research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Volume 70| Part 5| October 2014| Pages 856-863

Adsorption structure of di­methyl ether on silicalite-1 zeolite determined using single-crystal X-ray diffraction

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, National Defense Academy, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
*Correspondence e-mail: shinjiro@2006.jukuin.keio.ac.jp

(Received 19 March 2014; accepted 8 July 2014; online 1 October 2014)

The adsorption structures of dimethyl ether (DME) on silicalite-1 zeolite (MFI-type) are determined using single-crystal X-ray diffraction. The structure of low-loaded DME-silicalite-1 indicates that all DME molecules are located in the sinusoidal channel, which is the most stable sorption site based on the van der Waals interaction between DME and the framework. The configuration of guest molecules (linear or bent) plays an important role in determining where the stable sorption site is in the pore system of MFI-type zeolites. Bent molecules favor the sinusoidal channel, while linear molecules favor the straight channel. The contribution of DME–DME interactions is considerable in the high-loaded DME-silicalite-1 structure.

1. Introduction

Microporous materials such as zeolites, metal–organic frameworks and carbon nanomaterials are among the most important gas adsorbents. Gas molecules are physisorbed stably in micropores even around room temperature as a result of van der Waals interactions with the surrounding pore walls. The optimization of applications such as gas separation, storage and condensation requires knowledge of the effects of the pore structure on the adsorption behavior. Among the many potential microporous materials, zeolites are one of the most promising because of their high thermal, mechanical and chemical stability. The adsorption properties of various zeolites have been widely investigated. Above all, MFI-type zeolites, e.g. ZSM-5 and silicalite-1, have attracted much interest due to their two kinds of unique channels, a straight channel and a sinusoidal channel. Thermodynamic measurements were carried out on the adsorption of hydrocarbons (Richards & Rees, 1987[Richards, R. E. & Rees, L. V. C. (1987). Langmuir, 3, 335-340.]; Shen & Rees, 1991[Shen, D. & Rees, L. V. (1991). Zeolites, 11, 684-689.]; Choudhary & Mayadevi, 1996[Choudhary, V. R. & Mayadevi, S. (1996). Zeolites, 17, 501-507.]; Millot et al., 1998[Millot, B., Methivier, A. & Jobic, H. (1998). J. Phys. Chem. B, 102, 3210-3215.], 1999[Millot, B., Methivier, A., Jobic, H., Clemençon, I. & Rebours, B. (1999). Langmuir, 15, 2534-2539.]; Sun et al., 1996[Sun, M. S., Talu, O. & Shah, D. B. (1996). J. Phys. Chem. 100, 17276-17280.], 1998[Sun, M. S., Shah, D. B., Xu, H. H. & Talu, O. (1998). J. Phys. Chem. B, 102, 1466-1473.]) and various other gases (Yamazaki et al., 1993[Yamazaki, T., Katoh, M., Ozawa, S. & Ogino, Y. (1993). Mol. Phys. 80, 213-324.]; Wirawan & Creaser, 2006[Wirawan, S. K. & Creaser, D. (2006). Micropor. Mesopor. Mater. 91, 196-205.]; Pope, 1993[Pope, C. G. (1993). J. Chem. Soc. Faraday Trans. 89, 1139-1141.]; Golden & Sircar, 1994[Golden, T. C. & Sircar, S. (1994). J. Colloid Interface Sci. 162, 182-188.]; Ahunbay et al., 2008[Ahunbay, M. G., Karvan, O. & Erdem-Şenatalar, A. (2008). Micropor. Mesopor. Mater. 115, 93-97.]; Zhang et al., 2012[Zhang, K., Lively, R. P., Noel, J. D., Dose, M. E., McCool, B. A., Chance, R. R. & Koros, W. J. (2012). Langmuir, 28, 8664-8673.]). The mobility of guest molecules in the pore system was studied using NMR spectroscopy (Shen et al., 1990[Shen, D., Rees, L. V. C., Caro, J., Bülow, M., Zibrowius, B. & Jobic, H. (1990). J. Chem. Soc. Faraday Trans. 86, 3943-3948.]; Kolokolov et al., 2010[Kolokolov, D. I., Jobic, H. & Stepanov, A. G. (2010). J. Phys. Chem. C, 114, 2958-2966.]; Nishchenko et al., 2012[Nishchenko, A. M., Kolokolov, D. I., Gabrienko, A. A. & Stepanov, A. G. (2012). J. Phys. Chem. C, 116, 8956-8963.]), and computational studies were also conducted to reveal the diffusion behavior (Makrodimitris et al., 2001[Makrodimitris, K., Papadopoulos, G. K. & Theodorou, D. N. (2001). J. Phys. Chem. B, 105, 777-788.]; Krishna et al., 2006[Krishna, R., van Baten, J., García-Pérez, E. & Calero, S. (2006). J. Chem. Phys. Lett. 429, 219-224.]). A wide range of data has been reported, but very few actual adsorption structures have been reported except for aromatic molecules (van Koningsveld et al., 1989[Koningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423-431.]; van Koningsveld, Jansen & Man, 1996[Koningsveld, H. van, Jansen, J. C. & de Man, A. J. M. (1996). Acta Cryst. B52, 131-139.], van Koningsveld, Jansen & van Bekkum, 1996[Koningsveld, H. van, Jansen, J. C. & van Bekkum, H. (1996). Acta Cryst. B52, 140-144.]; van Koningsveld & Jansen, 1996[Koningsveld, H. van & Jansen, J. (1996). Micropor. Mater. 6, 159-167.]; van Koningsveld & Koegler, 1997[Koningsveld, H. van & Koegler, J. H. (1997). Micropor. Mater. 9, 71-81.]; Nishi et al., 2005[Nishi, K., Hidaka, A. & Yokomori, Y. (2005). Acta Cryst. B61, 160-163.]; Kamiya et al., 2011[Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508-515.], 2013[Kamiya, N., Oshiro, T., Tan, S., Nishi, K. & Yokomori, Y. (2013). Micropor. Mesopor. Mater. 169, 168-175.]) and CO2 (Fujiyama et al., 2013[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2013). Z. Kristallogr. 228, 180-186.], 2014a[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014a). Z. Kristallogr. 229, 303-309.],b[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014b). Langmuir, 30, 3749-3753.]). Determining the adsorption structures is important to understand the adsorption properties. Adsorption structures contain valuable information, such as stable sorption sites, the location and orientation of guest molecules, and guest–framework distances.

As mentioned above, many adsorption structures for aromatic molecules on MFI-type zeolites have been determined. These indicate that the intersection is the most stable sorption site based on van der Waals interactions between the guest molecules and the framework. This means that bulky aromatic molecules favor large intersections as the sorption site, rather than the narrow channels. Recently we revealed the adsorption process of CO2 on silicalite-1 using single-crystal X-ray structural analysis (Fujiyama et al., 2014b[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014b). Langmuir, 30, 3749-3753.]). CO2 molecules initially adsorb not at the intersection but in the straight channel through a CO2 framework interaction. It is reasonable that small molecules such as CO2 would favor the narrow channels rather than the large intersections. This can also be explained using an integrated Lennard–Jones potential model by treating the channels as simple cylinders (Tjatjopoulos et al., 1988[Tjatjopoulos, G. J., Feke, D. L. & Mann, J. A. (1988). J. Phys. Chem. 92, 4006-4007.]). However, this model cannot explain why CO2 molecules favor the straight channel rather than the sinusoidal channel. The difference in the pore sizes of the channels is too small to use the simple cylindrical potential model. The pore sizes of the channels are roughly the same, but the precise structures of the channels are quite different. This difference plays an important role and thus it should be considered in any discussion of the adsorption behavior in the channels. The channels are composed of two ten-membered rings (ten Si atoms and ten O atoms) with six O atoms connecting them. As discussed elsewhere (Fujiyama et al., 2013[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2013). Z. Kristallogr. 228, 180-186.]), the ten-membered rings of the straight channel are parallel while those of the sinusoidal channel are angled. Considering the structural difference between the channels, the configuration of guest molecules (linear or bent) should be a key factor in determining which channel is the stable sorption site. The adsorption of guest molecules on silicalite-1 is based on the van der Waals interaction. The distances between the atoms of the guest molecule and the framework are important factors in determining the stability of a sorption site. A guest molecule on a stable sorption site favors those distances that minimize the van der Waals interaction potentials. The linear configuration of the CO2 molecule (O—C—O = 180°) may be compatible with the straight channel incorporating parallel ten-membered rings.

In this study we conducted a structural analysis of silicalite-1 loaded with dimethyl ether as a basic and simple example of guest molecules with a bent configuration (C—O—C = 111.7°). The direct comparison of the results with those of CO2, which is also a basic and simple example of chain molecules with linear configuration, is permitted because they have similar chain lengths and bulkiness. Adsorption structures were determined for low and high loading to discuss the guest–framework and guest–guest interactions separately.

2. Experimental

2.1. Preparation of low- and high-loaded DME-silicalite-1

Silicalite-1 crystals were prepared as reported elsewhere (Kamiya et al., 2008[Kamiya, N., Torii, Y., Sasaki, M., Nishi, K. & Yokomori, Y. (2008). Z. Kristallogr. 222, 551-554.], 2011[Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508-515.]). EDX analysis confirmed that the composition of the crystals was SiO2 with no Al or other cation species. Crystals selected for X-ray structural analysis were pressed by applying a mass of 2.0 g along the crystallographic c axis, while raising the temperature from ambient to 473 K and cooling back to ambient. This heating and cooling cycle was repeated three times for each specimen (Kamiya et al., 2011[Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508-515.]). The crystal was exposed to DME gas at 90 kPa, 298 K for 12 h (low-loaded) or 7 d (high-loaded) in a closed vacuum instrument (Bell jar-type vacuum oven BV-001, Sibata Scientific Technology Ltd).

2.2. Structure analysis of DME-silicalite-1

Single-crystal X-ray diffraction data was collected at room temperature using an APEX II X-ray diffractometer (Bruker AXS) with a CCD detector, Mo Kα radiation, and a graphite monochromator. The collected reflections were corrected for Lorentz polarization factors and the absorption effect. Structural analysis was conducted in the monoclinic twin in P21/n.1.1 as described in the report (Fujiyama et al., 2014a[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014a). Z. Kristallogr. 229, 303-309.]). The structure was solved using a direct method, and difference-Fourier synthesis was used for the remaining atoms (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). Refinement was performed on F2 and Σw(Fo2Fc2)2 was minimized; w = 1/[σ2(Fo2) + (aP)2 + bP], where P = (Fo2 + 2Fc2)/3, and a and b are the weight parameters. Anisotropic displacement parameters were used and no restraints were introduced on the framework atoms. Isotropic displacement parameters were used on the DME atoms and the structures were constrained as rigid groups (C—O = 1.41 Å, C—O—C = 111.7°). The unstable displacement parameters of DME atoms were restrained. In the refinement of the high-loaded DME-silicalite-1, the sums of the occupancy factors of two pairs of disordered DMEs (STR2–INT and SIN1–INT in Fig. 2) were restrained to be 1.0. The full experimental details are given in Table 1[link] and the structures of DME-silicalite-1 are shown in Figs. 1[link] and 2[link]. The structures were drawn using the software VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]).

