research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Accurate and efficient representation of intra­molecular energy in ab initio generation of crystal structures. I. Adaptive local approximate models

CROSSMARK_Color_square_no_text.svg

aMolecular Systems Engineering Group Centre for Process Systems Engineering Department of Chemical Engineering, Imperial College London, London SW7 2AZ, England
*Correspondence e-mail: i.sugden@imperial.ac.uk

Edited by T. R. Welberry, Australian National University, Australia (Received 8 July 2016; accepted 26 September 2016; online 1 December 2016)

The global search stage of crystal structure prediction (CSP) methods requires a fine balance between accuracy and computational cost, particularly for the study of large flexible molecules. A major improvement in the accuracy and cost of the intramolecular energy function used in the CrystalPredictor II [Habgood et al. (2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]). J. Chem. Theory Comput. 11, 1957–1969] program is presented, where the most efficient use of computational effort is ensured via the use of adaptive local approximate model (LAM) placement. The entire search space of the relevant molecule's conformations is initially evaluated using a coarse, low accuracy grid. Additional LAM points are then placed at appropriate points determined via an automated process, aiming to minimize the computational effort expended in high-energy regions whilst maximizing the accuracy in low-energy regions. As the size, complexity and flexibility of molecules increase, the reduction in computational cost becomes marked. This improvement is illustrated with energy calculations for benzoic acid and the ROY molecule, and a CSP study of molecule (XXVI) from the sixth blind test [Reilly et al. (2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]). Acta Cryst. B72, 439–459], which is challenging due to its size and flexibility. Its known experimental form is successfully predicted as the global minimum. The computational cost of the study is tractable without the need to make unphysical simplifying assumptions.

1. Introduction

The primary aim of crystal structure prediction (CSP) techniques is to produce a ranked list of all the potential crystal structures for a molecule or set of molecules. Because of the significant effect that crystal structure has on solid-state properties, such as colour, solubility and hygroscopicity, such a ranked list offers a wealth of information and many opportunities to improve the development of new crystalline materials (Price et al., 2016[Price, S. L., Braun, D. E. & Reutzel-Edens, S. M. (2016). Chem. Commun. 52, 7065-7077.]; Neumann et al., 2015[Neumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & Grassmann, O. (2015). Nat. Commun. 6, 7793.]). In the case of the pharmaceutical industry, the appearance of a new or unexpected form or polymorph can have major legal and economic ramifications, particularly if solubility/bioavailability are affected, as illustrated by the cases of the appearance of Ritonavir form II (Chemburkar et al., 2000[Chemburkar, S. R., Bauer, J., Deming, K., Spiwek, H., Patel, K., Morris, J., Henry, R., Spanton, S., Dziki, W., Porter, W., Quick, J., Bauer, P., Donaubauer, J., Narayanan, B. A., Soldani, M., Riley, D. & McFarland, K. (2000). Org. Process Res. Dev. 4, 413-417.]) and the Zantac litigation (Seddon, 1999[Seddon, K. R. (1999). NATO Adv. Sci. I C.-Mater. 539, 1-28.]). Furthermore, the ability to tune a molecule's solid-state properties through predictive approaches would be very useful to industries that rely on crystalline materials. Therefore, significant benefits are offered by the possibility of predicting a molecule's crystal structure(s), especially when this is possible via ab initio techniques that rely only on molecular structure information.

Whilst a relatively new field, CSP methods for organic molecules have undergone considerable improvements over the past few years, as seen in the increasing size and complexity of molecular targets in the blind tests organized by the Cambridge Crystallographic Data Centre, as well as the increasing level of success achieved in the tests (Day et al., 2005[Day, G. M. et al. (2005). Acta Cryst. B61, 511-527.], 2009[Day, G. M. et al. (2009). Acta Cryst. B65, 107-125.]; Bardwell et al., 2011[Bardwell, D. A. et al. (2011). Acta Cryst. B67, 535-551.]; Motherwell et al., 2002[Motherwell, W. D. S. et al. (2002). Acta Cryst. B58, 647-661.]; Lommerse et al., 2000[Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price, S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta Cryst. B56, 697-714.]). The targets that CSP groups are being asked to investigate as a matter of routine are becoming more industrially relevant, with larger, more flexible molecules that could be seen as drug analogues now being considered. Indeed, in the case of molecule (XXIII) in the sixth blind test (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]), the target represents a former drug candidate for the treatment of Alzheimer's disease. All the targets were chosen so as to present challenges that test the theories and computational capabilities currently available.

1.1. Global search in CSP

The central tenet of CSP is that the crystal structures that are most likely to form will be low-energy minima on the free-energy surface, with respect to structural variables, namely: cell lengths and angles, the molecular position and orientation, and the molecule's internal degrees of freedom (Pantelides et al., 2014[Pantelides, C. C., Adjiman, C. S. & Kazantsev, A. V. (2014). Top. Curr. Chem. 345, 25-58.]; Brandenburg & Grimme, 2014[Brandenburg, J. G. & Grimme, S. (2014). Top. Curr. Chem. 345, 1-23.]; Woodley & Catlow, 2008[Woodley, S. M. & Catlow, R. (2008). Nat. Mater. 7, 937-946.]; Price, 2008[Price, S. L. (2008). Int. Rev. Phys. Chem. 27, 541-568.]; Cruz-Cabeza et al., 2015[Cruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. (2015). Chem. Soc. Rev. 44, 8619-8635.]). Thermodynamically, the most stable crystal structure (at given temperature and pressure) is the global minimum on the Gibbs free-energy surface; however, given the cost inherent in free-energy calculations and the comparatively small energetic contributions arising from entropic effects, most CSP methods use lattice energy/enthalpy rather than free energy in order to rank the predicted crystal structures.

A major factor in successfully identifying all likely polymorphs is the trade-off made between the accuracy of the model used to describe the differences in energy between a molecule's possible structures (often less than 5 kJ mol−1), and the extent of the search for low-energy minima across the entire free-energy surface. In view of this, most CSP techniques use a broadly two-stage methodology: a first-stage global search that is used to search for low-energy structures on the lattice energy surface using a relatively low-cost, less accurate lattice energy model; and a second-stage refinement that takes the most promising structures from the first stage and re-ranks them via local energy minimization, using a more accurate and computationally demanding lattice energy model. All the successful predictions in the sixth blind test (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]) used some variant of this multi-stage methodology.

In order to identify all potential low-energy polymorphs, the first stage must perform an extensive search (typically involving hundred of thousands of points) of the lattice energy surface over sufficiently wide ranges of the lattice energy model variables (cell lengths and angles, conformational degrees of freedom etc.); therefore, the efficiency of the lattice energy model is very important. Moreover, since only a relatively small proportion (typically a few hundreds) of the lowest-energy structures identified will be passed for refinement to the second stage, the lattice energy model employed by the first stage also needs to be sufficiently accurate not to exclude any potential polymorphs from further consideration.

Overall, achieving the right trade-off between the efficiency and accuracy of the first-stage lattice energy model is a key challenge for CSP. If the accuracy of the lattice energy model can be increased at moderate computational cost, the risk of missing low-energy structures can be decreased. Furthermore, the cost of the second stage can be reduced significantly as increased confidence in the ranked list of structures generated in the first stage typically allows a decrease in the number of structures that must be taken through to the computationally intensive refinement stage, opening the possibility for the latter to employ even higher-accuracy lattice energy models.

This paper focuses on significantly improving the efficiency of the global search stage via improvements to the CrystalPredictor algorithm (Karamertzanis & Pantelides, 2007[Karamertzanis, P. G. & Pantelides, C. C. (2007). Mol. Phys. 105, 273-291.], 2005[Karamertzanis, P. G. & Pantelides, C. C. (2005). J. Comput. Chem. 26, 304-324.]; Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]), which has been used extensively in blind tests and in a variety of CSP applications (see, for example, Bardwell et al., 2011[Bardwell, D. A. et al. (2011). Acta Cryst. B67, 535-551.]; Day et al., 2009[Day, G. M. et al. (2009). Acta Cryst. B65, 107-125.]; Braun et al., 2013[Braun, D. E., Bhardwaj, R. M., Arlin, J. B., Florence, A. J., Kahlenberg, V., Griesser, U. J., Tocher, D. A. & Price, S. L. (2013). Cryst. Growth Des. 13, 4071-4083.], 2014[Braun, D. E., McMahon, J. A., Koztecki, L. H., Price, S. L. & Reutzel-Edens, S. M. (2014). Cryst. Growth Des. 14, 2056-2072.], 2016[Braun, D. E., Nartowski, K. P., Khimyak, Y. Z., Morris, K. R., Byrn, S. R. & Griesser, U. J. (2016). Mol. Pharm. 13, 1012-1029.]; Vasileiadis et al., 2012[Vasileiadis, M., Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. & Pantelides, C. C. (2012). Acta Cryst. B68, 677-685.]; Eddleston et al., 2015[Eddleston, M. D., Hejczyk, K. E., Cassidy, A. M. C., Thompson, H. P. G., Day, G. M. & Jones, W. (2015). Cryst. Growth Des. 15, 2514-2523.]; Uzoh et al., 2012[Uzoh, O. G., Cruz-Cabeza, A. J. & Price, S. L. (2012). Cryst. Growth Des. 12, 4230-4239.]).

Before describing specific advances, we give a brief overview of the algorithm to the extent necessary for the purposes of this paper.

1.2. The CrystalPredictor algorithm

The CrystalPredictor algorithm (Karamertzanis & Pantelides, 2007[Karamertzanis, P. G. & Pantelides, C. C. (2007). Mol. Phys. 105, 273-291.], 2005[Karamertzanis, P. G. & Pantelides, C. C. (2005). J. Comput. Chem. 26, 304-324.]; Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]) is a global search algorithm based on a large number of gradient-based local minimizations starting from crystal structures generated by a Sobol sequence (Sobol, 1967[Sobol, I. M. (1967). USSR Comput. Math. Math. Phys. 7, 86-112.]), a low-discrepancy technique that ensures the best coverage of the space of the variables that uniquely define a crystal structure.

The original version of the algorithm CrystalPredictor I (Karamertzanis & Pantelides, 2007[Karamertzanis, P. G. & Pantelides, C. C. (2007). Mol. Phys. 105, 273-291.], 2005[Karamertzanis, P. G. & Pantelides, C. C. (2005). J. Comput. Chem. 26, 304-324.]) was used successfully in several CSP studies to produce initial ranked lists of crystal structures. However, in order to ensure that all experimentally known structures are identified by the CSP, it was often found to be necessary to refine the 1000 to 1500 lowest-energy structures in these initial lists, which resulted in very significant computational costs (see, for example, Vasileiadis et al., 2012[Vasileiadis, M., Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. & Pantelides, C. C. (2012). Acta Cryst. B68, 677-685.], 2015[Vasileiadis, M., Pantelides, C. C. & Adjiman, C. S. (2015). Chem. Eng. Sci. 121, 60-76.]).

The above issue with CrystalPredictor I was partly caused by the insufficiently accurate description of the effects of molecular conformation on both the intramolecular and intermolecular contributions to the lattice energy. This realisation led to an improved version of the algorithm, CrystalPredictor II (Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]), using a more accurate energy function that utilizes local approximate models (LAMs; Kazantsev et al., 2010[Kazantsev, A. V., Karamertzanis, P. G., Pantelides, C. C. & Adjiman, C. S. (2010). 20th European Symposium on Computer Aided Process Engineering - ESCAPE20, Vol. 28, pp. 817-822.]). LAMs allow the efficient and accurate calculation of intramolecular energy as a function of flexible torsion angles (`independent' conformational degrees of freedom, [\theta]). Moreover, LAMs also allow the values of those degrees of freedom that are not explicitly treated as flexible in the minimization (the `dependent' degrees of freedom, [\bar \theta], including bond lengths, bond angles and any torsion angles that are not included in [\theta]) to be determined as functions of the independent conformational degrees of freedom, [ \theta].

CrystalPredictor assumes that the lattice energy of a crystal is given as a function of the cell lengths and angles, collectively denoted as X, as well as the positions and orientations of the molecules in the asymmetric unit, collectively denoted as β, and the molecules' independent conformational degrees of freedom, [\theta]. The optimization then seeks to minimize a lattice energy function, Ulatt of the form

[{U}^{\rm latt}(X,\beta, \theta) = {\Delta U}^{\rm intra}(\theta)+{U}_{}^{\rm e}(X,\beta, \theta)+{U}_{}^{\rm rd}(X,\beta, \theta), \eqno(1)]

where the intermolecular energy is separated into (a) an electrostatic term, [{U}_{}^{\rm e}(X,\beta, \theta)], evaluated by the Coulombic attraction between atom centres, based on point charges obtained using isolated molecule ab initio calculations, and (b) a repulsion/dispersion term, [{U}_{}^{\rm rd}(X,\beta, \theta)], described by Buckingham potentials whose parameters have been fitted to experimental data, typically the FIT potential (Cox et al., 1981[Cox, S. R., Hsu, L.-Y. & Williams, D. E. (1981). Acta Cryst. A37, 293-301.]; Williams, 1984[Williams, D. E. (1984). Acta Cryst. A40, C95.]; Coombes et al., 1996[Coombes, D. S., Price, S. L., Willock, D. J. & Leslie, M. (1996). J. Phys. Chem. 100, 7352-7360.]). We note that both Ue and Urd are functions of molecular conformation [\theta] as it affects intermolecular distances. In general, the electronic charge distribution within the molecule is also a function of molecular conformation, and therefore the atomic charges used in Ue may also depend on [\theta].

The intramolecular energy contribution, [{\rm{\Delta }}{U^{\rm intra}}] is given by

[{\rm{\Delta }}{U^{\rm intra}}\left(\theta \right) = \min^{}_{\bar \theta }{U^{\rm intra}}\left({\bar \theta, \theta } \right) - {U^{\rm gas}}, \eqno(2)]

where [{U^{\rm intra}}\left({\bar \theta, \theta } \right)] is the intramolecular energy of an isolated molecule at conformation [\left({\bar \theta, \theta } \right)] and Ugas is the minimum energy of the unconstrained isolated molecule (i.e. in vacuo, with all internal degrees of freedom allowed to vary). To avoid expensive repeated ab initio calculations for the evaluation of the terms [{\rm{\Delta }}{U^ {\rm intra}}] and Ue during the global search, a set of reference calculations at values of the [\theta] on a regular grid are performed before the start of the global search, and are subsequently used in CrystalPredictor to obtain a low-cost approximation of these energies at any point. The two versions of CrystalPredictor differ in how the approximation is constructed. In CrystalPredictor II, the intramolecular energy at some value [\theta] of the independent conformational degrees of freedom is calculated from the LAM with the closest matching conformation, [{\theta ^{\rm ref}}], on the grid using an approximation of the form

[\eqalignno{{\Delta U}^{\rm intra}\left(\theta \right) = \, & {\Delta U}^{\rm intra}\left({\theta }^{\rm ref}\right)+{\bf b}{\left({\theta }^{\rm ref}\right)}^{T}\left(\theta -{\theta }^{\rm ref}\right)\cr & +{{1}\over{2}}{(\theta -{\theta }^{\rm ref})}^{T}{\bf C}\left({\theta }_{\rm ref}\right)(\theta -{\theta }^{\rm ref}), & (3)}]

whilst the set of dependent degrees of freedom [\bar \theta] is obtained by a linear approximation of the form

[\bar \theta \left(\theta \right) = {\bar \theta ^{\rm ref}} + A\left({{\theta ^{\rm ref}}} \right)(\theta - {\theta ^{\rm ref}}) , \eqno(4)]

where the matrices A and C and the vector b are given by (Kazantsev et al., 2011[Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. & Pantelides, C. C. (2011). J. Chem. Theory Comput. 7, 1998-2016.])

[{\bf A}\left({\theta }^{\rm ref}\right) = -{\lfloor {{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial { \overline{\theta }}^{2}}}\rfloor }_{{\theta }^{\rm ref}}^{-1}{\left[{{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial \overline{\theta }\partial \theta }}\right]}_{{\theta }^{\rm ref}}^{T}, \eqno(5)]

[{\bf b}\left({\theta }^{\rm ref}\right) = {\left[{{{\Delta U}^{\rm intra}}\over{\partial \theta }}\right]}_{{\theta }^{\rm ref}}, \eqno(6)]

[\eqalignno{{\bf C}\left({\theta }^{\rm ref}\right) =\, & {\left[{{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial {\theta }^{2}}}\right]}_{{\theta }^{\rm ref}}\cr & -{\left[{{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial \overline{\theta }\partial \theta }}\right]}_{{\theta }^{\rm ref}}^{}{\lfloor {{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial { \overline{\theta }}^{2}}}\rfloor }_{{\theta }^{\rm ref}}^{-1}{\left[{{{\partial }^{2}{\Delta U}^{\rm intra}}\over{\partial \overline{\theta }\partial \theta }}\right]}_{{\theta }^{\rm ref}}^{T}.\cr &&(7)}]

The variation of point charges with conformation is neglected in CrystalPredictor II, so that the point charges used to evaluate [{U}_{}^{\rm e}(X,\beta, \theta)] are taken as those at [{\theta _{\rm ref}}], i.e. [{U}_{}^{\rm e}(X,\beta, \theta)] = [{U}_{}^{\rm e}(X,\beta, {\theta }^{\rm ref})].

The global search domain in terms of independent conformational degrees of freedom can be denoted as [\left [{\theta _1^{\rm min},\theta _1^{\rm max}} \right] \times \left [{\theta _2^{\rm min},\theta _2^{\rm max}} \right] \times \ldots \times [\theta _n^{\rm min},\theta _n^{\rm max}]], where n is the total number of independent conformational degrees of freedom and [\theta _i^{\rm min}] and [\theta _i^{\rm max}], [i = 1, \ldots, n], are selected to include all areas of practical interest, typically where [{\Delta U}^{\rm intra}] is below 20 to 30 kJ mol−1. LAMs are calculated at grid points whose location depends on the size of the search domain and a user-specified grid spacing [{\rm{\Delta }}\theta]. The conformational space is therefore partitioned into hyper-rectangles of the form

[{\theta }^{\rm ref}-\Delta \theta \le \theta \le {\theta }^{\rm ref}+\Delta \theta. \eqno(8)]

The LAM validity range, [{\rm{\Delta }}\theta], needs to be small enough to ensure that expressions (3)[link] and (4)[link] provide sufficiently good approximations for the intramolecular energy and dependent degrees of freedom within a certain conformational distance from [{\theta ^{\rm ref}}].

The adoption of a regular LAM grid has been found to be effective in CSP for several molecules, such as β-D-glucose, ROY and a pharmaceutical compound, BMS-488043 (Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]). However, the number of LAM points needed to achieve a desired coverage grows exponentially with the number of degrees of freedom. For highly flexible molecules, where the number of independent conformational degrees of freedom is large, and the range of flexibility, [[\theta _{i = 1, \ldots n}^{\rm min}], [\theta _{i = 1, \ldots n}^{\rm max}]], to be searched is wide, the number of LAMs to be calculated incurs a high computational cost. In such cases, the choice of an appropriate [{\rm{\Delta }}\theta] has a significant impact on both the accuracy and computational cost, and its determination requires substantial analysis of the molecule of interest prior to computing the grid points.

1.3. Aims

In this paper we propose improvements to the algorithm that address the issues identified above, leading to reduced computational cost and improved accuracy. In particular, we seek to achieve this by introducing an adaptive LAM implementation so that the LAM points no longer need to be placed on a regular grid.

A motivating example for the development of an improved algorithm is introduced in §2[link], based on molecule (XXVI) from the sixth blind test (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]). The adaptive LAM placement algorithm is described in §3[link], and the reduction in computational cost that it offers is analysed. Finally, in §4[link], we revisit the motivating example, applying to it the improved CrystalPredictor II algorithm in the context of a complete CSP study of molecule (XXVI) from the sixth blind test.

2. Motivating example: molecule (XXVI) of the sixth blind test

The recent blind test on crystal structure prediction methods, organized by the Cambridge Crystallographic Data Centre, sought to evaluate the capabilities of current computational methods in predicting the crystal structures of organic molecules. Five targets were chosen, representing challenges to the crystal structure prediction community. The two versions of CrystalPredictor were deployed by two of the participating groups, in combination with CrystalOptimizer, to identify Z′ = 1 structures. This approach resulted in the identification of the known experimental structures within the predicted energy landscapes in most cases. However, in the case of molecule (XXVI), shown in Fig. 1[link], the multiple flexible torsion angles present particular difficulties, which are discussed here and motivate the development of an improved version of CrystalPredictor II.

[Figure 1]
Figure 1
Molecular diagram of molecule (XXVI) and independent degrees of freedom.

Molecule (XXVI) contains the common 1,1′-binaphthalene fragment, which can feature axial chirality, although no chiral precursors were present in the synthesis. As reported by Reilly et al. (2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]), there are currently two known pure experimental forms: form (1) is a Z′ = 1 structure crystallized in the [P\bar 1] space group, while form (11) is a structure discovered through polymorph screening by Johnson Matthey (Pharmorphix), after the conclusion of the blind test, for which no structural data are currently available. In addition, there are nine reported solvates. Unusually for 1,1′-binaphthalene-based molecules, one O atom is unsatisfied in terms of hydrogen bonds, and the angles and torsions in the amide group and phenyl rings are somewhat outside expected ranges. This is a result of the bulkiness of the 1,1′-binaphthalene and phenyl groups, as well as the internal hydrogen bond occurring between the chlorine in one half of the molecule, and the amide group in the opposite half. The number and unusual values of the independent degrees of freedom, as well as its sheer size, contribute to the difficulties posed by this molecule.

In the sixth blind test (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]), the use of CrystalPredictor I and CrystalOptimizer by the Price et al. group successfully led to the identification of form (1) as the lowest energy structure in the final landscape. The use of CrystalPredictor I, however, required making severe assumptions on flexibility to limit the computational cost; as is usually done with CrystalPredictor I when there are many flexible degrees of freedom, the flexible torsion angles were divided into three groups (group 1 containing T1, group 2 containing T3–5, and group 3 containing T7). This approach has been successful in other investigations (Vasileiadis et al., 2012[Vasileiadis, M., Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. & Pantelides, C. C. (2012). Acta Cryst. B68, 677-685.]) and relies on the assumption that flexible torsions in distinct parts of the molecule can rotate independently, with their effect on [{\rm{\Delta }}{U^{\rm intra}}] being largely unaffected by the values of the flexible torsions in the other torsion groups. However, in the case of molecule (XXVI), since the benzene groups that rotate in the different halves of the molecule are in close proximity to each other, such an assumption may not be fully justified in this case. The loss of accuracy arising from this treatment was acknowledged by the Price et al. team and was countered by applying the second-stage refinement to a wider than usual range of the low-energy crystal structures predicted in the CrystalPredictor I landscape. More specifically, a single iteration of CrystalOptimizer was applied to each of the 9400 structures identified by CrystalPredictor I within 40 kJ mol−1 of the global minimum, thereby resulting in re-ranking of the structures. The full CrystalOptimizer calculation was then performed for the 1322 lowest-energy structures. Although in this case the experimental form was successfully identified, this decomposition approach is not generally applicable to all molecules, and a more accurate method of covering the conformational space is needed (see Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]) for a more complete discussion).

Our research group's submission for molecule (XXVI) made use of CrystalPredictor II, with all seven torsional angles shown in Fig. 1[link] being treated as independent degrees of freedom, [\theta ]. The domain of each angle that was deemed to be relevant for CSP purposes was initially decided by analysis of crystal structures in the Cambridge Structure Database (CSD) and the results of one-dimensional scans through each independent degree of freedom. A LAM validity range [\Delta \theta] of ±15° was used for all torsional angles, resulting in a grid comprising 2592 LAM points (see Table 1[link]). The computation of the latter at the HF/6-31G(d,p) level of theory required approximately 200 000 CPU h [typically on Intel(R) Xeon(R) CPU E5-2660 v2 running at 2.20 GHz].

Table 1
Independent conformational degrees of freedom considered for molecule (XXVI) by our group during the sixth blind test

The experimental values are the reported values of the torsions in form (1) (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]) and were not available to us during the blind test. The bold experimental value indicates that this torsion lies outside the specified search space.

Independent degree of LAM regular grid Experimental value in form (1) (°)
freedom, [\theta] (cf. Fig. 1[link]) Search domain (°) Spacing Δθ (°) No. of grid points (not available during the blind test)
T1 [0, 360] ±15 12 215.76
T2 [165, 195] ±15 1 181.26
T3 [95, 185] ±15 3 163.34
T4 [55, 115] ±15 2 78.47
T5 [95, 185] ±15 3 222.46
T6 [165, 195] ±15 1 185.06
T7 [0, 360] ±15 12 301.872

Our normal practice in the applications of CrystalPredictor II is to also evaluate the intramolecular energies at the edges of the search space; if these are found to be lower than a user-specified threshold (typically 20–30 kJ mol−1), the search space is expanded. In the case of molecule (XXVI), this investigation identified energies lower than 10 kJ mol−1 on the boundaries of the domains for torsions T3 and T5, and therefore these domains would normally have to be expanded quite significantly. However, a larger regular grid with the domain of the two key torsions extended by the necessary 120° would involve 11 858 LAMs, and their construction would require approximately 910 000 CPU h. As this was impracticable within the time constraints of the blind test, it was decided not to extend the search beyond the domains indicated in Table 1[link].

As indicated in Table 1[link], the experimental value for the torsion angle T5 is 222.46°, which unfortunately lies outside the search domain [95°, 185°]. As a result, our search failed to identify form (1) of molecule (XXVI). This illustrates the importance of developing new techniques that would allow large conformational spaces to be covered efficiently by LAMs, which in turn provides the motivation for the present work.

3. An algorithm for adaptive LAM placement

This section presents an adaptive algorithm that automatically positions LAMs at points in the search domain of the independent degrees of freedom, where necessary to ensure the required degree of accuracy. Firstly, the revised algorithm for generating new LAMs is summarized in §3.1[link], with examples of its implementation given in §§3.2[link] and 3.3[link].

3.1. Adaptive generation of LAMs

The basic idea of the adaptive LAM placement algorithm proposed in this paper is to take an existing set of LAMs placed over the search domain of the independent conformational degrees of freedom [\theta], and to try to identify a point at which these LAMs may not attain the required accuracy. If such a point is found, then a new LAM is then generated at that point. The procedure is repeated until no new point is found to be necessary.

Establishing the exact error of the approximation provided by a LAM at a particular point [\theta] would require performing the corresponding quantum mechanical calculation and comparing its results with the LAM predictions. As this would defeat the purpose of an efficient LAM placement algorithm, we choose to use an approximate criterion based on the difference in the predictions at a point [\theta] between two neighbouring LAMs.

In particular, we assume that the maximum discrepancy between the predictions of two LAMs generated at points [{\theta ^A}]. and [{\theta ^B}]. respectively, is likely to occur around the mid-point [{\theta ^M} = ({\theta ^A} + {\theta ^B})/2]. Using equation (3)[link], we can then easily compute the quantities [\Delta {U}^{\rm intra}({\theta }^{M})] using the two LAMs. If we denote these by [\Delta {U}_{A}^{\rm intra}({\theta }^{M})] and [\Delta {U}_{B}^{\rm intra}({\theta }^{M})], then a new LAM is generated at point [\theta^M] only if these quantities differ by more than a certain specified threshold, [{\Delta }^{*}], in absolute value, i.e.

[\left|\Delta {U}_{A}^{\rm intra}\left({\theta }^{M}\right)- \Delta {U}_{B}^{\rm intra}({\theta }^{M})\right|\gt {\Delta }^{*}. \eqno(9)]

However, before deciding whether to generate a new LAM at M, there are two additional conditions we need to consider. First, it is unnecessary to generate a LAM at point M if the latter is unlikely to be inside the region which would be relevant for the purposes of CSP, i.e. if [\Delta {U}^{\rm intra}({\theta }^{M})] exceeds a given threshold, [{\Delta }^{**}]. Of course, the exact value of [\Delta {U}^{\rm intra}({\theta }^{M})] is not known, but it can be approximated by the values obtained by the two LAMs. Conservatively, we choose to consider the lower of these two values; therefore, another necessary criterion for a LAM to be generated at point M is

[\min\left(\Delta {U}_{A}^{\rm intra}\left({\theta }^{M}\right),\Delta {U}_{B}^{\rm intra}({\theta }^{M})\right)\lt {\Delta }^{**} . \eqno(10)]

A second consideration that needs to be taken into account is that the above reasoning is valid only if the LAMs A and B are indeed those nearest to point M. If there exists a third LAM C which is nearer to M than either A or B, then of course the accuracy of the approximations provided by the LAMs at A and B at point M is irrelevant: neither of those would be used during the search to determine the quantity [\Delta {U}^{\rm intra}({\theta }^{M})]. Therefore, a third necessary criterion for a LAM to be generated at point M is

[||{\theta }^{M}-{\theta }^{k}||\ge ||{\theta }^{M}-{\theta }^{A}||. \eqno(11)]

For each and every existing LAM k other than A and B, where the norm [||.||] is the Euclidean norm in conformational space.

The above ideas provide the basis of the new adaptive algorithm for LAM generation. Given any set of LAMs, we consider each and every pair (A, B), determine its midpoint M, and test criteria (9)–(11)[link][link][link]. If all of those are found to be true, then a new LAM is generated at point M, and the procedure is repeated until no more new LAMs are found to be necessary.

In our current implementation, the algorithmic parameters [{\Delta }^{*}] and [{\Delta }^{**}] are set by default at 1 and 20 kJ mol−1, respectively. Using a smaller value of [{\Delta }^{*}] leads to increased consistency between LAMs, but also results in the addition of a greater number of LAM points and hence higher computational cost. We have found the value of 1 kJ mol−1 to give an appropriate balance between cost and consistency. The default value of [{\Delta }^{**}] is chosen based on the assessment of Thompson & Day (2014[Thompson, H. P. G. & Day, G. M. (2014). Chem. Sci. 5, 3173-3182.]) of the maximum energetic cost of molecular distortion away from gas phase conformation in naturally occurring polymorphs. Here, using a larger value of [{\Delta }^{**}] increases the reliability of the LAMs for higher-energy conformations, but this again comes at the cost of adding more LAMs. The norm in criterion (11)[link] is based on the Euclidean distance

[\textstyle{x \equiv \root 2 \of { \sum \limits_i {x_i}^2}}.]

The initial set of LAMs is constructed over a relatively coarse regular grid which is then subsequently refined according to the algorithm presented here, resulting in a complete set of LAMs prior to the start of the global search. A flowchart describing this process is provided in the supporting information. As in the previous implementation of CrystalPredictor II (Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]), during the search, equations (3)[link] and (4)[link] are applied using the LAM that is nearest, in the Euclidean distance sense, to the current point [\theta].

3.2. Illustrative example 1: benzoic acid

In order to better understand the concept of adaptive LAM placement, we first consider a molecule with a single independent degree of freedom, namely benzoic acid (see Fig. 2[link]). The chemically relevant domain for torsion angle T1 is initially covered by four LAMs based at the points T1 = −90, −30, +30 and +90°, at the M06/6-31G(d,p) level of theory.

[Figure 2]
Figure 2
Molecular diagram and degree of freedom T1 for benzoic acid, at T1 = 0.

As can be seen in Fig. 3[link](a), there is clearly a significant mismatch (9.2 kJ mol−1) in the intramolecular energy contribution predicted by adjacent LAMs at T1 = ± 60°. This can be corrected by inserting two LAMS at these positions, as illustrated in Fig. 3[link](b). On the other hand, there is no such mismatch at the boundary between the original second and third LAMs at T1 = 0°, and therefore no new LAM needs to be inserted there. This consistency check, in which different LAM predictions are compared to each other, ensures that the intramolecular energy is described consistently by the LAMs at the given boundary. It does not, however, guarantee that that ab initio accuracy is achieved, although we note that LAMs have been shown to represent ab initio results very well in their locality (Kazantsev et al., 2011[Kazantsev, A. V., Karamertzanis, P. G., Adjiman, C. S. & Pantelides, C. C. (2011). J. Chem. Theory Comput. 7, 1998-2016.]). In the case of a symmetric molecule such as benzoic acid, the consistency of the LAMs at T1 = 0° could be attributed to the symmetric placement of LAM points and does not imply agreement with the ab initio energy value. This could be addressed through the manual addition of LAMs by the user to break symmetry where appropriate.

[Figure 3]
Figure 3
Intramolecular energy for benzoic acid based on one-dimensional LAMs. (a) Initial regular grid and (b) final LAM placement. Crosses represent LAMs on the initial regular grid, circles LAMs added to eliminate mismatch between adjacent LAMs.

Overall, achieving the same level of accuracy with a regular grid would require a grid spacing of [{\rm{\Delta }}\theta] = ± 15°, i.e. 7 LAMs overall (starting with one based at T1 = −90°), as opposed to the 6 LAMs shown in Fig. 3[link](b). Whilst only a small saving is achievable in this simple case, much more marked efficiencies can be achieved for molecules involving multiple independent degrees of freedom, as illustrated by the next example.

3.3. Illustrative example 2: the ROY molecule

The adaptive algorithm is further illustrated for the ROY molecule (5-methyl-2-[(2-nitrophenyl)­amino]-3-thiophenecarbonitrile) (Yu, 2010[Yu, L. A. (2010). Acc. Chem. Res. 43, 1257-1266.]), which is considered here to involve two independent conformational degrees of freedom, T1 and T2, as shown in Fig. 4[link]. These two degrees of freedom have broad ranges of flexibility, with T1 [ \in [- 20^\circ, 180^\circ] ] and T2 [ \in [100^\circ, 260^\circ] ], but within this overall conformational space there are large regions that are characterized by high intramolecular energy which are unlikely to be of relevance to CSP.

[Figure 4]
Figure 4
Molecular diagram and the two independent conformational degrees of freedom considered for 5-methyl-2-[(2-nitrophenyl)­amino]-3-thiophenecarbonitrile (ROY).

Starting with an initial uniform grid generated with [{\rm{\Delta }}\theta] = ±20° and comprising 20 LAMs, at the B3LYP/6-31G(d,p) level of theory, the application of the LAM generation algorithm results in the final set of 41 LAMs shown in Fig. 5[link](b). The minimum spacing between these LAMs is 14°; a regular grid constructed over the original domain would require about 163 LAMs to achieve the same minimum spacing ([{\rm{\Delta }}\theta] ≃ ±7°). However, many of these LAMs would be unnecessary: for example, we note that the adaptive algorithm does not introduce any new LAM points in the region [ [- 20^\circ, 40^\circ] \times \left [{100^\circ, 160^\circ } \right]]. Fig. 5[link](b) also shows the positions of the six known experimental forms of ROY (Yu, 2010[Yu, L. A. (2010). Acc. Chem. Res. 43, 1257-1266.]). This demonstrates that the algorithm does indeed focus computational effort on relevant areas of conformational space.

[Figure 5]
Figure 5
LAM placements for ROY. (a) Initial regular grid (20 LAMs), with [\Delta \theta] = ±20°. (b) Final LAM set (41 LAMs) derived by adaptive LAM placement algorithm. Crosses represent LAMs in the initial regular grid, circles LAMs added by adaptive placement algorithm; triangles show the positions of experimentally known conformations.

The intramolecular energy predictions by the original and final sets of LAMs are shown in Figs. 6[link](a) and (b), respectively. It is clear that the low conformational energy regions are not rectangular, i.e. there is significant interaction between the two torsional angles. It can also be seen that the adaptive LAM placement leads to a smoother intramolecular energy surface in these key regions.

[Figure 6]
Figure 6
Intramolecular energy (in kJ mol−1) as predicted by LAMs in 0.5° scan across conformational space; (a) under a regular coarse grid (Δθ = ±20°), (b) using the adaptive LAM placement of Fig. 5[link](b). Crosses represent regular LAMs, circles non-uniform/adaptive LAMs and (c) Ab initio intramolecular energy based on a 5° scan.

The intramolecular energy contribution is also computed ab initio over the same range of degrees of freedom at 5° increments and shown in Fig. 6[link](c). Visual comparison of the three energy landscapes show that key qualitative features are captured by both LAM-based approximations. A more quantitative comparison is presented in Figs. 7[link](a) and (b), where the differences between the LAM approximation and the ab initio energies are computed at 5° intervals. The average absolute deviation for the regular coarse grid scheme is 0.75 kJ mol−1, while for the adaptive scheme it is 0.56 kJ mol−1. More importantly, it is evident that with the regular grid, there are many areas in which the error is more than 5 kJ mol−1, particularly at the edges of LAM validity. This can lead to the generation of a low-accuracy energy landscape during the global search, in which some structures are found to have unrealistically low or high lattice energy. Finally, it can be seen that in the areas surrounding the experimental structures (black triangles), improved accuracy is achieved.

[Figure 7]
Figure 7
Absolute difference between ab initio and LAM predicted intramolecular energies (kJ mol−1) based on a 5° scan, with LAMs computed based on (a) the coarse regular grid of Fig. 5[link](a). (b) The adaptive scheme of Fig. 5[link](b). The black triangles represent experimental conformations.

4. CSP investigation of molecule (XXVI)

The proposed algorithm is now applied to molecule (XXVI) from the sixth blind test (cf. §2[link]). As shown in Fig. 1[link], the molecule has 7 flexible degrees of freedom, several of which have broad ranges of flexibility.

In this new CSP study, the search domains for all 7 torsion angles are extended until the intramolecular energies [\Delta {U}^{\rm intra}] at the edges of the search space exceed 15 kJ mol−1. While a larger cutoff value has been used in previous work (Habgood et al., 2015[Habgood, M., Sugden, I. J., Kazantsev, A. V., Adjiman, C. S. & Pantelides, C. C. (2015). J. Chem. Theory Comput. 11, 1957-1969.]), 15 kJ mol−1 is a practical value given the computational cost, and the low likelihood of a molecular distortion with an energetic cost greater than 15 kJ mol−1 (Thompson & Day, 2014[Thompson, H. P. G. & Day, G. M. (2014). Chem. Sci. 5, 3173-3182.]). As can be seen by a comparison of the search domains listed in Tables 1[link] and 2[link] this now results in much wider domains for T3 and T5 than those used in our original CSP study (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]).

Table 2
Search domain and initial LAM grid for CSP study on molecule (XXVI)

Independent degree of Initial LAM grid Experimental value in form (1) (°)
freedom, [\theta] (cf. Fig. 1[link]) Search domain (°) Spacing Δθ (°) No. of grid points (not available during the blind test)
T1 [0, 360] ±30 6 215.76
T2 [165, 195] ±15 1 181.26
T3 [20, 260] ±30 4 163.34
T4 [55, 115] ±15 2 78.47
T5 [20, 260] ±30 4 222.46
T6 [165, 195] ±15 1 185.06
T7 [0, 360] ±30 6 301.872

4.1. Generation of an appropriate LAM set

In applying the algorithm proposed in this paper, we start with a relatively coarse regular grid with increments of 60° for T1, T3, T5 and T7, and 30° for T2, T4 and T6 (see Table 2[link]), again, at the HF/6-31G(d,p) level of theory. Overall, this initial grid requires the generation of 1152 LAMs. We then apply the adaptive LAM placement algorithm of §3[link] in a single-pass mode, i.e. simply considering all pairs of points in the initial grid and deciding whether to place a LAM at their mid-point. Overall, this results in the generation of an additional 2491 LAMs.

The accuracy gain achieved by the judicious placement of new LAM points is illustrated in Fig. 8[link] for a 30° × 30° sub-region near the experimental values of torsions T1 and T7 (indicated by a filled triangle). The figures show the differences between the value of [\Delta {U}^{\rm intra}] predicted using the nearest LAM and the corresponding ab initio value. The underlying data are generated by varying T1 and T7 in 2° increments, while keeping the other 5 torsional angles constant at the values T2 = 180.0°, T3 = 170.0°, T4 = 70.0°, T5 = 230.0° and T6 = 180.0°.

[Figure 8]
Figure 8
Absolute error between ab initio and LAM predicted energies for the experimental form (1), across the validity range of the nearest LAM point on the adaptive grid to the experimental values of T1 and T7, calculated at 2° increments. The filled triangle indicates the experimental values of T1 and T7. (a) Error obtained using the initial LAM set constructed on a regular grid; the four LAMs used for these calculations are outside the domain shown at (200°, 80°), (200°, 20°), (260°, 20°) and (260°, 20°), for T1 and T7, respectively. (b) Error obtained using the final LAM set, including a new LAM point indicated by an open white circle.

Fig. 8[link](a) shows results obtained using the initial LAM set on a regular grid. The four nearest LAMs used for this purpose are outside the domain shown. As can be seen, the values of [\Delta {U}^{\rm intra}] involve non-negligible errors, with a maximum of 5.15 kJ mol−1 across the sub-region and a value of 1.01 kJ mol−1 at the experimental values of T1 and T7. On the other hand, Fig. 8[link](b) shows results obtained with the final LAM set which now includes a new LAM placed at the position indicated by the open circle. It can clearly be seen that the addition of this single new point in this sub-region results in very substantial reduction in the error in [\Delta {U}^{\rm intra}]. The maximum error across this sub-region is now 0.27 kJ mol−1, with the error at the experimental values of T1 and T7 being just 0.09 kJ mol−1.

As has already been noted in §2[link], a regular grid that would cover the entire domain of interest at the required accuracy would have to incorporate 11 858 LAMs, whose construction would require approximately 910 000 CPU h on the computing hardware used for this study. Instead, the LAM set determined by the new adaptive LAM placement algorithm requires only 3643 LAMs, an overall reduction of just under 70%.

4.2. Global search using CrystalPredictor II

A global search over 1 000 000 candidate structures is performed using CrystalPredictor II, making use of the LAM set determined above. As shown in Fig. 9[link], this results in 81 unique structures being identified within 10 kJ mol−1 of the global minimum, with 465 and 1413 unique structures being identified within, respectively, 20 and 30 kJ mol−1. The experimental form is identified as the 130th lowest energy structure, with a lattice energy 12.27 kJ mol−1 greater than the global minimum, and a good reproduction of the experimental geometry (RMSD20 = 0.595 Å).

[Figure 9]
Figure 9
CrystalPredictor II energy landscape for molecule (XXVI) based on 1000 000 minimizations and adaptive LAM placement. The square denotes the experimental form, the solid line is the 10 kJ mol−1 cut-off from the global minimum, and the heavy and light dashed lines are the 20 and 30 kJ mol−1 cut-offs from the global minimum, respectively.

4.3. Refinement of low-energy crystal structures using CrystalOptimizer

CrystalOptimizer minimizations are performed on the 1413 unique structures that were identified within 30 kJ mol−1 from the global minimum (cf. Fig. 9[link]). The approach followed was identical to that in our original investigation carried out in the context of the sixth blind test (see supporting information in the blind test paper by Reilly et al. (2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]). In particular, intramolecular energy and conformational multipoles were determined using quantum mechanical calculations at the PBE1PBE 6-31G(d,p) level of theory, and an extended set of independent conformational degrees of freedom was considered as seen in Fig. 10[link]. The use of a different level of theory from CrystalPredictor implies that it is not possible to re-use the LAMs generated at the global search stage. If the same level of theory were used, this would result in a reduction of the number of quantum mechanical calculations at the refinement stage.

[Figure 10]
Figure 10
Independent conformational degrees of freedom used in the CrystalOptimizer investigation of molecule (XXVI). Curly arrows represent torsions, block arrows represent angles.

The resulting energy landscape is presented in Fig. 11[link]. The experimental form is found at the global minimum, with another 17 structures having lattice energy within 10 kJ mol−1 from the global minimum, and 92 within 20 kJ mol−1. We note that these numbers are significantly lower than the corresponding numbers of structures determined at the end of the global search (81 and 465, respectively); thus, refinement using a more accurate lattice energy model and taking account of a higher degree of conformational flexibility has resulted in substantial clarification of the polymorphic landscape. We also note that the geometry of the experimental structure is reproduced with good accuracy (RMSD20 = 0.330 Å), as illustrated in Fig. 12[link] and Table 3[link].

Table 3
Structural information for the predicted crystal structure for molecule (XXVI)

Molecule (XXVI) ρ (g cm−3) a (Å) b (Å) c (Å) α (°) β (°) γ (°) Rank Ulatt (kJ mol−1) RMSD20 (Å)
Experimental 1.332 10.40 11.03 14.18 76.83 73.33 63.47
CrystalPredictor II 1.332 10.23 10.74 14.95 89.14 72.42 64.02 130 −193.41 0.60
CrystalOptimizer 1.337 10.31 11.25 14.10 79.81 73.97 62.88 1 −212.59 0.33
[Figure 11]
Figure 11
Lattice energy landscape following CrystalOptimizer results for molecule (XXVI). The structures generated following the refinement of the 1413 structures generated by the global search stage within 30 kJ mol−1 of the lowest-energy structure are shown. The lowest 100 unique structures span a lattice energy range of 20.8 kJ mol−1 from the global minimum, whilst only 17 unique structures are identified with lattice energies within 10 kJ mol−1 of the global minimum. The square denotes the experimental form, the solid line is the 10 kJ mol−1 cut-off from the global minimum, and the heavy and light dashed lines are the 20 and 30 kJ mol−1 cut-offs from the global minimum, respectively.
[Figure 12]
Figure 12
Overlay of the global minimum predicted structure (green tubes) generated in the CrystalOptimizer energy landscape, and the experimental structure (grey tubes = C atoms, red = O, blue = N, white = H).

The computational cost of the CSP study is summarized in Table 4[link]. The generation of LAM points remains the most significant cost but is now tractable given the high-dimensionality of this molecule.

Table 4
Computational cost of CSP for molecule (XXVI)

Step No. of calculations CPU h (approximate)
Step 0: construction of LAM regular grid 3643 280 000
Step 1: CrystalPredictor II minimizations 1 000 000 20 000
Step 2: CrystalOptimizer refinements 1413 80 000
Total 380 000

5. Concluding remarks

The 2016 blind test (Reilly et al., 2016[Reilly, A. M. et al. (2016). Acta Cryst. B72, 439-459.]) revealed that achieving an appropriate balance between computational cost and accuracy in the global search for crystal structures remains a challenge for large molecules. The algorithm presented in this paper addresses this issue by introducing the adaptive placement of LAMs within the CrystalPredictor II algorithm, an improvement on the uniform grid scheme which had proved too computationally demanding to apply to molecule (XXVI). A higher density of LAM points is automatically achieved in chemically interesting areas of conformational space, thereby resulting in a more efficient use of expensive ab initio calculations. This, in turn, allows the CrystalPredictor II algorithm to handle larger molecules and to explore larger areas of conformational space, through an effective global search methodology. The successful application of this new approach to molecule (XXVI) realises one of the aims of the blind tests, namely to drive innovation in CSP by providing unique and challenging molecular systems.

Throughout the CrystalPredictor II calculations, the lattice energy for any given molecular conformation [\theta] is computed by making use of the LAM that is nearest to [\theta]. One undesirable effect of this approach is that discontinuities in both the lattice energy and its partial derivatives may occur at points [\theta] that lie on the boundaries between adjacent LAMs. Such discontinuities may cause numerical difficulties for CrystalPredictor's gradient-based optimization algorithm in cases in which the path of the optimization iterations crosses one or more LAM boundaries. In practical terms, this is usually exhibited by the algorithm reaching a point from which it cannot achieve any further reduction in lattice energy, despite the fact that the mathematical optimality conditions are not yet strictly satisfied. In the calculations reported in this paper and in our previous work, we have chosen to adopt a conservative approach whereby such points are still considered as candidates for further refinement. However, this may result in much additional computation: for example, in the case of molecule (XXVI), 1283 of the 1413 structures that underwent final refinement (cf. §4.3[link]) actually belonged to this category. Part II of this paper (Sugden & Adjiman, 2016[Sugden, I. J. & Adjiman, C. S. (2016). In preparation.]) is concerned with addressing this problem in a more fundamental manner by removing the discontinuities at the LAM boundaries.

Data statement: Data underlying this article can be accessed on Zenodo at https://doi.org/10.5281/zenodo.56731, and used under the Creative Commons Attribution licence.

Supporting information


Computing details top

(1) top
Crystal data top
Triclinic, P1α = 106.0°
a = 11.3 Åβ = 62.6°
b = 14.1 Åγ = 94.4°
c = 10.3 ÅV = 1396.26 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9342430.8978930.620263
C20.9455640.8515440.47678
C30.8680230.8875930.426574
C40.7780710.9704130.515663
C50.7674791.014990.660341
C60.8447720.9792150.712103
C70.7007650.9950130.440825
C80.5903771.134280.423181
C90.5429281.232960.494027
C100.4721591.279260.441249
C110.452271.224230.31478
C120.5043231.124970.244922
C130.5716511.080430.296199
C140.4202981.378980.510323
C150.3520531.421230.457077
C160.3324171.366590.331997
C170.3817741.27010.262519
C180.5682631.289820.623161
C190.4686071.309130.771774
C200.4941261.362940.893849
C210.61821.39590.867183
C220.7240471.377550.717613
C230.6989681.323950.594338
C240.8530911.411390.687753
C250.9540731.39390.541756
C260.9293161.341940.41937
C270.8051791.307840.444788
C280.2254151.333860.908244
C290.0952901.284490.946432
C300.0640501.198970.996514
C310.0628931.162641.03792
C320.1602361.211561.02912
C330.1316691.297450.981151
C340.0054991.333680.942091
Cl10.6545741.114980.78833
Cl20.1804981.135221.01358
N10.659131.091720.479198
N20.3393881.275490.807546
H10.2588341.182651.06098
H20.0843381.096591.07741
H30.2077671.336340.975274
H40.0182411.401660.90764
H50.4899961.083190.147936
H60.6097261.004190.243465
H70.2784441.401110.291081
H80.3129351.497590.511738
H90.3675241.22720.165986
H100.4345341.421630.606791
H110.4131551.377461.00834
H120.6369551.436540.961464
H130.7867441.268690.349811
H141.0091.329010.303889
H150.870541.451870.783095
H161.052681.42030.52014
H170.3307231.208060.746737
H180.674711.139140.562759
H190.8728130.8517370.31656
H201.014460.7874620.404343
H210.8329871.015390.825163
H220.9939690.8706420.661757
O10.6841950.9290930.34593
O20.2256941.422130.96469
(2) top
Crystal data top
Triclinic, P1α = 61.3°
a = 14.6 Åβ = 72.2°
b = 11.2 Åγ = 92.6°
c = 10.4 ÅV = 1373.44 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9034870.3951670.939332
C20.8531020.3896271.08047
C30.8858820.3272221.2047
C40.9693610.2697471.19232
C51.018350.2757671.0495
C60.9856950.3376280.924206
C70.9910660.2044711.34224
C81.126420.1565271.44665
C91.2270.1586891.40564
C101.268560.1110841.52513
C111.206910.0641641.6846
C121.105560.0664091.71971
C131.065660.1111521.60553
C141.370260.1089431.49068
C151.408140.0625011.60799
C161.346880.0161161.76566
C171.248250.0171491.8027
C181.292960.2095421.23927
C191.32170.1176291.18907
C201.386040.1683811.0306
C211.421510.3090150.92451
C221.395280.407660.969552
C231.330540.3573561.12836
C241.431830.5537570.861799
C251.406150.6476560.908343
C261.342710.5984111.06565
C271.305790.4571491.17281
C281.344220.1222081.29589
C291.29430.2753641.39998
C301.211810.3406861.39634
C311.175590.4854941.49078
C321.221670.5667041.59074
C331.30460.5038761.59492
C341.340850.3598281.4988
Cl11.120440.2026341.01953
Cl21.151870.2447261.27128
N11.087470.2048971.32698
N21.286560.0283171.29165
H11.192890.6794881.66459
H21.111910.5331761.48442
H31.341260.5671651.67194
H41.406780.3088581.49703
H51.058420.0315271.84092
H60.9880330.1115991.63343
H71.377950.0201391.85706
H81.486170.0615811.57896
H91.200130.0181831.92359
H101.418110.1440841.36996
H111.406990.0933270.995908
H121.470380.346570.803417
H131.257580.4201751.29392
H141.323020.6728261.10252
H151.480980.590170.741135
H161.434710.7595580.824717
H171.216950.0646661.37346
H181.138040.2430051.21656
H190.8470280.3189151.31708
H200.7884110.43361.09371
H211.0250.3392410.815925
H220.8787210.4433570.840889
O10.9221520.1591931.46867
O21.433640.0870491.22327
(3) top
Crystal data top
Triclinic, P1α = 63.9°
a = 10.7 Åβ = 61.4°
b = 15.5 Åγ = 90.2°
c = 11.0 ÅV = 1379.11 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5422390.8828170.672307
C20.4143690.8434930.688169
C30.2977380.8866190.723278
C40.3040150.9702890.741702
C50.4333091.007480.727457
C60.5510190.9642980.692888
C70.1629291.003470.780093
C80.0546271.144980.782041
C90.0935511.246880.727518
C100.0167071.300130.74335
C110.1663721.248210.816478
C120.2004541.144890.870419
C130.0943041.093880.854031
C140.0174911.404130.687294
C150.0910871.453460.703918
C160.239271.401760.777361
C170.2756521.301280.832158
C180.2507131.299480.651802
C190.2987041.307240.7451
C200.4482931.357420.673185
C210.5464661.397160.512168
C220.5036491.389650.412916
C230.3534451.340240.483903
C240.6050021.429550.246597
C250.5604151.421280.153018
C260.4117231.372620.222846
C270.3106731.333250.38389
C280.2264071.253521.02374
C290.0974391.230611.18454
C300.0113771.282051.21242
C310.1184741.258981.36772
C320.1179661.184051.49734
C330.0092931.132971.47217
C340.0978911.157381.31711
Cl10.4574021.107060.756036
Cl20.0178201.378121.05599
N10.1677971.096690.761952
N20.1968061.266060.909822
H10.2021381.16631.618
H20.200851.300561.38526
H30.0074631.075021.57293
H40.1861871.120671.29401
H50.3143621.105230.926049
H60.1209271.015210.893818
H70.3239251.441770.789881
H80.0627011.53310.659857
H90.3892391.260730.888398
H100.1312981.444330.630315
H110.4832071.361950.7482
H120.6606141.435260.458588
H130.1963841.296180.436709
H140.3768091.366380.148359
H150.7191391.466920.19439
H160.6391.452110.025502
H170.0889031.249230.945576
H180.2663731.13940.72074
H190.1960570.8569870.738143
H200.4053870.7792730.673705
H210.6488060.9952090.683306
H220.6349150.8500760.645058
O10.0519900.9470150.821837
O20.3499791.257861.00298
(4) top
Crystal data top
Triclinic, P1α = 121.4°
a = 10.9 Åβ = 117.8°
b = 15.4 Åγ = 113.9°
c = 21.3 ÅV = 1371.72 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5606680.8573460.629189
C20.5487730.7440370.586007
C30.4706570.6405930.475433
C40.3978880.6449650.404392
C50.4083150.7580090.448114
C60.491710.8652110.560879
C70.2867260.5118430.274842
C80.3749670.3982940.204876
C90.575680.4585510.254095
C100.4994820.3158910.154106
C110.2177030.1129060.004579
C120.0209560.0589130.040181
C130.0942980.1957650.055647
C140.6960420.3695580.198549
C150.6167620.2291890.099881
C160.3378470.0284000.047972
C170.1428210.0279800.094292
C180.8695280.6710420.411461
C190.9940850.8122460.449656
C201.273251.015420.598723
C211.421631.073770.70592
C221.304730.9367630.672985
C231.024380.7322070.523355
C241.4570.9967940.783743
C251.33850.8610710.749069
C261.061130.6585980.601138
C270.907760.5954660.49104
C280.9016570.8559840.347491
C290.6905130.7381860.202309
C300.4074130.569340.077745
C310.2406380.4785870.048329
C320.354180.555380.051930
C330.6356890.7257390.071817
C340.8000070.8158660.197131
Cl10.3274590.7737890.367139
Cl20.2491760.4712640.076191
N10.4527920.5374470.306073
N20.8352940.7459170.336438
H10.2222780.4830990.15092
H20.0224760.3491420.142154
H30.7268540.7886370.070940
H41.020260.9507530.295939
H50.1939720.0956770.154105
H60.0581620.1531990.019242
H70.2783170.0808580.124665
H80.7703890.2732160.136047
H90.0727670.1821350.207937
H100.9109540.5237440.312145
H111.362981.121070.624742
H121.635161.229670.819812
H130.6949240.4393630.377333
H140.9683460.5515950.574107
H151.670371.153120.897212
H161.457220.9087110.83488
H170.6419140.5968330.234118
H180.6523720.6687510.414659
H190.4618270.5523470.441296
H200.601970.7372930.638877
H210.5019770.9541290.594295
H220.6235670.9402680.716314
O10.0592810.383580.151309
O21.12261.037770.464244
(5) top
Crystal data top
Triclinic, P1α = 63.3°
a = 11.1 Åβ = 69.7°
b = 10.7 Åγ = 119.2°
c = 21.4 ÅV = 1369.07 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4134090.0141320.416022
C20.6098390.2099450.35369
C30.6461360.3089930.380592
C40.490050.2164470.469912
C50.2933590.0213090.530546
C60.2554410.0789190.503828
C70.5617550.351020.484581
C80.4915750.3286010.615141
C90.349070.1875280.719018
C100.3842960.2690650.755766
C110.5654730.4940680.685784
C120.706970.6297850.581289
C130.6734710.5514870.546091
C140.2440130.1327980.860764
C150.2810470.215870.89398
C160.4598680.4388370.824446
C170.5989650.5744610.722517
C180.1611550.0482180.792409
C190.0151070.1272430.825206
C200.1934640.3532020.896228
C210.1934160.495370.932365
C220.017860.4234640.900847
C230.1608220.1975460.830536
C240.0154050.5687060.937159
C250.1568490.494930.905662
C260.3339560.2715850.836351
C270.336110.1266990.799838
C280.1618020.0238690.795342
C290.1766680.111550.790307
C300.1796550.2245260.725571
C310.2200030.3236730.733323
C320.2627770.3062730.807897
C330.2636890.1916990.87409
C340.2207880.095370.86498
Cl10.0839660.1033760.639551
Cl20.1252230.2513130.631076
N10.4527640.2423090.582055
N20.0190630.0154000.790322
H10.2954250.3828980.813939
H20.2179990.4133590.680986
H30.2979830.1768970.93268
H40.2214050.0051210.91636
H50.8460290.8008590.527785
H60.7815390.6563910.466078
H70.4870940.5021610.851828
H80.1719750.1087390.974646
H90.7376480.7463240.668177
H100.1068710.0392390.914795
H110.3278320.4098750.919523
H120.3307540.6675180.986389
H130.4729340.0447200.746781
H140.4699390.2136390.811733
H150.153140.7403520.990644
H160.1572580.6076530.933942
H170.0961030.1627160.757004
H180.323380.0794630.63846
H190.7973030.4633730.332642
H200.7342290.2852020.284327
H210.1011880.2289740.552184
H220.3820970.0656870.396088
O10.7161260.5486190.40946
O20.2813320.1688570.811517
(6) top
Crystal data top
Triclinic, P1α = 101.9°
a = 10.2 Åβ = 85.3°
b = 12.5 Åγ = 77.4°
c = 11.2 ÅV = 1355.04 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.446660.4815650.841106
C20.529220.3970740.747426
C30.650.4129960.698022
C40.692690.5123390.738372
C50.6082310.5956130.83386
C60.4867060.5802440.884604
C70.82920.5113110.675466
C80.9906750.6308040.655394
C91.004280.7398610.656815
C101.135270.7614120.645675
C111.251410.6704370.631687
C121.232520.5611040.630524
C131.106720.540480.642189
C141.154390.8712130.648495
C151.281920.8893270.637309
C161.396770.7990510.622741
C171.381380.6919520.620066
C180.8798150.8327910.674593
C190.8120120.8484990.574218
C200.6907680.9339580.589646
C210.6397411.002580.703063
C220.7040440.9900530.80795
C230.8249820.90380.793203
C240.6511291.059360.92624
C250.7147551.044681.02688
C260.8346610.9594531.01269
C270.888570.8909570.899008
C280.8141870.7832020.34862
C290.9146060.7407490.233637
C301.041630.7642790.216838
C311.123190.7246670.103528
C321.079210.6606620.005308
C330.9526560.6374660.019392
C340.8717150.6783090.132056
Cl10.6493520.7212140.900151
Cl21.103770.8467680.333378
N10.8610670.6121840.674509
N20.8642530.7783640.457727
H11.143780.6297990.082435
H21.220480.745150.093367
H30.9170250.5883210.057216
H40.7715280.6634260.144755
H51.321010.491820.620343
H61.093820.4564550.639982
H71.496930.8146820.613954
H81.294590.9739990.639876
H91.4690.6217730.609193
H101.06640.9409530.659887
H110.6390280.942220.510504
H120.5470561.067740.713573
H130.9808230.8256210.888792
H140.8848610.9479821.09242
H150.5586491.124570.935749
H160.6732821.098281.11724
H170.9616590.7357820.451252
H180.7860250.6832580.702402
H190.7171870.347930.626148
H200.4996870.3190910.713094
H210.4248310.6463270.958861
H220.3515950.4707840.881223
O10.9072910.4196210.630714
O20.6949420.8170430.340176
(7) top
Crystal data top
Triclinic, P1α = 70.6°
a = 11.3 Åβ = 89.3°
b = 10.6 Åγ = 58.8°
c = 14.6 ÅV = 1378.98 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.94540.5575890.200568
C21.053470.4727730.156561
C31.193420.3883280.205005
C41.228550.3859020.2975
C51.117970.4730050.340263
C60.9775440.558360.291901
C71.38090.286250.348715
C81.622190.1895150.321255
C91.708030.2472220.293076
C101.858450.1410420.328595
C111.91710.0209830.392681
C121.824450.0737210.419186
C131.681560.0277310.384784
C141.952360.1925750.302871
C152.095880.0891330.338427
C162.153410.0711750.401371
C172.065310.1246470.427873
C181.65140.41470.224595
C191.654060.453030.123865
C201.607370.6118320.060964
C211.561610.7275520.099017
C221.559360.6941740.200865
C231.605820.5353120.26438
C241.513180.8129210.240998
C251.512360.7769890.340281
C261.557960.6199210.403433
C271.603470.5021320.366679
C281.703250.3464510.009641
C291.770290.1960380.030924
C301.782820.0512320.021795
C311.8440.0733720.011784
C321.894410.0558720.099345
C331.881940.0872500.153946
C341.819650.2107490.120151
Cl11.149570.4844830.452205
Cl21.720240.0169540.131743
N11.474550.2874070.287129
N21.70640.3309750.087067
H11.942380.15380.124821
H21.850840.1830550.031197
H31.919950.1029140.222925
H41.805920.3246070.162349
H51.868670.1973230.467503
H61.61140.0132710.406001
H72.267020.1516420.428846
H82.165650.131450.317977
H92.108060.2477770.47656
H101.909240.315910.25496
H111.60880.6384620.016974
H121.526450.8483240.049950
H131.637730.38190.415826
H141.556750.5919380.481911
H151.478250.9333630.191401
H161.476630.8688670.370426
H171.746670.2204040.13919
H181.437120.3825670.222571
H191.278470.3193850.17205
H201.029180.4714860.085311
H210.8942080.6255490.326401
H220.8353730.6241960.163837
O11.418650.2052160.436997
O21.654040.4738060.079653
(8) top
Crystal data top
Triclinic, P1α = 95.0°
a = 10.9 Åβ = 66.8°
b = 13.4 Åγ = 74.0°
c = 11.2 ÅV = 1404.04 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.7345150.4490150.400213
C20.681820.3701040.449219
C30.5964150.3861830.58456
C40.5600590.4805960.674462
C50.6155180.5583440.622909
C60.7021090.5427510.487131
C70.4684670.4814340.817559
C80.2820920.5978471.03489
C90.2177430.7029911.1063
C100.1252240.7265971.24596
C110.0996870.6422011.31033
C120.1656210.5370711.23302
C130.2536430.5146251.0994
C140.0563470.8319541.3243
C150.0311170.8518111.45841
C160.0554260.7680011.52176
C170.0087660.6653391.44866
C180.2392360.7920021.03896
C190.3158440.8520051.0628
C200.3308820.9388951.00148
C210.2685270.9658030.918466
C220.1867960.9085510.892421
C230.1709240.8212320.953992
C240.1195930.9367270.808479
C250.0381580.8818330.786451
C260.0203010.7965030.848687
C270.0848500.7668970.930181
C280.3846870.9006271.23649
C290.4754530.8639361.30738
C300.621010.80561.24578
C310.6982340.7839491.32042
C320.6301860.8209011.45814
C330.4857520.8807291.52124
C340.4103330.9030151.44577
Cl10.5855850.6773610.724067
Cl20.7132510.7588671.07305
N10.3713850.5767450.897606
N20.3850180.8260921.14492
H10.69080.8034791.51588
H20.8111540.7388691.26966
H30.4325940.9106661.62868
H40.2986470.9517641.49216
H50.1451840.4727021.28148
H60.3046890.4339731.04131
H70.1250.7850021.62783
H80.0824000.9331111.51617
H90.0092310.5998651.49575
H100.0737110.8974761.27743
H110.3919610.9836181.02237
H120.281241.03210.871319
H130.0691050.7017670.978532
H140.0455420.7539460.832475
H150.1333561.003260.762118
H160.0131390.904230.722017
H170.4275620.7486861.14303
H180.375020.6418970.859117
H190.5561480.3252950.625899
H200.7074240.2962460.382192
H210.7440750.6043880.451047
H220.8018490.4377030.294515
O10.4812350.3971080.853104
O20.3133780.9943741.26326
(9) top
Crystal data top
Triclinic, P1α = 65.5°
a = 12.0 Åβ = 81.4°
b = 11.9 Åγ = 77.2°
c = 10.9 ÅV = 1378.76 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.6191790.7965460.611891
C20.6927390.8664360.512543
C30.6571860.9362630.383285
C40.5477320.9408160.349234
C50.4759160.8680250.450612
C60.5113280.7967440.580615
C70.5276541.021830.202506
C80.3825161.139340.033359
C90.2676061.160920.009387
C100.2311041.234090.123969
C110.3122411.286510.231247
C120.4275161.264990.201307
C130.462471.194520.073840
C140.1151521.256920.154052
C150.0822701.326950.283133
C160.1629931.378290.389063
C170.2756551.358330.363119
C180.1798581.110610.119804
C190.1504560.993490.157633
C200.0620530.954710.260283
C210.0069671.030480.32479
C220.0346151.150160.291186
C230.1212621.190910.186731
C240.0217801.229660.357131
C250.0057631.346060.321609
C260.0912361.387140.218054
C270.1474281.311860.152267
C280.2141310.7851610.147655
C290.2565740.7196970.053800
C300.3236250.5985280.097632
C310.3534930.5351230.011802
C320.3158350.5900340.117754
C330.2486660.7093970.16276
C340.2197770.7725790.077109
Cl10.341090.855090.422139
Cl20.3787450.5243830.255047
N10.4176981.067530.16453
N20.2017230.9145570.090646
H10.3393270.5390020.183127
H20.4066990.442460.047738
H30.2182230.7528880.263432
H40.165070.8646770.110727
H50.4897431.305970.282091
H60.550851.178190.052499
H70.1357051.433580.490552
H80.0069051.343320.303828
H90.3387971.397490.443587
H100.0522381.218530.073192
H110.0401010.863360.287638
H120.0600730.9989410.403019
H130.2128241.344790.072549
H140.1128671.479310.189836
H150.0875641.19660.436614
H160.0379901.406510.372725
H170.246260.9544880.002244
H180.3538991.039610.235966
H190.7131040.9901490.30328
H200.7777140.8659640.535548
H210.4536890.7409650.656041
H220.6456570.7408740.713661
O10.6117131.04580.124264
O20.1884490.7259940.265939
(10) top
Crystal data top
Triclinic, P1α = 65.0°
a = 13.8 Åβ = 109.4°
b = 10.9 Åγ = 111.7°
c = 11.5 ÅV = 1418.23 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9755980.1034040.767893
C20.8922320.0075600.829848
C30.901210.1260670.911098
C40.9932520.1671780.935218
C51.075230.0698510.869855
C61.066510.0644020.787161
C70.9854380.3179661.02358
C81.095590.4742191.19842
C91.201010.475781.26333
C101.223250.6020681.36163
C111.137510.726061.39173
C121.031990.7186251.32488
C131.010590.5969061.23176
C141.328730.6090691.43216
C151.347860.7325461.52541
C161.262950.8554251.55365
C171.160.8516511.4882
C181.289170.3435411.23678
C191.350630.3095221.14708
C201.43450.1832861.12402
C211.454230.0934001.18858
C221.393010.1224781.27962
C231.309590.2498531.3047
C241.412610.0294481.34613
C251.352570.0604861.4347
C261.270350.1867281.46028
C271.249380.2792061.39727
C281.35990.3708340.967613
C291.351850.4912470.929829
C301.361830.6260251.01279
C311.35710.7237140.961478
C321.342270.688880.826591
C331.333330.5553480.742364
C341.339030.4585910.794345
Cl11.18990.1105290.881094
Cl21.383390.6811851.18395
N11.078580.3468121.10469
N21.330050.4025811.08179
H11.338390.7661390.787899
H21.365720.8266251.0286
H31.322440.526630.636797
H41.33430.3528910.731508
H50.9662840.8122661.34883
H60.9297330.5918521.18072
H71.279350.9522861.62749
H81.429130.7355961.57827
H91.093810.9452591.50963
H101.394440.5149461.41146
H111.480740.1583561.05301
H121.518380.0030701.16985
H131.186290.3763471.41807
H141.223270.2112381.53078
H151.476410.0672461.32571
H161.368230.0115381.48531
H171.289880.5026951.12472
H181.146340.2674281.09332
H190.8365940.2039960.958264
H200.8203040.0365670.814143
H211.13120.1367940.737462
H220.9698380.2083880.703398
O10.8980440.4041081.02406
O21.390470.2505290.894765
(11) top
Crystal data top
Triclinic, P1α = 66.7°
a = 13.7 Åβ = 75.2°
b = 10.5 Åγ = 100.5°
c = 11.0 ÅV = 1337.37 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4369640.7656890.468631
C20.3325360.7669160.491182
C30.3128190.8983010.432358
C40.3953111.031560.350581
C50.4997271.02710.327895
C60.5207010.8958140.385771
C70.3602871.164230.296407
C80.3916791.418320.254736
C90.2978411.429730.327283
C100.2807191.568810.277989
C110.3620731.693520.159501
C120.4580381.676780.091701
C130.4721681.54260.137628
C140.1851891.58770.344728
C150.1711731.72250.29632
C160.2518221.845580.179362
C170.3452851.831070.112524
C180.2162011.304020.458973
C190.1229241.227850.458247
C200.0415871.118240.586392
C210.0549071.084810.713065
C220.1494431.158680.719209
C230.2311091.270830.590647
C240.1641051.125190.849689
C250.2552461.199640.854299
C260.3355491.311740.727626
C270.3238431.346450.599298
C280.0219891.281260.301222
C290.0190941.30540.15792
C300.1040681.381070.026942
C310.0884961.396080.097586
C320.0119241.335980.093649
C330.0977711.262590.034820
C340.0816951.249340.157844
Cl10.6108041.184270.22139
Cl20.2322671.46730.007821
N10.4137561.283950.299684
N20.1106451.258480.327393
H10.0228671.347980.191334
H20.1558231.456170.197193
H30.1769171.216590.039024
H40.1474731.195380.259101
H50.5200761.771780.001716
H60.5447351.528580.084138
H70.2395961.951470.142298
H80.0970551.734250.348371
H90.4079411.924980.022074
H100.1222351.493660.433981
H110.0311191.063150.581553
H120.0075461.000440.811264
H130.3857981.433670.502646
H140.4071561.371390.731711
H150.1012811.039270.946627
H160.265521.173090.955051
H170.1732351.25990.253114
H180.4807711.282580.321775
H190.2320790.9017810.447493
H200.2665230.6657850.554783
H210.6027090.8968840.364717
H220.4538220.6637510.513968
O10.2846921.157980.256694
O20.0550391.278810.38904
(12) top
Crystal data top
Monoclinic, P21/ac = 11.1 Å
a = 18.9 Åβ = 87.2°
b = 13.2 ÅV = 2758.9 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9850480.0505450.685457
C20.9212260.0734510.633724
C30.9215230.133590.531244
C40.9847110.1707240.47603
C51.048160.1478090.530626
C61.048330.0883960.634547
C70.9748340.2354340.366153
C81.022460.2692020.15618
C91.076960.2459930.070746
C101.077060.2908630.046759
C111.020790.3570440.076395
C120.9666680.3777680.013111
C130.9669920.336130.126147
C141.132210.2725790.136019
C151.130940.3165650.248257
C161.074790.3812190.277574
C171.020950.4009870.192947
C181.137510.1804810.103119
C191.189860.2187810.175233
C201.248260.1576560.205794
C211.253720.0605200.163818
C221.202310.0181200.090076
C231.143350.0789180.059656
C241.207710.0824020.046544
C251.156870.1221490.024180
C261.098190.0624360.053806
C271.091460.0353740.012966
C281.226150.372570.287799
C291.210060.4837850.293587
C301.214710.5399640.400394
C311.202880.6439440.400808
C321.187160.6936680.294888
C331.182760.6395390.187907
C341.194080.5357640.188121
Cl11.129710.1957710.476962
Cl21.231540.4838840.537454
N11.023130.2240490.270654
N21.184650.3200880.210826
H11.17840.7748440.296501
H21.205950.6851540.485054
H31.170960.6777430.104548
H41.19240.4939840.103827
H50.9238650.4285960.008786
H60.9256140.3527070.194189
H71.074450.4152410.366771
H81.173640.3013830.315203
H90.9774920.4509770.213985
H101.17560.2228990.114562
H111.287510.1896060.262563
H121.298640.0143490.187512
H131.046110.0806950.036065
H141.057880.0942270.109345
H151.253050.1276220.070492
H161.161520.1993350.057165
H171.14280.3574860.178672
H181.063360.1747590.281696
H190.8723440.1542590.490811
H200.8713770.0451170.673545
H211.09840.0731520.675054
H220.985780.0040020.766149
O10.9235940.292010.366091
O21.272860.3344070.344853
(13) top
Crystal data top
Triclinic, P1α = 67.6°
a = 10.9 Åβ = 62.7°
b = 14.9 Åγ = 88.5°
c = 10.5 ÅV = 1382.34 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.3971640.3998950.756931
C20.3822590.3441150.683258
C30.3180990.3772980.590732
C40.2685620.4666590.566994
C50.2839590.5210270.643398
C60.3472610.4880060.737708
C70.2009790.4888690.463527
C80.1573720.6230920.268341
C90.1602020.7240220.204658
C100.1109940.7646490.093568
C110.0621930.7015450.046658
C120.0638700.5997510.112563
C130.1099880.5607220.219884
C140.108760.866680.027408
C150.0605060.9036190.078862
C160.0124640.8409910.125184
C170.0135020.7419710.063431
C180.2108340.7906260.252883
C190.120590.8210190.366712
C200.174160.8854890.407374
C210.3152150.9203750.333042
C220.4119920.8933450.213723
C230.3591090.8280450.173341
C240.5584050.9293560.134298
C250.6503560.9024180.018435
C260.5986080.8381620.02251
C270.4569630.8018050.052910
C280.1225110.847170.4854
C290.2730090.7954830.585709
C300.3822030.8391560.565157
C310.521770.7918910.667525
C320.5545320.7013970.792837
C330.4478470.6572410.815825
C340.3086890.7043040.712544
Cl10.2214760.6313920.631237
Cl20.3497910.9501820.409004
N10.2090550.5853770.374991
N20.0255730.7869450.449745
H10.6639130.6656450.872279
H20.6040380.8266760.647759
H30.4726160.5868490.913816
H40.22480.6712060.731186
H50.0274240.5514970.076499
H60.1099150.4828020.270484
H70.0252960.8713340.209383
H80.0591540.9818860.127593
H90.0232900.6928390.097930
H100.145190.9155130.062391
H110.1006840.9073220.497362
H120.3545120.9695140.365607
H130.4181940.7527770.019940
H140.6713850.8173140.114742
H150.596620.9790520.166874
H160.7625440.9305350.041940
H170.0594370.7229390.45403
H180.2512580.6367930.391538
H190.3026750.3344650.53436
H200.4201710.2748440.698211
H210.356190.5318180.79587
H220.4467660.374910.83026
O10.1479870.4196220.459028
O20.0894740.9347380.444623
(14) top
Crystal data top
Monoclinic, P21/nc = 17.8 Å
a = 10.9 Åβ = 80.5°
b = 14.6 ÅV = 2791.91 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4956850.0759270.736043
C20.450370.1605760.76321
C30.3229990.1769490.774322
C40.2390540.110240.758149
C50.2865590.0253000.730995
C60.4139740.0082560.720357
C70.1036720.1342450.765718
C80.0564680.2296330.843666
C90.1116820.2511460.917684
C100.2261080.3010870.930379
C110.2827390.3275720.866851
C120.2221920.3046720.792423
C130.1123660.2574670.780431
C140.2864030.325131.00478
C150.3970470.3722471.01537
C160.453090.3980260.952403
C170.3966570.376070.87966
C180.0516720.2243870.984056
C190.0825930.1423451.02246
C200.0266470.1181051.08647
C210.0589190.1749611.1104
C220.0942620.2584681.073
C230.0375240.2836761.00913
C240.1835410.3171841.09703
C250.2161490.3979341.05975
C260.1598930.4232970.996708
C270.0728270.3678750.972035
C280.2049620.0010151.01893
C290.3050720.0439330.9811
C300.3250460.0359290.905389
C310.4235160.0810040.880347
C320.5040720.1349190.930497
C330.4850050.1452081.00564
C340.3862070.1006871.02982
Cl10.1896570.0629240.712574
Cl20.2252950.0255200.836646
N10.0576370.183220.830472
N20.1686980.0852560.99538
H10.5807490.1694440.910398
H20.4351940.0738130.821142
H30.5465410.1880181.04514
H40.3680280.1087041.08772
H50.2645120.3254530.743815
H60.0682060.2395320.723309
H70.5405330.4352540.961662
H80.4417820.3899421.07281
H90.438670.3956510.830611
H100.2437340.3057591.05352
H110.0523730.0539131.1148
H120.1014290.1555741.1593
H130.0292630.3881870.923883
H140.1853780.4874940.967615
H150.2258760.2969461.14579
H160.2847370.4424751.07866
H170.2040070.1109280.950526
H180.104110.1784880.875126
H190.2868440.2431690.79483
H200.5136610.2136890.775531
H210.4481130.0583640.699967
H220.5949520.0619460.727135
O10.0432800.115470.715891
O20.1667820.0417221.07051
(15) top
Crystal data top
Monoclinic, P21/cc = 19.6 Å
a = 13.8 Åβ = 80.5°
b = 10.5 ÅV = 2798.62 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9418360.9671590.095857
C20.9221051.091070.076933
C30.86071.111570.028518
C40.8173351.009570.001281
C50.8377740.8854690.018732
C60.899920.8642840.066683
C70.7485271.034730.051687
C80.7379481.168340.154671
C90.7713111.285040.183228
C100.7233191.341750.234918
C110.6415231.278450.256038
C120.6102151.160390.225018
C130.6565151.105890.175703
C140.7533261.460960.265667
C150.7051951.513730.314784
C160.6246751.450570.335828
C170.5936551.335380.30688
C180.8548041.351820.159072
C190.8392851.418650.097064
C200.9180141.482530.073204
C211.010641.47750.111007
C221.030511.409920.174176
C230.9514481.346440.198722
C241.126271.403450.213305
C251.143891.33670.274247
C261.065911.273420.298523
C270.9720931.278130.26186
C280.72061.428790.011753
C290.6132311.413690.039788
C300.5657431.487630.094819
C310.4685221.463470.123881
C320.4179061.363180.099390
C330.4640781.287470.045509
C340.5608121.313090.016118
Cl10.7900790.753150.017493
Cl20.6238751.616240.126574
N10.7876861.114090.104899
N20.7438091.424350.058930
H10.3423251.34440.122858
H20.4332551.523650.16568
H30.4257581.207820.026687
H40.5970811.250770.024502
H50.5479611.112140.241096
H60.6320011.016070.151748
H70.587441.493430.374772
H80.7293481.605010.337702
H90.5315841.285910.322493
H100.815241.510120.249857
H110.9034791.533430.024683
H121.070661.526640.09249
H130.9124771.229330.280896
H141.080241.22050.346697
H151.185751.452390.194002
H161.217641.332260.303839
H170.6883021.406970.085473
H180.8547891.151220.10272
H190.8444551.209020.015229
H200.953621.17210.099867
H210.9151950.7670690.080591
H220.9898860.9497930.133491
O10.6659570.9899140.044850
O20.781961.437770.049752
(16) top
Crystal data top
Monoclinic, P21/cc = 8.7 Å
a = 19.4 Åβ = 90.9°
b = 15.9 ÅV = 2702.33 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5093350.3100910.526392
C20.540130.2348540.484455
C30.5129320.159480.534719
C40.4551480.1573810.628191
C50.4251470.2335680.669542
C60.4520660.3096230.619874
C70.4303260.0719540.675528
C80.3266640.0198030.657556
C90.2609750.0264710.592562
C100.2226390.1021130.610457
C110.2511630.1692340.6989
C120.3174380.1588880.765262
C130.3545730.0869260.745733
C140.15660.1134680.542127
C150.120830.1868210.562018
C160.1489150.252770.650904
C170.2128980.2439630.717582
C180.2318790.0428220.496671
C190.1808390.0956940.550853
C200.1534030.1598770.454647
C210.1760140.1693310.307875
C220.2272680.1165110.247024
C230.255480.0521440.342513
C240.2507370.1257640.094990
C250.3000810.0732480.037906
C260.327610.0088780.131342
C270.3059730.0015430.279516
C280.0951690.1086620.754237
C290.0780950.0936810.920437
C300.0972660.0269651.01633
C310.0717960.0195271.16431
C320.0262550.0788861.21958
C330.0054940.1452411.12601
C340.0305450.1513210.978423
Cl10.3539420.236530.788777
Cl20.1534620.0512870.956883
N10.3637420.0542560.634935
N20.1599380.0900950.704465
H10.0067830.0727351.33517
H20.0878480.0333301.23446
H30.0305970.1916391.16741
H40.013470.2009980.901888
H50.3393060.2097530.833174
H60.4055360.0798650.795299
H70.1199170.3102980.665869
H80.0703480.1941540.508705
H90.2353650.2943630.785729
H100.1345370.0632830.473199
H110.1139910.2004390.499336
H120.1545980.2188380.235997
H130.3270940.0517810.34973
H140.366170.0331260.085484
H150.2287050.1753270.024127
H160.3177620.0807840.078914
H170.190910.0564880.775688
H180.3379290.0998070.577421
H190.5367110.1002770.504552
H200.5850350.2349390.411962
H210.4279920.3676880.655266
H220.530090.3694850.487591
O10.4701320.0230570.737801
O20.0508280.1397650.671271
(17) top
Crystal data top
Triclinic, P1α = 66.2°
a = 16.6 Åβ = 106.3°
b = 8.8 Åγ = 86.6°
c = 11.0 ÅV = 1380.55 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.8783230.4219350.811806
C20.9597680.3582110.913307
C30.9691510.3142881.05358
C40.8986460.3279561.09769
C50.8175840.3960060.992982
C60.8073820.4424330.851427
C70.9185190.2781451.25299
C80.8609370.1349681.44892
C90.7922890.0616221.47916
C100.7869990.0063801.61746
C110.8507430.0316181.72213
C120.9185660.108441.6858
C130.924570.158581.55372
C140.7199650.0732661.65514
C150.7160850.1235371.78887
C160.7787870.0971921.89195
C170.8447360.0213821.85894
C180.7284870.0311731.36907
C190.6492260.1397671.28803
C200.590570.1093821.18182
C210.6114110.0262341.15821
C220.6912730.1394061.23679
C230.7506350.1100271.34349
C240.713540.2793981.21228
C250.791490.3875691.29014
C260.850220.3598071.39658
C270.8304510.225051.42283
C280.5496970.3695961.27459
C290.5392680.5166191.31008
C300.5902540.5398211.42456
C310.5675520.6782211.44746
C320.4929670.796481.35652
C330.4403610.775161.24336
C340.463180.6361381.22258
Cl10.7254420.4355021.03133
Cl20.684330.3977771.54729
N10.8649870.1847561.31265
N20.6304520.2845731.3071
H10.4759480.9041051.37508
H20.6087620.6910551.53753
H30.3814030.8657851.1722
H40.422130.61431.13745
H50.9672780.1271611.76566
H60.9766170.2167571.52649
H70.7747360.1373281.99715
H80.6642150.1841711.81567
H90.8936340.0010241.93753
H100.6715610.0939351.57638
H110.5293190.1947991.12101
H120.5659380.0472861.07626
H130.8758580.205731.5057
H140.9116250.4462421.45874
H150.6674570.2994781.13033
H160.8080180.4945891.27053
H170.6802170.3139271.36592
H180.8177370.1573441.24802
H191.032240.2675451.13407
H201.01580.3439240.883213
H210.7436920.4957410.773376
H220.8697770.457710.701342
O10.9797370.3192871.31605
O20.4845210.3340781.21535
(18) top
Crystal data top
Monoclinic, P21/cc = 19.7 Å
a = 10.9 Åβ = 57.0°
b = 15.2 ÅV = 2742.34 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.6315110.8360660.050323
C20.6117750.9187120.084949
C30.6617280.9924020.035734
C40.7297620.9862920.048376
C50.7487310.9023810.081759
C60.7006680.827850.032975
C70.7760771.073640.091267
C80.7927341.164570.198869
C90.8579431.165840.282123
C100.8717111.24740.321724
C110.8196911.326170.275263
C120.753351.321150.190363
C130.739291.242970.152701
C140.9371211.252790.406614
C150.9505821.332060.443322
C160.8992511.40990.397247
C170.8350661.406750.314888
C180.9109391.083320.330418
C191.054021.054630.362892
C201.104340.9758610.408871
C211.013180.9280220.422254
C220.8679020.9549010.391605
C230.8167441.033810.34534
C240.7729430.9061970.405469
C250.6323570.9338980.375024
C260.5812331.012010.329263
C270.670711.060690.314742
C281.287491.088750.3738
C291.363411.158510.355418
C301.308771.202480.281926
C311.395671.262020.272599
C321.538061.278390.336571
C331.595061.234380.409805
C341.508621.174420.41829
Cl10.8384720.8849060.185902
Cl21.132681.184260.198266
N10.7728321.084060.159143
N21.145761.105390.349312
H11.604651.325110.328736
H21.350581.294630.214744
H31.706771.246220.45979
H41.551711.137440.473905
H50.7125711.381020.154808
H60.689931.239890.087972
H70.9105461.47210.427051
H81.001081.334850.508427
H90.7949811.466280.278726
H100.976511.193070.442321
H111.215320.9549880.432484
H121.053150.8678650.457453
H130.6306111.12090.279798
H140.4700541.03390.30541
H150.8138770.8461990.440854
H160.560420.8960530.386033
H171.099521.160730.316768
H180.7649411.029960.186275
H190.6510331.057450.060745
H200.5586080.9256470.149968
H210.7187910.7638530.061011
H220.593940.7775990.087901
O10.8083641.133030.061945
O21.356431.023620.411506
(19) top
Crystal data top
Monoclinic, C2/cc = 30.1 Å
a = 19.0 Åβ = 60.9°
b = 11.4 ÅV = 5677.08 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1713720.2375640.353457
C20.1440790.2843610.321875
C30.0727510.2428820.325382
C40.0283410.1538440.359738
C50.0568710.1077560.391145
C60.1276510.1498990.388313
C70.0428900.1032810.357526
C80.150250.172970.339684
C90.2160210.2477340.356432
C100.2683130.2384410.334853
C110.2524220.1521580.296668
C120.1838930.0790770.280439
C130.1336040.0891670.30074
C140.3363270.3125590.350286
C150.3860160.3008250.329297
C160.3703910.2149270.291764
C170.3047330.1423020.275819
C180.2318230.3394140.395593
C190.2854480.3195270.446899
C200.3022140.4102580.483286
C210.2656350.5176520.468433
C220.2104770.5422580.41697
C230.1941470.452140.380251
C240.1717980.6527660.401095
C250.1188490.6745570.350775
C260.1027780.5859370.314176
C270.1394180.4778610.328434
C280.3669960.1661520.510124
C290.4040420.0458230.515808
C300.371750.0532780.484631
C310.413150.1598910.496631
C320.4875910.1695040.540176
C330.5202080.0729650.572275
C340.4781940.0323210.560254
Cl10.0036620.0001210.435763
Cl20.2769930.0520100.430433
N10.0960690.1865240.358286
N20.3213350.2084910.461825
H10.5194880.2528970.549128
H20.3860130.2348490.471749
H30.5779110.0800180.606735
H40.5013370.1080940.585179
H50.1711190.0141680.250931
H60.0820260.0317630.288514
H70.4101980.2066680.275533
H80.4378360.3584090.341701
H90.2918350.0759240.246827
H100.3486830.3791250.379043
H110.3434820.3914820.522794
H120.2789470.5858160.496783
H130.1272670.4106540.299933
H140.0613050.603650.274325
H150.1850230.7202590.429706
H160.0895310.7596710.339008
H170.3073380.1514550.432854
H180.0971480.2640650.375093
H190.0508740.2784870.300849
H200.1780390.352810.294659
H210.1479620.1136420.413476
H220.2268580.2693690.351252
O10.0482980.0013650.351095
O20.383110.2222570.548596
(20) top
Crystal data top
Monoclinic, P21/ac = 13.1 Å
a = 12.3 Åβ = 77.3°
b = 17.6 ÅV = 2776.38 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4094460.7160770.921938
C20.4953710.6641630.918093
C30.4780190.5878350.899235
C40.3752160.5622090.884351
C50.2897360.6152380.888643
C60.3067770.691810.906665
C70.3579990.4780190.875577
C80.4680440.3672220.792891
C90.5691470.3470690.728224
C100.607120.2701310.727968
C110.5401120.2147390.792077
C120.4371690.2379630.855108
C130.4012890.3116210.856079
C140.7108720.2465620.66573
C150.7453550.1723040.666714
C160.678350.1175480.729693
C170.5778040.1386470.79113
C180.6423340.4042320.662641
C190.6338840.4169750.559735
C200.7057360.4695260.495626
C210.7848060.5075770.534197
C220.7974770.496290.637589
C230.7257520.4434560.702182
C240.8786230.5357630.678316
C250.8890780.5239410.77905
C260.8184240.4715510.843169
C270.7389720.4322160.80586
C280.5241390.3831710.42755
C290.4467650.3229020.402804
C300.4424060.2455610.429783
C310.3671940.1965220.3983
C320.2951170.2235560.339024
C330.2993820.2996790.309382
C340.3749740.3478240.340457
Cl10.1611120.5876390.868015
Cl20.5329530.2041420.49864
N10.4335930.4433940.79638
N20.5532680.3764490.521869
H10.2366520.1848140.315335
H20.3667920.1370190.42013
H30.2444210.3213560.261966
H40.3812970.407130.316995
H50.3854070.1959390.903752
H60.3226290.3290940.904576
H70.7066340.0590520.729492
H80.8250970.1555680.618483
H90.5253570.0972050.840281
H100.7630980.2881230.61692
H110.6955430.4790150.416924
H120.8393260.5477040.484549
H130.6856280.3914650.855277
H140.8273610.4619410.922622
H150.9326620.5757880.627989
H160.9516550.5544970.809483
H170.5153990.3350560.570465
H180.4844020.4787140.746667
H190.5448310.5469820.896404
H200.5756390.6828320.929856
H210.2394520.7318550.908473
H220.4219450.7758870.936442
O10.2860470.4449970.938317
O20.5551820.4345310.365316
(21) top
Crystal data top
Monoclinic, I2/cc = 18.5 Å
a = 19.0 Åβ = 84.8°
b = 15.6 ÅV = 5483.38 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5654810.70510.849506
C20.5780420.7708560.799338
C30.5972030.7509870.727387
C40.6053320.6663830.70248
C50.5913240.6014980.75419
C60.5717750.6206170.826717
C70.6257260.6597880.621787
C80.6827180.566850.525071
C90.6949310.4806520.508445
C100.7180730.4562350.435905
C110.7278230.5201560.380889
C120.7144160.6066030.400289
C130.6926050.6299850.469978
C140.7315510.3695440.416184
C150.7534540.3478030.345901
C160.7630920.4112320.291609
C170.7504510.4956220.308964
C180.6844180.413780.565934
C190.7392920.3918950.607543
C200.7286070.3278520.661973
C210.6645490.2880040.673815
C220.6074120.3083570.633069
C230.6175660.3724750.578289
C240.5410140.267480.645297
C250.486440.2889030.60512
C260.4963310.3523650.550879
C270.5601370.3931210.537676
C280.861250.4311680.63291
C290.9244720.4871010.60999
C300.9313070.5574530.562726
C310.9948320.6016840.550209
C321.053360.5768050.584546
C331.048140.5076480.632065
C340.984650.4644640.644302
Cl10.5939830.4928660.732499
Cl20.8619060.5971490.517
N10.6617470.5879670.597481
N20.804820.4323810.592206
H11.102580.6117170.574218
H20.9974840.6558690.513441
H31.093310.4874950.65964
H40.9788910.4109740.681692
H50.7217870.6555610.358581
H60.6816840.6961090.484138
H70.7804380.3930380.236279
H80.7634110.281090.331894
H90.7576380.5451050.267676
H100.7240430.3203850.457584
H110.7718230.3118520.6935
H120.6571740.239110.715587
H130.5673270.4418370.495874
H140.452970.3691460.519266
H150.5341250.2187690.687267
H160.4356650.2572770.6149
H170.8075540.4721040.548838
H180.6648130.5392580.633127
H190.6062330.8010280.686988
H200.5728110.837320.816088
H210.5611490.5683390.864676
H220.5503180.719120.906186
O10.612870.7197010.582638
O20.8638710.3856550.68638
(22) top
Crystal data top
Triclinic, P1α = 98.7°
a = 12.1 Åβ = 93.5°
b = 11.2 Åγ = 73.7°
c = 11.0 ÅV = 1413.98 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.8252280.1803050.561922
C20.8447520.1336760.437871
C30.8681630.2089380.359591
C40.8707950.3324270.400437
C50.8527370.3763790.526321
C60.8302950.3010660.606155
C70.8970630.4000540.30204
C80.8625040.6122430.241154
C90.7836420.7304960.252418
C100.79840.8214890.18153
C110.8934240.7903020.100375
C120.9719110.6694780.093715
C130.9579930.5826060.161817
C140.720580.9431720.188422
C150.7360141.02840.118262
C160.8299240.9970860.037873
C170.9069830.8803040.029493
C180.6845720.7645060.337679
C190.5765630.7551630.292862
C200.4807850.7899650.372232
C210.4938790.8343930.493856
C220.6011860.847770.54353
C230.6976480.8130840.464024
C240.6150470.8952470.668845
C250.7196750.9090840.714497
C260.8150330.87610.635781
C270.8045180.8292440.51385
C280.4659150.7259330.096383
C290.4889390.6728630.036865
C300.4146860.6140950.109667
C310.436490.5701350.233941
C320.5317580.5853470.287988
C330.6060870.6441480.217755
C340.5844430.6869240.093664
Cl10.8613460.5245840.593151
Cl20.2961440.5871430.048959
N10.8468810.5262980.313898
N20.5649610.7108520.167926
H10.547450.5511460.38511
H20.3781790.523740.287353
H30.6802480.6574310.259226
H40.6407710.7365090.040404
H51.045070.6457270.032965
H61.017320.4898260.154917
H70.8410661.065510.016851
H80.6753691.120960.124905
H90.9799590.8550250.031709
H100.6483750.9683370.250386
H110.3980510.7823190.334042
H120.4201940.8605970.554137
H130.8781970.8043730.453877
H140.8974660.8881120.671978
H150.5407810.9208910.728275
H160.7293240.9457210.810742
H170.6399020.6667280.124505
H180.7912840.5643380.38376
H190.8854880.1742610.262873
H200.8422440.0389570.40237
H210.8175520.3381780.702985
H220.8070220.1227340.624865
O10.9578580.3408750.215924
O20.3693240.7777340.134768
(23) top
Crystal data top
Monoclinic, P21/nc = 10.9 Å
a = 14.4 Åβ = 70.8°
b = 19.0 ÅV = 2828.01 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.6147960.6798190.781768
C20.5553230.7389610.819218
C30.5673110.7951030.734193
C40.6381320.7933880.610815
C50.6969470.7335320.574828
C60.6859560.6770760.659681
C70.6479780.8568660.524846
C80.6171730.8964070.325318
C90.631290.8732970.199945
C100.6283720.9235420.103312
C110.6129230.9961130.136633
C120.6001871.01680.265717
C130.601640.9686620.357987
C140.6412370.9034950.026440
C150.6387290.9526430.117541
C160.6233461.024350.084152
C170.6107661.045450.040562
C180.6511320.7982390.161201
C190.7473690.7736150.11236
C200.7662450.7026560.071191
C210.6899810.6584660.077237
C220.5912690.6814510.122893
C230.5717880.7526640.164416
C240.5120960.6363130.127853
C250.4169680.6601550.171842
C260.3973930.7306210.212656
C270.472590.7757070.209275
C280.9225420.8097480.056286
C290.9873150.8722220.054215
C300.9768070.9232530.15029
C311.046350.9763280.134728
C321.127420.9794530.022582
C331.139940.9289120.073774
C341.071020.875830.056723
Cl10.7869450.7283680.42305
Cl20.8784830.9230670.295121
N10.6138790.8473130.423016
N20.8234530.8209210.104259
H11.180981.021170.011258
H21.036161.014610.21168
H31.203480.9305880.161386
H41.080420.8348140.128859
H50.588551.072060.291344
H60.5926520.9846470.456355
H70.6215251.062610.15715
H80.6486230.9360950.216275
H90.5989111.100540.067640
H100.6529730.8484450.053036
H110.8416140.6849740.034839
H120.7053720.6042530.045642
H130.4569070.8299230.240244
H140.3220740.7493990.246912
H150.5282620.5822150.095873
H160.3567670.6250990.175181
H170.8009720.8694510.139582
H180.5953030.797650.407598
H190.5220660.8418110.76306
H200.4997390.7413840.914551
H210.7333410.6316050.629216
H220.606260.6356740.847604
O10.6800030.9122270.550446
O20.9605650.7539830.010736
(24) top
Crystal data top
Monoclinic, P21/ac = 12.3 Å
a = 15.3 Åβ = 75.1°
b = 15.3 ÅV = 2779.8 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.636450.9819440.518543
C20.6750811.027570.419867
C30.6561821.002360.319958
C40.5967460.9335050.315653
C50.5596190.8879640.415768
C60.5793380.9118830.516317
C70.5862460.914730.199101
C80.4751040.8692870.093549
C90.3908810.8299980.105996
C100.3604780.8090190.008445
C110.4165720.8284760.100839
C120.5010130.8690950.109033
C130.5300490.8893570.015553
C140.2755160.768680.016317
C150.2482090.7486970.078889
C160.3039630.7679310.18688
C170.3864070.8070780.19728
C180.3310280.811230.220082
C190.3361930.7325890.274734
C200.2774670.7154210.382423
C210.2151540.7767580.433078
C220.2069930.8577290.380922
C230.2655640.8751830.272435
C240.1425420.9212360.433122
C250.135680.9992130.380695
C260.1934221.016620.273359
C270.2566880.9563480.220455
C280.4296310.5976410.263477
C290.4977510.5463880.177064
C300.4897320.4558960.165365
C310.5544320.4095140.086088
C320.6282260.4528070.017695
C330.6372040.5426740.027598
C340.5719820.5886760.106244
Cl10.4906920.7966230.420835
Cl20.3978980.3982160.245396
N10.5022130.8897140.191306
N20.3999710.6710780.219649
H10.678520.4159330.043519
H20.5461220.3395930.078364
H30.694670.5769580.025337
H40.5795730.6587340.1153
H50.5437390.8846580.192051
H60.5949710.9198530.022656
H70.2814070.7517460.261349
H80.1829690.7178180.071026
H90.4299770.8223420.279919
H100.2321120.7538590.099025
H110.2839150.6539290.42302
H120.1704450.7632390.515568
H130.300580.9702060.13774
H140.1876831.078330.23206
H150.0984520.9069340.515766
H160.0859881.047510.421402
H170.427160.682710.136825
H180.4544920.8791370.264171
H190.6872391.035310.241344
H200.7205711.081860.420545
H210.5500780.8745350.591929
H220.6510971.000260.597424
O10.6507890.9263370.118
O20.4045730.5751050.361649
(25) top
Crystal data top
Triclinic, P1α = 64.4°
a = 13.8 Åβ = 77.1°
b = 10.3 Åγ = 96.2°
c = 11.6 ÅV = 1402.52 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1731270.6263130.471166
C20.2016530.7006420.331811
C30.1817430.6236040.263003
C40.1330070.4725750.330724
C50.1029770.4006630.471146
C60.1240870.4763320.540821
C70.102790.3989760.252519
C80.1690150.3259230.081599
C90.2332340.2354470.066572
C100.2137150.1543240.003600
C110.1291550.1675510.056417
C120.0655470.2602030.037016
C130.0839670.336180.030950
C140.2747790.0571230.020200
C150.254050.0201050.087010
C160.1712880.0048290.140805
C170.1100690.086970.125205
C180.3202010.2170090.124536
C190.4210030.2793460.041965
C200.5028910.2543910.098319
C210.4829830.1694690.233784
C220.3821260.1027590.321199
C230.2991420.12590.265683
C240.361870.0120760.460836
C250.2634510.0551800.543219
C260.1812580.0338970.488473
C270.1983190.0543180.353553
C280.5261080.4667030.187108
C290.5255520.5583760.329809
C300.4445910.6077390.377689
C310.4584930.6963070.51381
C320.5542540.7382620.606089
C330.6364690.6930960.561628
C340.6216090.6059920.425842
Cl10.0398740.2145070.563742
Cl20.3213370.5672990.271321
N10.1826750.4038380.153747
N20.4383380.3649470.096743
H10.5643230.8069220.712044
H20.3936590.7322710.545893
H30.7120610.7261080.632368
H40.6848910.5716820.388525
H50.0007630.2699160.076496
H60.0343820.4056140.046592
H70.1559250.0663320.193594
H80.3017250.0941000.098084
H90.0454620.0989390.165059
H100.3381220.0432290.021743
H110.5802930.3048970.032634
H120.5463370.1514350.275731
H130.1341960.0692670.313134
H140.1034650.0875940.553766
H150.4260650.0038730.501308
H160.2485340.124920.650183
H170.3748110.3678210.126781
H180.2532950.4237550.162704
H190.2033720.6809630.154098
H200.2391180.8180280.276727
H210.1012410.416960.649532
H220.1885280.6846970.526459
O10.0137590.3454810.273195
O20.606280.4822430.160882
(26) top
Crystal data top
Triclinic, P1α = 61.8°
a = 15.0 Åβ = 61.1°
b = 10.4 Åγ = 74.8°
c = 11.6 ÅV = 1392.63 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5684020.8979020.187447
C20.636960.9099240.048289
C30.6148230.8499920.018884
C40.5242410.7784830.048935
C50.4575540.7648420.190139
C60.4793440.8244060.258664
C70.5153970.7182530.040737
C80.3932640.6683730.100971
C90.2901670.6602390.059751
C100.2607470.6112380.132227
C110.3373290.5724390.247118
C120.4408990.5857690.287075
C130.4691990.6328640.217693
C140.1568470.5997510.093876
C150.1307290.5516130.165039
C160.206680.5127580.278268
C170.3078110.5232480.318236
C180.2105650.7070320.056025
C190.1745220.6103450.201014
C200.0985310.6564730.310236
C210.0604220.7971990.274091
C220.0951790.9006450.12839
C230.1709480.85470.018393
C240.0570521.047060.089555
C250.0920101.145380.052702
C260.1668881.100350.161983
C270.2052910.9588710.127608
C280.1981120.3637130.375897
C290.2048220.2069660.401537
C300.1464250.1487230.374369
C310.1498530.0005180.414543
C320.2114230.0933400.483234
C330.2682850.0378970.514275
C340.263320.110570.475544
Cl10.3472970.6666680.291881
Cl20.0652960.2582110.292463
N10.420080.7192710.029644
N20.2121530.4652150.239264
H10.2139860.2094630.51372
H20.1035710.0425840.392427
H30.3154640.1102790.569615
H40.3047940.155890.502019
H50.4993490.5581070.375823
H60.5484520.6420010.248328
H70.184850.4748870.333522
H80.0507990.5434970.134015
H90.3670470.493980.405471
H100.0980050.6298180.007176
H110.0726750.5792060.422299
H120.0023100.8310920.35864
H130.2626360.9250360.212418
H140.1943451.178270.274467
H150.0006671.080130.174951
H160.0622321.257490.081394
H170.2426430.4279710.160768
H180.3606470.74930.046617
H190.6676440.855410.126169
H200.7073990.9655950.007490
H210.4263020.8110040.368382
H220.5845350.9440680.2418
O10.5935850.6781750.123101
O20.1806230.3939030.475129
(27) top
Crystal data top
Monoclinic, C2/cc = 30.2 Å
a = 10.9 Åβ = 117.6°
b = 19.2 ÅV = 5605.18 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4203780.9681350.057301
C20.5642570.9699380.083955
C30.6424420.9347610.065743
C40.5814240.897770.020541
C50.4362910.8960990.005232
C60.3567070.9308750.012968
C70.6869960.8636240.008131
C80.7268330.8136740.060129
C90.662480.7969030.110853
C100.7404850.7650910.132489
C110.8836440.7500050.101831
C120.9442150.7677650.050575
C130.8697220.7988990.029908
C140.6803680.7480630.18408
C150.7579690.7174770.203895
C160.8993950.7022380.173389
C170.9606080.7183120.123404
C180.5127980.8128030.142713
C190.4101360.7648990.149169
C200.2681590.7814230.17969
C210.2309960.8445850.202941
C220.3310740.8952530.197423
C230.4735990.8789370.167003
C240.2937060.9609740.221016
C250.3930291.009230.215047
C260.5342980.993280.185066
C270.5737340.9299080.161702
C280.3619220.6480550.125911
C290.420180.5756070.114728
C300.4732830.5399050.142445
C310.5119040.4703290.132717
C320.4972620.4356530.095072
C330.4421750.4699360.067641
C340.4023050.5389340.078088
Cl10.3437930.8492430.060385
Cl20.4914210.5804220.190684
N10.6475950.8466240.040567
N20.4483780.6999640.125539
H10.5279840.3814880.087539
H20.5523190.4439370.154966
H30.4291750.4427470.038577
H40.3555680.5660790.058140
H51.053340.7565190.027082
H60.9171130.8124770.009249
H70.9593380.6779830.189596
H80.7101170.7049880.24348
H91.069520.7070570.099518
H100.5718140.7598430.207811
H110.1905390.7435930.183466
H120.1220130.8564180.226137
H130.6826890.9180730.138834
H140.6127291.031490.180466
H150.1844480.9724320.244025
H160.3634061.059520.233309
H170.5491140.6871060.112971
H180.5478430.8556910.065815
H190.7546420.9344370.086001
H200.6153330.9984450.118881
H210.2447340.9279670.007949
H220.3572120.9952230.070993
O10.8042980.8547480.042029
O20.2422020.6572420.134299
(28) top
Crystal data top
Triclinic, P1α = 81.6°
a = 11.3 Åβ = 87.5°
b = 10.9 Åγ = 96.8°
c = 11.8 ÅV = 1424.21 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.8516390.1939470.675585
C20.8540940.0697960.659681
C30.962380.0275390.637161
C41.069470.1077830.629048
C51.065030.2325440.645305
C60.9569240.2751010.668896
C71.183620.0599260.597499
C81.277930.1378020.639351
C91.274040.2475450.718268
C101.356790.334330.703005
C111.443510.3067830.608465
C121.443560.1943360.530835
C131.363520.1120010.544684
C141.356710.448020.779775
C151.438680.5286230.764103
C161.524830.5005730.670957
C171.526660.3918570.594692
C181.184810.2751520.818279
C191.220540.2578610.927096
C201.138090.286071.02411
C211.022270.3305761.01112
C220.9816470.3502890.902712
C231.064440.3232430.80499
C240.8620050.3964240.88881
C250.8247330.4156230.782898
C260.9066080.3899660.686201
C271.023390.3450830.696744
C281.403180.2213291.03412
C291.532990.1738791.00918
C301.600320.1125891.08616
C311.721480.0742631.06232
C321.777940.0977900.962164
C331.713240.1594120.885108
C341.592290.1965110.908873
Cl11.193260.3375840.641613
Cl21.536690.0753191.21122
N11.193620.0571900.656011
N21.339350.2123750.937361
H11.872560.0678870.944859
H21.770550.0256251.12295
H31.756460.179410.807087
H41.543530.2486940.85011
H51.509140.1732120.458454
H61.36480.0254220.485854
H71.588990.5652290.65971
H81.436990.6150120.823971
H91.592030.369320.522153
H101.29050.4709360.851393
H111.169190.2728021.10737
H120.9594250.3514141.08568
H131.086170.3269990.622244
H140.8771530.4066870.602762
H150.800050.4165450.964072
H160.7327660.4511290.773277
H171.384840.1737890.862582
H181.132630.0901890.721849
H190.9642850.0691580.623561
H200.7722840.0059000.664707
H210.9563260.3718150.682244
H220.7677420.2282990.693536
O11.255720.1176720.523413
O21.360720.2657321.12999
(29) top
Crystal data top
Triclinic, P1α = 77.9°
a = 11.2 Åβ = 123.5°
b = 10.1 Åγ = 116.9°
c = 16.7 ÅV = 1392.66 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.6580690.2035690.363129
C20.5081220.112380.291318
C30.3812480.0648080.303074
C40.3996150.1086030.385023
C50.5518140.2006580.456479
C60.6798250.2472180.445572
C70.2582770.0569540.393856
C80.0064630.1665420.351295
C90.1103120.2796650.279409
C100.2563930.3693030.274701
C110.2807190.3412540.343863
C120.1581270.2250720.4158
C130.0178120.1400930.420409
C140.3796970.4855640.202741
C150.519330.5694650.199789
C160.5430230.5418160.268423
C170.4259180.4298610.338871
C180.0807050.3070270.20866
C190.1018240.2218440.128263
C200.0697370.2474670.062840
C210.0194660.3567270.078186
C220.0024190.4466140.158345
C230.0284590.4211360.224891
C240.0541290.5597830.174333
C250.0752430.6448550.253042
C260.0452210.6197310.319142
C270.0051170.5108510.305689
C280.2206880.0443490.032137
C290.27160.0710460.033212
C300.296140.1019550.099966
C310.3473050.2125540.085817
C320.3756440.2951390.004505
C330.3538940.266120.063449
C340.3037020.1555090.048812
Cl10.5908170.2562970.563136
Cl20.2684130.0054310.204468
N10.1509220.0857960.356086
N20.1523760.1105270.11582
H10.415110.3812180.005500
H20.364770.2323920.139321
H30.3763130.3291160.12774
H40.2877180.1292390.101169
H50.1763630.2042060.468783
H60.0749570.0503280.474815
H70.6539860.6091670.265227
H80.6125170.6579560.144081
H90.4428930.4073780.392037
H100.3621270.5072240.149747
H110.0886900.1813110.000400
H120.0042610.3754770.027440
H130.0284580.4928070.356729
H140.0620190.6873630.381297
H150.0768650.5779420.122896
H160.1149320.7314140.264691
H170.1512240.0887940.172912
H180.1783560.14140.32926
H190.2639040.0031610.245407
H200.489640.0782200.226401
H210.7962470.3173260.502536
H220.7587220.2412810.355302
O10.2396330.1354970.42864
O20.2408760.0732010.043267
(30) top
Crystal data top
Triclinic, P1α = 84.7°
a = 10.7 Åβ = 67.1°
b = 14.6 Åγ = 96.1°
c = 9.8 ÅV = 1396.9 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1072150.9881570.18767
C20.202511.054350.073874
C30.2386881.04030.072928
C40.1837190.9607790.112863
C50.0878390.8952730.004398
C60.0500130.9089310.152554
C70.2384250.9616450.28014
C80.2557820.8689560.483052
C90.1897810.79110.514007
C100.2261850.7746960.664278
C110.3296060.8387290.782526
C120.3937190.9167040.746084
C130.3589670.9320120.601636
C140.1623180.6962450.701042
C150.1991810.682440.846823
C160.3015510.7459690.963556
C170.3651630.8224970.93159
C180.0827680.7238480.389665
C190.1180010.6512540.317055
C200.0144800.5878130.199458
C210.1205280.5980410.157267
C220.1613070.6707930.227928
C230.0579650.7348120.346222
C240.3007950.6816170.184302
C250.3375180.7529240.254448
C260.2354830.8164110.371419
C270.0992320.807710.416403
C280.3176640.5956370.287584
C290.4675790.586580.365369
C300.571580.6418170.490367
C310.7055080.6223730.545543
C320.7387270.5470750.477131
C330.6379760.4916590.351988
C340.5053720.5120190.297603
Cl10.0056090.7930760.022029
Cl20.5444940.7404620.583022
N10.2179030.8807290.333235
N20.2572360.6416320.366749
H10.8433660.5324490.521384
H20.7829630.6672320.641877
H30.6626650.4329450.296673
H40.4252090.4709110.198967
H50.472820.9656560.83563
H60.4076950.9924260.575442
H70.3295620.7340941.07827
H80.1489580.6220650.872677
H90.4441440.8719651.0204
H100.0831600.6472620.611962
H110.0445010.5327950.143293
H120.1990890.5490860.067217
H130.0213750.8567730.50651
H140.2650430.8727580.426474
H150.3783570.6322990.093928
H160.444790.7607180.220257
H170.318880.6766870.46866
H180.1549520.8261360.258483
H190.3113481.091240.163994
H200.2482271.11680.099278
H210.0249370.8566360.239422
H220.0769660.99780.303584
O10.301961.034160.361593
O20.2548190.558990.158088
(31) top
Crystal data top
Monoclinic, C2/cc = 27.1 Å
a = 10.9 Åβ = 96.8°
b = 19.1 ÅV = 5602.71 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1485720.6863220.599065
C20.2292350.7183880.569896
C30.262470.7878490.578636
C40.2155340.8270040.6158
C50.1347550.7936510.64471
C60.1019370.7236730.636659
C70.260410.9011460.623009
C80.1893441.017880.647804
C90.0940141.066540.641539
C100.1083561.132590.666477
C110.2205211.147980.697151
C120.3145931.096490.702448
C130.3005041.033170.678795
C140.0139581.184130.66165
C150.0304261.247360.68578
C160.141661.26250.715987
C170.2346411.21360.721474
C180.0240031.050130.610027
C190.0373381.066660.559473
C200.1499051.051810.52929
C210.2456911.021060.549532
C220.2368541.003480.600452
C230.1244311.018540.631064
C240.3356940.971970.621733
C250.324880.9560170.671421
C260.2140130.9711960.701923
C270.1163741.001620.682373
C280.0726081.114350.49153
C290.191131.147880.479419
C300.3111531.143650.504275
C310.4097781.177630.486234
C320.3907791.216580.442778
C330.2729721.220790.416895
C340.1757831.186430.435015
Cl10.0755200.8367220.693366
Cl20.3477341.093790.557951
N10.1726880.9521080.624863
N20.0628091.097920.539971
H10.4682611.242980.429138
H20.5011931.172620.506523
H30.2569451.250520.382602
H40.0834611.187910.41519
H50.399921.107840.726051
H60.3737450.9946950.68264
H70.1533051.31270.734832
H80.0430201.286110.681597
H90.3207671.224510.744684
H100.0719931.172830.638568
H110.1574861.065050.490314
H120.3311261.009870.525949
H130.0315731.013370.706086
H140.2059880.9587840.741275
H150.4206290.9607680.597828
H160.4012810.931910.687394
H170.1381251.105870.564967
H180.0839790.9380470.614491
H190.3270060.8135350.556974
H200.2663530.6893320.540612
H210.0404140.6990870.660121
H220.1221370.6318780.592844
O10.371230.9127820.627132
O20.0109261.10590.457747
(32) top
Crystal data top
Triclinic, P1α = 120.4°
a = 11.1 Åβ = 58.9°
b = 17.4 Åγ = 99.6°
c = 9.9 ÅV = 1408.14 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.7317910.3726910.270288
C20.5895310.3653970.370147
C30.5164340.4184910.557442
C40.5808840.4812240.650418
C50.7246170.4863540.547201
C60.7996330.4325880.358986
C70.4849530.5332390.85353
C80.4212990.6859961.12293
C90.4407010.7756071.17349
C100.3605320.8432861.35995
C110.260010.8187011.49137
C120.2444210.7269581.43304
C130.3220890.6620221.25503
C140.3774670.9353381.42014
C150.298250.9990461.59988
C160.1982670.974491.72928
C170.1799780.885971.67556
C180.5503870.8017391.03906
C190.6925460.7944080.988287
C200.7953620.8205880.861203
C210.755510.8546550.790689
C220.6124950.8646520.839808
C230.5090550.8376520.965318
C240.5700390.8999650.767836
C250.430440.9083380.817084
C260.3276330.8813280.940767
C270.3656890.8468241.01287
C280.8608960.7641051.05517
C290.8742140.7218251.14706
C300.9372790.7625071.25409
C310.9650910.7172511.31897
C320.9337620.629971.27406
C330.8735880.5878761.16532
C340.8448290.6337411.10233
Cl10.8205980.5568030.646598
Cl20.9754080.871991.31918
N10.5006440.6217490.938492
N20.7335040.7603051.06177
H10.9569230.5950851.32439
H21.011490.7509221.40434
H30.8500530.5195011.12836
H40.8004880.600581.01418
H50.1686120.7078191.53285
H60.3082780.5921471.21121
H70.1364531.025651.87087
H80.3128571.069121.64294
H90.1037680.8659931.77377
H100.4540870.9549991.32189
H110.904720.8143580.824451
H120.8355430.874550.694264
H130.2858510.8262111.10786
H140.217270.8878540.979275
H150.6505390.9202830.672418
H160.3988390.9355250.761194
H170.6545180.7408491.14685
H180.5724960.6464540.859018
H190.4062370.4129010.638555
H200.5359140.3181340.302281
H210.9111240.437970.283899
H220.7908090.331370.1235
O10.39450.4963050.930024
O20.9612720.7949350.974937
(33) top
Crystal data top
Monoclinic, P21/nc = 14.6 Å
a = 10.8 Åβ = 71.0°
b = 18.9 ÅV = 2814.57 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.6667520.0272730.649583
C20.5665940.0756850.658213
C30.5817510.1268650.587015
C40.693180.1288480.504132
C50.7915910.0790650.496152
C60.7789660.0288160.568887
C70.6972610.1903610.437141
C80.7383650.2209380.26344
C90.7935490.1957520.168871
C100.8065430.2420380.088580
C110.7630160.3135880.106179
C120.7064550.3363660.203532
C130.6936160.2919720.280442
C140.8621640.2192950.009291
C150.8741270.2650860.085044
C160.8313590.3358980.067355
C170.7768330.3594320.026480
C180.8368570.1206570.15047
C190.960560.0998690.149146
C201.000860.0282080.13112
C210.9184920.0205850.112773
C220.7929320.0017780.110754
C230.7514550.0700040.129744
C240.7080860.0518060.090309
C250.587040.0320430.088311
C260.5458150.0389280.107062
C270.6256620.0886930.127438
C281.162640.1446490.176766
C291.233240.2131590.178309
C301.18970.267920.245706
C311.266810.3274490.242828
C321.388420.3330680.17167
C331.433830.2789520.104046
C341.357150.2194170.108442
Cl10.9365510.0792270.398678
Cl21.038140.2635780.336241
N10.7257720.1740760.340757
N21.044680.1520780.162608
H11.447830.3797150.169597
H21.230520.3687760.296646
H31.529110.2828730.048625
H41.392420.175950.057866
H50.6723150.3906980.217233
H60.651380.309940.354612
H70.8415130.3714840.127993
H80.9168890.2465940.159387
H90.7432080.4137930.041155
H100.8950050.1648760.023698
H111.096630.0135600.132768
H120.9499590.0753410.098976
H130.5936840.143260.141432
H140.450020.0543510.105309
H150.7408660.1063340.076006
H160.5228960.0708330.072332
H171.013060.2023190.160768
H180.7524920.1235340.320783
H190.5077350.1671080.594133
H200.4787540.0746340.721263
H210.8580780.0082190.561693
H220.6576180.0121740.705706
O10.6679470.2492930.471869
O21.212870.0881070.184463
(34) top
Crystal data top
Triclinic, P1α = 59.1°
a = 15.9 Åβ = 68.4°
b = 10.2 Åγ = 84.5°
c = 10.9 ÅV = 1408.32 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.3252920.1182120.531635
C20.3704640.0313830.630406
C30.3207790.0575350.787065
C40.2256360.0649110.847492
C50.1813030.0228670.74618
C60.2308950.1144580.589457
C70.175090.1723261.016
C80.1816420.2649781.27023
C90.2008310.2181441.35686
C100.1732920.3197541.51905
C110.1263230.4677391.58979
C120.1084170.509821.49628
C130.1349720.412681.34103
C140.1907550.2779971.6134
C150.1633140.3778681.76907
C160.117130.5243841.83868
C170.0990450.5679251.75041
C180.2493060.0627251.28229
C190.343960.0396071.23301
C200.3890010.1088571.16387
C210.3395060.2302691.14528
C220.2433980.2128751.19377
C230.1978180.0641201.26363
C240.1917860.3379471.17516
C250.0985030.3176711.22356
C260.0531210.1705391.29293
C270.101310.0469841.31255
C280.4849160.1690881.20581
C290.5174410.3242721.24723
C300.4897060.4349491.22682
C310.5275280.5728131.26705
C320.5937930.6024761.32995
C330.6230740.4936871.35049
C340.5856290.3560631.30814
Cl10.0640560.0261240.811528
Cl20.4080230.4040251.14559
N10.2114530.1677911.11034
N20.3924740.1670361.25589
H10.6228280.7104171.36181
H20.5048870.6552231.24808
H30.6752820.5157491.39862
H40.6088680.2682611.31994
H50.0728520.6227131.54996
H60.1200230.4454281.27114
H70.0958950.6021031.96185
H80.1771760.3436051.83936
H90.0633270.6803221.8026
H100.2258620.1651971.56081
H110.462440.1229871.12674
H120.3747520.3432951.09207
H130.0658150.0657111.36603
H140.0206990.1549171.3311
H150.2276710.4505661.12161
H160.0594790.4142971.20872
H170.3529440.2665371.30641
H180.2542490.0733111.06435
H190.3556780.1261790.864709
H200.4440910.0335130.586085
H210.1948880.1826150.513852
H220.3632120.1892210.409033
O10.1107950.2628821.06115
O20.5410020.0577891.14098
(35) top
Crystal data top
Monoclinic, P21/nc = 10.5 Å
a = 13.3 Åβ = 71.4°
b = 21.7 ÅV = 2872.22 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1009220.0275360.838104
C20.0734910.0074640.743158
C30.090860.0160670.615261
C40.135890.0743820.579169
C50.1622360.1089680.676265
C60.1447470.0858680.805117
C70.148450.0962170.439071
C80.2886560.1375240.237536
C90.3975790.1484810.185055
C100.4398640.1762220.055797
C110.3701790.1924370.017744
C120.260430.1800780.039891
C130.2197160.1535150.163872
C140.5497910.1889360.002455
C150.5881020.2163280.12645
C160.5190180.2322750.199002
C170.4123340.220390.145452
C180.468360.1315780.264849
C190.4943960.1764850.344283
C200.5593820.1620340.423941
C210.5957670.1029320.424181
C220.5707420.0555490.346611
C230.5058190.0700180.265583
C240.6082130.0055480.347249
C250.5830060.0507660.271183
C260.5190610.0364810.190781
C270.4814070.0223220.187807
C280.4612190.2877630.410287
C290.3963410.3400120.383393
C300.3317060.3768320.486891
C310.2743860.4257860.458864
C320.2813410.4389260.326974
C330.3448980.4028750.222764
C340.4012710.3537940.251462
Cl10.2139830.1832370.642373
Cl20.3162940.3617270.654065
N10.2502160.1119570.365994
N20.4542130.2356060.339359
H10.2366130.4773670.306195
H20.2242060.4530970.541212
H30.3509030.412870.119487
H40.4523990.3262630.169832
H50.2073470.192350.016111
H60.1358450.1440210.207684
H70.5505390.2537740.297003
H80.6725060.2256170.169364
H90.3583010.2323280.200366
H100.6034210.1764020.052442
H110.5782740.1982320.483438
H120.6452770.0917340.485612
H130.4326770.0331100.125315
H140.4996560.0723820.130425
H150.6575380.0159580.409372
H160.6121930.0974740.272416
H170.4046830.2382540.283855
H180.3053510.1064780.412776
H190.0683900.0101320.540583
H200.0386830.0529230.768718
H210.1651040.114050.878531
H220.0875830.0097380.938657
O10.0726700.0971570.397592
O20.5141270.2922310.485259
(36) top
Crystal data top
Triclinic, P1α = 105.3°
a = 10.5 Åβ = 76.4°
b = 11.1 Åγ = 67.0°
c = 14.0 ÅV = 1341.08 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.7012360.5717540.94575
C20.7140920.5444630.840116
C30.5862870.5936050.817737
C40.4430290.6684420.898223
C50.4335010.695671.004
C60.5609410.648281.02776
C70.3159340.7153120.860782
C80.0600720.7559770.89312
C90.0560380.6838950.797889
C100.0816070.7375470.781577
C110.2122610.8588770.865543
C120.2032850.9243450.963389
C130.0703120.8747260.976544
C140.0936590.67320.684539
C150.2271390.7268480.671464
C160.3559010.8465340.754606
C170.3483050.9109220.849682
C180.1862620.5468930.715499
C190.2674420.5412520.619581
C200.3793320.40930.535739
C210.4104980.2846470.549642
C220.3322230.2849760.647204
C230.2170260.4176150.731327
C240.3641460.1565160.662437
C250.2851880.1576310.756235
C260.1696670.2882510.838757
C270.1363390.4148130.826631
C280.2098370.6985170.524696
C290.1828190.844130.5299
C300.2405050.8664670.439169
C310.2092421.003220.445585
C320.1186991.120120.542701
C330.0603281.100390.633768
C340.0931100.9634540.626863
Cl10.2630320.7957621.11414
Cl20.3584140.7254150.315873
N10.1939760.7086730.912388
N20.2414140.6705180.608083
H10.0943831.226440.546769
H20.2567781.016760.374086
H30.0106411.191050.709913
H40.0458730.9479680.697572
H50.3031931.015621.02755
H60.0616640.9267171.05034
H70.4606270.8875590.743058
H80.2331390.6767330.596009
H90.4466271.00330.914415
H100.0045400.5820680.619297
H110.4383020.4097730.461191
H120.4966450.1830860.485543
H130.0461500.5145060.8902
H140.1061560.2886360.912381
H150.4524820.0564340.59785
H160.3106210.0583500.766883
H170.2477160.7421670.666704
H180.1916570.6847260.977297
H190.5934920.5757830.73616
H200.8231640.4857530.77542
H210.5488170.6727321.11071
H220.8000490.5347010.964922
O10.3272890.7544530.786576
O20.2002680.614960.453906
(37) top
Crystal data top
Triclinic, P1α = 86.0°
a = 10.9 Åβ = 60.6°
b = 14.1 Åγ = 75.8°
c = 10.9 ÅV = 1419.96 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.623450.8140060.27107
C20.683140.7465570.157852
C30.5922370.7116820.127027
C40.4412480.7430030.208059
C50.3831850.8107270.321817
C60.4736160.8463690.352769
C70.3481610.6979960.175857
C80.3367480.6506840.033692
C90.384240.6653270.175762
C100.3404450.6146030.25049
C110.2493190.5493850.17884
C120.2054830.5363260.034745
C130.2472630.584860.037021
C140.3841930.6272250.395053
C150.3390860.5783660.463946
C160.2485620.5141480.392635
C170.2050550.5000180.25296
C180.4759940.7356560.249306
C190.4128980.8300960.26783
C200.5002550.8970670.339038
C210.6472810.8689830.392383
C220.7169140.7735850.378777
C230.6298740.706230.306992
C240.8690350.7434130.434
C250.9338260.6502530.419297
C260.8481580.5831680.348641
C270.7002470.6102710.293889
C280.1856330.9368880.250212
C290.0286780.9374350.191081
C300.0815481.023780.138083
C310.2251821.022630.090849
C320.2605470.9358160.097327
C330.1526470.8495340.150215
C340.0096370.8508480.196147
Cl10.1972240.8556060.424616
Cl20.0470161.134240.121898
N10.3832910.6997790.036640
N20.2626510.8583520.214448
H10.3729250.9360570.060724
H20.3085751.090230.048711
H30.1791890.7815440.156372
H40.0752250.7838680.24081
H50.136450.486440.019972
H60.2120380.5755820.147493
H70.2140150.4759350.448546
H80.3738550.5890560.574591
H90.1357480.4505160.19684
H100.4545560.6759870.451039
H110.4478720.9698390.35099
H120.71250.9210980.446354
H130.6352130.5579760.240915
H140.8998050.5092550.33812
H150.9336610.7957540.488554
H161.050620.6278570.462163
H170.2065120.8114790.149828
H180.4539590.7400940.024748
H190.6383870.6587350.038880
H200.7999590.7209480.093787
H210.425650.8996120.440591
H220.6931330.8420280.296275
O10.2568510.6595430.265714
O20.2374161.000170.325231
(38) top
Crystal data top
Triclinic, P1α = 89.8°
a = 14.0 Åβ = 75.1°
b = 10.3 Åγ = 63.4°
c = 11.4 ÅV = 1409.76 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.9923320.5056160.827358
C21.080640.5084280.739565
C31.0680.639430.695699
C40.9679080.7706140.734217
C50.8806210.7646890.82361
C60.8928550.6338120.869571
C70.9736380.9009150.676995
C80.8593851.163930.657716
C90.7530011.269390.658745
C100.733111.415980.639916
C110.8219531.453170.621415
C120.9278911.34270.623364
C130.9471651.202070.640873
C140.6268521.527380.638473
C150.6102251.667230.61883
C160.6983941.703520.60011
C170.8019471.598340.601663
C180.6606161.229740.678288
C190.6403151.178150.579509
C200.5535331.137840.597613
C210.4875621.151470.712832
C220.5034311.205080.816278
C230.5908771.244490.798429
C240.4354281.219860.935896
C250.4521451.272621.03499
C260.5381311.3131.01778
C270.6054241.299460.902812
C280.708051.107920.353016
C290.7531.166870.243568
C300.8231911.077690.132995
C310.8543291.138660.030343
C320.8142051.290150.036140
C330.7438271.380790.144695
C340.7139891.318950.24718
Cl10.7529110.9182580.88837
Cl20.8779830.8878330.120958
N10.876141.021550.678565
N20.7060891.168220.461524
H10.8384611.336810.044654
H20.9100111.066630.053492
H30.7119971.499130.149777
H40.6583421.38930.332031
H50.9955431.370980.610081
H61.028821.117820.640011
H70.6839561.814580.584936
H80.5282391.750970.618306
H90.8704921.624940.587685
H100.5584151.500560.653969
H110.5423511.094280.519
H120.4214221.120290.725829
H130.6714141.330610.890615
H140.5509771.355161.09626
H150.3693871.188650.947663
H160.3994471.28371.1264
H170.756931.214840.455583
H180.8056761.011080.706204
H191.136110.6453020.628865
H201.159310.4093530.706173
H210.8235080.6344980.939194
H221.000540.4043350.863598
O11.065040.8948470.633901
O20.6687811.02520.344553
(39) top
Crystal data top
Monoclinic, P21/cc = 19.6 Å
a = 11.0 Åβ = 54.6°
b = 15.8 ÅV = 2778.17 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.0209890.2663930.663244
C20.0856130.2214680.588787
C30.0011200.1626390.580822
C40.1491530.147940.645448
C50.2114570.1931720.720112
C60.1268820.2518120.728978
C70.2244880.0811060.627444
C80.4578470.0515210.637867
C90.602010.0802940.671452
C100.6979030.0325750.659021
C110.6452880.0443200.612568
C120.4981990.0710110.579991
C130.4059660.0251360.591705
C140.8458160.0589610.691867
C150.9359760.0116540.679216
C160.883570.0643430.633217
C170.7410860.0915190.600665
C180.6569970.159350.721993
C190.7216170.1574440.807478
C200.7712810.2324770.855898
C210.7563290.3084240.8186
C220.6922920.3141750.731902
C230.6425880.2387320.683157
C240.6762030.3923810.692525
C250.61360.3964580.608289
C260.564350.3219410.559901
C270.5784620.245080.596277
C280.7397230.0645010.915151
C290.7682810.0263910.942183
C300.8581850.0506431.02653
C310.878220.1355441.04889
C320.8076160.1974660.987469
C330.7173420.1747850.903369
C340.6988540.0900420.881434
Cl10.3937870.1761980.806804
Cl20.953920.0227141.10668
N10.364890.0999090.649875
N20.7385940.0791850.845732
H10.8234370.2634411.0057
H20.9497610.1523271.11469
H30.6607980.2226510.854979
H40.6246660.0725630.815745
H50.4578410.1295860.544651
H60.2938370.0458970.566895
H70.9561080.1010270.623685
H81.048680.0330100.704724
H90.6993920.1499090.565082
H100.8865870.1175970.7269
H110.8184450.2283520.921966
H120.7943620.3657820.855911
H130.540720.1879470.558767
H140.5150090.3254210.493291
H150.7145790.4493190.730491
H160.6018630.4568010.578753
H170.754640.0291590.819865
H180.4117620.1540470.682198
H190.0500460.1255680.524059
H200.2015350.2319020.537335
H210.1781280.2850630.787977
H220.0857700.3123990.670707
O10.1569440.0161060.59241
O20.7163060.1185570.950471
(40) top
Crystal data top
Orthorhombic, P212121c = 10.5 Å
a = 23.1 ÅV = 2815.9 Å3
b = 11.6 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.4524270.3200880.819924
C20.435040.2446250.915267
C30.4746350.1664450.965022
C40.5317750.1609210.921063
C50.5483390.2379180.824947
C60.5090110.3170460.775215
C70.5733160.0731850.973875
C80.612320.0154011.18561
C90.6090660.0403671.31472
C100.6488660.0127321.40038
C110.6924350.0883591.35218
C120.6944580.1094441.22002
C130.6557770.0598681.13805
C140.6468580.0075081.5331
C150.686140.0438911.61308
C160.72940.1181961.56507
C170.7322640.1399141.43716
C180.5629040.1186551.3639
C190.5732890.2359641.38408
C200.5288160.3084681.43272
C210.4754170.2635731.45975
C220.4626410.1452741.44095
C230.5071360.0718201.39289
C240.4074670.0983541.46876
C250.3962460.0169101.45009
C260.44020.0899891.40293
C270.4941910.0470491.37509
C280.6484230.3902651.36867
C290.7079910.4132961.31567
C300.7564540.3404781.32075
C310.8089370.3732841.26641
C320.8138160.479211.20542
C330.7664760.5535091.20052
C340.7145990.5205621.2559
Cl10.6186820.2423190.76726
Cl20.7555330.2085071.40048
N10.5723880.0683741.10427
N20.6281450.2798641.35429
H10.8548280.5036971.16281
H20.8457150.3153251.27325
H30.7699910.6369131.15403
H40.6773130.5776411.25512
H50.72770.1668511.18313
H60.657340.0765071.03717
H70.760190.1580511.62949
H80.6839020.0272021.71438
H90.765270.1971421.39892
H100.6137180.0644731.57084
H110.5384190.3988441.44789
H120.4417860.3199821.49681
H130.5278140.1040791.33964
H140.4312850.1812661.38882
H150.3741190.1556361.50547
H160.3537990.0521391.47176
H170.6559450.2206331.31846
H180.545280.1241341.14836
H190.4608320.1061141.03813
H200.3909120.2461270.950619
H210.5233130.3761630.701756
H220.4220780.3818650.780033
O10.6040670.0142290.906086
O20.6206690.4699061.41436
(41) top
Crystal data top
Triclinic, P1α = 72.4°
a = 11.7 Åβ = 69.6°
b = 13.3 Åγ = 98.8°
c = 10.6 ÅV = 1413.92 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.7845250.9673290.599652
C20.8353980.8823760.578968
C30.9128620.8940050.439558
C40.9437360.9905650.318419
C50.8903021.074410.341255
C60.81111.062750.480931
C71.028560.9873450.176334
C81.21721.10270.056643
C91.29641.210290.140545
C101.396321.233720.278786
C111.414781.146720.329321
C121.333451.038670.239043
C131.237751.016210.10647
C141.47911.341860.369157
C151.573951.362280.502171
C161.591531.276090.552079
C171.513431.170570.466917
C181.278141.300860.086715
C191.200831.364150.120182
C201.18491.450840.069131
C211.241561.470060.017481
C221.318361.405970.057781
C231.337411.320740.004102
C241.37671.424450.148354
C251.45151.361440.184942
C261.471011.277260.131567
C271.415731.257430.043303
C281.032361.368340.207082
C290.9948071.352720.322766
C300.8678461.30810.293828
C310.8341861.304460.406199
C320.925941.347020.548933
C331.052051.392540.579954
C341.085341.395050.467236
Cl10.9138631.194560.198114
Cl20.7489371.250270.118367
N11.121781.083010.079040
N21.145041.347470.212382
H10.8981951.344290.635644
H20.7356831.267970.380582
H31.12411.426420.691158
H41.183351.431910.490622
H51.347820.9719190.276412
H61.175310.9335890.038255
H71.666971.29350.657436
H81.636361.445580.569523
H91.526171.103360.503823
H101.466661.408460.331131
H111.125551.499930.097651
H121.227881.536210.056295
H131.431561.192770.002273
H141.530511.227760.160385
H151.361021.489710.188448
H161.495821.376230.254566
H171.174931.296990.26338
H181.120781.150230.105298
H190.9514460.8281580.419951
H200.8139970.8070890.671077
H210.7701741.128750.494826
H220.7230790.959310.708044
O11.015590.9005280.157864
O20.9692191.402760.120532
(42) top
Crystal data top
Triclinic, P1α = 75.1°
a = 9.9 Åβ = 103.3°
b = 14.0 Åγ = 98.9°
c = 11.0 ÅV = 1436.81 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.3205120.7883170.534831
C20.3461790.8888480.478827
C30.4356890.9181450.393545
C40.4999860.8492550.359951
C50.4740570.7486360.418812
C60.3850640.7184360.505463
C70.5986860.8910.269721
C80.6469430.8709770.065625
C90.618580.8070370.017429
C100.6856610.8290550.123904
C110.7827750.9154840.142976
C120.8095680.9771860.054889
C130.7439730.95660.046542
C140.6597150.7671680.212203
C150.7262440.7900190.313655
C160.8221850.875560.332321
C170.8495970.9367950.248469
C180.5217860.7147760.008193
C190.5707930.6282290.090102
C200.4787180.540520.116327
C210.3405040.5404020.062187
C220.2851320.6265410.020965
C230.3771710.7146530.048294
C240.1421880.6275970.077249
C250.0912410.7122280.157786
C260.1820260.7995710.185179
C270.3213020.8008720.132008
C280.7732220.564310.249494
C290.9280020.5585410.27493
C301.032610.6289810.229952
C311.1710.6092430.262245
C321.207950.5182370.339776
C331.106420.447220.386407
C340.9692090.4679320.354421
Cl10.5554040.6567670.392042
Cl21.00010.7473760.135815
N10.5750990.8494660.166152
N20.7138230.6279660.141146
H11.316080.5035070.363992
H21.248870.6660920.226443
H31.134040.3759990.447735
H40.8881260.4145670.390723
H50.8839981.042770.068905
H60.7650821.003630.114039
H70.8739670.8926410.412973
H80.7047370.741850.380343
H90.9232961.002870.261775
H100.5857020.7014430.1986
H110.5193740.4746660.181293
H120.2710690.4728390.083097
H130.3907060.8681970.15379
H140.1413740.8663440.249055
H150.0733850.5598140.055384
H160.0186060.7122070.200536
H170.7765020.6802780.092438
H180.5007040.7913030.16457
H190.4592070.9964280.351168
H200.2973430.9442680.501978
H210.3684350.6399580.549965
H220.2512340.7640550.602313
O10.6878740.9587550.289425
O20.705450.5083230.323753
(43) top
Crystal data top
Monoclinic, P21/nc = 11.6 Å
a = 18.2 Åβ = 74.2°
b = 13.7 ÅV = 2804.93 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5135020.6247640.456321
C20.5914510.6170520.443246
C30.6368720.5654780.347634
C40.6060290.5201910.263709
C50.5276290.5293360.278104
C60.4815830.5816060.373256
C70.660590.465450.164673
C80.6807790.3041640.065724
C90.6696250.2051570.089292
C100.7088610.1363310.001731
C110.7568470.1702150.109372
C120.764920.2717280.129616
C130.7283390.3375020.045152
C140.7026220.0344850.021912
C150.7411770.0298760.063760
C160.7879520.0038410.174024
C170.7955760.1019920.195913
C180.6199280.1719860.206868
C190.642490.1818870.311806
C200.5930230.151710.423065
C210.5238970.1107580.428156
C220.4988460.0976500.324471
C230.5473460.1292640.212848
C240.4272650.0555500.329034
C250.4035780.0454010.227339
C260.4508640.0778460.116785
C270.5206480.1188240.10961
C280.747340.2327940.397684
C290.832030.2504230.367133
C300.8753580.3137080.2808
C310.9530220.3264530.267512
C320.9885140.2762390.34099
C330.9461670.2145270.429346
C340.8687730.2032150.44273
Cl10.4843440.4788490.175485
Cl20.8340860.3821480.18911
N10.6409620.371140.15092
N20.7158020.2170280.30502
H11.04910.2863220.329819
H20.9847230.3765040.200006
H30.9732560.1760180.488256
H40.8343010.1575330.512978
H50.8012360.2974230.214488
H60.7355630.4149420.060418
H70.8179350.0478860.241012
H80.7356240.1075520.046371
H90.8317530.1290310.2802
H100.6668240.0077780.106428
H110.6114780.1618920.502961
H120.4871030.0877220.513974
H130.5562660.1438190.024111
H140.4317980.0705700.036494
H150.3913140.0316740.415107
H160.3485810.0130280.231668
H170.750560.2246830.221314
H180.5951110.344420.212647
H190.6978850.5593860.335262
H200.6167740.6509090.507577
H210.4211580.5881450.381095
H220.4772950.6650020.530697
O10.7191830.5042290.106247
O20.7116330.2305290.503129
(44) top
Crystal data top
Monoclinic, P21/cc = 20.0 Å
a = 15.2 Åβ = 59.0°
b = 10.8 ÅV = 2805.75 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.2964340.5908370.7281
C20.2552560.5068520.698714
C30.18160.4220520.748644
C40.1485610.4186630.828031
C50.1912020.5037530.856366
C60.264180.5897860.806956
C70.0738260.3206210.879842
C80.1085010.2608680.928467
C90.1919590.2863760.919819
C100.2859260.2204330.966778
C110.294350.1346561.02428
C120.2079730.1150321.03193
C130.116980.175180.985394
C140.3719660.2355440.957685
C150.4612970.1709651.00376
C160.4698470.0879451.06142
C170.3877090.0702251.0711
C180.1817030.3754840.859099
C190.2294610.4914080.87934
C200.2198050.5743420.820624
C210.1612830.5426810.743632
C220.1099820.4270630.719923
C230.1214820.3416280.778432
C240.0488460.3941420.640256
C250.0007580.2807540.618453
C260.0130360.1951180.67611
C270.0720010.2243440.753917
C280.3086840.6444620.986897
C290.3619030.6583561.07402
C300.4514410.5986461.13027
C310.495810.6257551.20925
C320.4506780.7133671.2332
C330.3621280.7751391.17823
C340.3194840.7485451.0997
Cl10.1517710.5079850.954659
Cl20.5126670.488961.10406
N10.0174720.3265140.881634
N20.2874270.5256560.9581
H10.4853640.7337591.29487
H20.5656710.578141.25113
H30.3268860.8444551.19646
H40.2520480.7979361.0558
H50.2143610.0498391.07573
H60.0505630.1591430.990615
H70.5410570.0378761.09756
H80.5259140.1836360.995468
H90.3928150.0057221.11479
H100.3661610.2983360.913116
H110.2575840.6636010.838023
H120.1539380.6074670.699352
H130.0818650.1571180.797688
H140.0238700.1047230.658848
H150.0410000.4606980.596621
H160.0459470.2563020.557202
H170.3049030.4563520.997138
H180.0221300.3928970.847786
H190.1494320.3558040.725923
H200.2801620.5071580.637217
H210.2950470.6554390.830761
H220.3538090.6578370.689815
O10.0948710.2457230.915061
O20.2833880.7378070.946477
(45) top
Crystal data top
Monoclinic, P21/cc = 14.9 Å
a = 10.6 Åβ = 65.5°
b = 19.9 ÅV = 2857.69 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1832230.9884230.379392
C20.0829960.9549810.358444
C30.0111820.9017120.417165
C40.0361690.8802940.497846
C50.1389580.9140510.516602
C60.2121640.9675380.457809
C70.0511220.8220650.554228
C80.1619840.7736620.722888
C90.2283460.7904090.822345
C100.2922790.7389630.893576
C110.2869590.671020.862066
C120.2172210.6565680.760222
C130.1563680.7059090.692027
C140.3621740.7532250.995811
C150.4232190.7028431.06274
C160.4176260.6356841.03136
C170.3508550.62030.932948
C180.2273180.8611180.854697
C190.1273690.8828560.88639
C200.1257520.9504970.91583
C210.222920.9948270.913138
C220.3273320.9751390.882358
C230.3297420.9072750.852936
C240.4287271.020720.880223
C250.5292791.000410.850325
C260.5321050.9332590.821266
C270.4350810.8878750.822479
C280.0909110.8477440.900755
C290.1859280.7880170.87651
C300.2616040.7711460.931458
C310.3562470.7183690.902702
C320.3782030.6820140.817917
C330.3047880.6980210.762046
C340.2096340.7504310.791653
Cl10.1866970.8900660.610964
Cl20.2365660.8127751.03975
N10.0983660.8246920.65457
N20.0300930.8364330.889678
H10.4528720.6411690.795891
H20.4119260.7061090.947469
H30.3216750.6701780.69547
H40.1540360.7636510.747007
H50.2123430.6048420.735976
H60.1058180.6945580.614159
H70.4662680.5964011.08517
H80.4765390.7148011.14063
H90.3459340.5687890.907813
H100.3674820.8048311.02033
H110.0464250.9655820.939812
H120.2208341.046520.935667
H130.4383830.8362640.800332
H140.6119870.9173130.797846
H150.4253961.072280.902875
H160.6066851.035750.849018
H170.0492420.7882250.878161
H180.0839190.8685620.683091
H190.0663340.8743550.401713
H200.0605740.9705530.296765
H210.291830.9921320.474022
H220.2403191.030350.334269
O10.0770180.7765510.509567
O20.1242450.9015370.923151
(46) top
Crystal data top
Monoclinic, P21/nc = 15.9 Å
a = 11.4 Åβ = 87.2°
b = 15.3 ÅV = 2766.4 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.3262850.4505390.49309
C20.2121910.4653070.525284
C30.1205370.4166460.495534
C40.1383440.351720.433846
C50.2540290.3391060.401632
C60.3468260.3878450.430979
C70.0253740.3064790.412624
C80.0588140.1697070.357886
C90.0380350.1044890.297627
C100.1278730.0423320.282367
C110.2383310.0480660.328614
C120.2554030.1157380.388694
C130.169150.1751390.403383
C140.1117750.0249140.221391
C150.2001990.0833520.207586
C160.3091090.0778250.25374
C170.3275210.0132840.312933
C180.0767680.1012140.248074
C190.0916520.1554520.177622
C200.1977030.1540290.127069
C210.2862960.0985950.147561
C220.2750980.0421320.218184
C230.1683550.0433450.269376
C240.3662940.0154690.239226
C250.3531830.0699000.30778
C260.2476670.0687790.358394
C270.1575710.0135630.33992
C280.0314350.2411620.080906
C290.1567680.2726210.081707
C300.1932430.3427930.032647
C310.3107590.3679530.033948
C320.3945070.3230490.083578
C330.3608020.2528140.132265
C340.2433820.2284750.131114
Cl10.2917630.2649610.321177
Cl20.0944390.404380.029145
N10.0333810.2273860.372981
N20.0026430.2089390.158316
H10.4859220.3431290.083843
H20.3353480.4231730.004102
H30.4253460.2165920.170771
H40.2193190.1714130.167014
H50.3394710.1202740.423947
H60.1836230.227270.448585
H70.378050.1246060.242199
H80.1861720.1343650.16065
H90.4110570.0082530.348824
H100.0282020.0295780.185741
H110.205680.1961280.072308
H120.36760.0974600.108688
H130.0766320.0130150.379074
H140.2377750.1120240.412539
H150.4471310.0157740.199809
H160.4236620.1138690.323268
H170.0657900.2131320.20513
H180.1139980.2077460.350895
H190.0305920.4272240.518867
H200.1946420.5146020.573387
H210.4348480.376220.404145
H220.3994030.4879480.515536
O10.0686200.3401040.434438
O20.0353730.2427710.018670
(47) top
Crystal data top
Monoclinic, P21/nc = 10.7 Å
a = 13.8 Åβ = 87.2°
b = 18.7 ÅV = 2763.92 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.1443550.0248780.071744
C20.1365760.0029700.051568
C30.0989870.0640370.076115
C40.0674070.1101970.020313
C50.0763020.0871790.14359
C60.1148750.0202420.169263
C70.0300000.1817070.019492
C80.0962260.2722820.030859
C90.1959190.2807530.049627
C100.2371160.3508150.046057
C110.1759430.4108080.018566
C120.0750370.3992490.001766
C130.0356210.3323690.004712
C140.3378460.3628910.068801
C150.375690.4307420.063705
C160.31510.4899350.035761
C170.2172360.4799460.013730
C180.258230.2176210.081668
C190.264270.1884770.20141
C200.3214480.12660.227722
C210.3720320.0954590.135529
C220.3685170.122810.012388
C230.3102740.184310.014860
C240.4200510.0904880.083735
C250.4144820.1175080.202971
C260.3565630.1781830.230554
C270.3057930.2107340.139201
C280.2214530.2096150.421779
C290.1767530.2668540.498883
C300.1272480.2513290.606786
C310.0942250.30610.681692
C320.1115840.3770810.651335
C330.1614730.3936370.545481
C340.1935620.3387550.470496
Cl10.0441530.1414310.271328
Cl20.0999390.1642690.648259
N10.0544760.2042860.040051
N20.2125490.2216490.295083
H10.0859220.4193070.71093
H20.0548240.2924960.763546
H30.1759460.4488770.521583
H40.2346030.351720.389458
H50.0282180.4449430.021916
H60.0414390.3240910.011869
H70.3460350.5432240.031814
H80.4530380.4388740.081165
H90.1697620.5251340.007659
H100.3848680.3175070.089768
H110.3239470.1053750.321631
H120.415710.0482730.156887
H130.26130.2572610.161534
H140.3519860.1993240.325076
H150.4640970.0436500.061081
H160.4542590.0923530.276123
H170.1748520.2656550.267122
H180.0919380.1678270.092582
H190.0939140.0829150.171375
H200.1599910.0378560.128161
H210.121810.0043320.265754
H220.1739910.0770710.092579
O10.0738230.2154430.101708
O20.2637250.1589460.470549
(48) top
Crystal data top
Monoclinic, P21/nc = 13.8 Å
a = 10.7 Åβ = 87.2°
b = 18.7 ÅV = 2764.04 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.5719960.9751420.14431
C20.4486490.9969750.136479
C30.4239891.063980.098945
C40.5203541.110210.067473
C50.6436621.087260.076409
C60.6694481.020330.114935
C70.4804561.181690.030067
C80.5306251.272240.096243
C90.5494791.280710.195929
C100.5460171.350770.237121
C110.5185761.410770.175951
C120.4981651.399210.075053
C130.5045221.332320.035637
C140.5688371.362850.337842
C150.5638661.43070.375682
C160.5359731.489890.315096
C170.5138631.479910.217241
C180.5814811.217580.258231
C190.7012341.188460.264253
C200.7275251.126570.321401
C210.6353091.09540.371955
C220.5121581.122730.368445
C230.4849251.184250.310241
C240.4160111.090380.419948
C250.2967711.117390.414386
C260.2692091.178080.356507
C270.3605831.210660.305769
C280.9216311.209610.221505
C290.9987141.266860.176776
C301.106611.251330.127235
C311.18151.30610.094161
C321.151131.377070.11151
C331.045291.393630.161443
C340.9703291.338760.193582
Cl10.7712721.141620.044348
Cl21.148111.164280.099932
N10.539741.204230.054518
N20.7949341.221640.212552
H11.210711.419290.085808
H21.263341.292490.054729
H31.021391.448870.175911
H40.8893031.351720.234656
H50.4780491.44490.028238
H60.4878761.324040.041415
H70.5321241.543180.34603
H80.5813841.438830.453024
H90.492511.525090.169772
H100.5897651.317460.384858
H110.8214351.105350.323896
H120.6566561.04820.415606
H130.3382691.25720.261309
H140.1746851.199220.351939
H150.4386481.043540.463966
H160.2236011.092220.454139
H170.7670081.265670.174904
H180.5923141.167780.091931
H190.3286971.08280.093828
H200.372120.962030.159812
H210.7659621.004470.121908
H220.5929120.9229480.173905
O10.398391.215450.074006
O20.9703771.15890.263666
(49) top
Crystal data top
Triclinic, P1α = 64.8°
a = 11.5 Åβ = 69.5°
b = 11.2 Åγ = 61.1°
c = 14.0 ÅV = 1409.21 Å3
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
C10.3691060.4549190.139249
C20.3067380.3864260.123711
C30.385070.2642360.092373
C40.5260310.2085140.075068
C50.5866180.278820.091402
C60.5089760.4007920.123808
C70.6026530.0746340.042420
C80.7939670.0217660.094276
C90.8564120.0145640.201048
C100.9660170.0957120.242592
C111.008630.2406830.174543
C120.9417790.2715230.066302
C130.8380050.1660420.026372
C141.034610.0657620.350647
C151.138760.1737250.388873
C161.180260.3171020.321378
C171.11620.3494220.216294
C180.8161580.1661590.272194
C190.7145170.226820.331176
C200.6797880.3700770.40122
C210.7472230.449030.412532
C220.8519240.392240.35546
C230.8869640.2487230.284744
C240.9220820.4732760.366585
C251.023410.4155330.310224
C261.05850.2735140.240164
C270.992290.1921690.227639
C280.5481980.1803480.370882
C290.5163330.0604970.36284
C300.6076060.0770780.367721
C310.5629120.17350.366053
C320.4267170.1337550.360038
C330.3346910.0035260.357522
C340.3801170.0991590.36024
Cl10.7614290.2142270.075642
Cl20.7810140.1350090.380236
N10.6932750.087590.051859
N20.648360.14330.319963
H10.3930870.209967