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Crystals are paradigms of ordered structures. While order was once seen as

synonymous with lattice periodic arrangements, the discoveries of incommen-

surate crystals and quasicrystals led to a more general perception of crystalline

order, encompassing both periodic and aperiodic crystals. The current definition

of crystals rests on their essentially point-like diffraction. Considering a number

of recently investigated toy systems, with particular emphasis on non-crystalline

ordered structures, the limits of the current definition are explored.

1. What is order?

The human brain is very skilled at detecting patterns and

recognizing order in a structure, and ordered structures

permeate cultural achievements of human civilizations, be it in

the arts, architecture or music. The ability to detect and

describe patterns is also at the basis of all scientific enquiry;

see Mumford & Desolneux (2010) for more on pattern theory.

It may thus be surprising that a concept as fundamental as

order does not have any well defined precise meaning, and

that it appears to be rather challenging to come up with a

proper definition of what constitutes order in a structure. As a

consequence, there currently is no satisfactory measure to

quantify order in any given spatial structure.

There are two common approaches to tackle this issue. One

is to employ diffraction, which effectively measures two-point

correlations in the structure; see Cowley (1995) for back-

ground. For kinematic diffraction, in the far-field approxima-

tion, the diffraction measure is the Fourier transform of the

autocorrelation (or Patterson) function. Diffraction is the

approach taken to characterize crystalline materials. The

current definition of a crystal, which is based on its diffraction,

was adapted from a proposed definition that first appeared in

the terms of reference of the IUCr Commission on Aperiodic

Crystals, published in the 1991 report of the IUCr Executive

Committee (International Union of Crystallography, 1992, p.

928). The following quotes the more specific definition given in

Authier & Chapuis (2014), and used in the IUCr Online

Dictionary of Crystallography.

A material is a crystal if it has essentially a sharp diffraction

pattern. The word essentially means that most of the intensity of

the diffraction is concentrated in relatively sharp Bragg peaks,

besides the always present diffuse scattering. In all cases, the

positions of the diffraction peaks can be expressed by

H ¼
Xn

i¼1

hia
�
i ðn � 3Þ: ð1Þ

Here a�i and hi are the basis vectors of the reciprocal lattice and

integer coefficients respectively and the number n is the
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minimum for which the positions of the peaks can be described

with the integer coefficient hi.

The conventional crystals are a special class, though very large,

for which n ¼ 3.

The prominent role of the word essentially shows that this is

a humble definition, in the sense that it reflects our limited

knowledge of the structures one may potentially encounter in

nature. The interpretation given in the definition that ‘essen-

tially’ means that most of the intensity is concentrated in

Bragg peaks implies that the integrated contribution from the

background must be weak compared to the Bragg diffraction,

which is rather arbitrary, as any Bragg diffraction indicates

order. By allowing the integer n to be larger than the three

space dimensions we live in, aperiodic crystals are included in

this definition, and conventional (periodic) crystals have

become a special class (for which n ¼ 3). Note that n is

restricted to be finite here, so this particular form of the

definition excludes pure point diffractive systems with non-

finitely generated Fourier modules (over integer coefficients);

the definition stipulates that Bragg peaks in crystals can be

indexed by a finite number of integer coefficients. Note that

the definition originally proposed in 1991 did not include this

restriction (International Union of Crystallography, 1992, p.

928).

Because the inverse problem of diffraction is inherently

difficult (Bombieri & Taylor, 1986) and, in general, not unique

(Patterson, 1944), we do not have a complete characterization

of structures that show pure point diffraction (which means

that the diffraction consists of Bragg peaks only), even in the

idealized case of a perfect structure. Neither do we have a

good understanding of what structures with an essentially pure

point spectrum may look like.

The second approach, which is particularly suited to

stochastic systems, employs the entropy of a structure. Entropy

takes into account the number of different local configurations

of a system, and how this number grows with the system size;

normally you are looking at an exponential growth with the

system size, and any sub-exponential growth corresponds to

zero entropy. Clearly, entropy can distinguish deterministic

from random systems, and looking at different forms of scaling

behaviour makes it possible to differentiate, at least to some

extent, between different degrees of disorder. However, any

deterministic structure has zero entropy (as has any suffi-

ciently small deviation from it), so entropy is a rather crude

measure of order.

In this article, the current state of knowledge of mathe-

matical diffraction of structures is summarized and discussed

in relation to our notion of crystalline order. The current

article attempts to present a broad overview only; for details

on calculations and further background, we refer to recent

survey articles (Baake & Grimm, 2011a, 2012; Janssen &

Janner, 2014) and to the monograph by Baake & Grimm

(2013), as well as to references therein. Using a number of

explicit example structures with different types of diffraction

spectrum, the range of possibilities is explored, contributing to

the ongoing discussion on what order means in crystals and

beyond (van Enter & Miękisz, 1992; Lifshitz, 2003, 2007,

2011).

2. Mathematical diffraction

In 2014, we were celebrating the International Year of Crys-

tallography, and were looking back at a century of rapid

developments in crystallography since von Laue (Friedrich et

al., 1912; von Laue, 1912) and father and son Bragg (Bragg &

Bragg, 1913) first employed X-ray diffraction to analyse the

atomic structure of crystalline materials; see Authier (2013)

for a historical account. In the simplest setting, which is

suitable in particular for X-ray diffraction, it is sufficient to

describe the kinematic scattering of radiation by the sample,

and consider the far-field (Fraunhofer) limit for the outgoing

radiation. The calculation of the diffraction pattern of a given

structure then becomes possible by means of harmonic

analysis, while the corresponding inverse problem of deter-

mining a structure from its pattern of diffraction intensities is,

in general, difficult and non-unique, even in this simplified

setting. This section attempts to present a summary of math-

ematical diffraction theory, highlighting the ideas and the

flavour of the approach without going into technicalities, while

trying to explain some of the technical terms by means of

simple examples and familiar notions; for mathematical

details, the reader is referred to Baake & Grimm (2013).

2.1. What is a measure?

A mathematically satisfactory approach to describe

extended (infinite) systems, such as ideal crystals, is provided

by using measures to describe both the distribution of matter

in the scattering medium and the distribution of scattered

radiation intensity in space. In mathematics, measures are the

natural concept to quantify spatial distributions, and are

related to the notion of integration. The general approach to

measures in mathematics is rather technical, but there is a

simpler way to think of measures (which is due to a result

called the Riesz–Markov representation theorem; see Reed &

Simon, 1980, for details). Indeed, it is possible to regard a

measure as a linear functional, which is a linear map that

associates a number to each function from an appropriate

space. A familiar example is the integral of a function, which is

the example we start with.

A well known and widely used measure in mathematics is

the Lebesgue measure, which is commonly used in integration

of functions on the real numbers R. We denote the Lebesgue

measure by the letter �. If f is a function on R, the Lebesgue

measure of f is

�ðf Þ ¼

Z
R

f ðxÞd�ðxÞ ¼

Z
R

f ðxÞ dx;

where the usual shorthand dx is used for integration with

respect to Lebesgue measure. So Lebesgue measure associates

to a function f a number, which is its integral.

The Lebesgue measure of a set A � R, written as �ðAÞ, is

given by
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�ðAÞ ¼ �ð1AÞ ¼

Z
R

1AðxÞ dx ¼

Z
A

dx ¼ volðAÞ;

where 1A is the characteristic function (or indicator function)

of A, which takes the value 1AðxÞ ¼ 1 for all x 2 A, and

1AðxÞ ¼ 0 otherwise. The Lebesgue measure of a set is what

we call the volume (as in this case we are in one dimension, the

volume is a length); for instance, the Lebesgue measure of the

interval I ¼ ½a; b� with b � a is �ðIÞ ¼ �ð½a; b�Þ ¼ b� a.

Lebesgue measure is the unique translation-invariant measure

onR (meaning that �ðAÞ ¼ �ðAþ tÞ for any translation t 2 R)

that assigns the volume 1 to the unit interval [0, 1]. Lebesgue

measure on R generalizes in the familiar way to d-dimensional

space Rd, corresponding to d-dimensional (multiple) integrals.

For simplicity, we will mainly consider the case d ¼ 1 in what

follows.

Another well known and important measure is the Dirac

measure (or point measure) at a point x 2 R, denoted by �x. It

describes a localized structure at a point x in space, with total

measure 1. This means that, if f is a function on R, its point

measure at x is �xðf Þ ¼ f ðxÞ. In the physics literature, the point

measure is often written like a function �ðxÞ (which can be

considered a generalized function or distribution obtained as a

limit of functions, for instance of a sequence of Gaussian

functions of integral 1, centred at the origin, and with a

decreasing width, which then become increasingly sharper),

with the suggestive notation

�xðf Þ ¼

Z
R

f ðyÞ�ðx� yÞ dy ¼ f ðxÞ:

This notation can be used consistently as long as one

remembers that Dirac’s � is not a function in the usual sense.