Table 1
Crystal data and refinement details

  Low-loaded High-loaded
Crystal data
Chemical formula Si24O48·0.96C2O Si24O48·1.82C2O
Mr 1480 1515
Crystal system, space group Monoclinic, P21/n.1.1 Monoclinic, P21/n.1.1
Temperature (K) 296 296
a, b, c (Å) 20.186 (15), 19.990 (14), 13.435 (10) 20.169 (14), 19.951 (14), 13.427 (10)
α (°) 90.012 (13) 90.012 (13)
V3) 5421 (7) 5421 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.67 0.67
Crystal size (mm) 0.16 × 0.11 × 0.08 0.14 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker P4 Bruker P4
Absorption correction Analytical Analytical
Tmin, Tmax 0.899, 0.950 0.912, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 63 627, 13 249, 6100 63 444, 13 209, 5947
Rint 0.091 0.115
(sin θ/λ)max−1) 0.676 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 0.85 0.054, 0.124, 0.83
No. of reflections 13 249 13 209
No. of parameters 664 669
No. of restraints 4 10
Δρmax, Δρmin (e Å−3) 0.74, −0.60 0.63, −0.50
Computer programs: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXTL, SHELXS97, SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 1]
Figure 1
Packing of DME molecules in the low-loaded DME-silicalite-1 (a) along the c axis and (b) along the b axis, with the occupancy factors indicated in parentheses.
[Figure 2]
Figure 2
Packing of DME molecules in the high-loaded DME-silicalite-1 (a) along the c axis and (b) along the b axis, with the occupancy factors indicated in parentheses.

2.3. Thermogravimetric analysis

The amount of DME loading on silicalite-1 was measured thermogravimetrically to validate the occupancy factors of the DME-silicalite-1 structures. Silicalite-1 crystals weighing 10 mg each were exposed to DME gas at 90 kPa, 298 K, in a closed vacuum instrument (Bell jar type vacuum oven BV-001, Shibata Science Co.). The adsorption times used were 3, 6, 24, 48 h and 7 d. The resultant crystals were placed in a Bruker TG–DTA (thermogravimetry–differential thermal analysis) 2000SA sample holder and heated at 2 K min−1 in flowing air. The weight loss of the crystals was measured up to 1000 K. The plot for each sample is shown in Fig. 3[link]. The TG–DTA curves of the adsorption time (7 d) is inserted as a typical example.

[Figure 3]
Figure 3
DME loading on silicalite-1 measured by thermogravimetric analysis (diamonds), along with the DME amounts calculated using the occupancy factors of XRD analysis (double circles). Insert: TG–DTA curves of DME-silicalite-1 (adsorption time 7 d).

3. Results

3.1. Packing of DME in silicalite-1

The packing of DME in low-loaded DME-silicalite-1 is shown in Fig. 1[link] with the occupancy factors in parenthesis. Two independent DME sorption sites are observed in the sinusoidal channel. SIN1–SIN1′ and SIN2–SIN2′ are related to the screw axis 21 along the a axis. SIN1 is located between the two ten-membered rings and SIN2 is located in the middle of one ring. The sum of the occupancy factors is 1.0, which means the sinusoidal channel is fully occupied. The amount of DME calculated using the occupancy factors is 4.0 molecules/u.c. Fig. 2[link] shows the packing of DME in the high-loaded DME-silicalite-1. Four independent sorption sites are observed. SIN1 is also observed in the high-loaded structure. STR1–STR1′ and STR2–STR2′ are related to the symmetric center in the middle of the straight channel, while SIN1–SIN1′ are related to the screw axis 21 along the a axis. C101 of the STR1 is at the symmetric inversion center. The amount of DME calculated using the occupancy factors is 7.3 molecules/u.c. The DME loading measured by thermogravimetric analysis is shown in Fig. 3[link] along with the amount of DME calculated using the occupancy factors of the XRD results. The results agree and thus validate the low- and high-loaded structures. The first weight loss from room temperature to about 400 K in the TG curve is mainly due to DME molecules adsorbed out of the pores. The DME-to-framework internuclear distances in low- and high-loaded DME-silicalite-1 are listed in Tables 2[link] and 3[link]. The numbering of the framework atoms is identical to the single-crystal structure in P21/n.1.1 (van Koningsveld et al., 1990[Koningsveld, H. van, Jansen, J. & van Bekkum, H. (1990). Zeolites, 10, 235-242.]).

Table 2
DME-to-framework internuclear distances (Å) in the low-loaded DME-silicalite-1

SIN1 to framework SIN2 to framework
C301—O25 3.90 C501—O4 3.91
C302—O4 3.42 C502—O21 3.68
O303—O17 3.92 O503—O26 3.90

Table 3
DME-to-framework internuclear distances (Å) in the high-loaded DME-silicalite-1

STR1 to framework    
C101—O47 4.01 C201—O28 3.54
C102—O2 3.76 C202—O11 3.76
O103—O31 3.63 O203—O34 3.71
       
SIN1 to framework INT to framework
C301—O18 3.84 C401—O15 4.02
C302—O31 3.87 C402—O34 4.13
O303—O17 3.59 O403—Si9 4.81

3.2. Framework geometry of DME-silicalite-1

The bond lengths and angles in the framework geometry and the diagonal O—O internuclear distances in the ten-membered rings of the channels are listed in Tables 4[link] and 5[link]. The l/s value in Table 5[link] is the longest distance divided by the shortest distance, which indicates the local strain of the channel. The scatter diagram of 〈d(SiO)〉 (the average of the two Si—O distances of each Si—O—Si bridge) as a function of the Si—O—Si angle is shown in Fig. 4[link]. The absolute value of the slope of the regression line indicates the strain in the whole framework geometry, and the larger values can be attributed to a more stressed structure.

Table 4
Bond lengths (Å) and angles (°) in the framework geometry

  Low-loaded High-loaded
O—Si—O range (°) 106–112 107–113
Average O—Si—O (°) 109 109
     
Si—O range (Å) 1.56–1.62 1.56–1.62
Range of averages of Si—O/SiO4 (Å) 1.59–1.60 1.59–1.60
     
Si—O—Si range (°) 143–179 143–175
Range of averages of Si—O—Si/Si(OSi)4 (°) 149–163 148–161

Table 5
Diagonal O—O internuclear distances (Å) in ten-membered rings

  Low loaded High loaded   Low loaded High loaded
Straight channel
O5—O11 8.08 8.14 O31—O37 8.31 8.39
O1—O20 8.43 8.47 O44—O46 8.40 8.46
O34— O28 8.05 7.95 O8—O2 8.27 8.24
O33—O27 8.32 8.26 O7—O1 8.24 8.14
O22—O21 8.11 8.12 O48—O47 8.07 8.05
l/s 1.05 1.06 l/s 1.04 1.05
           
Sinusoidal channel
O15—O20 8.21 8.18 O18—O17 7.90 7.88
O1—O28 8.14 8.08 O5—O30 8.34 8.46
O2—O27 8.12 8.14 O4—O31 7.86 7.76
O46—O41 8.50 8.56 O43—O44 8.11 8.13
O24—O26 8.16 8.15 O23—O25 8.45 8.42
l/s 1.05 1.06 l/s 1.08 1.09
†Longest distance divided by the shortest distance.
[Figure 4]
Figure 4
Scatter diagram of 〈d(SiO)〉 as a function of the Si—O—Si angle, with the equations of the regression lines.

4. Discussion

4.1. Sorption sites based on DME–framework interaction

The structure of the low-loaded DME-silicalite-1 clearly indicates that the sinusoidal channel is the most stable sorption site of DME based on the DME–framework interaction. The DME–DME interaction in the low-loaded structure is negligibly small because the DME molecules are located separately. The shortest distance between neighboring DMEs is over 6.0 Å (SIN1 to SIN2), which is too long for the DME–DME interaction to work. As expected, DME does not adsorb at the intersection initially. As mentioned in §1[link], it is not surprising that small molecules such as DME favor the narrow channels rather than the large intersection. The precise structures of the framework atoms of the channels should be considered in order to explain why DME molecules favor the sinusoidal channel rather than the straight channel. The Lennard–Jones potential model can be used to estimate the guest–framework interaction by taking into account the precise structures of the channels. The guest–framework interaction potential exhibits additive properties for atoms of the guest molecule. For example, the experimental enthalpy variations of hydrocarbons increase linearly as a function of the carbon number. The increase is approximately 10 kJ mol−1 per additional CH2 group from butane to hexane (Richards & Rees, 1987[Richards, R. E. & Rees, L. V. C. (1987). Langmuir, 3, 335-340.]). Thus the interaction potential between the guest molecule and the framework, Umolecule–framework, can be considered as the sum of the interaction potentials of all atoms of the guest molecule as follows

[{U_{{\rm molecule}{\rm -}{\rm framework}} = \sum _i U_{{\rm atom}{\rm -}{\rm framework}}({x_i},{y_i},{z_i})}, \eqno(1)]

where Uatom–framework (xi, yi, zi) is the interaction potential of atom i at the position (xi, yi, zi) in the coordinate space; i = 1, 2, 3 in the case of a triatomic molecule. The profile of Uatom–framework (x, y, z) in the channels helps to evaluate the stability of the sorption sites from the perspective of the configuration of the guest molecules. The atoms of a molecule on a stable sorption site would be located at positions where the Uatom–framework (x, y, z) is low. The Uatom–framework (x, y, z) can be expressed approximately as the sum of the Lennard–Jones potential between the atom at (x, y, z) and the overall framework atoms. For simplicity, Uatom–framework (x, y, z) is calculated under the following assumptions. The Si atoms of the framework are excluded from the calculation and 426 framework O atoms around the channels are counted. The van der Waals radius of the guest atom, which represents the radii of common atoms such as carbon, nitrogen and oxygen, is taken to be approximately 1.70 Å. Then, Uatom–framework (x, y, z) is given by

[{U_{\rm atom - framework}}(x,y,z) = 4\varepsilon \sum _j {\{ {{(\sigma /{r_j})}^{12}} - {{(\sigma /{r_j})}^6}\} } \eqno(2)]

[{r_j} = \{ (x - x_j)^2 + (y - y_j)^2 + (z - z_j)^2\} ^{1/2}, \eqno(3)]

where (xj, yj, zj) is the position of the framework atom j, σ is the separation at which the potential becomes zero, and [\varepsilon] is the depth of the potential well. The factor 4[\varepsilon]; can be canceled by normalizing Uatom–framework (x, y, z). The value of σ is given by the relationship

[\sigma = (r_{\rm atom}^0 + r_j^0) \times 2^{1/6}, \eqno(4)]

where r0atom and r0j are the van der Waals radii of the atoms of the guest molecule and the framework. r0atom is 1.70 Å, and r0j is 1.52 Å for any j, which is the van der Waals radius of O. The isosurfaces of normalized Uatom–framework (x, y, z) at 0.0, −0.8 and −0.9 are shown in Fig. 5[link](a). The isosurface at 0.0 runs through the entire channel system. There are deep potential wells in the channels and a shallow local minimum is found in the area of the intersection. Figs. 5[link](b) and (c) show the details of the potential wells in the channels. Their depths in the sinusoidal channel and the straight channel are approximately the same, the difference being less than 2%. This stands to reason considering that their pore sizes are roughly the same. However, the configuration of the potential wells is clearly different. As can be seen in the minimum potential paths indicated by the dashed lines, the path of the sinusoidal channel is winding and that of the straight channel is linear. Thus, the sinusoidal and straight channels are more favorable for, respectively, bent and linear molecules to locate their atoms at stable positions. Fig. 6[link] shows the locations of the most stable sorption sites in low-loaded DME-silicalite-1 (this work) and low-loaded CO2-silicalite-1 (Fujiyama et al., 2014b[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014b). Langmuir, 30, 3749-3753.]) with the potential well maps. They are located around the potential wells as expected. The bent molecular chains of DME fit exactly along the bent potential wells. The location of CO2 does not coincide as perfectly with the potential well as that of DME, but CO2 is along the linear minimum potential path, with the O atom on the potential minimum side. The matching between the configurations of the guest molecule and the potential wells of the channels determines which channel is the stable sorption site for the guest molecule. Bent molecules favor the sinusoidal channel, while linear molecules favor the straight channel.

