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The method of Ionic Network Analysis (INA) is defined by reference to the

known crystal structures of olivine minerals. It is based on a reversible

transformation between two alternative representations of ionic crystal

structures: (a) the crystallographic and (b) the interactional. Whereas the

former encompasses unit-cell parameters and atomic coordinates, the latter

consists of selected interaction vectors between ions. Since the lengths and

orientations of these vary only slightly between crystal structures obtained

under systematically varying (p, T, X) conditions, they may be used to predict

the crystal structures at intermediate (p, T, X) values by interpolation. Two

interactional networks are constructed, one for the anions and the other for

cations. As both networks lead to independent calculated values of the unit-cell

parameters, it is possible to exploit the known, continuous (p, T, X) variations of

cell parameters as normative constraints for the prediction of atomic

coordinates within a predictive structural refinement procedure. Continuously

varying structurally based parameters such as the volumes of cation

coordination polyhedra may likewise be used. The choice of olivines for

developing the method has been guided by the availability of pressure,

temperature and compositional structural data for them. However, the ideas are

expounded sufficiently generally for the method to be applied to other minerals.

1. Introduction

Olivines continue to attract widespread attention from a

variety of standpoints. From a geophysical perspective, the

seismic discontinuity at a depth of 400 km within the Upper

Mantle has long been attributed to a phase transition of

(Mg,Fe)2SiO4 olivine to �- and �-spinels (Ringwood & Major,

1970). Olivines also serve as a model mineralogical system for

investigating cation-ordering phenomena, since their two

octahedral sites, termed M1 and M2, are divergent, i.e.

symmetrically inequivalent. This has been the focus of many

studies, for example, McCormick et al. (1987), Müller-Sommer

et al. (1997), Redfern et al. (2000), Henderson et al. (2001),

Heuer (2001), Rinaldi et al. (2005) and Heinemann et al.

(2006).

As a contribution to the crystal chemistry of olivines,

Lumpkin & Ribbe (1983) took the occupancies of M1 and M2

sites into account in calculating effective ionic radii for

composite M1 and M2 cations. These were subsequently

employed as the independent variables in a system of linear

equations leading to cell parameters a, b, c and cell volume V,

their coefficients having being determined by multiple linear

regressions. With similar objectives, Della Giusta et al. (1990)

developed an alternative system of linear equations relating

site occupancies as independent variables to the 24 different

interatomic distances, cell parameters and volumes in olivines.
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The coefficients in their equations were also dependent on

ionization potentials and polarizabilities of the ions. Thus, the

interatomic distances in (Mg, Fe, Ca, Mn, Co, Ni, Zn) silicate

olivines could be predicted satisfactorily on this basis.

In the current work, no attempt is made to relate chemical

composition or site occupancy explicitly to interatomic

distances or cell parameters. Nor are ionic radii, ionization

potentials and polarizabilities used. The independent para-

meters adopted are the crystallographic parameters relating to

atomic coordinates and unit-cell constants. For a generalized

olivine, (M1)(M2)TO4, in space group Pbnm there are 14 such

parameters, i.e. a, b, c, x(O1), y(O1), x(O2), y(O2), x(O3),

y(O3), z(O3), x(M2), y(M2), x(T) and y(T). Ion M1 does not

enter the parameterization, since it is located at a centre of

symmetry, 000.

Some elements of the current work have been previously

used (Thomas & Beitollahi, 1994; Thomas, 1996, 1998). Here

the oxygen ion network was used to derive relationships

between octahedral tilt angle and the volume ratio of AO12

and BO6 coordination polyhedra in perovskites, ABO3.

Linked ionic networks are likewise used here, with the

possibility of incorporating the volumes of cation coordination

polyhedra in the algorithm for structure prediction.

The article is arranged as follows. In x2 the interactional

representation of olivines is defined for both the oxygen and

the M2—T2 cation networks, which are defined independently

of each other. Since this process of Ionic Network Analysis is

crucial, it is proposed that the acronym INA be used to

describe the whole method. In x3, values are listed of the

calculated interactional parameters for olivines under varying

(p, T, X) conditions. Subsequently the algorithm for crystal

structure prediction at interpolated values of p, T or X is

described and applied in x4. Finally in x5, the results and

methodology are discussed.

2. The interactional representation of olivines

2.1. The oxygen ionic network

Continuous pathways of pairwise interactions between

oxygen ions are to be defined, so that the unit-cell parameters

may be recalculated. These interactions are generally octa-

hedral stalks or tetrahedral edges, which are characterized by

lengths and orientational angles to the crystal axes. In order to

define the method, the structure of an (Mg,Fe)2SiO4 olivine at

293 K (Heinemann et al., 2006) is taken into consideration

(Table 1).

The ten degrees of freedom here correspond to the crys-

tallographic representation. Therefore, the equivalent interac-

tional representation, which is to be based on

links between oxygen ions, will also require

ten variables. The mirror planes at z ¼ 1
4;

3
4 in

space group Pbnm impose severe restric-

tions on the oxygen substructure: O1 and O2

ions lie within these planes, with pairs of O3

ions equidistant from them. The inter-

mediate planes at z ¼ 0; 1
2 are characterized

by centres of symmetry at (x, y) = (0, 0); (1
2,

1
2), at which the M1

ions are located (Fig. 1).

Variables s1,xy, t1, �1 and �2 are parameters in the interac-

tional representation. Recalculation of cell parameters a and b

can proceed from just these four parameters. In this connec-

tion, continuous pathways OABCDE and ABF may be used to

formulate equations (1) and (3), respectively.

s1;xy

2
cos�1 þ t1 cos�2 þ s1;xy cos �1 þ t1 cos �2 þ

s1;xy

2
cos�1 ¼ b

ð1Þ

These terms correspond to the projections of lengths OA, AB,

BC, CD and DE, respectively, on to the y-axis. Simplification

of equation (1) leads to equation (2).

s1;xy cos �1 þ t1 cos�2 ¼
b

2
ð2Þ

With respect to pathway ABF, the corresponding simplified

relationship is as follows.

t1 sin�2 ¼
a

2
ð3Þ

A similar structure applies to the plane z = 1
2, the only

difference being a sign-reversal of the O3 out-of-plane

deviations of Fig. 1. Although the green rods linking the

oxygen ions in Fig. 1 have been introduced as projections of

octahedral stalks, they could also be regarded as projections of

planes parallel to the z-axis, which are shown in Fig. 2.

The green planes in Fig. 2 have three functions: (a) to

contain the O3—O30 stalks of (M1)O6 octahedra; (b) to

provide fixed mountings for one of the three girths of (M2)O6
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Table 1
Cell parameters (Å) and oxygen substructure of an olivine in space group Pbnm.

Cell parameters O1 in 4c O2 in 4c O3 in 8d

a b c x y x y x y z

4.7942 10.3500 6.0436 0.76627 0.09204 0.21521 0.45025 0.28278 0.16425 0.03493

Figure 1
The olivine structure in the z = 0 plane. a, b: orthorhombic cell
parameters; s1,xy: projection of O3—O30 stalk of centrosymmetric (M1)O6

octahedron in plane; t1: tie-line between stalk projections; �1, �2: angles of
stalk projection or tie-line to the y-axis; (+,�): deviation of oxygen ion z-
coordinates out of plane; JK, LM: b glide planes at x = 1

4,
3
4.



octahedra; (c) to provide hinge-mountings for TO4 tetrahedra

(not shown).

The O3 oxygen-ion structure also enables a continuous

pathway to be formed in the c-direction. Thus, two further

parameters are brought into the interactional set, i.e. s1,z and ez

(Fig. 3).

The notation ez stands for a tetrahedral edge in the z-

direction. Analysis of pathway ABCDE leads to the rela-

tionship 2ð
s1;z

2 Þ þ ez þ 2ð
s1;z

2 Þ þ ez ¼ c, which may be simplified

to give equation (4).

s1;z þ ez ¼
c

2
ð4Þ

The remaining four variables in the interactional set are

associated with the z = 1
4 plane (Fig. 4).

The six interactional variables introduced so far relate to

the O3 x; y; z coordinates and the three cell parameters a, b, c

in the crystallographic representation. The remaining four

interactional variables, exy, s2, t2 and ft relate to the x and y

crystallographic parameters of atoms O1 and O2, whose

centres lie in the z = 1
4 plane. The first of these parameters

represents the length of TO4 tetrahedral edges lying in the xy

plane and the second the O1—O2 stalk-length of (M2)O6

octahedra. It is these lengths that make up the pathway

ABCDE in the y-direction (Fig. 4). Thus, the sum of the

projections of these edges and stalks along y is constrained to

be equal to the b parameter. Parameter t2 is the length of the

perpendicular tie-line linking the hinge-mounting of each

tetrahedron to the opposite edge of length exy. Parameter ft is

the fraction of length exy in the positive x direction at which

the tie-line meets the edge.

In summary, a set of ten interactional parameters has been

defined to correspond to crystallographic parameters a, b, c,

x(O1), y(O1), x(O2), y(O2), x(O3), y(O3) and z(O3). Values

of the ten interactional parameters, s1,xy, s1,z, s2, ez, exy, t1, t2, �1,

�2 and ft, may be straightforwardly calculated for known

crystal structures. The reverse calculation from the six inter-

actional parameters s1,xy, s1,z, ez, t1, �1 and �2 to crystal-

lographic parameters a, b, c, x(O3), y(O3) and z(O3) proceeds

equally straightforwardly. Calculation of crystallographic

parameters x(O1), y(O1), x(O2) and y(O2) from interactional

parameters exy, s2, t2 and ft requires the rotational angle about

the tetrahedral hinge-mounting to be found that is consistent

with the value of the b-parameter. This calculation is best

performed computationally (Thomas, 2016).

2.2. The cation network

Just as for the oxygen ion network, continuous pathways

between cations are defined so that the unit-cell parameters

may be recalculated. In olivines, the location of both M2 and

and T1 ions within z = 1
4,

3
4 planes leads to a tessellated hexa-

gonal structure (Fig. 5).

Each hexagon is associated with three unique side-lengths,

L1, L2 and L3, which correspond to interaction-lengths

between M2 and T1 ions. Angles � and �2 are required in
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Figure 2
The olivine structure in clinographic projection. Green planes contain
O3—O30 octahedral stalks. Red circles represent O3 oxygen ions. Pink
planes correspond to one of the three girths of each (M2)O6 octahedron.
Each light-blue-coloured link is the edge of a TO4 tetrahedron.

Figure 3
Parameters s1z and ez together with continuous pathway ABCDE.
Crosses: O3 ions.

Figure 4
The z = 1

4 plane, with projections of green planes (Fig. 2) and their tie-lines
(Fig. 1) drawn in. (M2)O6 octahedra and TO4 tetrahedra are shown in
pink and light blue, respectively. Contributions of this plane and the
symmetry-related z = 3

4 plane to an (M1)O6 octahedron at 1
2

1
2

1
2 are also

shown. The definitive pathway ABCDE is made up alternately of
tetrahedral edges exy and octahedral stalks s2. Parameters t2 and ft relate
to the oxygen ion structure of TO4 tetrahedra.



order to recalculate cell parameters a and b, in accordance

with equations (5) and (6).

L2 cos �2 þ L3 cos �3 ¼ a ð5Þ

L1 cos �þ L2 sin �2 ¼
b

2
ð6Þ

Angle �3 is merely used to simplify the form of equation (5), it

being defined by the constraint L2 sin �2 ¼ L3 sin �3. Equation

(5) results from the continuous pathway BCD and equation

(6) from continuous pathway ABC, whereby M2 ions A and C

are related by the glide plane JK.

It is only possible to fix the network within the unit cell in

the x-direction, as specified by parameter �x, whose value

results from the five definitive interactional variables, i.e. L1,

L2, L3, � and �2. By contrast, parameter �y is free to float.

Given an x-coordinate of ��x for ion A, the x-coordinate of

ion C is constrained by the glide plane to be 1
2 + �x. It follows

from pathway ABC that the value of parameter �x is given by

equation (7).

L1 sin �þ L2 cos �2 ¼
1
2þ 2�x
� �

a ð7Þ

Since parameter �y cannot be fixed by the parameters of the

cationic network, it is necessary to anchor the whole cationic

network relative to the oxygen network. The bond-valence

method may be used for this purpose, employing the func-

tional form of Brown & Altermatt (1985) [equation (8)].

Sij ¼ exp
R0 � Rij

B

� �
ð8Þ

Here Rij is the bond length and Sij the bond valence. Para-

meters R0 and B were taken from the so-called GRG

(generalized reduced gradient) set of Gagné & Hawthorne

(2015) in the current work. With respect to the 293 K structure

of (Mg,Fe)2SiO4 (Heinemann et al., 2006), a bond-valence sum

of 3.8870 arises for the coordination tetrahedra, which are

fully occupied by Si ions. Similarly a bond-valence sum of

1.8979 applies to the M2 ions in their coordination octahedra,

assuming the following occupancy factors, as specified by

Heinemann et al.: Mg2+: 0.5291; Fe2+: 0.4225; Mn2+: 0.0402;

Ca2+: 0.0082. Although these calculated bond-valence sums

deviate from the idealized values of 4.0000 and 2.0000, this is

not important here, since the objective is merely to fix the �y

value of the cation network. In this connection, it may be

argued that the correct value of �y for this structure is asso-

ciated with bond-valence sums of 3.8870 and 1.8979 in the Si

and M2 coordination polyhedra.

Since the absolute values of the bond-valence sums are of

secondary importance, a further simplification results from the

assumption that the M2 site is always fully occupied by Mg2+

ions. Under this assumption, the M2 bond valence for the

293 K structure of Heinemann et al. is calculated to be 1.7682.

Similarly the tetrahedral sites may be assumed always to be

fully occupied by Si4+ ions. This simplification eliminates the

requirement of taking variable occupancy factors explicitly

into account. Similarly these parameter values may be applied

here to structures at elevated temperatures and non-ambient

pressures, although bond-valence parameters generally apply

to a temperature of 293 K and a pressure of 1 bar. Thus, the

general validity of the functional form of equation (8) is

assumed, in order to anchor the cationic network of Fig. 5. In

the tables of the following section, the two bond-valence sums

are denoted by the symbols �S(Si) and �S(Mg).

3. Values of interactional parameters for olivines under
varying p, T, X conditions

In this section, calculated values of the interactional, or ‘INA’

parameters for oxygen and cation networks are listed for

known olivine structures. The solid solution system

(CoxMg1 � x)2SiO4 (0 � x � 1) investigated by Müller-

Sommer et al. (1997) is considered first of all in x3.1. The

structural data of Heinemann et al. (2006) for (Mg,Fe)2SiO4 at

temperatures between 293 and 1180 K are used to calculate

the interactional parameter values listed in x3.2. Finally, the

pressure-dependence of interactional parameters is consid-

ered in x3.3. To this end, the structural dataset of Kudoh &

Takéuchi (1985) for forsterite (Mg2SiO4) between 31 and

149 kbar is considered in x3.3.1, augmented by the structural

data of Lager et al. (1981) at atmospheric pressure

(0.001 kbar) and Finkelstein et al. (2014) for a pressure of

453 kbar. In x3.3.2 the interactional parameters are listed

corresponding to the structural data of Kudoh & Takéuchi

(1985) for fayalite (Fe2SiO4) at pressures between 0.001 and

140 kbar.

There are two aims of the approach: (a) to predict the

crystal structures at intermediate (p–T–X) values relative to

known structural data; (b) to provide a tool for crystal-

lographers in seeking optimum structural solutions from the

results of diffraction experiments. A central concern is to

identify the options for calculating INA parameters at inter-

mediate (p–T–X) points from their values at experimentally

determined (p–T–X) points, this being a process of inter-

polation. Thereafter, a reverse transformation from inter-

polated INA parameters to crystallographic parameters can

take place, utilizing the equations in x2.
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Figure 5
Interactional parameters L1, L2, L3, � and �2 for the cation network in the
z = 1

4 plane (see also Fig. 4). White and black circles denote M2 and T ions,
respectively. Values of parameters a, b, �x and �3 result, whereas
parameter �y remains unfixed, as signified by the double-headed arrow.



A well known option for performing the interpolations

would be to use polynomial fits. This option is discussed in

x5.3, in comparison to a novel approach, which is developed in

x4. In this exploratory work, linear interpolations between

experimental data-points are used. This simple technique has

the advantage of giving equal a priori weighting to all

experimental points. However, since linearity of parameter

variation cannot be assumed to be correct, it is also necessary

to define a means of shifting the parameter values away from

the starting values obtained by linear interpolation. The

guiding principle is to make these shifts as small as possible,

consistent with the fulfilment of certain constraints. Three

types of constraint are investigated here. First, that cell

parameters a and b obtained either by equations (2) and (3) or

(5) and (6) are in agreement with each other. Secondly, that

cell parameters a, b and c are in agreement with quadratic

curves applying to the particular system over the whole range

of p, T or X. Thirdly, that the parameter values are in agree-

ment with quadratic functions or narrow limits relating to the

volumes of cation coordination polyhedra over the whole

range of p, T or X for a particular system.

3.1. Parameter values for the system (CoxMg1 � x)2SiO4

(0 �� x �� 1)

Calculated values of the interactional parameters for the

nine structures of Müller-Sommer et al. (1997) are given in

Table 2. These had been determined by Rietveld refinements

of X-ray powder diffraction data of samples prepared by solid-

state synthesis. Standard errors quoted in Table 2 have been

calculated from the standard errors in the crystallographic

parameters, i.e. unit-cell parameters and atomic coordinates.

For this purpose a numerical method was adopted, in which

the normal distributions of each of these parameters were

simultaneously sampled by 200 discrete points. For each

sampling point the corresponding INA parameters were

calculated. The sets of interactional parameters generated

were subsequently used to calculate the standard errors of

individual interactional parameters. Correlation errors were

avoided by random sampling of the normal distributions of

crystallographic parameters (Thomas, 2016).

In general, the parameter values are found to vary within

narrow intervals, with the difference in values for a particular

parameter between neighbouring x values generally greater

than the sum of the two relevant standard errors.

In connection with the linear interpolation method to be

used in connection with the novel approach, the piecewise

linear variation of parameter values between adjacent x-points

requires the use of equations such as equation (9). As an

example, parameter exy has been taken, with its value at x =

0.800 calculated.

exy 0:800ð Þ ¼ exyð0:875Þ þ
ð0:800� 0:875Þ

ð0:750� 0:875Þ

� exyð0:750Þ � exyð0:875Þ
� �

¼ 2:6778þ 0:6ð2:6906� 2:6778Þ ¼ 2:68548 Å ð9Þ

3.2. Parameter values for forsterite (Mg2SiO4) at different
temperatures

Interactional parameters calculated from the structural data

of Heinemann et al. (2006) for forsterite between 293 and

1180 K are given in Table 3. There is a sizeable gap in

temperature values between 579 and 874 K. Furthermore, the

data apply to two different single crystals, the first associated

with the eight temperature columns to the left of the table, and

the second with the four temperature columns to the right.

The standard errors in the interactional parameter values are

generally smaller than for the solid-solution system of x3.1,

this probably being fundamentally due to the use of single-

crystal rather than powder X-ray diffraction. A significantly

greater tendency is observed for parameter values to vary

monotonically over the whole temperature range, whereby it

should be noted that the temperature of the ninth data column

is lower than the temperature in the eighth.
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Table 2
INA parameter values for (CoxMg1 � x)2SiO4 olivine calculated from the structural data of Müller-Sommer et al. (1997).

x 1.000 0.875 0.750 0.625 0.500 0.375 0.250 0.125 0.000

s1,xy (Å) 4.3388 (105) 4.3882 (80) 4.3165 (60) 4.2732 (77) 4.2942 (60) 4.2785 (40) 4.2782 (44) 4.2737 (56) 4.2564 (40)
s1,z (Å) 0.3987 (84) 0.4608 (96) 0.4522 (72) 0.4484 (84) 0.4350 (60) 0.4659 (48) 0.4419 (48) 0.4500 (48) 0.4500 (36)
s2 (Å) 4.3001 (101) 4.3546 (95) 4.2645 (68) 4.3283 (76) 4.2768 (63) 4.2744 (49) 4.2543 (49) 4.2494 (50) 4.2471 (41)
ez (Å) 2.6034 (84) 2.5395 (96) 2.5464 (72) 2.5487 (84) 2.5606 (60) 2.5283 (48) 2.5518 (48) 2.5423 (48) 2.5422 (36)
exy (Å) 2.6786 (81) 2.6778 (83) 2.6906 (60) 2.6580 (67) 2.6716 (58) 2.6931 (44) 2.7091 (44) 2.7123 (48) 2.7003 (37)
t1 (Å) 2.9924 (74) 2.9736 (49) 2.9780 (37) 2.9882 (49) 2.9790 (37) 2.9885 (25) 2.9745 (25) 2.9649 (37) 2.9707 (24)
t2 (Å) 1.8270 (73) 1.8334 (62) 1.8478 (46) 1.8374 (55) 1.8358 (44) 1.8276 (32) 1.8374 (33) 1.8292 (39) 1.8283 (29)
�1 (�) 39.396 (124) 39.665 (103) 38.852 (78) 38.660 (98) 38.886 (79) 39.154 (53) 38.833 (60) 38.639 (71) 38.713 (53)
�2 (�) 53.044 (189) 53.512 (128) 53.331 (95) 53.038 (126) 53.210 (95) 52.911 (63) 53.197 (63) 53.366 (95) 53.138 (63)
ft 0.4407 (31) 0.4573 (33) 0.4360 (24) 0.4201 (28) 0.4278 (23) 0.4265 (18) 0.4266 (18) 0.4266 (19) 0.4272 (14)
L1 (Å) 3.3123 (42) 3.2968 (37) 3.2869 (23) 3.2923 (37) 3.2761 (29) 3.2775 (23) 3.2655 (23) 3.2527 (37) 3.2463 (15)
L2 (Å) 2.7955 (38) 2.8252 (41) 2.8072 (29) 2.7935 (37) 2.8051 (30) 2.8050 (25) 2.7956 (25) 2.7981 (32) 2.7930 (20)
L3 (Å) 3.2776 (37) 3.2560 (42) 3.2789 (31) 3.2787 (37) 3.2726 (30) 3.2587 (26) 3.2747 (26) 3.2753 (31) 3.2804 (21)
�2 (�) 41.763 (80) 41.476 (82) 41.938 (58) 41.900 (76) 41.898 (61) 41.665 (51) 42.036 (51) 42.143 (67) 42.310 (39)
� (�) 6.650 (60) 6.587 (76) 6.786 (59) 6.965 (65) 6.758 (53) 6.675 (47) 6.794 (47) 6.788 (48) 6.837 (42)
�S(Si) 4.1326 4.2718 4.1558 4.2329 4.1944 4.2322 4.1219 4.1561 4.1891
�S(Mg) 1.7850 1.7493 1.8047 1.7554 1.8035 1.7880 1.8217 1.8310 1.8288



3.3. Parameter values at different pressures

3.3.1. Forsterite, Mg2SiO4. Interactional parameters calcu-

lated from the structural data of Lager et al. (1981), Kudoh &

Takéuchi (1985) and Finkelstein et al. (2014) for forsterite at

pressures between 0.001 and 453 kbar are given in Table 4.

Standard deviations of parameter values for samples under

pressure are generally significantly higher than in xx3.1 and

3.2, thus reflecting the experimental difficulties associated with

using pressure cells. Crystallographic parameters had been

determined universally from single-crystal data, in the case of

the 453 kbar data of Finkelstein et al. utilizing a synchrotron

beamline. Significant departures of parameter values from

monotonic trends with pressure dictate the use of the piece-

wise interpolation method for intermediate compositions, as

discussed in connection with equation (9).

3.3.2. Fayalite, Fe2SiO4. INA parameters calculated from

the structural data of Kudoh & Takeda (1986) for fayalite at

pressures between 0.001 and 140 kbar are given in Table 5.

Standard deviations of parameter values are generally high,

together with the general absence of monotonic trends. Both

factors necessitate the use of the piecewise interpolation

method.

4. Crystal structure prediction at interpolated values of
X, T or p

4.1. The system (CoxMg1 � x)2SiO4 (0 �� x �� 1)

Table 2 may be used as a basis for predicting crystal struc-

tures at x values interpolated between the experimentally

determined crystal structures. For this purpose it was found

expedient to use Microsoft1 Excel 2010. The parameter values

in Table 2 were pasted into an Excel spreadsheet, in order to

act as a lookup table. Calculation of interpolated interactional

parameters for x = 0.800 is shown, for example, in Fig. 6.
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Table 4
INA parameter values for forsterite calculated from the structural data of Lager et al. (1981) at 0.001 kbar, Kudoh & Takéuchi (1985) at 31–149 kbar and
Finkelstein et al. (2014) at 453 kbar.

Pressure (kbar) 0.001 31 47 53 79 86 111 149 453

s1,xy (Å) 4.2453 (17) 4.2208 (134) 4.2008 (95) 4.1724 (94) 4.1660 (78) 4.1703 (78) 4.1991 (193) 4.1977 (468) 3.9426 (112)
s1,z (Å) 0.3960 (12) 0.3827 (594) 0.3883 (165) 0.3762 (212) 0.3939 (234) 0.3928 (222) 0.3758 (233) 0.4744 (505) 0.2585 (67)
s2 (Å) 4.2233 (13) 4.2022 (173) 4.1682 (97) 4.1587 (98) 4.1306 (102) 4.1155 (96) 4.1006 (211) 4.1433 (569) 3.8608 (118)
ez (Å) 2.5947 (12) 2.5883 (594) 2.5622 (165) 2.5718 (212) 2.5366 (234) 2.5297 (222) 2.5422 (233) 2.3975 (505) 2.5149 (67)
exy (Å) 2.7472 (10) 2.6753 (148) 2.7602 (93) 2.7077 (97) 2.7037 (94) 2.6894 (90) 2.6505 (201) 2.5176 (483) 2.6305 (95)
t1 (Å) 2.9649 (12) 2.9309 (84) 2.9289 (59) 2.9311 (60) 2.9041 (47) 2.8903 (46) 2.8796 (115) 2.7934 (260) 2.7131 (72)
t2 (Å) 1.8607 (11) 1.8631 (112) 1.8373 (69) 1.8303 (69) 1.8188 (65) 1.8345 (64) 1.7994 (145) 1.8959 (356) 1.8239 (84)
�1 (�) 38.404 (20) 38.500 (177) 38.706 (124) 38.634 (125) 38.682 (106) 38.507 (105) 39.517 (260) 37.338 (637) 37.250 (142)
�2 (�) 53.284 (32) 53.697 (222) 53.617 (158) 53.445 (157) 53.818 (127) 54.141 (127) 54.146 (318) 56.357 (801) 56.469 (229)
ft 0.4293 (4) 0.4194 (61) 0.4243 (34) 0.4195 (34) 0.4196 (35) 0.4178 (34) 0.4131 (76) 0.4114 (198) 0.4104 (41)
L1 (Å) 3.2524 (14) 3.2814 (71) 3.1961 (43) 3.1945 (43) 3.1844 (50) 3.1726 (42) 3.1724 (84) 3.1386 (188) 3.0160 (72)
L2 (Å) 2.7882 (11) 2.7247 (69) 2.7551 (45) 2.7511 (45) 2.7169 (50) 2.7326 (45) 2.7027 (99) 2.6951 (223) 2.5863 (52)
L3 (Å) 3.2728 (10) 3.2036 (68) 3.2424 (46) 3.2294 (46) 3.2121 (50) 3.1954 (45) 3.1695 (102) 3.1585 (230) 3.0205 (48)
�2 (�) 42.133 (24) 40.834 (146) 41.977 (93) 41.804 (93) 41.628 (106) 41.402 (93) 40.979 (202) 41.006 (457) 39.610 (132)
� (�) 6.883 (12) 7.012 (117) 6.924 (84) 6.934 (84) 6.849 (91) 6.946 (85) 6.243 (196) 6.783 (451) 7.801 (63)
�S(Si) 3.8810 4.0318 4.0705 4.0898 4.2127 4.2071 4.3919 4.6960 4.3861
�S(Mg) 1.8702 1.9451 1.9907 2.0017 2.0638 2.0995 2.1368 2.2349 2.7937

Table 3
Parameter values in the Ionic Network Analysis corresponding to the 12 structures of Heinemann et al. (2006) for (Mg,Fe)2SiO4.

The first eight columns refer to sample ‘Bo-10’ and the final four to sample ‘Bo-2’ (ibid).

Temperature
(K) 293 377 475 579 874 929 974 1026 1021 1077 1125 1180

s1,xy (Å) 4.3476 (21) 4.3510 (18) 4.3554 (21) 4.3625 (21) 4.3765 (21) 4.3811 (21) 4.3848 (21) 4.3886 (21) 4.3901 (21) 4.3947 (21) 4.3991 (21) 4.4053 (21)
s1,z (Å) 0.4255 (12) 0.4270 (12) 0.4311 (12) 0.4329 (12) 0.4432 (24) 0.4472 (24) 0.4511 (24) 0.4540 (24) 0.4502 (24) 0.4531 (24) 0.4572 (24) 0.4576 (24)
s2 (Å) 4.2872 (16) 4.2917 (16) 4.2957 (17) 4.3024 (15) 4.3246 (17) 4.3253 (17) 4.3303 (23) 4.3341 (23) 4.3323 (17) 4.3363 (17) 4.3438 (17) 4.3495 (23)
ez (Å) 2.5963 (13) 2.5970 (13) 2.5961 (13) 2.5986 (13) 2.6010 (24) 2.5991 (25) 2.5970 (25) 2.5971 (25) 2.6002 (25) 2.5998 (25) 2.5992 (25) 2.6012 (25)
exy (Å) 2.7330 (15) 2.7347 (15) 2.7362 (19) 2.7365 (14) 2.7376 (19) 2.7390 (19) 2.7392 (22) 2.7410 (22) 2.7408 (19) 2.7404 (19) 2.7412 (19) 2.7412 (22)
t1 (Å) 2.9846 (13) 2.9859 (13) 2.9896 (13) 2.9915 (13) 3.0047 (13) 3.0065 (13) 3.0081 (13) 3.0118 (13) 3.0099 (13) 3.0119 (13) 3.0158 (13) 3.0167 (13)
t2 (Å) 1.8710 (13) 1.8701 (12) 1.8680 (13) 1.8699 (13) 1.8672 (13) 1.8672 (13) 1.8673 (15) 1.8652 (15) 1.8662 (13) 1.8659 (13) 1.8645 (13) 1.8651 (15)
�1 (�) 38.619 (27) 38.634 (21) 38.686 (27) 38.671 (27) 38.770 (27) 38.796 (27) 38.811 (27) 38.857 (27) 38.845 (27) 38.878 (27) 38.913 (27) 38.911 (27)
�2 (�) 53.433 (33) 53.428 (33) 53.391 (33) 53.416 (33) 53.299 (32) 53.296 (32) 53.292 (32) 53.260 (32) 53.286 (32) 53.290 (32) 53.246 (32) 53.274 (32)
ft 0.4316 (6) 0.4313 (5) 0.4323 (7) 0.4329 (6) 0.4327 (7) 0.4350 (7) 0.4344 (7) 0.4344 (7) 0.4345 (7) 0.4349 (7) 0.4351 (7) 0.4353 (7)
L1 (Å) 3.3053 (7) 3.3059 (7) 3.3081 (8) 3.3103 (7) 3.3181 (8) 3.3191 (12) 3.3204 (9) 3.3214 (9) 3.3226 (8) 3.3235 (9) 3.3259 (9) 3.3275 (10)
L2 (Å) 2.8399 (7) 2.8420 (7) 2.8444 (7) 2.8482 (6) 2.8573 (7) 2.8594 (9) 2.8611 (8) 2.8648 (8) 2.8630 (7) 2.8648 (8) 2.8679 (8) 2.8699 (9)
L3 (Å) 3.2810 (8) 3.2831 (8) 3.2868 (8) 3.2917 (7) 3.3071 (8) 3.3104 (9) 3.3129 (9) 3.3161 (9) 3.3150 (8) 3.3183 (8) 3.3223 (8) 3.3260 (9)
�2 (�) 41.848 (14) 41.869 (14) 41.896 (14) 41.935 (13) 42.062 (15) 42.093 (20) 42.115 (16) 42.132 (16) 42.122 (15) 42.142 (15) 42.180 (16) 42.209 (18)
� (�) 7.048 (10) 7.034 (9) 7.033 (10) 7.013 (10) 6.956 (12) 6.956 (12) 6.942 (13) 6.921 (13) 6.915 (12) 6.902 (12) 6.885 (13) 6.868 (14)
�S(Si) 3.8870 3.8841 3.8902 3.8794 3.8804 3.8834 3.8868 3.8883 3.8803 3.8833 3.8873 3.8818
�S(Mg) 1.7682 1.7613 1.7511 1.7404 1.6995 1.6945 1.6870 1.6777 1.6823 1.6751 1.6627 1.6561



The value 0.800 is entered for x in cell B1. This value calls

up the two columns of parameter values in the lookup-table

nearest to x = 0.800, i.e. x = 0.750 and x = 0.875 in columns B

and C. Interpolated values for x = 0.800 are calculated in

column D by means of equation (9). The crystallographic

parameters associated with the interpolated parameters in

column D are calculated by Excel formulae and output in the

box occupying rows 6–21 and columns G–J. Different values

are observed for cell parameters a and b in cells H10 and H11

compared with H19 and H20, depending on whether the

oxygen ionic or the cationic network is used for the calcula-

tion. In the former case, equations (1) and (3) apply, and in the

latter, equations (5) and (6).

The two sets of values for a and b may be brought into

agreement with each other by use of the Solver add-in tool

within Excel. In order to do this, the values of cells in the box

of Fig. 6 are copied to a second box of crystallographic para-

meters, as shown in Fig. 7(a). The

interactional parameters corre-

sponding to these crystallographic

parameters are automatically back-

calculated and listed in column E of

Fig. 6. A refinement is then carried

out, whereby the r.m.s. shift (Fig. 6;

cell F23) between starting parameter

values (Fig. 6; column D) and back-

calculated parameters (Fig. 6; column

E) is minimized. In so doing, the

Solver is empowered to change the

values in the cells representing vari-

able atomic coordinates and cell

parameters (Fig. 7; columns N–P),

subject to the constraint that both sets

of a, b cell parameters be equal. The
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Table 5
INA parameter values for fayalite calculated from the single-crystal structural data of Kudoh &
Takeda (1986) at pressures up to 140 kbar.

Pressure (kbar) 0.001 49 67 93 117 140

s1,xy (Å) 4.4367 (65) 4.4215 (221) 4.3299 (337) 4.3356 (416) 4.8509 (755) 4.6504 (1059)
s1,z (Å) 0.4631 (73) 0.4156 (181) 0.4857 (157) 0.4549 (203) 0.5522 (251) 0.5441 (323)
s2 (Å) 4.3597 (68) 4.3190 (257) 4.2585 (356) 4.1792 (416) 4.1684 (868) 4.0868 (1168)
ez (Å) 2.5839 (74) 2.6049 (183) 2.5273 (158) 2.5376 (205) 2.4358 (252) 2.4454 (323)
exy (Å) 2.7201 (68) 2.7100 (209) 2.6786 (258) 2.6924 (309) 2.7037 (611) 2.6716 (741)
t1 (Å) 2.9999 (38) 2.9211 (144) 2.9820 (247) 2.9269 (297) 2.6504 (401) 2.6917 (619)
t2 (Å) 1.8784 (46) 1.9217 (169) 1.8665 (249) 1.8565 (297) 1.9438 (587) 1.9684 (831)
�1 (�) 38.774 (85) 37.988 (257) 39.563 (386) 38.970 (466) 36.998 (715) 37.841 (1055)
�2 (�) 53.484 (97) 55.126 (401) 53.160 (634) 54.354 (810) 63.796 (1762) 61.679 (2450)
ft 0.4287 (24) 0.4153 (82) 0.4296 (112) 0.4288 (130) 0.4540 (286) 0.3755 (392)
L1 (Å) 3.3513 (25) 3.2785 (111) 3.2708 (148) 3.2257 (172) 3.2345 (286) 3.1466 (358)
L2 (Å) 2.8743 (23) 2.8542 (84) 2.8348 (100) 2.8182 (123) 2.8036 (212) 2.8120 (260)
L3 (Å) 3.2956 (23) 3.2783 (81) 3.2532 (92) 3.2584 (114) 3.2162 (198) 3.1907 (241)
�2 (�) 41.838 (46) 41.877 (178) 41.605 (217) 41.908 (267) 40.970 (469) 40.768 (585)
� (�) 6.934 (37) 7.595 (105) 7.370 (113) 8.028 (146) 7.579 (264) 8.348 (298)
�S(Si) 3.9207 3.7859 4.1768 4.1763 4.2153 4.3871
�S(Mg) 1.6719 1.8069 1.7857 1.9151 2.1788 2.1776

Figure 6
Screen dump from the Excel spreadsheet (German version) used to
calculate starting values of INA parameters by linear interpolation. The
associated crystallographic parameters, calculated by reverse transforma-
tion, are also shown.

Figure 7
Calculated crystallographic parameters: (a) prior to refinement; (b)
following refinement under the condition that both sets of a and b
parameters be equal to each other. (c) following refinement under the
condition that all three sets of cell parameters be equal to one other; (d)
following setting of �y for the cationic network through the closest fit to
interpolated bond-valence values.



extent of the changes carried out is limited by minimizing the

r.m.s. shift. Thus, the starting values of the INA parameters,

obtained by linear interpolation, should correspond to a

crystal structure close to the optimal structure, but must not

generate this directly. Employing the GRG non-linear algo-

rithm within the Solver, unified cell constants a = 4.77892 and

b = 10.28521 Å were obtained (Fig. 7b). Small differences in

some atomic coordinates between Figs. 7(a) and (b) are

observed. The r.m.s. shift for the refinement, which arises from

discrepancies between starting and refined values of interac-

tional parameters, was calculated to be 0.001%.

The flexibility of this approach allows additional, normative

conditions to be applied to the refinement. Thus, a second

refinement was carried out, this employing a third set of unit-

cell parameters generated by fitting quadratic functions to the

unit cell data of Müller-Sommer et al. [equation (10)].

a ðÅÞ ¼ � 0:0136x2 þ 0:0429xþ 4:7535 ðR2 ¼ 0:9981Þ

b ðÅÞ ¼ 0:0060x2
þ 0:0942xþ 10:2050 ðR2

¼ 0:9988Þ

c ðÅÞ ¼ 0:0122x2
þ 0:0081xþ 5:9841 ðR2

¼ 0:9967Þ ð10Þ

The calculated values for x = 0.800 are given in cells E1 to E3

of Fig. 6. Upon use of the condition that all three sets of cell

parameters, i.e. oxygen ionic network, cationic network and

normative, be equal to one other, the results given in Fig. 7(c)

were obtained, these being associated with an r.m.s. shift in

INA parameter values of 0.005%.

The final stage in the structural prediction is to set

the parameter �y of the cationic network. This is

carried out by clicking the button ‘Determine Delta Y’

in the Excel spreadsheet (Fig. 7c). Upon so doing, an

Excel–VBA–Macro is activated to calculate the value

of �y that gives the closest agreement with inter-

polated bond-valence sums of 4.20220 for �S(Si) and

1.78254 for �S(Mg) (see Fig. 6; cells D22 and D23). A

value for �y of 0.27083 was obtained, as observed in

Fig. 7(d). The box in Fig. 7(d) contains the final

predicted crystallographic parameters for the olivine

(Co0.8Mg0.2)2SiO4.

4.2. Forsterite, Mg2SiO4, at variable temperatures

Since Heinemann et al. (2006) did not solve the structures of

forsterite at temperatures between 579 and 874 K, an appro-

priate exercise is to predict the crystal structures at tempera-

tures of 673 and 773 K, corresponding to 400 and 500�C,

respectively. Accordingly, the following normative quadratic

functions were derived from the cell parameters of the 12

structures, in order to link temperature T in Kelvin with a, b

and c [equation (11)].

a ðÅÞ ¼ 0:0195ððT � 273Þ=1000Þ2 þ 0:0293ððT � 273Þ=1000Þ

þ 4:7932 ðR2
¼ 0:9995Þ

b ðÅÞ ¼ 0:0508ððT � 273Þ=1000Þ2 þ 0:0817ððT � 273Þ=1000Þ

þ 10:3470 ðR2
¼ 0:9993Þ

c ðÅÞ ¼ 0:0253ððT � 273Þ=1000Þ2 þ 0:0608ððT � 273Þ=1000Þ

þ 6:0418 ðR2
¼ 0:9993Þ ð11Þ

By applying procedures in Excel similar to those in x4.1, the

crystallographic parameters listed in Table 6 for temperatures

of 673 and 773 K were obtained. The r.m.s. shifts quoted are

the mean shifts of the INA parameters from their starting

values in the two refinements.

In order to provide a further constraint, the volumes of Si,

M1 and M2 coordination polyhedra were calculated for the 12

structures. Although the volumes of the SiO4 tetrahedra were

found to lie within a narrow band between 2.2115 and

2.2167 Å3, no monotonic variation with temperature was

found. In contrast, the volumes of (M1)O6 and (M2)O6 octa-

hedra lie in the following broader ranges: 12.3201 � V(M1) �

12.7347 Å3; 12.8078 � V(M2) � 13.2904 Å3. Further, their

variation with temperature could be satisfactorily modelled by

the quadratic functions of (12).

2:2115 � VðSiÞ ðÅ
3
Þ � 2:2167

VðM1Þ ðÅ
3
Þ ¼ 0:1934ððT � 273Þ=1000Þ2

þ 0:2964ððT � 273Þ=1000Þ þ 12:3070

ðR2
¼ 0:9980Þ

VðM2Þ ðÅ
3
Þ ¼ 0:1943ððT � 273Þ=1000Þ2

þ 0:3665ððT � 273Þ=1000Þ þ 12:7970

ðR2 ¼ 0:9985Þ ð12Þ
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Table 6
Predicted crystal structures of forsterite at 673 and 773 K employing cell
parameters as normative constraints.

T = 673 K T = 773 K

Unit-cell
parameters (Å)

a b c a b c
4.80804 10.38781 6.07017 4.81273 10.40055 6.07853

Parameter x y z x y z
O1 0.76494 0.09233 1/4 0.76464 0.09236 1/4
O2 0.28457 �0.04902 1/4 0.28460 �0.04878 1/4
O3 0.28393 0.16400 0.03593 0.28417 0.16390 0.03616
Si 0.07156 0.59575 1/4 0.07156 0.59575 1/4
M2 �0.01233 0.27929 1/4 �0.01208 0.27941 1/4
R.m.s. shift (%) 0.011 0.012

Table 7
Predicted crystal structures of forsterite at 673 and 773 K employing cell
parameters and polyhedral volumes as normative constraints.

T = 673 K T = 773 K

Unit-cell
parameters
(Å)

a b c a b c
4.80804 10.38781 6.07017 4.81273 10.40055 6.07853

Parameter x y z x y z
O1 0.76492 0.09237 1/4 0.76458 0.09251 1/4
O2 0.28466 �0.04900 1/4 0.28495 �0.04874 1/4
O3 0.28393 0.16401 0.03593 0.28417 0.16392 0.03616
Si 0.07156 0.59596 1/4 0.07156 0.59621 1/4
M2 �0.01233 0.27949 1/4 �0.01208 0.27987 1/4
R.m.s shift (%) 0.012 0.020
V(Si) (Å3) 2.2154 2.2144
V(M1) (Å3) 12.4565 12.5036
V(M2) (Å3) 12.9747 13.0288



The three constraints above were built into the refinement

procedure: changes in the volumes of the Si, M1 and M2

coordination octahedra occur during the refinement when the

Solver alters the variable parameters for the O1, O2 and O3

ions (see Figs. 7a–d). Accordingly, three functions were

written in Excel–VBA to calculate the SiO4, (M1)O6 and

(M2)O6 volumes from these parameters based on the formula
1
3bh3 for the volume of a pyramid of basal area b and height h,

either as a complete or partial polyhedron (Thomas, 1991).

The predicted crystal structures, again at 673 and 773 K, are

given in Table 7, whereby the changes in atomic coordinates at

673 K compared with Table 6 are small. The changes in oxygen

ion coordinates at 773 K between Tables 6 and 7 are slightly

larger, this being consistent with the higher r.m.s. shift

obtained when polyhedral constraints are applied.

4.3. Forsterite and fayalite at variable pressures

4.3.1. Forsterite, Mg2SiO4. Just as for the temperature

dependence of (Mg,Fe)2SiO4 olivine in x4.2, the structural

data for forsterite at variable pressure allow the formation of

normative relationships for the unit-cell parameters and the

two octahedral volumes [equation (13)]. The pressure, p, is

given in kbar here.

a ðÅÞ ¼ 0:1638ðp=500Þ2 � 0:3987ðp=500Þ þ 4:7503

ðR2
¼ 0:9983Þ

b ðÅÞ ¼ 0:7184ðp=500Þ2 � 1:6534ðp=500Þ þ 10:1830

ðR2 ¼ 0:9988Þ

c ðÅÞ ¼ 0:4385ðp=500Þ2 � 0:8838ðp=500Þ þ 5:9868

ðR2 ¼ 0:9920Þ

1:9073 � VðSiÞ ðÅ
3
Þ � 2:2105

VðM1Þ ðÅ
3
Þ ¼ 1:0960ðp=500Þ2� 3:2730ðp=500Þ þ 11:6840

ðR2 ¼ 0:9762Þ

VðM2Þ ðÅ
3
Þ ¼ 2:4735ðp=500Þ2� 5:2787ðp=500Þ þ 12:4330

ðR2 ¼ 0:9987Þ ð13Þ

These allow the stable prediction of crystal structures at the

two intermediate pressures of 250 and 350 kbar, for example

(Table 8).

The higher values of r.m.s. shift of ca 0.42% in Table 8

compared with Tables 6 and 7 indicate that the Solver has

applied larger shifts from starting parameter values in

reaching the normative values of equations (13).

4.3.2. Fayalite, Fe2SiO4. The structural data of Kudoh &

Takeda (1986) do not allow the use of monotonic normative

relationships for unit-cell constants and polyhedral volumes

over the whole pressure range to 140 kbar. Attempts to use

normative relationships over narrower pressure ranges met

with no success with regard to the prediction of the crystal

structure at an example pressure of 25 kbar. This indicates that

such normative relationships impose stringent conditions on

the refinement, and that they must be essentially correct in

order to achieve a structural prediction. Consequently, the

only condition applied in order to predict a structure at

25 kbar was to require that the a and b unit-cell parameters

arising from oxygen ion and cation networks are equal to one

another. The results are given in Table 9.

5. Discussion

Three questions arise naturally from the method advocated:

firstly, why the transformation from crystal structural to

interactional parameters is desirable; secondly, why a struc-

tural refinement is necessary; and thirdly, why a piecewise

linear interpolation method has been used, instead of poly-

nomial fitting, in order to determine the starting values for the

structural refinements. In order to address these issues, the

structural data of Heinemann et al. (2006) are taken as a basis,

as analysed in x3.2 and x4.2. This is primarily because this

dataset is associated with the lowest standard errors in the

parameter values. The three questions are considered in

separate subsections.

5.1. Motivation for the INA transformation

Fig. 8 is a graphical representation of the data in Table 3, in

which the parameters have been divided into four groups.

Since the curves here have been drawn by linear interpolation

between adjacent points, they represent starting values of the

parameters in the structural refinements. The curves in Fig.
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Table 9
Crystal structure of fayalite predicted at 25 kbar without normative
constraints.

Unit-cell parameters (Å) a b c
4.79275 10.31482 6.04084

Parameter x y z
O1 0.77345 0.08753 1/4
O2 0.28751 �0.04680 1/4
O3 0.28431 0.16910 0.03439
Si 0.07349 0.59432 1/4
M2 �0.01697 0.27911 1/4
R.m.s. shift (%) 0.024

Table 8
Predicted crystal structures of forsterite at pressures of 250 and 350 kbar,
employing cell parameters and polyhedral volumes as normative
constraints.

p = 250 kbar p = 350 kbar

Unit-cell
parameters
(Å)

a b c a b c
4.59190 9.53590 5.65453 4.55147 9.37764 5.58301

Parameter x y z x y z
O1 0.76331 0.08409 1/4 0.76478 0.08712 1/4
O2 0.28518 �0.05456 1/4 0.28049 �0.05696 1/4
O3 0.27093 0.17067 0.03558 0.26754 0.17020 0.02968
Si 0.07249 0.59659 1/4 0.07374 0.60181 1/4
M2 �0.01052 0.27670 1/4 �0.01282 0.28086 1/4
R.m.s. shift (%) 0.4181 0.4179
V(Si) (Å3) 1.9407 1.9580
V(M1) (Å3) 10.3215 9.9299
V(M2) (Å3) 10.4120 9.9499



8(a), which are associated with

cationic parameters, show clear,

monotonic trends. This is also the

case for most of the other para-

meters in Figs. 8(b) and (c),

although jagged behaviour is a

feature of several, notably exy, �2, t2,

ez and ft. Since the three length

parameters here, i.e. exy, t2 and ez,

have small left-to-right � values of

0.008, �0.006 and 0.005 Å, respec-

tively, this jaggedness indicates

variations within very narrow

bandwidths. Similar consider-

ations apply to the fractional para-

meter ft, which has a � value of

just 0.003. The relatively long

error bars observed for parameters

exy, t2, ez and ft are thus an

artefact of their � values being

small: the errors in these para-

meters are not fundamentally

larger than the errors in the other

parameters.

The black crosses at tempera-

tures of 673 and 773 K indicate the

INA values associated with the

structural predictions of Table 7.

The action of the Solver for struc-

tural predictions at higher

temperatures between 998 and

1123 K is also indicated. This

temperature region was chosen

for scrutiny in the diagrams

because of the relative unevenness

of the curves. The r.m.s. shifts

obtained were as follows: 998 K:

0.007%; 1023 K: 0.012%; 1048 K:

0.009%; 1073 K: 0.018%; 1098 K:

0.006%; 1123 K: 0.011%. A devia-

tion of a cross from the corre-

sponding curve is indicative of a

departure of the end-point of the

refinement from the starting

value.

The cell parameters are gener-

ally fixed in the refinements by

applying normative constraints.

Therefore, it is logical to question

whether the variations of untrans-

formed x; y; z atomic parameters

with temperature could also have

been used for interpolations, since

these are ultimately the only para-

meters free to vary. The behaviour

of these parameters is shown in Fig.

9.
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Figure 9
Variation of x; y; z fractional coordinates of the ions with temperature, with straight lines linking
neighbouring points. The data and the error bars have been taken directly from Heinemann et al. (2006).
(a) Cationic parameters; (b) anionic parameters with an ascending trend; (c) anionic parameters with a
descending trend; (d) approximately constant anionic parameters.

Figure 8
Variation of the 15 length- and angle-based interactional parameters of forsterite with temperature (data
of Table 3): (a) cationic parameters; (b) anionic parameters with an ascending trend; (c) anionic
parameters with a descending trend; (d) approximately constant anionic parameters. The black crosses
correspond to solutions of the Excel Solver for temperatures of 673 and 773 K, together with
temperatures between 998 and 1123 K in 25 K intervals. Unit-cell and polyhedral volume constraints
have been applied.



A comparison of Figs. 8(a) and 9(a) points directly to the

need for the INA transformation. Although both figures

are based on the identical atomic parameters, i.e. x(Si), y(Si),

x(M2) and y(M2), the INA parameters of Fig. 8(a) give rise

to monotonic trends, whereas parameters x(Si) and y(Si)

of Fig. 9(a) do not. Thus it is possible to generate reliable

interpolated values from the INA parameters (as starting

values for the refinements), but not from the x; y; z

fractional coordinates. The structural reason for this is to be

found in Fig. 5: INA parameters L1, L2, L3, � and �2 relate

directly to a two-dimensional planar network, which is

constrained to respond in a correlated way to changes in

temperature.

Similar considerations apply to the planar network of Fig. 1,

which is associated with atomic parameters x(O3), y(O3) and

INA parameters s1,xy, �1, t1, �2. Parameters s1,xy and t1 vary

monotonically with temperature, whereas parameters �1 and

�2 show monotony apart from the third point from the left,

corresponding to a temperature of 475 K. The upward kink in

the �1 curve and the downward kink in the �2 curve are

correlated with each other. Given the error bars in the y(O3)

parameter at this temperature (Fig. 9c), it is likely that the

observed kinks are an artefact of the structural solution of

Heinemann et al. at 475 K. Insights of this kind, provided by

trends in the network parameters, would be of value to crys-

tallographers whilst seeking to optimize structural refinements

from diffraction data.

The four INA parameters already identified as having

values within narrow bandwidths, i.e. exy, t2, ez and ft, are all

associated with the oxygen ions of the [SiO4]4� tetrahedra.

Thus, this behaviour indicates strong chemical bonding

restraints over the whole temperature range. Given this

tetrahedral rigidity, it follows that flexibility in the value of the

s2 parameter is required: this parameter is associated with the

(M2)O6 octahedra, and its variation allows the length of chain

ABCDE to adapt to changes in the cell parameter b (Fig. 4).

Of all the INA length parameters, s2 has the largest � value of

0.063 Å (Fig. 8). Adaptation to changes in cell parameter a is

enabled by this parameter acting in combination with the

rotational hinge (Fig. 4). The remaining INA parameter, s1,z, is

unconstrained. Acting together with the rigid parameter ez

[equation (4); Fig. 3], its variation leads to changes in the cell

parameter c.

In the case of a rigid, i.e. narrow bandwidth INA

parameter, linear interpolation does not give rise to significant

errors. For systematically varying INA parameters, linear

interpolations likewise lead to reliable starting values for the

structural refinements. By comparison, the variations in

untransformed atomic parameters (Fig. 9) do not allow a

categorization into systematically varying and rigid para-

meters. Whereas jaggedness/conspicuous error bars are

generally associated with rigid parameters in the INA repre-

sentation, this feature in the curves of Fig. 9 cannot be asso-

ciated with specific structural elements. Thus, the INA

parameters are superior both for structural prediction and in

providing information on structural adaptation to varying (p–

T–X) conditions.

5.2. Reasons for adopting a structural refinement

There are several reasons for adopting a structural refine-

ment strategy. First, the INA method generates, for inter-

mediate (p, T, X) values, two independent sets of values for

the cell parameters, one from anionic parameters and the

other from cationic parameters.1 These two sets of values need

to be brought into agreement with each other. Secondly,

although linear interpolation is a simple and robust method of

predicting INA parameter values at intermediate (p, T, X)

conditions, the reliability of prediction can be improved by

applying normative constraints as part of such a refinement. In

this work, two types of constraint have been applied on an

exploratory basis, one based on cell parameters, and the other

on the volumes of cation coordination polyhedra [see equa-

tions (11) and (12) with respect to forsterite at variable

temperatures]. Additional types of constraint are conceivable.

For example, one might wish to fix the value of ft at 0.433.

Alternatively, one might wish to build in constraints on

interaction lengths obtained from calculated lattice energies,

or indeed incorporate lattice energy calculations into the

refinement procedure directly. It is maintained that the Excel

Solver Add-In is a simple, but powerful front-end with its

GRG non-linear refinement algorithm.

Having made the decision for a structural refinement

strategy, a further feature of the INA parameterization

compared with conventional crystallographic parameters

comes to light. INA has brought the cell parameters and the

atomic coordinates into a single unified framework. This is not

the case with the untransformed alternative, since changes in

structure resulting from varying (p, T, X) conditions are

manifested by simultaneous changes in both cell parameters

and atomic coordinates. Thus, the frame of reference for the

structures changes, as well as the structures within that frame

of reference.

5.3. The exclusion of polynomial fitting as an option

The proposed approach of linear interpolation in order to

provide starting parameter values for a subsequent structural

refinement has several advantages over polynomial fitting.

Apart from its simplicity, it can be applied to all datasets,

irrespective of whether monotonic/smooth trends in para-

meter values arise, or not. It also allows an equal a priori

weighting to be given to all experimentally determined data-

points. This principle of equal weighting, which is considered

to be important, cannot be upheld by a polynomial fitting

method.

In order to illustrate this point, a polynomial fitting of the

variation with temperature of one of the INA parameters, s1,z,

is carried out here, as an example. This parameter shows a

clear ascending trend, although it is not monotonic at the high-

temperature end (Fig. 10). The maximum polynomial order

consistent with 12 experimental temperatures would be 11

[equation (14)].
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1 In the particular case of olivines, this generalization applies only to the a and
b parameters, since the c parameter value is generated by the anionic network
only.



yi ¼
X11

j¼0

ai;jx
j ð14Þ

Here i represents the index of an INA parameter, in this case

s1,z. x represents reduced temperature, i.e.

ðT ðKÞ � 293Þ=ð1180� 293Þ, with ai;j the polynomial coeffi-

cients to be determined by fitting.

Whereas the linear interpolations necessarily link all

experimental points, this does not apply to the three poly-

nomial fits. Although the 11th-order polynomial is more

successful than the two lower-order polynomials in passing

closer to all experimental points, it suffers from an undershoot

at low reduced temperature and is characterized by significant

curvature, in particular in the reduced temperature range

between ca 0.4 and 0.6, this having no physical basis. Although

the undershoot and the accentuated curvature can be removed

by reducing the polynomial order from 11 to 9, such a

procedure is arbitrary. It is observed that the trajectories of

the three polynomials smooth out the details of the experi-

mental points at the high temperature end. Whilst these

polynomial fits might be closer to physical reality than the

linear interpolations between experimental points, the sole

requirement in this work is to find reliable starting points for

structural refinements. The normative constraints applied in

the refinements serve to shift the parameter values away from

any physically unrealistic starting points.

The difficulties identified for polynomial fitting to the s1,z

parameter would also apply to the other INA parameters. In

the case of non-smooth INA parameters in Fig. 8, such as t2
and ez, the best option would probably be to fit straight lines.

The option of direct polynomial fitting to atomic parameters,

i.e. without carrying out an INA transformation, would also be

problematical: the jaggedness of many of the curves in Fig. 9

does not lend itself to polynomial representation. It is for this

reason that methods such as parametric Rietveld refinement,

as described by Stinton & Evans (2007), are based on the

selective use of polynomials. In their approach, a continuous

variation of parameter values with (p–T–X), as commonly

described by polynomials, can only be assumed for some of the

crystallographic parameters.

The idea of using a single polynomial for each INA para-

meter would also covertly assume that the responses of the

parameters to the varying (p–T–X) conditions can be defined

for the whole range of p, T or X. Although more than one

polynomial per parameter could be employed to avoid this

difficulty, each with its own (p–T–X)-range, this practice would

introduce an unwelcome level of complexity into the method.

5.4. The context of the current work

In this initial work, the principles of INA have been

described by exclusive reference to olivines. Therefore, a

generalization to all minerals is called for. The two-dimen-

sional nature of the cationic network (Fig. 5) and the z = 0

INA parameters (Fig. 1) is a peculiarity of olivines resulting

from the dominant structural influence of the mirror planes in

space group Pbnm. A three-dimensional cationic network is

anticipated in the majority of mineral structures, thereby

imposing tighter constraints on the development of INA

parameter values under varying (p–T–X) conditions.

The use of piecewise linear interpolations, as described

here, allows data with relatively high standard errors in atomic

coordinates to be analysed. The observation of questionable

irregularities in the variation of INA parameters with p, T or X

could be exploited by crystallographers in order to arrive at

better structural models.

The observed correlations between the temperature varia-

tions of cationic INA parameters are of particular interest

(Fig. 8a). A guiding hypothesis for oxide structures is that

cation–cation non-bonded interactions are more important

than oxygen–oxygen non-bonded interactions in determining

the sequences of phase transitions (Keeffe & Hyde, 1981a,b).

If this is correct, it follows that a parameterization of cationic

networks, along the lines of INA, could provide a robust, but

flexible quantitative basis for modelling and/or rationalizing

oxide mineral phase sequences.
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