As above, one can also define the point measure of a set

A � R, which is �xðAÞ ¼ �ð1AÞ ¼ 1AðxÞ, so �xðAÞ ¼ 1 if x 2 A

and 0 otherwise.

2.2. Dirac combs

Point measures are often used to describe a set of localized

scatterers in space. Given a set of scatterers located at points

in a subset � � R (which we usually assume to be a Delone

set, which means that it neither contains points that are arbi-

trarily close to each other nor holes of arbitrary size), we can

associate a measure

�� :¼
X
x2�

�x

which we call the Dirac comb (a term coined by de Bruijn,

1986; see also Córdoba, 1989) of �. An example of such a

Dirac comb is �Z ¼
P

n2Z �n, which is the uniform Dirac comb

on the integer lattice.

By introducing scattering weights wðxÞ at position x 2 R

(which in general can be complex numbers, but we will assume

to be real for the purpose of this exposition), we arrive at a

weighted Dirac comb

! ¼ w�� ¼
X
x2�

wðxÞ �x; ð2Þ

which can serve as a model representing a scattering medium

containing different types of scatterers. Any measure of this

type, consisting of a (weighted) sum of point measures, is

called a pure point measure (with respect to Lebesgue

measure). It is possible to include realistic scattering profiles

by considering convolutions with appropriate motives, so this

approach is not as restrictive as it may seem. A schematic

representation of an example, the weighted (periodic) Dirac

comb

! ¼ �Z þ
1

2
�Zþ1

2
þ

1

4
�Zþf14;34g

is shown in Fig. 1.

Attaching scattering profiles to a Dirac comb is one way to

represent a continuous scattering intensity in space. Of course,

there is a more direct approach if the scattering intensity is

described by a continuous distribution is space. If % is such a

continuous (or, at least, locally integrable) function on R, it

defines a measure � on R via

�ðf Þ ¼

Z
R

f ðxÞd�ðxÞ ¼

Z
R

f ðxÞ %ðxÞdx:

In this case % is called the density of the measure �. Any

measure � that can be written in this form is called an abso-

lutely continuous measure (with respect to Lebesgue measure).

The measures we are interested in are those which describe

distributions (of scatterers or scattering intensity) in space,

and one physical restriction we would like to impose is that

any finite region of space can only contain a finite total scat-

tering strength or finite intensity. The measures that satisfy this

property are called translation bounded measures. A Dirac

comb �� of a Delone set � � R is always translation bounded,

because � can only contain finitely many points in any finite

regions of space, due to the minimum distance between points.

The same is true for a weighted Dirac comb provided that the

weight function wðxÞ is bounded. An example of a measure

that is not translation bounded would be a Dirac comb of a

point set with an accumulation point, for instanceP
n2Znf0g �1=n. For this measure, any interval containing the

origin contains infinitely many point measures, and thus has

infinite measure.

2.3. Lebesgue decomposition

A central result in measure theory is Lebesgue’s decom-

position theorem. It states that any measure can be written as

a sum of three components in a unique way (with respect to a

reference measure, which in our case will always be Lebesgue
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Figure 1
Schematic representation of the weighted (periodic) Dirac comb ! of
equation (3). Point measures a�x are represented as columns at position x
of height proportional to their weight a.



measure). If � is a measure on R, the three components are

denoted as

� ¼ �pp þ �sc þ �ac

and are called the pure point component �pp, the singular

continuous component �sc and the absolutely continuous

component �ac. We have met typical examples of pure point

and absolutely continuous measures above, so the obvious

question is what a singular continuous measure looks like. As

it is defined, it is all that is ‘left’ if you remove the pure point

part (consisting of a sum of weighted point measures) and the

absolutely continuous part (which is described by a locally

integrable density function) – but this does not really help to

gain an understanding of what such a measure represents.

Singular continuous measures are rather weird objects indeed;

they do not give weight to any single point in space (because

otherwise it would have a pure point component), but are

concentrated on sets of vanishing volume (because otherwise

you could describe part of it by a density function).

The best-known example of a singular continuous measure

is provided by the classic middle-thirds Cantor set; see Fig. 2.

Starting from the unit interval, the Cantor set is constructed by

removing the middle third of it, then removing the middle

thirds of the two resulting intervals, and iterating this proce-

dure ad infinitum. The corresponding Cantor measure is

constructed by starting from the Lebesgue measure on the

interval, so we have the total measure 1, and at each step

distributing the mass equally onto the constituent intervals. In

the limit, the total measure is thus still 1, but there is neither

any isolated point that carries a finite measure (since the

measure of each interval in the nth step is 2�n, so it vanishes in

the limit) nor any interval of finite length that is in the support

of the measure (meaning that the measure does not vanish on

it). The measure constructed in this way is thus singularly

continuous, and can be described in terms of a distribution

function which is a ‘Devil’s staircase’. This function is constant

almost everywhere, and displays a hierarchy of plateaux in its

graph (see Fig. 2) which reflect the hierarchy of gaps produced

by the excision steps in the Cantor construction. This function

plays the role of the integrated density for the singular

continuous measure.

Lebesgue’s decomposition provides a rigorous way to

separate the diffraction measure of a structure into its pure

point (Bragg) part and its singular and absolutely continuous

components. However, using this as the definition really only

makes sense if one works with infinite systems (because finite

systems will always have absolutely continuous diffraction).

This is similar in spirit to the definition of a phase transition in

materials (as a discontinuity in a thermodynamic potential),

which again only applies in the mathematically rigorous sense

to an infinite system (because for finite systems these poten-

tials are smooth functions). Nevertheless, these concepts have

proved useful for applications to macroscopically large (albeit

finite) systems.

2.4. Autocorrelation and diffraction

A key quantity in diffraction theory is the autocorrelation,

which quantifies the two-point correlation of a structure. In

crystallography, this is often called the Patterson function. If

the material is described by a (real) density function % on R

(so we deal with an absolutely continuous distribution), the

autocorrelation is an absolutely continuous measure whose

density is the familiar convolution

PðxÞ ¼

Z
R

%ðyÞ %ðyþ xÞ dx ¼
�
% �e%%�ðxÞ;

where e%% is the function defined by e%%ðxÞ ¼ %ð�xÞ.

In the case that the material is described by a one-dimen-

sional weighted Dirac comb ! of the form given in equation

(2) (with real weight function wðxÞ), the autocorrelation is a

pure point measure

� ¼
X

z2���

�ðzÞ �z;

with non-vanishing contributions only at distances z in the

difference set ��� ¼ fx� y j x; y 2 �g (which you may

interpret as the set of interatomic distances). The point masses

for interatomic distances z are weighted by the autocorrelation

coefficients �ðzÞ, which are given by

�ðzÞ ¼ lim
R!1

1

2R

X
jxj�R;x2�

z�x2�

wðxÞwðz� xÞ;

provided that these limits exist. Note that 2R is the length of

the interval ð�R;RÞ, so the autocorrelation coefficient �ðzÞ is

precisely the volume-averaged two-point correlation for the

interatomic distance z.

Using the language of measures, these equations can be

neatly summarized as follows. Given a (translation bounded)

real measure !, again for simplicity in one dimension, its

autocorrelation measure � is defined as

� ¼ !	� e!! :¼ lim
R!1

!jR �g!jR!jR
2R

ð4Þ
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Figure 2
Sketch of the classic middle thirds Cantor set construction (inset) and the
‘Devil’s staircase’ distribution function F of the corresponding singular
continuous measure.



provided the limit exists. Here, !jR denotes the restriction of !
to the interval ð�R;RÞ, and e�� is defined via e��ðgÞ ¼ �ðeggÞ witheggðxÞ ¼ gð�xÞ as above. Finally, � denotes the standard

convolution of measures, which is the appropriate general-

ization of the convolution of functions. The autocorrelation of

! is thus the volume-averaged convolution 	� (also called the

Eberlein convolution) of ! with its ‘flipped-over’ version e!!,

and thus picks out the two-point correlations in the structure

described by !. This approach to mathematical diffraction was

pioneered by Hof (1995).

The diffraction measure is then the Fourier transform b�� of

the autocorrelation, so essentially it provides a spectral

analysis for the two-point correlations in the original structure.

It is a translation bounded positive measure, which quantifies

how much of the kinematic scattering intensity reaches a given

volume in space. Lebesgue’s decompositionb�� ¼ b��pp þb��sc þb��ac

into its pure point part (the Bragg peaks, of which there are at

most countably many), its absolutely continuous part (the

diffuse background scattering, described by a locally integr-

able density function) and its singular continuous part (which

encompasses anything that remains) provides a mathemati-

cally rigorous definition of the different types of diffraction.

For the definition of a crystal cited above, it is the pure point

part b��pp that matters – a crystal is a structure where this part

represents the majority of the diffracted intensity (there will

always be some continuous diffraction in practice), although

this alone does not guarantee that the positions of Bragg peaks

can be indexed by a finite number of integers. Indeed, there

are examples of systems that are pure point diffractive,

meaning thatb�� ¼ b��pp, where this is not the case; we shall meet

an example below.

3. Periodic crystals

A conventional, periodic crystal is described as a lattice-

periodic structure, corresponding to an ideal infinite crystal

without defects or surfaces. A periodic crystal is characterized

by its periods (translations that keep the crystal invariant),

which form a lattice � (because any linear combinations of

periods are also periods), and by the distribution of scatterers

in a unit cell (fundamental domain) of this lattice. Here, a

lattice � in d-dimensional space1 is the set of integer linear

combinations of d linearly independent basis vectors, so it can

be written in the form

� :¼
Xd

i¼1

aivi j ai 2 Z

( )
;

where vi 2 R
d, for 1 � i � d, are linearly independent vectors

in R
d. Familiar examples are the integer lattice Z in one

dimension, the square lattice Z2 in two dimensions and the

simple (primitive) cubic lattice Z3 in three dimensions.

If the scattering medium has a (periodic) crystal structure

described by a lattice �, it can always be represented as a

measure

! ¼ � � ��;

where � can be chosen as a finite measure which describes the

decoration of the fundamental domain, while the Dirac comb

�� ensures lattice periodicity.

The corresponding autocorrelation measure is a �-periodic

measure that can be calculated from the appropriate gener-

alization of equation (4) as

� ¼ densð�Þ ð� � e��Þ � ��; ð6Þ

using e���� ¼ �� and �� 	� �� ¼ densð�Þ ��, where densð�Þ
denotes the density (per unit volume) of the lattice �. The

diffraction measure b�� is then given by2

b�� ¼ �densð�Þ
�2 ��b����2 ��� : ð7Þ

This provides a familiar result for periodic crystals: Any

perfect periodic crystal with a lattice of periods � shows pure

point diffraction with Bragg peaks located on the reciprocal

lattice3 ��, and the intensity of the Bragg peak is determined

by the density of the crystal lattice � and by the continuous

function
��b����2, which depends on the distribution of scatterers

in a fundamental domain of �. By expressing the reciprocal

lattice positions as linear combinations of basis vectors of the

reciprocal lattice ��, this can be cast in the form of equation

(1) with n ¼ d.

As a one-dimensional example, consider the weighted Dirac

comb ! of equation (3) and Fig. 1. It can be written as

! ¼ �0 þ
1

4
�1

4
þ

1

2
�1

2
þ

1

4
�3

4

� �
� �

Z
;
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Figure 3
Schematic representation of the autocorrelation (top) and diffraction
(bottom) of the weighted Dirac comb ! of equation (3) and Fig. 1.

1 Because the generalization to higher dimensions is straightforward, we give
the results for the general case, although you can always think of cases with
d � 3; see also the examples below.

2 This follows from equation (6) by an application of Poisson’s famous
summation formula, which can be cast as b���� ¼ densð�Þ ���, where �� denotes
the dual (or reciprocal) lattice of �; see Baake & Grimm (2013) for details.
3 Note that we prefer to define the Fourier transform of a function f asbff ðkÞ ¼ R

R
e2�ikxf ðxÞdx. Due to the factor 2� in the exponent, one avoids the

appearance of such factors in the definition of the reciprocal lattice.



so here � ¼ �0 þ
1
4 �1

4
þ 1

2 �1
2
þ 1

4 �3
4

describes the four scatterers

within the fundamental domain ½0; 1Þ of the lattice � ¼ Z.

Note that in this case we have

e!! ¼ �0 þ
1

4
��1

4
þ

1

2
��1

2
þ

1

4
��3

4

� �
� �Z ¼ !;

due to the equivalence of positions differing by integers in the

periodic lattice and the symmetric distributions of scatterers in

the fundamental domain. Let us now calculate the auto-

correlation and diffraction of this comb.

Clearly, since all distances are multiples of 1
4, the auto-

correlation in this case will have a similar form as the comb !
itself, just with different coefficients, which are given by

summing up the products of the weights of scatterers with a

given separation. To obtain these coefficients, one can

compute the convolution of ! with itself (or equivalently of �
with itself) term by term, using the relation �x � �y ¼ �xþy. This

gives

� ¼
11

8
�0 þ

3

4
�1

4
þ

9

8
�1

2
þ

3

4
�3

4

� �
� �Z:

For instance, the coefficient 11
8 ¼ 12 þ ð14Þ

2
þ ð12Þ

2
þ ð14Þ

2 of �0

comes from adding up the contributions to integer distances.

A schematic presentation of the autocorrelation � is shown in

the top part of Fig. 3.

The corresponding diffraction measure b�� is obtained by

taking the Fourier transform, using that ca�xa�x ¼ ae2�ikx. This

gives

b�� ¼ 11

8
þ

9

8
�1ð Þkþ

3

2
cos

�k

2

� �� �
� �

Z

¼ 4 �4Z þ �4Zþ2 þ
1

4
�4Zþf1;3g:

The diffraction pattern is thus periodic, but with period 4 (due

to the smallest distance between scatterers being 1
4). A sche-

matic picture of the diffraction pattern is shown in the bottom

part of Fig. 3.

As a second example, consider a two-

dimensional crystal with lattice of

periods � ¼ Z2, with two scatterers (of

unit scattering strength) per unit cell,

one placed at lattice points and the

other at an arbitrary position

ða; bÞ 2 ½0; 1Þ2. The corresponding point

set is � ¼ Z2
[
�
Z

2
þ ða; bÞ

�
, and the

Dirac comb can be written as

! ¼ % � �
Z

2 ¼ ð�0;0 þ �a;bÞ � �Z2 . Its

autocorrelation is

� ¼
�
% �e%%� � �

Z
2

¼ ð�ð0;0Þ þ �ða;bÞÞ � ð�ð0;0Þ þ ��ða;bÞÞ � �Z2

¼
�
2 �ð0;0Þ þ �ða;bÞ þ ��ða;bÞ

�
� �

Z
2 :

The corresponding diffraction measure

is then

b�� ¼ jb%%j2ðk; ‘Þ�
Z

2

¼
�
2þ 2Reðe�2�iðkaþ‘bÞ

Þ
�
�
Z

2

¼ 2þ 2 cos
�
ð2�ðkaþ ‘bÞ

�� �
�
Z

2

¼ 2 cos
�
�ðkaþ ‘bÞ

�� �2
�
Z

2

for k; ‘ 2 Z. Note that, while the diffraction measure is

supported on Z2 as expected (as Z2 is self-dual), it need not

have any non-trivial period. In fact,b�� is periodic in one or two

directions precisely if one or both coordinates a and b are

rational, respectively; an example with one periodic direction

is shown in Fig. 4. Although the positions of Bragg spots for a

lattice-periodic structure are again lattice-periodic, in general

the intensities will not respect the periodicity of the dual

lattice.

4. Aperiodic crystals

Arguably the best understood class of aperiodic structures are

cut and project sets, also called model sets. Model sets can be

viewed as a natural generalization of the notion of quasiper-

iodic functions, which goes back to Harald Bohr (1947),4 and

were first introduced by Yves Meyer (1972) in the context of

harmonic analysis. The basic idea of the construction is to

obtain an aperiodic structure as a suitable ‘slice’ of a higher-

dimensional periodic lattice, which is then projected onto a

suitable space of the desired dimension. For simplicity, we

mainly consider the case where the higher-dimensional space

is a Euclidean space of the form R
dþm, with Rd being the

physical space (sometimes also called the direct or the parallel

space) that hosts the aperiodic structure (so 1 � d � 3 for

physically relevant cases), and Rm the internal (or perpendi-

cular) space which is used in the construction.

Let us start with an example, where d ¼ m ¼ 1. In this case,

we are projecting a one-dimensional aperiodic structure from

a two-dimensional (periodic) lattice. In this example, the
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Figure 4
The left panel shows a schematic representation of the two-dimensional toy crystal discussed in the
text, with two scatterers of equal strength at positions (0, 0) and ða; bÞ ¼ ð13 ;

1ffiffi
3
p Þ of the fundamental

domain (indicated by shading). The corresponding autocorrelation � is shown in the central panel,
while the corresponding diffraction measureb�� is displayed in the right panel. Here, a point measure
is represented by a dot that is centred at the position of the peak and has an area proportional to the
weight of the point measure. The irrational position in the vertical direction leads to an
incommensurate modulation of the peak intensities in this direction, while the diffraction is
periodic with period 3 in the horizontal direction.

4 Note that this date is the publication date of the reprint, not of the original
publication.



lattice L is given by all integer linear combinations of two

basis vectors, which we choose as ð1; 1Þ and ð�; 1� �Þ, where

� ¼ ð1þ
ffiffiffi
5
p
Þ=2 is the golden ratio, so we have

L ¼ Zð1; 1Þ þ Z ð�; 1� �Þ ¼
�

mð1; 1Þ þ nð�; 1� �Þ
��m; n 2 Z

	
:

The lattice points are shown as black dots in Fig. 5. The lattice

is oriented such that the horizontal space along the ð1; 0Þ

direction is the physical space and the vertical direction along

ð0; 1Þ corresponds to the internal space. We call the projection

to the physical space �, and the projection to the internal

space �int. The projections of all lattice points L ¼ �ðLÞ to

physical space and L? ¼ �intðLÞ to internal space5 are both

dense in their corresponding one-dimensional spaces. The set

L is explicitly given by L ¼ Z½�� ¼ fmþ n� j m; n 2 Zg, so all

integer combinations of multiples of 1 and �, which is dense

because � is irrational, and L? has the same form. Note that

the projections are one-to-one in both directions. In particular,

any point in L corresponds to a uniquely defined point in L. In

fact, ��1ðxÞ ¼ ðx; x?Þ, where the ?map is defined by mapping 1

to 1 and � to 1� � (which corresponds to the ‘algebraic

conjugation’ that maps
ffiffiffi
5
p

to �
ffiffiffi
5
p

), so ðmþ n�Þ? =

mþ nð1� �Þ ¼ mþ n� n� for all m; n 2 Z.

The final ingredient that we require is a ‘window’ W in the

internal space, which we choose to be the half-open interval

W ¼ ð�1; � � 1�. Shifting it along the physical space sweeps

out the shaded horizontal strip in Fig. 6. The lattice points that

fall within this strip produce the set fx 2 L j �intðxÞ 2 Wg, and

their projection onto the physical space is thus

� ¼ f�ðxÞ j x 2 L and �intðxÞ 2 Wg. Using �ðLÞ ¼ L and the ?
map, this point set can equivalently be written as

� ¼ fx 2 L j x? 2 Wg: ð8Þ

Sets of this form are called cut and project sets or model sets.

The condition that x? 2 W selects a discrete subset of the

dense point set L, in fact, a very special discrete subset where

points are separated either by intervals of length 1 (for short

intervals s) or by intervals of length � (for long intervals ‘). As

it turns out, this projection yields the famous Fibonacci

sequence . . . ‘s‘‘s‘s‘ . . . of long (‘) and short (s) intervals,

which can be generated by the two-letter substitution rule

‘! ‘s; s! ‘. In particular, dividing the window into two

parts as follows

Ws ¼ ð� � 2; � � 1� and W‘ ¼ ð�1; � � 2�

shows that the sets of left endpoints of short or long intervals

are given by the projection of lattice points that fall within the

corresponding sub-strip, so

�s ¼ fx 2 L j x? 2 Wsg and �‘ ¼ fx 2 L j x? 2 W‘g;

with � ¼ �s [�‘. Hence the set of left endpoints of short or

of long intervals separately are model sets with windows Ws

and W‘, respectively, while the set of all left interval endpoints

is a model set with window W ¼ Ws [W‘; compare Fig. 5.

As mentioned above, this construction can be generalized

to physical and internal spaces of any dimension. The general

cut and project scheme (CPS) for Euclidean model sets can be

summariszed in the following diagram.

Here, L � Rdþm is a lattice in the ðdþmÞ-dimensional

space Rd

 R

m
¼ R

dþm, and � and �int denote the natural

projections from this space onto the physical and internal

spaces Rd and Rm, respectively. We assume that the point set

L ¼ �ðLÞ � Rd, which is the projection of the lattice points

into the physical space, is a bijective image of L, which means

that no two lattice points inL project onto the same point in L.

In other words, each point in L can be ‘lifted’ to a unique

lattice point in L, and the inverse map ��1 is well defined on

all elements of L. This ensures that the star-map ?: x! x? is

well defined on L, so each point in L has a unique associate in

internal space; see Moody (2000) for details. Finally, we

assume that the corresponding set L? ¼ �intðLÞ � R
m in

internal space is dense.

Given a CPS, the second ingredient in the definition of a cut

and project set is the window (sometimes also called an

acceptance domain) W � Rm, which is assumed to be a
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Figure 6
Equivalent description of the Fibonacci chain in terms of ‘targets’, often
referred to as ‘occupation domains’ or ‘atomic surfaces’.

Figure 5
Schematic representation of a natural projection approach for the
Fibonacci chain from the planar lattice spanned by the vectors (1, 1) and
(�; 1� �).

5 Note the difference between the star symbol ? used here and the � used for
the dual or reciprocal lattice.



sufficiently nice subset of Rm (technically, a relatively compact

subset with non-empty interior). A cut and project set is then

defined by selecting all points x in the projected lattice L

whose companion x? in internal space falls inside the window

W. Expressed as an equation, this means that any set of the

form

� ¼
�

x 2 L j x? 2 W
	
; ð10Þ

or indeed any translate of such a set, is what we call a model

set. The technical conditions on the window W ensure that � is

a Meyer set (Meyer, 1972; Moody, 2000), which means that the

difference set

��� :¼ fx� y j x; y 2 �g

is uniformly discrete (so different distances between points in

the structure differ by at least a fixed amount) and that the set

� is relatively dense (which means that there are no arbitrarily

large ‘holes’ in the point set). If the boundary @W of the

window W is nice in the sense that it has zero volume (in the

sense of Lebesgue measure), we refer to � as a regular model

set. The setting of equation (9) can be generalized further to

allow for the internal space to be a locally compact Abelian

group (Meyer, 1972; Moody, 2000; Schlottmann, 2000).

It is worth mentioning that there are various equivalent

ways of interpreting the cut and project construction. One

commonly used approach attaches an inverted copy of the

window as a ‘target’ to each lattice point, and projected points

are then obtained as the intersection of these targets with the

physical space; see Fig. 6 for an illustration of the Fibonacci

case. Albeit equivalent, this description offers a simpler way of

interpreting experimental data, and is therefore the preferred

presentation of the cut and project approach in experimental

research papers, where it is often referred to as the section

method. Apart from providing an intuitive meaning for the

targets as ‘atomic surfaces’, this approach allows for additional

variation (by deformations of the targets) that can be

exploited, for instance in the description of modulated phases.

For further variants of the cut and project method, the reader

is referred to Ch. 7.5 in Baake & Grimm (2013).

Familiar examples of model sets are some one-dimensional

substitution-based structures such as the Fibonacci chain

discussed above, and some of its generalizations. Planar

examples include the Penrose tiling and the Tübingen triangle

tiling with decagonal symmetry, the Ammann–Beenker tiling

with octagonal symmetry and the shield tiling with dodeca-

gonal symmetry, which can all be obtained by projection from

four-dimensional lattices. Structure models of icosahedral

quasicrystals usually employ model sets based on the (primi-

tive, face-centred or body-centred) hypercubic lattice in six

dimensions. These examples have direct application to the

crystallography of quasicrystals, and serve as models for the

structure of decagonal, octagonal, dodecagonal and icosahe-

dral quasicrystals, respectively; compare Steurer & Deloudi

(2009) for details. Realisations of model sets with other

symmetries, such as planar sevenfold symmetry for instance,

have not as yet been observed in nature, and the same is true

for model sets where the internal space is not Euclidean.

Nevertheless, such systems share many properties with the

familiar quasicrystalline cases, and should not be excluded a

priori. Even if it may prove impossible to realise such struc-

tures in self-assembled systems, we may be able to produce

these in purpose-made manufactured structures at various

length scales, from macroscopic to nanometre and atomic

scales.

Arguably the most important result in the theory of model

sets, in the context of mathematical diffraction theory, is the

proof that regular model sets have pure point diffraction.

Three different approaches have been used to prove this

statement. The first proof using methods of dynamical systems

theory was completed by Schlottmann (2000), employing an

argument by Dworkin (1993) and the mathematical diffraction

approach of Hof (1995); see also Lenz & Strungaru (2009) for

further developments. An alternative approach employs the

theory of almost periodic measures (Baake & Moody, 2004;

Moody & Strungaru, 2004; Strungaru, 2005). Baake & Grimm

(2013) present a proof based on Poisson’s summation formula

for the embedding lattice in conjunction with Weyl’s lemma on

uniform distribution, which exploits the uniform distribution

of projected lattice points in internal space. Although it has

not been developed into a proof, there is also a somewhat

complementary approach based on an average periodic

structure; we refer to the recent review by Wolny et al. (2011)

and references therein for details.

Essentially, the pure point diffraction of a model set is a

consequence of the underlying higher-dimensional lattice

periodicity. Let us first discuss the example of the Fibonacci

model set � of equation (8); compare also Fig. 5. The pure

point diffraction pattern is obtained again as a projection to

physical space, but this time of the dual (or reciprocal) higher-

dimensional lattice L�. In our case, this is the lattice generated
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Figure 7
Sketch of the projection of the dual lattice points giving rise to Bragg
peaks in the diffraction pattern for the Fibonacci point set �, with
scatterers of unit weight at all points. The function displayed on the right-
hand side is the intensity function jAðkÞj2. The Bragg peak at 0 has height
½densð�Þ�2 ¼ ð� þ 1Þ=5 ’ 0:5206, and the entire pattern (once all
reflections are included) is reflection symmetric.



by the dual basis vectors 2��1
5 ð� � 1; �Þ and 2��1

5 ð1;�1Þ. The

corresponding Fourier module is then

L	� ¼ �ðL�Þ ¼
1ffiffiffi
5
p Z½��

where Z½�� ¼ fmþ n� j m; n 2 Zg as above. This determines

the positions of Bragg peaks, but what about their intensities?

It turns out that the intensity is a function of the distance of

the projected lattice point from the physical space, and

roughly the larger the internal coordinate the smaller the

intensity. The function in question is the absolute square of the

Fourier transform of the window function (the characteristic

function of the window), which is the function that takes the

value 1 on the window and 0 otherwise. Its Fourier transform

is

AðkÞ ¼ e�ik?ð��2Þ � þ 2

5
sincð��k?Þ; ð11Þ

where sincðxÞ ¼ sinðxÞ=x and k? is the image of k under the ?
map introduced above. A sketch of the diffraction pattern is

shown in Fig. 7.

Let us now return to the general result. For a regular model

set � with Dirac comb ��, the diffraction measure b�� can be

written as

b�� ¼X
k2L

	�

jAðkÞj2 �k; ð12Þ

where L	� ¼ �ðL�Þ, the projection of the higher-dimensional

dual lattice, is the corresponding Fourier module on which the

pure point diffraction is supported. For a Euclidean model set

with the CPS [equation (9)], L is a lattice in Euclidean space

R
dþm, and the Fourier module L	� is thus finitely generated,

with rank dþm. By choosing appropriate generating vectors,

the pure point diffraction of equation (12) can thus be recast

in the form of equation (1) with n ¼ dþm. However, in the

general situation, where the internal space can be any locally

compact Abelian group, this is not necessarily the case, as the

Fourier module L	� ¼ �ðL�Þ does not have to be finitely

generated. Note that the latter case is not covered by the

definition of a crystal cited above, while it does include any

model set based on a Euclidean CPS.

The diffraction amplitudes AðkÞ are obtained by the Fourier

transform of the characteristic function 1W of the window W

AðkÞ ¼
densð�Þ

volðWÞ
c1W1Wð�k?Þ: ð13Þ

According to equation (12), it is the absolute square of these

amplitudes that determine the intensity of a Bragg peak as

position k 2 L	�, with k? denoting the corresponding point in

internal space. Equation (13) gives the result for Euclidean

model sets, the only difference for the general case is that the

volume (with respect to Lebesgue measure in Euclidean

space) is replaced by the suitable invariant measure (Haar

measure) on the locally compact Abelian group.

5. Order beyond crystals

The current definition of crystals thus covers conventional

periodic crystals, incommensurate crystals and quasicrystals,

and hence all currently known realizations of ordered struc-

tures in nature. While the question asked by Bombieri &

Taylor (1986) has not yet been satisfactorily answered, it is

clear that pure point diffraction is a severe constraint on the

possible structure (Baake, Lenz & Richard, 1997), and recent

results by Lenz & Moody (2009, 2011) indicate that model sets

play a major role in a potential abstract parametrization of the

inverse problem. However, there are clearly well ordered

structures that do not possess this property, and this chapter

will discuss a few characteristic examples. However, first we

start with an example of a pure point diffractive system with

non-finitely generated Fourier module, which thus possesses a

diffraction pattern where Bragg peaks cannot be indexed by a

finite number of integers.

5.1. Pure point diffraction with non-finitely generated
support

Well known examples of systems with non-Euclidean

internal spaces are limit-periodic structures. Let us explain this

with the arguably simplest example, based on the period

doubling substitution rule % : 1! 10; 0! 11, on the two-

letter alphabet f0; 1g. Any bi-infinite word6 w 2 f0; 1gZ that

satisfies the fixed point property %2ðwÞ ¼ w is specified

completely by wð2nÞ ¼ 1, wð4nþ 1Þ ¼ 0 and

wð4nþ 3Þ ¼ wðnÞ for n 2 Z, while either letter can be chosen

at position n ¼ �1. The two possible choices lead to two

locally indistinguishable sequences (which means that any

finite subsequence of one occurs in the other), and hence

define the same system.

The word w possesses a Toeplitz structure consisting of a

hierarchy of scaled and shifted copies of Z which carry the

same letter. Defining the point set

� ¼ fn 2 Z j wðnÞ ¼ 1g � Z ð14Þ

of the positions of the letter 1 in w, it is clear from the relations

above that 2Z � �, as all letters at even positions are 1. But

then, due to wð4nþ 3Þ ¼ wðnÞ, so are all letters

wð8nþ 3Þ ¼ wð2nÞ ¼ 1, so 8Zþ 3 � �, and inductively one

recognizes that 2 � 4‘Zþ ð4‘ � 1Þ � � for all integer ‘ � 0. In

fact, this hierarchy of scaled integer lattices describes the
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Figure 8
Schematic representation of the Dirac comb �� of the period doubling
point set of equation (14). All point measures have the same mass. The
different shading highlights the Toeplitz structure, with point masses at
even integers shown in black, point masses on 8Zþ 3 in dark grey and a
single point mass in 32Zþ 15 in lighter grey.

6 Here and below, the notation A
Z

denotes the set of bi-infinite sequences
ð. . . ; a�2; a�1; a0; a1; a2; . . .Þ with letters ai; i 2 Z, chosen from a finite alphabet
A.



complete set, and we obtain the following representation for

the set as a union (Baake et al., 1998; Baake & Moody, 2004;

Baake & Grimm, 2013)

� ¼ 2Z [ ð8Zþ 3Þ [ ð32Zþ 15Þ [ ¼
[
‘�0

�
ð2 � 4‘Zþ ð4‘ � 1Þ

�
ð15Þ

of scaled (and shifted) lattices. Note that this result is for the

case where we choose wð�1Þ ¼ 0 (otherwise �1 has to be

added to the right-hand side). A schematic representation of

the corresponding Dirac comb �� is shown in Fig. 8.

Using this representation for the point set �, the diffraction

of the Dirac comb �� can be computed explicitly; see Baake &

Grimm (2011b) for details. The scaled lattices with geome-

trically increasing period in the union in equation (15) give

rise to Bragg peaks supported on the corresponding dual

lattices, which are successively finer integer lattices scaled with

the inverse factor. The diffraction spectrum is pure point, and

the Fourier module can be parametrized as

L	� ¼ Z½12� ¼
�

m
2r j ðr ¼ 0;m 2 ZÞ or ðr � 1;m oddÞ

	
: ð16Þ

The diffraction measure is of the form of equation (12), with

diffraction amplitudes

A
�

m
2r

�
¼ 2

3
ð�1Þr

2r e21�r�im ð17Þ

at the positions in L	�. The factor of 2
3 reflects the density of

scatterers, as two thirds of positions are occupied. It is no

coincidence that the model set expression applies – in fact, the

set � can be described as a model set, but with a non-Eucli-

dean internal space; in this case, the internal space is what is

known as the space of 2-adic integers (which essentially

consists of all fractions whose denominators are powers of 2,

but with a specific definition of the distance of two numbers).

A schematic representation of the diffraction pattern for the

period doubling chain is shown in Fig. 9.

It is easy to generalize this example to other lattice-based

substitutions in one or more dimensions; any substitution of

constant length p with a coincidence in the sense of Dekking

(1978), which means that the same letter appears at the same

position for the images of all letters under a certain power of

the substitution rule, is a good candidate, because it is always

pure point diffractive and carries a natural p-adic structure. A

well known example of this type is the chair tiling, in its

representation as a two-dimensional block substitution; see

Robinson (1999) and Baake & Grimm (2013) for details.

5.2. Order and singular continuous diffraction

The paradigm of singular continuous diffraction is provided

by the Thue–Morse system and its generalizations (Kakutani,

1972; Baake & Grimm, 2008, 2014). Here, we consider a family

of generalized Thue–Morse substitutions (Baake, Gähler &

Grimm, 2012)

%ðk;‘Þ: 1 ! 1k1
‘

1 ! 1
k
1‘

ð18Þ

on the two-letter alphabet f1; 1g, where k; ‘ 2 N and the case

k ¼ ‘ ¼ 1 corresponds to the classic Thue–Morse case. Note

that 1j denotes a string of j consecutive letters 1 here, and

1 ¼ 1. The one-sided fixed point v ¼ %ðk;‘ÞðvÞ satisfies

vðkþ‘Þmþr ¼
vm; if 0 � r � k� 1;
vm; if k � r � kþ ‘� 1



; ð19Þ

where m � 0 and 0 � r � kþ ‘� 1, and extends (by setting

v�i�1 ¼ vi for i � 0) to a symmetric bi-infinite fixed point word

under the square of the substitution %ðk;‘Þ. For instance, the

symmetric bi-infinite fixed point for the classic Thue–Morse

case k ¼ ‘ ¼ 1 has core

. . . �1111�111�11�111�1111�11�1111�111�11�111
��1�11�111�1111�11�1111�111�11�111�1111�11 . . .

where the vertical bar denotes the origin. A schematic

representation of the corresponding Dirac comb is shown in

Fig. 10.

The corresponding weighted Dirac comb on Z, interpreting

the two letters as weights (with 1 interpreted as �1), is thus

given by ! ¼
P

i2Z vi�i. Its autocorrelation � ¼
P

m2Z �ðmÞ�m

is also a Dirac comb on Z, where the autocorrelation coeffi-

cients �ðmÞ satisfy �ð0Þ ¼ 1, �ð�mÞ ¼ �ðmÞ and the recursion

relation

�
�
ðkþ ‘Þmþ r

�
¼

1

kþ ‘

�
	ðk; ‘; rÞ�ðmÞþ

	ðk; ‘; kþ ‘� rÞ�ðmþ 1Þ

�
ð20Þ

for arbitrary m 2 Z and 0 � r � kþ ‘� 1. The recursion

follows directly from equation (19), with coefficients

	ðk; ‘; rÞ ¼ kþ ‘� r� 2 minðk; ‘; r; kþ ‘� rÞ. This system

has a unique solution, and properties of the solution show that

the corresponding diffraction measure b�� is purely singular

continuous; see Baake, Gähler & Grimm (2012) for the

mathematical details of the argument.

The diffraction measure is periodic with period 1 (due to the

fact that the Dirac comb is supported on the integer lattice Z)
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Figure 10
Schematic representation of the Dirac comb of the Thue–Morse chain
with weights�1. Note that this is ‘balanced’ in the sense that positive and
negative weights are equally frequent, so the average scattering strength
is zero.

Figure 9
Schematic representation of the diffraction intensity pattern of the Dirac
comb �� of Fig. 8. The pattern is periodic with period 1 and consists of a
dense set of Bragg peaks, where increasingly smaller peaks are located at
rational numbers whose denominators are increasingly larger powers of
2. Note that only peaks corresponding to r = 0, 1, 2, 3 in equations (16)
and (17) are visible here.



and the diffraction intensity can be represented as a limit of a

product

f ðNÞðxÞ ¼
YN

n¼0

#
�
ðkþ ‘Þnx

�
;

which is known as a Riesz product, with

#ðxÞ ¼ 1þ
2

kþ ‘

Xkþ‘�1

r¼1

	ðk; ‘; rÞ cosð2�rxÞ;

The limit as N!1 has to be considered carefully. While the

truncated product f ðNÞ is a smooth function that can be

interpreted as a density of an absolutely continuous measure,

this is not the case in the limit, because it represents a purely

singular continuous measure. Accordingly, the approximating
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Figure 12
Continuous distribution functions for the diffraction of generalized Thue–Morse chains with ‘ ¼ 1 and (a) k ¼ 2, (b) k ¼ 3 and (c) k ¼ 4.

Figure 11
Approximating density functions f ðNÞ (bottom) and corresponding approximating distribution function FðNÞ (top) for the diffraction of the classic Thue–
Morse chain ðk ¼ ‘ ¼ 1Þ with N ¼ 4 (left), N ¼ 5 (centre) and N ¼ 6 (right).



density functions f ðNÞ become increasingly spiky with growing

value of N; see Fig. 11 for an example. Mathematically, we

speak of a limit in the vague topology. However, the corre-

sponding distribution function FðNÞðxÞ ¼
R x

0 f ðNÞðxÞdx (which

corresponds to the integrated diffraction intensity) converges

and possesses a continuous limit; compare the top part of Fig.

11. The limit function can be calculated and expressed as an

explicit Fourier series; several examples are shown in Fig. 12.

While this case has no point spectrum (the trivial Bragg

peak at 0 being absent due to our balanced choice of weights,

corresponding to zero average scattering strength), it is by no

means featureless. In fact, there are peaks that grow with

certain scaling exponents (in terms of the system size) at

certain points in Fourier space (the most prominent examples

can be found at rational positions 1
3 and 2

3 in Figs. 11(d)–(f),

while the growth is not well defined at uncountably many

other positions (due to the non-convergence of the density

functions); see Baake et al. (2014) for a detailed acccount of

the classic Thue–Morse case.

Clearly, the generalized Thue–Morse systems possess hier-

archical order, although this is not reflected in a pure point

component in their diffraction measures. However, this

‘hidden’ order is visible in other correlations. Explicitly, it can

be revealed by looking at the two-point correlations of pairs

rather than of single points. Looking at pairs can be described

by considering the image of the bi-infinite fixed point word v

under a sliding block map ’, which maps pairs of adjacent

letters to a or b according to whether they are equal or

different; so ’: 11; 11! a; 11; 11! b; see Fig. 13 for an

illustration.

This maps the set of generalized Thue–Morse words to bi-

infinite words which are locally indistinguishable to fixed point

words of the generalized period doubling substitution

a! bk�1ab‘�1b; b! bk�1ab‘�1a;

which reduces to the period doubling substitution (with a ¼ 1

and b ¼ 0) in the case k ¼ ‘ ¼ 1. This map is globally 2:1,

meaning that there are precisely two generalized Thue–Morse

words that are mapped onto the same generalized period

doubling word. This is most easily seen by noticing that, when

going backwards from a generalized period doubling word,

there is a single free choice for one letter a or b at one posi-

tion, where either preimage can be chosen, after which all

other preimages are uniquely determined (due to the overlap

of adjacent pairs). As the generalized period doubling

substitution has a coincidence in the sense of Dekking (1978),

it is pure point diffractive, as discussed above for the (stan-

dard) period doubling case. In fact, the corresponding point

sets are model sets, this time with ðkþ ‘Þ-adic numbers as

internal space, and the pure point diffraction is supported on

the set Z½ 1
kþ‘�, which contains all inverse powers of ðkþ ‘Þ as

generating elements.

In the language of dynamical systems, the dynamical system

(where the dynamics is given by shifting the sequence by an

integer) corresponding to generalized period doubling words

constitutes a factor of the dynamical system associated with

the generalized Thue–Morse words. Here, the word factor

refers to the fact that it is the image under the sliding block

map ’. What happens in this case is that the diffraction

spectrum of the factor (the generalized period doubling

system) picks up a non-trivial point spectrum, which is

‘hidden’ in the Thue–Morse system, in the sense that it does

not show up in its diffraction spectrum (even in the case of

general weights). However, this pure point spectrum is part of

the so-called dynamical spectrum of the Thue–Morse system,

where the dynamical spectrum refers to the spectrum of the

operator which generates the translation action; see Queffélec

(2010) for details. The dynamical spectrum is, in general, richer

than the diffraction spectrum. This can be intuitively under-

stood because diffraction, as the Fourier transform of the

autocorrelation, only measures two-point correlations, while

the dynamical spectrum ‘knows’ about more general proper-

ties under the shift action, so effectively can probe higher

correlations. We shall come back to this point at the end of this

section.

5.3. Order and absolutely continuous diffraction

Absolutely continuous (‘diffuse’) diffraction is commonly

associated with randomness. Indeed, stochastic systems typi-

cally show absolutely continuous diffraction; the simplest case

is the Bernoulli shift, based on a random sequence

X ¼ ð. . . ;X�2:X�1;X0;X1;X2; . . .Þ 2 f�1gZ

of independent and identically distributed (i.i.d.) events with

outcome �1, with probability p for outcome 1 and probability

1� p for outcome �1. The Bernoulli shift has (metric)

entropy HðpÞ ¼ �p logðpÞ � ð1� pÞ logð1� pÞ, which is

greater than zero except for the deterministic limiting cases

p ¼ 0 and p ¼ 1. All the examples discussed earlier were

deterministic sequences with zero entropy.

A random sequence X 2 f�1gZ leads to a Dirac comb

! ¼
P

j2Z Xj�j, which is a translation bounded random

measure with autocorrelation �B ¼
P

m2Z �BðmÞ�m. The

autocorrelation coefficients are, almost surely (in the prob-

abilistic sense, so with probability 1), given by
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Figure 14
Schematic representation of the Dirac comb of the Rudin–Shapiro chain
with weights �1, which is again ‘balanced’ in the sense that the average
scattering strength is zero.

Figure 13
The action of the sliding block map ’ on a Thue–Morse word produces a
period doubling word.



�BðmÞ ¼
1; m ¼ 0;
ð2p� 1Þ2; m 6¼ 0:



as a consequence of the strong law of large numbers. The

corresponding diffraction measure then, almost surely, is given

by

b�B�B ¼ ð2p� 1Þ2�Z þ 4pð1� pÞ�;

which contains both pure point (for p 6¼ 1
2) and absolutely

continuous components (for p 62 f0; 1g). The pure point part

vanishes when both weights appear with equal probability,

while the absolutely continuous part vanishes in the two

deterministic, periodic cases.

It is, however, possible to construct determinsitic systems

with absolutely continuous diffraction as well. The paradigm

for this case is the Rudin–Shapiro chain (Rudin, 1959; Shapiro,

1951; Queffélec, 2010). Its binary version w 2 f�1gZ can be

defined by initial conditions wð�1Þ ¼ �1, wð0Þ ¼ 1, and the

recursion

wð4nþ ‘Þ ¼
wðnÞ; for ‘ 2 f0; 1g;
ð�1Þnþ‘wðnÞ; for ‘ 2 f2; 3g:



ð21Þ

A schematic representation of the corresponding Dirac comb

is shown in Fig. 14. By considering the recursion relation for

autocorrelation coefficients induced by equation (21), in a

similar way as for the generalized Thue–Morse case above,

one can show (Baake & Grimm, 2009a,b) that the auto-

correlation has the simple form �RS ¼ �0, which means that all

correlations (apart from the trivial case with distance zero)

average to zero along the chain. According to the two-point

correlations, the Rudin–Shapiro chain hence looks completely

uncorrelated, exactly as the random chain with probability

p ¼ 1
2. As a consequence, the diffraction measure is Lebesgue

measure, c�RS�RS ¼ �, which is clearly absolutely continuous with

respect to itself. This means that the diffraction intensity is

constant in space, and hence completely featureless, refe-

lecting the complete absence of two-point correlation in the

structure. This example shows that two very different systems

such as the p ¼ 1
2 Bernoulli chain with entropy logð2Þ and the

completely deterministic binary Rudin–Shapiro chain (with

zero entropy) can produce the same autocorrelation and

hence the same diffraction measure. Such structures are called

homometric (Patterson, 1944) and show that the inverse

problem does not have a unique solution in general.

In fact, the situation is worse than that, as from the results

above one can construct an entire one-parameter family of

stochastic Dirac combs which all are homometric with the

Rudin–Shapiro chain. This is done by Bernoullization (Baake

& Grimm, 2009a,b). Applying it to the Rudin–Shapiro Dirac

comb, the weight at any position is changed randomly with

probability 1� p, resulting in

! ¼
X
j2Z

wjXj�j;

with the Rudin–Shapiro sequence w 2 f�1gZ and the random

sequence X 2 f�1gZ as defined above. This is a ‘model of

second thoughts’ in the sense that, when starting from a

Rudin–Shapiro sequence, weights are randomly changed with

probability 1� p independently at each position along the

chain. We can thus continuously interpolate between the

Rudin–Shapiro chain with entropy 0 and the p ¼ 1
2 Bernoulli

chain with entropy logð2Þ, with all systems sharing the same

absolutely continuous diffraction.

It is interesting to note that the Rudin–Shapiro chain, like

the generalized Thue–Morse chains above, possesses a

‘hidden’ limit-periodic order that is revealed when looking at

an appropriate dynamical factor. Using the same sliding block

map ’ as above, one obtains once more a factor with pure

point diffraction spectrum, in this case supported on Z½12�, as

for the period doubling case; see Baake & Grimm (2013) for

details. Clearly, this does not happen for the stochastic chain,

which does not have any ‘hidden’ order.
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Figure 15
Inflation rule for the pinwheel tiling. The dot marks the reference point,
and the shading emphasizes that the particular triangle is in the original
position and orientation, ensuring that repeated application of the
inflation rule produces a fixed point tiling.

Figure 16
A building at Melbourne’s Federation Square featuring a pinwheel tiling
façade.



5.4. Discrete structures with continuous symmetry

An interesting (and still somewhat mysterious) class of

structures is provided by discrete systems which possess a

continuous symmetry. The paradigm for such a structure is the

Conway–Radin pinwheel tiling (Radin, 1994). It is an inflation

tiling based on a single triangular prototile of edge lengths 1, 2

and
ffiffiffi
5
p

together with its reflected version. The inflation rule is

shown in Fig. 15; it consists of a linear rescaling by the inflation

factor
ffiffiffi
5
p

(first step) and the dissection of the inflated triangle

into five copies of the original prototile (second step), where

both orientations occur. The reflected rule applies to the

reflected triangle, and hence the tiling is reflection symmetric.

A realisation of the tiling is shown in Fig. 16.

What makes this inflation rule special is the rotation it

introduces between copies of the prototiles. This rotation by

an angle # ¼ � arctanð12Þ is incommensurate with �, and as a

result introduces new, independent directions under inflation.

Iteration of the inflation rule on an initial patch thus leads to

patches comprising an exponentially increasing number of

triangles occurring in a linearly growing number of indepen-

dent directions. In the limit of an infinite tiling, triangles

appear in infinitely many different orientations. While for the

familar cases of Penrose-type tilings inflation rules produce

tilings with discrete (in the Penrose case decagonal) symmetry

(in the sense that the tiling space defined by the fixed point

tilings has decagonal symmetry; see Baake & Grimm, 2013, for

details), the pinwheel inflation produces a tiling space with

complete circular symmetry (Radin, 1994, 1997; Moody et al.,

2006). As a consequence, its diffraction is circularly symmetric

as well, and hence cannot have any pure point component

apart from the trivial Bragg peak at the origin.

In fact, the rotation is rather special, because it is a coin-

cidence rotation for the planar square lattice, as tanð#Þ ¼ � 1
2

is rational; see Baake (1997) for background. This property is

behind the observation that the point set of pinwheel refer-

ence points can either be seen as a subset of rotated square

lattices or a subset of scaled square lattices, with scaling by

inverse powers of 5 (Baake et al., 2007a), which makes it

possible to draw conclusions on the diffraction spectrum by

using a radial version of Poisson’s summation formula. This

provides evidence that the diffraction consists of sharp rings,

and that it is surprisingly similar to a toy model of powder

diffraction of square lattice structures (Baake et al., 2007a,b).

A diffraction measure supported on sharp rings in the plane is

singular continuous, and it is clear that the diffraction of the

pinwheel tiling contains singular continuous components of

this type; however, to date there is no complete character-

ization of the diffraction spectrum of this example. Results of

numerical investigations suggest that an absolutely continuous

component may also be present. An approximation of the

radially averaged diffraction is shown in Fig. 17.

While the pinwheel tiling may seem a rather exotic struc-

ture, it is generated by a quite simple inflation rule with only a

single shape up to congruency. There are many other struc-

tures of this type; see Frettlöh (2008) for some examples.

5.5. Diffraction versus dynamical spectra

The examples of the Thue–Morse and Rudin–Shapiro

systems show that systems can possess ‘hidden’ order that does

not manifest itself by a pure point component in the diffrac-

tion pattern. However, this order can show up in the dyna-

mical spectrum, which is related to the analysis of the

translation action on the structure. There is a close relation-

ship between these two spectral quantities – indeed, the first

proofs of the pure point diffractivity of model sets employed

the link to dynamical spectra, using the result that the

diffraction spectrum is pure point if and only if the dynamical

spectrum is. In general, however, the dynamical spectrum can

be richer (van Enter & Miękisz, 1992), and the Thue–Morse

and Rudin–Shapiro systems are examples; in both cases, the

dynamical spectrum contains the pure point component Z½12�

which arises because both examples stem from primitive

substitutions of constant length 2 (in the Rudin–Shapiro case,

the underlying substitution employs four different letters, and

the binary system is derived from this by identifying pairs of

letters; see Baake & Grimm, 2013, for details).

A particularly simple yet striking example, originally

suggested by van Enter, is discussed in Baake & van Enter

(2011). It considers the set of certain configurations of �1 on

the integer lattice Z. The allowed confingurations w 2 f�1gZ

are obtained by partitioning the lattice into pairs of neigh-

bouring points (there are two ways to do this), and then

randomly assigning to each pair either the values ðþ1;�1Þ or

ð�1;þ1Þ. Turning a configuration w into a signed Dirac comb

with weights wi 2 f�1g, it is easy to show, by an application of

the strong law of large numbers, that the autocorrelation is

(almost surely) given by � ¼ �0 �
1
2 ð�1 þ ��1Þ. The corre-

sponding diffraction measure is then

b�� ¼ �1� cosð2�kÞ
�
�;

and hence purely absolutely continuous, where the Radon–

Nikodym density relative to � is written as a function of k.

However, the dynamical spectrum of this system contains

eigenvalues (hence a pure point part), reflecting the order in
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Figure 17
Approximation of radial diffraction intensity IðkÞ for the pinwheel
diffraction (black line), based on data from a finite system. The grey
columns indicate the sharp rings observed in a toy model of powder
diffraction from a planar square-lattice structure, with the relative scale
adjusted according to the first main peak; see Baake et al. (2007a,b) for
details.



the system imposed by the ‘dimer’ condition on pairs. This can

be revealed by considering a block map similar to the map ’
used above. Explicitly, setting ui ¼ �wiwiþ1 for i 2 Z maps w

to a new sequence u, which (almost surely) has the diffraction

measure

b�u�u ¼
1

4
�
Z=2 þ

1

2
�;

see Baake & van Enter (2011) for details. The ‘dimer’ struc-

ture is reflected in the presence of the pure point part

supported on 1
2Z, which also is the entire point part of the

dynamical spectrum.

This example again shows that the ‘hidden’ order can also

be seen in diffraction, but not in the original system. Note that

simply changing the weights of the scatterers will not achieve

this, although it may contribute a trivial Bragg part. However,

choosing a suitable factor (or a family of factors) as an image

of a continuous map such as the sliding block map ’ used

above, makes it possible to detect the ‘hidden’ order via its

diffraction. That this is a general property of the relation

between dynamical and diffraction spectrum is a recent non-

trivial insight; see Baake et al. (2013) for the latest develop-

ments in this direction.

6. Conclusions

The discoveries of incommensurately modulated and aper-

iodically ordered solids in the twentieth century (de Wolff,

1974; Janner & Janssen, 1977; Shechtman et al.,1984; Ishimasa

et al., 1985) have changed our view of crystallography. Crys-

tallography is no longer restricted to the analysis of lattice

periodic arrangements of atoms or molecules, but takes a

broader view which includes certain aperiodically ordered

structures, such as incommensurate crystals and quasicrystals.

The definition of a crystal has been amended to reflect this

broader view.

The current definition of a crystal is based on the currently

known catalogue of periodic and aperiodic crystals. We

currently do not know of any materials that have aperiodically

ordered structures beyond incommensurate crystals (including

composite structures) and quasicrystals. For the latter, so far

only symmetries corresponding to the smallest embedding

dimensions (in the sense of model sets) have been observed,

with octogonal, decagonal and dodecagonal quasicrystal

planes corresponding to projections from four-dimensional

periodic structures, and icosahedral quasicrystals being

described by projection from six-dimensional lattices.

However, there is no a priori reason that excludes other

symmetries completely, or indeed aperiodically ordered

structures that are not described by model sets obtained from

projections of a lattice in a finite-dimensional Euclidean space.

The definition of a crystal also reflects the current lack of

understanding of what constitutes order in matter (and more

generally), and in this sense should be seen as a working

definition that may well need to be revised in the future. In

crystallography, order is linked to diffraction, which makes

sense because diffraction is the method of choice to experi-

mentally determine the structure of a solid. The examples

discussed above demonstrate that there are ordered structures

which are not captured by the current definition, either

because their pure point diffraction fails to be finitely gener-

ated, or because they do not have any non-trivial point

component in their diffraction. While we do not know whether

such structures are realised in nature, it should become

possible to manufacture materials with purpose-designed

structures and properties. In this sense, these are structures

that are relevant and should be considered to be within the

realm of crystallography.

From a mathematical point of view, a more satisfying

attempt at defining order might employ the dynamical spec-

trum, which is a generalization of the diffraction spectrum.

The results above are in line with the intuition by van Enter &

Miękisz (1992) that an apparent disorder at an ‘atomic’ scale

could be accompanied by order at a ‘molecular’ scale, with

diffraction of derived factor structures probing the latter.

While diffraction itself only measures the averaged two-point

correlations in a structure, the dynamical spectrum probes the

repetitivity of a structure under translations, and hence also

higher-order correlations, which generally can distinguish

homometric systems (Grünbaum & Moore, 1995; Baake &

Grimm, 2007). While these are not necessarily directly

accessible by experiment, the additional information

contained in the dynamical spectrum is, in principle, encoded

in diffraction spectra of derived systems; see Baake et al.

(2013) for recent developments on establishing this connec-

tion. Defining order via a non-trivial pure point component of

the dynamical spectrum would include structures such as the

Thue–Morse and Rudin–Shapiro systems, though presumably

examples of pinwheel type (for which the dynamical spectrum

is not known) would be excluded. In this sense, it probably is

still not completely satisfactory to capture all possible mani-

festations of order, but it may provide a first step towards a

better understanding.

In this paper, the discussion was limited to deterministic

systems, apart from the brief excursion on the Bernoulli chain.

Clearly, moving to partially ordered systems, which contain an

element of stochastic disorder, is relevant as well. Not only

does even the most perfect crystal contain some amount of

disorder, but there are also entropically stabilized structures

with intrinsic configurational disorder, among them many

quasicrystalline phases. In this context, the notion of ‘entropic

order’ is relevant, which has been investigated in statistical

physics, in particular with respect to the physics of glasses; see,

for instance, Kurchan & Levine (2011), Sasa (2012a,b) and

Wolff & Levine (2014) for recent work along these

lines.

Although the importance of random tiling structures was

pointed out early on (Elser, 1985), and while there is some

good heuristical information from scaling considerations

(Henley, 1999), there are as yet very few mathematically

rigorous results for non-trivial random tiling structures in two

or more dimensions, the only examples known being related to

solvable models of lattice statistical mechanics (Baake &

Höffe, 2000). We refer to Baake et al. (2015) for a recent
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review on what is known about the diffraction of partially

ordered and stochastic systems.

Acknowledgements

The author would like to express his gratitude to Michael

Baake for useful discussions and comments, and to two

anonymous referees for providing many detailed and

insightful suggestions, which have substantially improved the

original manuscript.

References

Authier, A. (2013). Early Days of X-ray Crystallography. Oxford
University Press.

Authier, A. & Chapuis, G. (2014). A Little Dictionary of Crystal-
lography. International Union of Crystallography.

Baake, M. (1997). The Mathematics of Long-Range Aperiodic Order,
edited by R. V. Moody, pp. 9–44. Dordrecht: Kluwer Academic
Publishers.

Baake, M., Birkner, M. & Grimm, U. (2015). Mathematics of
Aperiodic Order, edited by J. Kellendonk, D. Lenz & J. Savinien.
In the press. Boston: Birkhäuser. arXiv:1502.05122.
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Poincaré, 7, 711–730.

Moody, R. V. & Strungaru, N. (2004). Can. Math. Bull. 47, 82–99.
Mumford, D. & Desolneux, A. (2010). Pattern Theory: The Stochastic

Analysis of Real-World Signals. Natick, MA: A. K. Peters.
Patterson, A. L. (1944). Phys. Rev. 65, 195–201.
Queffélec, M. (2010). Substitution Dynamical Systems – Spectral

Analysis, 2nd ed., LNM 1294. Berlin: Springer.
Radin, C. (1994). Ann. Math. 139, 661–702.
Radin, C. (1997). The Mathematics of Long-Range Aperiodic Order,

edited by R. V. Moody, pp. 499–519. Dordrecht: Kluwer Academic
Publishers.

Reed, M. & Simon, B. (1980). Methods of Modern Mathematical
Physics I: Functional Analysis, 2nd ed. San Diego: Academic Press.

Robinson, E. A. (1999). Indag. Math. 10, 581–599.
Rudin, W. (1959). Proc. Am. Math. Soc. 10, 855–859.
Sasa, S. (2012a). J. Phys. A: Math. Theor. 45, 035002.
Sasa, S. (2012b). Phys. Rev. Lett. 109, 165702.
Schlottmann, M. (2000). Directions in Mathematical Quasicrystals,

CRM Monograph Series, Vol. 13, edited by M. Baake & R. V.
Moody, pp. 143–159. Providence, RI: AMS.

Shapiro, H. S. (1951). MSc Thesis. MIT, Boston.
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. (1984). Phys. Rev.

Lett. 53, 1951–1953.

feature articles

Acta Cryst. (2015). B71, 258–274 Uwe Grimm � Aperiodic Crystals and Beyond 273

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB63


Steurer, W. & Deloudi, S. (2009). Crystallography of
Quasicrystals: Concepts, Methods and Structures. Berlin:
Springer.

Strungaru, N. (2005). Discrete Comput. Geom. 33, 483–505.

Wolff, P. M. de (1974). Acta Cryst. A30, 777–785.
Wolff, G. & Levine, D. (2014). Europhys. Lett. 107, 17005.
Wolny, J., Kozakowski, B., Kuczera, P., Strzalka, R. & Wnek, A.

(2011). Israel J. Chem. 51, 1275–1291.

feature articles

274 Uwe Grimm � Aperiodic Crystals and Beyond Acta Cryst. (2015). B71, 258–274

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dq5011&bbid=BB65

