research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Volume 71| Part 2| April 2015| Pages 228-234

Resonance-stabilized partial proton transfer in hydrogen bonds of incommensurate phenazine–chloranilic acid

CROSSMARK_Color_square_no_text.svg

aLaboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: smash@uni-bayreuth.de

Edited by M. Dusek, Academy of Sciences of the Czech Republic, Czech Republic (Received 14 October 2014; accepted 26 February 2015; online 31 March 2015)

The co-crystal of phenazine (Phz) and chloranilic acid (H2ca) becomes ferroelectric upon cooling through the loss of inversion symmetry. Further cooling results in the development of an incommensurate ferroelectric phase, followed by a lock-in transition towards a twofold superstructure. Here we present the incommensurately modulated crystal structure of Phz-H2ca at T = 139 K with a symmetry given by the superspace group P21σ2 ½)0 and σ2 = 0.5139. The modulation mainly affects the positions of the protons within half of the intermolecular hydrogen bonds that are responsible for the spontaneous polarization in all three low-temperature phases. Evidence for proton transfer in part of the hydrogen bonds is obtained from the correlated dependence on the phase of the modulation of the lengths of bonds involved in resonance stabilization of the acidic anion, and much smaller variations of bond lengths of atoms not involved in the resonance mechanism. Incommensurability is explained as competition between proton transfer favored for single hydrogen bonds on the basis of pKa values and avoiding unfavorable Coulomb repulsion within the lattice of the resulting ionic molecules.

1. Introduction

Organic compounds are of interest as ferroelectric materials, because they have a low density and they are potentially cheap to produce (Horiuchi & Tokura, 2008[Horiuchi, S. & Tokura, Y. (2008). Nature Mater. 7, 357-366.]). Furthermore, organic compounds offer more possibilities than inorganic compounds for designing properties. Organic materials based on hydrogen-bonded supramolecular chains with a polar space group form one class of ferroelectric materials. The co-crystal of phenazine (Phz) and 2,5-dichloro-3,6-dihydroxy-p-benzoquinone (chloranilic acid, H2ca) is one of several recently discovered hydrogen-bonded organic ferroelectrics (Horiuchi, Ishii et al., 2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163-166.]; Horiuchi et al., 2009[Horiuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421-4434.]; Kumai et al., 2006[Kumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. (2006). J. Chem. Phys. 125, 084715.], 2012[Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036-1046.]).

Phz-H2ca contains chains of alternating Phz and H2ca molecules connected through O—H⋯N intermolecular hydrogen bonds. At room temperature, all hydrogen bonds are equivalent by the symmetry of the centrosymmetric space group P21/n (Z = 2), and the crystal of Phz-H2ca is paraelectric (PE phase; Horiuchi, Ishii et al., 2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163-166.]; Kumai et al., 2007[Kumai, R., Horiuchi, S., Sagayama, H., Arima, T. H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920-12921.]). Below TcI = 253 K the symmetry is reduced to P21 (Z = 2), allowing for two inequivalent hydrogen bonds. One of the two bonds exhibits partial proton transfer, which is responsible for the spontaneous polarization (FE-I phase; Horiuchi, Ishii et al., 2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163-166.]; Kumai et al., 2007[Kumai, R., Horiuchi, S., Sagayama, H., Arima, T. H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920-12921.]; Gotoh et al., 2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]). Phz-H2ca has an incommensurately modulated structure between TcIC = 147 K and TcII = 137 K (FE-IC phase; Saito et al., 2006[Saito, K., Amano, M., Yamamura, Y., Tojo, T. & Atake, T. (2006). J. Phys. Soc. Jpn, 75, 033601.]; Horiuchi et al., 2009[Horiuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421-4434.]). Below TcII another ferroelectric phase is stable that can be characterized as a twofold superstructure of the room-temperature structure (FE-II phase; Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]).

Here we report the crystal structure of the incommensurate phase, employing the superspace formalism applied to single-crystal X-ray diffraction data. The modulation is found to mainly affect the positions of the H atoms within the O—H⋯N intermolecular hydrogen bonds. Evidence for proton transfer in part of these bonds is provided by the correlated variations of bond lengths reflecting resonance stabilization of the anion. A detailed comparison of the various phases reveals that the incommensurate phase has a crystal structure intermediate between the crystal structures of the FE-I and FE-II phases. A mechanism is proposed for the sequence of phase transitions.

2. Experimental

2.1. X-ray diffraction

Single crystals of Phz-H2ca were obtained by cosublimation of phenazine and chloranilic acid (Horiuchi. Ishii et al., 2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163-166.]; Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]). A diffraction experiment at T = 139 K was performed on the same crystal as was employed in our previous study on the commensurate FE-II phase (Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]). X-ray diffraction data have been measured at beamline F1 of Hasylab at DESY in Hamburg, Germany, employing a MAR165 CCD detector mounted on a kappa diffractometer. The temperature of the crystal was regulated by a nitrogen gas-flow cryostat. X-ray diffraction data were collected by φ scans and ω scans for various settings of the orientation of the crystal. To better evaluate strong and weak reflections, two measurements were performed with the same measurement strategies but with different exposure times of 20 and 160 s, respectively. Data processing of the measured images has been carried out with the software EVAL15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]) to index and extract the integrated intensities of Bragg reflections, and with SADABS (Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS, Version 2008/1. University of Göttingen.]) for absorption correction. The latter employed groups of equivalent reflections defined according to the point group 2/m, which appeared as the symmetry of the diffraction. Experimental details are given in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H8N2·C6H2Cl2O4
Mr 389.2
Crystal system, superspace group Monoclinic, P21σ2 ½)0
Temperature (K) 139
Wavevector q = 0.5a* + 0.5139b* + 0.5c*
a, b, c (Å) 12.3720 (2), 3.7649 (5), 16.8315 (2)
β (°) 107.789 (7)
V3) 746.52 (14)
Z 2
Radiation type Synchrotron, λ = 0.56 Å
μ (mm−1) 0.24
Crystal size (mm) 0.22 × 0.13 × 0.05
 
Data collection
Diffractometer Marresearch, mar165 CCD
Absorption correction Empirical (using intensity measurements) SADABS (Sheldrick, 2008[Sheldrick, G. M. (2008). SADABS, Version 2008/1. University of Göttingen.])
Tmin, Tmax 0.777, 0.991
No. of measured, independent and observed [I > 3σ(I)] reflections 25 001, 15 433, 8092
Main (obs, all) 5607, 5942
Satellites, first order (obs, all) 2485, 9491
Rint 0.019
(sin θ/λ)max−1) 0.981
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.071, 2.08
No. of reflections 15 433
No. of parameters 719
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.02
Absolute structure 6649 Friedel pairs used in the refinement
Absolute structure parameter 0.5

Indexing of the diffraction images with EVAL15 resulted in an indexing with four integers on the basis of a monoclinic unit cell closely related to the unit cell of the FE-I phase at 160 K (Horiuchi, Ishii et al., 2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163-166.]) together with the incommensurate modulation wavevector [{\bf q}^{\prime} = \textstyle({1 \over 2},\, \sigma_2^{\prime},\, {1 \over 2})], where [\sigma_2^{\prime}] = 0.4861. However, the integration routine of EVAL15 did not accept a modulation wavevector with rational components. Therefore, the integration has been performed within the supercentered setting with [{\bf q}^{\prime}_{i}] = [(0,\, \sigma_2^{\prime},\, 0)] and centering translation [({1 \over 2},\, 0,\, {1 \over 2},\, {1 \over 2})] with respect to the transformed basic structure unit cell [{\bf A}] = [{\bf a}-{\bf c}], [{\bf B}] = [{\bf b}], and [{\bf C}] = [{\bf a}+{\bf c}] (Stokes et al., 2011[Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45-55.]). The same setting has been employed in SADABS.

2.2. Choice of the superspace group

The low-temperature superstructure of the FE-II phase at 100 K has been described as a commensurately modulated structure with a basic structure similar to the structure at higher temperatures and the commensurate modulation wavevector [{\bf q}_{\rm comm} = \textstyle({1 \over 2},\, {1 \over 2},\, {1 \over 2})]. The superspace group [P2_1\textstyle({1 \over 2}\,\sigma_2\,{1 \over 2})0], with [\textstyle\sigma_2 = {1 \over 2}] has been found to describe the symmetry of this phase (Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]).

Presently, the indexing with modulation wavevector [{\bf q}^{\prime} = \textstyle({1 \over 2},\, \sigma_2^{\prime},\, {1 \over 2})] and [\sigma_2^{\prime} = 0.4861] (see §2.1[link]) leads to the superspace group [P2_1\textstyle({1 \over 2}\, \sigma_{2}^{\prime}\, {1 \over 2})s]. The non-centrosymmetric superspace group is established by the lack of inversion symmetry of both the FE-I and FE-II phases (see §1[link]) as well as by measurements of the electrical polarization, indicating a ferroelectric state below TcI (Horiuchi, Kumai & Tokura et al., 2005[Horiuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc. 127, 5010-5011.]). The two superspace groups appear to be alternate settings of superspace group No. 4.1.6.3 with standard setting [P2_1\textstyle({1 \over 2}\,0\,\sigma_3)0] (Stokes et al., 2011[Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45-55.]). The two settings can be transformed into each other by a shift of the origin. However, this would result in different coordinates of the atoms in the basic structures of the low-temperature and incommensurate phases, which is not desired. The setting with zero intrinsic translation along the fourth coordinate can also be obtained by the choice of a different modulation wavevector for the incommensurate modulation, according to

[\eqalignno{{\bf q} = \, & {\bf a}^* + {\bf b}^* + {\bf c}^* - {\bf q}^{\prime}\cr =\, & \left({1 \over 2},\,\sigma_2,\,{1 \over 2}\right) &(1)}]

with

[\sigma_2 \, = \, 1 - \sigma_2^{\prime} \, = \, 0.5139. \eqno(2)]

Diffraction data were re-indexed according to this transformation [equations (1)[link] and (2)[link]], and the superspace group [P2_1\textstyle({1 \over 2}\,\sigma_2\,{1 \over 2})0] with [\sigma_2] = 0.5139 has been used for all refinements.

2.3. Structure refinements

Initial values for the parameters of the basic structure have been taken from the basic structure at 100 K (Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]). Anisotropic atomic displacement parameters (ADPs) have been used for all non-H atoms. H atoms were placed at calculated positions with a bond length d(C—H) of 0.96 Å, and they were refined using a riding model with isotropic ADPs equal to 1.2 times the equivalent isotropic ADPs of the bonded C atoms. H atoms of the hydroxyl groups were located in the difference Fourier map. They were then shifted to positions fulfilling the restraints d(O—H) = 0.85 (2) Å and ∠(C—O—H) = 109.5 (2)° (Müller et al., 2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement. A Crystallographers Guide to SHELXL. Oxford University Press.]; Engh & Huber, 1991[Engh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392-400.]), while their isotropic ADPs were restricted to 1.5 times the equivalent isotropic ADPs of the adjacent O atoms. Employing JANA2006 (Petricek et al., 2014[Petricek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), the positions of all atoms were refined with these restraints in effect. In the last step the restraints were released, resulting in a good fit to the main reflections with Robs = 0.0412.

