research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Hydrogen-substituted β-tricalcium phosphate synthesized in organic media

CROSSMARK_Color_square_no_text.svg

aRMS Foundation, Bettlach, Switzerland, bDepartment of Materials, ETH Zürich, Zürich, Switzerland, cMATEIS, INSA-Lyon, Villeurbanne CEDEX, France, and dInstitute of Geological Sciences, University of Bern, Bern, Switzerland
*Correspondence e-mail: nicola.doebelin@rms-foundation.ch

Edited by A. J. Blake, University of Nottingham, England (Received 28 July 2016; accepted 4 October 2016; online 1 December 2016)

β-Tricalcium phosphate (β-TCP) platelets synthesized in ethylene glycol offer interesting geometries for nano-structured composite bone substitutes but were never crystallographically analyzed. In this study, powder X-ray diffraction and Rietveld refinement revealed a discrepancy between the platelet structure and the known β-TCP crystal model. In contrast, a model featuring partial H for Ca substitution and the inversion of P1O4 tetrahedra, adopted from the whitlockite structure, allowed for a refinement with minimal misfits and was corroborated by HPO42− absorptions in Fourier-transform IR spectra. The Ca/P ratio converged to 1.443 ± 0.003 (n = 36), independently of synthesis conditions. As a quantitative verification, the platelets were thermally decomposed into hydrogen-free β-TCP and β-calcium pyrophosphate which resulted in a global Ca/P ratio in close agreement with the initial β-TCP Ca/P ratio (ΔCa/P = 0.003) and with the chemical composition measured by inductively coupled plasma (ΔCa/P = 0.003). These findings thus describe for the first time a hydrogen-substituted β-TCP structure, i.e. a Mg-free whitlockite, represented by the formula Ca21 − x(HPO4)2x(PO4)14 − 2x, where x = 0.80 ± 0.04, and may have implications for resorption properties of bone regenerative materials.

1. Introduction

Calcium phosphates (CaPs) have been widely used as synthetic bone graft substitutes and exhibit excellent biocompatibility, osteoconductivity and a chemical composition similar to bone mineral (LeGeros, 2002[LeGeros, R. Z. (2002). Clin. Orthop. 395, 81-98.]). Sintered hydroxyapatite [HA, Ca5(PO4)3OH], β-tricalcium phosphate [β-TCP, Ca3(PO4)2], or biphasic blends of the two constitute the most common commercially available CaP materials. In particular, β-TCP is of interest owing to its cell-mediated resorbability in vivo (Bohner, 2010[Bohner, M. (2010). Mater. Today, 13, 24-30.]).

While sintering of CaPs results in a limited range of geometries and specific surface areas, wet-chemical synthesis methods open the door to nano-sized entities and have been extensively studied for their potential in a broad range of biomedical applications including tissue engineering, drug/gene delivery and the design of structured composites (Loomba & Bhupinder, 2015[Loomba, L. & Bhupinder, S. S. (2015). J. Nanomat. Mol. Nanotech. 4, 1-12.]; Makarov et al., 2010[Makarov, C., Gotman, I., Jiang, X., Fuchs, S., Kirkpatrick, C. J. & Gutmanas, E. Y. (2010). J. Mater. Sci. Mater. Med. 21, 1771-1779.]). In contrast to phases such as HA and brushite (CaHPO4·2H2O), β-TCP cannot be precipitated from aqueous solutions. Only in the presence of Mg, whitlockite [e.g. Ca18Mg2(HPO4)2(PO4)12], a naturally occurring mineral with a crystal structure equivalent to that of β-TCP can be synthesized at ambient or hydrothermal conditions (Hamad & Heughebaert, 1986[Hamad, M. & Heughebaert, J. C. (1986). J. Cryst. Growth, 79, 192-197.]). Nevertheless, micron- or nano-sized (Mg-free) β-TCP particles have been obtained by precipitation in aqueous medium under autoclave conditions (Toyama et al., 2002[Toyama, T., Nakashima, K. & Yasue, T. (2002). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 110, 716-721.]; Galea et al., 2015[Galea, L., Alexeev, D., Bohner, M., Doebelin, N., Studart, A. R., Aneziris, C. G. & Graule, T. (2015). Biomaterials, 67, 93-103.]) as well as in methanol (Bow et al., 2004[Bow, J. S., Liou, S. C. & Chen, S. Y. (2004). Biomaterials, 25, 3155-3161.]) and ethylene glycol (Tao et al., 2008[Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, R. & Tang, R. (2008). Cryst. Growth Des. 8, 2227-2234.], 2009[Tao, J., Pan, H., Zhai, H., Wang, J., Li, L., Wu, J., Jiang, W., Xu, X. & Tang, R. (2009). Cryst. Growth Des. 9, 3154-3160.]; Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.], 2014[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Ring, T. A., Aneziris, C. G. & Graule, T. (2014). Acta Biomater. 10, 3922-3930.]).

Precipitation in ethylene glycol between 363 and 443 K allowed for the synthesis of sub-micrometric uniform hexagonal β-TCP platelets with controllable geometries (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.], 2014[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Ring, T. A., Aneziris, C. G. & Graule, T. (2014). Acta Biomater. 10, 3922-3930.]). Specifically, by modifying synthesis parameters including the solution concentration and acidity, the aspect ratio could be varied in the range of 1 to 14 with size dispersions as low as 5%. Since CaP ceramics are inherently brittle, platelets with high aspect ratios are of particular interest as fillers in nano-structured ceramic polymer composites inspired by natural materials such as nacre, which may provide suitable properties for load-bearing bone substitutes (Tang et al., 2003[Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. (2003). Nat. Mater. 2, 413-418.]). Moreover, owing to their non-agglomerating properties, crystals with an aspect ratio of 1 may enhance the flowability of CaP pastes or cements.

X-ray diffraction (XRD) patterns of β-TCP platelets previously revealed a poor agreement with the known β-TCP crystal model (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.]; Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]). Recently, preliminary analysis of the platelet crystal structure indicated a sub-stoichiometric Ca-occupation. The crystal structure of a ceramic strongly influences properties including the solubility, which in turn determines the in vivo resorption of a bone graft. In particular, the dissolution rate and bone bonding properties of Ca-deficient HA [CDHA, Ca10 − x(HPO4)x(PO4)6 − x(OH)2 − x, where 0 < x ≤ 1] were shown to depend on its Ca/P ratio (Radin & Ducheyne, 1993[Radin, S. R. & Ducheyne, P. (1993). J. Biomed. Mater. Res. 27, 35-45.]; Mavropoulos et al., 2003[Mavropoulos, E., Rossi, A. M., da Rocha, N. C. C., Soares, G. A., Moreira, J. C. & Moure, G. T. (2003). Mater. Charact. 50, 203-207.]). Therefore, in order to successfully apply organic media-synthesized β-TCP platelets for bone regeneration, their crystal structure, and in particular the Ca-deficiency, must be well understood.

In this study, β-TCP platelets were examined by Rietveld refinement of powder XRD patterns as well as by Fourier-transform IR (FTIR) spectroscopy and chemical analysis. Furthermore, the effect of synthesis parameters on the platelet stoichiometry was investigated. Finally, the platelet crystal structure was discussed in comparison with sintered β-TCP and with synthetic Mg-whitlockite.

2. Materials and methods

2.1. Syntheses

β-TCP platelets were produced by adapting a previously reported precipitation method (Tao et al., 2008[Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, R. & Tang, R. (2008). Cryst. Growth Des. 8, 2227-2234.]), either in a batch reactor as recently described (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.]), or in a continuous tubular reactor. Briefly, a CaCl2–ethylene glycol solution was mixed with a H3PO4 (or Na2HPO4)–ethylene glycol solution, pH-adjusted by NaOH and kept at constant temperature (363 to 443 K) for at least 30 min. A detailed description of the synthesis of β-TCP platelets is given in the supporting information §S1.1 and an example of the resulting morphology is shown in §S2.1.

Reference β-TCP materials were produced through sintering of CaCO3 (CaCO3, MERCK, Germany) and monetite (CaHPO4, GFS Chemicals, USA) at 1173 to 1273 K, resulting in 100% β-TCP (used for FTIR analysis) or 93 wt% β-TCP and 7 wt% hydroxyapatite (HA, used for elemental analysis). Mg-whitlockite was synthesized hydrothermally by incubating 1 g of monetite with 20 ml of a 1.5 mM MgCl2 solution at 473 K for 1 d in a steel autoclave lined with a Teflon capsule (inner volume of 45 ml).

2.2. Crystallographic analysis

The crystal structure of the synthesized platelets was studied by means of powder X-ray diffraction (XRD). Samples were inserted into a glass capillary (diameter: 0.5 mm, glass type no 10; Hilgenberg GmbH, Germany) aligned and rotating on the goniometer axis in a Bruker D8 Advance diffractometer (Bruker AXS GmbH, Germany). XRD patterns were collected using digitally and Ni-filtered Cu Kα radiation (wavelength: 1.540598 Å) in transmission geometry from 5 to 60° 2θ at a step size of 0.012° and an acquisition time of 5.75 s per step.

The resulting patterns were analyzed by Rietveld refinement (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) using BGMN software, Version 4.2.22 (Bergmann et al., 1998[Bergmann, J., Friedel, P. & Kleeberg, R. (1998). IUCr Newsl. 20, 5-8.]) and Profex user interface, Version 3.9.2 (Doebelin & Kleeberg, 2015[Doebelin, N. & Kleeberg, R. (2015). J. Appl. Cryst. 48, 1573-1580.]). Since varying fractions of monetite were present as a by-product of the β-TCP synthesis, a monetite phase model (Dickens et al., 1972[Dickens, B., Bowen, J. S. & Brown, W. E. (1972). Acta Cryst. B28, 797-806.]), PDF# 04-009-3755, was included in the refinement. Moreover, a broad signal at around 32° (2θ) was detected in some samples and was attributed to a nanocrystalline chlorapatite phase, although no unambiguous identification of the type of apatite was possible. Consequently, the chlorapatite phase model (Hughes et al., 1989[Hughes, J. M., Cameron, M. & Crowley, K. D. (1989). Am. Mineral. 74, 870-876.]), PDF# 04-012-1323, was included, which improved the quality of the fits. The β-TCP structure (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]), PDF# 04-008-8714, was taken as a starting model and modified to better fit the observed patterns, as elaborated in §3[link]. The refinement was verified to be independent of the extent of measurement noise by comparison of two diffractograms obtained on the same sample using an acquisition time of 5.75 and 19 s per step, respectively. For Mg-doped platelets, the Mg fraction determined by elemental analysis was used to account for the lower electron density on the Ca5 position occupied by Mg atoms (Enderle et al., 2005[Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A. & Greil, P. (2005). Biomaterials, 26, 3379-3384.]). In the case of synthetic whitlockite, the Ca5 position was fully occupied with a refined Mg/Ca ratio. The Ca4 site occupancy was refined as partially occupied with Ca, as proposed previously (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]).

In order to monitor temperature-induced phase separations, in-situ XRD patterns were acquired using a heating chamber (Anton Paar HTK 1200, Anton Paar GmbH, Austria) in an X'Pert diffractometer in reflective geometry (X'Pert Pro MPD, Panalytical, The Netherlands) using Ni-filtered Cu Kα radiation. Specifically, the temperature was raised in steps of 323 K from 773 to 1273 K and kept for 1 h at each step. For the quantitative phase analysis after calcination, samples were heated directly to 1273 K (heating rate: 17 K min−1) and kept at 1273 K for 1 h (or 1328 K for 48 h in the case of whitlockite). The resulting XRD patterns (obtained in transmission geometry as described earlier) were refined including the β-calcium pyrophosphate (β-CPP, Ca2P2O7) phase model (Boudin et al., 1993[Boudin, S., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1993). Acta Cryst. C49, 2062-2064.]), PDF# 04-009-3876. The HA phase model (Sudarsanan & Young, 1969[Sudarsanan, K. & Young, R. A. (1969). Acta Cryst. B25, 1534-1543.]), PDF# 01-074-0565, was included for the sintered reference material.

2.3. FTIR spectroscopy

Optically clear pellets of 13 mm diameter were prepared by grinding and mixing 300 mg KBr (KBr, Uvasol®, MERCK, Germany) with approximately 1 mg of sample and subsequent pressing at 10 T for 2.5 min under vacuum. Transmission FTIR spectra were obtained on a Bruker Lumos IR spectrometer between 400 and 4000 cm−1 at a resolution of 4 cm−1 and 64 accumulations.

2.4. Elemental analysis

In order to quantify the elemental composition, samples were dissolved in HNO3 (69% w/w, Trace SELECT, Fluka, Switzerland) and diluted 1:100 in demineralized H2O with a final concentration of 3% HNO3. Ca, P, Na and Mg concentrations were measured (n = 6 per sample) using inductively coupled plasma–mass spectroscopy (ICP-MS; Agilent 7700x, Agilent Technologies, Japan). 44Ca, 31P, 23Na and 24Mg signals were calibrated against certified single element standard solutions (Inorganic Ventures, USA) serially diluted to the following concentrations: (i) 100, 10 and 1 p.p.b. Na and (ii) 5000, 1000, 200 and 40 p.p.b. Ca combined with proportional P and Mg concentrations in a Ca:P:Mg weight ratio of 10:5:1. Additionally, calibration drifts were corrected according to a Ca–P–Mg standard measured after every 8th sample and according to a 40 p.p.b internal In/Sc/Bi standard solution (Inorganic Ventures, USA) measured along with each sample.

Since the preparation of ICP standard solutions involves pipetting errors (approximately ± 2%), the Ca/P ratio was corrected ((Ca/P)ICP,corr) based on a chemically pure, high-temperature sintered β-TCP/HA reference material. Specifically, the difference between the Ca/P ratios measured in the reference through XRD, by phase fraction quantification assuming stoichiometric phases (Ishikawa et al., 1993[Ishikawa, K., Ducheyne, P. & Radin, S. (1993). J. Mater. Sci. Mater. Med. 4, 165-168.]), and through ICP (Ca/P = 1.512 and 1.486, respectively) was subtracted from all Ca/P ratios. (The sum of the Na/P, Mg/P and Sr/P molar ratios in the reference was verified to be below 0.002.)

3. Results

3.1. Crystal structure model for Rietveld refinement

The Ca4 and P1O4 region of the stoichiometric β-TCP crystal structure (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) is shown in Fig. 1[link](a). This structure was used as a starting model to fit XRD patterns of β-TCP platelets produced in ethylene glycol. Applying this model confirmed space group R3c but, although refining unit-cell dimensions, scale factor, crystallite size, microstrain and texture, resulted in substantial misfits of relative peak intensities between observed and calculated patterns (Fig. 1[link]c). Difference-Fourier maps were generated to visualize the misfits in direct space electron densities using the software Promap (Doebelin; unpublished addon for Profex; Doebelin & Kleeberg, 2015[Doebelin, N. & Kleeberg, R. (2015). J. Appl. Cryst. 48, 1573-1580.]). Most atoms showed slight displacements, which could be refined with stable convergence by defining the P2O4 and P3O4 tetrahedra as rigid bodies with the dimensions reported in the stoichiometric β-TCP model (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) and with refined translation and rotation. In contrast, major discrepancies were observed for several atoms with coordinates 0,0,z. Namely, the site occupancies of the Ca4 and O2 positions were lower than the stoichiometric values (0.5 and 1.0, respectively), as revealed by negative differences between observed and calculated electron densities (Fig. 1[link]e). Moreover, a negative difference at the P1 site and an adjacent positive region (slightly closer to the Ca4 site) indicated the splitting of this position into two sites. Based on the elemental analysis (see §3.4[link]), the lower Ca4 site occupancy cannot be explained by substitution with lighter Mg atoms. However, the observed arrangement showed similarities to the crystal structure of whitlockite, previously described using single-crystal XRD structure refinements (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]). In their model, the Ca4 position was sub-occupied and the P1O4 tetrahedron (comprising P1, three O1 and one O2 atom) was protonated and mirrored about the O1 base plane, resulting in a new P1′ position and a new O2′ site connected to a H atom (Fig. 1[link]b).

[Figure 1]
Figure 1
Illustration of the Ca4 and P1O4 atomic arrangement in (a) the stoichiometric β-TCP crystal model (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) and (b) a hydrogen-substituted β-TCP model where some of the P1O4 tetrahedra are inverted and protonated. Representative XRD patterns of β-TCP platelets fitted by Rietveld refinement with (c) the stoichiometric and (d) the hydrogen-substituted crystal model. (Monetite and chlorapatite fractions were negligible in this sample and were not refined for the purpose of this illustration.) The difference (green line) between the observed (black) and calculated (red) intensity, characterized by χ2 values, was larger for the stoichiometric compared with the hydrogen-substituted model. EDD maps between the observed structure and (e) the structure calculated with the stoichiometric model indicated sub-occupied O2, P1 and Ca4 sites along with a positive region immediately below the P1 site, while (f) using the hydrogen-substituted model resulted in much smaller EDDs.

The resolution of the powder XRD data was not sufficient to unambiguously identify individual atomic species and site occupancies simultaneously. In particular, since the O2′H group of the flipped tetrahedron strongly overlapped with residual Ca on the Ca4 position, independent refinement of Ca4 deficiency and the number of flipped tetrahedra was not possible. However, adopting the model of inverted tetrahedra (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]) allowed restrictions to be applied to eventually describe the structure by refining one single parameter. Specifically, as the tetrahedra could only flip as a whole, the fraction of inverted P1O4 tetrahedra, fm, was defined and linked to the individual site occupancies, P, as follows: PP1′ = PO2′ = PH = fm and PP1 = PO2 = 1 − fm. Moreover, in order to maintain charge balance, two tetrahedra were inverted and protonated for each missing Ca2+ ion, i.e. PCa4 = (1 − fm)/2. The resulting model for refined site occupancies also restricted the overlapping sites PCa4 + PO2′ to a maximum total occupancy of 1. Thus, taking into account all atomic positions in the β-TCP unit cell (6 P1 positions for 42 P positions in total), the general formula of the structure is β-Ca21 − fm(HPO4)2fm(PO4)14–2fm. The P1O4 tetrahedra were treated as semi-rigid bodies by applying the following restrictions: the z-distance zP1′ − zO1 was linked to zP1 − zO1, while zP1′ − zO2′ and zP1 − zO2 were set equal to 0.1498 nm (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) and zO2′ − zH to 0.0942 nm (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]). The xO1 and yO1 coordinates could be refined without resulting in extensive distortion of the tetrahedra. Temperature factors were taken from the stoichiometric β-TCP model (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) and multiplied by a refined scale factor common for each type of atom.

This model was first validated by refining an XRD pattern of hydrothermally synthesized Mg-whitlockite, which resulted in a good fit (χ2 = 1.11; defined previously; Toby, 2006[Toby, B. H. (2006). Powder Diffr. 21, 67-70.]) and a stable convergence to an fm value of 0.932 ± 0.009, i.e. PCa4 = 0.034 ± 0.004 and (Ca + Mg)/P = 1.433 ± 0.001, where the errors represent the estimated standard deviation (e.s.d.) calculated by the refinement algorithm. This stoichiometry thus corresponds well with the theoretical composition of synthetic Mg-whitlockite: Ca18Mg2(HPO4)2(PO4)12, (Ca + Mg)/P = 1.429 (Gopal et al., 1974[Gopal, R., Calvo, C., Ito, J. & Sabine, W. K. (1974). Can. J. Chem. 52, 1155-1164.]). Note that the composition was also closely matched by ICP-MS analysis [(Ca/P)ICP,corr = 1.265, (Mg/P)ICP = 0.156, i.e. ((Ca + Mg)/P)ICP = 1.421]. Moreover, the refinement confirmed that the Ca5 position in synthetic whitlockite was occupied exclusively by Mg which is in line with the theoretical composition and previous studies (Enderle et al., 2005[Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A. & Greil, P. (2005). Biomaterials, 26, 3379-3384.]).

Using the same model to refine the structure of β-TCP platelets grown in organic media allowed for much better fits compared with the published model, as reflected in lower χ2 values (detailed in Table 1[link]) and smaller electron density differences (EDDs; Figs. 1[link]d and f). The fm value thereby converged to 0.801 ±0 .041 (average and SD over 36 samples), corresponding to a PCa4 of 0.100 ± 0.021 and a β-TCP Ca/P ratio of 1.443 ± 0.003. (The dependence of the stoichiometry on synthesis parameters is §3.5[link].) Table 2[link] summarizes the site occupancies as well as the atomic coordinates of the Ca4 position and the original and inverted (H)P1O4 tetrahedra. All refined structures and diffraction raw data are provided in crystallographic information files (CIF) as supporting information along with a sample list (Table S2) matching the synthesis condition numbers with the name of the datablocks in the CIFs.

Table 1
XRD data acquisition parameters, refinement statistics, space group and unit-cell constants

Radiation, wavelength (Å) Cu Kα, 1.540598
2θ range (°) 5–60
Step scan increment (°2θ) 0.012
   
Refinement statistics
Rwp (%), defined previously (McCusker et al., 1999[McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). J. Appl. Cryst. 32, 36-50.]) 6.4 ± 0.6
Rexp (%) (McCusker et al., 1999[McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). J. Appl. Cryst. 32, 36-50.]) 5.9 ± 0.6
χ2 = (Rwp/Rexp)2, defined previously (Toby, 2006[Toby, B. H. (2006). Powder Diffr. 21, 67-70.]) 1.17 ± 0.06
   
Unit cell
Space group R3c
a (Å) 10.471 ± 0.006
c (Å) 37.371 ± 0.012
†Mean values and standard deviations from 36 samples.

Table 2
Site occupancies and atomic coordinates for the original and mirrored (H)P1O4 tetrahedron

    Atomic coordinates (as fractions of the unit-cell constants)
Atom Occupancy x y z
Ca4 0.100 ± 0.021 0 0 −0.0843 ± 0.0024
         
Original P1O4 tetrahedron
P1 0.199 ± 0.041 0 0 0
O1 1 0.0126 ± 0.0037 −0.1345 ± 0.0041 −0.0104 ± 0.0009
O2 0.199 ± 0.041 0 0 0.0401 ± 0.0000
         
Mirrored HP1′O4 tetrahedron
P1′ 0.801 ± 0.041 0 0 −0.0209 ± 0.0018
O1 1 0.0126 ± 0.0037 −0.1345 ± 0.0041 −0.0104 ± 0.0009
O2′ 0.801  ±0.041 0 0 −0.0610 ± 0.0018
H 0.801 ± 0.041 0 0 −0.0862 ± 0.0018
†Mean values and standard deviations from 36 samples.

3.2. FTIR analysis

The phosphate absorption region in the FTIR spectra of sintered β-TCP as well as β-TCP platelets is shown in Fig. 2[link]. (The full wavenumber range is presented in the supporting information §S2.2; Fig. S2). The absorption bands observed in sintered β-TCP are consistent with previous reports (Jillavenkatesa & Condrate, 1998[Jillavenkatesa, A. & Condrate, R. A. (1998). Spectrosc. Lett. 31, 1619-1634]; Berzina-Cimdina & Borodajenko, 2012[Berzina-Cimdina, L. & Borodajenko, N. (2012). Infrared Spectroscopy - Materials Science, Engineering and Technology, edited by P. T. Theophile, pp. 123-148. Rijeka, Croatia: InTech Europe.]; Bigi et al., 1997[Bigi, A., Foresti, E., Gandolfi, M., Gazzano, M. & Roveri, N. (1997). J. Inorg. Biochem. 66, 259-265.]). Specifically, the bands at approximately 1120, 1105, 1080, 1042 and 1025 cm−1 can be assigned to the ν3 vibrational mode of the PO43− ion. Moreover, ν1-PO4 bands were observed at 970 and 942 cm−1, ν4-PO4 bands at 605, 592, 545 and 552 cm−1 and two weak ν2-PO4 bands at 415 and 435 cm−1. Additional weak absorptions, e.g. at 572 cm−1, also agree with previously reported β-TCP spectra (Bigi et al., 1997[Bigi, A., Foresti, E., Gandolfi, M., Gazzano, M. & Roveri, N. (1997). J. Inorg. Biochem. 66, 259-265.]).

[Figure 2]
Figure 2
Transmission FTIR spectra of sintered β-TCP and β-TCP platelets. The phosphate absorption regions show several differences in relative peak intensity and/or peak shifts between the two materials. Platelets but not sintered β-TCP exhibited an absorption band at 875 cm−1, attributable to HPO42− groups.

The PO4 absorption bands in spectra of β-TCP platelets differ significantly from sintered β-TCP. Specifically, several bands in the ν3, ν4 and ν2 region may have undergone slight chemical shifts compared with sintered β-TCP or either appeared or disappeared due to changes in relative intensities. The two ν1 absorption bands disappeared in β-TCP platelets while new shoulders were observed at 960 and 1175 cm−1 (not matched by previously reported data). The absorption band at 875 cm−1 can be assigned to HPO42− groups, as previously observed in CDHA before sintering (Lin et al., 1998[Lin, F. H., Liao, C. J., Chen, K. S. & Sun, J. S. (1998). Biomaterials, 19, 1101-1107.], 2001[Lin, F. H., Liao, C. J., Chen, K. S., Su, J. S. & Lin, C. P. (2001). Biomaterials, 22, 2981-2992.]; Cantwell et al., 2014[Cantwell, P. R., Tang, M., Dillon, S. J., Luo, J., Rohrer, G. S. & Harmer, M. P. (2014). Acta Mater. 62, 1-48.]; Durucan & Brown, 2000[Durucan, C. & Brown, P. W. (2000). J. Mater. Sci. Mater. Med. 11, 365-371.]). The shoulder at 855 cm−1 coincides with previous attributions to HPO42− groups in β-TCP synthesized under autoclave conditions (Toyama et al., 2002[Toyama, T., Nakashima, K. & Yasue, T. (2002). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 110, 716-721.]) and in synthetic whitlockite (LeGeros et al., 1989[LeGeros, R. Z., Daculsi, G., Kijkowska, R. & Kerebel, B. (1989). Magnesium in Health and Disease, pp. 11-19. Hertfordshire: John Libbey & Co. Ltd.]). Although CO3 absorptions have been reported close to 875 cm−1, the presence of CO3 species in the platelets can be ruled out due to the absence of any absorption bands in the 1420–1450 cm−1 region (Fowler, 1974[Fowler, B. O. (1974). Inorg. Chem. 13, 194-207.]; Sader et al., 2013[Sader, M. S., Lewis, K., Soares, G. A. & LeGeros, R. Z. (2013). Mater. Res. 16, 779-784.]). Moreover, comparison of the spectra of β-TCP platelets to those of pure monetite (CaHPO4) and to platelet samples containing high monetite fractions demonstrated that the HPO42− signal did not originate from the monetite phase (elaborated in the supporting information §S2.2; Fig. S3). Similarly, the intensity of the HPO42− signal was verified to be independent of the fraction of chlorapatite in the sample. Finally, comparison of spectra before and after calcination at 673 K, as well as of pure ethylene glycol and ethanol confirmed that no signals from organic residues were detectable in the platelets. Therefore, these findings corroborate the H for Ca substitution in the β-TCP phase indicated by XRD analysis.

3.3. Quantification of thermally induced phase changes

In order to examine the thermal stability of the Ca-deficient β-TCP phase, XRD patterns were acquired during and after calcination, which revealed the presence of γ-CPP (PDF# 00-017-0499) above 773 K and β-CPP (PDF# 04-009-3876) between 1073 and 1273 K as well as after returning to room temperature (Fig. 3[link]). Note that the patterns obtained in situ during stepwise heating could not be refined due to the unknown crystal structure of the γ-CPP phase. Extensive peak shifts due to thermal expansion of the unit cells and the sample holder, the latter resulting in a sample height displacement error, were also observed. The Ca/P ratios as well as phase fractions determined by Rietveld refinement before and after calcination at 1273 K are given in Table 3[link]. Before calcination, the overall Ca/P ratio (1.437 ± 0.003), calculated based on the weight fraction and molecular mass of each phase, was slightly lower than the refined β-TCP Ca/P ratio (1.445 ± 0.001) due to the presence of monetite (Ca/P = 1.0). After calcination, the refinement determined a β-TCP Ca/P ratio equal to the stoichiometric value of 1.5. This increase in the β-TCP Ca/P ratio was compensated for by the appearance of approximately 10 wt% β-CPP (Ca/P = 1.0, Table 3[link]), where the resulting overall Ca/P ratio was in close agreement with the overall Ca/P ratio determined before calcination (difference: 0.2%). In summary, the thermal treatment induced a phase separation of Ca-deficient hydrogen-substituted β-TCP, along with the small quantities of monetite, into stoichiometric β-TCP and β-CPP, while maintaining the bulk Ca/P ratio. Good agreement of the Ca/P ratios determined from stoichiometric phase quantities after thermal treatment and from the structure refinement of hydrogen-substituted β-TCP prior to calcination thus corroborates the accuracy of the hydrogen-substituted refinement model.

Table 3
Comparison of the β-TCP Ca/P molar ratio, phase weight fractions (fw) and overall (over all phases, excluding chlorapatite) Ca/P ratio before and after calcination

Mean values and standard deviations (SD) from three samples (synthesized using standard conditions or 443 K), determined by XRD and Rietveld refinement with the hydrogen-substituted model.

    Ca/P fw (%) Ca/P
    β-TCP β-TCP Monetite β-CPP Overall
Pre-calcination Mean (n = 3) 1.445 98.4 1.6 1.437
SD ± 0.001 ± 0.8 ± 0.8 ± 0.003
Post calcination Mean (n = 3) 1.500 89.9 10.1 1.440
SD ± 0.000 ± 1.1 ± 1.1 ± 0.006
    Difference (post − pre calc.) 0.003
        SD ± 0.003
[Figure 3]
Figure 3
XRD patterns of β-TCP platelets before, during and after calcination up to 1273 K (RT: room temperature). Note that peak shifts are due to thermal expansion of the crystal lattice. In addition to the predominant β-TCP phase (non-labelled peaks), γ-CPP was observed between 823 and 1123 K whereas β-CPP appeared at 1123 K and also remained stable up to 1273 K after cooling to room temperature.

3.4. Elemental composition

The elemental composition of the platelets was assessed by ICP-MS in order to provide a second verification of the Rietveld refinement results (Table 4[link]). Along with Ca and P concentrations (corrected as described in §2.4[link]), Na and Mg concentrations were quantified because of the addition of NaOH to the reaction and due to possible Mg traces in the CaCl2 precursor. Calcination at 1273 K resulted in an increase of the Ca/P ratio and a strong decrease of the Na/P ratio, which is possibly related to the elimination of Na+ and PO43− ions bound to volatile organic residues on the crystal surface, although below the sensitivity of FTIR analysis as stated earlier. In particular, covalent bonding between phosphates and ethylene glycol chains has been reported previously (Penczek et al., 2015[Penczek, S., Pretula, J., Kubisa, P., Kaluzynski, K. & Szymanski, R. (2015). Prog. Polym. Sci. 45, 44-70.]).

Table 4
The chemical composition measured by ICP before and after calcination and comparison with the overall Ca/P ratio determined by XRD (see Table 3[link])

Mean molar ratios and standard deviations (SD) from three samples synthesized using standard conditions or 443 K.

    ICP Δ(ICP − XRD)
    (Ca/P)ICP,corr (Na/P)ICP (Mg/P)ICP (Caeq/P)ICP,corr (Caeq/P)ICP,corr − (Ca/P)XRD
Pre calc. Mean (n = 3) 1.380 0.018 0.001 1.391 −0.047
SD ± 0.010 ± 0.004 ± 0.000 ± 0.009 ± 0.006
Post calc. Mean (n = 3) 1.432 0.007 0.002 1.437 −0.003
SD ± 0.001 ± 0.000 ± 0.001 ± 0.001 ± 0.007
†Corrected as described in §2.4[link].
‡Ca-equivalent ratio, to account for substitutional cations as defined in §3.4[link].

The small quantities of Na and Mg atoms measured after calcination were likely present in the crystal structure of the as-synthesized platelets where they are known to substitute for Ca (Enderle et al., 2005[Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A. & Greil, P. (2005). Biomaterials, 26, 3379-3384.]; Yoshida et al., 2006[Yoshida, K., Hyuga, H., Kondo, N., Kita, H., Sasaki, M., Mitamura, M., Hashimoto, K. & Toda, Y. (2006). J. Am. Ceram. Soc. 89, 688-690.]). These atoms thus contribute to the total electron density which is interpreted as Ca occupancy by the refinement model described in §3.1[link] (except for Mg-doped platelets and whitlockite). Note that, based on the atomic number, charge and the concentration of Na and Mg cations determined by ICP, their influence on the determination of the fm value by the refinement was verified to be negligible. For comparison with the Ca/P ratio determined by XRD, a Ca-equivalent ratio, (Caeq/P)ICP,corr, taking into account these trace elements, was calculated according to the number of electrons per cation, i.e. (Caeq/P)ICP,corr = (Ca/P)ICP,corr + 10/18 × (Na/P)ICP + 10/18 × (Mg/P)ICP. (The suffix `corr' is explained in §2.4[link].) Before calcination, (Caeq/P)ICP,corr was significantly lower than (Ca/P)XRD, which is plausible if some PO43− ions were present outside the crystalline phase. In contrast, after calcination there was only a small difference between ICP and XRD values (0.2%), which was lower than the standard deviation over the three samples.

3.5. Effect of synthesis conditions

In order to investigate the role of synthesis conditions in the crystallization of the hydrogen-substituted structure, the reaction temperature, precursor Ca/P ratio and total concentration, acidity, Mg doping, reaction time and solvent type were varied (detailed in Table S1). None of the investigated synthesis parameters had a significant effect on the β-TCP Ca/P, or (Ca + Mg)/P, ratio determined by XRD and Rietveld refinement (Fig. 4[link]). A statistical analysis of this data is elaborated in the supporting information §S2.3.

[Figure 4]
Figure 4
β-TCP Ca/P ratios determined by Rietveld refinement with the hydrogen-substituted model. The platelet synthesis conditions are detailed in Table S1. Error bars designate two times the e.s.d. (95% confidence interval) determined by the refinement algorithm. The average Ca/P ratio was equal to 1.443 ± 0.003 (SD; n = 36) with no significant effect of any of the investigated synthesis parameters.

4. Discussion

This study examined the particular features distinguishing the crystal structure of β-TCP platelets synthesized in ethylene glycol from high-temperature sintered, stoichiometric β-TCP. For this purpose, the structure was analyzed by means of Rietveld refinement of XRD patterns, along with IR spectroscopy and chemical analysis.

Refinement of the platelet structure using the published β-TCP crystal model (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]) revealed significant discrepancies at the Ca4, P1 and O2 crystallographic positions. On the other hand, much better fits were achieved by adopting a model containing a Ca4 deficiency along with the inversion and protonation of P1O4 tetrahedra. Given the major changes in site occupancy factors at the Ca4 and O2 positions compared with stoichiometric β-TCP, some displacement of other atoms was expected. Therefore, the fractional coordinates of all atomic sites were refined while treating phosphate tetrahedra as rigid bodies with some translational and rotational freedom. These lattice distortions were in line with the observed differences in the PO4 absorption bands in FTIR spectra. Moreover, the refined unit-cell constants were slightly different (< 0.4%) from the published β-TCP model (Dickens et al., 1974[Dickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232-248.]). These dimensions are in agreement with previous measurements of interplanar distances in ethylene glycol-synthesized β-TCP, which were not precise enough to detect the deviation from the published structure (Tao et al., 2008[Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, R. & Tang, R. (2008). Cryst. Growth Des. 8, 2227-2234.]).

While the resolution of powder diffraction data alone is not sufficient to distinguish between the presence of H atoms and vacancies, several findings corroborated the proposed model of inverted HPO42− groups. A preliminary model involving vacancies on both the Ca4 and O2 positions without further rearrangement was considered. However, the resulting fit with the observed structure was less precise compared with the model involving inverted HPO42− tetrahedra. The presence of HPO42− groups was further supported by the absorption band at 875 cm−1 observed in the FTIR spectra. Moreover, this model was previously shown to allow for successful refinement of a whitlockite crystal structure (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]). Whitlockite crystallizes in space group R3c with a unit cell equivalent to that of β-TCP and can be described by the idealized formula Ca18(M2+)2(HPO4)2(PO4)12, where M2+ is a divalent cation substituting for Ca2+, typically Mg2+ (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]; Jang et al., 2014[Jang, H. L., Jin, K., Lee, J., Kim, Y., Nahm, S. H., Hong, K. S. & Nam, K. T. (2014). Am. Chem. Soc. Nano, 8, 634-641.]). Here, a hydrothermally synthesized Mg-whitlockite was refined with minimal mismatch using the described model, resulting in a stoichiometry closely matching the synthetic whitlockite formula. Therefore, the mechanism of the H for Ca substitution and inversion of the tetrahedron appear to be identical in both whitlockite and β-TCP platelets. The platelet crystal structure can thus be defined both as Mg-free whitlockite or, in other words, hydrogen-substituted β-TCP. However, in contrast to synthetic whitlockite, not all of the P1O4 tetrahedra were inverted in platelets (fm = 0.80 ± 0.04). Interestingly, a similar fraction has been reported in a naturally occurring whitlockite, described by the formula Ca18.19(Mg1.17Fe0.83)H1.62(PO4)14 (i.e. fm = 0.81), which can be explained by a solid solution of synthetic whitlockite and merrilite (e.g. Mg- and Na-substituted β-TCP) structure (Calvo & Gopal, 1975[Calvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120-133.]; Hughes et al., 2008[Hughes, J. M., Jolliff, B. L. & Rakovan, J. (2008). Am. Mineral. 93, 1300-1305.]).

Whitlockite precipitates from aqueous solutions at ambient or hydrothermal conditions, provided that Mg is available (Hamad & Heughebaert, 1986[Hamad, M. & Heughebaert, J. C. (1986). J. Cryst. Growth, 79, 192-197.]). In contrast, in the absence of Mg, phases including brushite, CDHA or HA are more stable than the β-TCP structure (Dorozhkin & Epple, 2002[Dorozhkin, S. V. & Epple, M. (2002). Angew. Chem. Int. Ed. 41, 3130-3146.]). Therefore, Mg-free β-TCP was never observed to precipitate from aqueous solutions, but forms above 1073 K by decomposition of CDHA or by solid-state reactions (Gibson et al., 2000[Gibson, I. R., Rehman, I., Best, S. M. & Bonfield, W. (2000). J. Mater. Sci. Mater. Med. 11, 533-539.]). Nevertheless, pure β-TCP has been produced from amorphous calcium phosphate precursors under autoclave conditions at 493 K (Toyama et al., 2002[Toyama, T., Nakashima, K. & Yasue, T. (2002). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 110, 716-721.]), while α-TCP was transformed at 423 to 473 K into a biphasic mixture of CDHA and up to 20% β-TCP (Galea et al., 2015[Galea, L., Alexeev, D., Bohner, M., Doebelin, N., Studart, A. R., Aneziris, C. G. & Graule, T. (2015). Biomaterials, 67, 93-103.]). A higher stability of β-TCP at elevated temperatures is in line with the fact that the solubility of β-TCP decreases more strongly with increasing temperature (between 298 and 363 K) compared with HA, brushite and monetite (Vereecke & Lemaître, 1990[Vereecke, G. & Lemaître, J. (1990). J. Cryst. Growth, 104, 820-832.]). Moreover, a higher temperature in ethylene glycol favored the precipitation of β-TCP over monetite (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.]). Nevertheless, β-TCP nanoparticles have been synthesized at room temperature in methanol (Bow et al., 2004[Bow, J. S., Liou, S. C. & Chen, S. Y. (2004). Biomaterials, 25, 3155-3161.]), which underlines the importance of the solvent. In organic solvents, the precipitation of phases such as brushite or HA may be prevented because they require the presence of either H2O molecules or OH ions. The β-TCP materials synthesized through wet-chemical methods mentioned here were either not analyzed for H- for Ca-substitution (Galea et al., 2015[Galea, L., Alexeev, D., Bohner, M., Doebelin, N., Studart, A. R., Aneziris, C. G. & Graule, T. (2015). Biomaterials, 67, 93-103.]; Bow et al., 2004[Bow, J. S., Liou, S. C. & Chen, S. Y. (2004). Biomaterials, 25, 3155-3161.]) or exhibited only a small fraction of HPO42− groups, as revealed by FTIR, according to the formula Ca2.98(HPO4)0.04(PO4)1.96 (Toyama et al., 2002[Toyama, T., Nakashima, K. & Yasue, T. (2002). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 110, 716-721.]). In contrast, the use of ethylene glycol and temperatures between 363 and 443 K resulted in much more significant hydrogen substitution.

Most CaP phases which precipitate in aqueous solution, e.g. CDHA, brushite or monocalcium phosphate monohydrate [MCPM, Ca(H2PO4)2·H2O], contain HPO42− (or H2PO4) groups (Dorozhkin & Epple, 2002[Dorozhkin, S. V. & Epple, M. (2002). Angew. Chem. Int. Ed. 41, 3130-3146.]), which thus parallels the incorporation of HPO42− groups into platelets synthesized in ethylene glycol. At temperatures of 1273 K or more, CaP phases comprising HPO42− groups are known to be thermally unstable. In the case of CDHA with a variable degree of Ca deficiency, x, calcination leads to the following transformation

[\eqalign{&{\rm Ca}_{10-x}({\rm HPO}_4)_x({\rm PO}_4)_{6-x}({\rm OH})_{2-x} \rightarrow\cr &(1-x) {\rm Ca}_{10}({\rm PO}_4)_6({\rm OH})_2 + 3\times {\rm Ca}_3({\rm PO}_4)_2 + x {\rm H}_2{\rm O} \,(0\,\lt\, x\le 1),}]

where quantification of the weight fractions of the biphasic calcined sample allows for accurate determination of the initial degree of Ca deficiency (Ishikawa et al., 1993[Ishikawa, K., Ducheyne, P. & Radin, S. (1993). J. Mater. Sci. Mater. Med. 4, 165-168.]). The Ca-deficient β-TCP platelets decomposed into β-CPP (Ca/P = 1) and β-TCP that exhibited no detectable Ca-deficiency when refined with the same structure model and no longer showed a band at 875 cm−1 in FTIR spectra (data not shown). Hence, the thermal decomposition during calcination can be described as

[\eqalign{\beta\hbox{-}{\rm Ca}_{21-f_m}({\rm HPO}_4)_{2f_m}{\rm (PO}_4)_{14-2f_m} \rightarrow &(7-f_m) \beta \hbox{-}{\rm Ca}_3({\rm PO}_4)_2\cr & + f_m \beta\hbox{-}{\rm Ca}_2{\rm P}_2{\rm O}_7 + f_m {\rm H}_2{\rm O}.}]

The as-determined overall Ca/P ratio of the biphasic sample coincided well with the refined Ca/P ratio of the as-synthesized β-TCP sample, as well as with the elemental compositions determined by ICP-MS, which underlines the quantitative accuracy of the refinement model. Deprotonization and the precipitation of pyrophosphate was also observed when applying the refinement model to calcined synthetic Mg-whitlockite, which is in agreement with previous studies (Adcock et al., 2014[Adcock, C. T., Hausrath, E. M., Forster, P. M., Tschauner, O. & Sefein, K. J. (2014). Am. Mineral. 99, 1221-1232.]).

The stoichiometry of the β-TCP platelets was independent of numerous synthesis parameters. Notably, neither the temperature nor the precursor Ca/P ratio nor the total concentration had an effect on the final Ca/P ratio in the crystals, indicating that the Ca deficiency is not the result of limited Ca ion supply or diffusion during crystallization. This conclusion is in line with the fact that the Ca/P ratio was identical in platelets produced in glycerol, a solvent exhibiting a 30-fold lower ionic mobility compared with ethylene glycol due to its higher viscosity (Kameche et al., 2005[Kameche, M., Bouamrane, R., Derriche, Z. & Blanco, M. C. (2005). Mol. Phys. 103, 1231-1239.]). Also, since the final stoichiometry was independent of the reaction time (varying from 1 min to 24 h), the Ca deficiency cannot be a result of Ca diffusing out of the crystals after their formation. Overall, these findings strongly suggest that the platelet structure is a thermodynamically stable and non-kinetically limited phase. This is in contrast with the precipitation of CDHA in aqueous solutions where the Ca/P ratio can vary between 1.5 and 1.67 and is known to increase with increasing precursor Ca/P ratio, reaction temperature and time (Raynaud et al., 2002[Raynaud, S., Champion, E., Bernache-Assollant, D. & Thomas, P. (2002). Biomaterials, 23, 1065-1072.]; Ishikawa et al., 1993[Ishikawa, K., Ducheyne, P. & Radin, S. (1993). J. Mater. Sci. Mater. Med. 4, 165-168.]; Vallet-Regí et al., 1997[Vallet-Regí, M., Rodríguez-Lorenzo, L. M. & Salinas, A. J. (1997). Solid State Ion. 101-103, 1279-1285.]). In particular, the Ca/P ratio in CDHA gradually increases towards a thermodynamically more stable value (closer to 1.67) when incubated for longer time periods (Vallet-Regí et al., 1997[Vallet-Regí, M., Rodríguez-Lorenzo, L. M. & Salinas, A. J. (1997). Solid State Ion. 101-103, 1279-1285.]). Moreover, the Ca/P ratio in CDHA varies with the solution pH (Vallet-Regí et al., 1997[Vallet-Regí, M., Rodríguez-Lorenzo, L. M. & Salinas, A. J. (1997). Solid State Ion. 101-103, 1279-1285.]), whereas the acidity of ethylene glycol solutions did not influence the Ca/P ratio in the platelets, even when approaching the stability region of the monetite phase. Interestingly, several of these synthesis parameters had a major effect on the platelet geometry, with the diameter and aspect ratio varying from 0.2 to 2 µm and from 1 to 14, respectively, as reported previously (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.], 2014[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Ring, T. A., Aneziris, C. G. & Graule, T. (2014). Acta Biomater. 10, 3922-3930.]). Given this large range of surface-to-volume ratios in samples with almost identical Ca/P ratios, the Ca deficiency is likely homogeneously distributed throughout the crystals. This finding is consistent with a previous study reporting that the center and edge region of the single crystals were crystallographically identical (Tao et al., 2008[Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, R. & Tang, R. (2008). Cryst. Growth Des. 8, 2227-2234.]).

Owing to their controllable geometry and non-agglomerating properties, the platelets described in this study are of interest as fillers in nano-structured load-bearing composites or, at lower aspect ratios, may enhance the flowability of CaP pastes (Galea et al., 2013[Galea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388-6401.]). The success of a bone substitute material relies on the solubility and degradation kinetics in aqueous environments, which are dependent on the crystal structure. In (CD)HA, a lower Ca/P ratio, i.e. a higher degree of hydrogen substitution, is known to lead to a higher dissolution rate and an earlier precipitation of an apatite surface layer (Radin & Ducheyne, 1993[Radin, S. R. & Ducheyne, P. (1993). J. Biomed. Mater. Res. 27, 35-45.]; Mavropoulos et al., 2003[Mavropoulos, E., Rossi, A. M., da Rocha, N. C. C., Soares, G. A., Moreira, J. C. & Moure, G. T. (2003). Mater. Charact. 50, 203-207.]). In β-TCP and whitlockite, Mg plays an important role in the thermodynamic stability. Specifically, substitution of 8 mol% Ca for Mg in β-TCP increases the thermal stability from 1423 K up to 1873 K (Enderle et al., 2005[Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A. & Greil, P. (2005). Biomaterials, 26, 3379-3384.]), while at low temperature Mg reduces the solubility of whitlockite below that of β-TCP and CDHA (Hamad & Heughebaert, 1986[Hamad, M. & Heughebaert, J. C. (1986). J. Cryst. Growth, 79, 192-197.]). The stabilizing effect of Mg dominates any additional change in solubility resulting from the hydrogen substitution. On the other hand, the structure presented in this study is free of Mg and thus allows for an isolated analysis of the effect of hydrogen substitution on the solubility of β-TCP, which will be a priority in future studies.

Since β-TCP bone grafts often require more than a year for complete resorption (Van Der Pol et al., 2010[Pol, U. van der, Mathieu, L., Zeiter, S., Bourban, P. E., Zambelli, P. Y., Pearce, S. G., Bouré, L. P. & Pioletti, D. P. (2010). Acta Biomaterialia, 6, 3755-3762.]), a material with a higher degradation rate than stoichiometric β-TCP may provide a clinical benefit in orthopaedic applications. Monetite and brushite materials exhibit very fast resorption but are associated with acidic pH changes when transforming into HA due to the presence of HPO42− groups, which limits the volume of their application. Since HPO42− groups represent only a fraction of the phosphate groups in platelets, weaker pH changes are expected compared with monetite or brushite. Therefore, a more soluble hydrogen-substituted β-TCP material may provide a faster resorbing, highly biocompatible alternative to stoichiometric β-TCP bone graft substitutes.

5. Conclusions

This study elucidated the crystal structure of β-TCP platelets precipitated in ethylene glycol. Rietveld refinement of XRD patterns indicated sub-occupied Ca4 and O2 atomic sites compared with the published β-TCP crystal model. In contrast, a model adopted from the whitlockite structure, where Ca is partly substituted by H along with the inversion of P1O4 tetrahedra, resulted in precise and reproducible refinements with stable convergence towards a Ca/P ratio of 1.443 ± 0.003 (n = 36) and was corroborated by the presence of HPO42− absorptions in FTIR spectra. Calcination of the platelets led to phase separation into H-free β-TCP (Ca/P = 1.5) and β-CPP (Ca/P = 1.0) which served as a quantitative verification of the initially refined β-TCP Ca/P ratio. Specifically, the global Ca/P ratio closely matched the β-TCP Ca/P ratio before calcination (ΔCa/P = 0.003) and the chemical composition measured by ICP-MS (ΔCa/P = 0.003). The Ca/P ratio was independent of synthesis parameters including temperature, time, pH, precursor Ca/P ratio and concentration, which indicates a thermodynamically stable phase. These findings describe for the first time a hydrogen-substituted β-TCP structure or, in other words, an Mg-free whitlockite and thus raise the question of the role of hydrogen substitution in β-TCP solubility.

6. Related literature

References cited in the supporting information include: Cerruti et al. (2014[Cerruti, M., Magnacca, G., Bolis, V. & Morterra, C. (2003). J. Mater. Chem. 13, 1279-1286.]), Nuevo et al. (2006[Nuevo, M., Meierhenrich, U. J., Muñoz Caro, G. M., Dartois, E., D'Hendecourt, L., Deboffle, D., Auger, G., Blanot, D., Bredehöft, J. H. & Nahon, L. (2006). Astron. Astrophys. 457, 741-751.]), Ping et al. (2001[Ping, Z. H., Nguyen, Q. T., Chen, S. M., Zhou, J. Q. & Ding, Y. D. (2001). Polymer, 42, 8461-8467.]) and Tortet (1997[Tortet, L., Gavarri, J. R., Nihoul, G. & Dianoux, A. J. (1997). J. Solid State Chem. 132, 6-16.]).

Supporting information


Computing details top

For all compounds, program(s) used to refine structure: Profex; software used to prepare material for publication: Profex.

(150212-01-betaTCP) betaTCP top
Crystal data top
Ca20.22H1.56O56P14a = 10.4731 (13) Å
Mr = 2141.7c = 37.371 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.670Rexp = 5.330
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2842 (10)0.1484 (17)0.1663 (13)1.01 (7)
CA20.3892 (10)0.1835 (18)0.0337 (14)0.99 (7)
CA30.2874 (7)0.1486 (15)0.0623 (14)2.75 (19)
CA40.000000.000000.083001.62 (11)0.11180
CA50.000000.000000.2680 (14)1.69 (12)
P60.000000.000000.000001.3 (5)0.22350
P70.000000.000000.020901.3 (5)0.77650
P80.313000.143300.132000.94 (16)
P90.351400.163000.233000.61 (10)
O100.012700.134500.010501.04618
O110.000000.000000.040101.015910.22350
O120.000000.000000.061001.015910.77650
H130.000000.000000.086200.500000.77650
O140.274800.104700.092301.23699
O150.249400.238500.145401.15803
O160.257200.004300.151200.37636
O170.480300.227700.138500.82642
O180.408000.060300.219500.55928
O190.432300.318100.216900.59218
O200.188100.093600.222100.53822
O210.370100.175000.273400.69087
(150212-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0163 (16) Å
Mr = 136.06α = 95.98 (3)°
Triclinic, P1β = 103.93 (2)°
a = 6.9065 (15) Åγ = 88.408 (18)°
b = 6.6435 (16) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.670Rexp = 5.330
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150212-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.50200 (1) Å
Mr = 519.11c = 6.836 (5) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.670Rexp = 5.330
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150212-02-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4755 (10) Å
Mr = 2141.1c = 37.380 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.780Rexp = 5.290
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2850 (9)0.1483 (14)0.1657 (14)1.01 (7)
CA20.3880 (10)0.1844 (18)0.0340 (14)0.99 (6)
CA30.2869 (6)0.1521 (14)0.0619 (14)2.74 (18)
CA40.000000.000000.087 (2)1.62 (10)0.10420
CA50.000000.000000.2681 (14)1.68 (11)
P60.000000.000000.000002.7 (5)0.20830
P70.000000.000000.020102.7 (5)0.79170
P80.313800.146500.132701.24 (15)
P90.352500.165000.233500.81 (10)
O100.014900.131900.010101.04618
O110.000000.000000.040101.015910.20830
O120.000000.000000.060201.015910.79170
H130.000000.000000.085400.500000.79170
O140.276600.108600.092901.23699
O150.247900.239300.146201.15803
O160.259900.001300.151600.37636
O170.481000.232900.139300.82642
O180.408900.061600.220400.55928
O190.432400.318900.216800.59218
O200.188800.094500.222900.53822
O210.372600.180000.273900.69087
(150212-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.06800 (1) Å
Mr = 136.06α = 95.43 (3)°
Triclinic, P1β = 103.72 (2)°
a = 6.8948 (15) Åγ = 88.387 (18)°
b = 6.6362 (17) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.780Rexp = 5.290
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150212-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.564 (15) Å
Mr = 519.11c = 6.80 (2) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.780Rexp = 5.290
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150213-01-betaTCP) betaTCP top
Crystal data top
Ca20.19H1.62O56P14a = 10.4760 (11) Å
Mr = 2140.4c = 37.383 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.850
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2840 (9)0.1469 (15)0.16417 (18)1.21 (6)
CA20.3876 (10)0.1854 (15)0.035601.19 (6)
CA30.2880 (6)0.1474 (12)0.06036 (19)3.31 (16)
CA40.000000.000000.084 (2)1.95 (10)0.09540
CA50.000000.000000.2693 (5)2.03 (10)
P60.000000.000000.000001.4 (4)0.19080
P70.000000.000000.022801.4 (4)0.80920
P80.315200.144400.134400.81 (13)
P90.354100.168600.235100.53 (9)
O100.016900.130000.011401.04618
O110.000000.000000.040101.015910.19080
O120.000000.000000.062901.015910.80920
H130.000000.000000.088100.500000.80920
O140.277900.106900.094601.23699
O150.250500.238200.147901.15803
O160.260100.003700.153200.37636
O170.482400.229500.141000.82642
O180.410900.065800.221800.55928
O190.434000.322900.218500.59218
O200.190500.098000.224400.53822
O210.373800.182800.275400.69087
(150213-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0003 (10) Å
Mr = 136.06α = 96.291 (12)°
Triclinic, P1β = 103.937 (11)°
a = 6.9069 (10) Åγ = 88.433 (10)°
b = 6.6393 (10) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.850
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150213-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.550 (12) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.850
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150213-02-betaTCP) betaTCP top
Crystal data top
Ca20.22H1.56O56P14a = 10.4755 (13) Å
Mr = 2141.4c = 37.376 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.280Rexp = 5.600
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2844 (10)0.1520 (14)0.1657 (16)0.60 (7)
CA20.3863 (12)0.188 (2)0.0342 (16)0.59 (7)
CA30.2869 (7)0.1536 (16)0.0621 (16)1.63 (19)
CA40.000000.000000.083 (3)0.96 (11)0.10800
CA50.000000.000000.2686 (16)1.00 (12)
P60.000000.000000.000001.9 (6)0.21610
P70.000000.000000.020601.9 (6)0.78390
P80.312600.148500.132701.1 (2)
P90.352700.166600.233300.73 (13)
O100.011900.133900.010301.04618
O110.000000.000000.040101.015910.21610
O120.000000.000000.060601.015910.78390
H130.000000.000000.085800.500000.78390
O140.275500.111900.092801.23699
O150.248700.242900.146301.15803
O160.256400.000100.151400.37636
O170.479700.232600.139400.82642
O180.409200.063000.220400.55928
O190.431900.319800.216100.59218
O200.188700.095300.222800.53822
O210.373500.183200.273600.69087
(150213-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.029 (4) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 102.78000 (1)°
a = 6.84100 (1) Åγ = 89.21000 (1)°
b = 6.654 (5) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.280Rexp = 5.600
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150213-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.50200 (1) Å
Mr = 519.11c = 6.829 (7) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.280Rexp = 5.600
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150216-01-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4776 (13) Å
Mr = 2141.2c = 37.384 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.840Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2841 (10)0.1495 (17)0.1643 (2)0.48 (7)
CA20.3869 (11)0.1823 (19)0.035600.47 (6)
CA30.2872 (7)0.1491 (14)0.0607 (2)1.32 (18)
CA40.000000.000000.083000.78 (11)0.10600
CA50.000000.000000.2693 (6)0.81 (11)
P60.000000.000000.000000.8 (5)0.21200
P70.000000.000000.022100.8 (5)0.78800
P80.313500.144500.133700.64 (17)
P90.353300.165700.234400.42 (11)
O100.010400.136800.011101.04618
O110.000000.000000.040101.015910.21200
O120.000000.000000.062201.015910.78800
H130.000000.000000.087400.500000.78800
O140.276300.107600.093901.23699
O150.249000.238500.147301.15803
O160.257900.003800.152400.37636
O170.480500.229200.140400.82642
O180.409500.062700.220800.55928
O190.434300.320700.218200.59218
O200.190100.096600.223500.53822
O210.372100.177900.274800.69087
(150216-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0636 (18) Å
Mr = 136.06α = 96.11 (3)°
Triclinic, P1β = 104.57 (3)°
a = 6.8763 (17) Åγ = 88.12 (2)°
b = 6.6644 (19) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.840Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150216-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.579 (12) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.840Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150216-02-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4724 (12) Å
Mr = 2141.2c = 37.376 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.740Rexp = 5.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2843 (12)0.1444 (18)0.1651 (16)1.37385
CA20.3883 (13)0.1820 (15)0.0350 (16)1.34753
CA30.2868 (8)0.1458 (14)0.0616 (16)3.74782
CA40.000000.000000.083 (3)2.210800.10520
CA50.000000.000000.2677 (17)2.30028
P60.000000.000000.000001.4 (6)0.21040
P70.000000.000000.020201.4 (6)0.78960
P80.316900.142700.132801.56 (18)
P90.354700.166500.233601.02 (12)
O100.022800.125700.010101.04618
O110.000000.000000.040101.015910.21040
O120.000000.000000.060301.015910.78960
H130.000000.000000.085500.500000.78960
O140.279000.105200.093101.23699
O150.254500.238600.146301.15803
O160.259600.005600.151700.37636
O170.484100.225700.139400.82642
O180.409700.062900.219700.55928
O190.437600.322400.218000.59218
O200.191900.099500.222500.53822
O210.372500.176200.274100.69087
(150216-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9932 (8) Å
Mr = 136.06α = 96.258 (2)°
Triclinic, P1β = 103.959 (2)°
a = 6.9087 (8) Åγ = 88.404 (2)°
b = 6.6348 (8) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.740Rexp = 5.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150216-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.572 (8) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.740Rexp = 5.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150217-01-betaTCP) betaTCP top
Crystal data top
Ca20.20H1.60O56P14a = 10.4754 (13) Å
Mr = 2140.7c = 37.375 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.010Rexp = 5.550
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2875 (10)0.146 (2)0.168 (2)1.37385
CA20.3920 (11)0.1819 (14)0.032 (2)1.34753
CA30.2872 (8)0.1424 (15)0.064 (2)3.74782
CA40.000000.000000.089 (4)2.210800.09890
CA50.000000.000000.266 (2)2.30028
P60.000000.000000.000004.0 (6)0.19780
P70.000000.000000.016104.0 (6)0.80220
P80.314100.141400.131301.37 (18)
P90.350900.165700.231500.90 (12)
O100.012400.138100.008101.04618
O110.000000.000000.040101.015910.19780
O120.000000.000000.056201.015910.80220
H130.000000.000000.081400.500000.80220
O140.277500.106200.091401.23699
O150.250800.236100.145101.15803
O160.256800.007900.149700.37636
O170.481100.224500.138200.82642
O180.406500.061900.218200.55928
O190.431900.320000.215000.59218
O200.187400.096400.220800.53822
O210.370500.179400.271900.69087
(150217-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.014 (2) Å
Mr = 136.06α = 97.14 (4)°
Triclinic, P1β = 102.82 (3)°
a = 6.8507 (19) Åγ = 87.48 (3)°
b = 6.603 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.010Rexp = 5.550
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150217-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.513 (6) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.010Rexp = 5.550
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150220-01-betaTCP) betaTCP top
Crystal data top
Ca20.18H1.64O56P14a = 10.4753 (10) Å
Mr = 2139.9c = 37.375 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.320Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2866 (8)0.1478 (13)0.1651 (12)1.37385
CA20.3911 (8)0.1840 (13)0.0348 (12)1.34753
CA30.2875 (6)0.1492 (11)0.0615 (12)3.74782
CA40.000000.000000.088 (3)2.210800.08800
CA50.000000.000000.2685 (13)2.30028
P60.000000.000000.000002.6 (4)0.17600
P70.000000.000000.021002.6 (4)0.82400
P80.315600.144100.133801.49 (13)
P90.352100.164700.234200.98 (9)
O100.011400.136200.010501.04618
O110.000000.000000.040101.015910.17600
O120.000000.000000.061001.015910.82400
H130.000000.000000.086200.500000.82400
O140.279400.108500.093901.23699
O150.249900.236600.147601.15803
O160.260500.004900.152200.37636
O170.482500.229400.140700.82642
O180.407800.061400.220700.55928
O190.433500.319700.218100.59218
O200.188800.096000.223300.53822
O210.370900.176800.274600.69087
(150220-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.063 (2) Å
Mr = 136.06α = 96.79 (4)°
Triclinic, P1β = 102.97 (3)°
a = 6.84100 (1) Åγ = 87.65 (3)°
b = 6.666 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.320Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150220-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.538 (7) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.320Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150220-02-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4765 (13) Å
Mr = 2141.2c = 37.382 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.520Rexp = 5.150
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2830 (12)0.1439 (19)0.1640 (2)1.33 (8)
CA20.3882 (13)0.1837 (16)0.035601.31 (8)
CA30.2865 (8)0.1438 (15)0.0607 (2)3.6 (2)
CA40.000000.000000.083 (2)2.14 (12)0.10440
CA50.000000.000000.2694 (7)2.23 (13)
P60.000000.000000.000001.0 (5)0.20880
P70.000000.000000.022301.0 (5)0.79120
P80.316600.144000.133801.18 (16)
P90.353600.167100.234800.78 (11)
O100.015300.131500.011201.04618
O110.000000.000000.040101.015910.20880
O120.000000.000000.062401.015910.79120
H130.000000.000000.087600.500000.79120
O140.277900.104200.094101.23699
O150.253000.239300.147001.15803
O160.261400.003000.153200.37636
O170.483900.228900.140100.82642
O180.412300.066400.221200.55928
O190.432800.322500.218800.59218
O200.190300.095900.223800.53822
O210.371900.178800.275200.69087
(150220-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9958 (10) Å
Mr = 136.06α = 96.208 (8)°
Triclinic, P1β = 103.976 (7)°
a = 6.9126 (10) Åγ = 88.412 (6)°
b = 6.6378 (10) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.520Rexp = 5.150
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150220-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.660 (7) Å
Mr = 519.11c = 6.736 (13) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.520Rexp = 5.150
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150305-04-betaTCP) betaTCP top
Crystal data top
Ca20.26H1.48O56P14a = 10.4696 (12) Å
Mr = 2142.9c = 37.372 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.660Rexp = 7.000
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2835 (11)0.1487 (18)0.1687 (2)0.83 (7)
CA20.3877 (12)0.184 (2)0.031600.81 (7)
CA30.2868 (7)0.1485 (15)0.0636 (3)2.3 (2)
CA40.000000.000000.087 (2)1.33 (12)0.12820
CA50.000000.000000.2658 (7)1.39 (12)
P60.000000.000000.000002.4 (6)0.25640
P70.000000.000000.019102.4 (6)0.74360
P80.312500.141100.131001.5 (2)
P90.351200.162700.231600.99 (13)
O100.010400.137500.009501.04618
O110.000000.000000.040101.015910.25640
O120.000000.000000.059201.015910.74360
H130.000000.000000.084400.500000.74360
O140.272200.098000.091501.23699
O150.249300.237300.143701.15803
O160.258200.004400.151100.37636
O170.480200.226600.136900.82642
O180.406100.058300.218300.55928
O190.433000.317200.215100.59218
O200.187800.094300.220900.53822
O210.370800.176300.272000.69087
(150305-04-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.50200 (1) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.660Rexp = 7.000
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150306-01-betaTCP) betaTCP top
Crystal data top
Ca20.25H1.50O56P14a = 10.4713 (15) Å
Mr = 2142.7c = 37.382 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.650
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2818 (12)0.146 (2)0.1647 (7)1.30 (8)
CA20.3875 (13)0.187 (2)0.0354 (7)1.28 (8)
CA30.2912 (8)0.148 (2)0.0609 (7)3.6 (2)
CA40.000000.000000.083002.10 (12)0.12460
CA50.000000.000000.270002.18 (13)
P60.000000.000000.000001.1 (6)0.24930
P70.000000.000000.023201.1 (6)0.75070
P80.310700.145700.134201.59 (19)
P90.348700.165900.235301.04 (12)
O100.012900.135800.011601.04618
O110.000000.000000.040101.015910.24930
O120.000000.000000.063201.015910.75070
H130.000000.000000.088400.500000.75070
O140.273000.109700.094401.23699
O150.250100.242900.147901.15803
O160.251400.003500.152900.37636
O170.477900.226500.140900.82642
O180.407400.064500.222100.55928
O190.426900.320100.218600.59218
O200.184900.093400.224600.53822
O210.368400.180700.275600.69087
(150306-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.063 (3) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 104.13 (5)°
a = 6.843 (3) Åγ = 88.54 (4)°
b = 6.619 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.650
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150306-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.544 (5) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.650
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150306-02-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4709 (11) Å
Mr = 2141.1c = 37.372 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.820
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2841 (10)0.1500 (14)0.1663 (14)0.35 (7)
CA20.3863 (11)0.185 (2)0.0342 (14)0.34 (7)
CA30.2854 (7)0.1517 (13)0.0619 (14)0.94 (18)
CA40.000000.000000.083000.56 (11)0.10420
CA50.000000.000000.2676 (14)0.58 (11)
P60.000000.000000.000002.0 (6)0.20840
P70.000000.000000.019702.0 (6)0.79160
P80.315000.145000.132000.97 (18)
P90.354500.165500.232500.64 (12)
O100.011300.136300.009901.04618
O110.000000.000000.040101.015910.20840
O120.000000.000000.059801.015910.79160
H130.000000.000000.085000.500000.79160
O140.276400.104400.092301.23699
O150.249600.238900.145101.15803
O160.261600.001600.151500.37636
O170.482400.231800.138200.82642
O180.410700.062300.219100.55928
O190.435300.320300.216100.59218
O200.191000.096000.221700.53822
O210.373700.178600.272900.69087
(150306-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.019 (2) Å
Mr = 136.06α = 96.09 (3)°
Triclinic, P1β = 103.95 (3)°
a = 6.908 (2) Åγ = 88.43 (3)°
b = 6.638 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.820
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150306-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.565 (19) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.820
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150309-02-betaTCP) betaTCP top
Crystal data top
Ca20.19H1.62O56P14a = 10.4664 (16) Å
Mr = 2140.3c = 37.358 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2845 (12)0.147 (3)0.1672 (18)0.81 (8)
CA20.3881 (13)0.186 (2)0.0326 (18)0.79 (8)
CA30.2888 (9)0.146 (2)0.0635 (18)2.2 (2)
CA40.000000.000000.083001.30 (13)0.09370
CA50.000000.000000.2663 (19)1.35 (14)
P60.000000.000000.000002.6 (7)0.18750
P70.000000.000000.019402.6 (7)0.81250
P80.313500.144800.130901.2 (2)
P90.352400.167500.231700.76 (13)
O100.010900.138000.009701.04618
O110.000000.000000.040101.015910.18750
O120.000000.000000.059501.015910.81250
H130.000000.000000.084700.500000.81250
O140.275400.107100.091101.23699
O150.251500.241200.144401.15803
O160.256000.003500.149900.37636
O170.480900.227500.137500.82642
O180.413100.068100.218300.55928
O190.429400.322500.215500.59218
O200.188600.093700.220800.53822
O210.371000.180500.272100.69087
(150309-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.058 (2) Å
Mr = 136.06α = 95.56 (4)°
Triclinic, P1β = 104.67 (3)°
a = 6.893 (2) Åγ = 87.84 (3)°
b = 6.631 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150309-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.528 (6) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.670
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150310-01-betaTCP) betaTCP top
Crystal data top
Ca20.18H1.64O56P14a = 10.469 (2) Å
Mr = 2139.9c = 37.358 (8) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.780Rexp = 7.370
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2878 (17)0.151 (3)0.1650 (4)0.75 (13)
CA20.3914 (18)0.183 (3)0.035600.74 (13)
CA30.2853 (12)0.143 (3)0.0610 (4)2.1 (4)
CA40.000000.000000.083001.2 (2)0.08800
CA50.000000.000000.2693 (11)1.3 (2)
P60.000000.000000.000003.6 (11)0.17600
P70.000000.000000.020803.6 (11)0.82400
P80.316000.143600.134101.60546
P90.354100.168400.234601.05276
O100.009100.137100.010401.04618
O110.000000.000000.040101.015910.17600
O120.000000.000000.060901.015910.82400
H130.000000.000000.086100.500000.82400
O140.279300.109000.094101.23699
O150.253900.239300.148001.15803
O160.257400.006200.152400.37636
O170.483100.225300.141000.82642
O180.412700.067100.221300.55928
O190.432700.323000.218100.59218
O200.190400.096300.223800.53822
O210.373500.182400.275000.69087
(150310-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9959 (16) Å
Mr = 136.06α = 96.299 (10)°
Triclinic, P1β = 103.964 (9)°
a = 6.9042 (15) Åγ = 88.417 (8)°
b = 6.6329 (15) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.780Rexp = 7.370
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150310-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.577 (3) Å
Mr = 519.11c = 6.8182 (19) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.780Rexp = 7.370
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150311-02-betaTCP) betaTCP top
Crystal data top
Ca20.19H1.62O56P14a = 10.4809 (17) Å
Mr = 2140.3c = 37.383 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2833 (13)0.134 (3)0.1643 (3)0.66 (9)
CA20.3865 (14)0.199 (3)0.035600.65 (8)
CA30.2865 (9)0.143 (2)0.0601 (3)1.8 (2)
CA40.000000.000000.083001.06 (14)0.09330
CA50.000000.000000.2691 (8)1.11 (14)
P60.000000.000000.000002.4 (7)0.18660
P70.000000.000000.023302.4 (7)0.81340
P80.316300.162700.134001.2 (2)
P90.357200.184800.234900.75 (15)
O100.127900.016700.011701.04618
O110.000000.000000.040101.015910.18660
O120.000000.000000.063401.015910.81340
H130.000000.000000.088600.500000.81340
O140.281800.134900.093801.23699
O150.258300.260400.148801.15803
O160.252000.010000.150900.37636
O170.482600.238400.141500.82642
O180.422000.085900.224300.55928
O190.423600.330800.214500.59218
O200.191100.099800.226200.53822
O210.384700.217400.274700.69087
(150311-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0001 (11) Å
Mr = 136.06α = 96.256 (5)°
Triclinic, P1β = 104.015 (4)°
a = 6.9114 (11) Åγ = 88.429 (4)°
b = 6.6421 (11) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150311-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.68 (3) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.040Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150316-01-betaTCP) betaTCP top
Crystal data top
Ca20.18H1.64O56P14a = 10.4750 (14) Å
Mr = 2140.1c = 37.369 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.060Rexp = 5.720
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2832 (11)0.145 (3)0.1643 (3)1.01 (7)
CA20.3876 (12)0.1894 (19)0.035600.99 (7)
CA30.2875 (8)0.139 (2)0.0609 (3)2.8 (2)
CA40.000000.000000.083001.63 (12)0.09140
CA50.000000.000000.2680 (8)1.70 (12)
P60.000000.000000.000000.9 (6)0.18270
P70.000000.000000.023400.9 (6)0.81730
P80.315000.149100.133401.16 (18)
P90.354500.173500.234100.76 (12)
O100.012000.132400.011701.04618
O110.000000.000000.040101.015910.18270
O120.000000.000000.063501.015910.81730
H130.000000.000000.088700.500000.81730
O140.275400.107300.093801.23699
O150.251500.244800.146301.15803
O160.260400.003000.153200.37636
O170.482500.234300.139500.82642
O180.416400.074300.221400.55928
O190.428800.326400.216800.59218
O200.190100.096600.223700.53822
O210.375400.191500.274400.69087
(150316-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9983 (11) Å
Mr = 136.06α = 96.240 (11)°
Triclinic, P1β = 104.019 (8)°
a = 6.9063 (10) Åγ = 88.433 (7)°
b = 6.6379 (11) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.060Rexp = 5.720
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150316-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.564 (3) Å
Mr = 519.11c = 6.765 (3) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.060Rexp = 5.720
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150317-01-betaTCP) betaTCP top
Crystal data top
Ca20.08H1.84O56P14a = 10.4706 (19) Å
Mr = 2136.1c = 37.360 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.490
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2871 (14)0.146 (3)0.1631 (3)1.27 (9)
CA20.3928 (13)0.195 (2)0.035601.24 (9)
CA30.2857 (10)0.1315 (19)0.0599 (3)3.5 (3)
CA40.000000.000000.083002.04 (15)0.03830
CA50.000000.000000.2687 (7)2.12 (16)
P60.000000.000000.000003.0 (6)0.07660
P70.000000.000000.020503.0 (6)0.92340
P80.318300.149800.134700.40136
P90.352800.182100.235800.26319
O100.008700.145800.010201.04618
O110.000000.000000.040101.015910.07660
O120.000000.000000.060601.015910.92340
H130.000000.000000.085800.500000.92340
O140.282100.115900.094701.23699
O150.255500.244800.148701.15803
O160.259900.000300.152800.37636
O170.485200.231800.141700.82642
O180.412700.081400.222900.55928
O190.429100.335500.218600.59218
O200.188500.107500.225300.53822
O210.373400.199100.276100.69087
(150317-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.955 (3) Å
Mr = 136.06α = 95.41 (6)°
Triclinic, P1β = 104.69 (5)°
a = 6.917 (3) Åγ = 88.20 (4)°
b = 6.691 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.490
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150317-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.69400 (1) Å
Mr = 519.11c = 6.84 (2) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.490
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150317-02-betaTCP) betaTCP top
Crystal data top
Ca20.23H1.54O56P14a = 10.4726 (15) Å
Mr = 2142.0c = 37.379 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.630Rexp = 6.230
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2839 (12)0.150 (2)0.1643 (8)0.34346
CA20.3860 (14)0.187 (3)0.0356 (7)0.33688
CA30.2871 (8)0.149 (2)0.0606 (7)0.93696
CA40.000000.000000.083000.552700.11630
CA50.000000.000000.270000.57507
P60.000000.000000.000001.4 (7)0.23260
P70.000000.000000.022901.4 (7)0.76740
P80.312700.147800.133700.6 (2)
P90.352300.168800.234600.41 (15)
O100.013200.129800.011401.04618
O110.000000.000000.040101.015910.23260
O120.000000.000000.063001.015910.76740
H130.000000.000000.088200.500000.76740
O140.275100.110300.093901.23699
O150.248600.242300.147201.15803
O160.256900.000300.152600.37636
O170.479900.232400.140300.82642
O180.412100.068700.221200.55928
O190.430000.323700.218300.59218
O200.188600.095800.223700.53822
O210.371100.181900.275000.69087
(150317-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.068 (3) Å
Mr = 136.06α = 95.43 (5)°
Triclinic, P1β = 104.57 (4)°
a = 6.868 (3) Åγ = 87.93 (3)°
b = 6.657 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.630Rexp = 6.230
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150317-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.571 (3) Å
Mr = 519.11c = 6.840 (3) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.630Rexp = 6.230
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150318-01-betaTCP) betaTCP top
Crystal data top
Ca20.17H1.66O56P14a = 10.468 (3) Å
Mr = 2139.6c = 37.344 (11) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.760Rexp = 5.420
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.283 (3)0.141 (6)0.166 (3)1.37385
CA20.385 (3)0.187 (4)0.035 (3)1.34753
CA30.2861 (17)0.139 (4)0.063 (3)3.74782
CA40.000000.000000.089 (7)2.210800.08490
CA50.000000.000000.266 (4)2.30028
P60.000000.000000.000002.0 (11)0.16980
P70.000000.000000.020402.0 (11)0.83020
P80.317500.151000.131701.60546
P90.357200.180700.233201.05276
O100.017000.129100.010201.04618
O110.000000.000000.040101.015910.16980
O120.000000.000000.060501.015910.83020
H130.000000.000000.085800.500000.83020
O140.277200.110200.092101.23699
O150.258300.250500.144701.15803
O160.258700.004100.151500.37636
O170.485100.232000.137900.82642
O180.420000.083700.219300.55928
O190.433800.337100.217700.59218
O200.193900.106500.221900.53822
O210.374100.190500.273700.69087
(150318-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.995 (2) Å
Mr = 136.06α = 96.248 (5)°
Triclinic, P1β = 104.010 (4)°
a = 6.904 (2) Åγ = 88.451 (5)°
b = 6.637 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.760Rexp = 5.420
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150318-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.57 (2) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.760Rexp = 5.420
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150323-01-betaTCP) betaTCP top
Crystal data top
Ca20.20H1.60O56P14a = 10.464 (3) Å
Mr = 2140.9c = 37.372 (9) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.950Rexp = 6.310
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2851 (15)0.146 (3)0.167 (2)0.64 (10)
CA20.3864 (15)0.190 (3)0.033 (2)0.63 (9)
CA30.2885 (11)0.135 (2)0.063 (2)1.7 (3)
CA40.000000.000000.083001.03 (15)0.10130
CA50.000000.000000.268 (2)1.07 (16)
P60.000000.000000.000002.2 (8)0.20270
P70.000000.000000.019002.2 (8)0.79730
P80.312800.153600.131900.9 (3)
P90.351400.173400.233000.56 (17)
O100.007600.135500.009501.04618
O110.000000.000000.040101.015910.20270
O120.000000.000000.059101.015910.79730
H130.000000.000000.084300.500000.79730
O140.274500.115800.092201.23699
O150.251300.250500.145401.15803
O160.254900.005300.151000.37636
O170.480300.235800.138500.82642
O180.414000.074900.220100.55928
O190.425900.327200.216000.59218
O200.187100.096600.222400.53822
O210.371600.189900.273300.69087
(150323-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.049 (4) Å
Mr = 136.06α = 95.53 (6)°
Triclinic, P1β = 104.86000 (1)°
a = 6.852 (4) Åγ = 89.06 (4)°
b = 6.686 (4) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.950Rexp = 6.310
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150323-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.50200 (1) Å
Mr = 519.11c = 6.789 (9) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.950Rexp = 6.310
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150324-01-betaTCP) betaTCP top
Crystal data top
Ca20.17H1.66O56P14a = 10.468 (2) Å
Mr = 2139.5c = 37.379 (8) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.470Rexp = 6.020
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2878 (13)0.146 (2)0.167 (2)0.79 (9)
CA20.3886 (13)0.194 (3)0.033 (2)0.78 (8)
CA30.2871 (10)0.134 (2)0.064 (2)2.2 (2)
CA40.000000.000000.091 (5)1.28 (14)0.08290
CA50.000000.000000.267 (2)1.33 (14)
P60.000000.000000.000003.2 (7)0.16580
P70.000000.000000.018403.2 (7)0.83420
P80.313000.155800.130801.0 (2)
P90.352100.175800.231800.68 (15)
O100.009800.136300.009201.04618
O110.000000.000000.040101.015910.16580
O120.000000.000000.058501.015910.83420
H130.000000.000000.083700.500000.83420
O140.277100.122800.090801.23699
O150.250500.250800.145001.15803
O160.254100.005300.148800.37636
O170.480000.237400.137900.82642
O180.413700.076200.219100.55928
O190.426900.328800.214500.59218
O200.187700.099300.221400.53822
O210.373100.193800.272100.69087
(150324-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.046 (3) Å
Mr = 136.06α = 95.41 (4)°
Triclinic, P1β = 104.86 (3)°
a = 6.899 (3) Åγ = 88.22 (3)°
b = 6.681 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.470Rexp = 6.020
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150324-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.566 (4) Å
Mr = 519.11c = 6.836 (4) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.470Rexp = 6.020
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150325-02-betaTCP) betaTCP top
Crystal data top
Ca20.23H1.54O56P14a = 10.479 (2) Å
Mr = 2142c = 37.375 (7) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.890Rexp = 5.560
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2849 (14)0.143 (3)0.1641 (3)1.37385
CA20.3881 (15)0.190 (2)0.035601.34753
CA30.2866 (10)0.137 (2)0.0606 (3)3.74782
CA40.000000.000000.083002.210800.11610
CA50.000000.000000.2687 (10)2.30028
P60.000000.000000.000001.1 (8)0.23230
P70.000000.000000.022701.1 (8)0.76770
P80.316700.153800.133801.5 (2)
P90.354800.183000.234800.97 (15)
O100.020700.126400.011401.04618
O110.000000.000000.040101.015910.23230
O120.000000.000000.062801.015910.76770
H130.000000.000000.088000.500000.76770
O140.276300.112600.094301.23699
O150.257200.252900.146801.15803
O160.258400.007200.153600.37636
O170.484100.235200.139900.82642
O180.418300.085400.221900.55928
O190.428200.336400.217800.59218
O200.190700.105200.224200.53822
O210.374800.199600.275200.69087
(150325-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9997 (14) Å
Mr = 136.06α = 96.269 (6)°
Triclinic, P1β = 104.001 (5)°
a = 6.9092 (13) Åγ = 88.453 (5)°
b = 6.6403 (13) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.890Rexp = 5.560
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150325-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.681 (4) Å
Mr = 519.11c = 6.748 (4) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.890Rexp = 5.560
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150508-01-betaTCP) betaTCP top
Crystal data top
Ca20.18H1.64O56P14a = 10.4725 (16) Å
Mr = 2140.1c = 37.355 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.110Rexp = 6.890
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2863 (11)0.142 (2)0.1642 (2)1.36 (8)
CA20.3897 (11)0.1929 (19)0.035601.33 (8)
CA30.2876 (8)0.1354 (16)0.0610 (3)3.7 (2)
CA40.000000.000000.083002.18 (12)0.09080
CA50.000000.000000.2689 (8)2.27 (13)
P60.000000.000000.000002.2 (6)0.18160
P70.000000.000000.022502.2 (6)0.81840
P80.316200.149900.133801.47 (19)
P90.354300.181100.234200.97 (12)
O100.011900.131200.011301.04618
O110.000000.000000.040101.015910.18160
O120.000000.000000.062601.015910.81840
H130.000000.000000.087800.500000.81840
O140.278100.112200.094001.23699
O150.253700.245900.147301.15803
O160.259100.001700.152800.37636
O170.483400.233000.140400.82642
O180.416800.081700.222100.55928
O190.426900.332500.216100.59218
O200.189400.102300.224300.53822
O210.377000.202900.274500.69087
(150508-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 6.9979 (15) Å
Mr = 136.06α = 96.269 (18)°
Triclinic, P1β = 103.999 (12)°
a = 6.9036 (12) Åγ = 88.432 (10)°
b = 6.6352 (13) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.110Rexp = 6.890
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150508-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.567 (4) Å
Mr = 519.11c = 6.788 (4) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.110Rexp = 6.890
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150511-02-betaTCP) betaTCP top
Crystal data top
Ca19.85H1.54Mg0.38O56P14a = 10.447 (3) Å
Mr = 2135.9c = 37.333 (11) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.810Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2853 (12)0.148 (2)0.1642 (3)0.34346
CA20.3889 (12)0.197 (3)0.035600.33688
CA30.2863 (9)0.1280 (14)0.0609 (3)0.93696
CA40.000000.000000.083000.552700.11400
CA50.000000.000000.270000.575070.81210
MG50.000000.000000.270000.575070.18790
P60.000000.000000.000001.0 (8)0.22810
P70.000000.000000.023401.0 (8)0.77190
P80.312100.153500.133700.5 (3)
P90.351100.174200.234100.33 (16)
O100.017500.127600.011701.04618
O110.000000.000000.040101.015910.22810
O120.000000.000000.063501.015910.77190
H130.000000.000000.088700.500000.77190
O140.275500.116500.093801.23699
O150.245400.245700.147401.15803
O160.258100.004800.152400.37636
O170.479600.240300.140500.82642
O180.412200.073500.221600.55928
O190.425800.326700.216300.59218
O200.186100.097300.223900.53822
O210.373000.193900.274400.69087
(150511-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.054 (3) Å
Mr = 136.06α = 95.96 (4)°
Triclinic, P1β = 104.86000 (1)°
a = 6.868 (3) Åγ = 88.05 (3)°
b = 6.638 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.810Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150511-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.54 (2) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.810Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150512-01-betaTCP) betaTCP top
Crystal data top
Ca20.09H1.64Mg0.09O56P14a = 10.4634 (18) Å
Mr = 2137.2c = 37.367 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.770
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2837 (13)0.1484 (18)0.1645 (3)0.70 (8)
CA20.3876 (15)0.184 (2)0.035600.69 (8)
CA30.2864 (8)0.1529 (18)0.0607 (3)1.9 (2)
CA40.000000.000000.083 (3)1.12 (13)0.09160
CA50.000000.000000.2689 (7)1.17 (14)0.95400
MG50.000000.000000.2689 (7)1.17 (14)0.04600
P60.000000.000000.000003.2 (7)0.18320
P70.000000.000000.021303.2 (7)0.81680
P80.313300.148900.133201.3 (2)
P90.353400.166400.234300.87 (14)
O100.017400.131400.010601.04618
O110.000000.000000.040101.015910.18320
O120.000000.000000.061401.015910.81680
H130.000000.000000.086600.500000.81680
O140.274100.108800.093501.23699
O150.250900.245400.146301.15803
O160.257000.001700.152600.37636
O170.480900.232700.139400.82642
O180.407500.061800.220600.55928
O190.436500.321900.218300.59218
O200.190200.099500.223400.53822
O210.371900.177500.274700.69087
(150512-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.059 (2) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 104.65 (3)°
a = 6.889 (2) Åγ = 88.10 (3)°
b = 6.601 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.770
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150512-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.555 (4) Å
Mr = 519.11c = 6.834 (3) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.310Rexp = 5.770
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150512-02-betaTCP) betaTCP top
Crystal data top
Ca20.25H1.50O56P14a = 10.4763 (14) Å
Mr = 2142.8c = 37.388 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.690Rexp = 6.080
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2826 (12)0.1482 (18)0.1667 (16)0.34346
CA20.3851 (13)0.186 (3)0.0332 (16)0.33688
CA30.2864 (8)0.1525 (17)0.0635 (16)0.93696
CA40.000000.000000.083000.552700.12650
CA50.000000.000000.2668 (16)0.57507
P60.000000.000000.000001.3 (7)0.25310
P70.000000.000000.020101.3 (7)0.74690
P80.312000.148000.131100.7 (2)
P90.352200.168100.231800.43 (14)
O100.009500.133800.010101.04618
O110.000000.000000.040101.015910.25310
O120.000000.000000.060201.015910.74690
H130.000000.000000.085400.500000.74690
O140.274700.111200.091301.23699
O150.248400.242700.144701.15803
O160.255600.000500.149900.37636
O170.479100.231800.137800.82642
O180.412700.068600.218400.55928
O190.429400.322900.215500.59218
O200.188600.094500.220900.53822
O210.371000.181200.272200.69087
(150512-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0460 (16) Å
Mr = 136.06α = 96.16 (2)°
Triclinic, P1β = 104.48 (2)°
a = 6.9113 (16) Åγ = 88.188 (16)°
b = 6.6420 (16) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.690Rexp = 6.080
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150512-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.574 (3) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.690Rexp = 6.080
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150528-01-betaTCP) betaTCP top
Crystal data top
Ca20.22H1.56O56P14a = 10.4732 (14) Å
Mr = 2141.4c = 37.387 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.810
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2856 (11)0.147 (2)0.1643 (7)0.75 (7)
CA20.3884 (10)0.195 (2)0.0354 (6)0.74 (7)
CA30.2883 (8)0.1325 (15)0.0608 (6)2.1 (2)
CA40.000000.000000.083001.21 (12)0.10810
CA50.000000.000000.270001.26 (12)
P60.000000.000000.000001.8 (6)0.21620
P70.000000.000000.022201.8 (6)0.78380
P80.312400.150900.134001.08 (19)
P90.351500.169300.235000.71 (12)
O100.012400.133900.011101.04618
O110.000000.000000.040101.015910.21620
O120.000000.000000.062301.015910.78380
H130.000000.000000.087500.500000.78380
O140.275200.114000.094101.23699
O150.247800.244800.147601.15803
O160.256800.002400.152700.37636
O170.479500.235600.140700.82642
O180.408800.065900.222500.55928
O190.429300.321600.217400.59218
O200.187100.096300.224800.53822
O210.373500.188400.275300.69087
(150528-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.059 (2) Å
Mr = 136.06α = 95.56 (3)°
Triclinic, P1β = 104.60 (3)°
a = 6.8916 (18) Åγ = 87.90 (2)°
b = 6.642 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.810
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150528-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.69400 (1) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.130Rexp = 5.810
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150529-02-betaTCP) betaTCP top
Crystal data top
Ca20.21H1.58O56P14a = 10.4713 (12) Å
Mr = 2141c = 37.376 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.390Rexp = 5.860
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2836 (10)0.1492 (15)0.1667 (13)0.63 (6)
CA20.3860 (11)0.185 (2)0.0333 (13)0.62 (6)
CA30.2887 (7)0.1524 (15)0.0629 (13)1.71 (17)
CA40.000000.000000.083001.01 (10)0.10300
CA50.000000.000000.2671 (13)1.05 (10)
P60.000000.000000.000002.3 (5)0.20600
P70.000000.000000.019302.3 (5)0.79400
P80.312900.146200.131601.11 (16)
P90.352100.165400.232500.73 (11)
O100.009500.137300.009601.04618
O110.000000.000000.040101.015910.20600
O120.000000.000000.059301.015910.79400
H130.000000.000000.084500.500000.79400
O140.275300.109200.091801.23699
O150.250200.241700.145201.15803
O160.255800.002400.150400.37636
O170.480200.229300.138300.82642
O180.409800.063200.219200.55928
O190.431400.319800.215900.59218
O200.188400.094100.221700.53822
O210.371700.179500.272800.69087
(150529-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.067 (2) Å
Mr = 136.06α = 95.66 (4)°
Triclinic, P1β = 104.86000 (1)°
a = 6.907 (2) Åγ = 87.59 (3)°
b = 6.642 (2) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.390Rexp = 5.860
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150529-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.558 (12) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.390Rexp = 5.860
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150601-01-betaTCP) betaTCP top
Crystal data top
Ca20.10H1.80O56P14a = 10.4691 (10) Å
Mr = 2137.2c = 37.360 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.910Rexp = 5.580
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2855 (9)0.1509 (12)0.1678 (14)1.37385
CA20.3882 (9)0.1878 (19)0.0325 (15)1.34753
CA30.2874 (6)0.1542 (13)0.0637 (14)3.74782
CA40.000000.000000.083002.210800.05250
CA50.000000.000000.2664 (15)2.30028
P60.000000.000000.000002.9 (4)0.10490
P70.000000.000000.017802.9 (4)0.89510
P80.316000.147300.130901.60546
P90.352900.163900.231701.05276
O100.014100.134600.008901.04618
O110.000000.000000.040101.015910.10490
O120.000000.000000.057901.015910.89510
H130.000000.000000.083100.500000.89510
O140.278800.110000.091001.23699
O150.251000.240900.144401.15803
O160.260900.001000.149700.37636
O170.483200.232600.137500.82642
O180.407000.059400.218000.55928
O190.435900.319200.215600.59218
O200.189800.097000.220700.53822
O210.371500.175200.272100.69087
(150601-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0155 (15) Å
Mr = 136.06α = 95.44 (3)°
Triclinic, P1β = 103.00 (2)°
a = 6.8662 (15) Åγ = 87.865 (18)°
b = 6.6840 (16) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.910Rexp = 5.580
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150601-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.562 (4) Å
Mr = 519.11c = 6.771 (4) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.910Rexp = 5.580
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150601-02-betaTCP) betaTCP top
Crystal data top
Ca20.22H1.56O56P14a = 10.4661 (15) Å
Mr = 2141.7c = 37.361 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2840 (10)0.1507 (14)0.1671 (15)0.51 (7)
CA20.3853 (12)0.185 (2)0.0328 (15)0.50 (7)
CA30.2869 (7)0.1556 (15)0.0632 (15)1.4 (2)
CA40.000000.000000.083000.82 (12)0.11130
CA50.000000.000000.2672 (15)0.86 (12)
P60.000000.000000.000002.1 (6)0.22260
P70.000000.000000.018402.1 (6)0.77740
P80.312900.148100.131000.79 (19)
P90.353300.165200.231900.52 (13)
O100.009000.138400.009201.04618
O110.000000.000000.040101.015910.22260
O120.000000.000000.058501.015910.77740
H130.000000.000000.083700.500000.77740
O140.273900.107800.091401.23699
O150.249300.243600.144201.15803
O160.257700.001200.150500.37636
O170.480400.233100.137300.82642
O180.410500.062800.218400.55928
O190.433300.320100.215600.59218
O200.189700.094700.221000.53822
O210.372300.178000.272300.69087
(150601-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.062 (3) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 103.72 (4)°
a = 6.891 (3) Åγ = 88.40 (3)°
b = 6.641 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150601-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.556 (2) Å
Mr = 519.11c = 6.768 (2) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 5.980
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150602-01-betaTCP) betaTCP top
Crystal data top
Ca20.15H1.70O56P14a = 10.4693 (17) Å
Mr = 2139.1c = 37.372 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.120Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2857 (13)0.143 (3)0.1673 (19)1.37385
CA20.3864 (13)0.192 (3)0.033 (2)1.34753
CA30.2887 (10)0.136 (2)0.0636 (19)3.74782
CA40.000000.000000.083002.210800.07740
CA50.000000.000000.268 (2)2.30028
P60.000000.000000.000003.2 (7)0.15490
P70.000000.000000.018103.2 (7)0.84510
P80.314300.154700.131801.4 (2)
P90.352700.167200.232400.91 (14)
O100.005900.138200.009001.04618
O110.000000.000000.040101.015910.15490
O120.000000.000000.058201.015910.84510
H130.000000.000000.083400.500000.84510
O140.276000.118700.092001.23699
O150.256000.254000.145501.15803
O160.252900.005400.150500.37636
O170.481400.233300.138500.82642
O180.406800.061700.219500.55928
O190.434300.320800.215400.59218
O200.189000.098500.221900.53822
O210.373500.183000.272800.69087
(150602-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0240 (16) Å
Mr = 136.06α = 95.75 (2)°
Triclinic, P1β = 103.945 (17)°
a = 6.8940 (15) Åγ = 88.195 (14)°
b = 6.6411 (16) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.120Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150602-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.529 (7) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.120Rexp = 5.640
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150608-01-betaTCP) betaTCP top
Crystal data top
Ca20.29H1.42O56P14a = 10.4700 (16) Å
Mr = 2144.1c = 37.370 (6) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.620Rexp = 7.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2810 (14)0.148 (3)0.1641 (3)0.34346
CA20.3855 (15)0.184 (2)0.035600.33688
CA30.2875 (9)0.144 (2)0.0603 (3)0.93696
CA40.000000.000000.083000.552700.14370
CA50.000000.000000.2690 (7)0.57507
P60.000000.000000.000000.8 (7)0.28740
P70.000000.000000.022400.8 (7)0.71260
P80.311700.141600.134200.6 (2)
P90.352100.165400.234700.41 (15)
O100.007400.139100.011201.04618
O110.000000.000000.040101.015910.28740
O120.000000.000000.062501.015910.71260
H130.000000.000000.087700.500000.71260
O140.273300.102500.094501.23699
O150.248400.237000.147501.15803
O160.255900.006000.153400.37636
O170.479100.225900.140600.82642
O180.409100.062500.221600.55928
O190.431700.319400.218000.59218
O200.188300.094300.224100.53822
O210.372200.180400.275100.69087
(150608-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.036 (4) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 104.64 (6)°
a = 6.878 (4) Åγ = 88.00 (5)°
b = 6.630 (4) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.620Rexp = 7.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150608-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.559 (11) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.620Rexp = 7.140
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150608-02-betaTCP) betaTCP top
Crystal data top
Ca20.20H1.60O56P14a = 10.4695 (13) Å
Mr = 2140.7c = 37.369 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.680Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2848 (12)0.1501 (18)0.1644 (3)0.62 (8)
CA20.3882 (13)0.183 (2)0.035600.61 (8)
CA30.2881 (8)0.1519 (17)0.0607 (3)1.7 (2)
CA40.000000.000000.086 (3)0.99 (13)0.09910
CA50.000000.000000.2694 (7)1.03 (13)
P60.000000.000000.000001.6 (6)0.19820
P70.000000.000000.022001.6 (6)0.80180
P80.312900.145100.133801.0 (2)
P90.351600.165000.234400.66 (13)
O100.013800.136200.011001.04618
O110.000000.000000.040101.015910.19820
O120.000000.000000.062101.015910.80180
H130.000000.000000.087300.500000.80180
O140.275600.107600.094001.23699
O150.248000.238800.147301.15803
O160.257800.003200.152600.37636
O170.480200.230300.140500.82642
O180.408700.062900.220700.55928
O190.432400.320600.218600.59218
O200.188400.095500.223400.53822
O210.369700.175900.274900.69087
(150608-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.008 (2) Å
Mr = 136.06α = 95.38000 (1)°
Triclinic, P1β = 103.10 (3)°
a = 6.843 (2) Åγ = 87.95 (2)°
b = 6.69300 (1) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.680Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150608-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.558 (16) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.680Rexp = 6.040
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150609-02-betaTCP) betaTCP top
Crystal data top
Ca20.18H1.64O56P14a = 10.4729 (13) Å
Mr = 2139.8c = 37.381 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.810Rexp = 5.500
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2850 (11)0.147 (2)0.1655 (16)1.37385
CA20.3882 (12)0.1838 (15)0.0343 (16)1.34753
CA30.2885 (7)0.1430 (16)0.0616 (15)3.74782
CA40.000000.000000.087 (3)2.210800.08760
CA50.000000.000000.2672 (17)2.30028
P60.000000.000000.000002.9 (6)0.17530
P70.000000.000000.020302.9 (6)0.82470
P80.316600.144700.132901.40 (17)
P90.353300.166000.233500.92 (11)
O100.009200.139400.010101.04618
O110.000000.000000.040101.015910.17530
O120.000000.000000.060301.015910.82470
H130.000000.000000.085500.500000.82470
O140.278000.106300.093201.23699
O150.255100.241600.146301.15803
O160.258800.003300.152100.37636
O170.483900.227000.139400.82642
O180.410400.063500.220300.55928
O190.433000.320400.217000.59218
O200.189700.095300.222800.53822
O210.372900.180100.273900.69087
(150609-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0051 (15) Å
Mr = 136.06α = 96.21 (2)°
Triclinic, P1β = 104.03 (2)°
a = 6.9070 (15) Åγ = 88.395 (16)°
b = 6.6410 (15) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.810Rexp = 5.500
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150609-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.559 (7) Å
Mr = 519.11c = 6.833 (5) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.810Rexp = 5.500
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150610-01-betaTCP) betaTCP top
Crystal data top
Ca20.25H1.50O56P14a = 10.4683 (14) Å
Mr = 2142.8c = 37.364 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.660Rexp = 7.160
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2849 (11)0.1456 (18)0.1642 (2)0.87 (8)
CA20.3902 (12)0.1831 (17)0.035600.85 (8)
CA30.2883 (8)0.1477 (15)0.0604 (3)2.4 (2)
CA40.000000.000000.083001.39 (13)0.12580
CA50.000000.000000.2690 (7)1.45 (13)
P60.000000.000000.000001.8 (6)0.25150
P70.000000.000000.022201.8 (6)0.74850
P80.316500.143500.134201.48 (18)
P90.353600.165200.234900.97 (12)
O100.014100.134700.011101.04618
O110.000000.000000.040101.015910.25150
O120.000000.000000.062301.015910.74850
H130.000000.000000.087500.500000.74850
O140.279300.106800.094301.23699
O150.252600.237900.147801.15803
O160.260200.005300.152900.37636
O170.483700.227500.140900.82642
O180.409400.061900.221400.55928
O190.435000.320300.218700.59218
O200.190200.096400.224000.53822
O210.372500.177500.275300.69087
(150610-01-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.0009 (14) Å
Mr = 136.06α = 96.223 (19)°
Triclinic, P1β = 104.014 (18)°
a = 6.9056 (14) Åγ = 88.403 (14)°
b = 6.6349 (14) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.660Rexp = 7.160
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150610-01-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.569 (3) Å
Mr = 519.11c = 6.8250 (17) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.660Rexp = 7.160
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150610-02-betaTCP) betaTCP top
Crystal data top
Ca20.14H1.72O56P14a = 10.4712 (13) Å
Mr = 2138.6c = 37.376 (5) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 6.260
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2887 (10)0.148 (2)0.1643 (2)1.37385
CA20.3923 (11)0.1856 (15)0.035601.34753
CA30.2888 (8)0.1431 (16)0.0605 (3)3.74782
CA40.000000.000000.090 (4)2.210800.07190
CA50.000000.000000.2690 (7)2.30028
P60.000000.000000.000003.2 (6)0.14390
P70.000000.000000.022203.2 (6)0.85610
P80.316900.144400.134101.58 (17)
P90.354000.167100.235101.03 (11)
O100.015700.131500.011101.04618
O110.000000.000000.040101.015910.14390
O120.000000.000000.062301.015910.85610
H130.000000.000000.087500.500000.85610
O140.278700.106900.094401.23699
O150.255600.241400.147601.15803
O160.258800.004000.153100.37636
O170.484200.226300.140700.82642
O180.409200.062900.221900.55928
O190.435200.321400.218500.59218
O200.190400.098000.224400.53822
O210.373900.181300.275400.69087
(150610-02-Dicalciumphosphate) Dicalciumphosphate top
Crystal data top
CaHO4Pc = 7.015 (3) Å
Mr = 136.06α = 95.84 (4)°
Triclinic, P1β = 104.23 (4)°
a = 6.911 (2) Åγ = 87.70 (3)°
b = 6.580 (3) ÅT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 6.260
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
P10.208000.379000.721400.55447
P20.295800.942500.208200.77832
CA30.294800.433900.272501.04887
CA40.175600.837400.665300.97592
O50.322600.332500.938000.98730
O60.351800.492400.633200.82712
O70.287400.789600.351401.58010
O80.039800.523700.745900.94974
O90.332900.836300.015501.21795
O100.099500.066000.163901.07857
O110.459200.102400.301901.46450
O120.138700.181000.595800.93287
H130.000000.000000.00000?
H140.455000.267000.94400?
H150.522000.090000.44300?0.50000
(150610-02-Chlorapatite) Chlorapatite top
Crystal data top
Ca5Cl0.9F0.1O12P3a = 9.551 (7) Å
Mr = 519.11c = 6.84400 (1) Å
Hexagonal, P63/mT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 6.540Rexp = 6.260
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.333300.666700.002700.99196
CA20.001100.257600.250001.12487
P30.373600.405800.250000.79773
O40.490200.340300.250001.56492
O50.465400.590800.250001.45017
O60.265500.352200.068402.07735
CL70.000000.000000.432302.684530.44000
F80.000000.000000.25000?0.12000
(150623-01-betaTCP) betaTCP top
Crystal data top
Ca21.00H0.00O56P14a = 10.422 (4) Å
Mr = 2171.2c = 37.437 (14) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.710Rexp = 5.550
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2779 (17)0.145 (3)0.1653 (10)0.34346
CA20.3815 (17)0.174 (2)0.0349 (9)0.33688
CA30.2688 (12)0.139 (3)0.0605 (9)0.93696
CA40.000000.000000.0872 (13)0.552700.50000
CA50.000000.000000.2660 (11)0.57507
P60.000000.000000.000000.44347
P70.000000.000000.040700.443470.00000
P80.310600.139100.133501.60546
P90.345300.156700.234301.05276
O100.003700.135100.020401.04618
O110.000000.000000.040001.01591
O120.000000.000000.080701.015910.00000
H130.000000.000000.105900.500000.00000
O140.272500.095900.094001.23699
O150.237900.227300.146401.15803
O160.264100.006200.153300.37636
O170.478500.233400.139600.82642
O180.403000.053600.221200.55928
O190.424700.311300.217500.59218
O200.180700.084800.223700.53822
O210.365500.172000.274600.69087
(150623-01-betaCPP) betaCPP top
Crystal data top
Ca2O7P2a = 6.692 (4) Å
Mr = 254.10c = 24.224 (16) Å
Tetragonal, P41T = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 5.710Rexp = 5.550
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
CA10.137400.231300.000000.23608
CA20.159100.544700.242600.19160
CA30.789500.733700.138000.21239
CA40.362700.105400.135500.19897
P50.621300.307800.023400.14449
P60.867300.253400.124300.12844
P70.046300.714800.018600.13975
P80.287300.646200.120700.14581
O90.460700.158400.042600.25898
O100.772700.198400.013300.28793
O110.530300.492100.000100.36241
O120.739500.377600.078900.22134
O130.736400.087300.146900.21292
O140.051900.176900.095300.22003
O150.899400.408800.169500.27240
O160.853700.790700.043300.21082
O170.185500.879500.001100.22003
O180.022900.554200.024900.29661
O190.158200.587300.066600.27582
O200.345000.452600.147400.29030
O210.462200.775600.101500.20634
O220.147400.772200.157200.19897
(150624-01-betaTCP) betaTCP top
Crystal data top
Ca21.00H0.00O56P14a = 10.426 (3) Å
Mr = 2171.2c = 37.394 (9) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.290Rexp = 6.610
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2753 (12)0.1429 (18)0.1652 (7)0.34346
CA20.3825 (12)0.1746 (16)0.0349 (6)0.33688
CA30.2717 (8)0.1410 (15)0.0593 (7)0.93696
CA40.000000.000000.0877 (9)0.552700.50000
CA50.000000.000000.2673 (7)0.57507
P60.000000.000000.000001.77390
P70.000000.000000.046101.773900.00000
P80.311800.134800.132600.9 (3)
P90.348800.157200.234000.61 (17)
O100.004000.134200.023101.04618
O110.000000.000000.040101.01591
O120.000000.000000.086201.015910.00000
H130.000000.000000.111400.500000.00000
O140.274700.091100.093101.23699
O150.234900.219000.145501.15803
O160.269500.009500.152400.37636
O170.479300.233200.138800.82642
O180.405700.052700.221600.55928
O190.427200.309900.216100.59218
O200.183600.084200.223800.53822
O210.371300.177100.274200.69087
(150624-01-betaCPP) betaCPP top
Crystal data top
Ca2O7P2a = 6.6869 (18) Å
Mr = 254.10c = 24.150 (7) Å
Tetragonal, P41T = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.290Rexp = 6.610
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
CA10.137400.231300.000000.23608
CA20.159100.544700.242600.19160
CA30.789500.733700.138000.21239
CA40.362700.105400.135500.19897
P50.621300.307800.023400.14449
P60.867300.253400.124300.12844
P70.046300.714800.018600.13975
P80.287300.646200.120700.14581
O90.460700.158400.042600.25898
O100.772700.198400.013300.28793
O110.530300.492100.000100.36241
O120.739500.377600.078900.22134
O130.736400.087300.146900.21292
O140.051900.176900.095300.22003
O150.899400.408800.169500.27240
O160.853700.790700.043300.21082
O170.185500.879500.001100.22003
O180.022900.554200.024900.29661
O190.158200.587300.066600.27582
O200.345000.452600.147400.29030
O210.462200.775600.101500.20634
O220.147400.772200.157200.19897
(150624-02-betaTCP) betaTCP top
Crystal data top
Ca20.99H0.02O56P14a = 10.427 (4) Å
Mr = 2171.1c = 37.426 (13) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.490Rexp = 6.810
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2745 (17)0.131 (4)0.1690 (8)0.34346
CA20.3823 (16)0.205 (3)0.0322 (7)0.33688
CA30.2688 (10)0.132 (2)0.0634 (8)0.93696
CA40.000000.000000.083000.552700.49740
CA50.000000.000000.2633 (10)0.57507
P60.000000.000000.000000.9 (15)0.99480
P70.000000.000000.057600.9 (15)0.00520
P80.315500.185600.130400.40136
P90.349000.189700.230500.26319
O100.141100.003500.028801.04618
O110.000000.000000.040001.015910.99480
O120.000000.000000.097601.015910.00520
H130.000000.000000.122800.500000.00520
O140.284200.169400.090001.23699
O150.265600.288000.146901.15803
O160.239800.027400.145000.37636
O170.480800.249300.138600.82642
O180.432800.112500.216200.55928
O190.408600.347400.216500.59218
O200.186600.098300.218000.53822
O210.360900.194600.271000.69087
(150624-02-betaCPP) betaCPP top
Crystal data top
Ca2O7P2a = 6.689 (3) Å
Mr = 254.10c = 24.197 (14) Å
Tetragonal, P41T = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.490Rexp = 6.810
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
CA10.137400.231300.000000.23608
CA20.159100.544700.242600.19160
CA30.789500.733700.138000.21239
CA40.362700.105400.135500.19897
P50.621300.307800.023400.14449
P60.867300.253400.124300.12844
P70.046300.714800.018600.13975
P80.287300.646200.120700.14581
O90.460700.158400.042600.25898
O100.772700.198400.013300.28793
O110.530300.492100.000100.36241
O120.739500.377600.078900.22134
O130.736400.087300.146900.21292
O140.051900.176900.095300.22003
O150.899400.408800.169500.27240
O160.853700.790700.043300.21082
O170.185500.879500.001100.22003
O180.022900.554200.024900.29661
O190.158200.587300.066600.27582
O200.345000.452600.147400.29030
O210.462200.775600.101500.20634
O220.147400.772200.157200.19897
(150812-02-betaTCP) betaTCP top
Crystal data top
Ca18.08H1.84Mg2.00O56P14a = 10.35273 (11) Å
Mr = 2106.2c = 37.1132 (4) Å
Trigonal, R3cT = 295 K
Data collection top
Bruker D8 Advance
diffractometer
Refinement top
Rwp = 7.870Rexp = 7.480
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/BeqOcc. (<1)
CA10.2810 (5)0.1472 (6)0.16750 (10)0.50 (4)
CA20.3882 (5)0.1808 (7)0.035600.49 (4)
CA30.2932 (4)0.1573 (7)0.05991 (12)1.35 (11)
CA40.000000.000000.093000.80 (6)0.03400
CA50.000000.000000.2681 (4)0.83 (7)0.00430 (1600)
MG50.000000.000000.2681 (4)0.83 (7)0.99570 (1600)
P60.000000.000000.000000.443470.06800
P70.000000.000000.019500.443470.93200
P80.317600.143100.132500.75 (9)
P90.352800.157300.235600.49 (6)
O100.023500.131800.009701.04618
O110.000000.000000.040401.015910.06800
O120.000000.000000.059801.015910.93200
H130.000000.000000.085200.500000.93200
O140.266800.087100.091901.23699
O150.252900.239300.145701.15803
O160.263700.002900.153900.37636
O170.494200.240400.136200.82642
O180.403000.047400.224600.55928
O190.425500.308200.215000.59218
O200.180800.082100.228700.53822
O210.392300.201500.276600.69087
 

Acknowledgements

This study was supported by the Swiss National Science Foundation (SNF; 200021_137589). The authors would like to thank Céline Lang for her assistance in the production of synthetic Mg-whitlockite as well as Delphine Pasche and Benjamin Andreatta for their contribution to the ICP-MS method development.

References

First citationAdcock, C. T., Hausrath, E. M., Forster, P. M., Tschauner, O. & Sefein, K. J. (2014). Am. Mineral. 99, 1221–1232.  CrossRef Google Scholar
First citationBergmann, J., Friedel, P. & Kleeberg, R. (1998). IUCr Newsl. 20, 5–8.  Google Scholar
First citationBerzina-Cimdina, L. & Borodajenko, N. (2012). Infrared Spectroscopy – Materials Science, Engineering and Technology, edited by P. T. Theophile, pp. 123–148. Rijeka, Croatia: InTech Europe.  Google Scholar
First citationBigi, A., Foresti, E., Gandolfi, M., Gazzano, M. & Roveri, N. (1997). J. Inorg. Biochem. 66, 259–265.  CrossRef CAS Google Scholar
First citationBohner, M. (2010). Mater. Today, 13, 24–30.  CrossRef CAS Google Scholar
First citationBoudin, S., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1993). Acta Cryst. C49, 2062–2064.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBow, J. S., Liou, S. C. & Chen, S. Y. (2004). Biomaterials, 25, 3155–3161.  CrossRef CAS Google Scholar
First citationCalvo, C. & Gopal, R. (1975). Am. Mineral. 60, 120–133.  CAS Google Scholar
First citationCantwell, P. R., Tang, M., Dillon, S. J., Luo, J., Rohrer, G. S. & Harmer, M. P. (2014). Acta Mater. 62, 1–48.  CrossRef CAS Google Scholar
First citationCerruti, M., Magnacca, G., Bolis, V. & Morterra, C. (2003). J. Mater. Chem. 13, 1279–1286.  CrossRef CAS Google Scholar
First citationDickens, B., Bowen, J. S. & Brown, W. E. (1972). Acta Cryst. B28, 797–806.  CrossRef IUCr Journals Google Scholar
First citationDickens, B., Schroeder, L. W. & Brown, W. E. (1974). J. Solid State Chem. 10, 232–248.  CrossRef CAS Web of Science Google Scholar
First citationDoebelin, N. & Kleeberg, R. (2015). J. Appl. Cryst. 48, 1573–1580.  CrossRef CAS IUCr Journals Google Scholar
First citationDorozhkin, S. V. & Epple, M. (2002). Angew. Chem. Int. Ed. 41, 3130–3146.  CrossRef CAS Google Scholar
First citationDurucan, C. & Brown, P. W. (2000). J. Mater. Sci. Mater. Med. 11, 365–371.  CrossRef CAS Google Scholar
First citationEnderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F. A. & Greil, P. (2005). Biomaterials, 26, 3379–3384.  CrossRef CAS Google Scholar
First citationFowler, B. O. (1974). Inorg. Chem. 13, 194–207.  CrossRef CAS Google Scholar
First citationGalea, L., Alexeev, D., Bohner, M., Doebelin, N., Studart, A. R., Aneziris, C. G. & Graule, T. (2015). Biomaterials, 67, 93–103.  CrossRef CAS Google Scholar
First citationGalea, L., Bohner, M., Thuering, J., Doebelin, N., Aneziris, C. G. & Graule, T. (2013). Biomaterials, 34, 6388–6401.  CrossRef CAS Google Scholar
First citationGalea, L., Bohner, M., Thuering, J., Doebelin, N., Ring, T. A., Aneziris, C. G. & Graule, T. (2014). Acta Biomater. 10, 3922–3930.  CrossRef CAS Google Scholar
First citationGibson, I. R., Rehman, I., Best, S. M. & Bonfield, W. (2000). J. Mater. Sci. Mater. Med. 11, 533–539.  CrossRef CAS Google Scholar
First citationGopal, R., Calvo, C., Ito, J. & Sabine, W. K. (1974). Can. J. Chem. 52, 1155–1164.  CrossRef CAS Web of Science Google Scholar
First citationHamad, M. & Heughebaert, J. C. (1986). J. Cryst. Growth, 79, 192–197.  CrossRef CAS Google Scholar
First citationHughes, J. M., Cameron, M. & Crowley, K. D. (1989). Am. Mineral. 74, 870–876.  CAS Google Scholar
First citationHughes, J. M., Jolliff, B. L. & Rakovan, J. (2008). Am. Mineral. 93, 1300–1305.  Web of Science CrossRef CAS Google Scholar
First citationIshikawa, K., Ducheyne, P. & Radin, S. (1993). J. Mater. Sci. Mater. Med. 4, 165–168.  CrossRef CAS Google Scholar
First citationJang, H. L., Jin, K., Lee, J., Kim, Y., Nahm, S. H., Hong, K. S. & Nam, K. T. (2014). Am. Chem. Soc. Nano, 8, 634–641.  CAS Google Scholar
First citationJillavenkatesa, A. & Condrate, R. A. (1998). Spectrosc. Lett. 31, 1619–1634  CrossRef CAS Google Scholar
First citationKameche, M., Bouamrane, R., Derriche, Z. & Blanco, M. C. (2005). Mol. Phys. 103, 1231–1239.  CAS Google Scholar
First citationLeGeros, R. Z. (2002). Clin. Orthop. 395, 81–98.  CrossRef Google Scholar
First citationLeGeros, R. Z., Daculsi, G., Kijkowska, R. & Kerebel, B. (1989). Magnesium in Health and Disease, pp. 11–19. Hertfordshire: John Libbey & Co. Ltd.  Google Scholar
First citationLin, F. H., Liao, C. J., Chen, K. S., Su, J. S. & Lin, C. P. (2001). Biomaterials, 22, 2981–2992.  CrossRef CAS Google Scholar
First citationLin, F. H., Liao, C. J., Chen, K. S. & Sun, J. S. (1998). Biomaterials, 19, 1101–1107.  CrossRef CAS Google Scholar
First citationLoomba, L. & Bhupinder, S. S. (2015). J. Nanomat. Mol. Nanotech. 4, 1–12.  Google Scholar
First citationMakarov, C., Gotman, I., Jiang, X., Fuchs, S., Kirkpatrick, C. J. & Gutmanas, E. Y. (2010). J. Mater. Sci. Mater. Med. 21, 1771–1779.  CrossRef CAS Google Scholar
First citationMavropoulos, E., Rossi, A. M., da Rocha, N. C. C., Soares, G. A., Moreira, J. C. & Moure, G. T. (2003). Mater. Charact. 50, 203–207.  CrossRef CAS Google Scholar
First citationMcCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). J. Appl. Cryst. 32, 36–50.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNuevo, M., Meierhenrich, U. J., Muñoz Caro, G. M., Dartois, E., D'Hendecourt, L., Deboffle, D., Auger, G., Blanot, D., Bredehöft, J. H. & Nahon, L. (2006). Astron. Astrophys. 457, 741–751.  CrossRef CAS Google Scholar
First citationPenczek, S., Pretula, J., Kubisa, P., Kaluzynski, K. & Szymanski, R. (2015). Prog. Polym. Sci. 45, 44–70.  CrossRef CAS Google Scholar
First citationPing, Z. H., Nguyen, Q. T., Chen, S. M., Zhou, J. Q. & Ding, Y. D. (2001). Polymer, 42, 8461–8467.  CrossRef CAS Google Scholar
First citationPol, U. van der, Mathieu, L., Zeiter, S., Bourban, P. E., Zambelli, P. Y., Pearce, S. G., Bouré, L. P. & Pioletti, D. P. (2010). Acta Biomaterialia, 6, 3755–3762.  Google Scholar
First citationRadin, S. R. & Ducheyne, P. (1993). J. Biomed. Mater. Res. 27, 35–45.  CrossRef CAS Google Scholar
First citationRaynaud, S., Champion, E., Bernache-Assollant, D. & Thomas, P. (2002). Biomaterials, 23, 1065–1072.  CrossRef CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSader, M. S., Lewis, K., Soares, G. A. & LeGeros, R. Z. (2013). Mater. Res. 16, 779–784.  CrossRef CAS Google Scholar
First citationSudarsanan, K. & Young, R. A. (1969). Acta Cryst. B25, 1534–1543.  CrossRef IUCr Journals Web of Science Google Scholar
First citationTang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. (2003). Nat. Mater. 2, 413–418.  CrossRef CAS Google Scholar
First citationTao, J., Jiang, W., Zhai, H., Pan, H., Xu, R. & Tang, R. (2008). Cryst. Growth Des. 8, 2227–2234.  CrossRef CAS Google Scholar
First citationTao, J., Pan, H., Zhai, H., Wang, J., Li, L., Wu, J., Jiang, W., Xu, X. & Tang, R. (2009). Cryst. Growth Des. 9, 3154–3160.  CrossRef CAS Google Scholar
First citationToby, B. H. (2006). Powder Diffr. 21, 67–70.  Web of Science CrossRef CAS Google Scholar
First citationTortet, L., Gavarri, J. R., Nihoul, G. & Dianoux, A. J. (1997). J. Solid State Chem. 132, 6–16.  CrossRef CAS Google Scholar
First citationToyama, T., Nakashima, K. & Yasue, T. (2002). Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 110, 716–721.  CrossRef CAS Google Scholar
First citationVallet-Regí, M., Rodríguez-Lorenzo, L. M. & Salinas, A. J. (1997). Solid State Ion. 101–103, 1279–1285.  Google Scholar
First citationVereecke, G. & Lemaître, J. (1990). J. Cryst. Growth, 104, 820–832.  CrossRef CAS Google Scholar
First citationYoshida, K., Hyuga, H., Kondo, N., Kita, H., Sasaki, M., Mitamura, M., Hashimoto, K. & Toda, Y. (2006). J. Am. Ceram. Soc. 89, 688–690.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds