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Direct determination of the Flack parameter as part of the structure refinement

procedure usually gives different, though similar, values to post-refinement

methods. The source of this discrepancy has been probed by analysing a range of

data sets taken from the recent literature. Most significantly, it was observed that

the directly refined Flack (x) parameter and its standard uncertainty are usually

not much influenced by changes in the refinement weighting schemes, but if they

are then there are probably problems with the data or model. Post-refinement

analyses give Flack parameters strongly influenced by the choice of weights.

Weights derived from those used in the main least squares lead to post-

refinement estimates of the Flack parameters and their standard uncertainties

very similar to those obtained by direct refinement. Weights derived from the

variances of the observed structure amplitudes are more appropriate and often

yield post-refinement Flack parameters similar to those from direct refinement,

but always with lower standard uncertainties. Substantial disagreement between

direct and post-refinement determinations are strongly indicative of problems

with the data, which may be difficult to identify. Examples drawn from 28

structure determinations are provided showing a range of different underlying

problems. It seems likely that post-refinement methods taking into account the

slope of the normal probability plot are currently the most robust estimators of

absolute structure and should be reported along with the directly refined values.

1. Introduction

The introduction by Rogers (1981) of a new parameter, �, as a

refineable multiplier onto f 00 in the least-squares optimization

of a crystal structure [equation (1)] was the first attempt to

directly determine absolute structures as part of the refine-

ment process (hereafter called direct determination).

Fh ¼
X

j

f 0
j þ f 0j þ i�f 00j

� �
� cos 2�hxj

� �
þ i sin 2�hxj

� �� �
ð1Þ

Flack (1983) recognized that the � parameter had no physical

significance except for values of �1, and introduced a new

formulation of the problem. He proposed that a given sample

be regarded as a twin by inversion, and that refining the twin

fraction would reveal the absolute structure. Representing

jFj2h by I+ and jFj2�hh by I�

Iþo ’ Iþc ¼ 1� xð ÞIþs þ xI�s ; ð2Þ

where the subscript ‘s’ indicates a quantity computed from the

atomic model with the Flack parameter x set to zero (i.e. a

non-twinned single crystal), ‘c’ a quantity computed from a

twinned model (i.e. Flack parameter not necessarily zero) and

‘o’ an observed quantity. Like the Rogers method, this

proposal refined the absolute structure parameter using all the

reflection data as part of the normal structure optimization,

but had the advantage that the parameter had a real physical

significance throughout the whole range from zero to one. This
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innovation increased awareness of the existence of twinning

by inversion and fears that samples may not have been

enantiopure. For convenience we will use the term Flack

parameter to imply x determined by an unspecified method,

and Flack (x) to imply its determination as part of the main

structure refinement.

The 1993 release of SHELXL included a post-refinement

method for determining the Flack parameter, by a method

which came to be known as ‘hole-in-one’. Equation (2) can be

rearranged to give the Flack parameter directly from observed

structure factors and structure factors computed from the

atomic model and its inverse (Sheldrick, 2014).1

Iþo � Iþs ’ x I�s � Iþs
� �

ð3Þ

In spite of fears that post-refinement determinations of

absolute structure might be compromised because of the

neglect of potential covariance with the other refineable

parameters, Hooft et al. (2008) devised a method based on a

Bayesian analysis of Friedel differences (see Müller, 1988, for

an interpretation of Friedel pairs). These authors recast

equation (3) to treat Friedel pairs of reflections simulta-

neously.

Do ’ Dc ¼ 1� 2xð ÞDs; ð4Þ

where Ds ¼ Iþs � I�sð Þ and similar for Do and Dc.
2 For

convenience later, we have called x computed from equation

(4) the Bijvoet (d) parameter. The advantage of (4) over (3) is

that by taking differences, the significance of the real part of

the structure factor is reduced, making the computation less

dependent on details of the model structure.

Their process, which used weights derived from the

variances of the observed intensities modified by information

obtained from the normal probability plot (n.p.p.) of the

Friedel residuals (Abrahams & Keve, 1971), yielded values of

the absolute structure parameter, Hooft (y), not unlike those

from the Flack (x) method. The underlying assumption, as in

Dyadkin et al. (2016), was that the error distribution was

Gaussian. Hooft et al. (2010) show that this distribution is

adequate for good data, but that for poor data dramatically

improved results are obtained by the use of the student t-

distribution. The method further enabled one to estimate the

probabilities of the correctness of absolute structure assign-

ments for enantiopure or 50:50 racemically twinned samples.

Parsons et al. (2013) examined the use of equation (4) and

its quotient form, equation (5), which we will call Parsons(q),

both for post-refinement determination of the Flack para-

meter, and as restraints during the direct refinement of Flack

(x).

Qo ’ Qc ¼ 1� 2xð ÞQs; ð5Þ

where Qs ¼ Iþs � I�sð Þ=2As etc. and As ¼ Iþs þ I�sð Þ=2.

These authors showed that the Hooft (y), Parsons(q) and

Bijvoet (d) estimates of the absolute structure parameter were

usually similar to direct refinement of the Flack (x), but with

significantly lower standard uncertainties. They also observed

that using equations (4) or (5) as restraints on the least-

squares refinement gave values of the Flack (x) in close

agreement with post-refinement estimates of absolute struc-

ture.

No explanation was given for the observation that direct

refinement of the absolute structure consistently gave larger

standard uncertainties than any of the post-refinement

methods other than to note that the direct refinement was

based on all the reflections used in the refinement, while the

post-refinement analyses used selected subsets of the full data

set. In order to investigate the source of the differences

between direct and post-refinements estimations of absolute

structure, several different approaches were implemented in

the CRYSTALS program. Data sets taken from the literature

including Escudero-Adán et al. (2014), hereafter EBB, Parsons

et al. (2013), hereafter PFW, and Flack (2013), hereafter HDF,

were re-examined using these tools.

2. Background

During the period before the common availability of area

detector diffractometers, it was generally regarded as too

expensive to collect a highly redundant set of all Friedel pairs

of reflections. Some of the need for redundancy could be

reduced by making measurements in geometries which mini-

mized the differences in the experimental errors between

Friedel pairs (Le Page et al., 1990). Even so, full sets of Friedel

pairs were generally not measured, and after a structure was

resolved and refined from an asymmetric unit of data in the

corresponding Laue group, selected Friedel pairs were

remeasured and used for absolute structure determination

(see, for example, Ealick et al., 1975). The introduction of the

Flack parameter has led to attempts to use X-ray crystal-

lography both to determine absolute structure and to deter-

mine enantiopurity, i.e. whether the sample used for the

measurements was twinned by inversion.

2.1. Probability methods

Prior to the introduction of Flack’s parameter, structure

analysts had simply tried to ascertain the probability of the

absolute structure of the crystal being the same as that of the

model, so that an absolute structure was chosen to give a best

match between selected observed and calculated structure

factors. The Hamilton (1965) R-factor ratio method used all

the observed reflections, but was difficult to apply convincingly

due to uncertainty about a valid definition of the number of

degrees of freedom involved in swapping from one model to

its inverted image.

Other methods used reflections carefully selected from the

existing data sets, or carefully remeasured. Engel (1972)

favoured the ‘Bijvoet Method’, in which a selected set of

reflections, the sensitive reflections, were remeasured more

carefully. Engel used Bh = (Qh � 1)/1
2(Qh + 1) as a measure of

the Bijvoet sensitivity, with Qh = |Fh|/|F�h|. A comparison of
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1 In SHELXL 2014/7 the ‘hole-in-one’ fit has been renamed ‘classical fit’. This
should not be confused with the much older direct refinement, as found, for
example, in X-RAY76 (Flack, 1983) or CRYLSQ (Olthof-Hazekamp, 1990).
2 This equation first appears in this form in Thompson & Watkin (2011).



the signs of the measured and calculated Bs from a selected set

of reflections yields the absolute structure. If the intensities of

Friedel pairs of reflections, preferably with a B of the opposite

sign, could be found and measured in a neighbouring part of

reciprocal space, for which absorption and other errors will be

similar, then a ‘double quotient’ can be estimated which has

the effect (as in the Parsons quotient) of reducing the influ-

ence of geometry-related experimental errors. Le Page et al.

(1990), recognizing that Rogers’ � should be �1 for an

enantiopure sample, computed the probability that the chir-

ality of the model and that of the sample were the same on the

basis of a remeasured set of selected reflections. Probability

methods have been revisited again by Hooft et al. (2008), and

using a t-distribution (Hooft et al., 2010). They constructed

tests on the basis that the material is enantiopure, the P(2) test

giving the probability that the model and the material have the

same chirality, or possibly twinned, the P(3) test distinguishing

between the correct assignment, a 50:50 inversion twin, or an

inverted assignment. The appeal of probability methods is

that, under strict assumptions, they appear to give a clear-cut

result.

2.2. Direct refinement of the Flack (x) parameter

Direct refinement of the Flack (x) parameter simulta-

neously with the other structural parameters is now

commonplace. Flack et al. (2006) recommend that a full set of

Friedel pairs be measured on an area detector instrument,

preferably with high redundancy in order to optimize

empirical intensity scaling, and that refinement be started with

the Flack parameter set to 0.5 to minimize the risk of refine-

ment to a false minimum. This is particularly important in the

case of space groups with floating origins, in which the struc-

ture may distort to accommodate an incorrectly assigned

absolute structure – the polar dispersion error (Cruickshank &

McDonald, 1967). It has been widely observed that although

the Flack (x) is rarely in conflict with a known absolute

structure (Thompson & Watkin, 2011), it can refine to a value

away from the ideal value for an enantiopure material. There

is also evidence that the standard uncertainty computed from

the full variance–covariance matrix is often over-estimated.

Parsons, Wagner et al. (2012) have proposed using leverage

analysis to identify reflections which are particularly influen-

tial in the determination of the Flack parameter, and which

could be re-measured and used as supplementary observations

(restraints) in the refinement. An alternative approach

(Thompson & Watkin, 2011) re-uses Friedel pairs selected

from the existing data set to construct supplementary obser-

vations.

2.3. Post-refinement determination of the Flack parameter

The relation between the absolute structure of a crystalline

material and the measured Friedel pairs is given in equation

(2). The worryingly high standard uncertainty of the Flack (x)

parameter determined for many materials of known enantio-

purity and absolute structure has led to a search for methods

to determine the Flack parameter more robustly than simply

including it in the main least-squares refinement, especially in

cases where the resonant signal is likely to be weak. Not

infrequently, these methods involve the use of selected sub-

sets of the original or new data.

Given a reasonably well refined model, the absolute struc-

ture can be estimated by solving equations (2), (3), (4) or (5)

for x by conventional least squares. The disagreement some-

times seen between the hole-in-one method [equation (3)] and

Bijvoet difference method [equation (4)] might, in part, be due

to the additional information introduced by pairing up

reflections for the differences, with the possibility that certain

kinds of errors in the model or in the data might be correlated

and tend to cancel out.

The denominators in the Parsons(q) expression (5) were

based (Parsons et al., 2013) on an extension of the earlier

recognition that on a serial four-circle diffractometer setting

angles could be chosen so that the absorption effect for

reflections h and �hh would be similar (Le Page et al., 1990). On

an area detector diffractometer these conditions are rarely

satisfied, and in any case the final intensity of each reflection is

usually the average of several measurements made with quite

different setting angles.

Equation (5) can be rewritten as

Do=2Ao ’ Dc=2Ac ¼ 1� 2xð ÞDs=2As: ð6Þ

Here Ao and As seem to be scale factors down-weighting the

contribution of strong reflections to the absolute structure

parameter. However, when each reflection pair is weighted by

the inverse of the variance of the observed quantities, this

down-weighting disappears.

If equation (6) is rewritten as

Do ’ 1� 2xð ÞDs Ao=Asð Þ ð7Þ

we can see that if Ao can be regarded as As � error, the ratio

Ao:As could take large values when the calculated structure

amplitude is very small – such reflections must be excluded

from any quotient calculation. In fact, if Ao is not very similar

to As then there is a reasonable probability that there is

something wrong with the model, the data or both. We can

also see that the Ao/As terms act as per-reflection scale factors

and should be counted as independent variables.

Just as plots of Fo versus Fc can be of diagnostic value in a

normal structure refinement, so plots of Do versus Ds and 2Ao

versus 2As can give insight into absolute structure determi-

nation (Parsons, Pattison & Flack, 2012). The 2Ao � 2As plot

should have a unit gradient and might identify outliers in

which the quotient in equation (7) lies far from unity. For

enantiopure materials correctly assigned, the Do versus Ds

scatterplot should also have a unit gradient, and for materials

with a large Friedif (Flack & Bernardinelli, 2008) this is

usually clearly evident. For materials with a Friedif less than

100 the linear relationship is always less clear (Cooper et al.,

2016).

Fig. 1(a) shows a scatterplot of Do versus Ds and 2Ao versus

2As for structure SL-6418 (Friedif = 498; Smith & Lamb, 2012).

The best line through Do and Ds (green points) has a gradient

of 1.063 (5) and an intercept of �0.002 (21), the correlation
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coefficient is 0.960, and the coefficient of determination is

0.929. The value of (1 � 2x) is reliably determined. Fig. 1(b) is

a similar plot for structure EBB-5001 (Friedif = 6.5). The best

Do � Ds line appears to be independent of the scatter of the

observations, yet a least-squares fit gives a gradient of

0.92 (17) [corresponding to a Bijvoet (d) of 0.04 (9)], corre-

lation coefficient 0.116 and coefficient of determination of

0.014.

Except when the data points all lie on an exactly vertical

line, it is always possible to fit a regression line. However, if

the spread of the observations along the dependent axis is

much greater than that along the independent axis, the line

will have little or no physical significance. The correlation

coefficient is independent of the number of observations, but

the standard uncertainty is proportional to 1=
ffiffi
ð

p
n� 2Þ so that

the standard uncertainty can be reduced by including more

‘vanilla’ data – the Emperor of China Syndrome (Parrish,

1960). Rogers (1981) had been worried that in the Hamilton

method, some of the resonant differences would be below the

observable threshold, so that ‘Many of the reflections are mere

passengers in the calculations of the �F ’ yet contribute to the

degrees of freedom and falsely improve the apparent relia-

bility of the analysis. Ealick et al. (1975) chose to work with

reflections for which the ‘sensitivity factor’, SF = |Do � Ds|/Ao,

was the largest [note that, ignoring the effect of scale factors

and the Lp correction etc. for Poisson statistics, Io is propor-

tional to �2(Io) so that SF is a measure of signal-to-

noise]. Rabinovich & Hope (1980) introduced the idea of

‘observability’, D = (DsAo)/(As�(Do)) similar to Ealick’s

sensitivity factor. The ratio Ao/As in this expression

means that it is strongly related to the Parsons

quotient.

The importance of a given datum on its own fitted value is

measured by its leverage (Prince, 2004). Since the mean values

of Do and Ds (and the corresponding quotients) are close to

zero, fitting a straight line can be regarded as a one-parameter

model, so that the leverage of each data point is given

by

Pii ¼
wid

2
iP

wid
2
i

; ð8Þ

where di are the values of either Ds or Qs. The data with the

greatest leverage are those with large absolute values of Ds or

Qs. Remember that although Ds does not depend directly on

As, large Ds can only be possible for large As. If each obser-

vation in the post-refinement determination of the Flack

parameter is weighted by the inverse of its variance, Pii is

proportional to the square of the signal:noise. To a first

approximation, �2(I) / I (Evans, 2006; but see also x5.2.6) so

that the resonant difference originating from strong reflections

will have large standard uncertainties, and be down-weighted.

The most useful reflections are likely to be those of inter-

mediate intensity and with a large resonant difference. This is

in agreement with the leverage analysis for the Flack (x)

parameter in the least-squares refinement of all structural

parameters (Parsons, Wagner et al., 2012).

Equation (4) can be made to yield values of the Flack

parameter on a per Friedel pair basis

x ¼ Ds �Doð Þ=2Ds: ð9Þ

Plotting x from equation (9) against Ds (Fig. 2) should give a

horizontal line at the value of the Flack parameter. If |Ds| is

very small compared to |Do|, the value of x can take extreme

values. For a structure with low resonant scattering, individual

x can be ill-determined, and even for good data many extreme

values can be seen. The massive vertical distribution near the

centre of the plot (which includes both positive and negative

estimates of x) corresponds to small values of the denominator

in equations (4) and (9), and it is only the data lying distant

from |Ds| = 0 which contain useful information.

3. Data quality

3.1. Friedel completeness

The introduction of the Flack analysis meant that an indi-

cation of the absolute structure could be obtained without re-
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Figure 1
Do versus Ds and 2Ao versus 2As plots for (a) structure SL-6418 (Friedif 498) and (b) structure EBB-5001 (Friedif 7).



measuring any data. Bernardinelli & Flack (1987) showed

that, strictly speaking, it does not even require the measure-

ment of any Friedel pairs, but simply that any Friedel pairs

that are measured are not merged together. Flack et al. (2006)

discuss at length the need for extensive Friedel coverage in the

case where a structure is pseudo-centrosymmetric. Trials in the

1980s using the Enraf–Nonius CAD-4 serial diffractometer

showed that in some cases (for example, an organometallic

spontaneously resolving in P21) a good indication of the

absolute structure could be obtained without measuring all

Friedel pairs. These results were never published, but an

example can be simulated using area-detector data. The model

for HDF-gg3255 (Abud et al., 2011), in P212121, Friedif 600

(Flack & Bernardinelli, 2008), was refined using a full data set

(only 114 unpaired acentric reflections), the all-positive

quadrant of data plus the h =�1 layer, and just the all-positive

quadrant. The same model, with Flack(x) set to 0.5, all atomic

coordinates slightly perturbed, |F|2 observations and the

weighting scheme optimized for the full data set, was used to

start all three refinements (see Table 1).

This simulation is only indicative since Friedel pairs were

measured in the original experiment and used to obtain frame

scale factors and absorption corrections, but it casts some light

on the robustness of the Flack analysis (see also http://

www.ccp14.ac.uk/ccp/web-mirrors/hugorietveld/stxnews/stx/

discuss/dis-fals.htm).

3.2. Outliers and data quality

Merli & Sciascia (2011) and many others, e.g. PFW-2013 and

Le Page et al. (1990), recognized that outliers in the data

would degrade the analysis. Hooft et al. (2008) provided a filter

to try to ensure that only reliable data were used in the

determination of the Hooft (y) parameter. Parsons et al.

(2013) give an example in which exclusion of a single reflec-

tion changed the Flack parameter from 0.18 (8) to 0.08 (8).

The detection of outliers is a vexing problem. Reflections with

large jF2
o � F2

c j residuals can be due to errors in the observed

or modelled values, or both quantities. When a model is fully

parameterized (all atoms have been found, disorder resolved,

twinning dealt with), then there is a good chance that an

individual Is is more likely to be ‘correct’ than the corre-

sponding Io because each computed structure factor is, in

effect, a complexly weighted average of all the observed

structure factors. Under these conditions, a large residual is

usually attributed to error in the observation, and these

reflections – the outliers – may be filtered out. In structural

refinement an outlier can be identified by comparing the

residual with the experimentally determined standard uncer-

tainty. If the fully developed model will not refine so that this

residual is reduced, it is usually assumed that the discrepancy

is a fault in the observation. Robust/resistant weighting

schemes are designed to reduce the influence of these suspect

reflections in a smoothly continuous way rather than simply

rejecting selected data (Prince,

1994). In the case of determining

the Hooft (y) parameter, the

observed Friedel difference could

be compared with the calculated

difference and reflections with

improbably large residuals be

excluded from the computation. In

the original implementation in

PLATON (Hooft et al., 2008, and

now integrated into CRYSTALS),

the filtering was via the user-

adjustable variable Outlier Crit. In

later versions the filter is auto-

mated such that reflections for

which the observed Friedel differ-

ence is more than twice the largest

calculated difference, Dsmax, are

eliminated (see also PFW-2013). A
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Table 1
Effect of Friedel completeness on the direct refinement of the Flack (x) parameter.

h range k range l range No. of reflections Initial R Final R Final Rw Minimization function Flack (x) �(x)

�10 9 0 21 0 24 5134 0.0813 0.0431 0.0435 6639 0.002 0.009
�1 9 0 21 0 24 3296 0.0815 0.0441 0.0431 4509 �0.008 0.013
0 9 0 21 0 24 2927 0.0838 0.0460 0.0437 3038 0.019 0.016

For HDF-gg3255, with Friedif of 600, the Flack (x) parameter and its s.u. are determined reasonably reproducibly with few or even no Friedel pairs. Initial R is for the perturbed structure,
final R factors are at convergence.

Figure 2
Plot of the Flack parameters versus Ds for all Friedel pairs in compound SL-6418. The small resonant
differences give Flack (x) in the range � 2, the larger differences give results in the range � 0.5.



very small value for the Friedel difference can still occur even

when the two contributing reflections are strong, and are

accepted by the ‘three sigma’ criterion. In the PFW-2013

implementation, reflections for which either or both Io+ and

Io� were less than three standard uncertainties were also

eliminated, as were reflections with significant deviations from

the (Do � Ds) n.p.p. best-line. Whereas in the conventional

least-squares refinement of crystal structures some practi-

tioners insist on using all reflections, it is now established

practice to filter out some reflections for the post refinement

analysis of absolute structure. Filters are provided in CRYS-

TALS to exclude reflections which may either introduce

instability into the calculations (very small denominators) or

are suspected of being in serious error.

3.3. Iterative reweighting

The Le Page algorithm (Le Page et al., 1990) in effect

assigns a value of � 1 to the Rogers’ � value of the selected

reflections on a one-by-one basis as opposed to direct refine-

ment of � from all the reflections in the main least-squares

calculations. It tacitly assumes that the material is enantiopure.

Equation (9) enables us to also evaluate the Flack parameter

on a reflection-by-reflection basis – the data used in creating

Fig. 2. We could in principle evaluate the Flack parameter

from each pair of carefully selected and remeasured reflec-

tions – or even from just one very carefully selected and very

carefully measured pair. Because x is a continuously mean-

ingful parameter in the range 0–1, it is not necessary to assign

it an integer value. Now, rather than remeasuring selected

reflection pairs to estimate x, we can use all the pairs measured

in the original data collection to give individual estimates of x.

With the exception of unknown correlations introduced

during the measurement process, these estimates of x will be

experimentally independent (or at least as independent as the

measurements of the original data were). As was seen in Fig. 2,

the values of x can take values wildly outside of the 0–1 range

– these are physically impossible and correspond to outliers

originating either from large experimental errors, or are

artefacts of a small denominator in equation (9). Following the

arguments of Blessing & Langs (1987) for the merging of

equivalent reflections, we can merge these individual x-values,

and since each x-value has an associated experimental

variance, we can compute both the external variance

x0 ¼

P
wixiP
wi

ð10Þ

�2
ext ¼

P
wi�

2 xið ÞP
wi

ð11Þ

and the internal variance (Appendix A)

�2
int ¼

n
P

wiðxi � x0Þ
2

ðn� 1Þ
P

wi

: ð12Þ

The probability of an individual xi can be estimated from

pi ¼ exp
�ðxi � x0Þ

2

2�2
ext

� �
: ð13Þ

Friedel pairs yielding a value of x differing from the average

value of x by several variances have a low probability. This

probability can be used as a modifier for the weight

(w0i ¼ wipi) used to compute a new weighted average value of

x, and the process repeated (Blessing & Langs, 1987). Since

the distribution of the computed Flack parameters may be

dispersed, skewed or long-tailed, the process is started using

the median value of xi as an initial estimate of x. Thus, rather

slack values can be set for the various initial filter thresholds

used in selecting reflections, and a smoothly varying function

can be used to down-weight suspect data. Friedel pairs with a

probability pi greater than a user-adjustable threshold (typi-

cally 0.001) are counted to provide an indication of the

number of ‘useful’ reflections in the data. The process is

terminated when the number of ‘useful’ reflections is the same

for two successive iterations, or until ten iterations are

completed. In this latter case, the process is regarded as being
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Figure 3
Flack x distribution plots for SL-6418 (left) and Motherwell (right). The horizontal scale is �3 for SL-6418 and �30 for Motherwell, with a significant
number of items in the extreme bins. The red line is the simple percentage frequency, the green line is weighted with the Blessing et al. function.



unconverged and unsuccessful. This situation seems to arise

when the resonant scattering is small compared with the errors

in the intensity measurements. The standard uncertainty on

the final value of x0 is estimated from the weighted external

variance

�2
mean ¼

P
w0i�

2 xið Þ

n
P

w0i
: ð14Þ

Iterative reweighting (Prince, 1994) using the Tukey biweight

algorithm (Tukey, 1976) gave essentially the same results as

the Blessing method.

In order to provide the user with a visual representation of

the data, a histogram of the frequency distribution of x can be

plotted (Fig. 3). The normalized sum of the weights of the

reflections in each bin is also plotted. The number of pairs

containing ‘useful’ information and the number of pairs

yielding an x value falling in the range �0.5 < x < 1.5 is also

output. For convenience, we will denote the value of x0 and its

s.u. determined by this histogram method as the Histogram (h)

parameter, and �(h) its s.u. The standard uncertainty �(h) can

be further scaled by the gradient of the Friedel residual n.p.p.

Note that the weights w0i could also be used for the compu-

tation of a Bijvoet (d) or Parsons(q) parameter.

The expected and actual information content of the data

can be visualized (Fig. 4) by plotting histograms of Ds/�(Do)

and Do/�(Do) (Bernardinelli & Flack, 1987). A distribution of

Ds/�(Do) which is very narrow and centred on zero indicates

that there is little information in the data. When this is

accompanied by a broad Do/�(Do) distribution we have an

indication that the data is very noisy.

3.4. Ratios of averages and averages of ratios

Letting (1 � 2x) in equation (4) be represented by c, then

for each Friedel pair we have

ci ¼ Doi=Dsi: ð15Þ

An average value of ci can be computed as a least-squares

estimate (see Appendix A)

c ¼

P
DoiDsiP
DsiDsi

ð16Þ

or as a simple mean

c0 ¼

P
ci

n
ð17Þ

leading to hxi and x0. Equation (16) is a ratio of averages

(there is a 1/n term in both the numerator and the denomi-

nator), equation (17) is the average of the individual ratios, ci.

In general, if all the summations are made over the same

number of data points and there are no wildly eccentric

outliers, the values of hxi and x0 are similar. An indication of

the presence of outliers can be obtained by computing these

coefficients using all the measured Friedel pairs. If they are

substantially different, the distribution of the errors in Do may

be skewed, there may be outliers, the errors may swamp any

signal or there may be contributors to (15), where the Dsi are

tiny. Weighted versions of equations (16) and (17) can be

recomputed during the Blessing & Langs (1987) process,

where outliers are progressively down-weighted. If conver-

gence is achieved before the maximum number of cycles is

reached, hxi and x0 are usually very similar. Both values are

output by CRYSTALS.

4. Experimental considerations

4.1. Restraints

The result of using selected reflections as restraints either in

the Parsons et al. (2013) method or the Thompson & Watkin

(2011) method seems at first to be reassuring, but a similar

result can also be achieved by computing the value and

standard uncertainty of the Flack parameter from the data

which would otherwise have been used as restraints and

simply using this as one idealized

restraint. Using HDF-gg3255

(Friedif = 600) as an example again

gave the following results for an

unrestrained refinement, and

restrained refinements using

various target values of the Flack

parameter and a requested stan-

dard uncertainty of 0.005 (Table 2).

The SHELX-type weights were

optimized for each refinement.

The only impact of imposing the

restraint that the Flack parameter

should be zero is to reduce the

refined value of the parameter from

0.0018 to 0.0004. There is no

appreciable change in the R-factors

or the other estimates of x. Setting

a target of 0.5 with a standard

uncertainty of 0.005 leads to a
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Figure 4
Distribution of the Friedel differences as a function of the standard uncertainty of the corresponding
observed difference, �(Do). The left plot is for SL-6418, right for Motherwell. The green line is the
percentage frequency of Ds/�(Do), i.e. an estimate of the theoretical signal:noise distribution which could
be expected from the sample. The red line is the frequency of Do/�(Do), i.e. the actual signal:noise. The
broader the green distribution, the better the potential usefulness of the data. For SL-6418 there are
many observations in the end bins (D > 3�(Do)). For Motherwell the green curve only spans� 1. The red
curve has a much broader spread, indicating that random noise is a major contributor to Do.



refined Flack parameter close to the target, and causes a small

increase in the R-factors. The Hooft and Histogram estimates

of x decrease a little, and since these are computed from the

refined structural model, indicate that the model has relaxed

in some way. Raising the target to 1.0 causes a very significant

change in the R-factors, but the refined value of the Flack (x)

almost satisfies the restraint. The automatically adjusted

SHELX-type weighting parameter a increased as the Flack

restraint was increased, progressively down-weighting strong

reflections in order to try to achieve a flat analysis of residuals,

emphasizing the dangers of modifying the weights until the

model is finalized. The n.p.p. for the main refinement became

progressively more S-shaped as progressively invalid Flack

values were imposed. The resonant difference n.p.p.s, using

pure statistical weights, remained fairly straight throughout.

Preserving the atomic coordinates and weights from this last

refinement and resetting the Flack parameter to zero gave the

R-factors in the row labelled with an asterisk. Refinement with

a target Flack of unity can be achieved simply by causing a

small distortion of the model which has minimal impact on the

conventional R-factor but increases the reweighted R-factor.

For HDF-gg3255 the median bond length distortion with the

inverse restraint was 0.01 Å and the maximum 0.03 Å, i.e.

similar to Müller’s (1988) refinement of structures and their

inverses. The median change in the arithmetic Uequiv was

0.001 Å2 and the maximum 0.004 Å2. These results can be

interpreted (for a reasonable data

set) as showing that small changes

can be forced on the value of the

Flack parameter without having an

appreciable change on the atomic

model, and hence on estimates of

the absolute structure based on

that model. They also show that

while an incorrect assignment of

absolute structure will affect fine

details of the molecular geometry,

small errors in the structural model

only have a small effect on the post-

refinement determination of the

absolute structure.

4.2. Correlation between Flack
and other parameters

In order to demonstrate that the

absolute structure parameters are

only weakly correlated with the

atomic structure, the x, y and z

coordinates of the non-H atoms in

the fully refined unrestrained

structure of HDF-gg3255 (called

‘original’ in the table) were

randomly perturbed from their

refined positions with a mean

displacement of 0.0 and a standard

uncertainty of 0.1 Å. Just the

overall scale and Flack (x) parameters were then refined for

five different perturbations of the structure, each of which had

a conventional R-factor of � 14% (Table 3). Although the

directly refined Flack (x) parameter was less well defined, the

table shows why it may be possible to assign a reasonably

reliable estimate of the absolute structure quite early on in a

structure analysis by the post-refinement methods (Sheldrick,

2015).

4.3. Influence of weighting schemes

In the discussion so far it has been assumed that the weights

for the post-refinement analyses have been derived from the

observed variances of the original diffraction data via equa-

tions. However, it has long been established practice to use

more complex weighting schemes in the main structure

refinement. These weights are computed from empirical

formulae with coefficients selected to give a flat distribution of

weighted residuals. This process is intended to allow for

unidentified errors in the data and shortcomings in the model

(Cruickshank, 1961). Weights computed in this way have an

influence on the Flack (x) parameter and its s.u. as determined

during the main refinement (Bernardinelli & Flack, 1987). In

order to see the influence of these weights on the post-

refinement determination of absolute structure, they can be

converted to observational pseudo-variances by
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Table 3
Influence of perturbations of the model on direct and post-refinement determinations of the Flack
parameter for the structure HDF-gg3255.

The row labelled ‘Original’ corresponds to the unperturbed structure. Post-refinement methods are least
influenced by the perturbations. The perturbations were drawn from a normal distribution with zero mean and
0.1 Å standard deviation.

Run R Rw
Do � Dc

R-factor Flack (x) Hooft (y) Histogram (h)

1 0.1304 0.3137 67.1 0.08 (48) 0.031 (8) 0.027 (6)
2 0.1366 0.3714 66.5 0.050 (53) 0.032 (8) 0.035 (6)
3 0.1380 0.3750 66.2 0.033 (52) 0.049 (8) 0.051 (5)
4 0.1357 0.3236 67.3 0.074 (51) 0.035 (8) 0.035 (6)
5 0.1300 0.3182 66.6 0.083 (50) 0.040 (7) 0.039 (5)
Mean 0.1341 0.3404 66.7 0.063 (51) 0.037 (8) 0.037 (6)
Original 0.0416 0.0553 57.3 0.002 (10) 0.008 (7) 0.006 (5)

Table 2
Estimates of the Flack parameter derived from refinements with x restrained to progressively incorrect
values for the structure HDF-gg3255.

Post-refinement methods are insensitive to the restraints because the structural model scarcely changes.

Target Flack x R Rw
SHELX a
parameter

Do � Dm

R factor Flack (x) Hooft (y) Histogram (h)

Free 0.0416 0.0558 0.031 57.29 0.002 (7) 0.009 (5) 0.006 (4)
0.0 0.0415 0.0556 0.031 57.30 0.000 (4) 0.009 (5) 0.006 (4)
0.25 0.0423 0.0594 0.033 67.40 0.202 (5) 0.009 (6) 0.006 (5)
0.5 0.0448 0.0692 0.038 90.62 0.423 (5) 0.008 (6) 0.005 (4)
1.0 0.0541 0.0999 0.042 155.65 0.916 (5) 0.001 (3) 0.000 (4)
† 0.0419 0.0624 –

† R-factors for this model but with Flack (x) reset to zero.



�2
ðIlsqÞ ¼ 1=weightlsq; ð18Þ

where weightlsq is the weight assigned to the reflection during

refinement.

PFW-fyo12e (Parsons et al., 2013) contains only carbon,

nitrogen and hydrogen, and Friedif is 11.8. This data set,

specifically collected with a view to exploring the differences

between direct and post-refinement evaluations of absolute

structure, has Flack (x) = 0.17 (38) and Bijvoet (d) = 0.01 (08)

but contains no evident source for the discrepancy between

the two methods. The data set has an average multiplicity of

observation of � 36.

The structural model, including the Flack (x), was refined

under three regimes: (a) using pure statistical weights 1/�2(I),

(b) in which the weights were rescaled by a common factor to

give a goodness-of-fit (GoF) of 1.0, and (c) using optimized

SHELX-type weights, which involves adding terms to �2(I).

For each regime, post-refinement analyses were computed

with pure statistical weights, and with ones derived from the

least-squares weights. The results are summarized in Table 4.

For this data set we see that the choice of weighting scheme

has little influence on the s.u. of the Flack (x) parameter

determined in the main least squares, although it does have an

influence on the value of the parameter itself [column headed

Flack (x)]. In regime (a), post-refinement analysis gives the

same results whether weighted by simple statistical weights, or

weights derived from the LSQ weights (since these were also

simple statistical). However, all of the post-refinement

methods gave standard uncertainties reduced to � 20% of

those from the direct refinement. The n.p.p. for the weighted

Friedel differences was substantially linear with a unit

gradient, although the gradient for the n.p.p. of structure

factor residuals was 4.5 (Fig. 5a). The histogram of the

weighted structure-factor residual wðF2
o � F2

c Þ
2 as a function of

intensity (Fig. 6a) shows an unacceptable upward trend as a

function of intensity.

The gradient of the n.p.p. can be made unity simply by

rescaling all of the reflection variances. This rescaling has no

effect on the refined parameter values, and because of the way

parameter standard uncertainties are conventionally

computed (Cruickshank & Robertson, 1953), it has no effect

on their standard uncertainties. Because structural parameters

are unchanged by this scaling, the calculated Friedel differ-

ences are unchanged, so that the row (b)STAT in Table 4 is

identical to the rows (a) with the exceptions of the GoF and

n.p.p. for the main refinement, which are both now close to

unity (Fig. 5b). Row (b)LSQ in Table 4 contains some inter-

esting features. Although the n.p.p. for the main refinement

now has a unit gradient, the n.p.p. for the Friedel differences

has a gradient of 0.2, the inverse of that for the original main
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Table 4
PFW-fyo12e: effect of weights on absolute structure analysis.

Post-refinement absolute structure analysis using structure amplitudes computed from a model refined (a) with pure statistical weights, (b) with rescaled weights
and (c) with weights computed from a SHELX-type formula. Each post-refinement absolute structure determination was performed with simple statistical weights
(STAT), and with weights derived from the main least squares (LSQ). The gradients of the n.p.p. were computed using data between the first and ninth deciles, thus
reducing the influence of ragged tails.

Main ref. wR2 Flack (x) Post-ref. Hole-in-one Hooft (y) Bijvoet (d) Histogram (h)
Scaled
s.u.

Bijvoet
n.p.p.

Main
n.p.p. GoF

Statistical weights (a) 0.0555 0.02 (38) STAT 0.05 (08) �0.00 (08) 0.01 (08) 0.02 (08) 0.08 1.01 4.60 4.67
LSQ 0.02 (08) �0.01 (08) 0.01 (08) 0.02 (08) 0.08 1.01

Rescaled weights (b) 0.0555 0.02 (38) STAT 0.05 (08) �0.00 (08) 0.01 (08) 0.02 (08) 0.08 1.01 0.98 0.99
LSQ 0.01 (38) �0.01 (08) �0.00 (38) 0.02 (36) 0.08 0.22

SHELXL weights (c) 0.0662 0.17 (38) STAT 0.06 (08) �0.00 (08) 0.01 (08) 0.03 (07) 0.08 1.01 1.00 1.01
LSQ 0.14 (38) 0.13 (08) 0.13 (37) 0.10 (36) 0.08 0.22

Figure 5
PFW-fyo12e. Normal probability plots for the structure-factor residuals under regimes (a), (b) and (c). The vertical axis is the observed (z) score, the
horizontal axis the expected (z) score. The green lines are unit gradients.



n.p.p. As a consequence, the standard uncertainties in almost

all the post-refinement analyses rose to values not dissimilar to

those obtained by direct refinement of Flack (x). The excep-

tions to this increase in the s.u. of the absolute structure

parameters are those computed by the Hooft method and the

histogram method rescaled by the gradient of the n.p.p. Simply

rescaling the refinement weights to produce a GoF of unity is,

however, not a useful procedure because it fails to produce a

uniform distribution of weighted residuals as a function of

intensity (Fig. 6b). For well behaved weights, the average

hwðF2
o � F2

c Þ
2
i should be approximately unity for all intervals

across the intensity range. It is now generally accepted that a

good strategy for obtaining a uniform distribution of weighted

residual is not to scale the observed variances, but to augment

them with terms depending upon the magnitude of the

observed and/or calculated structure factors (see, for example,

the SHELX76 instruction manual). The structure was re-

refined using SHELX-type weights giving rows (c) in Table 4.

With these weights, the gradient of the refinement n.p.p. was

close to unity and the analysis of variance roughly flat. The s.u.

of the directly refined Flack (x) parameter hardly changed

with the new weights, but the parameter itself increased by

one-half an s.u. The shifts in the structural parameters had no

visible effect on the computed Friedel differences, so that the

row (c)STAT is the same as the other purely statistically

weighted post-refinement analyses. The standard uncertainties

for post-refinement analyses in (c)LSQ are similar to those in

(b)LSQ, but the Flack parameter itself has increased. Fig. 7

shows the relationships between the weights and the standard

uncertainties of the observations under the three regimes.

We can see that for the strong reflections (to the left of the

plots) the SHELX-type weighting scheme down-weights the

observations in much the same way as a simple scale factor,

but that the down-weighting becomes progressively less for

the weak data.

Similar results are seen for most of the materials reported in

Table S1 of the supporting information. The weighting scheme

for the main refinement usually must be more complex than

simple statistical weighting in order to achieve a flat distri-

bution of residuals. The effect of these weights is to increase

the s.u. of the directly refined Flack (x) (Bernardinelli & Flack,

1987). The same effect is seen if the augmented weights are

used in the post-refinement determination of the Flack para-

meter. The n.p.p. computed for Friedel pairs using intensity

statistic weights tends to have a unit gradient, suggesting that

the error estimates for the differences are valid. The n.p.p. for
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Figure 7
PFW-fyo12e. Square root of weights versus 1=�ðF2

oÞ plots for refinement regimes (a), (b) and (c). The green lines are unit gradients. (a) corresponds to
simple statistical weights. In (b) the weights have been rescaled to give a GoF of unity. The gradient of the observations is 0.2. In (c) the weights are
determined from 1/w ’ �2(F2) + 0.29F2 + 0.002F4 (SHELX-type weights). The blue line in (c) is drawn at the same gradient (0.2) as the data in the
rescaled weights.

Figure 6
PFW-fyo12e. Analysis of average residuals for refinement regimes (a), (b)
and (c). The red bars are the unweighted residuals, the green bars the
weighted residuals on logarithmic scales. The green bars should all be
small, centred on the horizontal axis. The dark blue line represents the
number of reflections in each interval.



weights based on the LSQ sometimes have a distinctly non-

unit gradient, with pronounced curved tails. This seems to

suggest that the modifiers added to �(I) in the refinement

weighting scheme to achieve a constant unit �2 may be

reflecting deficiencies in the model as much as in the data.

Note that the hole-in-one method usually gives similar results

to other post-refinement methods when simple statistical

weights are used.

5. Results and examples

5.1. Overview

The above computations were performed on a selection of

structures from data collected locally or taken from the

literature. The examples were chosen to cover a range of

values for Friedif, the Flack parameter, its standard uncer-

tainty or had attracted comments in the body of the paper.

When the deposited data included the SHELX format .res and

.hklf data, this was used in preference to the .cif and .fcf format

data. This was especially useful when I or �(I) for weak data in

the .fcf file had only one significant figure. Each structure was

re-refined in CRYSTALS and the parameters for a SHELX-

type weighting scheme optimized. The atomic parameters

were first refined in a single matrix together with the overall

scale and Flack (x) parameters. Additional refinements were

then performed from this atomic model on just the overall

scale and the Flack (x) parameter, first using the optimized

weights, and then with weights derived directly from the

counting statistics.

Table S1 in the supporting information contains the results

of the absolute structure analysis of 28 data sets. In every case

the results from the full matrix (rows A&B) were almost

identical to those from the small-block (rows C&D), indicating

that for a fully refined structure there is little correlation

between the structural parameters and the absolute structure

parameters (Fig. 8).

Rows E & F give the results of refining Flack (x) and scale

using simple statistical weights. Refining the whole structure

with weights derived from unmodified intensity variances

would have led to shifts in the atomic parameters.

Table 5 contains sample data for two materials from Table

S1. In each case rows E are almost identical to rows F, showing

that direct refinement of the Flack (x) parameter using simple

intensity statistical weights gives the same results as post-

refinement analysis.

The most significant differences are between rows C and D

– the SHELX-weighted main refinement and post-refinement

analyses with either counting or refinement based weights.

They show that direct refinement of the Flack (x) is more or

less unchanged when using either simple statistical or modified

(SHELX-type) weights, providing the atomic model is not

allowed to adjust. However, the post-refinement determina-

tion of absolute structure is sensitive to the weights used. Post-

refinement analysis using weights derived from those used in

the main least squares yields results very similar to those

found by direct refinement of Flack (x). However, using

simple statistical weights almost always leads to significantly

lower standard uncertainties (Fig. 9). The influence on the

absolute structure parameter itself is more variable (Fig. 10).

We find that the discrepancy often seen between direct and
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Figure 8
Comparison of the Flack parameter (red) and its s.u. (green) for 28 data
sets, determined as part of a full matrix refinement with all the other
structural parameters versus the values obtained by refinement of a small
block containing only the overall scale and the Flack parameters. The
points lie on lines of unit gradient, indicating the full and block matrix
refinements are essentially equivalent.

Table 5
Sample data for structures EBB-5204 and EBB-5206 extracted from Table S1.

Bold values are referenced in the text. The pairs of lines labelled Scheme refer to refinements using a SHELX-type weighting scheme, the pairs labelled Counting
refer to refinements using simple counting statistic weights. Lines labelled SIG refer to post-refinement analyses using counting statistic weights, lines labelled LSQ
use weights based on the main refinement weights. The second s.u. in the Histogram column has been adjusted for by the gradient of the n.p.p.

Refinement weights wR2 Flack (x) Hole-in-one Bijvoet (d) Hooft (y) Histogram (h) Bijvoet n.p.p. LSQ n.p.p. GoF

5204
C Scheme SIG 0.0666 0.05 (18) 0.01 (06) 0.02 (07) 0.02 (06) 0.04 (06)(06) 0.94 0.96 1.05
D Scheme LSQ 0.02 (18) 0.04 (18) 0.03 (06) 0.03 (17)(06) 0.35
E Counting SIG 0.0559 0.02 (17) 0.01 (06) 0.02 (07) 0.02 (06) 0.04 (06)(06) 0.94 2.50 2.70
F Counting LSQ 0.01 (06) 0.03 (07) 0.02 (06) 0.05 (06)(06) 0.93

5206
C Scheme SIG 0.0678 0.29 (24) �0.01 (08) 0.20 (08) 0.14 (08) 0.19 (08)(07) 1.00 0.85 0.92
D Scheme LSQ 0.26 (27) 0.36 (27) 0.26 (09) 0.26 (26)(09) 0.34
E Counting SIG 0.0677 0.02 (34) �0.03 (08) 0.20 (08) 0.14 (08) 0.20 (07)(07) 1.00 3.62 4.34
F Counting LSQ 0.01 (08) 0.20 (08) 0.14 (08) 0.19 (07)(07) 0.99



post-refinement values of the Flack parameter is linked to the

weights used in the refinement.

In Table S1 we see that the slope of the n.p.p. for the

statistically weighted Friedel differences is generally close to

unity, but the slope with weights from the main refinement is

almost always less than unity (Fig. 11).

Because both the Hooft (y) and scaled Histogram (h)

methods take into account the slope of the n.p.p., they give

very similar values for both the absolute structure parameter

and its s.u. independently of the weighting scheme used. It

would seem, for general work at least, that the Hooft (y)

parameter as implemented in PLATON (Hooft et al., 2008) is

a widely available suitably robust estimator of absolute

structure.

Fig. 12 shows standard uncertainties computed from the

main least squares, and by the hole-in-one, Hooft and Bijvoet

difference methods versus the histogram method. The main

refinement was done with SHELX-type weights, the post-

refinement analyses with simple statistical weights.

5.2. Examples

The various estimators of absolute structure are summar-

ized in Table S2. The refinements for the structures which gave

a s.u. for the Flack (x) substantially larger than the s.u.

determined by other methods (the clear outliers in Fig. 12)

were examined in detail to try to understand the source of the

discrepancies.

5.2.1. Motherwell (Watkin, unpublished). The data for 2-

methyl-4-nitroaniline (previously published by Howard et al.,

1992; Ferguson et al., 2001), Friedif = 5.94, in Cc, was remea-

sured without the intention of determining the Flack para-
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Figure 12
Standard uncertainties computed by direct Flack refinement, hole-in-one,
Hooft and Bijvoet difference methods compared with those from the
Histogram method for the structures in Table S1. The direct-refinement
method almost always gives larger, and in some cases much larger,
standard uncertainties. Note that all the post-refinement methods
generally give essentially the same results.

Figure 11
Gradient of the normal probability plot for the Friedel residuals using
least-squares weights versus the gradient with counting statistics weights.
The gradient based on counting weights is usually close to unity. Data set
sk3422III (Fábry et al., 2012) gives very anomalous n.p.p.s.

Figure 10
Bijvoet difference determination of absolute structure versus direct
determination for materials in Table S1. Using the same SHELX-type
weights for the post-refinement analysis as in the direct refinement
generally results in similar values (red datum) for Flack (x). The count
weighted post-refinement analysis often gives smaller values (green
datum). Largest differences are for YIFZAP and Motherwell, discussed
below.

Figure 9
Standard uncertainties of the Bijvoet difference determination of
absolute structure versus direct determination for materials in Table S1.
The count weighted post-refinement analysis always gives smaller
standard uncertainties than direct refinement.



meter, using Mo radiation from a conventional source. The

data collection strategy yielded data containing little or no

resonant signal. From equation (4) one would expect the

absolute structure parameter to be 0.5 with an s.u. simply

reflecting the noise in the data. This result is more or less

achieved by all except the Hooft (y) post-refinement methods.

For other materials, with a larger value for Friedif, one would

expect larger values for Ds and thus a smaller s.u. on the

absolute structure parameter, enabling twinning by inversion

to be detected.

5.2.2. HDF-tp3005W (Zhang et al., 2012). The absolute

structure of this material was known from the starting

materials. Both the refined Flack (x) parameter and its stan-

dard uncertainty are larger than values obtained by post-

refinement analyses. The n.p.p. (Fig. 13a) for the residuals

from the post-refinement absolute structure determination

is acceptably linear, but the plot for the residuals in the

main refinement shows serious deviations from linearity

(Fig. 13b). The weights for the plot illustrated were computed

from a SHELXL-type scheme. Weights derived from

three, four- or five-parameter Chebychev polynomials

(Carruthers & Watkin, 1979) fared no better. The relatively

large value for the second parameter in the SHELX-type

weighting scheme is often taken as a sign of twinning, but none

could be identified using ROTAX (Cooper et al., 2002). The

original authors reported positional disorder in one of the

residues, but this was well modelled. They also reported that

the crystals were very small and the data collection was diffi-

cult, requiring the use of synchrotron radiation. Since the

refinement of a conventional model produces unweighted

residuals whose distribution cannot be matched by conven-

tional weighting schemes, it seems likely that the model is

deficient or the error distribution in this experiment is

unusual.

5.2.3. HDF-sf3166 (Seela et al.,
2012). This material, of known

absolute structure, Friedif of 5.4

and with two molecules in the

asymmetric unit, gave a refined

Flack (x) parameter of �0.24 (49)

and a Histogram (h) parameter of

0.00 (14). The n.p.p. for the resi-

duals from both the post-refine-

ment absolute structure

determination and the main

refinement were good straight lines

with a unit gradient. However, of

the 2630 Friedel pairs having Ds >

0.01�(Do), only 7.6% of the Friedel

pairs give a Flack parameter in the

range �0.5 to 1.5 during the histo-

gram post-refinement analysis (Fig.

14). There are no Freidel differ-

ences having a theoretical magni-

tude of more than 0.5�(Do).

It is not uncommon to find

pseudo-symmetry between the

independent molecules in structures with Z > 1. The CRYS-

TALS MATCH procedure identified a pseudo-glide plane

parallel to c, Fig. 15. If the terminal 2-(hydroxymethyl)tetra-

hydrofuran-3-ol is excluded from the matching procedure, the

remaining 45 atoms conform to the pseudo-glide (x, 0.97 � y,

z � 0.52) with an r.m.s. deviation in equivalent torsion angles

of 16�.

5.2.4. PFW cholestane (Parsons et al., 2013). Cholestane

contains only carbon and hydrogen, and two molecules in the

asymmetric unit, Friedif is 9.0. The effect of including Freidel

pairs with progressively smaller resonant differences is shown

in Table 6.

Filtering out those reflections with |Ds| < 0.1�(Do) gives

Bijvoet (d), Hooft (y) and Histogram (h) parameters close to
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Figure 14
HDF-sf3166. Frequency distribution of values of the Flack parameter for
individual reflections. The horizontal axis (Flack (x)) runs from �30 to
+30. Note the large number of reflections in the extreme bins. Percentage
of data with Flack x values in the interval �0.5 to 1.5 is only 7.6.

Figure 13
HDF-tp3005: (a) N.p.p. for the residuals from the post-refinement absolute structure determination. The
plot is acceptably linear. (b) N.p.p. for the residuals in the main structural refinement. There is something
wrong with the model, the data or the error estimates.



the ideal value of zero for this enantiopure material. Reducing

the threshold to include reflections with |Ds| < 0.01�(Do)

increases the number of reflections used from 737 to 3274, but

the Bijvoet (d) and Hooft (y) parameters go slightly negative.

When the weaker resonant differences are included, the

histogram filtering reduces the percentage of reflections used

from 94 to 73%. 24% (163) of these reflections have an indi-

vidual Flack parameter in the range �0.5 to 1.5 when |Ds| <

0.1�(Do), falling to only 10% (236) when the threshold is

reduced to 0.01. The n.p.p. for the residuals from the main

structural refinement lie on a good straight line with a unit

gradient, but unlike the case of tp3005 (and most well deter-

mined structures), the n.p.p. for the resonant differences has a

gradient of 1.30 and a distinct downwards tail (Fig. 16).

The deviations could be due to errors in Do, Ds or the

weights. As demonstrated earlier, Ds is not strongly influenced

by fine details of the structure, so one is left suspecting the

problem is with the intensities or their standard uncertainties.

Since the structure refined to a conventional R of 0.029, it

seems that the s.u. of the observations may have been

underestimated. The weights used in the main refinement are

based on the reported intensity standard uncertainties modi-

fied to ensure a uniform analysis of variance. Fig. 17 is a plot of

SQRT(weight) versus 1/�(F2).

5.2.5. EBB-threonine (Escudero-Adán et al., 2014). The

paper EBB 2014 is a rich mine of useful data sets collected

under a variety of conditions with Mo K� radiation. Five of

the d-threonine data sets were re-refined in CRYSTALS,

yielding essentially the same results as obtained by the original

authors. Those authors drew attention to data set EBB-5206,

which had an anomalously large value for the directly refined

Flack (x) parameter (EBB Fig. 3). The Flack parameters

determined by post-refinement methods were also anom-
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Figure 16
PFW Cholestane. N.p.p. of the residuals for the post-refinement analysis
of resonant differences using weights computed from the standard
deviations of the observed intensities. The green line is unit gradient, the
blue lines enclose the data used to compute the best line.

Figure 15
(100) projection of the two independent molecules in sf3166 showing the
pseudo c-glide broken only by the 2-(hydroxymethyl)tetrahydrofuran-3-
ol groups. Most of the a.d.p.s also obey the pseudo-glide.

Table 6
PFW Cholestane: various absolute structure estimators as a function of
the ratio of expected signal-to-observed standard uncertainty.

Reflections (1) is the number of Friedel pairs used in the following
calculations, Reflections (2) is the number of pairs with a significant robust-
resistant weight. %Ok is the percentage of these pairs yielding an individual
estimate of Flack(x) in the interval �0.5 to 1.5.

|Ds| > 0.1� |Ds| > 0.01�

Number of
reflections Parameters S.u.

Number of
reflections Parameters S.u.

Flack (x) �0.061 0.538
Reflections (1) 737 3274
Bijvoet (d) 0.045 0.095 �0.063 0.086
Hooft (y) 0.020 0.121 �0.036 0.110

Reflections (2) 694 2405
%Ok 23.6 9.8
Histogram (h) 0.058 0.121 0.001 0.101

Figure 17
PFW Cholestane. Square root of the weight used in the least-squares
refinement versus 1/�(F2). The weights determined by a SHELX-type
procedure are almost all much less than purely statistical estimates. The
green line would correspond to simple statistical weights. The modifica-
tion terms augment the standard uncertainties, i.e. reduce the weights.



alously high, yet all methods gave standard uncertainties not

unlike those from the other threonine data sets. EBB attribute

these anomalous results to the reduced number of reflections

(6401, redundancy 3.2) compared with other analyses (e.g.

8324 for EBB-5204, which had a redundancy of 11.6). We were

not convinced by this argument because EBB-5205 had a

similar number of reflections and redundancy (7710, 3.7), but

yielded a quite normal refined Flack parameter. Fortunately

these authors had deposited complete reflection data sets

(.hklf files) so we were able to examine them in detail.

Data completeness: Data collection EBB-5206 was termi-

nated prematurely to try to reduce the redundancy. As Fig.

18(a) shows, this strategy also had the unfortunate effect of

reducing the completeness of the data in the region between

the Bragg angles of 40 and 45�, even when Friedel pairs were

merged. Most serious is the systematic pattern to some of the

missing reflections, including, for example, the row lines (h00)

where h is even, (h10) where h is odd and some patches of

reciprocal space (hk0) where h is 9–12 etc. There was a small

dip in completeness for data set 5204 at about 45� (Fig. 13b).

Signal to noise: Fig. 19 shows some measures of the quality

of the data as a function of resolution. This suggests that for

EBB-5204 the data collection strategy was not homogeneous,

and that the frame exposure time was increased for the high-

angle data. There is a hint of a further increase in exposure

time at about 45�, a feature more clearly seen in data sets

EBB-5213 and EBB-5215. The number of reflections with I >

10�(I) remains high right across the data set.

Analysis of refinement residuals: Both data sets seem to

refine well, with SHELX-type weighting schemes achieving a

goodness-of-fit sufficiently close to unity, Fig. 20.

Some insight into the deviations comes from examination of

the weighted and unweighted residuals ðF2
o � F2

c Þ
2 as a func-

tion of intensity and of resolution (Fig. 21). The very large

number of medium intensity reflections (blue curve) domi-

nates the determination of the parameters for the weighting

scheme, which leads to over-weighting of the strong reflections

(green bars in the top illustrations). The distribution of resi-

duals as a function of resolution is not good for either data set,

with the low-angle data (strong) being over weighted, and the

high-angle underweighted. The role of the weighting scheme is

to make the binned average value of the weighted residual

approximately unity. For conventional data sets it is usually

assumed that the principal contributors to ðF2
o � F2

c Þ
2 are

errors in Fo, but for these extended data sets it is possible that

the usual independent spherical atom model emphasizes

errors into Fc. A further complication may be that a single

weighting scheme may not be appropriate when the data

collections are not made under constant conditions.

Analysis of Friedel Residuals: In spite of the unusual

distribution of the structure amplitude residuals, the n.p.p. for

the Friedel residuals were very linear with gradients close to

unity (Fig. 22). Based on these, one would expect to obtain

similar outcomes from post-refinement determination of the

absolute structure of both EBB-5206 and EBB-5204.

In Table 7 we can see that for data set EBB-5204 the value

for the Flack parameter determined directly or by post-

refinement is not strongly affected by the weighting scheme.

Refinement of EBB-5206 with simple statistical weights has a

goodness-of-fit of 4.3, but gives a directly refined Flack (x) of
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Figure 19
Frequency of occurrence of reflections with I > 10�(I) (blue) and average I/�(I) (orange) as a function of resolution. In the data for EBB-5206 (Fig. 19a,
left) the average intensity (orange line) falls steadily with resolution, as does the number of strong reflections. For EBB-5204 (Fig. 19b, right) the average
intensity starts with a similar trend to EBB-5206, but then at about 30� it rises again before falling steadily away.

Figure 18
Shell completeness, % (green rings), and cumulative completeness, %
(red line), as a function of (sin �/�)3. The shells contain approximately the
same number of reciprocal lattice points. Left (18a) EBB-5206, right
(18b) EBB-5204. Up to the experimental resolution limit for each data
set, set EBB-5206 has more than 1000 reflections missing, while set EBB-
5206 only has 100 missing.



0.02 (34). Except for the hole-in-

one method, other post-refinement

procedures lead to larger values of

the Flack parameter, but with

smaller standard uncertainties.

Refinement of EBB-5206 with

SHELX-type weights give Flack

(x) of 0.29 (24), in agreement with

the original authors. Post-refine-

ment determinations, also using the

SHELX-type weights, give much

the same value for the Flack para-

meter, but with the Hooft and

scaled histogram methods (which

involve the gradient of the n.p.p.)

giving reduced standard uncertain-

ties. Except for hole-in-one, post-

refinement methods using statis-

tical weights yield slightly smaller

Flack parameters and much

reduced standard uncertainties.

These results suggest that the

anomalous reported value for the

directly refined Flack (x) para-

meter is a consequence of the

weights used for the main refine-

ment. The algorithm used to

determine the coefficients in the

weighting expression was

unchanged for all the data sets we

examined. We are led to suspect

that the failure of this algorithm for

data set EBB-5206 is due to the

large number of missing reflections

in the narrow band between 40 and

45�.

Leverage analysis: EBB tried to

show that the reliability of an

absolute structure analysis

increases as the resolution of the

data included in the analysis
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Figure 21
Analysis of residuals. Data for EBB-5206 on the left, for EBB-5204 on the right. The weighted (green
bars) and unweighted (red bars) residuals are on a logarithmic scale. The blue curve represents the
number of reflections in each interval. The resolution scale is with equal (sin �/�)2 bins. For good weights
the green bars should form a narrow band across the centre of the plots. The top row shows that the fit is
very good for the large number of relatively weak reflections, but poor for the strong intensities.

Table 7
Absolute structure determinations for EBB-5206 and EBB-5206.

The Flack (x) parameter was refined by conventional least squares with either SHELX-type or simple statistical weights. The resulting structure factors were post-
refinement analysed with each weighting scheme.

Cpd Main ref. Post ref. wR2 Flack (x) Hole-in-one Bijvoet (d) Hooft (y) Histogram (h) Scaled n.p.p. Main_npp GoF

5204 SHELX weights STAT 0.0666 0.05 (18) 0.01 (06) 0.02 (07) 0.02 (06) 0.04 (06) 0.06 0.94 0.96 1.05
LSQ 0.02 (18) 0.04 (18) 0.03 (06) 0.03 (17) 0.06 0.35

Statistical weights STAT 0.0559 0.02 (17) 0.01 (06) 0.02 (07) 0.02 (06) 0.04 (06) 0.06 0.94 2.50 2.70
LSQ 0.01 (06) 0.03 (07) 0.02 (06) 0.05 (06) 0.06 0.93

5206 SHELX Weights STAT 0.0678 0.29 (24) �0.01 (08) 0.20 (08) 0.14 (08) 0.19 (08) 0.07 1.00 0.85 0.92
LSQ 0.26 (27) 0.36 (27) 0.26 (09) 0.26 (26) 0.09 0.34

Statistical weights STAT 0.0677 0.02 (34) �0.03 (08) 0.20 (08) 0.14 (08) 0.20 (07) 0.07 1.00 3.62 4.34
LSQ 0.01 (08) 0.20 (08) 0.14 (08) 0.19 (07) 0.07 0.99

Figure 20
Normal probability plots for EBB-5206 and EBB-5204. The central regions of the n.p.p. for the intensity
residuals are reasonably linear with unit gradient, but both data sets show highly populated, strongly
deviating, tails. Reflections lying outside of the band bordered by the blue lines are flagged as outliers.



increases. We used their data in a

slightly different way, with different

conclusions. The leverage of an

individual reflection in a post-

refinement absolute structure

determination is proportional to

the square of the signal-to-noise. A

histogram of the mean signal-to-

noise as a function of resolution

should indicate where in the data

set the most influential information

lies. Fig. 23 is such a plot for EBB-

5215 (redundancy = 8.2) and EBB-

5204 (redundancy = 11.6).

The atomic and Flack (x) para-

meters of EBB-5215 were refined

using all the data and a SHELX-

type weighting scheme [R = 0.023,

wR2 = 0.066, Flack (x) = 0.01 (17)].

The post-refinement Flack para-

meter was then determined using

firstly all reflections, and then only

the reflections in three non-over-

lapping resolution ranges, chosen

to contain approximately the same

number of reciprocal lattice points.

Table 8 shows that for EBB-5215 all

methods produce a steady increase

in the standard uncertainty as the

resolution band increases even

though frame exposure times seem

to have been increased.

5.2.6. PFW-fyo12e (PFW-2013).
This material has previously been

referred to in x4.3. Since the data

were collected carefully, it was

worth further exploring the cause

for the difference between the

standard uncertainties of the Flack

parameter determined by direct

and post-refinement methods. The

steep gradient of the n.p.p. for the

main refinement (4.64) with purely

statistical weights suggests that the

feature articles

Acta Cryst. (2016). B72, 661–683 Watkin and Cooper � Determinations of absolute structure 677

Figure 23
Signal-to-noise distributions. The orange curve is the scaled mean signal:noise ratio for each resolution
bin, the blue curve is the number of reflections in each bin. The (sin �/�)3 bins contain approximately the
same number of reciprocal lattice points, but some of the reflections have been eliminated by the
reliability filters. Structures EBB-5215 (left) and EBB-5204 (right). The signal-to-noise curves are
probably not unimodal because of increased exposure times at higher theta values.

Table 8
Post-refinement determination of the absolute structure parameter for EBB-5215 using data in the given (sin(�)/�)2 ranges and using weights from the
experimental variances.

The column headed n-pair lists the number of Friedel pairs lying in each interval, n-used are the number of pairs after filtering, and H-used the number remaining
after the robust filtering.

(Sin �/�)2 range Bijvoet n.p.p. Hole-in-one Hooft (y) Bijvoet (d) Histogram (h) (scaled s.u.) n-pair n-used H-used

0.00–1.75 1.07 0.04 (05) �0.04 (05) �0.03 (05) �0.06 (05)(05) 4011 3973 3151
0.00–0.84 0.96 0.23 (07) �0.02 (07) �0.01 (07) �0.04 (07)(06) 1443 1434 1143
0.84–1.33 1.15 �0.09 (07) �0.06 (08) 0.01 (08) 0.01 (07)(08) 1296 1286 936
1.33–1.75 1.12 �0.19 (12) �0.06 (14) 0.15 (13) 0.15 (12)(14) 1272 1253 929

Figure 22
Normal probability plots of the Friedel pair residuals for EBB-5206 and EBB-5204. The plots are linear,
with unit gradient and few outliers for both analyses.



standard uncertainties of the observations are severely

underestimated. A plot of the internal versus the external

sample standard uncertainties for the merged data is a rather

dispersed straight line (gradient 1.4) showing that the manu-

facturer’s estimates of individual uncertainties reflect

reasonably well the dispersion between equivalent measure-

ments (Fig. 24).

It was expected that a plot of the standard uncertainty of

the mean �(I) against I [equation (14)] for the merged data

would approximate to a Poisson distribution (Evans, 2006).

Instead, it was found to be a rather good straight line (Fig. 25)

with a gradient of 0.045.

For Poisson statistics the signal:noise [I/�(I)] can be

increased by accumulating more photons. Diederichs (2010)

had observed that [I/�(I)] tended to a limiting value for

synchrotron data. Plots of I/�mean(I) for PFW-fyo12e show a

similar tendency, except that there appears to be two (or

possibly three) limiting values (Fig. 26).

This raises the possibility that the data is not homogeneous,

in the sense that it is derived from more than one experimental

regime. A histogram of the frequency of distribution of

redundancy is at least bimodal (Fig. 27), with a long low-order

tail.

The intensities used during the least squares are usually the

(weighted) means of a set of equivalent reflections. The

variance of this mean is related to the sample variance

[equation (11) or (12)] by 1/(redundancy). Reflections

measured 25 times have a variance almost twice as large as a

reflection measured 45 times. It is possible that this variability

of redundancy leads to the various asymptotic limits seen in

Fig. 26. Whatever the individual variabilities of the standard

uncertainties of the means, on average �(F2) ’ 0.05F2 (from
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Figure 25
PFW-fyo12e. Standard uncertainty versus mean intensity from the
deposited hkl file. �(I) is almost proportional to (I) rather than
proportional to

ffiffi
ð

p
IÞ.

Figure 26
PFW-fyo12e. Imean/�(Imean) versus mean intensity. The asymptotic limits
are approximately 22 for the data with redundancy 18–24 (red), 24 for
redundancy 24–45 (green) and 25 for redundancy 45–64 (blue). The low
redundancy data do not fit any pattern.

Figure 24
PFW-fyo12e. Plot of the internal standard uncertainty (r.m.s. deviation
from group means) against the external uncertainty (mean of reported
standard uncertainties). The dispersion around the overall trend line
(black) is bound by two trends, one (mainly with small average
uncertainties) with a gradient of about 0.9, and the other with a gradient
of 1.5.

Figure 27
PFW-fyo12e. Frequency distribution of the redundancy for fyo12e. The
most frequent values for redundancy are 25 and 45. One reflection,
(9 0 1), was measured only once, two reflections (2 2 10 and 2 4 8) were
each measured 64 times.



Fig. 25). The a and b terms in the SHELX-type weighting

scheme are 0.044 and 0.291, so that it is these which dominate

the weighting during refinement. Weighting the co-refinement

of data measured under different regimes (for example, widely

differing redundancies) may warrant further investigation, a

situation alluded to in Bernardinelli & Flack (1987).

5.2.7. PFW R-mandelic acid (PFW-2013). PFW-2013 report

that this material (Friedif = 35) crystallized as plates which on

cooling to 150 K showed evidence of strain broadening, so that

the actual data collection was performed at 220 K. 32 194

reflections were measured, yielding 2860 unique reflections, an

average redundancy of 11.3. Rint was 0.04, indicating a fair

level of self-consistency amongst the data. The final R factor,

0.0549, was higher than one would expect for this type of

material, but might be explained by the strain broadening.

There are two molecules in the asymmetric unit, differing by a

small rotation about the single bond to the phenyl group, and

no evidence for disorder. The �(Flack(x)) = 0.37 greatly

exceeds the �(Flack(h)) = 0.05, in spite of the significant value

of Friedif. The n.p.p. for the main refinement residuals (Fig.

28) is far from ideal, suggesting a problem with the data, the

weights or the model itself.

Alternative weighting schemes to a SHELX-type formula

did not significantly improve the n.p.p. Although the program

DIFABS (Walker & Stuart, 1983), once used as a method for

estimating empirical absorption corrections, has long been

replaced by the use of multi-scan methods, it still provides a

useful diagnostic tool. The program fits a smoothly varying

function of azimuth and declination of the incident and

emergent beams to the residual between |Fo| and |Fc|, the so-

called absorption surface. For merged area detector data there

are no ‘incident’ or ‘emergent’ beams, but these can be

replaced by the scattering vector to generate a visualization of

the residual. If the multi-scan procedure has adequately

modelled absorption and illuminated volume effects, varia-

tions of this surface from unity will indicate that there are

problems with the model, or undetected errors in the data. Fig.

29(a) is the plot for R-mandelic acid. It shows variations

between 0.9 and 1.1 with some very sharp gradients, indicating

that there is a problem with the analysis.

The Fo � Fc plot (Fig. 30) is a fair straight line with unit

gradient, and without any very outstanding outliers. However,

although the distribution is bounded by a reasonably well

defined lower edge, the upper edge is distinctly ragged. This

condition, together with the DIFABS plot, is often sympto-

matic of twinning.

ROTAX analysis (Cooper et al., 2002) indicated the possi-

bility of twinning by the law [1,0,0; 0,�1,0; �0.8,0,�1].

Refinement including this twinning reduced the R-factor to

0.0496 and greatly improved the Fo versus Fc plot and

DIFABS surface (Fig. 29b), but did little to improve the n.p.p.

If the components of the non-inversion twin are labelled A

and B, and corresponding inversion twin components by a and

b, then refinement was continued with the constraint that

Aþ Bþ aþ b ¼ 1:0 and the restraint 0:000ð1Þ ¼ b� ðaB=AÞ

on the assumption that the inversion twinning ratios (a=A and

b=B) are the same. The refined twin element scale factors are

A = 0.8 (2) , B = 0.13 (4), a = 0.0 (2), b = 0.01 (4).3 Inclusion of

inversion twinning had no effect on the R-factor. For the

moment the post-refinement absolute structure analysis in

CRYSTALS will not handle non-inversion twinning.

5.2.8. FSTW-YIFZAP (Gowda et al., 2007). This material,

falling at the bottom of Table 1 in FSTW (Flack et al., 2011),

caught the interest of those authors because of the small

variation of RD (= �|Dobs � Dmodel|/�|Dobs|, summed over the

Friedel pairs) as a function of imposed values for the Flack (x)

parameter. They came to the conclusion that the reported

uncertainty in the Flack parameter was very grossly under-
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Figure 29
R-Mandelic acid. Variation of Fo and Fc as a function of orientation of the
diffraction vector. 29a (top) is for the published structure. 29b (bottom)
shows the surface much flattened by the inclusion of twinning in the
model.

Figure 28
R-Mandelic acid normal probability plot for the published model using
SHELX-type weights. The gradient is 0.85, but there is a long tail of
outliers.

3 The twin scale factors sum to unity if quoted to three decimal places
[0.811 (218), 0.133 (036), 0.048 (218), 0.008 (035)].



estimated. Using the CIF and .fcf files recovered from the IUCr

we were unable to reproduce with CRYSTALS some of the

results recorded elsewhere in the CIF. PLATON was used to

convert the CIF file to a SHELXL ins (data) file, and the

refinements repeated with SHEXL-2013/2, using the TWIN/

BASF commands or using the hole-in-one and Quotient

methods for estimating the Flack (x) parameter (Table 9).

The SHELX and CRYSTALS analyses are reasonably

compatible, but in poor agreement with the published values.

In the absence of evidence to the contrary, we attribute this

conflict to the fact that the original authors were able to use

the full precision of the reflection data stored in an .hklf file,

but for the re-calculations we had to use the limited precision

of the .fcf file. Whatever the source of the discrepancy, it

remains clear that while direct refinement of Flack (x) in

CRYSTALS and the inversion twin in SHEXL-2013/2 lead to

very similar results, these are quite different values from the

post-refinement methods. The usual diagnostic tools were

used to try to locate the source of the discrepancy. The

gradient of the n.p.p. (Fig. 31a) was 0.91, but with substantial

displacement from the origin of the graph, which usually

implies a feature in the data which cannot be matched by the

model. The n.p.p. for the post-refinement analysis of the

Friedel differences (Fig. 31b) had a least-squares gradient of

4.7. Examination of the plot showed that very many of the

reflections in the central region lay on a line of unit gradient,

but there were substantial numbers of outliers at the extremes

of the plot. From other analyses, we have seen that the

calculated Friedel differences are only weakly correlated with

the atomic parameters, so we must assume that the non-line-

arity of the n.p.p. is due either to errors on the observed

Friedel differences or in their standard uncertainties.

Examination of the DIFABS

map, Fig. 32, showed deep hollows

and high peaks with a maximum

ratio of 1:1.77. This could be indi-

cative of uncorrected absorption.

The authors give the crystal size as

0.52 � 0.46 � 0.09 mm – a thin

plate – and used an analytical

correction by the method of Clark

& Reid (1995) giving minimum and

maximum corrections of 0.86 and

1.16, a ratio of 1:1.35.

The Fo versus Fc plot was only

weakly indicative of twinning, and

ROTAX suggested an unconvin-

cing twin operation 1,0,0.734;

0,�1,0; 0,0,1. Refinement with this

twin law gave a major component

of 0.88 (3). The text of the article

made no mention of twinning but

feature articles

680 Watkin and Cooper � Determinations of absolute structure Acta Cryst. (2016). B72, 661–683

Figure 31
FSTW-YIFZAP. Left: Normal probability plot for the main refinement. There is a distinct step near the
origin together with some outliers at the extremes. Right: Normal probability plot for the post-refinement
analysis of the Friedel differences. The central region has a unit gradient, but the very large deviations in
both tails lead to a meaningless best straight line. Either the observed Friedel differences or the weights
computed from their standard uncertainties may be in error.

Figure 30
R-Mandelic acid. Plot of Fo versus Fc. The blue unit gradient line helps
show that the lower edge of the distribution is well defined when
compared with the upper boundary.

Table 9
Comparison of published results for FSTW-YIFZAP with new results obtained from SHELXL-2013/2 and CRYSTALS.

Nref is the number of reflections with I > 2�(I), Nref(all) is for all data, and Nref(post) in the number of reflections used in the post-refinement analysis.

Program R1 Nref R1all Nref (all) wR2 Inversion twin Hole-in-one Nref (post) Parsons or Bijvoet Histogram

Published 0.074 621 0.104 1003 0.260 �0.1 (3)
SHELXL13 0.088 639 0.117 1054 0.279 �0.94 (49)
SHELXL13 �0.67 (43) 173 0.35 (42)
CRYSTALS 0.087 632 0.116 1052 0.276 �0.95 (38) 281 0.35 (04) 0.55 (04)



the CIF file contained an entry for the Flack parameter and its

standard uncertainty. Because of this, PLATON had added

the necessary TWIN/BASF instructions to the SHELXL

instruction file. Attempts to refine the non-merohedral twin-

ning and inversion twinning in CRYSTALS failed, the normal

matrix becoming singular in spite of the application of

appropriate restraints and constraints.

At this point we retrieved the supporting information. From

this it was clear that the original authors had detected the

same twin law as ROTAX, and had refined this model to a

minor element of 0.15 using an HKLF5 reflection file. Stran-

gely, in spite of the Flack entry [�0.1 (3)] in the deposited CIF,

the supporting information states ‘Owing to the poor quality of

the data, the absolute structure couldn’t be reliably defined and

any references to the Flack parameter have been omitted’.

Our analysis of the data was repeated using the twinned

model, but showed no great improvement in the n.p.p. nor the

DIFABS surface. The data had been collected with an area

detector, standard source and graphite monochromator, so

that unless the authors had used a very fine collimator, one

might expect the crystal to have been more-or-less fully

bathed in the direct beam. 2613 reflections were measured,

merging down to 1003 independent observations (Rint = 0.086)

of which 621 had I > 2�(I). Seeing that over 30% of the data

could be classed as very weak, the observed and calculated

Wilson plots were examined, Fig. 33. The up-turn in the plot of

the observed data at about 	 = 0.3 is often characteristic of

data being measured to a resolution at which there is little or

no signal amongst the noise.

6. Conclusions

X-ray crystallography is unique in that it provides both an

estimate of the enantiopurity of a sample, and a standard

uncertainty for that estimate without special user action.

Chiroptical spectroscopies look at a total signed signal and

thus require a reference spectrum to compare against in order

to judge the proportions of each enantiomer. When this is

available then typically the resolution is ca 1%. NMR with

shift reagents can give separate signals for each enantiomer,

but there are substantial complications about the binding of

the shift reagent, equilibria etc. Chiral HPLC has the advan-

tage of actually separating the enantiomers as individual

signals that can be directly ratioed and so can be very deter-

ministic. In many cases one should be able to detect a 1 ma.u.

(a.u. = atomic unit) signal from an enantiomeric impurity

alongside a signal of 1 a.u. of the main peak, i.e. 0.1%. These

techniques are degraded in the presence of impurities. Except

for the case of twinning by inversion, crystallography largely

avoids the impurity problem, but suffers in that one crystal is

taken as representative of the bulk sample. However, for

materials known to be enantiopure or to have a large enan-

tiomeric excess, it can be a robust way for assigning the

absolute structure of the major (or only) component.

The results of Thompson & Watkin (2011) showed that even

in apparently unsuitable cases, there was usually some reso-

nant signal amongst the random noise and systematic errors.

Flack used the 2A/D plots to try to visualize the signal. The

plots in this paper of Do and Ds versus �(Do) provide a clear

indication of the best possible signal in the data, and the actual

signal in the observed data. We know that the value of the

Flack parameter must lie in the interval 0–1 and in favourable

cases histograms of the Flack x peak in this interval. The

broader the spread about this interval, the less reliable the

estimate of �(x). The ratio Ds/�(Do) is a measure of the

information content of a reflection. Measuring data to high

resolution increases Ds/Is, but only improves the leverage if

care is taken to minimize �(Do).

Direct refinement of the Flack (x) parameter usually results

in a value with a larger standard uncertainty than that

obtained by post-refinement methods using weights derived

from the observed variances, making these latter methods

more attractive for publication. However, the value of the

Flack (x) parameter and its standard uncertainty obtained by

free refinement in the main least squares should be compared

with the values obtained by a post-refinement method.

Substantial differences indicate that there may be a problem

with the data or with the proposed model, although other

techniques will have to be used to identify the problem.
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Figure 33
Wilson plot for observed and calculated data from FSTW-YIFZAP. Note
that the calculated data (blue) show a steady trend from right to left,
while there is a sudden up-turn in the observed data (green) at about 	 =
0.3. This up-turn is often characteristic of an attempt to measure data to
too high a resolution for the given crystal size, X-ray source and exposure
time. The high-angle data is essentially just noise (Weiss, 2001).

Figure 32
DIFABS surface for FSTW-YIFZAP. The maximum excursions occur at
similar, low, declinations.



In the absence of widespread availability of software able to

refine structures using both averages and differences of

structure amplitudes as observations, the low correlation

between the structural parameter values and the Flack x

suggests that a post-refinement estimate of the Flack para-

meter once the model is fully parameterized can be used to

guide the final refinement. The Bijvoet difference method is a

good diagnostic for problems with the data or model since it

contains the minimum number of assumptions: the Hooft and

Parsons methods both allow for some problems with the data

or model and so may be most suitable for routine work. If the

Parsons quotient and the Bijvoet difference methods give

substantially different results, this may be indicative of

absorption or other problems with the main refinement. If

there is doubt about the enantiopurity of the material, the

Flack parameter must be included as part of the model. It can

either be refined freely, treated as a constant (constraint) with

the value taken from the post-refinement analysis, or a single

equation of restraint on the Flack (x) parameter can be

introduced using the post-refinement estimate of its value and

standard uncertainty as target values.

APPENDIX A
Ratios of averages and averages of ratios

For an individual Freidel pair we can write equation (4) as

x ¼ 0:5�Do=ð2DsÞ: ð19Þ

Defining

ci ¼ Doi=Dsi ð20Þ

we obtain

xi ¼ 0:5� 0:5ci: ð21Þ

A1. Ratio of averages

Writing (20) as

Ds

� �
ch i ¼ Do

� �
; ð22Þ

where the terms in square brackets are column vectors of the

model and observed Friedel differences, the least-squares

estimate of c from a set of Friedel pairs is

Ds

� �T
Ds

� �
ch i ¼ Ds

� �T
Do

� �
ð23Þ

from which a weighted value for hci can be obtained as

hci ¼

P
wiDoiDsiP
wiDsiDsi

ð24Þ

with

wi ¼ 1=�2Doi: ð25Þ

Equation (24) can be rewritten as a ratio of averages

hci ¼
1
n

P
wiDoiDsi

1
n

P
wiDsiDsi

: ð26Þ

Letting

�i ¼ Doi � ch iDsi ð27Þ

gives

�2 cð Þ ¼

P
wi�

2
i

n
P

wiD
2
s

ð28Þ

from which

hxi ¼ 1� hcið Þ=2 ð29Þ

and

� hxið Þ ¼ � hcið Þ=2: ð30Þ

A2. Average of ratios

Alternatively, we can evaluate individual ci from equation

(20) and xi from (21), and form the (weighted) average of

these ratios

xi ¼ ðDsi �DoiÞ=2Dsi ð31Þ

x0 ¼
X

wixi=
X

wi ð32Þ

ffiffiffiffiffi
wi

p
¼ 1=�ðxiÞ ¼ 2Dsi=�ðDoiÞ: ð33Þ

Following Blessing & Langs (1987) we can form the internal

and external estimates of the variance of the sample, and

hence the variance of the average

�2
int xð Þ ¼

n

n� 1

P
wi xi � x0ð Þ

2P
wi

ð34Þ

�2
ext xð Þ ¼

P
wi�

2 xið ÞP
wi

ð35Þ

�2 x0ð Þ ¼
�2

int

n
or
�2

ext

n
: ð36Þ

For a list of paired observations, the ratio of averages and the

average of ratios will be the same if there is a linear rela-

tionship between the observations and the error distributions

are similar. A difference between these two statistics indicates

a problem that should be investigated.

APPENDIX B
Standard uncertainties of differences and quotients

The relation between the absolute structure of a crystalline

material and the measured Friedel pairs was given in equation

(2)

Io ’ Ic ¼ ð1� xÞIþs þ xI�s : ð37Þ

Writing
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Do ¼ Iþo � I�o

Ds ¼ Iþs � I�s

Ao ¼ 0:5ðIþo þ I�o Þ

As ¼ 0:5ðIþs þ I�s Þ

Qo ¼Do=2Ao

Qs ¼Ds=2As

we obtain the difference expression

Do ’ Dc ¼ 1� 2xð ÞDs ð38Þ

and the quotient expression

Do=2Ao ’ ð1� 2xÞDs=2As

Qo ’Qc ¼ ð1� 2xÞQs ð39Þ

from which

�2ðDoÞ ¼ �
2ðIþo Þ þ �

2ðI�o Þ ð40Þ

�2ðAoÞ ¼ 0:25�2ðDoÞ ð41Þ

�2ðQoÞ ¼
2

Iþo þ I�oð Þ
2

� �2

I�2
o �2ðIþo Þ þ Iþ2

o �2ðI�o Þ
� �

: ð42Þ

If Iþo ’ I�o ¼ Io ¼ Ao and �2ðIþo Þ ’ �
2ðI�o Þ ¼ �

2ðIoÞ, we get

�2
ðQoÞ ¼ �

2
ðIoÞ=ð2I2

oÞ

and hence

Qo=�ðQoÞ ¼ Do=�ðDoÞ

and

Qo=�
2ðQoÞ ¼ 2IoDo=�

2ðDoÞ:
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