[Figure 5]
Figure 5
Profile of normalized Uatom–framework. (a) Overview of the profile and the framework structure of the channels. Isosurfaces are at −0.9, −0.8 and 0.0. Contour maps of the (b) sinusoidal and (c) straight channels. The contour lines are −0.95 to 0.00 in increments of 0.05. Minimum potential paths of each channel are indicated by dashed lines.
[Figure 6]
Figure 6
Structures of guest molecules with Uatom–framework maps. (a) SIN1 and SIN2 of low-loaded DME. (b) STR2 of low-loaded CO2 (Fujiyama et al., 2014b[Fujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014b). Langmuir, 30, 3749-3753.]).

4.2. Adsorption process of DME on silicalite-1

The DME molecules in the low-loaded structure undergo rearrangement in the high-loaded structure due to the DME–DME interaction. Fig. 7[link] illustrates the adsorption process of DME on silicalite-1. The initial adsorption behavior is governed by the DME–framework interaction. Up to a DME loading of 4 molecules/u.c., all DME molecules are located in the sinusoidal channel as a result of the DME–framework interaction. The additional DME molecules adsorb in the straight channel and/or at the intersection where the loading is over 4 molecules/u.c. Then the DME–DME interaction arises and some of the DME molecules in the sinusoidal channel move to the straight channel or the intersection. In the high-loaded DME-silicalite-1 structure, a considerable amount of DME is located at the intersection. The occupancy factor at the intersection (0.6) is larger than in the channels (0.4). The large intersection is less stable than the narrow channels for small molecules such as DME according to the DME–framework interaction. As listed in Table 3[link], the DME–framework distances of INT are larger than 4.0 Å, which is too long to minimize the DME–framework interaction potentials (see Table 2[link]). Thus, DME molecules at INT are stabilized by the DME–DME interaction, which comprises a dipole–dipole interaction as well as a van der Waals interaction. The orientation of DME molecules at the large intersection has a high degree of freedom, and thus the dipole–dipole interactions in the high-loaded structure are optimized. The adsorption behavior of CO2 on silicalite-1 shows the same tendency. A large number of CO2 molecules are located at the large intersection stabilized by the CO2–CO2 interaction in the high-loaded structure.

[Figure 7]
Figure 7
Adsorption process of DME on silicalite-1. (a) Every DME molecule is initially located in the sinusoidal channel. (b) The sinusoidal channel is fully occupied (low-loaded structure). (c) Under equilibrium conditions at 90 kPa, 298 K (high-loaded structure).

4.3. Strain in silicalite-1 framework loaded with DME

The results relevant to the entire framework geometry in Table 4[link] and Fig. 4[link] and the local strain in the channels in Table 5[link] are identical to those for monoclinic single crystals with no guest molecules in their pores (van Koningsveld et al., 1990[Koningsveld, H. van, Jansen, J. & van Bekkum, H. (1990). Zeolites, 10, 235-242.]; Kamiya et al., 2010[Kamiya, N., Yano, M., Matsuo, H., Iwama, W., Nishi, K. & Yokomori, Y. (2010). Z. Kristallogr. 225, 139-145.]). Unlike bulky aromatic compounds, DME molecules and CO2 are too small to exert any influence on the framework geometry. The framework geometry loaded with aromatic compounds is orthorhombic, and the absolute values of the slopes of the regression lines are around 0.5. The channels are also distorted with the bulky aromatic molecules in them and their l/s values are over 1.2.

5. Conclusion

The structures of low- and high-loaded DME-silicalite-1 were determined. The sinusoidal channel is found to be the most stable sorption site for DME molecules. Up to a DME loading of 4 molecules/u.c., all DME molecules are located in the sinusoidal channel as a result of the DME–framework interaction. The configuration of the guest molecules (linear or bent) plays an important role in determining which channel is the most stable sorption site based on the guest–framework interaction. Linear molecules favor the straight channel, while bent molecules favor the sinusoidal channel. In the high-loaded structure, a large amount of DME is located at the intersection owing to the DME–DME interaction.

Recently, we have reported the adsorption structures of C4–C6 hydrocarbons (Fujiyama, Seino et al., 2014[Fujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839-15845.]). Linear 2-butyne prefers the straight channel, and bent n-butane prefers the sinusoidal channel as expected. Further investigations about other chain molecules are needed to reveal the adsorption behavior in the MFI-type zeolites.

Supporting information


Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

For both compounds, data collection: Bruker XSCANS; cell refinement: Bruker XSCANS; data reduction: Bruker SHELXTL; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(I) top
Crystal data top
C1.9H0O49Si24Z = 4
Mr = 1480F(000) = 2984
Monoclinic, P21/n.1.1Dx = 1.823 Mg m3
a = 20.186 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 19.990 (14) ŵ = 0.67 mm1
c = 13.435 (10) ÅT = 296 K
β = 90°0.16 × 0.11 × 0.08 mm
V = 5421 (7) Å3
Data collection top
Bruker P4
diffractometer
13249 independent reflections
Radiation source: fine-focus sealed tube6100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ω scansθmax = 28.7°, θmin = 1.4°
Absorption correction: analytical
?
h = 1818
Tmin = 0.899, Tmax = 0.950k = 2725
63627 measured reflectionsl = 2625
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.049Secondary atom site location: difference Fourier map
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
13249 reflectionsΔρmax = 0.74 e Å3
664 parametersΔρmin = 0.60 e Å3
Crystal data top
C1.9H0O49Si24V = 5421 (7) Å3
Mr = 1480Z = 4
Monoclinic, P21/n.1.1Mo Kα radiation
a = 20.186 (15) ŵ = 0.67 mm1
b = 19.990 (14) ÅT = 296 K
c = 13.435 (10) Å0.16 × 0.11 × 0.08 mm
β = 90°
Data collection top
Bruker P4
diffractometer
13249 independent reflections
Absorption correction: analytical
?
6100 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.950Rint = 0.091
63627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049664 parameters
wR(F2) = 0.1244 restraints
S = 0.85Δρmax = 0.74 e Å3
13249 reflectionsΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C3010.6565 (18)0.2387 (14)0.252 (2)0.252 (16)*0.588 (16)
C3020.656 (2)0.3512 (14)0.2786 (10)0.85 (7)*0.588 (16)
O3030.6056 (12)0.2994 (17)0.2454 (16)0.43 (2)*0.588 (16)
C5010.6510 (14)0.3580 (14)0.2495 (11)0.192 (18)*0.376 (16)
C5020.749 (3)0.4502 (12)0.273 (3)0.31 (3)*0.376 (16)
O5030.656 (2)0.4277 (14)0.249 (2)0.42 (3)*0.376 (16)
Si10.32629 (15)0.42105 (9)0.05646 (12)0.0150 (4)
Si20.17410 (16)0.31099 (11)0.02991 (9)0.0182 (5)
Si30.04450 (15)0.27935 (10)0.06211 (11)0.0183 (5)
Si40.03324 (14)0.12346 (10)0.06285 (11)0.0168 (5)
Si50.17951 (16)0.07484 (10)0.02815 (9)0.0150 (5)
Si60.32031 (15)0.19164 (9)0.05674 (11)0.0176 (4)
Si70.32194 (17)0.42440 (10)0.17170 (10)0.0158 (5)
Si80.17912 (15)0.31012 (10)0.12764 (10)0.0168 (4)
Si90.03306 (15)0.27396 (10)0.17525 (10)0.0164 (5)
Si100.03039 (16)0.11977 (10)0.17528 (10)0.0165 (5)
Si110.18000 (16)0.07124 (9)0.12969 (11)0.0160 (4)
Si120.31753 (16)0.18889 (10)0.16818 (10)0.0160 (4)
Si130.33621 (14)0.42665 (9)0.55812 (12)0.0162 (4)
Si140.19045 (15)0.31066 (11)0.52809 (9)0.0165 (4)
Si150.02870 (14)0.27843 (9)0.56155 (11)0.0158 (4)
Si160.03074 (14)0.12182 (10)0.56371 (11)0.0155 (4)
Si170.18216 (16)0.07080 (9)0.52796 (10)0.0147 (5)
Si180.32245 (15)0.18668 (9)0.56182 (11)0.0161 (4)
Si190.31886 (17)0.42362 (10)0.32790 (10)0.0167 (5)
Si200.17629 (15)0.31102 (10)0.36955 (10)0.0170 (4)
Si210.03864 (15)0.27354 (10)0.33052 (10)0.0165 (5)
Si220.03429 (16)0.11899 (10)0.32915 (10)0.0179 (5)
Si230.17949 (17)0.07128 (9)0.36993 (11)0.0164 (4)
Si240.30662 (15)0.19109 (10)0.32234 (9)0.0169 (4)
O10.2295 (4)0.3755 (2)0.0565 (3)0.0382 (14)
O20.0655 (3)0.3081 (2)0.0639 (3)0.0301 (12)
O30.0419 (4)0.2008 (2)0.0527 (3)0.0469 (14)
O40.0813 (4)0.1029 (2)0.0647 (3)0.0322 (13)
O50.2737 (3)0.1189 (2)0.0494 (3)0.0299 (13)
O60.2339 (4)0.2456 (2)0.0488 (3)0.0411 (15)
O70.2331 (4)0.3752 (3)0.1556 (3)0.0406 (17)
O80.0719 (4)0.3050 (3)0.1631 (2)0.0338 (13)
O90.0291 (4)0.1962 (3)0.1555 (2)0.0322 (14)
O100.0788 (4)0.0907 (3)0.1669 (3)0.0378 (15)
O110.2676 (4)0.1194 (3)0.1519 (2)0.0297 (14)
O120.2448 (4)0.2462 (3)0.1434 (3)0.0439 (17)
O130.1637 (4)0.3154 (3)0.0494 (3)0.0508 (16)
O140.1623 (4)0.0776 (2)0.0511 (3)0.0317 (12)
O150.3826 (4)0.4150 (3)0.1265 (3)0.0368 (15)
O160.3968 (5)0.3993 (3)0.0038 (3)0.0470 (17)
O170.4213 (4)0.4004 (3)0.1329 (3)0.0289 (13)
O180.3676 (3)0.1973 (3)0.1295 (3)0.0288 (12)
O190.4054 (4)0.2028 (3)0.0017 (2)0.0383 (15)
O200.4202 (4)0.1958 (3)0.1290 (3)0.0316 (13)
O210.2036 (4)0.0011 (2)0.0525 (3)0.0271 (12)
O220.2103 (4)0.0033 (2)0.1483 (3)0.0265 (13)
O230.3459 (3)0.42283 (18)0.2503 (3)0.0337 (10)
O240.3423 (3)0.19562 (18)0.2462 (3)0.0306 (9)
O250.0610 (3)0.28320 (16)0.2520 (3)0.0270 (9)
O260.0642 (2)0.11064 (16)0.2513 (3)0.0240 (9)
O270.2448 (4)0.3763 (2)0.5544 (3)0.0393 (15)
O280.0781 (3)0.3113 (2)0.5543 (3)0.0293 (12)
O290.0162 (4)0.1995 (2)0.5645 (3)0.0453 (15)
O300.0731 (3)0.0862 (2)0.5571 (3)0.0348 (13)
O310.2615 (4)0.1190 (2)0.5617 (3)0.0298 (13)
O320.2468 (4)0.2479 (2)0.5576 (3)0.0363 (14)
O330.2256 (4)0.3766 (3)0.3413 (3)0.0306 (15)
O340.0597 (4)0.3118 (2)0.3527 (2)0.0315 (13)
O350.0248 (4)0.1960 (2)0.3475 (2)0.0327 (14)
O360.0688 (4)0.0842 (3)0.3437 (3)0.0467 (17)
O370.2588 (4)0.1202 (3)0.3347 (3)0.0399 (16)
O380.2260 (4)0.2471 (3)0.3350 (3)0.0387 (14)
O390.1921 (4)0.3063 (3)0.4489 (3)0.0512 (15)
O400.1837 (4)0.0823 (2)0.4492 (3)0.0384 (13)
O410.3911 (4)0.4193 (3)0.6285 (3)0.0349 (15)
O420.4141 (4)0.4118 (3)0.4987 (3)0.0344 (14)
O430.4148 (4)0.3975 (3)0.3682 (3)0.0338 (14)
O440.3863 (4)0.1894 (2)0.6302 (2)0.0269 (12)
O450.3958 (4)0.1875 (3)0.4985 (3)0.0351 (14)
O460.0972 (4)0.2977 (3)0.1307 (3)0.0423 (16)
O470.2090 (4)0.0041 (2)0.5455 (3)0.0245 (13)
O480.2099 (4)0.0032 (3)0.3520 (3)0.0325 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0191 (10)0.0114 (9)0.0145 (9)0.0021 (8)0.0005 (10)0.0012 (9)
Si20.0211 (11)0.0154 (11)0.0181 (10)0.0026 (10)0.0015 (8)0.0002 (9)
Si30.0212 (11)0.0163 (10)0.0173 (11)0.0010 (8)0.0002 (9)0.0018 (9)
Si40.0184 (11)0.0166 (11)0.0153 (11)0.0008 (8)0.0020 (11)0.0005 (9)
Si50.0178 (11)0.0135 (11)0.0138 (10)0.0006 (9)0.0016 (9)0.0007 (8)
Si60.0217 (10)0.0143 (9)0.0167 (9)0.0046 (9)0.0031 (10)0.0006 (10)
Si70.0211 (12)0.0148 (11)0.0114 (11)0.0027 (9)0.0026 (10)0.0008 (8)
Si80.0169 (10)0.0168 (10)0.0168 (10)0.0017 (10)0.0003 (9)0.0005 (10)
Si90.0209 (12)0.0170 (11)0.0113 (11)0.0014 (9)0.0012 (9)0.0029 (8)
Si100.0227 (12)0.0168 (11)0.0102 (10)0.0007 (9)0.0003 (10)0.0005 (8)
Si110.0209 (11)0.0130 (11)0.0141 (10)0.0001 (9)0.0025 (11)0.0014 (9)
Si120.0191 (10)0.0165 (10)0.0124 (9)0.0007 (9)0.0023 (8)0.0010 (8)
Si130.0205 (11)0.0139 (10)0.0141 (10)0.0003 (8)0.0002 (10)0.0016 (9)
Si140.0180 (10)0.0164 (11)0.0152 (9)0.0002 (9)0.0020 (8)0.0017 (9)
Si150.0207 (11)0.0133 (10)0.0135 (10)0.0018 (8)0.0022 (9)0.0005 (9)
Si160.0158 (11)0.0148 (10)0.0159 (11)0.0001 (8)0.0008 (10)0.0001 (9)
Si170.0182 (11)0.0101 (11)0.0159 (11)0.0027 (9)0.0002 (9)0.0010 (8)
Si180.0194 (10)0.0145 (10)0.0143 (10)0.0024 (9)0.0007 (9)0.0009 (9)
Si190.0213 (12)0.0142 (11)0.0144 (11)0.0003 (9)0.0001 (10)0.0008 (8)
Si200.0182 (10)0.0165 (10)0.0163 (9)0.0008 (10)0.0020 (9)0.0007 (10)
Si210.0191 (12)0.0173 (11)0.0130 (11)0.0004 (9)0.0010 (9)0.0014 (8)
Si220.0210 (12)0.0169 (11)0.0158 (11)0.0003 (9)0.0008 (10)0.0019 (9)
Si230.0212 (11)0.0120 (11)0.0161 (11)0.0004 (9)0.0012 (11)0.0009 (9)
Si240.0206 (10)0.0167 (10)0.0134 (9)0.0028 (10)0.0044 (8)0.0011 (8)
O10.034 (3)0.022 (3)0.059 (4)0.007 (2)0.004 (3)0.014 (3)
O20.019 (3)0.040 (3)0.031 (3)0.007 (3)0.001 (2)0.004 (3)
O30.064 (4)0.013 (3)0.064 (4)0.003 (3)0.005 (4)0.007 (3)
O40.019 (3)0.050 (3)0.028 (3)0.007 (2)0.003 (2)0.009 (3)
O50.020 (3)0.014 (3)0.055 (4)0.003 (2)0.006 (3)0.002 (3)
O60.031 (3)0.019 (3)0.073 (4)0.010 (2)0.012 (3)0.004 (3)
O70.041 (4)0.024 (3)0.057 (4)0.017 (3)0.005 (3)0.005 (3)
O80.019 (3)0.040 (3)0.042 (3)0.007 (3)0.014 (2)0.006 (3)
O90.046 (4)0.023 (3)0.028 (3)0.003 (3)0.000 (3)0.000 (3)
O100.031 (3)0.053 (4)0.030 (3)0.018 (3)0.014 (3)0.014 (3)
O110.030 (3)0.021 (3)0.039 (3)0.005 (2)0.012 (2)0.010 (2)
O120.041 (4)0.026 (3)0.065 (4)0.018 (3)0.006 (3)0.003 (3)
O130.065 (4)0.073 (4)0.014 (3)0.005 (3)0.005 (3)0.001 (3)
O140.037 (3)0.039 (3)0.019 (3)0.006 (2)0.005 (3)0.002 (3)
O150.045 (4)0.054 (4)0.012 (3)0.025 (3)0.013 (3)0.001 (3)
O160.047 (4)0.070 (4)0.024 (3)0.020 (3)0.019 (3)0.002 (3)
O170.026 (3)0.043 (3)0.017 (3)0.004 (3)0.006 (3)0.009 (3)
O180.024 (3)0.049 (3)0.013 (2)0.000 (3)0.010 (2)0.003 (3)
O190.035 (3)0.059 (4)0.021 (3)0.011 (3)0.012 (3)0.008 (3)
O200.024 (3)0.045 (3)0.026 (3)0.003 (3)0.008 (2)0.011 (3)
O210.029 (3)0.016 (3)0.036 (3)0.010 (2)0.005 (3)0.006 (3)
O220.025 (3)0.016 (3)0.039 (3)0.003 (3)0.001 (3)0.006 (2)
O230.039 (3)0.050 (3)0.0115 (18)0.007 (2)0.000 (3)0.002 (3)
O240.037 (2)0.039 (2)0.015 (2)0.016 (2)0.004 (3)0.004 (3)
O250.034 (2)0.031 (2)0.0160 (19)0.0066 (17)0.001 (3)0.003 (3)
O260.024 (2)0.034 (2)0.0143 (18)0.0030 (17)0.007 (3)0.001 (3)
O270.033 (3)0.024 (3)0.061 (4)0.018 (2)0.005 (3)0.006 (3)
O280.014 (2)0.025 (3)0.049 (3)0.003 (2)0.013 (3)0.006 (3)
O290.061 (4)0.014 (3)0.061 (4)0.004 (2)0.007 (3)0.000 (3)
O300.018 (3)0.038 (3)0.048 (3)0.012 (2)0.013 (3)0.005 (3)
O310.034 (3)0.023 (3)0.032 (3)0.013 (2)0.011 (3)0.006 (3)
O320.039 (3)0.024 (3)0.047 (3)0.013 (2)0.008 (3)0.013 (3)
O330.019 (3)0.017 (3)0.056 (4)0.008 (2)0.008 (3)0.009 (3)
O340.021 (3)0.021 (3)0.053 (3)0.001 (2)0.012 (2)0.004 (2)
O350.059 (4)0.011 (3)0.029 (3)0.007 (3)0.008 (3)0.000 (2)
O360.036 (4)0.047 (4)0.057 (4)0.025 (3)0.021 (3)0.004 (3)
O370.056 (4)0.025 (3)0.039 (3)0.015 (3)0.020 (3)0.000 (3)
O380.038 (3)0.024 (3)0.055 (3)0.011 (3)0.004 (3)0.010 (3)
O390.049 (3)0.091 (4)0.014 (2)0.003 (3)0.002 (3)0.004 (3)
O400.064 (4)0.037 (3)0.015 (3)0.009 (3)0.002 (3)0.001 (3)
O410.048 (4)0.035 (3)0.022 (3)0.010 (3)0.010 (3)0.001 (3)
O420.031 (3)0.048 (3)0.024 (3)0.009 (3)0.007 (3)0.008 (3)
O430.024 (3)0.056 (4)0.021 (3)0.011 (3)0.010 (3)0.006 (3)
O440.034 (3)0.024 (3)0.023 (3)0.005 (2)0.013 (2)0.001 (2)
O450.044 (3)0.034 (3)0.028 (3)0.000 (3)0.016 (3)0.006 (2)
O460.037 (3)0.069 (4)0.021 (3)0.004 (3)0.014 (3)0.011 (3)
O470.028 (3)0.014 (3)0.032 (3)0.002 (2)0.003 (3)0.007 (2)
O480.033 (3)0.019 (3)0.046 (4)0.000 (3)0.001 (3)0.007 (2)
Geometric parameters (Å, º) top
C301—O3031.4097Si14—O281.598 (5)
C302—O3031.4097Si14—O271.601 (5)
C501—O5031.4084Si15—O281.587 (5)
C502—O5031.4084Si15—O19iii1.589 (5)
Si1—O11.593 (5)Si15—O20iii1.600 (5)
Si1—O161.593 (6)Si15—O291.603 (5)
Si1—O151.596 (5)Si16—O301.575 (5)
Si1—O47i1.599 (5)Si16—O291.580 (5)
Si2—O11.591 (5)Si16—O17iii1.591 (5)
Si2—O61.591 (5)Si16—O16iii1.602 (6)
Si2—O131.594 (6)Si17—O401.591 (6)
Si2—O21.610 (5)Si17—O311.593 (5)
Si3—O461.586 (5)Si17—O471.593 (5)
Si3—O21.588 (5)Si17—O301.607 (5)
Si3—O31.598 (5)Si18—O311.594 (5)
Si3—O45ii1.600 (5)Si18—O321.602 (5)
Si4—O31.578 (5)Si18—O451.605 (5)
Si4—O42ii1.588 (5)Si18—O441.615 (5)
Si4—O41.595 (5)Si19—O231.594 (6)
Si4—O43ii1.602 (5)Si19—O331.594 (5)
Si5—O211.599 (5)Si19—O22i1.598 (5)
Si5—O141.601 (6)Si19—O431.609 (5)
Si5—O51.604 (5)Si20—O331.585 (5)
Si5—O41.611 (5)Si20—O341.603 (5)
Si6—O181.591 (5)Si20—O391.604 (5)
Si6—O61.599 (5)Si20—O381.608 (5)
Si6—O191.602 (5)Si21—O341.592 (5)
Si6—O51.604 (5)Si21—O18iii1.604 (5)
Si7—O71.586 (6)Si21—O251.610 (6)
Si7—O48i1.595 (5)Si21—O351.612 (5)
Si7—O231.603 (6)Si22—O361.580 (6)
Si7—O171.618 (5)Si22—O15iii1.582 (5)
Si8—O131.581 (5)Si22—O351.602 (5)
Si8—O121.595 (5)Si22—O261.616 (6)
Si8—O71.601 (6)Si23—O481.598 (6)
Si8—O81.608 (5)Si23—O361.598 (6)
Si9—O81.562 (5)Si23—O401.601 (6)
Si9—O44ii1.590 (5)Si23—O371.614 (6)
Si9—O251.591 (6)Si24—O381.587 (5)
Si9—O91.620 (5)Si24—O371.588 (6)
Si10—O101.589 (6)Si24—O241.598 (6)
Si10—O91.592 (5)Si24—O46iv1.614 (5)
Si10—O261.596 (6)O15—Si22v1.582 (5)
Si10—O41ii1.615 (6)O16—Si16v1.601 (6)
Si11—O111.589 (5)O17—Si16v1.591 (5)
Si11—O141.595 (6)O18—Si21v1.604 (5)
Si11—O101.599 (6)O19—Si15v1.589 (5)
Si11—O221.602 (5)O20—Si15v1.600 (5)
Si12—O111.589 (5)O21—Si13vi1.598 (4)
Si12—O201.592 (5)O22—Si19vi1.598 (5)
Si12—O121.593 (5)O41—Si10iv1.615 (6)
Si12—O241.601 (6)O42—Si4iv1.588 (5)
Si13—O411.595 (6)O43—Si4iv1.602 (5)
Si13—O271.596 (5)O44—Si9iv1.590 (5)
Si13—O21i1.599 (4)O45—Si3iv1.600 (5)
Si13—O421.611 (6)O46—Si24ii1.614 (5)
Si14—O391.585 (5)O47—Si1vi1.599 (5)
Si14—O321.590 (5)O48—Si7vi1.595 (5)
C302—O303—C301111.6O17iii—Si16—O16iii109.2 (3)
C502—O503—C501111.6O40—Si17—O31108.8 (3)
O1—Si1—O16109.1 (3)O40—Si17—O47110.6 (3)
O1—Si1—O15110.0 (3)O31—Si17—O47109.6 (3)
O16—Si1—O15111.1 (3)O40—Si17—O30110.0 (3)
O1—Si1—O47i107.7 (3)O31—Si17—O30109.8 (3)
O16—Si1—O47i109.4 (3)O47—Si17—O30108.0 (3)
O15—Si1—O47i109.5 (3)O31—Si18—O32109.6 (3)
O1—Si2—O6111.3 (3)O31—Si18—O45108.9 (3)
O1—Si2—O13109.1 (3)O32—Si18—O45109.9 (3)
O6—Si2—O13109.1 (3)O31—Si18—O44107.7 (3)
O1—Si2—O2108.2 (3)O32—Si18—O44110.8 (3)
O6—Si2—O2109.1 (3)O45—Si18—O44110.0 (3)
O13—Si2—O2110.0 (3)O23—Si19—O33109.6 (3)
O46—Si3—O2108.1 (3)O23—Si19—O22i110.8 (3)
O46—Si3—O3110.1 (3)O33—Si19—O22i107.9 (3)
O2—Si3—O3110.2 (3)O23—Si19—O43107.5 (3)
O46—Si3—O45ii109.4 (3)O33—Si19—O43110.6 (3)
O2—Si3—O45ii109.3 (3)O22i—Si19—O43110.5 (3)
O3—Si3—O45ii109.7 (3)O33—Si20—O34109.0 (3)
O3—Si4—O42ii108.1 (3)O33—Si20—O39110.4 (3)
O3—Si4—O4109.4 (3)O34—Si20—O39109.8 (3)
O42ii—Si4—O4109.4 (3)O33—Si20—O38110.1 (3)
O3—Si4—O43ii109.9 (3)O34—Si20—O38108.9 (3)
O42ii—Si4—O43ii110.7 (3)O39—Si20—O38108.8 (3)
O4—Si4—O43ii109.3 (3)O34—Si21—O18iii109.6 (3)
O21—Si5—O14111.3 (3)O34—Si21—O25111.5 (3)
O21—Si5—O5106.0 (3)O18iii—Si21—O25107.1 (3)
O14—Si5—O5110.8 (3)O34—Si21—O35108.5 (3)
O21—Si5—O4110.8 (3)O18iii—Si21—O35110.0 (3)
O14—Si5—O4108.5 (3)O25—Si21—O35110.1 (2)
O5—Si5—O4109.4 (3)O36—Si22—O15iii108.8 (3)
O18—Si6—O6109.3 (3)O36—Si22—O35108.6 (3)
O18—Si6—O19109.4 (3)O15iii—Si22—O35110.4 (3)
O6—Si6—O19110.8 (3)O36—Si22—O26110.4 (3)
O18—Si6—O5107.8 (3)O15iii—Si22—O26108.6 (3)
O6—Si6—O5109.4 (3)O35—Si22—O26110.0 (2)
O19—Si6—O5110.1 (3)O48—Si23—O36108.5 (3)
O7—Si7—O48i108.2 (3)O48—Si23—O40110.1 (3)
O7—Si7—O23109.7 (3)O36—Si23—O40109.5 (3)
O48i—Si7—O23111.3 (3)O48—Si23—O37108.0 (3)
O7—Si7—O17109.6 (3)O36—Si23—O37111.8 (3)
O48i—Si7—O17110.7 (3)O40—Si23—O37108.9 (3)
O23—Si7—O17107.3 (3)O38—Si24—O37109.9 (3)
O13—Si8—O12108.8 (3)O38—Si24—O24108.4 (3)
O13—Si8—O7110.4 (3)O37—Si24—O24108.8 (3)
O12—Si8—O7110.1 (3)O38—Si24—O46iv110.7 (3)
O13—Si8—O8108.8 (3)O37—Si24—O46iv111.1 (3)
O12—Si8—O8110.9 (3)O24—Si24—O46iv107.8 (3)
O7—Si8—O8107.7 (3)Si2—O1—Si1148.7 (4)
O8—Si9—O44ii109.9 (3)Si3—O2—Si2147.9 (4)
O8—Si9—O25108.5 (3)Si4—O3—Si3165.5 (5)
O44ii—Si9—O25109.3 (3)Si4—O4—Si5150.6 (4)
O8—Si9—O9108.7 (3)Si5—O5—Si6147.1 (3)
O44ii—Si9—O9109.6 (3)Si2—O6—Si6162.7 (4)
O25—Si9—O9110.9 (2)Si7—O7—Si8157.7 (4)
O10—Si10—O9108.7 (3)Si9—O8—Si8154.6 (4)
O10—Si10—O26108.7 (3)Si10—O9—Si9151.4 (3)
O9—Si10—O26110.6 (2)Si10—O10—Si11157.7 (4)
O10—Si10—O41ii111.2 (3)Si12—O11—Si11155.5 (4)
O9—Si10—O41ii109.6 (3)Si12—O12—Si8171.3 (4)
O26—Si10—O41ii108.0 (3)Si8—O13—Si2165.6 (4)
O11—Si11—O14109.6 (3)Si11—O14—Si5161.9 (3)
O11—Si11—O10110.5 (3)Si22v—O15—Si1149.3 (4)
O14—Si11—O10108.2 (3)Si1—O16—Si16v179.0 (5)
O11—Si11—O22108.8 (3)Si16v—O17—Si7146.7 (4)
O14—Si11—O22110.1 (3)Si6—O18—Si21v142.7 (4)
O10—Si11—O22109.8 (3)Si15v—O19—Si6167.6 (4)
O11—Si12—O20110.0 (3)Si12—O20—Si15v144.6 (4)
O11—Si12—O12108.6 (3)Si13vi—O21—Si5146.0 (4)
O20—Si12—O12108.4 (3)Si19vi—O22—Si11150.9 (4)
O11—Si12—O24111.3 (3)Si19—O23—Si7155.2 (3)
O20—Si12—O24107.0 (3)Si24—O24—Si12149.4 (3)
O12—Si12—O24111.6 (3)Si9—O25—Si21151.9 (2)
O41—Si13—O27109.7 (3)Si10—O26—Si22146.5 (2)
O41—Si13—O21i107.7 (3)Si13—O27—Si14153.3 (4)
O27—Si13—O21i109.8 (3)Si15—O28—Si14151.6 (3)
O41—Si13—O42109.5 (3)Si16—O29—Si15166.7 (4)
O27—Si13—O42110.3 (3)Si16—O30—Si17157.9 (4)
O21i—Si13—O42109.9 (3)Si17—O31—Si18150.2 (4)
O39—Si14—O32108.6 (3)Si14—O32—Si18159.4 (4)
O39—Si14—O28110.0 (3)Si20—O33—Si19152.3 (4)
O32—Si14—O28109.5 (3)Si21—O34—Si20149.8 (3)
O39—Si14—O27111.6 (3)Si22—O35—Si21152.2 (3)
O32—Si14—O27108.7 (3)Si22—O36—Si23161.5 (4)
O28—Si14—O27108.4 (3)Si24—O37—Si23152.4 (4)
O28—Si15—O19iii109.3 (3)Si24—O38—Si20157.5 (4)
O28—Si15—O20iii109.2 (3)Si14—O39—Si20169.3 (4)
O19iii—Si15—O20iii110.7 (3)Si17—O40—Si23163.4 (3)
O28—Si15—O29108.9 (3)Si13—O41—Si10iv149.1 (4)
O19iii—Si15—O29109.0 (3)Si4iv—O42—Si13160.7 (4)
O20iii—Si15—O29109.7 (3)Si4iv—O43—Si19150.0 (4)
O30—Si16—O29110.2 (3)Si9iv—O44—Si18149.0 (4)
O30—Si16—O17iii107.7 (3)Si3iv—O45—Si18155.4 (4)
O29—Si16—O17iii108.7 (3)Si3—O46—Si24ii153.2 (4)
O30—Si16—O16iii110.7 (3)Si17—O47—Si1vi149.3 (4)
O29—Si16—O16iii110.3 (3)Si7vi—O48—Si23149.3 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2.
(II) top
Crystal data top
C3.6H0O49.8Si24Z = 4
Mr = 1515F(000) = 2952
Monoclinic, P21/n.1.1Dx = 1.810 Mg m3
a = 20.169 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 19.951 (14) ŵ = 0.67 mm1
c = 13.427 (10) ÅT = 296 K
β = 90°0.14 × 0.12 × 0.08 mm
V = 5403 (7) Å3
Data collection top
Bruker P4
diffractometer
13209 independent reflections
Radiation source: fine-focus sealed tube5947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ω scansθmax = 28.7°, θmin = 1.4°
Absorption correction: analytical
?
h = 1817
Tmin = 0.912, Tmax = 0.951k = 2727
63444 measured reflectionsl = 2626
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.054Secondary atom site location: difference Fourier map
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max = 0.001
13209 reflectionsΔρmax = 0.63 e Å3
669 parametersΔρmin = 0.50 e Å3
Crystal data top
C3.6H0O49.8Si24V = 5403 (7) Å3
Mr = 1515Z = 4
Monoclinic, P21/n.1.1Mo Kα radiation
a = 20.169 (14) ŵ = 0.67 mm1
b = 19.951 (14) ÅT = 296 K
c = 13.427 (10) Å0.14 × 0.12 × 0.08 mm
β = 90°
Data collection top
Bruker P4
diffractometer
13209 independent reflections
Absorption correction: analytical
?
5947 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.951Rint = 0.115
63444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054669 parameters
wR(F2) = 0.12410 restraints
S = 0.83Δρmax = 0.63 e Å3
13209 reflectionsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1010.00000.50001.00000.197 (17)*0.78 (2)
C1020.0001 (3)0.4842 (5)0.88432 (7)0.32 (4)*0.392 (12)
O1030.0071 (2)0.5307 (3)0.93677 (14)0.39 (3)*0.392 (12)
C2010.9837 (11)0.4750 (10)0.5238 (10)0.26 (3)*0.421 (10)
C2020.9966 (8)0.4851 (7)0.6398 (10)0.177 (18)*0.421 (10)
O2030.9949 (10)0.5190 (8)0.5781 (11)0.29 (2)*0.421 (10)
C3010.1419 (11)0.2349 (9)0.7546 (12)0.32 (3)*0.410 (12)
C3020.1606 (14)0.1203 (9)0.7469 (17)0.52 (5)*0.410 (12)
O3030.0928 (13)0.1736 (10)0.7477 (15)0.71 (5)*0.410 (12)
C4011.1622 (5)0.5056 (11)0.7715 (12)1.02 (9)*0.595 (10)
C4021.0185 (7)0.4970 (7)0.7066 (11)0.29 (2)*0.595 (10)
O4031.0586 (5)0.4944 (9)0.7718 (11)0.94 (6)*0.595 (10)
Si10.82361 (16)0.07928 (9)0.44407 (12)0.0151 (4)
Si20.66986 (17)0.18795 (10)0.46985 (10)0.0171 (5)
Si30.45160 (16)0.22053 (10)0.43768 (11)0.0172 (5)
Si40.46566 (15)0.37647 (10)0.43706 (11)0.0151 (5)
Si50.67838 (17)0.42413 (10)0.47185 (10)0.0146 (5)
Si60.81755 (16)0.30664 (10)0.44413 (11)0.0164 (4)
Si70.82096 (17)0.07521 (10)0.67155 (11)0.0150 (5)
Si80.67664 (16)0.18929 (10)0.62716 (10)0.0160 (5)
Si90.46572 (16)0.22648 (10)0.67563 (10)0.0158 (5)
Si100.46784 (17)0.38056 (10)0.67581 (10)0.0160 (5)
Si110.67769 (17)0.42867 (9)0.62941 (11)0.0153 (5)
Si120.81620 (16)0.31023 (10)0.66691 (10)0.0157 (4)
Si130.83583 (15)0.07264 (9)1.05757 (12)0.0147 (5)
Si140.68938 (16)0.18849 (11)1.02744 (10)0.0162 (5)
Si150.47131 (15)0.22239 (10)1.06139 (11)0.0144 (5)
Si160.46781 (15)0.37808 (10)1.06401 (11)0.0162 (5)
Si170.68054 (17)0.42925 (10)1.02721 (10)0.0142 (5)
Si180.82030 (16)0.31312 (9)1.06240 (11)0.0150 (5)
Si190.81702 (18)0.07629 (10)0.82790 (10)0.0163 (5)
Si200.67306 (16)0.18841 (10)0.86923 (11)0.0167 (5)
Si210.45808 (16)0.22647 (10)0.83089 (10)0.0160 (5)
Si220.46391 (17)0.38119 (10)0.82955 (11)0.0163 (5)
Si230.67854 (17)0.42820 (9)0.86943 (11)0.0155 (5)
Si240.80276 (16)0.30773 (10)0.82092 (10)0.0165 (5)
O10.7256 (4)0.1244 (2)0.4414 (3)0.0337 (14)
O20.5620 (4)0.1905 (2)0.4349 (2)0.0254 (12)
O30.4560 (4)0.2982 (2)0.4500 (3)0.0409 (14)
O40.5803 (4)0.3967 (2)0.4337 (2)0.0257 (13)
O50.7731 (4)0.3796 (2)0.4541 (3)0.0238 (13)
O60.7295 (4)0.2530 (2)0.4523 (3)0.0382 (15)
O70.7306 (5)0.1245 (3)0.6538 (3)0.0380 (17)
O80.5715 (4)0.1960 (3)0.6650 (2)0.0324 (14)
O90.4705 (4)0.3038 (2)0.6557 (2)0.0278 (14)
O100.5772 (4)0.4102 (3)0.6680 (3)0.0356 (15)
O110.7662 (4)0.3801 (3)0.6515 (3)0.0331 (16)
O120.7437 (4)0.2528 (3)0.6401 (3)0.0390 (16)
O130.6583 (4)0.1820 (3)0.5482 (3)0.0458 (16)
O140.6583 (4)0.4221 (2)0.5506 (3)0.0279 (13)
O150.8799 (4)0.0854 (3)0.3746 (3)0.0347 (16)
O160.8948 (5)0.1042 (3)0.5045 (3)0.0435 (18)
O170.9188 (4)0.0987 (3)0.6336 (3)0.0278 (14)
O180.8644 (3)0.3006 (3)0.3705 (3)0.0259 (13)
O190.9037 (4)0.2933 (3)0.4976 (3)0.0355 (15)
O200.9207 (4)0.3048 (3)0.6283 (3)0.0271 (13)
O210.7037 (4)0.4978 (2)0.4480 (3)0.0219 (12)
O220.7090 (4)0.5031 (2)0.6481 (3)0.0286 (14)
O230.8450 (3)0.07663 (19)0.7504 (3)0.0308 (11)
O240.8404 (3)0.3033 (2)0.7449 (3)0.0299 (11)
O250.4349 (3)0.21751 (17)0.7528 (3)0.0232 (10)
O260.4328 (3)0.39003 (18)0.7524 (3)0.0225 (10)
O270.7435 (4)0.1226 (2)1.0519 (3)0.0350 (15)
O280.5759 (4)0.1866 (2)1.0538 (3)0.0288 (13)
O290.4875 (4)0.3005 (2)1.0660 (3)0.0384 (15)
O300.5698 (4)0.4162 (2)1.0544 (3)0.0345 (14)
O310.7581 (4)0.3805 (2)1.0645 (2)0.0253 (13)
O320.7468 (4)0.2512 (2)1.0593 (3)0.0337 (14)
O330.7230 (4)0.1217 (3)0.8407 (3)0.0316 (15)
O340.5570 (4)0.1865 (2)0.8540 (2)0.0247 (13)
O350.4738 (5)0.3037 (2)0.8480 (2)0.0316 (15)
O360.5694 (4)0.4160 (3)0.8435 (3)0.0375 (16)
O370.7553 (4)0.3787 (3)0.8332 (3)0.0349 (16)
O380.7219 (4)0.2517 (2)0.8330 (3)0.0359 (15)
O390.6926 (4)0.1945 (3)0.9483 (3)0.0476 (15)
O400.6840 (4)0.4160 (2)0.9486 (3)0.0368 (14)
O410.8906 (4)0.0809 (3)1.1284 (3)0.0329 (15)
O420.9137 (4)0.0861 (3)0.9983 (3)0.0307 (14)
O430.9133 (4)0.1040 (3)0.8685 (3)0.0303 (14)
O440.8854 (4)0.3111 (2)1.1292 (3)0.0250 (13)
O450.8925 (4)0.3135 (3)0.9979 (3)0.0319 (14)
O460.3973 (4)0.2046 (3)0.3690 (3)0.0394 (16)
O470.7088 (4)0.5046 (2)1.0442 (3)0.0239 (14)
O480.7115 (4)0.5018 (3)0.8521 (3)0.0296 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0227 (12)0.0108 (9)0.0120 (10)0.0020 (9)0.0022 (11)0.0009 (9)
Si20.0246 (12)0.0108 (10)0.0158 (10)0.0005 (10)0.0014 (9)0.0005 (9)
Si30.0219 (12)0.0137 (10)0.0160 (11)0.0001 (8)0.0002 (10)0.0014 (9)
Si40.0174 (11)0.0141 (11)0.0138 (11)0.0008 (9)0.0009 (11)0.0011 (9)
Si50.0188 (12)0.0112 (11)0.0137 (11)0.0010 (10)0.0006 (10)0.0010 (8)
Si60.0224 (11)0.0124 (9)0.0142 (9)0.0031 (10)0.0046 (10)0.0014 (10)
Si70.0198 (12)0.0130 (11)0.0121 (11)0.0029 (10)0.0040 (11)0.0013 (9)
Si80.0174 (11)0.0153 (11)0.0152 (10)0.0010 (10)0.0008 (10)0.0009 (10)
Si90.0203 (13)0.0156 (11)0.0115 (11)0.0014 (9)0.0023 (10)0.0028 (9)
Si100.0232 (13)0.0155 (11)0.0092 (11)0.0000 (9)0.0013 (10)0.0022 (9)
Si110.0215 (12)0.0111 (11)0.0135 (11)0.0002 (9)0.0036 (11)0.0003 (9)
Si120.0190 (11)0.0159 (10)0.0121 (9)0.0005 (10)0.0027 (9)0.0010 (9)
Si130.0195 (12)0.0108 (9)0.0137 (10)0.0003 (8)0.0021 (10)0.0003 (9)
Si140.0196 (11)0.0145 (11)0.0144 (10)0.0009 (10)0.0025 (8)0.0013 (9)
Si150.0194 (12)0.0132 (10)0.0108 (10)0.0007 (8)0.0042 (10)0.0015 (9)
Si160.0184 (12)0.0138 (11)0.0163 (12)0.0008 (9)0.0004 (11)0.0002 (10)
Si170.0192 (12)0.0089 (11)0.0145 (11)0.0019 (9)0.0001 (10)0.0005 (8)
Si180.0215 (11)0.0131 (10)0.0103 (10)0.0022 (9)0.0008 (9)0.0010 (9)
Si190.0246 (13)0.0125 (11)0.0119 (11)0.0003 (10)0.0032 (11)0.0000 (8)
Si200.0198 (11)0.0146 (11)0.0159 (10)0.0028 (10)0.0014 (10)0.0002 (10)
Si210.0216 (13)0.0157 (11)0.0106 (11)0.0006 (9)0.0017 (10)0.0004 (9)
Si220.0207 (13)0.0148 (11)0.0135 (11)0.0002 (9)0.0004 (10)0.0003 (9)
Si230.0234 (12)0.0095 (11)0.0138 (11)0.0002 (9)0.0009 (11)0.0005 (9)
Si240.0230 (11)0.0124 (10)0.0140 (10)0.0024 (10)0.0050 (9)0.0011 (9)
O10.033 (3)0.017 (3)0.050 (4)0.005 (2)0.000 (3)0.008 (3)
O20.025 (3)0.026 (3)0.025 (3)0.006 (3)0.006 (2)0.007 (3)
O30.056 (4)0.010 (3)0.056 (3)0.001 (3)0.005 (3)0.003 (3)
O40.020 (3)0.038 (3)0.019 (3)0.003 (2)0.011 (2)0.009 (2)
O50.018 (3)0.011 (2)0.042 (4)0.006 (2)0.008 (3)0.000 (3)
O60.035 (3)0.016 (3)0.064 (4)0.008 (2)0.019 (3)0.002 (3)
O70.043 (4)0.020 (3)0.051 (4)0.021 (3)0.002 (3)0.014 (3)
O80.019 (3)0.039 (3)0.039 (3)0.007 (3)0.016 (3)0.006 (3)
O90.045 (4)0.011 (3)0.027 (3)0.003 (3)0.004 (3)0.000 (3)
O100.026 (3)0.052 (4)0.029 (3)0.020 (3)0.018 (3)0.010 (3)
O110.033 (4)0.020 (3)0.046 (4)0.009 (3)0.009 (3)0.010 (3)
O120.043 (4)0.021 (3)0.052 (4)0.019 (3)0.001 (3)0.003 (3)
O130.054 (4)0.064 (4)0.020 (3)0.014 (3)0.003 (3)0.006 (3)
O140.036 (3)0.031 (3)0.016 (3)0.002 (2)0.004 (3)0.004 (3)
O150.043 (4)0.048 (4)0.013 (3)0.017 (3)0.016 (3)0.003 (3)
O160.052 (4)0.060 (4)0.019 (3)0.020 (3)0.015 (3)0.004 (3)
O170.025 (3)0.040 (3)0.018 (3)0.007 (3)0.009 (3)0.004 (3)
O180.017 (3)0.046 (3)0.014 (2)0.005 (3)0.006 (2)0.005 (3)
O190.035 (3)0.055 (4)0.017 (3)0.010 (3)0.008 (3)0.003 (3)
O200.020 (3)0.037 (3)0.024 (3)0.004 (3)0.008 (2)0.006 (3)
O210.021 (3)0.011 (2)0.034 (3)0.004 (2)0.009 (3)0.004 (3)
O220.028 (3)0.014 (3)0.044 (4)0.002 (3)0.001 (3)0.006 (2)
O230.042 (3)0.040 (3)0.010 (2)0.006 (2)0.003 (3)0.003 (3)
O240.044 (3)0.037 (2)0.009 (2)0.011 (2)0.003 (3)0.000 (3)
O250.030 (3)0.028 (2)0.012 (2)0.0045 (19)0.000 (3)0.004 (3)
O260.021 (3)0.034 (2)0.012 (2)0.0070 (19)0.003 (3)0.001 (3)
O270.029 (3)0.018 (3)0.058 (4)0.013 (2)0.004 (3)0.002 (3)
O280.019 (3)0.023 (3)0.045 (3)0.001 (2)0.012 (3)0.005 (3)
O290.061 (4)0.012 (3)0.042 (3)0.000 (3)0.003 (3)0.003 (3)
O300.021 (3)0.028 (3)0.055 (4)0.009 (2)0.014 (3)0.004 (3)
O310.038 (3)0.021 (3)0.017 (3)0.013 (2)0.005 (3)0.003 (2)
O320.037 (3)0.023 (3)0.041 (3)0.015 (2)0.010 (3)0.008 (3)
O330.020 (3)0.019 (3)0.056 (4)0.008 (3)0.009 (3)0.006 (3)
O340.026 (3)0.014 (3)0.034 (3)0.001 (2)0.003 (2)0.007 (2)
O350.058 (4)0.009 (3)0.028 (3)0.006 (3)0.002 (3)0.001 (3)
O360.033 (4)0.034 (3)0.045 (4)0.018 (3)0.014 (3)0.006 (3)
O370.056 (4)0.021 (3)0.028 (3)0.011 (3)0.021 (3)0.003 (3)
O380.040 (4)0.020 (3)0.048 (4)0.006 (3)0.008 (3)0.010 (3)
O390.044 (3)0.081 (4)0.018 (3)0.001 (3)0.002 (3)0.001 (4)
O400.065 (4)0.030 (3)0.015 (3)0.005 (3)0.002 (3)0.001 (3)
O410.046 (4)0.031 (3)0.022 (3)0.017 (3)0.011 (3)0.003 (3)
O420.029 (3)0.032 (3)0.031 (3)0.012 (3)0.011 (3)0.008 (3)
O430.026 (3)0.044 (4)0.021 (3)0.009 (3)0.008 (3)0.005 (3)
O440.030 (3)0.022 (3)0.023 (3)0.007 (3)0.013 (3)0.001 (3)
O450.041 (3)0.026 (3)0.029 (3)0.002 (3)0.020 (3)0.007 (3)
O460.030 (3)0.069 (4)0.019 (3)0.006 (3)0.013 (3)0.010 (3)
O470.026 (3)0.010 (3)0.036 (3)0.002 (2)0.012 (3)0.010 (2)
O480.033 (4)0.014 (3)0.042 (4)0.003 (3)0.000 (3)0.006 (2)
Geometric parameters (Å, º) top
C101—O1031.4086Si13—O421.604 (6)
C101—O103i1.4086Si14—O391.584 (6)
C102—O1031.4083Si14—O271.591 (5)
C201—O2031.4083Si14—O321.610 (5)
C201—C201ii1.45 (3)Si14—O281.613 (5)
C202—O2031.4085Si15—O281.586 (5)
C301—O3031.4082Si15—O291.592 (5)
C302—O3031.4084Si15—O19v1.593 (5)
C401—O4031.4083Si15—O20v1.597 (5)
C402—O4031.4074Si16—O16v1.579 (6)
Si1—O47iii1.585 (5)Si16—O301.583 (5)
Si1—O151.586 (6)Si16—O291.588 (5)
Si1—O11.601 (5)Si16—O17v1.608 (6)
Si1—O161.617 (6)Si17—O401.592 (6)
Si2—O131.576 (6)Si17—O471.603 (5)
Si2—O61.577 (5)Si17—O301.606 (5)
Si2—O11.589 (5)Si17—O311.612 (5)
Si2—O21.606 (5)Si18—O441.592 (5)
Si3—O461.583 (5)Si18—O321.594 (5)
Si3—O31.586 (5)Si18—O311.596 (5)
Si3—O45iv1.596 (5)Si18—O451.613 (5)
Si3—O21.603 (5)Si19—O331.581 (6)
Si4—O43iv1.587 (6)Si19—O22iii1.590 (5)
Si4—O41.594 (5)Si19—O231.592 (6)
Si4—O42iv1.597 (5)Si19—O431.623 (6)
Si4—O31.606 (5)Si20—O341.588 (6)
Si5—O141.595 (6)Si20—O391.603 (6)
Si5—O51.598 (5)Si20—O331.608 (5)
Si5—O211.598 (5)Si20—O381.608 (5)
Si5—O41.618 (5)Si21—O18v1.585 (5)
Si6—O191.595 (5)Si21—O251.599 (6)
Si6—O51.601 (5)Si21—O351.608 (5)
Si6—O181.604 (5)Si21—O341.619 (5)
Si6—O61.611 (5)Si22—O15v1.593 (5)
Si7—O171.590 (6)Si22—O261.604 (6)
Si7—O231.605 (6)Si22—O361.604 (6)
Si7—O71.608 (6)Si22—O351.612 (5)
Si7—O48iii1.614 (6)Si23—O361.573 (6)
Si8—O71.585 (5)Si23—O481.587 (6)
Si8—O121.587 (5)Si23—O401.600 (6)
Si8—O131.600 (6)Si23—O371.608 (6)
Si8—O81.609 (5)Si24—O371.586 (6)
Si9—O81.562 (5)Si24—O381.586 (5)
Si9—O251.604 (6)Si24—O241.601 (5)
Si9—O44iv1.611 (5)Si24—O46vi1.609 (5)
Si9—O91.611 (5)O15—Si22vii1.593 (5)
Si10—O101.594 (6)O16—Si16vii1.579 (6)
Si10—O91.599 (5)O17—Si16vii1.608 (6)
Si10—O41iv1.603 (6)O18—Si21vii1.585 (5)
Si10—O261.611 (6)O19—Si15vii1.593 (5)
Si11—O141.599 (6)O20—Si15vii1.596 (5)
Si11—O101.599 (6)O21—Si13viii1.604 (4)
Si11—O111.601 (6)O22—Si19viii1.590 (5)
Si11—O221.603 (5)O41—Si10vi1.603 (6)
Si12—O111.591 (6)O42—Si4vi1.597 (5)
Si12—O241.596 (6)O43—Si4vi1.587 (6)
Si12—O121.604 (5)O44—Si9vi1.611 (5)
Si12—O201.606 (5)O45—Si3vi1.596 (5)
Si13—O411.600 (6)O46—Si24iv1.609 (5)
Si13—O271.601 (5)O47—Si1viii1.585 (5)
Si13—O21iii1.604 (5)O48—Si7viii1.614 (6)
O103—C101—O103i180.0 (4)O16v—Si16—O17v109.2 (3)
C102—O103—C101111.6O30—Si16—O17v108.6 (3)
O203—C201—C201ii92 (2)O29—Si16—O17v109.5 (3)
C201—O203—C202111.6O40—Si17—O47111.1 (3)
C301—O303—C302111.6O40—Si17—O30109.5 (3)
C402—O403—C401111.5O47—Si17—O30107.6 (3)
O47iii—Si1—O15109.6 (3)O40—Si17—O31109.4 (3)
O47iii—Si1—O1108.6 (3)O47—Si17—O31109.2 (3)
O15—Si1—O1108.6 (3)O30—Si17—O31110.0 (3)
O47iii—Si1—O16110.3 (3)O44—Si18—O32110.6 (3)
O15—Si1—O16110.2 (3)O44—Si18—O31106.6 (3)
O1—Si1—O16109.5 (3)O32—Si18—O31110.2 (3)
O13—Si2—O6109.6 (3)O44—Si18—O45109.7 (3)
O13—Si2—O1109.9 (3)O32—Si18—O45110.2 (3)
O6—Si2—O1110.6 (3)O31—Si18—O45109.4 (3)
O13—Si2—O2110.1 (3)O33—Si19—O22iii108.3 (3)
O6—Si2—O2109.5 (3)O33—Si19—O23110.1 (3)
O1—Si2—O2107.2 (3)O22iii—Si19—O23110.4 (3)
O46—Si3—O3110.6 (3)O33—Si19—O43110.8 (3)
O46—Si3—O45iv109.6 (3)O22iii—Si19—O43110.2 (3)
O3—Si3—O45iv109.0 (3)O23—Si19—O43107.0 (3)
O46—Si3—O2108.5 (3)O34—Si20—O39110.4 (3)
O3—Si3—O2110.2 (3)O34—Si20—O33108.8 (3)
O45iv—Si3—O2109.0 (3)O39—Si20—O33110.2 (3)
O43iv—Si4—O4109.0 (3)O34—Si20—O38109.6 (3)
O43iv—Si4—O42iv110.4 (3)O39—Si20—O38108.4 (3)
O4—Si4—O42iv109.6 (3)O33—Si20—O38109.5 (3)
O43iv—Si4—O3110.3 (3)O18v—Si21—O25107.1 (3)
O4—Si4—O3109.7 (3)O18v—Si21—O35109.4 (3)
O42iv—Si4—O3107.8 (3)O25—Si21—O35110.0 (2)
O14—Si5—O5109.9 (3)O18v—Si21—O34109.7 (3)
O14—Si5—O21110.8 (3)O25—Si21—O34112.3 (3)
O5—Si5—O21106.6 (3)O35—Si21—O34108.3 (3)
O14—Si5—O4108.4 (3)O15v—Si22—O26108.1 (3)
O5—Si5—O4110.5 (3)O15v—Si22—O36110.0 (3)
O21—Si5—O4110.6 (3)O26—Si22—O36110.2 (3)
O19—Si6—O5110.0 (3)O15v—Si22—O35109.8 (3)
O19—Si6—O18108.3 (3)O26—Si22—O35110.4 (2)
O5—Si6—O18109.3 (3)O36—Si22—O35108.2 (3)
O19—Si6—O6110.5 (3)O36—Si23—O48109.5 (3)
O5—Si6—O6109.4 (3)O36—Si23—O40110.0 (3)
O18—Si6—O6109.3 (3)O48—Si23—O40110.3 (3)
O17—Si7—O23107.2 (3)O36—Si23—O37110.7 (3)
O17—Si7—O7109.6 (3)O48—Si23—O37107.7 (3)
O23—Si7—O7110.8 (3)O40—Si23—O37108.7 (3)
O17—Si7—O48iii110.9 (3)O37—Si24—O38110.1 (3)
O23—Si7—O48iii110.9 (3)O37—Si24—O24109.0 (3)
O7—Si7—O48iii107.5 (3)O38—Si24—O24108.8 (3)
O7—Si8—O12110.6 (3)O37—Si24—O46vi111.4 (3)
O7—Si8—O13108.8 (3)O38—Si24—O46vi109.8 (3)
O12—Si8—O13108.7 (3)O24—Si24—O46vi107.8 (3)
O7—Si8—O8108.2 (3)Si2—O1—Si1146.5 (4)
O12—Si8—O8110.7 (3)Si3—O2—Si2146.1 (3)
O13—Si8—O8109.7 (3)Si3—O3—Si4161.6 (4)
O8—Si9—O25108.8 (3)Si4—O4—Si5148.5 (3)
O8—Si9—O44iv110.1 (3)Si5—O5—Si6147.3 (3)
O25—Si9—O44iv109.0 (3)Si2—O6—Si6162.7 (4)
O8—Si9—O9108.1 (3)Si8—O7—Si7158.1 (4)
O25—Si9—O9110.9 (2)Si9—O8—Si8153.6 (4)
O44iv—Si9—O9110.0 (3)Si10—O9—Si9151.0 (3)
O10—Si10—O9108.5 (3)Si10—O10—Si11155.9 (4)
O10—Si10—O41iv110.9 (3)Si12—O11—Si11155.2 (4)
O9—Si10—O41iv109.7 (3)Si8—O12—Si12168.8 (4)
O10—Si10—O26108.6 (3)Si2—O13—Si8162.5 (4)
O9—Si10—O26111.0 (2)Si5—O14—Si11159.9 (4)
O41iv—Si10—O26108.2 (3)Si1—O15—Si22vii150.0 (4)
O14—Si11—O10108.6 (3)Si16vii—O16—Si1174.9 (4)
O14—Si11—O11109.8 (3)Si7—O17—Si16vii146.9 (4)
O10—Si11—O11110.5 (3)Si21vii—O18—Si6142.8 (4)
O14—Si11—O22110.4 (3)Si15vii—O19—Si6168.2 (4)
O10—Si11—O22109.1 (3)Si15vii—O20—Si12143.0 (4)
O11—Si11—O22108.4 (3)Si5—O21—Si13viii145.6 (3)
O11—Si12—O24110.6 (3)Si19viii—O22—Si11151.8 (4)
O11—Si12—O12108.6 (3)Si19—O23—Si7154.7 (3)
O24—Si12—O12112.6 (3)Si12—O24—Si24148.7 (3)
O11—Si12—O20109.7 (3)Si21—O25—Si9150.7 (3)
O24—Si12—O20106.6 (3)Si22—O26—Si10145.2 (3)
O12—Si12—O20108.7 (3)Si14—O27—Si13154.2 (4)
O41—Si13—O27110.6 (3)Si15—O28—Si14149.0 (3)
O41—Si13—O21iii108.1 (3)Si16—O29—Si15162.0 (4)
O27—Si13—O21iii109.3 (3)Si16—O30—Si17157.3 (4)
O41—Si13—O42109.6 (3)Si18—O31—Si17147.7 (4)
O27—Si13—O42110.3 (3)Si18—O32—Si14158.0 (4)
O21iii—Si13—O42109.0 (3)Si19—O33—Si20151.1 (4)
O39—Si14—O27110.8 (3)Si20—O34—Si21147.8 (3)
O39—Si14—O32108.6 (3)Si21—O35—Si22151.6 (4)
O27—Si14—O32108.5 (3)Si23—O36—Si22161.3 (4)
O39—Si14—O28110.7 (3)Si24—O37—Si23152.7 (4)
O27—Si14—O28108.2 (3)Si24—O38—Si20156.1 (4)
O32—Si14—O28110.0 (3)Si14—O39—Si20166.0 (4)
O28—Si15—O29109.6 (3)Si17—O40—Si23161.0 (3)
O28—Si15—O19v109.7 (3)Si13—O41—Si10vi150.1 (4)
O29—Si15—O19v108.7 (3)Si4vi—O42—Si13158.5 (4)
O28—Si15—O20v107.6 (3)Si4vi—O43—Si19150.0 (4)
O29—Si15—O20v110.4 (3)Si18—O44—Si9vi149.2 (4)
O19v—Si15—O20v110.9 (3)Si3vi—O45—Si18154.0 (4)
O16v—Si16—O30109.5 (3)Si3—O46—Si24iv155.3 (4)
O16v—Si16—O29110.2 (3)Si1viii—O47—Si17150.1 (4)
O30—Si16—O29109.8 (3)Si23—O48—Si7viii147.9 (4)
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x+3/2, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC1.9H0O49Si24C3.6H0O49.8Si24
Mr14801515
Crystal system, space groupMonoclinic, P21/n.1.1Monoclinic, P21/n.1.1
Temperature (K)296296
a, b, c (Å)20.186 (15), 19.990 (14), 13.435 (10)20.169 (14), 19.951 (14), 13.427 (10)
β (°)90.012 (13), 90, 9090.130 (13), 90, 90
V3)5421 (7)5403 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.670.67
Crystal size (mm)0.16 × 0.11 × 0.080.14 × 0.12 × 0.08
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Absorption correctionAnalyticalAnalytical
Tmin, Tmax0.899, 0.9500.912, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
63627, 13249, 6100 63444, 13209, 5947
Rint0.0910.115
(sin θ/λ)max1)0.6760.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 0.85 0.054, 0.124, 0.83
No. of reflections1324913209
No. of parameters664669
No. of restraints410
Δρmax, Δρmin (e Å3)0.74, 0.600.63, 0.50

Computer programs: Bruker XSCANS, Bruker SHELXTL, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

References

First citationAhunbay, M. G., Karvan, O. & Erdem-Şenatalar, A. (2008). Micropor. Mesopor. Mater. 115, 93–97.  Google Scholar
First citationChoudhary, V. R. & Mayadevi, S. (1996). Zeolites, 17, 501–507.  CrossRef CAS Web of Science Google Scholar
First citationFujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2013). Z. Kristallogr. 228, 180–186.  Web of Science CrossRef CAS Google Scholar
First citationFujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014a). Z. Kristallogr. 229, 303–309.  CAS Google Scholar
First citationFujiyama, S., Kamiya, N., Nishi, K. & Yokomori, Y. (2014b). Langmuir, 30, 3749–3753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFujiyama, S., Seino, S., Kamiya, N., Nishi, K., Yoza, K. & Yokomori, Y. (2014). Phys. Chem. Chem. Phys. 16, 15839–15845.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGolden, T. C. & Sircar, S. (1994). J. Colloid Interface Sci. 162, 182–188.  CrossRef CAS Web of Science Google Scholar
First citationKamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. & Yokomori, Y. (2011). Acta Cryst. B67, 508–515.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKamiya, N., Oshiro, T., Tan, S., Nishi, K. & Yokomori, Y. (2013). Micropor. Mesopor. Mater. 169, 168–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationKamiya, N., Torii, Y., Sasaki, M., Nishi, K. & Yokomori, Y. (2008). Z. Kristallogr. 222, 551–554.  Google Scholar
First citationKamiya, N., Yano, M., Matsuo, H., Iwama, W., Nishi, K. & Yokomori, Y. (2010). Z. Kristallogr. 225, 139–145.  Web of Science CrossRef CAS Google Scholar
First citationKolokolov, D. I., Jobic, H. & Stepanov, A. G. (2010). J. Phys. Chem. C, 114, 2958–2966.  Web of Science CrossRef CAS Google Scholar
First citationKoningsveld, H. van & Jansen, J. (1996). Micropor. Mater. 6, 159–167.  Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & de Man, A. J. M. (1996). Acta Cryst. B52, 131–139.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Jansen, J. C. & van Bekkum, H. (1996). Acta Cryst. B52, 140–144.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKoningsveld, H. van, Jansen, J. & van Bekkum, H. (1990). Zeolites, 10, 235–242.  Google Scholar
First citationKoningsveld, H. van & Koegler, J. H. (1997). Micropor. Mater. 9, 71–81.  Google Scholar
First citationKoningsveld, H. van, Tuinstra, F., van Bekkum, H. & Jansen, J. C. (1989). Acta Cryst. B45, 423–431.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishna, R., van Baten, J., García-Pérez, E. & Calero, S. (2006). J. Chem. Phys. Lett. 429, 219–224.  Web of Science CrossRef CAS Google Scholar
First citationMakrodimitris, K., Papadopoulos, G. K. & Theodorou, D. N. (2001). J. Phys. Chem. B, 105, 777–788.  Web of Science CrossRef CAS Google Scholar
First citationMillot, B., Methivier, A. & Jobic, H. (1998). J. Phys. Chem. B, 102, 3210–3215.  Web of Science CrossRef CAS Google Scholar
First citationMillot, B., Methivier, A., Jobic, H., Clemençon, I. & Rebours, B. (1999). Langmuir, 15, 2534–2539.  Web of Science CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishchenko, A. M., Kolokolov, D. I., Gabrienko, A. A. & Stepanov, A. G. (2012). J. Phys. Chem. C, 116, 8956–8963.  Web of Science CrossRef CAS Google Scholar
First citationNishi, K., Hidaka, A. & Yokomori, Y. (2005). Acta Cryst. B61, 160–163.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPope, C. G. (1993). J. Chem. Soc. Faraday Trans. 89, 1139–1141.  CrossRef CAS Web of Science Google Scholar
First citationRichards, R. E. & Rees, L. V. C. (1987). Langmuir, 3, 335–340.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, D. & Rees, L. V. (1991). Zeolites, 11, 684–689.  CrossRef Web of Science Google Scholar
First citationShen, D., Rees, L. V. C., Caro, J., Bülow, M., Zibrowius, B. & Jobic, H. (1990). J. Chem. Soc. Faraday Trans. 86, 3943–3948.  CrossRef CAS Web of Science Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, M. S., Shah, D. B., Xu, H. H. & Talu, O. (1998). J. Phys. Chem. B, 102, 1466–1473.  Web of Science CrossRef CAS Google Scholar
First citationSun, M. S., Talu, O. & Shah, D. B. (1996). J. Phys. Chem. 100, 17276–17280.  CrossRef CAS Web of Science Google Scholar
First citationTjatjopoulos, G. J., Feke, D. L. & Mann, J. A. (1988). J. Phys. Chem. 92, 4006–4007.  CrossRef CAS Web of Science Google Scholar
First citationWirawan, S. K. & Creaser, D. (2006). Micropor. Mesopor. Mater. 91, 196–205.  Web of Science CrossRef CAS Google Scholar
First citationYamazaki, T., Katoh, M., Ozawa, S. & Ogino, Y. (1993). Mol. Phys. 80, 213–324.  CrossRef Web of Science Google Scholar
First citationZhang, K., Lively, R. P., Noel, J. D., Dose, M. E., McCool, B. A., Chance, R. R. & Koros, W. J. (2012). Langmuir, 28, 8664–8673.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Volume 70| Part 5| October 2014| Pages 856-863
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds