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After Shechtman et al. (1984) published the paradigm-shattering ‘Metallic Phase with

Long-Range Orientational Order and No Translational Symmetry’, it was evident (to all

but quasicrystal-deniers) that the textbook answer to ‘what is a crystal?’ no longer

sufficed. In response, the IUCr charged its newly appointed Commission on Aperiodic

Crystals with finding a sufficiently broad definition of ‘crystal’, one that went beyond

three-dimensional periodicity to include quasicrystals and other unexpected structures

that might be discovered. No quasicrystal structure had yet been solved, but scientists had

already broadened the crystal structure kingdom: de Wolff (1974) and Janner & Janssen

(1977) had already shown that modulated crystals, with incommensurate periodicities,

could be rationalized in a four-dimensional ‘superspace’. Accordingly, several Commis-

sion members argued that ‘crystal’ should mean a solid with Bragg peaks and a super-

space description, that is, with Bragg peaks whose positions can be mapped to a lattice in

an arbitrary but finite dimension. Others – eventually the majority – suspected there

might be stranger structures out there than those imagined in superspace philosophy, and

argued that it would be unwise to replace one inadequate definition with another that

might prove inadequate soon. The Commission agreed on a working definition to be used

until the picture clarified: a crystal would be any solid with an ‘essentially discrete

diffraction diagram’. (‘Essentially discrete’ means sharp Bragg peaks and possibily a

weak continuous background.) In short, said the Commission, if it looks like a duck,

walks like a duck and quacks like a duck, it is a duck. (I refer here to the original

recommendation of the Commission; the minority recommendation described above has

at times and places been used instead.)

Intentionally though implicitly, the Commission was posing a challenging research

question for crystallographers, mathematicians, chemists, physicists, materials scientists

and maybe artists too: what sorts of structures have essentially discrete diffraction

diagrams? Or, more abstractly, what characterizes the point sets with this property? The

paper by Grimm (2015) is a comprehensive update on this question. Much has been

learned in the last quarter century. Indeed, Grimm suspects, even the duck definition may

be overly restrictive.

The first task of this research program was to define its terms rigorously even if ‘crystal’

could not be. ‘Order’ also eludes precise definition, but in the language in which we speak

of it can be made precise. Keywords like ‘diffraction’, ‘Bragg peak’ and ‘autocorrelation’

now have rigorous definitions, which in turn permit rigorous proofs and carefully

constructed examples and counter-examples. Grimm gives the reader the background

needed to grasp the measure-theoretic definition of diffraction spectrum (diffraction

measure), and uses it to frame the rest of the paper. The frame rests on Lebesgue’s

Decomposition Theorem that a measure is a unique sum of three components, designated

pp (pure point – think Bragg peaks), ac (absolutely continuous – think hazy background)

and sc (singular continuous – whatever remains in the measure when its pp and ac

components are deleted). In this context, Grimm shows us some surprises. None of these

has been found in nature yet – the examples are linear sequences generated by substi-

tution rules. But then, Penrose tilings preceded quasicrystals. In the future, who knows?

(1) Point sets with entirely pure point diffraction. The best-known family of pure-point

sets is the standard cut-and-project sets, or model sets. Model sets are derived from n-

dimensional lattices by cutting the lattice with a well-chosen three-dimensional subspace

and projecting certain (again well chosen) lattice points onto it. All model sets are

crystals under the new definition of crystal: that is, their sc and ac components are empty.

Their diffraction measure is thus pure point. But – surprise! – model sets are not the only
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point sets with the pure-point property. Counterexamples

include pure-point sets whose Bragg peaks cannot be located

in any finite-dimensional superspace. Among these are the

well known ‘chair tiling’, and linear sequences defined by ‘the

period doubling substitution rule’ (described in detail).

(2) Point sets with singular continuous diffraction. Singular

continuous point sets have no Bragg peaks, yet they have

distinctive long-range order. Grimm illustrates this with the

family of so-called generalized Thue–Morse sequences, again

generated by a certain substitution rule. ‘Clearly, the gener-

alized Thue–Morse systems possess hierarchical order’, notes

Grimm, ‘although this is not reflected in a pure-point

component in their diffraction measures. However, this

‘hidden’ order is visible in other correlations. Explicitly, it can

be revealed by looking at the two-point correlations of pairs

rather than of single points.’

(3) Point sets with absolutely continuous diffraction. A point

set generated by flips of a fair coin has an absolutely contin-

uous diffraction measure, as we expect from a random set. But

just as not all point sets with pure point diffraction are model

sets, not all point sets with absolutely continous diffraction

patterns are stochastic. One of the big surprises (in this field)

in recent decades was the discovery that the deterministic

Rudin–Shapiro sequence, generated by recursion, and the

Bernoulli coin-flipping sequence have the same diffraction

diagrams: in older terminology, they are homometric sets.

Research continues (see Fig. 1), but these examples suggest

that diffraction (as in the Commission’s duck definition) may

not be up to the task of characterizing crystal structures.

Significantly, although their diffraction spectra are identical,

the dynamical spectra of the Rudin–Shapiro and Bernoulli

sets are not. For pure-point sets, the two spectra coincide, but

for more general structures the dynamical spectrum is richer.

The caution of the 1991 Commission on Aperiodic Crystals is,

in hindsight, justified but they too did not dream of everything.

The next time a Commission tackles this question ‘What is a

crystal?’ it can go deeper.
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Figure 1
A building at Melbourne’s Federation Square featuring a pinwheel tiling
façade. To date, there is no complete characterization of the diffraction
spectrum of this example. Reproduced with permssion from Grimm
(2015).
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