Three approaches have been chosen for determination of the atomic modulation functions for the incommensurate phase. In one approach, the modulation functions of the model at 100 K (Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]) were used as a starting model. The same superspace group was employed, but with [\sigma_2 = 0.5139] instead of the commensurate value of 0.5. The refinement converged smoothly to a good fit to the combined set of main and satellite reflections, resulting in model A (Table 1[link]). Model A involves one harmonic wave for the displacive modulation of all atoms as well as one harmonic wave for the modulation of ADPs of all non-H atoms. The origin was fixed on the Cl2 atom. Inversion twins are expected to be present, because the IC phase has been reached by phase transitions, starting with the centrosymmetric PE phase at room temperature. Twinning did have a marginal effect on the refinement, while a significant deviation from equal volume fractions of the twin domains was not found. Therefore, equal volume fractions were employed for the final refinements. A model with the alternative symmetry [P2_1\textstyle({1 \over 2}\,\sigma_2\,{1 \over 2})s] did not lead to a good fit to the data.

Starting with the same basic structure, model B was developed by assigning arbitrary but small values to the modulation parameters of the heaviest atom (chlorine). Refinements alternated with the subsequent introduction of modulation parameters for the O, N, C and H atoms, finally resulting in a fit to the diffraction data of equal quality as that of model A (Table 2[link]).

Table 2
R values for the different structure models

Included are R values for observed (obs; defined by I > 3σ) and all (all) reflections. Partial R values are given for the group of main and satellite (sat) reflections. Structure model A is based on the low-temperature commensurate structure; model B has been obtained by refinement with arbitrary but small initial values for the modulation amplitudes; and model C is obtained after refinement of the superflip solution.

Model A B C
GOFobs 2.78 2.78 2.79
RobsF (all) 0.0449 0.0449 0.0451
RobsF (main) 0.0411 0.0412 0.0411
RobsF (sat) 0.1268 0.1266 0.1301
GOFall 2.08 2.08 2.08
RallF (all) 0.0720 0.0718 0.0720
RallF (main) 0.0425 0.0425 0.0425
RallF (sat) 0.3661 0.3634 0.3663
No. of parameters 719 719 719

In a completely different approach, charge flipping was applied for the direct solution of the incommensurately modulated structure in superspace (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus, 2013[Palatinus, L. (2013). Acta Cryst. B69, 1-16.]). For the solution, the software SUPERFLIP suggested the centrosymmetric symmetry [P2_1/n\textstyle({1 \over 2}\, \sigma_2 \,{1 \over 2})00]. Since we knew that the modulation is non-centrosymmetric, we have chosen the superspace group [P2_1\textstyle({1 \over 2}\, \sigma_2\, {1 \over 2})0]. JANA2006 was subsequently used to extract the basic structure positions and values of the first-order harmonics of the displacive modulation functions for all non-H atoms. Atoms were then named to match Fig. 1[link]. For this model the basic structure coordinates were refined against all reflections, resulting in RF = 0.3046, RFmain = 0.2901 and RFsat = 0.6184. H atoms were added at calculated positions near C atoms as in model A. Refinement of the atomic coordinates within the riding model resulted in RF = 0.3037, RFmain = 0.2892 and RFsat = 0.6174. Subsequent refinement of anisotropic ADPs of the non-H atoms resulted in RF = 0.0680, RFmain = 0.0430 and RFsat = 0.6081. H atoms of the hydroxyl groups were located in the difference-Fourier map and treated as in model A. Refinement of the restrained model gave RF = 0.0672, RFmain = 0.0427 and RFsat = 0.5993. Refinement of the free model gave RF = 0.0666, RFmain = 0.0420 and RFsat = 0.5998. Small values were applied to the displacive modulation functions of the H atoms. Refinement of the modulated structure resulted in RF = 0.0472, RFmain = 0.0412 and RFsat = 0.1787. Finally, modulation parameters were introduced for the ADPs of the non-H atoms, resulting in the final fit of model C to the diffraction data as given in Table 2[link].

[Figure 1]
Figure 1
Phenazine C12H8N2 and chloranilic acid C6Cl2H2O4 with the atom labels as employed in the present work.

3. Discussion

3.1. The structure model

The final fit to the diffraction data is excellent for the main reflections (Table 1[link]). The rather high value of RFobs(sat) = 0.127 can be completely explained by the weakness of the satellite reflections and the resulting values for [R_{\sigma}{\rm (sat)} = 0.151], representing the average standard uncertainty over intensity, and Rint(sat) = 0.129 for averaging satellite reflections.

Model A and model B give the same fit to the diffraction data (Table 2[link]). Although modulation parameters are different, these two models are completely equivalent. They differ from each other by a phase shift (Fig. 2[link]). Further support for model A comes from difference-Fourier maps obtained after refinements of model A and of a similar model without the acidic H atoms (see the supporting information ). Model C has been obtained by solving the modulated structure by charge flipping in superspace. The modulation of model C is different from the modulations in models A and B, but RFobs(sat) is clearly higher for model C than for the other two models (Table 2[link]). Therefore, model C provides a less good description of the modulation than models A and B do. Difficulties in obtaining the correct structure model by charge flipping are probably related to the pseudo-symmetry of the structure, with deviations from inversion symmetry being mainly the result of rearrangements of H atoms.

[Figure 2]
Figure 2
Interatomic distances (Å) as a function of phase t of the modulation. The t plot for model B (in blue) is superimposed onto the t plot for model A (in black), after application of a phase shift of −0.5139 in t to model B.

These properties provide strong support that model A (as well as the equivalent model B) is the correct model for the modulated crystal structure of the incommensurate phase. In view of these results, we have restricted the analysis to model A.

3.2. Resonance-stabilized proton transfer

The modulated structure of the incommensurate phase of Phz-H2ca has been successfully determined at a temperature of 139 K. The magnitudes of the modulation amplitudes of the atoms reveal that the major effect of the modulation is a displacive modulation of the H atom of one of the two hydrogen bonds in which each molecule is involved in. This feature is in complete agreement with the crystal structures of the FE-I and FE-II phases, where also one half of the hydrogen bond is involved in the distortions of the structure.

More precisely, the crystal structure of the FE-I phase contains one crystallographically independent molecule H2ca with two independent O atoms involved in O—H⋯N hydrogen bonds, denoted by O1 and O2 (Gotoh et al., 2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]). The basic structure of the FE-IC phase is the same as the crystal structure of the FE-I phase, so that the FE-IC phase contains modulated atoms O1 and O2. Finally, the FE-II phase represents a twofold superstructure of the structure of the FE-I phase. Together with a reduction of the point symmetry to triclinic, this results in four crystallographically independent molecules H2ca with atoms O1A through to O1D derived from O1, and atoms O2A through to O2D derived from O2 (Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]). In all three phases, the hydrogen bonds O2—H1o2⋯N2 are not involved in superstructure formation. For the FE-IC structure, Table 3[link] and Fig. 3[link](a) show that bond lengths involving the O2, H1o2 and N2 atoms exhibit only a weak dependence on phase t of the modulation. For the FE-I and FE-II structures this property has been previously determined by Gotoh et al. (2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]) and Noohinejad et al. (2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]), and it is summarized in Table 3[link]. Therefore, the hydrogen bonds O2—H1o2⋯N2 do not play a direct role in the ferroelectricity of this compound.

Table 3
Geometry of the intermolecular hydrogen bonds O1—H1o1⋯N1 and O2—H1o2⋯N2 at different temperatures corresponding to the FE-I, FE-IC and FE-II phases, respectively

Interatomic distances are given in Å and bond angles in degrees. (Max–min) provides the difference between the maximum (max) and minimum (min) separation depending on the phase t of the modulation in the FE-IC phase. The mean gives the value averaged over t. Standard uncertainties are given in parentheses.

  170 K 139 K 100 K
  Distance Distance Max–min Distance
O1—H1o1 1.02 (4) 1.44 (2) (mean) 0.25 0.943 (15) (A)
  1.32 (2) (min)   1.609 (15) (B)
  1.57 (2) (max)   1.066 (14) (C)
      1.467 (14) (D)
O2—H1o2 0.73 (2) 0.91 (2) (mean) 0.06 0.863 (15) (A)
  0.88 (2) (min)   0.796 (15) (B)
  0.94 (2) (max)   0.840 (14) (C)
      0.815 (13) (D)
H1o1—N1i 1.66 (4) 1.320 (14) (mean) 0.42 1.879 (15) (A)
  1.11 (2) (min)   1.027 (15) (B)
  1.53 (2) (max)   1.700 (14) (C)
      1.205 (14) (D)
H1o2—N2ii 2.15 (2) 1.945 (2) (mean) 0.05 1.908 (14) (A)
  1.92 (2) (min)   2.121 (14) (B)
  1.97 (2) (max)   1.944 (14) (C)
      2.084 (14) (D)
O1—N1i 2.6446 (16) 2.629 (2) (mean) 0.07 2.6976 (14) (A)
  2.586 (2) (min)   2.5736 (14) (B)
  2.672 (2) (max)   2.5974 (42) (D)
      2.6726 (14) (C)
O2—N2ii 2.7722 (16) 2.763 (2) (mean) 0.09 2.7086 (15) (A)
  2.715 (3) (min)   2.8251 (15) (B)
  2.811 (3) (max)   2.7264 (15) (C)
      2.8062 (15) (D)
O1—H1o1—N1i 159 (3) 144.8 (15) (mean) 9.9 143.8 (11) (A)
  139.5 (14) (min)   154.4 (11) (B)
  149.7 (16) (max)   149.3 (10) (C)
      152.6 (10) (D)
O2—H1o2—N2ii 145 (2) 149.2 (18) (mean) 5.4 153.7 (11) (A)
  146.4 (17) (min)   147.5 (12) (B)
  152.0 (18) (max)   154.5 (11) (C)
      147.60 (12) (D)
Symmetry codes for N1 and N2 in the structure model at T = 139 K are: (i) x - 1, y, z; (ii) x, y + 1, z.
†From Gotoh et al. (2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]).
‡From Noohinejad et al. (2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]); the labels A, B, C and D refer to the four molecular chains, which have become independent in the crystal structure at low temperatures.
[Figure 3]
Figure 3
Selected interatomic distances (Å) as a function of phase t of the modulation. (a) The O—H and N—H distances within the two hydrogen bonds. (b) C—C and C—O distances of the resonance system stabilizing the Hca anion, as well as the C6—O2 distance not involved in resonance. Notice the different length scale on the vertical axes for panels (a) and (b).

The largest variation in bond lengths within the FE-IC phase is found for the hydrogen bond O1—H1o1⋯N1, with a variation of Δd(O1—H1o1) = 0.25 Å and Δd(N1—H1o1) = 0.42 Å (Table 3[link]). All other bonds are much less affected by the modulation, with a maximum variation of 0.06 Å for C3—O1 in H2ca and of 0.019 Å for C14—C15 in Phz (see the supporting information ). The next largest variations of bond lengths are found for C3—C2, C1—C2 and C1—O4 (Table 4[link]). These bonds are precisely those involved in resonance stabilization of the Hca ion, as it is obtained after transfer of the proton within the O1—H1o1⋯N1 hydrogen bond. Further evidence for this interpretation comes from t-plots (Fig. 3[link]), which show that an elongation of the O1—H1o1 bond (interpreted as proton transfer) correlates with an elongation of the C3—C2 and C1—O4 bonds, for which resonance represents the admixture of single-bond character into these formally double bonds (Fig. 4[link]). Concomitantly, C1—C2 and C3—O1 have become shorter due to the admixture of double-bond character into formally single bonds. A similar variation of bond lengths is found in the crystal structure of the FE-II phase (Table 4[link]). The results support the model of partial proton transfer (see §3.3[link]).

Table 4
Selected bond lengths (Å) at different temperatures corresponding to the FE-I, FE-IC and FE-II phases, respectively

(Max–min) provides the difference between maximum (max) and minimum (min) separation depending on phase t of the modulation in the FE-IC phase. The mean gives the value averaged over t. Standard uncertainties are given in parentheses.

  170 K 139 K 100 K
  Distance Distance Max–min Distance
C3—O1 1.2923 (13) 1.281 (2) (mean) 0.060 1.3200 (14) (A)
  1.251 (2) (min)   1.2536 (14) (B)
  1.311 (2) (max)   1.3054 (14) (C)
      1.2676 (14) (D)
C6—O2 1.3204 (13) 1.312 (3) (mean) 0.004 1.3133 (15) (A)
  1.310 (2) (min)   1.3204 (15) (B)
  1.314 (2) (max)   1.3118 (14) (C)
      1.3214 (14) (D)
C4—O3 1.2269 (15) 1.219 (2) (mean) 0.008 1.2243 (14) (A)
  1.215 (2) (min)   1.2211 (14) (B)
  1.223 (2) (max)   1.2248 (14) (C)
      1.2201 (14) (D)
C1—O4 1.2291 (15) 1.221 (2) (mean) 0.026 1.2183 (14) (A)
  1.208 (2) (min)   1.2385 (14) (B)
  1.234 (2) (max)   1.2210 (14) (C)
      1.2355 (14) (D)
C1—C2 1.4404 (15) 1.428 (3) (mean) 0.043 1.4590 (8) (A)
  1.406 (3) (min)   1.4114 (7) (B)
  1.449 (3) (max)   1.4496 (8) (C)
      1.4207 (8) (D)
C2—C3 1.3713 (16) 1.372 (3) (mean) 0.047 1.3517 (9) (A)
  1.349 (3) (min)   1.3949 (9) (B)
  1.396 (3) (max)   1.3622 (9) (C)
      1.3843 (9) (D)
N1—C12 1.3493 (13) 1.342 (2) (mean) 0.006 1.3451 (11) (A)
  1.339 (2) (min)   1.3465 (11) (B)
  1.345 (2) (max)   1.3468 (14) (C)
      1.3443 (12) (D)
N1—C17 1.3472 (17) 1.344 (2) (mean) 0.005 1.3490 (14) (A)
  1.342 (2) (min)   1.3505 (14) (B)
  1.347 (2) (max)   1.3464 (14) (C)
      1.3526 (14) (D)
†From Gotoh et al. (2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]).
‡From Noohinejad et al. (2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]).
[Figure 4]
Figure 4
Schematic representation of resonance within the anion Hca of chloranilic acid.

3.3. The ferroelectric phase transitions

Ferroelectricity in Phz-H2ca at low temperatures is the result of intermolecular proton transfer within the O1—H1o1⋯N1 hydrogen bonds (Horiuchi, Kumai & Tokura, 2005[Horiuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc. 127, 5010-5011.]; Kumai et al., 2007[Kumai, R., Horiuchi, S., Sagayama, H., Arima, T. H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920-12921.], 2012[Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036-1046.]; Gotoh et al., 2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]; Noohinejad et al., 2014[Noohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387-393.]). Consideration of the positions of the H atoms within the O1—H1o1⋯N1 hydrogen bonds of the crystal structures of the three phases leads to the following model for the phase transitions.

At room temperature (PE phase) all hydrogen bonds are equivalent by symmetry of the centrosymmetric space group. Consequently, any dipole moment of the O1—H1o1⋯N1 hydrogen bond will be perfectly compensated by a dipole moment of the O2—H1o2⋯N2 hydrogen bond on the same molecule that points in the opposite direction, because O1 and O2 are related by the inversion center. The ferroelectric phase transition towards the FE-I phase is characterized by loss of inversion symmetry. The O2—H1o2 remains short and should be interpreted as a covalent O—H bond that acts as a hydrogen-bond donor towards N2 (Table 3[link]). The O1—H1o1 bond is clearly elongated compared with a covalent bond, but it is not completely broken. The N1—H1o1 distance is clearly shorter than in the PE phase, but it is not yet the distance of ∼ 1.03 Å of a covalent N—H bond. Therefore, it can be concluded that this structure exhibits partial proton transfer within the O1—H1o1⋯N1 hydrogen bonds.

The low-temperature FE-II has four crystallographically independent O1—H1o1⋯N1 hydrogen bonds. The partial proton transfer of the FE-I phase is replaced in the FE-II phase by complete proton transfer in one half of these hydrogen bonds (B and D), and the absence of proton transfer in the other half (A and C) (Table 3[link]). The FE-I phase transfers into the FE-II phase via the intermediate FE-IC phase. Structurally, the FE-IC phase appears intermediate between the high- and low-temperature ferroelectric phases too. The incommensurate modulations represents a modulation of the O1—H1o1⋯N1 hydrogen bond between one with almost full proton transfer and one which can be characterized as almost no proton transfer (Table 3[link] and Fig. 3[link]a). Despite an incommensurability of the FE-IC phase, it appears that – on average – one quarter of the hydrogen bonds has full proton transfer in both the FE-IC and FE-II phases, while half of the hydrogen bonds in the FE-I phase are affected by partial proton transfer. These similarities might explain the only marginal effects of the ferroelectric incommensurate and lock-in transitions on the macroscopic electric dipole moment (Horiuchi et al., 2009[Horiuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421-4434.]).

4. Conclusions

The incommensurately modulated structure of the ferroelectric incommensurate (FE-IC) phase of Phz-H2ca has been successfully determined. It is shown that this structure is intermediate between the ferroelectric FE-I and FE-II phases. Half of the intermolecular hydrogen bonds exhibit partial proton transfer within the FE-I phase. This becomes an incommensurate variation between strong and very weak proton transfer within the FE-IC phase, while in the FE-II phase the active half of the hydrogen bonds splits into a hydrogen bond with complete proton transfer and one without proton transfer. Strong support for proton transfer in part of the hydrogen bonds has been obtained through the variations of the lengths of precisely those bonds that are involved in resonance stabilization of the Hca ion (§3.2[link]). Proton transfer in only part of the hydrogen bonds has been explained as the result of Coulomb interactions between the resulting ionic species (Kumai et al., 2012[Kumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036-1046.]). Proton transfer is in line with the acidities of the two molecules with pKa1 = 1.23 for the proton acceptor Phz, and pKa1 = 0.76 for the proton donor H2ca (Albert & Phillips, 1956[Albert, A. & Phillips, J. N. (1956). J. Chem. Soc. pp. 1294-1304.]; Molcanov & Prodic, 2010[Molcanov, K. & Kojic Prodic, B. (2010). CrystEngComm, 12, 925-939.]). One could thus suggest that the incommensurability will be the result of competition between the inclination towards proton transfer of single hydrogen bonds and avoiding unfavorable Coulomb repulsion within the crystalline lattice of molecules.

Supporting information


Computing details top

Data collection: Eval15; cell refinement: Eval15; data reduction: Eval15; program(s) used to refine structure: Jana2006; molecular graphics: DIAMOND Version 3; software used to prepare material for publication: Jana2006.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
(I) top
Crystal data top
C12H8N2·C6H2Cl2O4Z = 2
Mr = 389.2F(000) = 396
Monoclinic, P21(1/2β1/2)0†Dx = 1.731 Mg m3
q = 0.500000a* + 0.513900b* + 0.500000c*Synchrotron radiation, λ = 0.56 Å
a = 12.3720 (2) ŵ = 0.24 mm1
b = 3.7649 (5) ÅT = 139 K
c = 16.831 (2) ÅPlatelet, dark brown
β = 107.789 (7)°0.22 × 0.13 × 0.05 mm
V = 746.52 (14) Å3
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3, −x1x3+x4.

Data collection top
Marresearch, marCCD 165
diffractometer
8092 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 33.3°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
SADABS;Sheldrick,2008
h = 1016
Tmin = 0.777, Tmax = 0.991k = 77
25001 measured reflectionsl = 3332
15433 independent reflections
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 2.08Δρmax = 0.17 e Å3
15433 reflectionsΔρmin = 0.02 e Å3
719 parametersAbsolute structure: 6649 of Friedel pairs used in the refinement
0 restraintsAbsolute structure parameter: 0.5
0 constraints
Crystal data top
C12H8N2·C6H2Cl2O4β = 107.789 (7)°
Mr = 389.2V = 746.52 (14) Å3
Monoclinic, P21(1/2β1/2)0†Z = 2
q = 0.500000a* + 0.513900b* + 0.500000c*Synchrotron radiation, λ = 0.56 Å
a = 12.3720 (2) ŵ = 0.24 mm1
b = 3.7649 (5) ÅT = 139 K
c = 16.831 (2) Å0.22 × 0.13 × 0.05 mm
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3, −x1x3+x4.

Data collection top
Marresearch, marCCD 165
diffractometer
15433 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS;Sheldrick,2008
8092 reflections with I > 3σ(I)
Tmin = 0.777, Tmax = 0.991Rint = 0.019
25001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.17 e Å3
S = 2.08Δρmin = 0.02 e Å3
15433 reflectionsAbsolute structure: 6649 of Friedel pairs used in the refinement
719 parametersAbsolute structure parameter: 0.5
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.39426 (2)0.7593550.425664 (9)0.01637 (8)
Cl10.10334 (2)1.36699 (6)0.076472 (9)0.01630 (8)
O10.01710 (6)1.0198 (3)0.20084 (4)0.0187 (2)
O20.47869 (6)1.1115 (3)0.30175 (3)0.0182 (2)
O30.14288 (6)0.7382 (3)0.34754 (4)0.0199 (2)
O40.35598 (6)1.3761 (3)0.15557 (3)0.0189 (2)
N10.85572 (7)0.6962 (3)0.24458 (4)0.0134 (2)
N20.64611 (7)0.4400 (3)0.25095 (4)0.0135 (2)
C10.30168 (9)1.2333 (3)0.19627 (4)0.0138 (3)
C20.18097 (9)1.2022 (3)0.17186 (4)0.0135 (3)
C30.12546 (9)1.0428 (3)0.22157 (4)0.0140 (3)
C40.19362 (9)0.8866 (3)0.30527 (4)0.0135 (3)
C50.31591 (8)0.9219 (3)0.33025 (4)0.0125 (3)
C60.36782 (8)1.0814 (3)0.27986 (4)0.0124 (3)
C70.81178 (9)0.5094 (3)0.10230 (4)0.0152 (3)
C80.73694 (9)0.3530 (3)0.03492 (4)0.0167 (3)
C90.63221 (9)0.2204 (3)0.03867 (4)0.0162 (3)
C100.60119 (9)0.2457 (3)0.10984 (4)0.0154 (3)
C110.67723 (9)0.4113 (3)0.18154 (4)0.0136 (3)
C120.78295 (8)0.5441 (3)0.17721 (4)0.0123 (3)
C130.69135 (9)0.6285 (3)0.39302 (4)0.0155 (3)
C140.76521 (9)0.7854 (3)0.46057 (4)0.0172 (3)
C150.87021 (9)0.9210 (3)0.45697 (5)0.0162 (3)
C160.90122 (9)0.8951 (3)0.38591 (5)0.0145 (3)
C170.82595 (9)0.7284 (3)0.31464 (4)0.0129 (3)
C180.71946 (9)0.5983 (3)0.31757 (4)0.0132 (3)
H70.8834050.5954760.0991630.0183*
H80.7558440.3327150.0161260.0201*
H90.5814070.1095970.0098190.0194*
H100.5295560.1536980.1115020.0185*
H130.6202440.5382210.3962350.0186*
H140.7459310.8044540.5114890.0207*
H150.9206551.0334410.5053630.0194*
H160.9727210.9881080.3841930.0174*
H1o10.0461 (11)0.765 (4)0.2321 (8)0.0281*
H1o20.5251 (11)1.158 (4)0.2704 (8)0.0273*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.01737 (18)0.01914 (12)0.01152 (7)0.00017 (11)0.00280 (9)0.00293 (6)
Cl10.01772 (18)0.01883 (12)0.01129 (7)0.00005 (11)0.00285 (9)0.00285 (6)
O10.0117 (4)0.0259 (4)0.0183 (2)0.0023 (4)0.0042 (3)0.0039 (3)
O20.0132 (4)0.0252 (4)0.0169 (2)0.0030 (4)0.0056 (3)0.0055 (3)
O30.0167 (4)0.0272 (4)0.0177 (2)0.0030 (5)0.0081 (3)0.0054 (3)
O40.0160 (4)0.0254 (4)0.0165 (2)0.0021 (5)0.0067 (3)0.0054 (3)
N10.0132 (5)0.0140 (3)0.0123 (2)0.0001 (4)0.0029 (3)0.0007 (2)
N20.0133 (5)0.0142 (3)0.0127 (2)0.0009 (4)0.0037 (3)0.0005 (2)
C10.0165 (6)0.0137 (4)0.0114 (2)0.0004 (5)0.0044 (3)0.0002 (3)
C20.0144 (6)0.0152 (4)0.0107 (2)0.0016 (4)0.0035 (3)0.0005 (2)
C30.0145 (6)0.0152 (4)0.0122 (2)0.0001 (5)0.0039 (3)0.0000 (3)
C40.0143 (6)0.0150 (4)0.0120 (2)0.0011 (5)0.0050 (3)0.0004 (3)
C50.0125 (6)0.0137 (4)0.0110 (2)0.0009 (4)0.0029 (3)0.0007 (2)
C60.0110 (6)0.0137 (4)0.0118 (2)0.0009 (4)0.0028 (3)0.0002 (2)
C70.0159 (6)0.0159 (4)0.0142 (3)0.0004 (5)0.0051 (3)0.0009 (3)
C80.0187 (6)0.0179 (4)0.0139 (2)0.0045 (5)0.0055 (3)0.0000 (3)
C90.0166 (6)0.0165 (4)0.0138 (3)0.0015 (5)0.0022 (3)0.0020 (3)
C100.0148 (6)0.0164 (4)0.0137 (2)0.0047 (5)0.0023 (3)0.0020 (3)
C110.0161 (6)0.0119 (4)0.0118 (2)0.0000 (4)0.0028 (3)0.0008 (2)
C120.0112 (5)0.0127 (4)0.0130 (2)0.0023 (4)0.0038 (3)0.0018 (2)
C130.0159 (6)0.0180 (4)0.0135 (2)0.0018 (5)0.0060 (3)0.0012 (3)
C140.0200 (6)0.0177 (4)0.0143 (3)0.0006 (5)0.0057 (3)0.0027 (3)
C150.0160 (6)0.0168 (4)0.0143 (3)0.0002 (5)0.0024 (3)0.0028 (3)
C160.0126 (6)0.0144 (4)0.0144 (2)0.0010 (5)0.0009 (3)0.0006 (3)
C170.0144 (6)0.0124 (4)0.0124 (2)0.0018 (4)0.0050 (3)0.0009 (2)
C180.0151 (6)0.0117 (4)0.0117 (2)0.0009 (4)0.0023 (3)0.0007 (2)
Geometric parameters (Å, º) top
AverageMinimumMaximum
Cl2—C51.7153 (15)1.7131 (15)1.7178 (15)
Cl1—C21.7155 (15)1.7119 (15)1.7190 (15)
O1—C22.329 (3)2.320 (3)2.339 (3)
O1—C31.281 (2)1.251 (2)1.311 (2)
O1—C42.401 (2)2.391 (2)2.411 (2)
O1—H1o11.44 (2)1.32 (2)1.57 (2)
O2—C12.405 (2)2.400 (2)2.410 (2)
O2—C52.321 (3)2.316 (3)2.325 (3)
O2—C61.312 (3)1.310 (2)1.314 (2)
O2—H1o20.91 (2)0.88 (2)0.94 (2)
O3—C32.362 (2)2.350 (2)2.374 (2)
O3—C41.219 (2)1.215 (2)1.223 (2)
O3—C52.351 (3)2.344 (3)2.358 (3)
O3—H1o12.546 (17)2.399 (17)2.697 (17)
O4—C11.221 (2)1.208 (2)1.234 (2)
O4—C22.357 (3)2.352 (3)2.362 (3)
O4—C62.333 (2)2.327 (2)2.338 (2)
O4—H1o22.513 (17)2.492 (17)2.535 (17)
N1—C72.394 (2)2.386 (2)2.402 (2)
N1—C112.392 (2)2.370 (2)2.413 (2)
N1—C121.342 (2)1.339 (2)1.345 (2)
N1—C162.392 (2)2.382 (2)2.401 (2)
N1—C171.344 (2)1.342 (2)1.347 (2)
N1—C182.398 (3)2.382 (3)2.415 (3)
N1—H1o1i1.32 (2)1.11 (2)1.53 (2)
N2—C102.383 (2)2.376 (2)2.391 (2)
N2—C111.342 (2)1.338 (2)1.345 (2)
N2—C122.418 (3)2.414 (3)2.421 (3)
N2—C132.391 (2)2.390 (2)2.392 (2)
N2—C172.413 (2)2.403 (2)2.423 (2)
N2—C181.3470 (19)1.342 (2)1.352 (2)
N2—H1o2ii1.94 (2)1.92 (2)1.97 (2)
C1—C21.428 (3)1.406 (3)1.449 (3)
C1—C32.453 (3)2.444 (3)2.462 (3)
C1—C52.500 (2)2.491 (2)2.509 (2)
C1—C61.508 (2)1.505 (2)1.510 (2)
C2—C31.372 (3)1.349 (3)1.396 (3)
C2—C42.503 (2)2.487 (2)2.519 (2)
C2—C62.508 (2)2.494 (2)2.521 (2)
C3—C41.522 (2)1.507 (2)1.537 (2)
C3—H1o12.42 (2)2.26 (2)2.58 (2)
C4—C51.447 (3)1.438 (3)1.456 (3)
C4—C62.435 (3)2.427 (3)2.443 (3)
C5—C61.351 (3)1.346 (3)1.356 (3)
C6—H1o22.02 (2)1.99 (2)2.05 (2)
C7—C81.360 (2)1.355 (2)1.364 (2)
C7—C92.411 (3)2.406 (3)2.416 (3)
C7—C112.458 (3)2.450 (3)2.466 (3)
C7—C121.417 (3)1.415 (3)1.420 (3)
C7—H71.0 (13)1.0 (13)1.0 (13)
C7—H82.0 (15)2.0 (15)2.0 (15)
C7—H1o1i2.543 (17)2.450 (17)2.640 (17)
C8—C91.408 (3)1.403 (3)1.413 (3)
C8—C102.422 (3)2.414 (3)2.431 (3)
C8—C122.397 (2)2.383 (2)2.410 (2)
C8—H72.0 (10)2.0 (10)2.0 (10)
C8—H81.0 (18)1.0 (18)1.0 (18)
C8—H92.1 (10)2.0 (10)2.1 (10)
C9—C101.368 (3)1.364 (3)1.373 (3)
C9—C112.407 (2)2.406 (2)2.408 (2)
C9—H82.1 (16)2.1 (16)2.1 (16)
C9—H91.0 (12)1.0 (12)1.0 (12)
C9—H102.0 (17)2.0 (17)2.0 (17)
C10—C111.427 (2)1.420 (2)1.434 (2)
C10—C122.459 (3)2.451 (3)2.467 (3)
C10—H92.0 (16)2.0 (16)2.0 (16)
C10—H101.0 (13)1.0 (13)1.0 (13)
C11—C121.423 (3)1.420 (3)1.426 (3)
C11—C182.298 (2)2.292 (2)2.304 (2)
C11—H102.1 (10)2.1 (10)2.1 (10)
C12—C172.316 (2)2.291 (2)2.341 (2)
C12—H72.1 (17)2.1 (17)2.1 (17)
C12—H1o1i2.197 (19)2.009 (18)2.391 (19)
C13—C141.357 (2)1.351 (2)1.363 (2)
C13—C152.411 (3)2.406 (3)2.415 (3)
C13—C172.449 (3)2.446 (3)2.452 (3)
C13—C181.420 (3)1.417 (3)1.423 (3)
C13—H131.0 (13)1.0 (13)1.0 (13)
C13—H142.0 (15)2.0 (15)2.0 (15)
C14—C151.414 (3)1.405 (3)1.424 (3)
C14—C162.423 (3)2.421 (3)2.426 (3)
C14—C182.403 (2)2.398 (2)2.409 (2)
C14—H132.0 (10)2.0 (10)2.0 (10)
C14—H141.0 (18)1.0 (18)1.0 (18)
C14—H152.1 (10)2.1 (10)2.1 (10)
C15—C161.367 (3)1.361 (3)1.372 (3)
C15—C172.401 (2)2.391 (2)2.410 (2)
C15—H142.1 (16)2.1 (16)2.1 (16)
C15—H151.0 (12)1.0 (12)1.0 (12)
C15—H162.0 (17)2.0 (17)2.0 (17)
C16—C171.420 (2)1.417 (2)1.424 (2)
C16—C182.459 (3)2.451 (3)2.468 (3)
C16—H152.0 (16)2.0 (16)2.0 (16)
C16—H161.0 (13)1.0 (13)1.0 (13)
C17—C181.421 (3)1.417 (3)1.424 (3)
C17—H162.1 (10)2.1 (10)2.1 (10)
C17—H1o1i2.41 (2)2.21 (2)2.61 (2)
C18—H132.1 (17)2.1 (17)2.1 (17)
H7—H82.3162.31162.3206
H7—H1o1i2.2 (15)2.2 (15)2.3 (15)
H8—H92.34832.33752.3591
H9—H102.32592.32132.3308
H13—H142.31152.30352.3196
H13—H1o2ii2.5 (12)2.5 (12)2.6 (12)
H14—H152.35852.34242.3748
H15—H162.32522.31542.335
C2—O1—C329.71 (9)29.63 (9)29.79 (9)
C2—O1—C463.86 (7)63.39 (7)64.34 (7)
C2—O1—H1o1151.4 (8)145.0 (8)157.4 (7)
C3—O1—C434.16 (9)33.67 (9)34.68 (9)
C3—O1—H1o1125.7 (7)118.9 (8)132.2 (6)
C4—O1—H1o193.6 (7)87.6 (7)99.2 (6)
C1—O2—C563.84 (7)63.57 (7)64.12 (7)
C1—O2—C634.00 (9)33.74 (9)34.26 (9)
C1—O2—H1o297.4 (11)94.7 (11)100.1 (11)
C5—O2—C629.85 (9)29.81 (9)29.88 (9)
C5—O2—H1o2157.2 (11)154.8 (11)159.6 (11)
C6—O2—H1o2130.2 (11)127.4 (11)133.1 (11)
C3—O3—C434.44 (9)34.09 (9)34.80 (9)
C3—O3—C565.34 (7)65.00 (7)65.66 (7)
C3—O3—H1o158.9 (5)56.9 (5)60.8 (5)
C4—O3—C530.89 (9)30.74 (9)31.05 (9)
C4—O3—H1o192.9 (5)90.5 (5)95.3 (5)
C5—O3—H1o1123.5 (5)120.9 (5)125.8 (5)
C1—O4—C229.54 (9)28.60 (8)30.48 (8)
C1—O4—C635.11 (9)34.48 (9)35.74 (9)
C1—O4—H1o284.1 (5)82.6 (5)85.5 (5)
C2—O4—C664.65 (7)64.33 (7)64.96 (7)
C2—O4—H1o2113.5 (5)112.8 (5)114.1 (5)
C6—O4—H1o249.1 (5)48.2 (5)50.1 (5)
C7—N1—C1161.82 (7)61.44 (7)62.19 (7)
C7—N1—C1230.73 (11)30.19 (11)31.28 (11)
C7—N1—C16178.51 (9)177.48 (10)179.40 (8)
C7—N1—C17149.90 (12)148.23 (12)151.54 (13)
C7—N1—C18119.15 (8)118.13 (8)120.16 (8)
C7—N1—H1o1i80.6 (8)78.4 (9)82.6 (8)
C11—N1—C1231.09 (11)30.20 (10)31.98 (11)
C11—N1—C16119.12 (10)118.10 (9)120.13 (9)
C11—N1—C1788.09 (11)86.76 (11)89.40 (11)
C11—N1—C1857.34 (7)56.67 (6)58.00 (7)
C11—N1—H1o1i141.9 (8)140.0 (9)143.7 (8)
C12—N1—C16150.19 (15)148.29 (14)152.08 (15)
C12—N1—C17119.17 (16)116.96 (16)121.35 (16)
C12—N1—C1888.42 (12)86.87 (12)89.96 (12)
C12—N1—H1o1i111.2 (8)108.8 (9)113.3 (8)
C16—N1—C1731.04 (9)30.71 (9)31.37 (9)
C16—N1—C1861.79 (7)61.43 (7)62.13 (7)
C16—N1—H1o1i98.5 (8)96.4 (9)100.5 (8)
C17—N1—C1830.75 (9)30.08 (9)31.41 (9)
C17—N1—H1o1i129.3 (8)126.9 (9)131.6 (8)
C18—N1—H1o1i159.5 (8)157.5 (8)161.3 (8)
C10—N2—C1131.66 (9)31.59 (9)31.73 (9)
C10—N2—C1261.62 (7)61.45 (7)61.79 (7)
C10—N2—C13179.22 (9)178.94 (9)179.44 (8)
C10—N2—C17118.92 (9)118.24 (9)119.59 (9)
C10—N2—C18149.11 (14)148.37 (14)149.85 (14)
C10—N2—H1o2ii92.5 (6)91.0 (6)93.9 (6)
C11—N2—C1229.96 (9)29.73 (9)30.19 (9)
C11—N2—C13148.55 (12)147.85 (12)149.25 (12)
C11—N2—C1787.26 (11)86.63 (11)87.89 (11)
C11—N2—C18117.45 (16)116.74 (16)118.18 (16)
C11—N2—H1o2ii122.9 (6)121.4 (6)124.4 (6)
C12—N2—C13118.60 (8)117.91 (8)119.28 (8)
C12—N2—C1757.30 (7)56.62 (7)57.98 (7)
C12—N2—C1887.50 (12)86.80 (12)88.20 (12)
C12—N2—H1o2ii150.6 (6)149.3 (6)151.9 (6)
C13—N2—C1761.30 (7)61.10 (7)61.49 (7)
C13—N2—C1831.10 (10)31.08 (10)31.13 (10)
C13—N2—H1o2ii87.2 (6)85.8 (6)88.6 (6)
C17—N2—C1830.20 (10)30.00 (10)30.40 (10)
C17—N2—H1o2ii145.5 (5)144.3 (5)146.8 (5)
C18—N2—H1o2ii117.4 (6)116.0 (6)118.7 (6)
O2—C1—O488.01 (12)86.51 (10)89.51 (11)
O2—C1—C2146.45 (13)145.95 (13)146.97 (13)
O2—C1—C3118.25 (8)118.05 (8)118.45 (8)
O2—C1—C556.44 (7)56.39 (6)56.50 (6)
O2—C1—C629.12 (9)28.99 (9)29.25 (9)
O4—C1—C2125.53 (14)124.49 (13)126.58 (14)
O4—C1—C3153.73 (12)152.44 (12)155.03 (11)
O4—C1—C5144.45 (13)142.98 (12)145.91 (12)
O4—C1—C6117.13 (17)115.75 (15)118.50 (15)
C2—C1—C328.21 (9)27.90 (8)28.52 (9)
C2—C1—C590.01 (12)89.52 (12)90.50 (12)
C2—C1—C6117.33 (16)116.93 (16)117.75 (16)
C3—C1—C561.80 (7)61.62 (7)61.98 (7)
C3—C1—C689.13 (12)89.03 (12)89.23 (12)
C5—C1—C627.33 (9)27.24 (9)27.41 (9)
Cl1—C2—O191.62 (9)91.12 (8)92.13 (8)
Cl1—C2—O493.57 (9)93.15 (9)93.99 (9)
Cl1—C2—C1118.48 (14)118.17 (14)118.80 (14)
Cl1—C2—C3119.18 (14)118.25 (14)120.13 (14)
Cl1—C2—C4151.05 (12)150.68 (12)151.43 (12)
Cl1—C2—C6150.76 (12)150.30 (12)151.22 (12)
O1—C2—O4174.70 (8)173.87 (8)175.52 (8)
O1—C2—C1149.89 (12)149.10 (12)150.67 (12)
O1—C2—C327.57 (9)26.31 (9)28.84 (9)
O1—C2—C459.47 (7)58.86 (7)60.08 (7)
O1—C2—C6117.62 (8)116.76 (8)118.47 (8)
O4—C2—C124.93 (8)24.81 (8)25.05 (8)
O4—C2—C3147.25 (12)146.67 (12)147.82 (12)
O4—C2—C4115.37 (8)115.00 (8)115.72 (8)
O4—C2—C657.21 (6)57.10 (6)57.32 (7)
C1—C2—C3122.33 (14)121.64 (14)123.02 (14)
C1—C2—C490.44 (10)90.07 (10)90.80 (10)
C1—C2—C632.28 (8)32.07 (9)32.49 (9)
C3—C2—C431.90 (9)31.24 (9)32.54 (8)
C3—C2—C690.05 (11)89.55 (10)90.54 (10)
C4—C2—C658.16 (7)57.86 (7)58.45 (7)
O1—C3—O390.71 (12)90.57 (12)90.86 (13)
O1—C3—C1152.17 (12)151.65 (12)152.72 (12)
O1—C3—C2122.72 (14)121.42 (14)124.04 (14)
O1—C3—C4117.63 (17)117.46 (16)117.79 (17)
O1—C3—H1o128.7 (4)26.8 (4)30.7 (5)
O3—C3—C1117.12 (8)116.52 (8)117.72 (8)
O3—C3—C2146.56 (13)145.14 (13)147.99 (13)
O3—C3—C426.94 (9)26.87 (9)27.00 (9)
O3—C3—H1o164.3 (4)62.5 (4)65.9 (4)
C1—C3—C229.46 (9)28.64 (8)30.29 (9)
C1—C3—C490.19 (12)89.54 (11)90.84 (12)
C1—C3—H1o1169.9 (5)169.0 (5)170.9 (5)
C2—C3—C4119.65 (17)118.19 (16)121.11 (16)
C2—C3—H1o1147.9 (4)147.4 (4)148.4 (5)
C4—C3—H1o190.9 (4)89.0 (5)92.7 (4)
O1—C4—O390.42 (11)90.13 (12)90.72 (12)
O1—C4—C256.67 (6)56.45 (6)56.88 (6)
O1—C4—C328.21 (10)27.58 (10)28.85 (10)
O1—C4—C5146.08 (13)145.99 (13)146.17 (13)
O1—C4—C6117.68 (9)117.37 (8)117.98 (8)
O3—C4—C2147.05 (13)146.56 (13)147.54 (13)
O3—C4—C3118.62 (16)118.20 (16)119.04 (17)
O3—C4—C5123.49 (14)123.13 (14)123.85 (14)
O3—C4—C6151.89 (12)151.63 (12)152.16 (12)
C2—C4—C328.46 (10)27.65 (10)29.26 (10)
C2—C4—C589.44 (12)89.29 (12)89.60 (12)
C2—C4—C661.02 (7)60.56 (7)61.47 (7)
C3—C4—C5117.89 (16)117.23 (16)118.54 (16)
C3—C4—C689.47 (12)89.12 (12)89.82 (12)
C5—C4—C628.43 (8)28.11 (8)28.74 (8)
Cl2—C5—O291.46 (8)91.33 (8)91.59 (8)
Cl2—C5—O393.13 (9)92.86 (8)93.39 (8)
Cl2—C5—C1151.16 (11)150.77 (11)151.54 (11)
Cl2—C5—C4118.73 (14)118.20 (13)119.26 (14)
Cl2—C5—C6120.36 (13)120.11 (13)120.60 (13)
O2—C5—O3175.30 (8)175.01 (8)175.58 (8)
O2—C5—C159.71 (7)59.39 (6)60.03 (7)
O2—C5—C4149.81 (12)149.34 (12)150.28 (12)
O2—C5—C628.90 (8)28.75 (8)29.05 (8)
O3—C5—C1115.71 (8)115.58 (8)115.85 (8)
O3—C5—C425.62 (8)25.34 (8)25.90 (8)
O3—C5—C6146.51 (12)146.37 (12)146.65 (12)
C1—C5—C490.10 (10)89.95 (10)90.26 (10)
C1—C5—C630.81 (9)30.63 (8)30.99 (8)
C4—C5—C6120.91 (14)120.58 (14)121.25 (14)
O2—C6—O489.12 (11)87.99 (11)90.24 (11)
O2—C6—C1116.88 (16)116.49 (16)117.27 (16)
O2—C6—C2147.27 (13)146.44 (13)148.09 (13)
O2—C6—C4151.91 (12)151.75 (12)152.07 (12)
O2—C6—C5121.25 (14)121.11 (14)121.40 (14)
O2—C6—H1o220.1 (5)18.9 (5)21.2 (5)
O4—C6—C127.76 (9)27.02 (9)28.52 (9)
O4—C6—C258.14 (6)57.84 (6)58.45 (6)
O4—C6—C4118.96 (8)117.98 (8)119.97 (8)
O4—C6—C5149.62 (13)148.61 (13)150.64 (13)
O4—C6—H1o270.1 (5)69.2 (5)71.0 (5)
C1—C6—C230.38 (10)29.93 (9)30.83 (9)
C1—C6—C491.20 (12)90.96 (11)91.45 (11)
C1—C6—C5121.86 (17)121.60 (16)122.13 (16)
C1—C6—H1o297.7 (5)96.6 (5)98.7 (5)
C2—C6—C460.82 (7)60.13 (7)61.52 (7)
C2—C6—C591.48 (12)90.77 (12)92.20 (12)
C2—C6—H1o2127.8 (5)126.9 (5)128.8 (5)
C4—C6—C530.66 (9)30.64 (9)30.68 (9)
C4—C6—H1o2169.1 (6)168.2 (6)169.9 (6)
C5—C6—H1o2140.1 (5)138.9 (5)141.2 (6)
N1—C7—C8148.24 (16)147.13 (16)149.37 (16)
N1—C7—C9118.28 (10)117.41 (10)119.15 (10)
N1—C7—C1159.05 (7)58.29 (7)59.82 (7)
N1—C7—C1228.94 (8)28.41 (8)29.47 (8)
N1—C7—H791.4190.5892.23
N1—C7—H8172.78171.83173.72
N1—C7—H1o1i30.8 (5)26.4 (5)35.0 (5)
C8—C7—C929.97 (11)29.71 (11)30.22 (11)
C8—C7—C1189.19 (13)88.83 (13)89.54 (13)
C8—C7—C12119.31 (17)118.70 (17)119.91 (17)
C8—C7—H7120.35120.05120.65
C8—C7—H824.5524.3924.71
C8—C7—H1o1i175.0 (5)172.5 (5)176.9 (4)
C9—C7—C1159.23 (7)59.12 (7)59.33 (7)
C9—C7—C1289.34 (12)88.98 (12)89.71 (12)
C9—C7—H7150.3150.23150.38
C9—C7—H854.5254.4254.61
C9—C7—H1o1i148.7 (5)143.5 (5)153.8 (5)
C11—C7—C1230.12 (9)29.86 (9)30.38 (9)
C11—C7—H7150.46150.38150.53
C11—C7—H8113.74113.54113.93
C11—C7—H1o1i89.6 (5)84.5 (5)94.7 (5)
C12—C7—H7120.35120.04120.65
C12—C7—H8143.85143.41144.29
C12—C7—H1o1i59.6 (5)54.7 (5)64.4 (5)
H7—C7—H895.895.6595.95
H7—C7—H1o1i60.8555.766.07
H8—C7—H1o1i156.43151.23161.7
C7—C8—C9121.19 (18)120.64 (17)121.74 (17)
C7—C8—C1092.40 (13)91.86 (13)92.95 (13)
C7—C8—C1231.05 (11)30.70 (11)31.38 (11)
C7—C8—H724.1924.1224.25
C7—C8—H8119.4119.13119.68
C7—C8—H9145.24144.66145.82
C9—C8—C1028.79 (9)28.53 (9)29.05 (9)
C9—C8—C1290.15 (12)89.91 (12)90.39 (12)
C9—C8—H7145.37144.87145.87
C9—C8—H8119.4119.13119.68
C9—C8—H924.0523.8724.23
C10—C8—C1261.36 (7)61.14 (7)61.58 (7)
C10—C8—H7116.59116.1117.07
C10—C8—H8148.19147.87148.52
C10—C8—H952.8452.7452.94
C12—C8—H755.2354.9555.51
C12—C8—H8150.44150.32150.56
C12—C8—H9114.2113.96114.44
H7—C8—H895.229595.44
H7—C8—H9169.4168.86169.94
H8—C8—H995.3695.0295.69
C7—C9—C828.84 (9)28.54 (9)29.15 (9)
C7—C9—C1092.66 (11)91.96 (11)93.37 (11)
C7—C9—C1161.37 (8)61.09 (8)61.64 (8)
C7—C9—H852.8352.6353.03
C7—C9—H9148.09147.68148.5
C7—C9—H10116.65116.14117.17
C8—C9—C10121.50 (14)120.78 (15)122.22 (15)
C8—C9—C1190.20 (11)89.88 (11)90.54 (11)
C8—C9—H823.9923.8624.12
C8—C9—H9119.25118.89119.61
C8—C9—H10145.49144.96146.03
C10—C9—C1131.30 (9)30.86 (9)31.74 (9)
C10—C9—H8145.49144.73146.26
C10—C9—H9119.25118.89119.61
C10—C9—H1023.9923.7924.19
C11—C9—H8114.19113.86114.53
C11—C9—H9150.54150.4150.69
C11—C9—H1055.2955.0555.53
H8—C9—H995.2694.8495.67
H8—C9—H10169.48168.92170.04
H9—C9—H1095.2695.0895.43
N2—C10—C8118.69 (9)118.10 (9)119.27 (9)
N2—C10—C9148.39 (13)147.35 (13)149.42 (14)
N2—C10—C1129.57 (10)29.31 (10)29.83 (10)
N2—C10—C1259.89 (7)59.59 (7)60.18 (7)
N2—C10—H9172.87171.94173.76
N2—C10—H1091.0290.3891.67
C8—C10—C929.71 (9)29.24 (9)30.17 (9)
C8—C10—C1189.12 (13)88.77 (13)89.47 (13)
C8—C10—C1258.81 (7)58.39 (7)59.22 (7)
C8—C10—H954.2153.8454.58
C8—C10—H10150.29150.17150.41
C9—C10—C11118.83 (17)118.04 (17)119.61 (17)
C9—C10—C1288.51 (12)87.70 (12)89.32 (12)
C9—C10—H924.5124.4124.59
C9—C10—H10120.59120.2120.98
C11—C10—C1230.32 (10)30.19 (10)30.44 (10)
C11—C10—H9143.33142.63144.03
C11—C10—H10120.59120.2120.98
C12—C10—H9113.02112.29113.75
C12—C10—H10150.9150.47151.32
H9—C10—H1096.0895.7896.39
N1—C11—N292.82 (10)92.30 (10)93.34 (10)
N1—C11—C759.13 (7)58.69 (7)59.56 (7)
N1—C11—C9118.54 (10)118.04 (10)119.03 (10)
N1—C11—C10148.41 (15)147.95 (15)148.87 (15)
N1—C11—C1229.14 (9)28.41 (9)29.87 (9)
N1—C11—C1861.48 (7)61.25 (7)61.71 (7)
N1—C11—H10171.73171.29172.18
N2—C11—C7151.94 (12)151.52 (13)152.35 (13)
N2—C11—C9148.64 (13)148.01 (14)149.28 (14)
N2—C11—C10118.77 (17)118.47 (18)119.07 (18)
N2—C11—C12121.95 (14)121.56 (14)122.34 (14)
N2—C11—C1831.34 (8)30.99 (8)31.69 (8)
N2—C11—H1095.4394.9395.95
C7—C11—C959.41 (7)59.19 (7)59.63 (7)
C7—C11—C1089.28 (12)89.16 (13)89.41 (13)
C7—C11—C1229.99 (9)29.64 (9)30.34 (9)
C7—C11—C18120.60 (9)120.37 (9)120.83 (9)
C7—C11—H10112.62112.52112.72
C9—C11—C1029.88 (10)29.53 (10)30.22 (10)
C9—C11—C1289.40 (12)88.87 (12)89.92 (12)
C9—C11—C18179.42 (10)179.16 (10)179.71 (9)
C9—C11—H1053.2153.153.34
C10—C11—C12119.27 (17)119.00 (16)119.55 (16)
C10—C11—C18150.11 (16)149.88 (15)150.34 (15)
C10—C11—H1023.3423.1123.56
C12—C11—C1890.61 (11)90.11 (11)91.11 (11)
C12—C11—H10142.61142.19143.03
C18—C11—H10126.78126.5127.06
N1—C12—N291.69 (13)90.24 (12)93.14 (12)
N1—C12—C7120.33 (17)119.26 (16)121.39 (17)
N1—C12—C8149.98 (15)148.65 (15)151.30 (15)
N1—C12—C10150.17 (15)148.72 (15)151.64 (15)
N1—C12—C11119.77 (17)118.16 (17)121.39 (17)
N1—C12—C1730.44 (10)29.41 (10)31.48 (10)
N1—C12—H796.895.6497.95
N1—C12—H1o1i33.9 (6)31.2 (6)36.4 (5)
N2—C12—C7147.98 (12)147.49 (12)148.46 (12)
N2—C12—C8118.33 (9)118.04 (9)118.62 (9)
N2—C12—C1058.50 (7)58.37 (7)58.62 (7)
N2—C12—C1128.09 (9)27.91 (9)28.27 (9)
N2—C12—C1761.25 (7)60.79 (7)61.71 (7)
N2—C12—H7171.49171.1171.92
N2—C12—H1o1i125.3 (6)121.2 (6)129.2 (5)
C7—C12—C829.65 (9)29.39 (9)29.91 (9)
C7—C12—C1089.48 (11)89.03 (11)89.92 (11)
C7—C12—C11119.89 (14)119.28 (14)120.50 (14)
C7—C12—C17150.77 (13)150.67 (13)150.87 (13)
C7—C12—H723.5323.4523.62
C7—C12—H1o1i86.6 (6)83.0 (5)90.4 (6)
C8—C12—C1059.83 (7)59.64 (7)60.03 (7)
C8—C12—C1190.24 (11)89.89 (11)90.60 (11)
C8—C12—C17179.48 (11)179.25 (11)179.86 (11)
C8—C12—H753.1853.0153.36
C8—C12—H1o1i116.2 (6)112.4 (5)120.2 (6)
C10—C12—C1130.41 (9)30.25 (9)30.58 (9)
C10—C12—C17119.75 (11)119.31 (10)120.19 (11)
C10—C12—H7113.01112.65113.37
C10—C12—H1o1i173.6 (5)170.9 (5)175.6 (5)
C11—C12—C1789.33 (12)88.73 (12)89.94 (12)
C11—C12—H7143.42142.89143.94
C11—C12—H1o1i153.2 (6)148.9 (6)157.1 (5)
C17—C12—H7127.24127.1127.38
C17—C12—H1o1i64.3 (6)60.5 (6)67.8 (5)
H7—C12—H1o1i63.1159.4467.01
N2—C13—C14149.20 (16)148.50 (16)149.91 (16)
N2—C13—C15118.99 (10)118.59 (10)119.38 (10)
N2—C13—C1759.79 (7)59.49 (7)60.09 (7)
N2—C13—C1829.35 (8)29.16 (8)29.53 (8)
N2—C13—H1390.7290.3591.1
N2—C13—H14173.72173.03174.41
C14—C13—C1530.22 (11)29.81 (11)30.64 (11)
C14—C13—C1789.41 (13)88.76 (13)90.08 (13)
C14—C13—C18119.86 (18)119.15 (17)120.58 (18)
C14—C13—H13120.07119.71120.43
C14—C13—H1424.5224.4824.57
C15—C13—C1759.20 (7)58.95 (7)59.44 (7)
C15—C13—C1889.64 (12)89.31 (12)89.97 (12)
C15—C13—H13150.29150.18150.4
C15—C13—H1454.7454.3655.14
C17—C13—C1830.45 (9)30.32 (9)30.58 (9)
C17—C13—H13150.51150.2150.82
C17—C13—H14113.94113.3114.58
C18—C13—H13120.07119.71120.42
C18—C13—H14144.39143.69145.09
H13—C13—H1495.5595.295.89
C13—C14—C15120.90 (18)120.42 (18)121.38 (18)
C13—C14—C1692.08 (13)91.52 (13)92.64 (13)
C13—C14—C1830.82 (11)30.53 (11)31.10 (11)
C13—C14—H1324.3224.1224.53
C13—C14—H14119.55119.31119.79
C13—C14—H15144.83144.15145.5
C15—C14—C1628.82 (9)28.71 (9)28.93 (9)
C15—C14—C1890.08 (12)89.85 (12)90.31 (12)
C15—C14—H13145.22144.93145.51
C15—C14—H14119.55119.31119.79
C15—C14—H1523.9323.7424.12
C16—C14—C1861.26 (7)60.97 (7)61.55 (7)
C16—C14—H13116.41116.04116.76
C16—C14—H14148.37148.04148.69
C16—C14—H1552.7552.6152.89
C18—C14—H1355.1455.0655.22
C18—C14—H14150.37150.27150.47
C18—C14—H15114.01113.59114.42
H13—C14—H1495.2395.1595.31
H13—C14—H15169.15168.66169.62
H14—C14—H1595.6295.1996.05
C13—C15—C1428.88 (9)28.81 (9)28.95 (9)
C13—C15—C1692.38 (11)91.82 (11)92.93 (11)
C13—C15—C1761.19 (7)61.17 (7)61.22 (7)
C13—C15—H1452.7552.6252.87
C13—C15—H15148.25147.94148.56
C13—C15—H16116.41116.13116.69
C14—C15—C16121.26 (15)120.76 (15)121.74 (15)
C14—C15—C1790.07 (11)90.02 (11)90.12 (11)
C14—C15—H1423.8723.6724.06
C14—C15—H15119.37119.13119.62
C14—C15—H16145.29145.06145.51
C16—C15—C1731.19 (9)30.64 (9)31.73 (9)
C16—C15—H14145.12144.44145.79
C16—C15—H15119.37119.13119.62
C16—C15—H1624.0323.7624.31
C17—C15—H14113.93113.79114.08
C17—C15—H15150.56150.26150.85
C17—C15—H1655.2254.9455.49
H14—C15—H1595.5195.0895.95
H14—C15—H16169.15168.74169.55
H15—C15—H1695.3495.2895.4
N1—C16—C14118.20 (9)117.23 (9)119.19 (9)
N1—C16—C15148.12 (14)146.75 (14)149.52 (14)
N1—C16—C1729.20 (10)28.95 (10)29.46 (10)
N1—C16—C1859.25 (7)58.55 (7)59.95 (7)
N1—C16—H15172.59171.26173.93
N1—C16—H1691.3490.5192.15
C14—C16—C1529.92 (9)29.52 (9)30.34 (9)
C14—C16—C1789.00 (13)88.27 (13)89.74 (13)
C14—C16—C1858.97 (7)58.68 (7)59.26 (7)
C14—C16—H1554.454.0354.78
C14—C16—H16150.46150.29150.62
C15—C16—C17118.93 (18)117.79 (18)120.08 (18)
C15—C16—C1888.89 (12)88.20 (13)89.59 (13)
C15—C16—H1524.4824.4324.53
C15—C16—H16120.54119.96121.1
C17—C16—C1830.04 (10)29.59 (10)30.50 (10)
C17—C16—H15143.41142.31144.52
C17—C16—H16120.54119.96121.1
C18—C16—H15113.37112.71114.04
C18—C16—H16150.57150.43150.71
H15—C16—H1696.0695.5296.59
N1—C17—N291.84 (10)90.42 (10)93.27 (10)
N1—C17—C1230.39 (8)29.24 (8)31.56 (8)
N1—C17—C13150.74 (12)149.36 (12)152.14 (12)
N1—C17—C15149.64 (13)148.44 (13)150.81 (13)
N1—C17—C16119.76 (17)119.18 (17)120.33 (17)
N1—C17—C18120.32 (13)118.95 (13)121.72 (14)
N1—C17—H1696.3395.5497.11
N1—C17—H1o1i25.0 (4)22.9 (4)26.9 (4)
N2—C17—C1261.45 (7)61.18 (7)61.73 (7)
N2—C17—C1358.91 (7)58.79 (7)59.04 (7)
N2—C17—C15118.52 (10)118.20 (10)118.84 (10)
N2—C17—C16148.40 (15)147.52 (15)149.27 (15)
N2—C17—C1828.48 (8)28.35 (8)28.62 (8)
N2—C17—H16171.8171.17172.42
N2—C17—H1o1i116.6 (4)113.2 (4)119.6 (4)
C12—C17—C13120.36 (9)120.06 (9)120.67 (9)
C12—C17—C15179.66 (10)179.46 (9)179.82 (11)
C12—C17—C16150.14 (16)149.50 (16)150.78 (16)
C12—C17—C1889.93 (10)89.64 (10)90.24 (10)
C12—C17—H16126.71126.3127.13
C12—C17—H1o1i55.3 (4)52.2 (4)58.1 (4)
C13—C17—C1559.61 (7)59.37 (7)59.85 (7)
C13—C17—C1689.49 (12)88.65 (12)90.33 (12)
C13—C17—C1830.43 (8)30.41 (8)30.46 (8)
C13—C17—H16112.92112.3113.53
C13—C17—H1o1i173.8 (5)171.4 (5)175.6 (4)
C15—C17—C1629.88 (10)29.27 (11)30.49 (11)
C15—C17—C1890.04 (12)89.82 (12)90.26 (12)
C15—C17—H1653.3152.9153.7
C15—C17—H1o1i124.8 (4)122.0 (4)127.8 (4)
C16—C17—C18119.92 (17)119.09 (17)120.73 (17)
C16—C17—H1623.4323.223.65
C16—C17—H1o1i95.0 (4)92.7 (4)97.5 (5)
C18—C17—H16143.34142.74143.93
C18—C17—H1o1i145.0 (4)141.7 (5)147.9 (4)
H16—C17—H1o1i71.6569.1574.35
N1—C18—N292.39 (12)91.64 (12)93.14 (12)
N1—C18—C1161.19 (8)60.76 (7)61.62 (7)
N1—C18—C13148.03 (12)147.23 (12)148.81 (12)
N1—C18—C14118.72 (9)118.37 (9)119.08 (9)
N1—C18—C1658.97 (7)58.62 (7)59.32 (7)
N1—C18—C1728.93 (8)28.20 (8)29.65 (8)
N1—C18—H13171.56170.87172.25
N2—C18—C1131.20 (10)30.82 (10)31.58 (10)
N2—C18—C13119.55 (17)119.36 (17)119.74 (17)
N2—C18—C14148.86 (15)148.40 (15)149.33 (15)
N2—C18—C16151.35 (15)150.92 (15)151.79 (15)
N2—C18—C17121.32 (16)120.99 (17)121.64 (17)
N2—C18—H1395.9495.796.19
C11—C18—C13150.74 (14)150.41 (14)151.07 (14)
C11—C18—C14179.10 (9)178.66 (9)179.52 (10)
C11—C18—C16120.15 (11)120.07 (10)120.23 (10)
C11—C18—C1790.12 (12)89.82 (12)90.41 (12)
C11—C18—H13127.14126.92127.36
C13—C18—C1429.32 (9)28.88 (9)29.75 (9)
C13—C18—C1689.09 (11)88.65 (10)89.51 (11)
C13—C18—C17119.11 (14)118.97 (14)119.26 (14)
C13—C18—H1323.6123.4823.73
C14—C18—C1659.77 (7)59.75 (7)59.79 (7)
C14—C18—C1789.80 (10)89.43 (10)90.17 (10)
C14—C18—H1352.9352.6153.24
C16—C18—C1730.04 (9)29.66 (8)30.42 (8)
C16—C18—H13112.7112.38113.01
C17—C18—H13142.72142.62142.81
C7—H7—C835.4735.2335.7
C7—H7—C1236.1235.9136.33
C7—H7—H859.8559.6660.03
C7—H7—H1o1i97.291.01103.49
C8—H7—C1271.5971.1472.04
C8—H7—H824.3824.3224.44
C8—H7—H1o1i132.57126.16139.09
C12—H7—H895.9695.5796.36
C12—H7—H1o1i61.1655.1967.23
H8—H7—H1o1i156.83150.49163.27
C7—H8—C836.0535.9336.16
C7—H8—C972.6572.3872.93
C7—H8—H724.3524.3124.4
C7—H8—H996.6796.3497
C8—H8—C936.6136.4536.76
C8—H8—H760.460.2460.56
C8—H8—H960.6360.460.85
C9—H8—H79796.6897.33
C9—H8—H924.0223.8924.16
H7—H8—H9121.02120.64121.4
C8—H9—C936.736.5236.88
C8—H9—C1072.9472.573.4
C8—H9—H824.0223.8924.15
C8—H9—H1097.1796.7897.57
C9—H9—C1036.2435.9836.52
C9—H9—H860.7260.4361.01
C9—H9—H1060.4760.2660.69
C10—H9—H896.9696.4197.52
C10—H9—H1024.2324.1624.3
H8—H9—H10121.19120.7121.69
C9—H10—C1035.4235.2335.61
C9—H10—C1171.571.1371.86
C9—H10—H924.2724.2224.31
C10—H10—C1136.0835.9136.24
C10—H10—H959.6959.4559.93
C11—H10—H995.7695.3596.17
C13—H13—C1435.6135.4635.76
C13—H13—C1836.3236.0936.56
C13—H13—H1460.0459.860.28
C13—H13—H1o2ii110.69109.8111.58
C14—H13—C1871.9371.5472.32
C14—H13—H1424.4324.3424.52
C14—H13—H1o2ii145.15144.28146.01
C18—H13—H1496.3695.8996.84
C18—H13—H1o2ii75.0574.0576.06
H14—H13—H1o2ii165.89164.95166.84
C13—H14—C1435.9335.7136.14
C13—H14—C1572.5172.2472.77
C13—H14—H1324.4224.3124.52
C13—H14—H1596.4195.9696.86
C14—H14—C1536.5836.5336.64
C14—H14—H1360.3460.2260.46
C14—H14—H1560.4860.2460.72
C15—H14—H1396.9396.7697.09
C15—H14—H1523.923.7124.09
H13—H14—H15120.83120.46121.18
C14—H15—C1536.736.6336.76
C14—H15—C1672.8572.5873.1
C14—H15—H1423.923.724.09
C14—H15—H1697.0896.9497.22
C15—H15—C1636.1535.9436.35
C15—H15—H1460.5960.3560.83
C15—H15—H1660.3960.3160.47
C16—H15—H1496.7496.2997.19
C16—H15—H1624.2424.1124.37
H14—H15—H16120.98120.66121.3
C15—H16—C1635.4335.1435.73
C15—H16—C1771.4770.8372.12
C15—H16—H1524.2724.1624.38
C16—H16—C1736.0435.6936.39
C16—H16—H1559.759.360.11
C17—H16—H1595.7494.9996.5
O1—H1o1—O380.5 (8)73.2 (7)88.2 (9)
O1—H1o1—N1iii144.8 (15)139.5 (14)149.7 (16)
O1—H1o1—C325.6 (4)21.1 (3)30.5 (5)
O1—H1o1—C7iii104.1 (9)102.3 (9)106.6 (9)
O1—H1o1—C12iii131.0 (10)127.7 (10)134.1 (11)
O1—H1o1—C17iii140.5 (12)138.5 (13)142.8 (12)
O1—H1o1—H7iii84.8581.5888.16
O3—H1o1—N1iii123.0 (11)119.6 (10)126.6 (12)
O3—H1o1—C356.8 (4)53.4 (4)60.4 (5)
O3—H1o1—C7iii150.7 (9)146.9 (9)153.6 (9)
O3—H1o1—C12iii147.8 (9)143.7 (9)151.6 (9)
O3—H1o1—C17iii99.6 (7)98.5 (7)101.0 (7)
O3—H1o1—H7iii137.69130.72144.42
N1iii—H1o1—C3165.0 (13)163.4 (13)166.6 (14)
N1iii—H1o1—C7iii68.6 (7)63.5 (6)74.1 (8)
N1iii—H1o1—C12iii34.9 (5)31.3 (4)39.0 (6)
N1iii—H1o1—C17iii25.6 (5)23.0 (4)28.7 (6)
N1iii—H1o1—H7iii90.3884.1396.94
C3—H1o1—C7iii119.5 (8)114.8 (8)123.9 (9)
C3—H1o1—C12iii152.2 (9)148.9 (10)155.2 (9)
C3—H1o1—C17iii144.2 (8)141.0 (8)147.4 (9)
C3—H1o1—H7iii97.6692.08103.21
C7iii—H1o1—C12iii33.8 (3)32.3 (2)35.3 (3)
C7iii—H1o1—C17iii94.2 (7)86.8 (6)102.1 (7)
C7iii—H1o1—H7iii21.9520.7423.06
C12iii—H1o1—C17iii60.4 (5)54.4 (5)67.1 (7)
C12iii—H1o1—H7iii55.7253.0358.31
C17iii—H1o1—H7iii116.03107.42124.96
O2—H1o2—O489.1 (12)86.8 (12)91.4 (12)
O2—H1o2—N2iv149.2 (18)146.4 (17)152.0 (18)
O2—H1o2—C629.7 (7)28.0 (7)31.5 (7)
O2—H1o2—H13iv80.678.1283.17
O4—H1o2—N2iv101.3 (8)100.1 (8)102.5 (8)
O4—H1o2—C660.8 (5)60.2 (5)61.3 (5)
O4—H1o2—H13iv121.59120.99122.21
N2iv—H1o2—C6154.2 (12)153.0 (12)155.5 (11)
N2iv—H1o2—H13iv69.2668.6669.84
C6—H1o2—H13iv103.12101.58104.7
Symmetry codes: (i) x1+1, x2, x3, x4; (ii) x1, x21, x3, x4; (iii) x11, x2, x3, x4; (iv) x1, x2+1, x3, x4.

Experimental details

Crystal data
Chemical formulaC12H8N2·C6H2Cl2O4
Mr389.2
Crystal system, space groupMonoclinic, P21(1/2β1/2)0†
Temperature (K)139
Wave vectorsq = 0.500000a* + 0.513900b* + 0.500000c*
a, b, c (Å)12.3720 (2), 3.7649 (5), 16.831 (2)
β (°) 107.789 (7)
V3)746.52 (14)
Z2
Radiation typeSynchrotron, λ = 0.56 Å
µ (mm1)0.24
Crystal size (mm)0.22 × 0.13 × 0.05
Data collection
DiffractometerMarresearch, marCCD 165
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS;Sheldrick,2008
Tmin, Tmax0.777, 0.991
No. of measured, independent and
observed [I > 3σ(I)] reflections
25001, 15433, 8092
Rint0.019
(sin θ/λ)max1)0.981
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.071, 2.08
No. of reflections15433
No. of parameters719
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.02
Absolute structure6649 of Friedel pairs used in the refinement
Absolute structure parameter0.5

† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2+1/2, −x3, −x1x3+x4.

Computer programs: Eval15, Jana2006, DIAMOND Version 3.

 

Acknowledgements

Single crystals were grown by Alfred Suttner at the Laboratory of Crystallography in Bayreuth. The help of Carsten Paulmann with diffraction experiments with synchrotron radiation at beamline F1 of Hasylab at DESY, Hamburg, is gratefully acknowledged. Beamtime has been awarded under proposal No. II-20100019. The research of LN has been made possible through financial support by the German Academic Exchange Service (DAAD).

References

First citationAlbert, A. & Phillips, J. N. (1956). J. Chem. Soc. pp. 1294–1304.  CrossRef Web of Science Google Scholar
First citationEngh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392–400.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17–o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoriuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N. & Tokura, Y. (2005a). Nature Mater. 4, 163–166.  Web of Science CrossRef CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc. 127, 5010–5011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2009). J. Mater. Chem. 19, 4421–4434.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoriuchi, S. & Tokura, Y. (2008). Nature Mater. 7, 357–366.  Web of Science CrossRef CAS Google Scholar
First citationKumai, R., Horiuchi, S., Fujioka, J. & Tokura, Y. (2012). J. Am. Chem. Soc. 134, 1036–1046.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. (2006). J. Chem. Phys. 125, 084715.  Web of Science CrossRef PubMed Google Scholar
First citationKumai, R., Horiuchi, S., Sagayama, H., Arima, T. H., Watanabe, M., Noda, Y. & Tokura, Y. (2007). J. Am. Chem. Soc. 129, 12920–12921.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMolcanov, K. & Kojic Prodic, B. (2010). CrystEngComm, 12, 925–939.  CAS Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement. A Crystallographers Guide to SHELXL. Oxford University Press.  Google Scholar
First citationNoohinejad, L., Mondal, S., Wölfel, A., Ali, S. I., Schönleber, A. & van Smaalen, S. (2014). J. Chem. Crystallogr. 44, 387–393.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. (2013). Acta Cryst. B69, 1–16.  CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetricek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  CAS Google Scholar
First citationSaito, K., Amano, M., Yamamura, Y., Tojo, T. & Atake, T. (2006). J. Phys. Soc. Jpn, 75, 033601.  Web of Science CrossRef Google Scholar
First citationSchreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). SADABS, Version 2008/1. University of Göttingen.  Google Scholar
First citationStokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, 45–55.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Volume 71| Part 2| April 2015| Pages 228-234
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds