over 2}]; (xi) x-1,y,z.
2.2.2. Single-crystal neutron diffraction

Very large deuterated crystals (by normal X-ray diffraction standards) of compound (3) were prepared for the collection of a single-crystal neutron diffraction data set on instrument SXD at the ISIS spallation neutron source, Rutherford Appleton Laboratories, Oxfordshire, UK (http://www.isis.rl.ac.uk/crystallography/sxd/ ). SXD uses the time-of-flight Laue technique to obtain reflections from large amounts of reciprocal space in a single measurement with a stationary crystal (Wilson, 2005[Wilson, C. C. (2005). Z. Kristallogr. 220, 385-398.]; Keen et al., 2006[Keen, D. A., Gutmann, M. J. & Wilson, C. C. (2006). J. Appl. Cryst. 39, 714-722.]). Data were collected from eight crystal orientations to a resolution of 0.37 Å, each experiment taking around 10 h, giving a total data collection time of just over 3 d.

The program SXD-2001 (Gutmann & Wilson, 2001[Gutmann, M. J. & Wilson, C. C. (2001). SXD-2001. ISIS, Rutherford Appleton Laboratories, Oxfordshire, England.]) was used to collect and process the neutron diffraction data. The structure was determined by using trial structures determined by X-ray analysis as a starting point and the remaining atoms located by carrying out successive Fourier and least-squares refinements with SHELXTL.

Carrying out the reaction using D2O as the solvent allows for deuterium–hydrogen exchange and incorporation of D2O in the structure. Deuterated samples have three important advantages over standard samples. Firstly, deuterium scatters neutrons over twice as strongly as hydrogen, giving an improvement in the intensity of the diffracted neutron beams. Secondly, hydrogen is one of the few nuclei which scatters neutrons out-of-phase, giving holes rather than peaks in a difference map. This property allows for easy checking that full deuteration has taken place, and makes difference map analysis more straightforward. Finally, hydrogen contributes significantly to incoherent and background scattering; using deuterium significantly reduces this problem.

3. Results and discussion

3.1. Compound (1)

As noted in the Experimental section[link] this compound was synthesized using equimolar amounts of K2CO3 and CYH3. Thus, the K:CYH3 ratio was 2:1. The crystal structure of this compound was first reported by Sysoeva et al. (1990[Sysoeva, T. F., Branzburg, M. Z., Gurevich, M. Z. & Starikova, Z. A. (1990). Russ. J. Struct. Chem. 31, 90-94.]) in space group Cm, subsequently corrected to C2/m by Marsh et al. (2002[Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.]). We present here a low-temperature redetermination, for the purpose of comparison with the other compounds. The compound does indeed crystallize in space group C2/m and shows no structural effect as a result of the cooling, other than a slight reduction in unit-cell volume, consistent with the effect of reduced temperature. The structure is shown in Fig. 1[link]. There are two crystallographically independent K+ cations and two crystallographically independent CYH[_2^-] anions in the asymmetric unit, along with two molecules of water. Both cations and both water molecules are located on crystallographic mirror planes, and both anions are located on twofold rotation axes, so there are few unique atoms in this highly symmetrical structure. The two independent potassium cations have rather different coordination environments. Atom K1 is coordinated exclusively by O atoms from the carbonyl groups of both anions, and also by both water molecules. By contrast K2 is coordinated by an even combination of N and O atoms (four each). Atoms K1 and K2 are bridged by both water molecules, whilst K1 is bridged to its symmetry equivalents via carbonyl O atoms only and K2 is bridged to its symmetry equivalents via N atoms only. Both K1 and K2 are related to their symmetry equivalents by twofold rotation axes, the same axes which also pass through the CYH[_2^-] anions. K—O and K—N bond lengths are unexceptional, as is the geometry of the CYH[_2^-] anions. Table 2[link] gives selected geometrical parameters for compound (1).

[Figure 1]
Figure 1
A partial packing diagram of (1). Displacement ellipsoids are drawn at the 50% probability level, and dashed lines indicate hydrogen bonding [symmetry codes (twofold rotation): (v) −x, y, −z; (vi) −x + 1, y, −z +1]. In all graphical representations of structures in the on-line version of the journal, bonds within ligands are orange, and bonds to metals are semi-transparent grey.

Alongside this extensive coordination is a degree of predictable hydrogen bonding. The R22(8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) linking the CYH2 anions together via N—H⋯O interactions is one of the most regular and persistent motifs in cyanuric structural chemistry (Falvello et al., 1997[Falvello, L. R., Pascual, I., Tomas, M. & Urrioldbeitia, E. P. (1997). J. Am. Chem. Soc. 119, 11894-11902.]), so its appearance here, linking the anions into a tape, is unsurprising.

3.2. Compound (2)

As CYH3 can be potentially deprotonated at all three NH sites we experimented with the reaction conditions to see if we could doubly deprotonate the acid and observe the effect on the coordination chemistry. The instability of CY3− complexes has already been mentioned so we considered that a [K3(CY)] complex would be difficult or impossible to synthesize. The relatively high pKa of the second deprotonation meant that hydroxide was preferable to carbonate as base. Double deprotonation and the formation of [K2(CYH)·xH2O] was achieved using approximately 5:1 KOH:CYH in aqueous solution. Somewhat surprisingly, there is no water present in this compound and the structure is highly symmetrical, crystallizing in the orthorhombic space group Cmcm with only seven unique atoms in the asymmetric unit (Fig. 2[link]).

[Figure 2]
Figure 2
The structure of (2). Displacement ellipsoids are drawn at the 50% probability level, and the unique hydrogen bond is marked by a dashed line. [Symmetry codes: (i) −x, y, −z + [1\over2]; (ii) −x, −y + 1, z[1\over2].

Removal of the second proton means that the R22(8) motif is not formed and, as a result, this is one of only a handful of cyanuric structures not to feature this hydrogen-bonding motif. Instead there is a lone N—H⋯O interaction forming a C6 motif which, because of the crystallographic symmetry, links the anions into linear chains. As hydrogen bonding is of little importance now, the structure is held together by a very dense network of coordination bonds. The calculated crystal density is 2.313 Mg m−3 and there are only 30 other compounds which contain potassium as the only metal in the Cambridge Structural Database (version 5.27 with January 2006 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) with a higher density. Atom O1 links four potassium centres and N2 bridges across two potassium centres, whilst atom O2, as the hydrogen-bond acceptor, does not coordinate to the metal at all. The unique potassium centre is thus six-coordinate and its geometry can best be described as distorted pentagonal bipyramidal with one of the equatorial points removed. As with (1), the bond lengths and angles in this structure are unexceptional; selected bond lengths are given in Table 3[link].

A c-axis projection of the crystal packing (Fig. 3[link]) shows quite neatly both the dense coordination bonding and its symmetrical nature in this structure. The CYH2− rings are stacked along the c axis with a lateral displacement between adjacent rings of approximately 1/3 of a ring along the b axis. The stacking distance between the rings is approximately 3.4 Å; this distance and the ring displacement are good indicators of ring-stacking stabilization. However, given the extent of metal–ligand coordination in this structure, it is unlikely that the ring stacking is a significant directing influence in the crystal packing. The lone hydrogen bond runs parallel to the b axis but is omitted from Fig. 3[link].

[Figure 3]
Figure 3
The crystal packing of (2), projected along the c axis.

3.3. Compounds (3) and (4)

Our experiments with the reaction stoichiometry thus far yielded two different chemical compounds. We experimented with this ratio further by using 0.5 equivalents of K2CO3 with 1 equivalent of CYH3 to give a K:CYH3 ratio of 1:1. This change in reaction stoichiometry yielded a third complex, compound (3), this time with coordinated water. To be sure that this was not a one-off observation the reaction was repeated many times at both 1:1 and 2:1 K:CYH3 with the same two results being achieved each time.

Compound (4), the rubidium analogue of (3), was also prepared. Unlike potassium, rubidium showed no change in the structure of the product as a result of varying the stoichoimetries and the same product resulted after many experiments with different reaction stoichoiometries. Compound (4) is isostructural with compound (3) but the crystals grown were not large enough for neutron diffraction, so only the X-ray structure was determined. Thus, the following discussion relates to (3) but the conclusions are equally applicable to (4). Table 1[link] contains a summary of the experimental parameters for (4).

The crystal structure of (3) as determined by X-ray diffraction is presented in Fig. 4[link]. [The structure and subsequent discussions hereafter relate to a deuterated sample which was prepared especially for neutron diffraction and investigated also by X-ray diffraction to confirm that deuteration did not change the structure; although the initial discovery was made using data collected from a non-deuterated sample, it is the X-ray data pertaining to this deuterated structure which are reported.] The space group was determined as C2/m and three potassium cations and four water molecules lie on a crystallographic mirror plane. The atoms of the two CYH[_2^-] ligands all lie on general positions. It was quickly realized that the structure as determined did not make chemical sense. If all the cations are lying on a mirror plane, then they each can be considered to have a charge of 0.5+ in the asymmetric unit, giving an overall positive charge of 1.5+. By contrast each anion is singly deprotonated and so gives a total negative charge of 2−. Thus, the charges do not balance and there is 0.5+ missing somewhere. The difference-Fourier map contained no large peaks indicating a fourth unassigned potassium ion, so attention focused on the only other atoms that could affect the charge of the compound, the D atoms.

[Figure 4]
Figure 4
The apparent asymmetric unit of (3), as determined by X-ray diffraction. Displacement ellipsoids are drawn at the 50% probability level and the dashed line indicates a bond to a disordered D atom.

A difference-Fourier map of the environment around atoms N3 and N6 was examined for any indication of a missed H atom. As can be seen in Fig. 5[link], the residual electron density surrounding atom N3 is insignificant and is no greater than the electron density found within the bonds of the cyanurate ring. On the other hand, the residual electron density around the N6 atom is much clearer and more concentrated, more so than that around N3 and more so than the residual bonding electron density of the ligand. This indicated that an H atom might be located here. However, whilst selection of this peak as an H atom and refinement of its coordinates may improve the refinement result, it does not solve the chemical problem with the charges. Placing an H atom here results in a charge imbalance with 0.5+ in excess. In order to resolve this problem we tried two different approaches.

[Figure 5]
Figure 5
Difference-Fourier maps of both cyanurate rings in the X-ray-determined structure of (3), showing the residual electron density about N3 (top) and N6 (bottom).

(1) Assume that the mirror plane is only a pseudo-symmetry element and remove it, assigning the structure to space group C2. This assumption doubles the size of the asymmetric unit such that it contains three potassium centres (now in general positions), four cyanuric ligands and four water molecules, also in general positions. The strategy was then to examine difference Fourier maps for every cyanuric ligand to determine if one of the four definitely showed three strong N—D deuterium peaks whilst the other three showed only two strong N—D deuterium peaks.

This approach failed for two important reasons. Firstly, it was not overwhelmingly clear from any of the difference maps which ligand was C3D3N3O3 and which were C3D2N3O3. Secondly, the refinement of at least half the non-D atoms in the asymmetric unit was unstable, with many becoming `non-positive definite', indicating that the inversion centre should be present in the structural model to fit this set of data. Given the unconvincing Fourier analyses, and poor refinement of the anisotropic displacement parameters of several atoms that should be well defined, this model was rejected.

(2) Assume the mirror plane is a genuine symmetry element, requiring the additional `missing' H atom to be disordered on either side of it, with an occupancy of 50% on each site. This approach makes chemical sense, as the charges balance properly and no restraints were needed on any of the anisotropic displacement parameters. The final R1 value of 0.0335 implies that the problem had been resolved. However, this was not the case. Fig. 6[link] shows the result of applying the mirror plane on which the potassium cations and water molecules reside. Because of the mirror symmetry, water D atoms must be symmetry-equivalent and either both lie on the mirror plane or each lies on one side of it. The latter is apparently the case for all water molecules in this structure. However, as shown in Fig. 6[link], this brings D7 within a very close distance (1.31 Å) of the disordered D6N and its symmetry equivalent. No two D atoms can be brought this close in a correct structure; one would expect some sort of twisting of the water molecule to relieve the steric strain. However, such twisting would necessitate breaking the mirror symmetry and, as was noted above, a model in which the mirror symmetry is removed does not refine satisfactorily.

[Figure 6]
Figure 6
The result of applying the mirror symmetry element in the initial X-ray-determined structure of (3). The unacceptable steric interaction between atoms D6N and D7 is represented by a dashed line.

A more complicated model containing disordered water H atoms could also be constructed. Unfortunately, as the positions and occupancies of H atoms are unreliable when determined by X-ray diffraction, such a model would be unsuccessful.

In order to investigate further the behaviour of these D atoms we collected a full single-crystal neutron diffraction data set, with the aim of refining the occupancies of the D atoms. Several independent batches of deuterated complexes of (3) were prepared and taken to the ISIS neutron source for single-crystal neutron diffraction experiments. A crystal with a total volume of approximately 4 mm3 was selected and mounted. Initial tests showed good diffraction recorded on each detector, and even a relatively intense back-scattering was detected. To determine the unit cell, around 100 strong reflections were collected by each detector and the data were then indexed to automatically give a unit cell that matched that determined by X-ray analysis. When a sufficient amount of data had been collected to facilitate an attempt to refine the structure, a trial model was used based on the atomic coordinates from the X-ray structure. Starting without the D atoms, initial least-squares refinement was rather unsatisfactory, not particularly unusual since deuterium is the second strongest neutron scatter in this compound. As D atoms bonded to N1, N2, N4, N5 and all the water molecules, except for those on O7, were located in successive Fourier maps the refinement improved markedly to a respectable R1 = 0.1039. There remained, however, a lot of residual diffraction density around the O7 atom, with two very large peaks about 0.96 Å away from O7, subtending an angle of 113° at O7. One of these peaks was located exactly on the mirror plane; the second was not. Selection of these peaks as D atoms, followed by anisotropic least-squares refinement, further improved the result to R1 = 0.0756. This was, however, the best result that could be obtained with this unit cell and space group. The anisotropic displacement parameters of the D atoms attached to atom O7 remained rather unstable during further refinement cycles.

Aside from the steric crowding around this water molecule the charge balance problem still remained to be dealt with. Difference maps did show a relatively strong peak corresponding to a D atom bonded to N6. This peak was selected as deuterium and refined, with the site occupation factor for the atom freely refined. Rather than refining to give an occupancy of ∼0.5 and a sensible displacement ellipsoid, the occupancy refined to ∼1 with a rather large and elongated ellipsoid. Thus, simply using the trial model determined by X-ray analysis coupled with the data integrated so far did not as yet offer an acceptable explanation of the problem.

As data collection proceeded further it was noticed that there were many rather weak unindexed reflections with half-integer values of l. These suggest a supercell, corresponding to the unit cell with the c axis doubled in length. The data were thus reindexed on this supercell, and re-integrated. Examination of the new reflection data suggested that the space group could be either Ia or I2/a. Trial models without D atoms were created in both space groups then refined using this second set of neutron data. Refinement in Ia was very poor; however, refinement in I2/a was rather more satisfactory and, with the addition of D atoms, quickly converged. Least-squares restraints were used on some of the C and O atoms to control their anisotropic displacement parameters. The model now contained three potassium cations, four water molecules and four cyanuric ligands. Each cyanuric ligand was examined in turn using observed and difference-Fourier maps to identify which one was in fact neutral. As shown in Fig. 7[link], the ligand containing N4, N5 and N6 showed three distinct peaks corresponding to deuterium in the observed Fourier map, identifying this ligand as CYD3. The remaining three ligands showed no significant unaccounted diffraction density in either observed or difference maps, so we were confident that we had located the CYD3 ligand as distinct from the remaining three CYD[_2^-] ligands, and the charges now balanced, as the chemical formula is [K3(CYD2)3(CYD3)(D2O)4].

[Figure 7]
Figure 7
An Fobs Fourier map of the CYD3 ligand as determined by neutron diffraction with the second model. The locations of all 12 atoms in the molecule are clear.

With the charge balance problem solved our attention then turned to the question of the unfavourable steric interactions between the D atoms of one water molecule and the CYD3 ligand. As noted above the first model (in C2/m) used in the analysis of the neutron diffraction data showed that one of the water molecules did not obey the mirror symmetry of that space group, instead placing one D atom exactly on the crystallographic mirror plane. In this new model all atoms lie in general positions and the relative orientation of all water D atoms is the same as in the first model, with three water molecules obeying pseudo-mirror symmetry and one molecule breaking it. As Fig. 8[link] shows, the presence of D5 causes D16A and D16B to twist away, allowing an N—D⋯O interaction to form, and breaking the pseudo-symmetry. The D atoms attached to atom O15 suffer no such steric hindrance from their deprotonated CYD2 neighbours and thus can form two pseudo-symmetrical O—D⋯N interactions.

[Figure 8]
Figure 8
Part of the correct structure of (3) determined by neutron diffraction. The pseudo-mirror symmetry of the structure is approximately observed by all atoms except D5 and D16B. Their positions break the symmetry and result in extra weak reflections in the diffraction pattern which were not identified by X-ray diffraction.

To summarize: the crystallographic mirror symmetry determined by X-ray diffraction is actually false, broken by the presence of D5 within the structure, which, to minimize steric hindrance and maximize hydrogen-bonding interactions, causes a twist of the water molecule O16, which in turn breaks the mirror symmetry observed by the remaining water molecules. Atom D5 also causes atoms N2 and N5 to be symmetry-inequivalent and these thus also break the mirror pseudo-symmetry. This breaking of the symmetry results in the formation of a supercell, caused only by the difference in D-atom positions. It is thus no surprise that this supercell was not detected at all by X-ray diffraction, given the poor scattering of X-rays by the electron density associated with D atoms. This supercell turned out to be the true unit cell. The correct structure of (3), as determined by neutron diffraction, is shown in Fig. 9[link]. The structures of (3) and (4) determined by X-ray diffraction are not completely correct, as they have been determined in a sub-cell with the incorrect space group as a consequence of the very weak scattering of X-rays by H or D atoms. Although the results are shown here for comparison with the true structure determined with neutrons, and the CIFs are available as supplementary material, these have not been deposited in the Cambridge Structural Database since it is considered inappropriate to include in the database structures that are known to be strictly incorrect.

[Figure 9]
Figure 9
The asymmetric unit of (3) as correctly determined by neutron diffraction. Displacement ellipsoids are drawn at the 50% probability level; atom labelling has been restricted for clarity.

The asymmetric unit contains three crystallographically independent potassium cations, three CYD2 anions, one neutral CYD3 molecule and four water molecules, all on general positions. The coordination environments of all three metal centres are shown in Fig. 10[link]. Atoms K1 and K3 are both eight-coordinate but their coordination geometries are rather different, with K1 having a typical square-antiprismatic coordination environment whilst K3 has a square-antiprismatic environment that is rather more distorted, as if one side of the antiprism has been flattened out, such that the O14—K3—O13 angle is approximately 143° and the O3—K3—O5 angle is approximately 121°; ideally these would be 90° for undistorted geometry. The environment of seven-coordinate K2 is rather more difficult to describe quantitatively, as it does not have a typical seven-coordinate geometry. Five of the coordinating O atoms form an approximate pentagon, to which addition of an apical coordinated O atom generates a pentagonal-based pyramid. The seventh O atom, rather than occupying the second axial site (which would give a regular pentagonal-based bipyramid), is distorted well away from this ideal position to bridge atoms K2 and K3 (this is the bridging water molecule in Fig. 10[link]). It is worthy of note that, unlike compounds (1) and (2), there is no K—N coordination in this structure; with four water molecules in the structure the N atoms are used as hydrogen-bonding acceptors and so cannot coordinate to the metal. The crystal packing of (3) is rather unexceptional for a cyanurate complex. Polymeric water coordination to the potassium centres forms a thin two-dimensional sheet; tapes of R22(8) hydrogen-bonded CYD2 and CYD3 ligands are linked to this sheet via coordination and hydrogen bonding to form an overall three-dimensional structure. Such crystal packing is very common in cyanurate complexes.

[Figure 10]
Figure 10
The coordination environments of the three independent potassium centres in the neutron-determined structure of (3).

4. Conclusion

The potassium–cyanuric acid reaction in aqueous solution was found to be particularly sensitive to stoichiometry, with three different complexes formed depending on the relative amount and type of base used. Using equimolar amounts of CYH3 and K2CO3 (and so an effective K:CYH3 ratio of 2:1) always resulted in the product [K+(CYH2)(H2O)], (1), which was first reported some 15 years ago. By using a large excess of KOH we synthesized a new compound, [K+2(CYH2−)], (2). This compact dense structure features doubly deprotonated cyanuric acid and, surprisingly, no water is present. A direct result of the double deprotonation is the loss of the R22(8) hydrogen-bonding motif, which is almost always found in cyanuric structural chemistry. The most interesting compound formed, however, was (3). Single-crystal X-ray diffraction gave a result which, although crystallographically largely sound, did not make chemical sense as a result of a charge imbalance between three cations and two anions and, in an attempt to rectify this by inclusion of a disordered H atom, an impossibly short contact between two H-atom sites. Resolution of these issues was achieved through a single-crystal neutron diffraction study carried out on a deuterated sample of this compound, leading to a supercell model with all atoms in general positions, the assignment of one neutral and three deprotonated organic ligands, and an ordered arrangement of D atoms with sensible interactions; the true structure has only pseudo-mirror symmetry, which is significantly broken by only two D atoms, an effect essentially invisible to X-ray diffraction.

Supporting information


Computing details top

Data collection: Nonius COLLECT for (1); Bruker SMART for (2), 3_Xray, (4); SXD2001 for 3_neutron. Cell refinement: EVALCCD for (1); Bruker SAINT for (2), 3_Xray, (4); SXD2001 for 3_neutron. Data reduction: EVALCCD for (1); Bruker SAINT for (2), 3_Xray, (4); SXD2001 for 3_neutron. Program(s) used to solve structure: Bruker SHELXTL for (1), (2), 3_Xray, (4); using coords of known structure for 3_neutron. For all compounds, program(s) used to refine structure: Bruker SHELXTL; molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL and local programs.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(1) top
Crystal data top
C3H4KN3O4F(000) = 752
Mr = 185.19Dx = 1.954 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 5462 reflections
a = 11.037 (2) Åθ = 2.5–27.5°
b = 16.419 (3) ŵ = 0.81 mm1
c = 7.1497 (14) ÅT = 150 K
β = 103.68 (3)°Block, colourless
V = 1258.9 (4) Å30.22 × 0.16 × 0.11 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
1216 independent reflections
Radiation source: sealed tube982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ϕ and ω scansθmax = 25.5°, θmin = 4.8°
Absorption correction: multi-scan
SADABS; Sheldrick, 2003
h = 1313
Tmin = 0.842, Tmax = 0.916k = 1919
10612 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.151Only H-atom coordinates refined
S = 1.06 w = 1/[σ2(Fo2) + (0.1091P)2]
where P = (Fo2 + 2Fc2)/3
1216 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C3H4KN3O4V = 1258.9 (4) Å3
Mr = 185.19Z = 8
Monoclinic, C2/mMo Kα radiation
a = 11.037 (2) ŵ = 0.81 mm1
b = 16.419 (3) ÅT = 150 K
c = 7.1497 (14) Å0.22 × 0.16 × 0.11 mm
β = 103.68 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1216 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 2003
982 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.916Rint = 0.088
10612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.151Only H-atom coordinates refined
S = 1.06Δρmax = 0.85 e Å3
1216 reflectionsΔρmin = 0.93 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.07998 (8)0.00000.25778 (12)0.0248 (4)
K20.42367 (8)0.00000.25455 (12)0.0230 (4)
O10.00000.12659 (15)0.00000.0269 (7)
O20.19766 (18)0.36493 (11)0.1904 (3)0.0253 (6)
O30.30627 (18)0.15675 (12)0.2989 (3)0.0273 (6)
O40.50000.39576 (16)0.50000.0260 (7)
O50.3059 (3)0.00000.5514 (5)0.0269 (7)
H50.295 (3)0.0334 (18)0.616 (4)0.032*
O60.1953 (3)0.00000.0351 (5)0.0274 (8)
H60.220 (3)0.0300 (19)0.087 (5)0.033*
N10.0995 (2)0.24638 (15)0.0967 (3)0.0217 (6)
H1N0.164 (3)0.217 (2)0.149 (4)0.026*
N20.00000.37320 (19)0.00000.0211 (8)
N30.50000.14879 (19)0.50000.0214 (8)
N40.4011 (2)0.27577 (15)0.4039 (3)0.0230 (6)
H4N0.336 (3)0.305 (2)0.344 (4)0.028*
C10.00000.2008 (2)0.00000.0224 (9)
C20.1003 (3)0.33052 (17)0.0964 (4)0.0217 (7)
C30.4005 (3)0.19107 (17)0.3995 (4)0.0218 (7)
C40.50000.3210 (2)0.50000.0207 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0283 (6)0.0195 (5)0.0307 (6)0.0000.0151 (4)0.000
K20.0237 (6)0.0175 (5)0.0313 (6)0.0000.0135 (4)0.000
O10.0268 (16)0.0143 (15)0.0399 (17)0.0000.0085 (13)0.000
O20.0206 (11)0.0183 (11)0.0385 (13)0.0032 (8)0.0103 (9)0.0015 (9)
O30.0215 (11)0.0195 (11)0.0415 (13)0.0005 (9)0.0088 (9)0.0005 (9)
O40.0272 (16)0.0186 (15)0.0356 (16)0.0000.0145 (13)0.000
O50.0346 (18)0.0181 (16)0.0343 (18)0.0000.0207 (14)0.000
O60.0330 (18)0.0184 (16)0.0380 (19)0.0000.0229 (15)0.000
N10.0206 (14)0.0183 (13)0.0288 (14)0.0025 (10)0.0111 (11)0.0015 (10)
N20.0176 (17)0.0216 (18)0.0280 (18)0.0000.0131 (14)0.000
N30.0169 (17)0.0191 (17)0.0312 (19)0.0000.0118 (15)0.000
N40.0199 (14)0.0190 (13)0.0320 (14)0.0023 (10)0.0099 (11)0.0017 (10)
C10.020 (2)0.020 (2)0.029 (2)0.0000.0111 (17)0.000
C20.0237 (15)0.0184 (15)0.0278 (16)0.0014 (12)0.0155 (13)0.0001 (12)
C30.0240 (16)0.0178 (15)0.0280 (16)0.0011 (12)0.0148 (12)0.0028 (12)
C40.020 (2)0.022 (2)0.024 (2)0.0000.0142 (17)0.000
Geometric parameters (Å, º) top
K1—O12.780 (2)O4—K1viii2.7260 (18)
K1—O1i2.780 (2)O4—C41.228 (5)
K1—O4ii2.7260 (18)O5—K2v2.979 (4)
K1—O4iii2.7260 (18)O5—H50.74 (3)
K1—O52.855 (4)O6—K1i3.079 (4)
K1—O62.696 (4)O6—H60.71 (3)
K1—O6i3.079 (4)N1—H1N0.87 (3)
K2—O32.932 (2)N1—C11.374 (3)
K2—O3iv2.932 (2)N1—C21.382 (4)
K2—O52.738 (3)N2—K2ix3.014 (2)
K2—O5v2.979 (4)N2—K2vii3.014 (2)
K2—O62.859 (4)N2—C21.353 (3)
K2—N2vi3.014 (2)N2—C2x1.353 (3)
K2—N2vii3.014 (2)N3—K2v3.010 (3)
K2—N33.010 (3)N3—C31.353 (3)
K2—N3v3.010 (3)N3—C3xi1.353 (3)
O1—K1i2.780 (2)N4—H4N0.88 (3)
O1—C11.218 (5)N4—C31.391 (4)
O2—C21.258 (4)N4—C41.364 (3)
O3—C31.250 (3)C1—N1x1.374 (3)
O4—K1ii2.7260 (18)C4—N4xi1.364 (3)
O1—K1—O1i96.79 (8)N2vii—K2—N373.24 (5)
O1i—K1—O4ii142.27 (4)N3—K2—N3v108.53 (8)
O1i—K1—O4iii81.49 (5)K1—O1—K1i83.21 (8)
O1—K1—O4ii81.49 (5)K1—O1—C1138.40 (4)
O1—K1—O4iii142.27 (4)K1i—O1—C1138.40 (4)
O1—K1—O5124.94 (5)K2—O3—C397.41 (17)
O1i—K1—O5124.94 (5)K1ii—O4—K1viii102.21 (9)
O1—K1—O667.62 (5)K1ii—O4—C4128.89 (5)
O1i—K1—O667.62 (5)K1viii—O4—C4128.89 (5)
O1i—K1—O6i62.44 (5)K1—O5—K285.53 (10)
O1—K1—O6i62.44 (5)K1—O5—K2v161.30 (14)
O4ii—K1—O4iii77.78 (9)K1—O5—H5102 (2)
O4ii—K1—O583.72 (6)K2—O5—K2v75.77 (9)
O4iii—K1—O583.72 (6)K2—O5—H5131 (3)
O4ii—K1—O6140.98 (5)K2v—O5—H590 (3)
O4iii—K1—O6140.98 (5)K1—O6—K1i79.16 (9)
O4ii—K1—O6i84.27 (6)K1—O6—K286.25 (11)
O4iii—K1—O6i84.27 (6)K1i—O6—K2165.41 (14)
O5—K1—O694.61 (10)K1—O6—H6136 (3)
O5—K1—O6i164.56 (12)K1i—O6—H6100 (3)
O6—K1—O6i100.84 (9)K2—O6—H690 (3)
O3—K2—O3iv122.74 (8)H1N—N1—C1113 (2)
O3—K2—O567.25 (5)H1N—N1—C2124 (2)
O3iv—K2—O567.25 (5)C1—N1—C2123.3 (3)
O3iv—K2—O5v111.67 (5)K2ix—N2—K2vii92.60 (9)
O3—K2—O5v111.67 (5)K2ix—N2—C2111.24 (14)
O3—K2—O675.05 (5)K2ix—N2—C2x110.69 (14)
O3iv—K2—O675.05 (5)K2vii—N2—C2110.69 (14)
O3iv—K2—N2vi69.68 (6)K2vii—N2—C2x111.23 (14)
O3—K2—N2vi149.94 (6)C2—N2—C2x117.6 (3)
O3iv—K2—N2vii149.94 (6)K2—N3—K2v71.47 (8)
O3—K2—N2vii69.68 (6)K2—N3—C391.53 (14)
O3—K2—N345.12 (5)K2v—N3—C3xi91.53 (14)
O3iv—K2—N3v45.12 (5)K2v—N3—C3143.74 (16)
O3—K2—N3v135.99 (6)K2—N3—C3xi143.74 (16)
O3iv—K2—N3136.00 (6)C3—N3—C3xi118.3 (3)
O5—K2—O5v104.23 (9)H4N—N4—C3122 (2)
O5—K2—O693.61 (10)H4N—N4—C4114 (2)
O5v—K2—O6162.16 (12)C3—N4—C4123.7 (3)
O5—K2—N2vi136.04 (5)O1—C1—N1123.05 (18)
O5v—K2—N2vi83.62 (6)O1—C1—N1x123.05 (18)
O5—K2—N2vii136.04 (5)N1—C1—N1x113.9 (4)
O5v—K2—N2vii83.62 (6)O2—C2—N1116.9 (3)
O5—K2—N370.53 (4)O2—C2—N2122.1 (3)
O5—K2—N3v70.53 (4)N1—C2—N2120.9 (3)
O5v—K2—N3v67.48 (4)K2—C3—O360.75 (14)
O5v—K2—N367.48 (4)K2—C3—N364.53 (15)
O6—K2—N2vi83.51 (6)K2—C3—N4161.45 (19)
O6—K2—N2vii83.51 (6)O3—C3—N3122.3 (3)
O6—K2—N3119.98 (4)O3—C3—N4117.5 (3)
O6—K2—N3v119.98 (4)N3—C3—N4120.2 (3)
N2vi—K2—N2vii87.39 (9)O4—C4—N4122.97 (18)
N2vi—K2—N3v73.24 (5)O4—C4—N4xi122.98 (18)
N2vi—K2—N3146.43 (4)N4—C4—N4xi114.0 (4)
N2vii—K2—N3v146.43 (4)
O1i—K1—O1—K1i0.0O5v—K2—O6—K1180.0
O1i—K1—O1—C1180.0O5—K2—O6—K1i0.0
O4ii—K1—O1—K1i141.96 (4)O5v—K2—O6—K1i180.0
O4iii—K1—O1—K1i84.85 (9)N2vi—K2—O6—K1135.95 (5)
O4ii—K1—O1—C138.04 (4)N2vii—K2—O6—K1135.95 (5)
O4iii—K1—O1—C195.15 (9)N2vi—K2—O6—K1i135.95 (5)
O5—K1—O1—K1i141.90 (10)N2vii—K2—O6—K1i135.95 (5)
O5—K1—O1—C138.10 (10)N3—K2—O6—K169.57 (5)
O6—K1—O1—K1i62.37 (7)N3v—K2—O6—K169.57 (5)
O6i—K1—O1—K1i54.01 (7)N3v—K2—O6—K1i69.57 (5)
O6—K1—O1—C1117.63 (7)N3—K2—O6—K1i69.57 (5)
O6i—K1—O1—C1125.99 (7)O3iv—K2—N3—K2v43.59 (7)
O3iv—K2—O3—C3135.28 (15)O3—K2—N3—K2v137.46 (7)
O5—K2—O3—C395.47 (18)O3—K2—N3—C39.86 (13)
O5v—K2—O3—C31.43 (19)O3iv—K2—N3—C3xi109.4 (2)
O6—K2—O3—C3164.00 (18)O3—K2—N3—C3xi156.7 (3)
N2vi—K2—O3—C3118.05 (18)O3iv—K2—N3—C3103.73 (15)
N2vii—K2—O3—C375.49 (16)O5—K2—N3—K2v60.58 (7)
N3—K2—O3—C310.77 (15)O5v—K2—N3—K2v54.81 (7)
N3v—K2—O3—C378.09 (18)O5—K2—N3—C386.75 (14)
O3—K2—O5—K172.13 (5)O5—K2—N3—C3xi126.4 (3)
O3iv—K2—O5—K172.13 (5)O5v—K2—N3—C3xi11.0 (3)
O3iv—K2—O5—K2v107.87 (5)O5v—K2—N3—C3157.86 (15)
O3—K2—O5—K2v107.87 (5)O6—K2—N3—K2v143.29 (10)
O5v—K2—O5—K1180.0O6—K2—N3—C34.03 (16)
O5v—K2—O5—K2v0.0O6—K2—N3—C3xi150.9 (3)
O6—K2—O5—K10.0N2vi—K2—N3—K2v87.42 (10)
O6—K2—O5—K2v180.0N2vii—K2—N3—K2v144.77 (4)
N2vi—K2—O5—K184.39 (8)N2vi—K2—N3—C3xi21.6 (3)
N2vii—K2—O5—K184.39 (8)N2vii—K2—N3—C3xi78.9 (3)
N2vi—K2—O5—K2v95.61 (8)N2vi—K2—N3—C3125.25 (15)
N2vii—K2—O5—K2v95.61 (8)N2vii—K2—N3—C367.91 (13)
N3—K2—O5—K1120.58 (4)N3v—K2—N3—K2v0.0
N3v—K2—O5—K1120.58 (4)N3v—K2—N3—C3xi65.8 (3)
N3v—K2—O5—K2v59.42 (4)N3v—K2—N3—C3147.33 (13)
N3—K2—O5—K2v59.42 (4)K1—O1—C1—N140.28 (12)
C3—K2—O5—K195.20 (6)K1i—O1—C1—N1139.72 (12)
C3iv—K2—O5—K195.20 (6)K1i—O1—C1—N1x40.28 (12)
C3iv—K2—O5—K2v84.80 (6)K1—O1—C1—N1x139.72 (12)
C3—K2—O5—K2v84.80 (6)C2—N1—C1—O1179.63 (19)
O1—K1—O5—K265.81 (6)C2—N1—C1—N1x0.37 (19)
O1i—K1—O5—K265.81 (6)K2ix—N2—C2—O250.7 (3)
O1i—K1—O5—K2v65.81 (6)K2vii—N2—C2—O250.8 (3)
O1—K1—O5—K2v65.81 (6)K2ix—N2—C2—N1128.8 (2)
O4ii—K1—O5—K2140.83 (5)K2vii—N2—C2—N1129.8 (2)
O4iii—K1—O5—K2140.83 (5)C2x—N2—C2—O2179.8 (3)
O4ii—K1—O5—K2v140.83 (5)C2x—N2—C2—N10.36 (18)
O4iii—K1—O5—K2v140.83 (5)C1—N1—C2—O2179.8 (2)
O6—K1—O5—K20.0C1—N1—C2—N20.8 (4)
O6i—K1—O5—K2180.0K2—O3—C3—N320.4 (3)
O6—K1—O5—K2v0.0K2—O3—C3—N4159.0 (2)
O6i—K1—O5—K2v180.0K2v—N3—C3—K259.9 (2)
O1i—K1—O6—K1i53.97 (4)K2—N3—C3—O319.7 (3)
O1—K1—O6—K1i53.97 (4)K2v—N3—C3—O340.2 (4)
O1—K1—O6—K2126.03 (4)K2—N3—C3—N4159.7 (2)
O1i—K1—O6—K2126.03 (4)K2v—N3—C3—N4140.4 (2)
O4ii—K1—O6—K1i94.29 (10)C3xi—N3—C3—K2158.45 (7)
O4iii—K1—O6—K1i94.29 (10)C3xi—N3—C3—O3178.1 (3)
O4ii—K1—O6—K285.71 (10)C3xi—N3—C3—N41.23 (18)
O4iii—K1—O6—K285.71 (10)C4—N4—C3—K297.0 (6)
O5—K1—O6—K1i180.0C4—N4—C3—O3176.8 (2)
O5—K1—O6—K20.0C4—N4—C3—N32.6 (4)
O6i—K1—O6—K1i0.0K1ii—O4—C4—N488.16 (12)
O6i—K1—O6—K2180.0K1viii—O4—C4—N491.84 (12)
O3—K2—O6—K165.30 (5)K1ii—O4—C4—N4xi91.85 (12)
O3iv—K2—O6—K165.30 (5)K1viii—O4—C4—N4xi88.16 (12)
O3iv—K2—O6—K1i65.30 (5)C3—N4—C4—O4178.71 (19)
O3—K2—O6—K1i65.30 (5)C3—N4—C4—N4xi1.29 (19)
O5—K2—O6—K10.0
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y1/2, z; (iv) x, y, z; (v) x+1, y, z+1; (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x1/2, y+1/2, z; (x) x, y, z; (xi) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2ii0.74 (3)2.16 (3)2.892 (3)169 (4)
O6—H6···O2vii0.71 (3)2.16 (3)2.858 (3)168 (3)
N1—H1N···O30.87 (3)1.95 (3)2.811 (3)172 (3)
N4—H4N···O20.88 (3)1.93 (3)2.809 (3)175 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z.
(2) top
Crystal data top
C3HK2N3O3F(000) = 408
Mr = 205.27Dx = 2.313 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1837 reflections
a = 13.062 (4) Åθ = 3.0–28.2°
b = 6.620 (2) ŵ = 1.56 mm1
c = 6.817 (2) ÅT = 150 K
V = 589.4 (3) Å3Block, colourless
Z = 40.23 × 0.21 × 0.18 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
412 independent reflections
Radiation source: sealed tube370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
thin–slice ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
SADABS; Sheldrick, 2003
h = 1716
Tmin = 0.716, Tmax = 0.767k = 88
2536 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.064All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.7482P]
where P = (Fo2 + 2Fc2)/3
412 reflections(Δ/σ)max < 0.001
38 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C3HK2N3O3V = 589.4 (3) Å3
Mr = 205.27Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 13.062 (4) ŵ = 1.56 mm1
b = 6.620 (2) ÅT = 150 K
c = 6.817 (2) Å0.23 × 0.21 × 0.18 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
412 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 2003
370 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.767Rint = 0.028
2536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064All H-atom parameters refined
S = 1.15Δρmax = 0.26 e Å3
412 reflectionsΔρmin = 0.48 e Å3
38 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.32199 (3)0.50000.50000.01181 (19)
O10.17320 (10)0.6499 (2)0.25000.0110 (3)
N10.00000.6430 (4)0.25000.0103 (5)
N20.09318 (13)0.3413 (2)0.25000.0094 (4)
O20.00000.0552 (3)0.25000.0150 (5)
C10.09272 (15)0.5441 (3)0.25000.0076 (4)
C20.00000.2483 (4)0.25000.0104 (6)
H1N0.00000.766 (8)0.25000.032 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0116 (3)0.0122 (3)0.0116 (3)0.0000.0000.00027 (14)
O10.0060 (7)0.0115 (7)0.0154 (7)0.0021 (5)0.0000.000
N10.0089 (12)0.0036 (11)0.0185 (13)0.0000.0000.000
N20.0082 (8)0.0075 (8)0.0125 (8)0.0015 (6)0.0000.000
O20.0149 (11)0.0047 (9)0.0255 (12)0.0000.0000.000
C10.0076 (9)0.0071 (8)0.0081 (8)0.0006 (7)0.0000.000
C20.0136 (14)0.0094 (13)0.0080 (12)0.0000.0000.000
Geometric parameters (Å, º) top
K—O12.7688 (13)N1—C1ix1.377 (2)
K—O1i2.7688 (13)N1—H1N0.81 (5)
K—O1ii2.8773 (14)N2—Kx3.0390 (15)
K—O1iii2.8774 (14)N2—Kv3.0390 (15)
K—N2iv3.0390 (15)N2—C11.343 (3)
K—N2v3.0390 (15)N2—C21.364 (2)
K—O2vi2.9058 (8)O2—Kxi2.9059 (8)
K—O2v2.9058 (8)O2—Kv2.9059 (8)
O1—Kvii2.7688 (13)O2—Kxii2.9059 (8)
O1—Kii2.8773 (14)O2—Kx2.9059 (8)
O1—Kviii2.8773 (14)O2—C21.278 (4)
O1—C11.263 (2)C2—N2ix1.364 (2)
N1—C11.377 (2)
O1—K—O1i90.83 (5)K—O1—Kviii129.63 (5)
O1i—K—O1ii86.53 (3)Kii—O1—Kviii72.64 (4)
O1—K—O1ii95.23 (3)K—O1—C1112.67 (9)
O1i—K—O1iii95.23 (3)Kvii—O1—C1112.67 (9)
O1—K—O1iii86.53 (3)Kii—O1—C1117.70 (9)
O1ii—K—O1iii177.50 (6)Kviii—O1—C1117.70 (9)
O1i—K—N2iv150.17 (5)C1—N1—C1ix123.2 (2)
O1—K—N2iv69.17 (4)C1—N1—H1N118.39 (12)
O1ii—K—N2iv74.06 (4)C1ix—N1—H1N118.40 (13)
O1iii—K—N2iv104.99 (4)Kx—N2—Kv68.21 (4)
O1i—K—N2v69.17 (4)Kx—N2—C1138.16 (8)
O1—K—N2v150.17 (5)Kv—N2—C1138.16 (8)
O1ii—K—N2v104.99 (4)Kx—N2—C289.42 (11)
O1iii—K—N2v74.06 (4)Kv—N2—C289.42 (11)
O1i—K—O2vi165.40 (5)C1—N2—C2116.58 (19)
O1—K—O2vi98.95 (3)Kxi—O2—Kv165.54 (9)
O1ii—K—O2vi103.21 (5)Kxi—O2—Kxii71.81 (3)
O1iii—K—O2vi74.73 (4)Kv—O2—Kxii106.29 (3)
O1i—K—O2v98.95 (3)Kxi—O2—Kx106.29 (3)
O1—K—O2v165.40 (5)Kv—O2—Kx71.81 (3)
O1ii—K—O2v74.73 (4)Kxii—O2—Kx165.54 (9)
O1iii—K—O2v103.21 (5)Kxi—O2—C297.23 (4)
N2iv—K—N2v137.23 (7)Kv—O2—C297.23 (4)
N2iv—K—O2vi44.43 (5)Kxii—O2—C297.23 (4)
N2iv—K—O2v97.51 (5)Kx—O2—C297.23 (4)
N2v—K—O2vi97.51 (5)O1—C1—N1117.93 (18)
N2v—K—O2v44.43 (5)O1—C1—N2123.42 (18)
K—O1—Kvii75.97 (4)N1—C1—N2118.65 (19)
Kvii—O1—Kii129.63 (5)N2—C2—N2ix126.3 (3)
K—O1—Kii84.77 (3)N2—C2—O2116.83 (13)
Kvii—O1—Kviii84.77 (3)N2ix—C2—O2116.83 (13)
O1i—K—O1—Kvii140.32 (5)Kvii—O1—C1—N1138.16 (5)
O1ii—K—O1—Kvii133.09 (4)Kii—O1—C1—N141.98 (5)
O1iii—K—O1—Kvii45.13 (4)Kviii—O1—C1—N141.98 (5)
O1i—K—O1—Kii86.59 (3)K—O1—C1—N241.84 (5)
O1ii—K—O1—Kii0.001 (2)Kvii—O1—C1—N241.84 (5)
O1iii—K—O1—Kii178.22 (4)Kii—O1—C1—N2138.02 (5)
O1i—K—O1—Kviii148.88 (7)Kviii—O1—C1—N2138.02 (5)
O1ii—K—O1—Kviii62.29 (5)Kx—N2—C1—O157.21 (14)
O1iii—K—O1—Kviii115.93 (7)Kv—N2—C1—O157.21 (14)
O1i—K—O1—C131.29 (7)Kx—N2—C1—N1122.79 (14)
O1ii—K—O1—C1117.88 (9)Kv—N2—C1—N1122.79 (14)
O1iii—K—O1—C163.90 (7)C2—N2—C1—O1180.0
N2iv—K—O1—Kvii62.35 (3)C2—N2—C1—N10.0
N2v—K—O1—Kvii93.92 (6)C1ix—N1—C1—O1180.0
N2iv—K—O1—Kii70.74 (4)C1ix—N1—C1—N20.0
N2v—K—O1—Kii132.99 (6)Kxi—O2—C2—N2ix36.238 (13)
N2iv—K—O1—Kviii8.45 (4)Kv—O2—C2—N2ix143.762 (14)
N2v—K—O1—Kviii164.72 (5)Kxii—O2—C2—N2ix36.238 (13)
N2iv—K—O1—C1171.38 (9)Kx—O2—C2—N2ix143.762 (14)
N2v—K—O1—C115.11 (11)Kxi—O2—C2—N2143.762 (14)
O2vi—K—O1—Kvii28.80 (5)Kv—O2—C2—N236.238 (13)
O2v—K—O1—Kvii87.36 (10)Kxii—O2—C2—N2143.762 (14)
O2vi—K—O1—Kii104.28 (5)Kx—O2—C2—N236.238 (13)
O2v—K—O1—Kii45.73 (10)Kx—N2—C2—N2ix145.89 (2)
O2vi—K—O1—Kviii41.99 (6)Kv—N2—C2—N2ix145.89 (2)
O2v—K—O1—Kviii16.56 (12)Kx—N2—C2—O234.11 (2)
O2vi—K—O1—C1137.84 (9)Kv—N2—C2—O234.11 (2)
O2v—K—O1—C1163.61 (9)C1—N2—C2—N2ix0.0
K—O1—C1—N1138.16 (5)C1—N2—C2—O2180.0
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z; (vii) x, y, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x, y, z+1/2; (x) x+1/2, y+1/2, z1/2; (xi) x1/2, y1/2, z+1/2; (xii) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2xiii0.81 (5)1.91 (6)2.729 (3)180
Symmetry code: (xiii) x, y+1, z.
(3_Xray) top
Crystal data top
C12D17K3N12O16F(000) = 1432
Mr = 719.71Dx = 1.946 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 12.8143 (15) ÅCell parameters from 7146 reflections
b = 16.3214 (19) Åθ = 2.5–28.1°
c = 11.8498 (14) ŵ = 0.66 mm1
β = 97.520 (2)°T = 150 K
V = 2457.0 (5) Å3Plate, colourless
Z = 40.70 × 0.20 × 0.05 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2926 independent reflections
Radiation source: sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
thin–slice ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
SADABS
h = 1617
Tmin = 0.655, Tmax = 0.968k = 2020
10491 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.034Secondary atom site location: difference Fourier map
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2767P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2926 reflectionsΔρmax = 0.64 e Å3
232 parametersΔρmin = 0.45 e Å3
Crystal data top
C12D17K3N12O16V = 2457.0 (5) Å3
Mr = 719.71Z = 4
Monoclinic, C2/mMo Kα radiation
a = 12.8143 (15) ŵ = 0.66 mm1
b = 16.3214 (19) ÅT = 150 K
c = 11.8498 (14) Å0.70 × 0.20 × 0.05 mm
β = 97.520 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2926 independent reflections
Absorption correction: multi-scan
SADABS
2425 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.968Rint = 0.029
10491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034232 parameters
wR(F2) = 0.0950 restraints
S = 1.07Δρmax = 0.64 e Å3
2926 reflectionsΔρmin = 0.45 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.57585 (4)0.50000.87603 (4)0.01848 (14)
K20.28021 (4)0.50000.65303 (5)0.02235 (15)
K30.03827 (4)0.50000.34925 (5)0.02167 (14)
O10.36192 (9)0.34845 (7)0.60425 (9)0.0162 (3)
O20.38952 (9)0.10816 (7)0.41946 (9)0.0170 (3)
O30.37484 (10)0.34798 (7)0.22327 (9)0.0181 (3)
O40.11489 (10)0.34507 (7)0.27492 (9)0.0187 (3)
O50.10581 (10)0.10292 (7)0.08414 (9)0.0197 (3)
O60.14092 (11)0.34212 (8)0.10245 (9)0.0224 (3)
O70.79380 (16)0.50000.86355 (17)0.0213 (4)
D70.8155 (18)0.5334 (13)0.8793 (18)0.026*
O80.49315 (15)0.50000.64870 (16)0.0215 (4)
D80.5180 (16)0.5384 (12)0.6209 (17)0.026*
O90.13646 (18)0.50000.18744 (15)0.0290 (5)
D90.1413 (18)0.5385 (13)0.1479 (18)0.035*
O100.24823 (14)0.50000.37824 (16)0.0203 (4)
D100.2829 (17)0.4618 (12)0.3935 (17)0.024*
N10.37629 (10)0.22902 (8)0.51198 (11)0.0124 (3)
D1N0.3771 (15)0.2066 (12)0.5762 (17)0.015*
N20.37868 (11)0.22837 (9)0.31979 (11)0.0146 (3)
D2N0.3774 (15)0.2035 (13)0.2561 (18)0.018*
N30.37088 (11)0.35545 (8)0.41406 (10)0.0135 (3)
N40.11454 (11)0.22362 (8)0.18226 (11)0.0145 (3)
D4N0.1159 (15)0.2005 (12)0.2479 (18)0.017*
N50.12358 (11)0.22276 (9)0.01043 (11)0.0145 (3)
D5N0.1220 (15)0.2002 (13)0.0720 (17)0.017*
N60.12729 (12)0.34764 (9)0.08610 (11)0.0169 (3)
D6N0.142 (3)0.395 (3)0.093 (3)0.020*0.50
C10.36941 (12)0.31380 (10)0.51209 (12)0.0115 (3)
C20.38181 (12)0.18288 (10)0.41726 (12)0.0122 (3)
C30.37456 (12)0.31315 (10)0.31680 (12)0.0129 (3)
C40.11879 (13)0.30779 (10)0.18513 (13)0.0145 (3)
C50.11459 (12)0.17721 (10)0.08533 (13)0.0142 (3)
C60.13108 (13)0.30684 (10)0.01222 (12)0.0147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0256 (3)0.0164 (3)0.0146 (2)0.0000.00713 (19)0.000
K20.0193 (3)0.0146 (3)0.0344 (3)0.0000.0082 (2)0.000
K30.0186 (3)0.0191 (3)0.0289 (3)0.0000.0089 (2)0.000
O10.0275 (7)0.0141 (6)0.0077 (5)0.0018 (5)0.0049 (4)0.0018 (4)
O20.0229 (6)0.0136 (6)0.0152 (5)0.0015 (5)0.0051 (5)0.0014 (4)
O30.0286 (7)0.0185 (6)0.0080 (5)0.0008 (5)0.0056 (4)0.0025 (4)
O40.0327 (7)0.0158 (6)0.0089 (5)0.0002 (5)0.0071 (5)0.0011 (4)
O50.0296 (7)0.0156 (6)0.0149 (5)0.0022 (5)0.0071 (5)0.0015 (4)
O60.0415 (8)0.0192 (6)0.0078 (5)0.0044 (5)0.0090 (5)0.0029 (5)
O70.0311 (11)0.0087 (9)0.0239 (9)0.0000.0028 (8)0.000
O80.0233 (9)0.0147 (9)0.0278 (10)0.0000.0080 (7)0.000
O90.0505 (13)0.0205 (10)0.0157 (9)0.0000.0035 (8)0.000
O100.0189 (9)0.0122 (9)0.0297 (10)0.0000.0027 (7)0.000
N10.0181 (7)0.0132 (7)0.0066 (6)0.0011 (5)0.0039 (5)0.0006 (5)
N20.0234 (8)0.0145 (7)0.0064 (6)0.0013 (5)0.0041 (5)0.0026 (5)
N30.0196 (7)0.0131 (7)0.0086 (6)0.0010 (5)0.0038 (5)0.0003 (5)
N40.0240 (7)0.0143 (7)0.0062 (6)0.0011 (5)0.0054 (5)0.0013 (5)
N50.0220 (7)0.0160 (7)0.0060 (6)0.0002 (5)0.0037 (5)0.0022 (5)
N60.0314 (8)0.0120 (7)0.0084 (6)0.0010 (6)0.0066 (5)0.0001 (5)
C10.0125 (7)0.0134 (8)0.0087 (7)0.0007 (6)0.0024 (5)0.0001 (6)
C20.0120 (7)0.0147 (8)0.0101 (7)0.0002 (6)0.0025 (5)0.0014 (6)
C30.0140 (8)0.0155 (8)0.0094 (7)0.0004 (6)0.0025 (6)0.0001 (6)
C40.0179 (8)0.0156 (8)0.0107 (7)0.0011 (6)0.0044 (6)0.0006 (6)
C50.0150 (8)0.0169 (8)0.0112 (7)0.0011 (6)0.0038 (6)0.0009 (6)
C60.0201 (8)0.0158 (8)0.0081 (7)0.0017 (6)0.0016 (6)0.0003 (6)
Geometric parameters (Å, º) top
K1—O3i2.8520 (12)O3—C31.2461 (18)
K1—O3ii2.8520 (12)O4—C41.2323 (19)
K1—O5iii2.9583 (13)O5—K1iii2.9582 (13)
K1—O5iv2.9583 (13)O5—K1xii2.9669 (12)
K1—O5v2.9669 (12)O5—C51.218 (2)
K1—O5vi2.9669 (12)O6—C61.2353 (19)
K1—O72.816 (2)O7—D70.63 (2)
K1—O82.7627 (19)O8—D80.794 (19)
K2—O12.7761 (12)O9—K2viii2.807 (2)
K2—O1vii2.7762 (12)O9—D90.78 (2)
K2—O2iii2.8453 (13)O10—D100.773 (19)
K2—O2iv2.8453 (13)N1—D1N0.84 (2)
K2—O82.736 (2)N1—C11.387 (2)
K2—O9viii2.807 (2)N1—C21.3611 (19)
K2—O103.228 (2)N2—D2N0.85 (2)
K3—O2ix2.8030 (12)N2—C21.369 (2)
K3—O2x2.8030 (12)N2—C31.385 (2)
K3—O2iii3.2895 (12)N3—C11.3482 (19)
K3—O2iv3.2895 (12)N3—C31.3496 (19)
K3—O42.8914 (12)N4—D4N0.86 (2)
K3—O4vii2.8914 (12)N4—C41.375 (2)
K3—O92.751 (2)N4—C51.376 (2)
K3—O102.6674 (19)N5—D5N0.81 (2)
O1—C11.2446 (18)N5—C51.374 (2)
O2—K2iii2.8453 (13)N5—C61.376 (2)
O2—K3xi2.8030 (12)N6—D6N0.80 (4)
O2—K3iii3.2895 (12)N6—C41.359 (2)
O2—C21.224 (2)N6—C61.348 (2)
O3—K1ii2.8521 (12)
O3i—K1—O3ii120.91 (5)O2ix—K3—O10132.49 (3)
O3i—K1—O5iii78.07 (3)O2x—K3—O10132.49 (3)
O3ii—K1—O5iii141.37 (4)O2iii—K3—O1073.96 (4)
O3i—K1—O5iv141.37 (4)O2iv—K3—O1073.96 (4)
O3ii—K1—O5iv78.07 (3)O4—K3—O4vii121.98 (5)
O3i—K1—O5v80.72 (3)O4—K3—O993.76 (3)
O3ii—K1—O5v145.48 (4)O4vii—K3—O993.76 (3)
O3i—K1—O5vi145.48 (4)O4—K3—O1070.26 (3)
O3ii—K1—O5vi80.72 (3)O4vii—K3—O1070.26 (3)
O3i—K1—O772.76 (3)O9—K3—O10143.62 (6)
O3ii—K1—O772.76 (3)K2—O1—C1131.46 (10)
O3i—K1—O871.04 (3)K2iii—O2—K3xi92.43 (4)
O3ii—K1—O871.04 (3)K2iii—O2—K3iii92.24 (3)
O5iii—K1—O5iv69.20 (5)K2iii—O2—C2123.75 (10)
O5iii—K1—O5v64.20 (5)K3xi—O2—K3iii77.36 (3)
O5iv—K1—O5v101.99 (3)K3xi—O2—C2132.66 (10)
O5iii—K1—O5vi101.99 (3)K3iii—O2—C2124.45 (9)
O5iv—K1—O5vi64.20 (5)K1ii—O3—C3142.22 (10)
O5v—K1—O5vi68.97 (5)K3—O4—C4138.47 (11)
O5iii—K1—O7144.58 (3)K1iii—O5—K1xii78.01 (3)
O5iv—K1—O7144.58 (3)K1iii—O5—C5129.57 (11)
O5v—K1—O791.28 (4)K1xii—O5—C5125.11 (10)
O5vi—K1—O791.28 (4)K1—O7—D7113 (2)
O5iii—K1—O886.91 (4)K1—O8—K2103.77 (6)
O5iv—K1—O886.91 (4)K1—O8—D8106.4 (15)
O5v—K1—O8143.31 (3)K2—O8—D8117.5 (15)
O5vi—K1—O8143.31 (3)K2viii—O9—K394.39 (6)
O7—K1—O8101.85 (6)K2viii—O9—D9113.4 (17)
O1—K2—O1vii125.99 (5)K3—O9—D9114.3 (17)
O1—K2—O2iii71.25 (4)K2—O10—K397.04 (6)
O1vii—K2—O2iii141.64 (4)K2—O10—D1076.8 (15)
O1—K2—O2iv141.65 (4)K3—O10—D10124.7 (16)
O1vii—K2—O2iv71.25 (4)D1N—N1—C1115.2 (14)
O1—K2—O865.91 (3)D1N—N1—C2120.5 (14)
O1vii—K2—O865.91 (3)C1—N1—C2124.28 (13)
O1—K2—O9viii116.03 (3)D2N—N2—C2118.8 (14)
O1vii—K2—O9viii116.03 (3)D2N—N2—C3117.1 (14)
O1—K2—O1077.97 (3)C2—N2—C3124.06 (13)
O1vii—K2—O1077.97 (3)C1—N3—C3118.94 (14)
O2iii—K2—O2iv76.70 (5)D4N—N4—C4114.8 (13)
O2iii—K2—O8135.99 (3)D4N—N4—C5120.6 (13)
O2iv—K2—O8135.99 (3)C4—N4—C5124.50 (13)
O2iii—K2—O9viii70.13 (4)D5N—N5—C5120.0 (14)
O2iv—K2—O9viii70.13 (4)D5N—N5—C6115.5 (14)
O2iii—K2—O1072.81 (3)C5—N5—C6124.47 (13)
O2iv—K2—O1072.81 (3)D6N—N6—C4115 (3)
O8—K2—O9viii139.17 (6)D6N—N6—C6122 (3)
O8—K2—O1088.65 (5)C4—N6—C6121.74 (15)
O9viii—K2—O10132.18 (6)O1—C1—N1117.81 (13)
O2ix—K3—O2x78.07 (5)O1—C1—N3122.57 (14)
O2ix—K3—O2iii62.79 (4)N1—C1—N3119.62 (13)
O2x—K3—O2iii102.64 (3)O2—C2—N1123.14 (14)
O2ix—K3—O2iv102.64 (3)O2—C2—N2123.49 (14)
O2x—K3—O2iv62.79 (4)N1—C2—N2113.37 (14)
O2iii—K3—O2iv64.91 (4)O3—C3—N2118.29 (14)
O2ix—K3—O4vii155.84 (4)O3—C3—N3122.05 (15)
O2x—K3—O4vii79.10 (3)N2—C3—N3119.65 (13)
O2ix—K3—O479.10 (3)O4—C4—N4120.58 (14)
O2x—K3—O4155.84 (4)O4—C4—N6121.76 (15)
O2iii—K3—O4vii130.80 (4)N4—C4—N6117.66 (14)
O2iii—K3—O473.43 (3)O5—C5—N4123.22 (14)
O2iv—K3—O4vii73.43 (3)O5—C5—N5123.15 (14)
O2iv—K3—O4130.80 (4)N4—C5—N5113.62 (14)
O2ix—K3—O971.56 (4)O6—C6—N5119.57 (14)
O2x—K3—O971.56 (4)O6—C6—N6122.48 (15)
O2iii—K3—O9134.06 (4)N5—C6—N6117.96 (14)
O2iv—K3—O9134.06 (4)
O1vii—K2—O1—C166.54 (16)O2iv—K2—O10—K340.50 (3)
O2iii—K2—O1—C174.45 (13)O8—K2—O10—K3180.0
O2iv—K2—O1—C139.59 (16)O9viii—K2—O10—K30.0
O8—K2—O1—C195.21 (14)K2—O1—C1—N1156.14 (10)
O9viii—K2—O1—C1130.03 (14)K2—O1—C1—N323.8 (2)
O10—K2—O1—C11.26 (13)C3—N3—C1—O1177.13 (14)
O2ix—K3—O4—C4107.23 (16)C3—N3—C1—N12.8 (2)
O2x—K3—O4—C487.92 (18)C2—N1—C1—O1178.06 (14)
O2iii—K3—O4—C4171.86 (17)C2—N1—C1—N31.9 (2)
O2iv—K3—O4—C4155.41 (15)K2iii—O2—C2—N1103.99 (15)
O4vii—K3—O4—C459.98 (18)K2iii—O2—C2—N276.52 (18)
O9—K3—O4—C436.82 (17)K3xi—O2—C2—N1122.79 (14)
O10—K3—O4—C4109.65 (17)K3iii—O2—C2—N117.0 (2)
O1—K2—O8—K1102.58 (3)K3xi—O2—C2—N256.7 (2)
O1vii—K2—O8—K1102.58 (3)K3iii—O2—C2—N2162.45 (11)
O2iii—K2—O8—K1116.75 (5)C1—N1—C2—O2178.80 (15)
O2iv—K2—O8—K1116.75 (5)C1—N1—C2—N20.7 (2)
O9viii—K2—O8—K10.0C3—N2—C2—O2177.08 (15)
O10—K2—O8—K1180.0C3—N2—C2—N12.5 (2)
O3i—K1—O8—K2113.10 (3)K1ii—O3—C3—N2156.67 (12)
O3ii—K1—O8—K2113.10 (3)K1ii—O3—C3—N323.0 (3)
O5iii—K1—O8—K234.66 (2)C1—N3—C3—O3179.14 (15)
O5iv—K1—O8—K234.66 (2)C1—N3—C3—N21.2 (2)
O5v—K1—O8—K271.36 (7)C2—N2—C3—O3178.10 (15)
O5vi—K1—O8—K271.36 (7)C2—N2—C3—N31.6 (2)
O7—K1—O8—K2180.0K3—O4—C4—N4148.45 (12)
O2ix—K3—O9—K2viii41.60 (3)K3—O4—C4—N631.5 (3)
O2x—K3—O9—K2viii41.60 (3)C6—N6—C4—O4179.70 (16)
O2iii—K3—O9—K2viii48.31 (4)C6—N6—C4—N40.3 (2)
O2iv—K3—O9—K2viii48.31 (4)C5—N4—C4—O4177.57 (15)
O4vii—K3—O9—K2viii118.79 (3)C5—N4—C4—N62.4 (2)
O4—K3—O9—K2viii118.79 (3)K1iii—O5—C5—N466.6 (2)
O10—K3—O9—K2viii180.0K1xii—O5—C5—N4171.19 (11)
O2ix—K3—O10—K258.66 (5)K1iii—O5—C5—N5112.16 (15)
O2x—K3—O10—K258.66 (5)K1xii—O5—C5—N57.6 (2)
O2iii—K3—O10—K233.95 (2)C6—N5—C5—O5178.37 (16)
O2iv—K3—O10—K233.95 (2)C6—N5—C5—N40.5 (2)
O4—K3—O10—K2111.70 (3)C4—N4—C5—O5176.44 (16)
O4vii—K3—O10—K2111.70 (3)C4—N4—C5—N52.4 (2)
O9—K3—O10—K2180.0C4—N6—C6—O6178.51 (16)
O1—K2—O10—K3114.36 (3)C4—N6—C6—N51.5 (2)
O1vii—K2—O10—K3114.36 (3)C5—N5—C6—O6178.63 (15)
O2iii—K2—O10—K340.50 (3)C5—N5—C6—N61.4 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x1/2, y+1/2, z; (x) x1/2, y+1/2, z; (xi) x+1/2, y1/2, z; (xii) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—D7···N6ii0.63 (2)2.10 (2)2.7211 (17)172 (3)
O8—D8···N3ii0.79 (2)2.31 (2)3.0812 (18)163 (2)
O10—D10···N30.77 (2)2.07 (2)2.8358 (17)173 (2)
O9—D9···O6xiii0.78 (2)2.02 (2)2.7646 (14)159 (2)
N2—D2N···O6xiv0.85 (2)1.95 (2)2.8019 (18)172 (2)
N1—D1N···O4iii0.84 (2)1.95 (2)2.7889 (18)178 (2)
N5—D5N···O3xiv0.81 (2)1.96 (2)2.7763 (18)176 (2)
N4—D4N···O1iii0.86 (2)1.91 (2)2.7704 (17)173 (2)
N6—D6N···O7ii0.80 (4)1.94 (4)2.7211 (17)166 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1; (xiii) x, y+1, z; (xiv) x+1/2, y+1/2, z.
(3_neutron) top
Crystal data top
C12D17K3N12O16Z = 8
Mr = 719.71F(000) = 3275
Monoclinic, I2/aDx = 1.942 Mg m3
Hall symbol: -I 2yaNeutron radiation, λ = 0.5-7.0 Å
a = 12.824 (2) ÅCell parameters from 11000 reflections
b = 16.332 (3) ŵ = 0.07+0.00475 mm1
c = 23.713 (4) ÅT = 150 K
β = 97.514 (3)°Block, colourless
V = 4923.8 (15) Å32.00 × 2.00 × 1.00 mm
Data collection top
SXD at ISIS neutron source
diffractometer
2545 independent reflections
Radiation source: ISIS spallation neutron source2535 reflections with I > 2σ(I)
None monochromatorRint = 0.091
time–of–flight Laue diffraction scansθmax = 83.2°, θmin = 8.7°
Absorption correction: numerical
Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001.
h = 1917
Tmin = 0.123, Tmax = 0.497k = 3737
8194 measured reflectionsl = 6242
Refinement top
Refinement on F2Primary atom site location: using coords of known structure
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max = 0.048
S = 1.03Δρmax = 2.01 e Å3
8194 reflectionsΔρmin = 2.20 e Å3
651 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
40 restraintsExtinction coefficient: 0.000083 (3)
Crystal data top
C12D17K3N12O16V = 4923.8 (15) Å3
Mr = 719.71Z = 8
Monoclinic, I2/aNeutron radiation, λ = 0.5-7.0 Å
a = 12.824 (2) ŵ = 0.07+0.00475 mm1
b = 16.332 (3) ÅT = 150 K
c = 23.713 (4) Å2.00 × 2.00 × 1.00 mm
β = 97.514 (3)°
Data collection top
SXD at ISIS neutron source
diffractometer
2545 independent reflections
Absorption correction: numerical
Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001.
2535 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.497Rint = 0.091
8194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06840 restraints
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P]
where P = (Fo2 + 2Fc2)/3
S = 1.03Δρmax = 2.01 e Å3
8194 reflectionsΔρmin = 2.20 e Å3
651 parameters
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 100 reflections per run from each of the 11 detectors. Hence _cell_measurement_reflns_used 11000

For final cell dimensions a weighted average of all local cells was calculated

Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination.

The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms.

The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C·C. (1997). J. Mol. Struct. 405, 207–217

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given

_diffrn_reflns_sin(theta)/lambda_min 0.05 _diffrn_reflns_sin(theta)/lambda_max 1.31

_refine_diff_density_max/min is given in Fermi per per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the diffracted intensity of a given atom: _refine_diff_density_max = 5% of Carbon _refine_diff_density_min = −4% of Carbon

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.1743 (8)0.7470 (9)0.3123 (2)0.022 (2)
K20.4689 (7)0.7496 (7)0.4233 (2)0.022 (2)
K30.7869 (8)0.7466 (8)0.4246 (2)0.021 (2)
O10.1437 (14)0.8506 (3)0.2088 (4)0.024 (3)
O20.1201 (12)1.0890 (4)0.3025 (4)0.015 (3)
O30.1383 (12)1.0958 (4)0.1142 (4)0.008 (2)
N10.1295 (8)0.9712 (3)0.2550 (2)0.0150 (18)
N20.1261 (9)1.0981 (2)0.2095 (3)0.018 (2)
N30.1363 (8)0.9725 (3)0.1588 (3)0.016 (2)
C10.1364 (10)0.9262 (3)0.2083 (3)0.010 (2)
C20.1253 (11)1.0557 (3)0.2557 (3)0.0148 (18)
C30.1330 (11)1.0566 (4)0.1573 (3)0.018 (3)
D10.1261 (15)0.9408 (4)0.2921 (4)0.025 (3)
D30.1396 (12)0.9431 (4)0.1198 (4)0.018 (3)
O40.3570 (12)0.8549 (3)0.2929 (3)0.016 (2)
O50.3696 (15)1.0946 (5)0.3893 (4)0.027 (4)
O60.4002 (13)1.0961 (4)0.1998 (4)0.014 (2)
N40.3665 (8)0.9744 (2)0.3406 (2)0.016 (2)
N50.3803 (9)1.0979 (2)0.2954 (3)0.0148 (19)
N60.3777 (8)0.9741 (3)0.2442 (2)0.0119 (17)
C40.3656 (11)0.9289 (3)0.2937 (3)0.016 (2)
C50.3702 (11)1.0588 (4)0.3424 (3)0.011 (3)
C60.3869 (10)1.0582 (3)0.2435 (3)0.0090 (18)
D40.3677 (14)0.9442 (5)0.3791 (3)0.030 (4)
D50.4018 (6)1.1606 (2)0.29823 (15)0.0234 (17)
D60.3738 (15)0.9450 (4)0.2042 (4)0.023 (3)
O70.6401 (15)0.8588 (5)0.4578 (4)0.019 (2)
O80.6110 (13)1.0994 (4)0.5516 (4)0.0129 (17)
O90.6248 (12)1.1012 (4)0.3623 (3)0.0118 (19)
N70.6267 (10)0.9789 (2)0.5062 (3)0.017 (2)
N80.6208 (9)1.1058 (3)0.4569 (2)0.018 (3)
N90.6307 (10)0.9807 (2)0.4092 (2)0.012 (2)
C70.6324 (12)0.9346 (4)0.4561 (3)0.012 (2)
C80.6193 (12)1.0635 (3)0.5076 (3)0.0130 (17)
C90.6254 (13)1.0646 (3)0.4082 (3)0.0116 (19)
D70.6254 (10)0.9478 (3)0.5444 (3)0.016 (3)
D90.6340 (14)0.9505 (4)0.3710 (4)0.026 (3)
O100.3878 (14)0.5968 (4)0.4474 (4)0.019 (3)
O110.3607 (13)0.3577 (4)0.5390 (3)0.0114 (17)
O120.3750 (13)0.5945 (4)0.6389 (4)0.021 (3)
N100.3743 (9)0.4789 (2)0.4940 (3)0.0078 (14)
N110.3726 (12)0.4753 (2)0.5899 (3)0.017 (2)
N120.3781 (8)0.6043 (3)0.5425 (2)0.010 (2)
C100.3803 (11)0.5637 (3)0.4952 (3)0.0076 (14)
C110.3678 (11)0.4319 (4)0.5391 (3)0.0110 (17)
C120.3767 (13)0.5618 (3)0.5914 (3)0.013 (2)
D100.3713 (12)0.4507 (4)0.4549 (3)0.027 (4)
D110.3767 (13)0.4455 (4)0.6281 (4)0.022 (3)
O130.9996 (5)0.7486 (6)0.43930 (15)0.0242 (14)
D13A1.0456 (11)0.7965 (3)0.4469 (3)0.019 (3)
D13B1.0423 (13)0.6998 (5)0.4456 (3)0.033 (4)
O140.6125 (6)0.7541 (6)0.34356 (14)0.0282 (16)
D14A0.6116 (13)0.8020 (5)0.3207 (4)0.040 (4)
D14B0.6053 (13)0.7073 (5)0.3187 (3)0.040 (4)
O150.2550 (5)0.7476 (6)0.42625 (14)0.0225 (14)
D15A0.2261 (10)0.7002 (4)0.4417 (3)0.027 (3)
D15B0.2266 (12)0.7941 (4)0.4419 (3)0.041 (4)
O160.0452 (5)0.7505 (5)0.31794 (12)0.0237 (14)
D16A0.0771 (6)0.6982 (2)0.30659 (17)0.0248 (17)
D16B0.0310 (5)0.7485 (5)0.35901 (12)0.0287 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.036 (7)0.013 (2)0.0171 (19)0.000 (7)0.008 (3)0.003 (4)
K20.021 (7)0.0107 (18)0.038 (3)0.011 (7)0.012 (3)0.011 (4)
K30.021 (7)0.015 (2)0.031 (2)0.005 (7)0.015 (3)0.002 (4)
O10.041 (9)0.0066 (18)0.024 (3)0.000 (3)0.008 (4)0.0012 (18)
O20.027 (8)0.0085 (17)0.010 (2)0.004 (3)0.005 (3)0.0029 (14)
O30.007 (7)0.009 (2)0.007 (2)0.004 (3)0.002 (3)0.0033 (17)
N10.031 (5)0.0100 (12)0.0039 (14)0.0017 (16)0.0022 (19)0.0012 (9)
N20.037 (7)0.0090 (13)0.0070 (17)0.006 (2)0.004 (2)0.0012 (10)
N30.023 (7)0.0150 (19)0.011 (2)0.005 (3)0.010 (3)0.0025 (16)
C10.006 (6)0.0112 (17)0.013 (2)0.004 (2)0.001 (3)0.0000 (16)
C20.031 (5)0.0104 (12)0.0030 (14)0.0017 (17)0.0023 (19)0.0013 (10)
C30.034 (10)0.010 (2)0.014 (3)0.001 (3)0.018 (4)0.002 (2)
D10.038 (10)0.019 (2)0.019 (3)0.001 (4)0.003 (4)0.005 (2)
D30.021 (9)0.014 (2)0.020 (3)0.000 (3)0.009 (4)0.003 (2)
O40.033 (7)0.0106 (17)0.0050 (17)0.006 (2)0.004 (3)0.0017 (13)
O50.056 (12)0.019 (3)0.008 (3)0.008 (4)0.009 (4)0.001 (2)
O60.023 (7)0.016 (2)0.0025 (18)0.005 (3)0.000 (2)0.0010 (15)
N40.032 (7)0.0074 (16)0.006 (2)0.005 (2)0.004 (3)0.0013 (13)
N50.030 (6)0.0112 (14)0.0033 (13)0.008 (2)0.0015 (18)0.0001 (9)
N60.010 (5)0.0122 (14)0.0145 (19)0.0007 (17)0.006 (2)0.0008 (12)
C40.033 (7)0.0107 (17)0.0054 (18)0.006 (2)0.004 (3)0.0015 (13)
C50.015 (9)0.011 (2)0.006 (2)0.002 (3)0.005 (3)0.0018 (19)
C60.004 (5)0.0132 (17)0.010 (2)0.002 (2)0.005 (2)0.0022 (13)
D40.060 (12)0.020 (3)0.011 (3)0.001 (4)0.009 (4)0.007 (2)
D50.034 (5)0.0171 (14)0.0191 (15)0.003 (2)0.0035 (19)0.0014 (12)
D60.045 (10)0.018 (2)0.009 (2)0.002 (3)0.012 (3)0.0004 (17)
O70.022 (8)0.015 (2)0.024 (3)0.006 (3)0.013 (4)0.0007 (18)
O80.022 (5)0.0115 (16)0.0067 (18)0.006 (2)0.006 (2)0.0009 (13)
O90.017 (6)0.0120 (15)0.006 (2)0.003 (2)0.001 (3)0.0001 (13)
N70.028 (6)0.0120 (16)0.011 (2)0.006 (2)0.004 (3)0.0011 (14)
N80.033 (8)0.014 (2)0.006 (2)0.004 (3)0.005 (3)0.0008 (14)
N90.023 (6)0.0087 (12)0.0038 (17)0.0041 (19)0.002 (2)0.0000 (10)
C70.013 (6)0.017 (2)0.009 (2)0.004 (2)0.006 (2)0.0026 (13)
C80.022 (5)0.0114 (15)0.0068 (18)0.007 (2)0.005 (2)0.0012 (12)
C90.017 (6)0.0118 (15)0.006 (2)0.003 (2)0.001 (3)0.0001 (13)
D70.023 (9)0.0087 (19)0.018 (3)0.004 (3)0.007 (4)0.006 (2)
D90.039 (10)0.020 (3)0.019 (3)0.000 (4)0.009 (4)0.007 (2)
O100.033 (8)0.011 (2)0.016 (3)0.010 (3)0.008 (3)0.0014 (17)
O110.024 (5)0.0056 (14)0.0051 (15)0.0008 (19)0.002 (2)0.0005 (10)
O120.046 (8)0.0098 (19)0.010 (2)0.006 (3)0.010 (3)0.0001 (15)
N100.011 (4)0.0076 (12)0.0055 (16)0.0055 (17)0.0021 (19)0.0003 (11)
N110.028 (7)0.0103 (14)0.012 (2)0.006 (2)0.006 (3)0.0015 (13)
N120.015 (7)0.0058 (16)0.011 (3)0.005 (3)0.005 (3)0.0010 (13)
C100.011 (4)0.0072 (12)0.0052 (16)0.0052 (17)0.0016 (19)0.0004 (10)
C110.023 (5)0.0053 (13)0.0044 (14)0.0014 (18)0.0022 (19)0.0011 (9)
C120.020 (7)0.0102 (17)0.009 (2)0.007 (3)0.006 (3)0.0027 (16)
D100.044 (11)0.023 (3)0.013 (3)0.004 (4)0.004 (4)0.008 (2)
D110.036 (10)0.020 (2)0.009 (3)0.000 (3)0.004 (4)0.002 (2)
O130.030 (5)0.0130 (13)0.0303 (16)0.000 (6)0.006 (2)0.010 (3)
D13A0.016 (8)0.011 (2)0.029 (3)0.002 (3)0.004 (4)0.007 (2)
D13B0.050 (12)0.023 (3)0.028 (4)0.001 (5)0.009 (5)0.007 (2)
O140.055 (5)0.0145 (18)0.0154 (12)0.002 (4)0.0040 (17)0.002 (3)
D14A0.065 (12)0.024 (3)0.030 (4)0.014 (4)0.007 (5)0.002 (2)
D14B0.072 (11)0.030 (3)0.019 (3)0.007 (4)0.007 (4)0.008 (2)
O150.029 (4)0.0112 (14)0.0278 (14)0.003 (5)0.0049 (18)0.003 (3)
D15A0.032 (10)0.022 (2)0.032 (4)0.006 (3)0.015 (5)0.005 (2)
D15B0.069 (13)0.0107 (19)0.042 (5)0.001 (4)0.002 (6)0.000 (2)
O160.041 (5)0.0134 (12)0.0163 (12)0.005 (6)0.0028 (17)0.005 (4)
D16A0.031 (6)0.0156 (14)0.0266 (18)0.000 (2)0.001 (2)0.0021 (13)
D16B0.036 (4)0.0286 (15)0.0220 (11)0.006 (6)0.0054 (15)0.001 (4)
Geometric parameters (Å, º) top
K1—O12.965 (13)N5—C51.306 (10)
K1—O1i2.92 (2)N5—C61.403 (10)
K1—O43.01 (2)N5—D51.060 (6)
K1—O4i2.983 (11)N6—C41.411 (9)
K1—O9ii2.856 (15)N6—C61.380 (7)
K1—O12iii2.853 (16)N6—D61.056 (9)
K1—O152.764 (6)O7—C71.242 (10)
K1—O162.836 (12)O8—K2iv2.765 (14)
K2—O72.86 (2)O8—C81.214 (12)
K2—O8iv2.765 (14)O9—K1vii2.856 (15)
K2—O102.791 (14)O9—C91.239 (11)
K2—O11v2.852 (16)N7—C71.401 (10)
K2—O142.808 (9)N7—C81.385 (8)
K2—O152.753 (11)N7—D71.042 (10)
K3—O3vi2.840 (16)N8—C81.390 (9)
K3—O5vii2.964 (17)N8—C91.345 (9)
K3—O72.812 (17)N9—C71.340 (9)
K3—O11v2.768 (17)N9—C91.372 (7)
K3—O132.704 (12)N9—D91.039 (11)
K3—O142.755 (11)O10—C101.269 (12)
O1—K1i2.92 (2)O11—K2v2.852 (16)
O1—C11.239 (8)O11—K3v2.768 (17)
O2—C21.244 (12)O11—C111.215 (9)
O3—K3viii2.840 (16)O12—K1iii2.853 (16)
O3—C31.216 (12)O12—C121.248 (11)
N1—C11.342 (10)N10—C101.387 (7)
N1—C21.381 (7)N10—C111.329 (8)
N1—D11.014 (9)N10—D101.030 (10)
N2—C21.299 (9)N11—C111.391 (10)
N2—C31.424 (10)N11—C121.413 (7)
N3—C11.397 (10)N11—D111.024 (10)
N3—C31.374 (8)N12—C101.308 (9)
N3—D31.046 (10)N12—C121.353 (9)
O4—K1i2.983 (11)O13—D13A0.982 (12)
O4—C41.214 (8)O13—D13B0.968 (13)
O5—K3ii2.964 (17)O14—D14A0.952 (10)
O5—C51.255 (13)O14—D14B0.963 (10)
O6—C61.239 (12)O15—D15A0.952 (10)
N4—C41.336 (9)O15—D15B0.940 (11)
N4—C51.380 (8)O16—D16A0.969 (9)
N4—D41.036 (9)O16—D16B0.968 (4)
O1—K1—O1i101.1 (4)K1i—O4—C4124.8 (7)
O1—K1—O464.0 (4)K3ii—O5—C5134.5 (8)
O1i—K1—O4i64.9 (3)C4—N4—C5125.3 (6)
O1—K1—O4i68.70 (13)C4—N4—D4117.8 (7)
O1i—K1—O468.8 (2)C5—N4—D4116.9 (8)
O1i—K1—O9ii140.4 (6)C5—N5—C6123.2 (4)
O1—K1—O9ii80.6 (4)C5—N5—D5118.2 (6)
O1i—K1—O12iii79.5 (5)C6—N5—D5117.1 (7)
O1—K1—O12iii145.3 (5)C4—N6—C6123.3 (5)
O1—K1—O15143.1 (6)C4—N6—D6121.0 (6)
O1i—K1—O1587.9 (4)C6—N6—D6115.5 (6)
O1—K1—O1690.2 (4)O4—C4—N4123.8 (8)
O1i—K1—O16147.0 (6)O4—C4—N6121.8 (7)
O4—K1—O4i102.8 (3)N4—C4—N6114.3 (5)
O4i—K1—O9ii145.0 (5)O5—C5—N4119.2 (7)
O4—K1—O9ii77.0 (5)O5—C5—N5122.7 (7)
O4i—K1—O12iii80.8 (4)N4—C5—N5117.9 (6)
O4—K1—O12iii142.2 (6)O6—C6—N5122.3 (6)
O4—K1—O1587.0 (4)O6—C6—N6122.0 (7)
O4i—K1—O15144.3 (6)N5—C6—N6115.7 (5)
O4—K1—O16142.3 (6)K2—O7—K391.8 (4)
O4i—K1—O1691.4 (4)K2—O7—C7123.9 (12)
O9ii—K1—O12iii121.1 (3)K3—O7—C7133.9 (11)
O9ii—K1—O1570.5 (4)K2iv—O8—C8133.8 (8)
O9ii—K1—O1671.7 (4)K1vii—O9—C9143.8 (7)
O12iii—K1—O1571.4 (4)C7—N7—C8123.2 (6)
O12iii—K1—O1674.0 (5)C7—N7—D7119.6 (5)
O15—K1—O16101.6 (3)C8—N7—D7117.2 (7)
O7—K2—O8iv71.0 (5)C8—N8—C9120.1 (5)
O7—K2—O10142.3 (4)C7—N9—C9124.9 (6)
O7—K2—O11v76.4 (2)C7—N9—D9117.3 (6)
O7—K2—O1468.3 (4)C9—N9—D9117.8 (7)
O7—K2—O15136.8 (5)O7—C7—N7120.0 (6)
O8iv—K2—O10126.5 (3)O7—C7—N9125.4 (7)
O8iv—K2—O11v140.4 (5)N7—C7—N9114.5 (6)
O8iv—K2—O14114.5 (5)O8—C8—N7121.1 (7)
O8iv—K2—O1566.8 (4)O8—C8—N8121.1 (6)
O10—K2—O11v71.2 (5)N7—C8—N8117.8 (6)
O10—K2—O14117.2 (5)O9—C9—N8121.0 (6)
O10—K2—O1565.5 (5)O9—C9—N9119.5 (7)
O11v—K2—O1471.6 (3)N8—C9—N9119.5 (6)
O11v—K2—O15135.3 (5)K2—O10—C10129.6 (7)
O14—K2—O15139.5 (3)K2v—O11—K3v93.0 (4)
O3vi—K3—O5vii121.3 (3)K2v—O11—C11123.8 (11)
O3vi—K3—O7157.3 (6)K3v—O11—C11131.9 (11)
O3vi—K3—O11v80.8 (5)K1iii—O12—C12140.4 (7)
O3vi—K3—O1371.0 (4)C10—N10—C11124.8 (6)
O3vi—K3—O1495.2 (4)C10—N10—D10117.4 (7)
O5vii—K3—O777.7 (5)C11—N10—D10117.8 (6)
O5vii—K3—O11v155.7 (6)C11—N11—C12122.0 (6)
O5vii—K3—O1368.5 (5)C11—N11—D11120.9 (6)
O5vii—K3—O1493.0 (4)C12—N11—D11117.1 (7)
O7—K3—O11v78.6 (3)C10—N12—C12118.7 (5)
O7—K3—O13131.1 (6)O10—C10—N10114.7 (6)
O7—K3—O1469.7 (4)O10—C10—N12124.3 (6)
O11v—K3—O13133.4 (5)N10—C10—N12121.0 (6)
O11v—K3—O1473.7 (4)O11—C11—N10125.9 (6)
O13—K3—O14143.4 (3)O11—C11—N11120.4 (6)
K1—O1—K1i78.9 (4)N10—C11—N11113.6 (6)
K1—O1—C1125.3 (7)O12—C12—N11116.5 (6)
K1i—O1—C1127.2 (11)O12—C12—N12123.8 (6)
K3viii—O3—C3142.0 (8)N11—C12—N12119.6 (6)
C1—N1—C2124.3 (5)K3—O13—D13A127.2 (8)
C1—N1—D1117.5 (7)K3—O13—D13B123.4 (10)
C2—N1—D1118.2 (7)D13A—O13—D13B108.3 (8)
C2—N2—C3119.2 (4)K2—O14—K394.2 (3)
C1—N3—C3124.0 (6)K2—O14—D14A116.5 (10)
C1—N3—D3119.8 (6)K2—O14—D14B111.9 (10)
C3—N3—D3116.2 (7)K3—O14—D14A112.5 (11)
O1—C1—N1123.5 (8)K3—O14—D14B113.3 (10)
O1—C1—N3122.6 (8)D14A—O14—D14B108.1 (5)
N1—C1—N3113.9 (5)K1—O15—K2102.9 (3)
O2—C2—N1117.0 (6)K1—O15—D15A105.0 (8)
O2—C2—N2121.8 (6)K1—O15—D15B105.9 (8)
N1—C2—N2121.2 (6)K2—O15—D15A117.3 (9)
O3—C3—N2119.8 (6)K2—O15—D15B116.1 (11)
O3—C3—N3122.9 (7)D15A—O15—D15B108.2 (7)
N2—C3—N3117.4 (6)K1—O16—D16A110.8 (7)
K1—O4—K1i77.2 (3)K1—O16—D16B89.4 (5)
K1—O4—C4130.6 (11)D16A—O16—D16B105.5 (8)
O1i—K1—O1—K1i0.0C7—N9—C9—O9179.6 (19)
O1i—K1—O1—C1128.0 (16)C7—N9—C9—N81 (2)
O4i—K1—O1—K1i57.3 (4)D9—N9—C9—O90 (3)
O4—K1—O1—K1i59.7 (3)D9—N9—C9—N8180 (2)
O4—K1—O1—C168.3 (15)O7—K2—O10—C1042 (2)
O4i—K1—O1—C1174.7 (18)O8iv—K2—O10—C1064.8 (15)
O9ii—K1—O1—K1i139.8 (6)O11v—K2—O10—C1074.8 (15)
O9ii—K1—O1—C111.7 (15)O14—K2—O10—C10131.5 (14)
O12iii—K1—O1—K1i87.5 (11)O15—K2—O10—C1093.7 (15)
O12iii—K1—O1—C1144.5 (14)K2—O10—C10—N10156.7 (10)
O15—K1—O1—K1i101.4 (8)K2—O10—C10—N1223 (3)
O15—K1—O1—C126.6 (19)C12—N12—C10—O10175.8 (17)
O16—K1—O1—K1i148.8 (6)C12—N12—C10—N104 (2)
O16—K1—O1—C183.2 (15)C11—N10—C10—O10178.8 (15)
K1—O1—C1—N18 (2)C11—N10—C10—N121.2 (18)
K1i—O1—C1—N1111.8 (14)D10—N10—C10—O104 (2)
K1—O1—C1—N3171.1 (10)D10—N10—C10—N12175.9 (17)
K1i—O1—C1—N367.1 (16)K2v—O11—C11—N10103.3 (13)
C2—N1—C1—O1177.4 (15)K2v—O11—C11—N1175.1 (17)
C2—N1—C1—N31.5 (19)K3v—O11—C11—N10123.5 (12)
D1—N1—C1—O14 (3)K3v—O11—C11—N1158 (2)
D1—N1—C1—N3177.5 (15)C10—N10—C11—O11178.6 (16)
C3—N3—C1—O1177.0 (15)C10—N10—C11—N112.9 (19)
C3—N3—C1—N12.0 (18)D10—N10—C11—O112 (2)
D3—N3—C1—O12 (2)D10—N10—C11—N11179.9 (18)
D3—N3—C1—N1178.6 (16)C12—N11—C11—O11177.4 (14)
C3—N2—C2—O2179.5 (16)C12—N11—C11—N104 (2)
C3—N2—C2—N11 (2)D11—N11—C11—O115 (3)
C1—N1—C2—O2179.2 (15)D11—N11—C11—N10173.1 (18)
C1—N1—C2—N21 (2)K1iii—O12—C12—N11158.2 (13)
D1—N1—C2—O22 (2)K1iii—O12—C12—N1219 (3)
D1—N1—C2—N2177.9 (19)C10—N12—C12—O12179.7 (17)
K3viii—O3—C3—N230 (3)C10—N12—C12—N113 (2)
K3viii—O3—C3—N3147.7 (12)C11—N11—C12—O12176.3 (19)
C1—N3—C3—O3176.2 (16)C11—N11—C12—N121 (2)
C1—N3—C3—N21.9 (18)D11—N11—C12—O127 (3)
D3—N3—C3—O33 (2)D11—N11—C12—N12176 (2)
D3—N3—C3—N2178.6 (16)O3vi—K3—O13—D13A164.8 (7)
C2—N2—C3—O3176.9 (16)O3vi—K3—O13—D13B28.4 (6)
C2—N2—C3—N31.3 (19)O5vii—K3—O13—D13A28.3 (7)
O1i—K1—O4—K1i56.4 (4)O5vii—K3—O13—D13B164.9 (7)
O1—K1—O4—K1i58.3 (3)O7—K3—O13—D13A21.3 (8)
O1—K1—O4—C466.8 (9)O7—K3—O13—D13B145.4 (7)
O1i—K1—O4—C4178.5 (11)O11v—K3—O13—D13A139.0 (8)
O4i—K1—O4—K1i0.0O11v—K3—O13—D13B27.7 (8)
O4i—K1—O4—C4125.2 (10)O14—K3—O13—D13A92.5 (10)
O9ii—K1—O4—K1i144.1 (5)O14—K3—O13—D13B100.8 (11)
O9ii—K1—O4—C418.9 (9)O3vi—K3—O14—K2118.1 (4)
O12iii—K1—O4—K1i91.4 (8)O3vi—K3—O14—D14A121.0 (10)
O12iii—K1—O4—C4143.4 (9)O3vi—K3—O14—D14B2.1 (10)
O15—K1—O4—K1i145.3 (6)O5vii—K3—O14—K2120.1 (5)
O15—K1—O4—C489.6 (9)O5vii—K3—O14—D14A0.8 (10)
O16—K1—O4—K1i109.6 (4)O5vii—K3—O14—D14B123.8 (10)
O16—K1—O4—C415.6 (11)O7—K3—O14—K244.4 (4)
K1—O4—C4—N467.5 (17)O7—K3—O14—D14A76.5 (9)
K1i—O4—C4—N4171.4 (10)O7—K3—O14—D14B160.5 (9)
K1—O4—C4—N6113.9 (13)O11v—K3—O14—K239.2 (4)
K1i—O4—C4—N610 (2)O11v—K3—O14—D14A160.2 (9)
C5—N4—C4—O4176.1 (15)O11v—K3—O14—D14B76.8 (9)
C5—N4—C4—N65.1 (19)O13—K3—O14—K2177.1 (9)
D4—N4—C4—O46 (2)O13—K3—O14—D14A56.2 (14)
D4—N4—C4—N6172.3 (16)O13—K3—O14—D14B66.9 (14)
C6—N6—C4—O4179.5 (14)O7—K2—O14—K344.0 (4)
C6—N6—C4—N41.7 (19)O7—K2—O14—D14A73.8 (10)
D6—N6—C4—O45 (3)O7—K2—O14—D14B161.2 (10)
D6—N6—C4—N4176.5 (15)O8iv—K2—O14—K399.5 (5)
K3ii—O5—C5—N4148.1 (11)O8iv—K2—O14—D14A18.3 (11)
K3ii—O5—C5—N536 (3)O8iv—K2—O14—D14B143.3 (10)
C6—N5—C5—O5176.3 (16)O10—K2—O14—K394.8 (5)
C6—N5—C5—N40 (2)O10—K2—O14—D14A147.4 (10)
D5—N5—C5—O511 (2)O10—K2—O14—D14B22.4 (10)
D5—N5—C5—N4165.2 (10)O11v—K2—O14—K338.4 (4)
C4—N4—C5—O5179.3 (17)O11v—K2—O14—D14A156.1 (11)
C4—N4—C5—N54.6 (19)O11v—K2—O14—D14B78.9 (10)
D4—N4—C5—O53 (2)O15—K2—O14—K3178.1 (8)
D4—N4—C5—N5172.8 (17)O15—K2—O14—D14A64.2 (13)
C4—N6—C6—O6178.1 (16)O15—K2—O14—D14B60.9 (13)
C4—N6—C6—N51.9 (17)O7—K2—O15—K1116.1 (6)
D6—N6—C6—O67 (2)O7—K2—O15—D15A129.2 (8)
D6—N6—C6—N5173.2 (17)O7—K2—O15—D15B1.0 (9)
C5—N5—C6—O6177.4 (17)O8iv—K2—O15—K1102.8 (5)
C5—N5—C6—N62.6 (19)O8iv—K2—O15—D15A142.5 (7)
D5—N5—C6—O612 (2)O8iv—K2—O15—D15B12.4 (7)
D5—N5—C6—N6168.3 (11)O10—K2—O15—K1102.2 (5)
O3vi—K3—O7—K27.5 (11)O10—K2—O15—D15A12.5 (7)
O3vi—K3—O7—C7151.0 (12)O10—K2—O15—D15B142.6 (7)
O5vii—K3—O7—K2141.1 (4)O11v—K2—O15—K1117.8 (6)
O5vii—K3—O7—C72.3 (12)O11v—K2—O15—D15A3.1 (9)
O11v—K3—O7—K233.4 (3)O11v—K2—O15—D15B127.0 (9)
O11v—K3—O7—C7176.8 (14)O14—K2—O15—K11.6 (10)
O13—K3—O7—K2172.3 (4)O14—K2—O15—D15A116.2 (8)
O13—K3—O7—C744.2 (14)O14—K2—O15—D15B113.6 (9)
O14—K3—O7—K243.3 (3)O1—K1—O15—K272.0 (9)
O14—K3—O7—C7100.2 (12)O1i—K1—O15—K233.7 (6)
O8iv—K2—O7—K3170.3 (4)O1—K1—O15—D15A164.7 (11)
O8iv—K2—O7—C721.5 (7)O1i—K1—O15—D15A89.5 (9)
O10—K2—O7—K364.0 (8)O1—K1—O15—D15B50.3 (13)
O10—K2—O7—C7147.2 (8)O1i—K1—O15—D15B156.1 (10)
O11v—K2—O7—K332.6 (3)O4—K1—O15—K235.2 (5)
O11v—K2—O7—C7178.6 (9)O4i—K1—O15—K272.7 (9)
O14—K2—O7—K342.8 (3)O4—K1—O15—D15A158.4 (9)
O14—K2—O7—C7106.1 (7)O4i—K1—O15—D15A50.6 (12)
O15—K2—O7—K3176.7 (4)O4—K1—O15—D15B87.1 (10)
O15—K2—O7—C734.4 (10)O4i—K1—O15—D15B165.0 (12)
K2—O7—C7—N7103.0 (12)O9ii—K1—O15—K2112.5 (5)
K2—O7—C7—N978.2 (19)O9ii—K1—O15—D15A124.3 (10)
K3—O7—C7—N7122.8 (12)O9ii—K1—O15—D15B9.9 (11)
K3—O7—C7—N956 (2)O12iii—K1—O15—K2113.3 (5)
C9—N9—C7—O7177.9 (15)O12iii—K1—O15—D15A9.9 (10)
C9—N9—C7—N71 (2)O12iii—K1—O15—D15B124.3 (11)
D9—N9—C7—O72 (3)O16—K1—O15—K2178.1 (4)
D9—N9—C7—N7179.5 (16)O16—K1—O15—D15A58.6 (11)
C8—N7—C7—O7179.3 (16)O16—K1—O15—D15B55.8 (12)
C8—N7—C7—N90.3 (19)O1—K1—O16—D16A106.5 (5)
D7—N7—C7—O73 (2)O1i—K1—O16—D16A4.4 (8)
D7—N7—C7—N9178.2 (18)O1—K1—O16—D16B147.2 (7)
K2iv—O8—C8—N7156.2 (10)O1i—K1—O16—D16B101.9 (9)
K2iv—O8—C8—N823 (3)O4—K1—O16—D16A151.0 (5)
C7—N7—C8—O8177.5 (17)O4i—K1—O16—D16A37.8 (5)
C7—N7—C8—N82.0 (18)O4—K1—O16—D16B102.7 (8)
D7—N7—C8—O80 (2)O4i—K1—O16—D16B144.1 (7)
D7—N7—C8—N8179.8 (17)O9ii—K1—O16—D16A173.5 (5)
C9—N8—C8—O8177.1 (17)O9ii—K1—O16—D16B67.1 (7)
C9—N8—C8—N72 (2)O12iii—K1—O16—D16A42.2 (5)
K1vii—O9—C9—N826 (3)O12iii—K1—O16—D16B64.2 (7)
K1vii—O9—C9—N9154.5 (13)O15—K1—O16—D16A108.7 (5)
C8—N8—C9—O9178.6 (16)O15—K1—O16—D16B2.4 (8)
C8—N8—C9—N91 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+2, z; (iii) x+1/2, y, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+2, z; (viii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—D1···O9ii1.02 (1)1.80 (1)2.809 (10)174 (1)
N3—D3···O10i1.05 (1)1.70 (1)2.734 (12)166 (2)
N4—D4···O8iv1.03 (1)1.79 (1)2.807 (10)171 (2)
N5—D5···O16vii1.06 (1)1.65 (1)2.690 (12)165 (1)
N6—D6···O12ix1.06 (1)1.68 (1)2.738 (11)175 (1)
N7—D7···O5iv1.04 (1)1.71 (1)2.746 (12)173 (1)
N9—D9···O2vii1.03 (1)1.74 (1)2.763 (11)172 (1)
N10—D10···O3i1.02 (1)1.80 (1)2.825 (10)178 (1)
N11—D11···O6x1.02 (1)1.82 (1)2.828 (11)168 (2)
O13—D13A···N8vii0.97 (1)1.87 (1)2.830 (12)174 (1)
O14—D14A···O2vii0.96 (1)1.84 (1)2.756 (13)158 (1)
O14—D14B···O6vi0.96 (1)1.87 (1)2.768 (13)156 (1)
O15—D15A···N12iii0.95 (1)2.12 (1)3.042 (12)164 (1)
O15—D15B···N8ii0.95 (1)2.19 (2)3.098 (11)160 (1)
O16—D16A···N2xi0.96 (1)1.77 (1)2.733 (12)175 (1)
O16—D16A···O3xi0.96 (1)2.71 (1)3.293 (13)120 (1)
O16—D16B···O13xii0.97 (1)1.90 (1)2.864 (6)178 (1)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x1/2, y+2, z; (iii) x+1/2, y, z+1; (iv) x+1, y+2, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+2, z; (ix) x, y+3/2, z1/2; (x) x, y+3/2, z+1/2; (xi) x, y1/2, z+1/2; (xii) x1, y, z.
(4) top
Crystal data top
C12H16N12O16Rb3F(000) = 1644
Mr = 840.78Dx = 2.188 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 4184 reflections
a = 13.1499 (15) Åθ = 2.5–28.1°
b = 16.6185 (19) ŵ = 5.83 mm1
c = 11.8444 (13) ÅT = 150 K
β = 99.584 (2)°Plate, colourless
V = 2552.2 (5) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2324 independent reflections
Radiation source: sealed tube1898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
thin–slice ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
SADABS
h = 1515
Tmin = 0.388, Tmax = 0.759k = 1919
9291 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.077H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0253P)2 + 9.2128P]
where P = (Fo2 + 2Fc2)/3
2324 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.97 e Å3
4 restraintsΔρmin = 0.98 e Å3
Crystal data top
C12H16N12O16Rb3V = 2552.2 (5) Å3
Mr = 840.78Z = 4
Monoclinic, C2/mMo Kα radiation
a = 13.1499 (15) ŵ = 5.83 mm1
b = 16.6185 (19) ÅT = 150 K
c = 11.8444 (13) Å0.20 × 0.20 × 0.05 mm
β = 99.584 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2324 independent reflections
Absorption correction: multi-scan
SADABS
1898 reflections with I > 2σ(I)
Tmin = 0.388, Tmax = 0.759Rint = 0.045
9291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.14Δρmax = 0.97 e Å3
2324 reflectionsΔρmin = 0.98 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.28616 (5)0.50000.67207 (5)0.02017 (17)
Rb20.58400 (5)0.50000.88045 (5)0.01854 (16)
Rb30.95888 (5)0.50000.64691 (5)0.01889 (16)
O10.3660 (2)0.34729 (17)0.6021 (2)0.0179 (7)
O20.3732 (2)0.34641 (18)0.2202 (2)0.0195 (7)
O30.3868 (2)0.11087 (17)0.4177 (2)0.0154 (6)
O40.8842 (2)0.65589 (17)0.7222 (2)0.0186 (7)
O50.8907 (2)0.89393 (17)0.9118 (2)0.0183 (7)
O60.8620 (3)0.65894 (18)1.0995 (2)0.0238 (7)
O70.8071 (4)0.50000.8620 (4)0.0225 (10)
H70.835 (3)0.5439 (15)0.873 (4)0.027*
O80.7440 (3)0.50000.6236 (4)0.0226 (10)
H80.701 (3)0.536 (2)0.609 (4)0.027*
O90.4961 (3)0.50000.6408 (4)0.0218 (10)
H90.523 (3)0.5375 (19)0.613 (4)0.026*
O101.1346 (4)0.50000.8270 (4)0.0327 (12)
H101.142 (4)0.465 (2)0.876 (3)0.039*
N10.3723 (3)0.3541 (2)0.4122 (3)0.0129 (7)
N20.3775 (3)0.2288 (2)0.3180 (3)0.0148 (8)
H2N0.372 (4)0.209 (3)0.261 (4)0.018*
N30.3767 (3)0.2299 (2)0.5097 (3)0.0131 (8)
H3N0.373 (3)0.208 (3)0.564 (4)0.016*
N40.8846 (3)0.7751 (2)0.8149 (3)0.0141 (8)
H4N0.885 (3)0.798 (3)0.757 (4)0.017*
N50.8770 (3)0.7765 (2)1.0074 (3)0.0150 (8)
H5N0.869 (3)0.797 (3)1.067 (4)0.018*
N60.8746 (3)0.6527 (2)0.9110 (3)0.0155 (8)
C10.3710 (3)0.3132 (2)0.5102 (3)0.0108 (8)
C20.3739 (3)0.3124 (2)0.3146 (3)0.0126 (9)
C30.3803 (3)0.1841 (3)0.4152 (3)0.0103 (8)
C40.8815 (3)0.6926 (2)0.8121 (3)0.0138 (9)
C50.8839 (3)0.8207 (3)0.9111 (3)0.0132 (9)
C60.8707 (3)0.6937 (2)1.0090 (3)0.0145 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0195 (3)0.0137 (3)0.0280 (4)0.0000.0057 (3)0.000
Rb20.0292 (3)0.0146 (3)0.0131 (3)0.0000.0071 (2)0.000
Rb30.0189 (3)0.0158 (3)0.0236 (3)0.0000.0081 (2)0.000
O10.0310 (18)0.0159 (16)0.0072 (15)0.0004 (13)0.0040 (12)0.0023 (12)
O20.0336 (18)0.0191 (17)0.0061 (14)0.0007 (14)0.0039 (13)0.0029 (13)
O30.0220 (16)0.0116 (17)0.0126 (15)0.0021 (12)0.0031 (12)0.0020 (12)
O40.0355 (18)0.0134 (16)0.0081 (15)0.0007 (13)0.0067 (13)0.0005 (12)
O50.0282 (18)0.0122 (17)0.0151 (16)0.0028 (13)0.0053 (13)0.0050 (12)
O60.042 (2)0.0224 (17)0.0081 (15)0.0061 (15)0.0077 (14)0.0029 (13)
O70.038 (3)0.005 (2)0.026 (3)0.0000.010 (2)0.000
O80.020 (3)0.012 (2)0.033 (3)0.0000.002 (2)0.000
O90.023 (2)0.014 (3)0.029 (3)0.0000.007 (2)0.000
O100.054 (3)0.031 (3)0.015 (3)0.0000.013 (2)0.000
N10.0213 (19)0.0100 (18)0.0072 (17)0.0006 (14)0.0021 (14)0.0021 (14)
N20.022 (2)0.016 (2)0.0062 (18)0.0009 (16)0.0029 (15)0.0032 (15)
N30.0196 (19)0.0114 (19)0.0084 (18)0.0007 (15)0.0027 (15)0.0047 (15)
N40.026 (2)0.0106 (19)0.0063 (18)0.0000 (15)0.0043 (15)0.0018 (14)
N50.023 (2)0.0150 (19)0.0072 (17)0.0013 (15)0.0035 (15)0.0028 (15)
N60.026 (2)0.0142 (19)0.0069 (17)0.0009 (15)0.0051 (15)0.0015 (14)
C10.0088 (19)0.011 (2)0.012 (2)0.0006 (16)0.0009 (16)0.0015 (17)
C20.013 (2)0.014 (2)0.010 (2)0.0034 (17)0.0007 (16)0.0004 (17)
C30.009 (2)0.014 (2)0.008 (2)0.0012 (16)0.0007 (15)0.0002 (16)
C40.017 (2)0.012 (2)0.012 (2)0.0002 (18)0.0014 (17)0.0018 (17)
C50.014 (2)0.018 (3)0.007 (2)0.0010 (17)0.0010 (16)0.0010 (17)
C60.016 (2)0.015 (2)0.012 (2)0.0025 (18)0.0011 (17)0.0005 (18)
Geometric parameters (Å, º) top
Rb1—O12.919 (3)O3—Rb3v3.287 (3)
Rb1—O1i2.919 (3)O3—C31.221 (5)
Rb1—O3ii2.982 (3)O4—C41.232 (5)
Rb1—O3iii2.982 (3)O5—Rb1xiv3.429 (3)
Rb1—O5iv3.429 (3)O5—Rb2ix3.000 (3)
Rb1—O5v3.429 (3)O5—Rb2xiv3.165 (3)
Rb1—O8vi3.458 (5)O5—C51.220 (5)
Rb1—O92.845 (5)O6—C61.239 (5)
Rb1—O10vii2.925 (5)O7—H70.816 (10)
Rb2—O2viii2.912 (3)O8—Rb1vi3.458 (5)
Rb2—O2vi2.912 (3)O8—H80.820 (10)
Rb2—O5ix3.000 (3)O9—H90.818 (10)
Rb2—O5x3.000 (3)O10—Rb1xv2.925 (5)
Rb2—O5v3.165 (3)O10—H100.821 (10)
Rb2—O5iv3.165 (3)N1—C11.348 (5)
Rb2—O72.977 (5)N1—C21.351 (5)
Rb2—O92.881 (5)N2—H2N0.74 (5)
Rb3—O3xi2.935 (3)N2—C21.390 (5)
Rb3—O3xii2.935 (3)N2—C31.365 (5)
Rb3—O3xiii3.287 (3)N3—H3N0.74 (5)
Rb3—O3xiv3.287 (3)N3—C11.386 (5)
Rb3—O42.960 (3)N3—C31.361 (5)
Rb3—O4i2.960 (3)N4—H4N0.78 (5)
Rb3—O73.488 (5)N4—C41.372 (5)
Rb3—O82.793 (4)N4—C51.370 (5)
Rb3—O102.873 (5)N5—H5N0.80 (5)
O1—C11.239 (5)N5—C51.373 (5)
O2—Rb2vi2.912 (3)N5—C61.378 (5)
O2—C21.251 (5)N6—C41.362 (5)
O3—Rb1ii2.982 (3)N6—C61.355 (5)
O3—Rb3xii2.935 (3)
O1—Rb1—O1i120.81 (11)O3xiii—Rb3—O7118.80 (8)
O1—Rb1—O3ii69.55 (8)O3xiv—Rb3—O7118.80 (8)
O1i—Rb1—O3ii136.46 (8)O3xi—Rb3—O8134.92 (7)
O1—Rb1—O3iii136.46 (8)O3xii—Rb3—O8134.92 (7)
O1i—Rb1—O3iii69.55 (8)O3xiii—Rb3—O876.73 (9)
O1—Rb1—O5iv124.64 (8)O3xiv—Rb3—O876.73 (9)
O1i—Rb1—O5iv71.00 (7)O3xi—Rb3—O1071.83 (9)
O1—Rb1—O5v71.00 (7)O3xii—Rb3—O1071.83 (9)
O1i—Rb1—O5v124.64 (8)O3xiii—Rb3—O10134.35 (8)
O1—Rb1—O8vi72.46 (6)O3xiv—Rb3—O10134.35 (8)
O1i—Rb1—O8vi72.46 (6)O4—Rb3—O4i122.14 (11)
O1—Rb1—O963.93 (6)O4—Rb3—O761.39 (6)
O1i—Rb1—O963.93 (6)O4i—Rb3—O761.39 (6)
O1—Rb1—O10vii119.53 (6)O4—Rb3—O869.44 (7)
O1i—Rb1—O10vii119.53 (6)O4i—Rb3—O869.44 (7)
O3ii—Rb1—O3iii76.31 (11)O4—Rb3—O1092.44 (7)
O3ii—Rb1—O5iv142.16 (7)O4i—Rb3—O1092.44 (7)
O3iii—Rb1—O5iv98.89 (7)O7—Rb3—O851.66 (13)
O3ii—Rb1—O5v98.89 (7)O7—Rb3—O1086.85 (13)
O3iii—Rb1—O5v142.16 (7)O8—Rb3—O10138.51 (14)
O3ii—Rb1—O8vi71.74 (8)Rb1—O1—C1136.2 (3)
O3iii—Rb1—O8vi71.74 (8)Rb2vi—O2—C2142.1 (3)
O3ii—Rb1—O9130.72 (8)Rb1ii—O3—Rb3xii92.21 (8)
O3iii—Rb1—O9130.72 (8)Rb1ii—O3—Rb3v92.64 (8)
O3ii—Rb1—O10vii70.43 (9)Rb1ii—O3—C3124.1 (2)
O3iii—Rb1—O10vii70.43 (9)Rb3xii—O3—Rb3v75.33 (7)
O5iv—Rb1—O5v61.87 (9)Rb3xii—O3—C3132.0 (2)
O5iv—Rb1—O8vi143.23 (6)Rb3v—O3—C3126.1 (2)
O5v—Rb1—O8vi143.23 (6)Rb3—O4—C4138.7 (3)
O5iv—Rb1—O981.02 (9)Rb1xiv—O5—Rb2ix110.58 (9)
O5v—Rb1—O981.02 (9)Rb1xiv—O5—Rb2xiv80.55 (7)
O5iv—Rb1—O10vii72.64 (10)Rb1xiv—O5—C5119.2 (2)
O5v—Rb1—O10vii72.64 (10)Rb2ix—O5—Rb2xiv77.73 (7)
O8vi—Rb1—O979.54 (12)Rb2ix—O5—C5126.1 (2)
O8vi—Rb1—O10vii131.31 (13)Rb2xiv—O5—C5127.9 (3)
O9—Rb1—O10vii149.15 (14)Rb2—O7—Rb3138.09 (16)
O2viii—Rb2—O2vi122.47 (11)Rb2—O7—H7114 (4)
O2viii—Rb2—O5ix148.04 (8)Rb3—O7—H780 (3)
O2vi—Rb2—O5ix79.53 (8)Rb1vi—O8—Rb392.51 (13)
O2viii—Rb2—O5x79.53 (8)Rb1vi—O8—H880 (3)
O2vi—Rb2—O5x148.04 (8)Rb3—O8—H8132 (3)
O2viii—Rb2—O5v76.92 (8)Rb1—O9—Rb296.35 (14)
O2vi—Rb2—O5v138.60 (8)Rb1—O9—H9124 (3)
O2viii—Rb2—O5iv138.60 (8)Rb2—O9—H9106 (3)
O2vi—Rb2—O5iv76.92 (8)Rb1xv—O10—Rb394.69 (13)
O2viii—Rb2—O773.13 (7)Rb1xv—O10—H10116 (4)
O2vi—Rb2—O773.13 (7)Rb3—O10—H10121 (4)
O2viii—Rb2—O970.72 (6)C1—N1—C2118.8 (4)
O2vi—Rb2—O970.72 (6)H2N—N2—C2115 (4)
O5ix—Rb2—O5x71.96 (11)H2N—N2—C3121 (4)
O5ix—Rb2—O5v102.27 (7)C2—N2—C3124.3 (4)
O5x—Rb2—O5v63.78 (10)H3N—N3—C1118 (4)
O5ix—Rb2—O5iv63.78 (10)H3N—N3—C3117 (4)
O5x—Rb2—O5iv102.27 (7)C1—N3—C3124.8 (4)
O5v—Rb2—O5iv67.68 (11)H4N—N4—C4118 (3)
O5ix—Rb2—O794.83 (9)H4N—N4—C5117 (3)
O5x—Rb2—O794.83 (9)C4—N4—C5124.7 (4)
O5v—Rb2—O7145.97 (5)H5N—N5—C5123 (3)
O5iv—Rb2—O7145.97 (5)H5N—N5—C6113 (3)
O5ix—Rb2—O9141.22 (7)C5—N5—C6123.9 (4)
O5x—Rb2—O9141.22 (7)C4—N6—C6120.7 (4)
O5v—Rb2—O985.24 (9)O1—C1—N1122.5 (4)
O5iv—Rb2—O985.24 (9)O1—C1—N3118.1 (4)
O7—Rb2—O999.58 (13)N1—C1—N3119.4 (4)
O3xi—Rb3—O3xii77.77 (11)O2—C2—N1122.2 (4)
O3xi—Rb3—O3xiii104.67 (7)O2—C2—N2118.2 (4)
O3xii—Rb3—O3xiii63.22 (10)N1—C2—N2119.6 (4)
O3xi—Rb3—O3xiv63.22 (9)O3—C3—N2123.7 (4)
O3xii—Rb3—O3xiv104.67 (7)O3—C3—N3123.3 (4)
O3xiii—Rb3—O3xiv68.18 (10)N2—C3—N3113.0 (4)
O3xi—Rb3—O4i155.01 (8)O4—C4—N4120.7 (4)
O3xii—Rb3—O4i78.91 (8)O4—C4—N6121.2 (4)
O3xi—Rb3—O478.91 (8)N4—C4—N6118.1 (4)
O3xii—Rb3—O4155.01 (8)O5—C5—N4123.2 (4)
O3xiii—Rb3—O4i72.16 (7)O5—C5—N5122.9 (4)
O3xiii—Rb3—O4132.44 (8)N4—C5—N5113.9 (4)
O3xiv—Rb3—O4i132.44 (8)O6—C6—N5119.5 (4)
O3xiv—Rb3—O472.16 (7)O6—C6—N6121.9 (4)
O3xi—Rb3—O7134.03 (7)N5—C6—N6118.6 (4)
O3xii—Rb3—O7134.03 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+3/2, z; (v) x1/2, y1/2, z; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x+1, y, z+1; (ix) x+3/2, y+3/2, z+2; (x) x+3/2, y1/2, z+2; (xi) x+3/2, y+1/2, z+1; (xii) x+3/2, y+1/2, z+1; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N1vi0.82 (1)2.06 (2)2.860 (4)164 (5)
O9—H9···N1vi0.82 (1)2.31 (2)3.103 (4)163 (5)
O10—H10···O6xvi0.82 (1)2.08 (3)2.779 (3)143 (5)
N2—H2N···O6xvii0.74 (5)2.07 (5)2.813 (5)176 (5)
N3—H3N···O4v0.74 (5)2.05 (5)2.788 (4)172 (5)
N4—H4N···O1xiv0.78 (5)1.99 (5)2.765 (4)172 (5)
N5—H5N···O2xviii0.80 (5)1.99 (5)2.783 (4)171 (5)
O7—H7···N60.82 (1)1.92 (2)2.720 (4)168 (5)
Symmetry codes: (v) x1/2, y1/2, z; (vi) x+1, y+1, z+1; (xiv) x+1/2, y+1/2, z; (xvi) x+2, y+1, z+2; (xvii) x1/2, y1/2, z1; (xviii) x+1/2, y+1/2, z+1.

Experimental details

(1)(2)(3_Xray)(3_neutron)
Crystal data
Chemical formulaC3H4KN3O4C3HK2N3O3C12D17K3N12O16C12D17K3N12O16
Mr185.19205.27719.71719.71
Crystal system, space groupMonoclinic, C2/mOrthorhombic, CmcmMonoclinic, C2/mMonoclinic, I2/a
Temperature (K)150150150150
a, b, c (Å)11.037 (2), 16.419 (3), 7.1497 (14)13.062 (4), 6.620 (2), 6.817 (2)12.8143 (15), 16.3214 (19), 11.8498 (14)12.824 (2), 16.332 (3), 23.713 (4)
α, β, γ (°)90, 103.68 (3), 9090, 90, 9090, 97.520 (2), 9090, 97.514 (3), 90
V3)1258.9 (4)589.4 (3)2457.0 (5)4923.8 (15)
Z8448
Radiation typeMo KαMo KαMo KαNeutron, λ = 0.5-7.0 Å
µ (mm1)0.811.560.660.07+0.00475
Crystal size (mm)0.22 × 0.16 × 0.110.23 × 0.21 × 0.180.70 × 0.20 × 0.052.00 × 2.00 × 1.00
Data collection
DiffractometerNonius KappaCCD
diffractometer
Bruker SMART 1K CCD
diffractometer
Bruker SMART 1K CCD
diffractometer
SXD at ISIS neutron source
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 2003
Multi-scan
SADABS; Sheldrick, 2003
Multi-scan
SADABS
Numerical
Mu = 0.7cm-1 at 1.8A calculated using custom ISIS software program SXD-2001.
Tmin, Tmax0.842, 0.9160.716, 0.7670.655, 0.9680.123, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
10612, 1216, 982 2536, 412, 370 10491, 2926, 2425 8194, 2545, 2535
Rint0.0880.0280.0290.091
(sin θ/λ)max1)0.6070.6670.671
Distance from specimen to detector (mm)h = 1917, k = 3737, l = 6242
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 1.06 0.024, 0.064, 1.15 0.034, 0.095, 1.07 0.068, 0.182, 1.03
No. of reflections121641229268194
No. of parameters12138232651
No. of restraints00040
H-atom treatmentOnly H-atom coordinates refinedAll H-atom parameters refined
w = 1/[σ2(Fo2) + (0.1091P)2]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0329P)2 + 0.7482P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0557P)2 + 1.2767P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.1144P)2 + 438.2559P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.85, 0.930.26, 0.480.64, 0.452.01, 2.20


(4)
Crystal data
Chemical formulaC12H16N12O16Rb3
Mr840.78
Crystal system, space groupMonoclinic, C2/m
Temperature (K)150
a, b, c (Å)13.1499 (15), 16.6185 (19), 11.8444 (13)
α, β, γ (°)90, 99.584 (2), 90
V3)2552.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.83
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
SADABS
Tmin, Tmax0.388, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
9291, 2324, 1898
Rint0.045
(sin θ/λ)max1)0.595
Distance from specimen to detector (mm)
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.14
No. of reflections2324
No. of parameters229
No. of restraints4
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0253P)2 + 9.2128P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.97, 0.98

Computer programs: Nonius COLLECT, Bruker SMART, SXD2001, EVALCCD, Bruker SAINT, using coords of known structure, Bruker SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.74 (3)2.16 (3)2.892 (3)169 (4)
O6—H6···O2ii0.71 (3)2.16 (3)2.858 (3)168 (3)
N1—H1N···O30.87 (3)1.95 (3)2.811 (3)172 (3)
N4—H4N···O20.88 (3)1.93 (3)2.809 (3)175 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.81 (5)1.91 (6)2.729 (3)180.0
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (3_Xray) top
D—H···AD—HH···AD···AD—H···A
O7—D7···N6i0.63 (2)2.10 (2)2.7211 (17)172 (3)
O8—D8···N3i0.794 (19)2.314 (19)3.0812 (18)163 (2)
O10—D10···N30.773 (19)2.07 (2)2.8358 (17)173 (2)
O9—D9···O6ii0.78 (2)2.02 (2)2.7646 (14)159 (2)
N2—D2N···O6iii0.85 (2)1.95 (2)2.8019 (18)171.9 (19)
N1—D1N···O4iv0.84 (2)1.95 (2)2.7889 (18)177.7 (19)
N5—D5N···O3iii0.81 (2)1.96 (2)2.7763 (18)176 (2)
N4—D4N···O1iv0.86 (2)1.91 (2)2.7704 (17)172.6 (19)
N6—D6N···O7i0.80 (4)1.94 (4)2.7211 (17)166 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (3_neutron) top
D—H···AD—HH···AD···AD—H···A
N1—D1···O9i1.017 (11)1.796 (11)2.809 (10)173.6 (9)
N3—D3···O10ii1.054 (12)1.701 (13)2.734 (12)165.5 (16)
N4—D4···O8iii1.027 (11)1.787 (11)2.807 (10)170.9 (16)
N5—D5···O16iv1.059 (7)1.654 (11)2.690 (12)164.6 (7)
N6—D6···O12v1.060 (10)1.681 (11)2.738 (11)175.0 (8)
N7—D7···O5iii1.043 (12)1.708 (12)2.746 (12)173.2 (11)
N9—D9···O2iv1.034 (11)1.736 (12)2.763 (11)172.1 (14)
N10—D10···O3ii1.022 (10)1.804 (11)2.825 (10)177.9 (11)
N11—D11···O6vi1.022 (11)1.821 (13)2.828 (11)167.9 (15)
O13—D13A···N8iv0.968 (12)1.866 (12)2.830 (12)174.1 (12)
O14—D14A···O2iv0.964 (12)1.838 (12)2.756 (13)158.3 (10)
O14—D14B···O6vii0.959 (11)1.866 (12)2.768 (13)155.6 (10)
O15—D15A···N12viii0.945 (11)2.123 (12)3.042 (12)163.6 (11)
O15—D15B···N8i0.946 (12)2.190 (15)3.098 (11)160.4 (13)
O16—D16A···N2ix0.964 (10)1.771 (8)2.733 (12)174.9 (8)
O16—D16A···O3ix0.964 (10)2.705 (11)3.293 (13)119.9 (5)
O16—D16B···O13x0.969 (6)1.895 (7)2.864 (6)178.4 (10)
Symmetry codes: (i) x1/2, y+2, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+1/2, y+2, z; (v) x, y+3/2, z1/2; (vi) x, y+3/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x+1/2, y, z+1; (ix) x, y1/2, z+1/2; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
O8—H8···N1i0.820 (10)2.063 (17)2.860 (4)164 (5)
O9—H9···N1i0.818 (10)2.312 (18)3.103 (4)163 (5)
O10—H10···O6ii0.821 (10)2.08 (3)2.779 (3)143 (5)
N2—H2N···O6iii0.74 (5)2.07 (5)2.813 (5)176 (5)
N3—H3N···O4iv0.74 (5)2.05 (5)2.788 (4)172 (5)
N4—H4N···O1v0.78 (5)1.99 (5)2.765 (4)172 (5)
N5—H5N···O2vi0.80 (5)1.99 (5)2.783 (4)171 (5)
O7—H7···N60.816 (10)1.915 (15)2.720 (4)168 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x1/2, y1/2, z1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+1/2, z+1.
 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: BS5033 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

We thank the EPSRC for funding and the CCLRC for the allocation of neutron beam-time at ISIS.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAoki, S., Shiro, M., Koike, T. & Kimura, E. (2000). J. Am. Chem. Soc. 122, 576–584.  Web of Science CSD CrossRef CAS Google Scholar
First citationArduini, M., Crego-Calama, M., Timmerman, P. & Reinhoudt, D. N. (2003). J. Org. Chem. 68, 1097–1106.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarford, E. D., Jeffrey, D. J., Marshall, J. & Raynor, P. A. (1989). Lavatory Cleansing Blocks Containing Chlorinated Cyanuric Acid Derivatives and Metal Salts. UK Patent 2 217 343.  Google Scholar
First citationBerl, V., Schmutz, M., Krische, M. J., Khoury, R. G. & Lehn, J.-M. (2002). Chem. Eur. J. 8, 1227–1244.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlount, D. H. (2000). Flame Retardant Compositions Utilizing a Mixture of Cyanuric Acid and Cyamelide Compounds. US Patent 6 423 250.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND3. University of Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Hollman, A., Nuber, B. & Zabel, M. (2001). J. Organomet. Chem. 633, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalvello, L. R., Hitchman, M. A., Palacio, F., Pascual, I., Schultz, A. J., Stratemeier, H., Tomas, M., Urriolabeitia, E. P. & Young, D. M. (1999). J. Am. Chem. Soc. 121, 2808–2819.  Web of Science CSD CrossRef CAS Google Scholar
First citationFalvello, L. R., Pascual, I. & Tomas, M. (1995). Inorg. Chim. Acta, 229, 135–142.  CSD CrossRef CAS Web of Science Google Scholar
First citationFalvello, L. R., Pascual, I., Tomas, M. & Urrioldbeitia, E. P. (1997). J. Am. Chem. Soc. 119, 11894–11902.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFelix, O., Crego-Calama, M., Lutyen, I., Timmerman, P. & Reinhoudt, D. N. (2003). Eur. J. Org. Chem. pp. 1463–1474.  Google Scholar
First citationGutmann, M. J. & Wilson, C. C. (2001). SXD-2001. ISIS, Rutherford Appleton Laboratories, Oxfordshire, England.  Google Scholar
First citationHudec, J., Macho, V. & Hudec, J. (1987). Cyanuric Acid as a Plant Growth Regulator. Czech Patent 240 375.  Google Scholar
First citationKeen, D. A., Gutmann, M. J. & Wilson, C. C. (2006). J. Appl. Cryst. 39, 714–722.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMascal, M., Hansen, J., Fallon, P. S., Blake, A. J., Heywood, B. R., Moore, M. H. & Turkenburg, J. P. (1999). Chem. Eur. J. 5, 381–384.  CrossRef CAS Google Scholar
First citationMunakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001a). Polyhedron, 20, 2037–2043.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunakata, M., Wen, M., Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Anahata, M. (2001b). Polyhedron, 20, 2321–2327.  Web of Science CSD CrossRef CAS Google Scholar
First citationNichol, G. S. & Clegg, W. (2006a). Inorg. Chim. Acta. 359, 3474–3480.  CrossRef CAS Google Scholar
First citationNichol, G. S. & Clegg, W. (2006b). Polyhedron, 25, 1043–1056.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationRao, C. N. R., Ranganathan, A., Pedireddi, V. R. & Raju, A. R. (2000). Chem. Commun. pp. 39–40.  Web of Science CSD CrossRef Google Scholar
First citationServer-Carrio, J., Escriva, E. & Folgado, J.-V. (1998). Polyhedron, 17, 1495–1501.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeto, C. T., Mathias, J. P. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1321–1329.  CrossRef CAS Web of Science Google Scholar
First citationSeto, C. T. & Whitesides, G. M. (1993). J. Am. Chem. Soc. 115, 1330–1340.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSiebers, D. L. & Caton, J. A. (1990). Combust. Flame, 79, 31–46.  CrossRef CAS Web of Science Google Scholar
First citationSlade, P. G., Raupach, M. & Radoslovich, E. W. (1973). Acta Cryst. B29, 279–286.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSysoeva, T. F., Branzburg, M. Z., Gurevich, M. Z. & Starikova, Z. A. (1990). Russ. J. Struct. Chem. 31, 90–94.  CAS Google Scholar
First citationWhitesides, G. M., Simanek, E. E., Mathias, J. P., Seto, C. T., Chin, D. N., Mammen, M. & Gordon, D. M. (1995). Acc. Chem. Res. 28, 37–44.  CrossRef CAS Web of Science Google Scholar
First citationWilson, C. C. (2005). Z. Kristallogr. 220, 385–398.  Web of Science CrossRef CAS Google Scholar
First citationZerkowski, J. A., MacDonald, J. C., Seto, C. T., Wierda, D. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 2382–2391.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds