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Variations in mean bond length are examined in oxide and oxysalt crystals for 55

cation configurations bonded to O2�. Stepwise multiple regression analysis

shows that mean bond length is correlated to bond-length distortion in 42 ion

configurations at the 95% confidence level, with a mean coefficient of

determination (hR2
i) of 0.35. Previously published correlations between mean

bond length and mean coordination number of the bonded anions are found not

to be of general applicability to inorganic oxide and oxysalt structures. For two

of 11 ions tested for the 95% confidence level, mean bond lengths predicted

using a fixed radius for O2� are significantly more accurate as those predicted

using an O2� radius dependent on coordination number, and are statistically

identical otherwise. As a result, the currently accepted ionic radii for O2� in

different coordinations are not justified by experimental data. Previously

reported correlation between mean bond length and the mean electronegativity

of the cations bonded to the oxygen atoms of the coordination polyhedron is

shown to be statistically insignificant; similar results are obtained with regard to

ionization energy. It is shown that a priori bond lengths calculated for many ion

configurations in a single structure-type leads to a high correlation between

a priori and observed mean bond lengths, but a priori bond lengths calculated

for a single ion configuration in many different structure-types leads to

negligible correlation between a priori and observed mean bond lengths. This

indicates that structure type has a major effect on mean bond length, the

magnitude of which goes beyond that of the other variables analyzed here.

1. Introduction

In the 1960s and 1970s, a considerable amount of work was

carried out on trying to understand the reasons underlying

variations in mean bond length in crystals. This resulted from

the improving precision of structure refinements which began

showing variations in mean bond length that significantly

exceeded experimental error. Several factors were examined

as possible sources of this variation, and many studies were

reported as ‘reasonably successful’ in correlating variation in

mean bond length with one or more possible causal factors,

e.g. variation in mean coordination number of the bonded

anions, variation in mean electronegativity of the next-

nearest-neighbour cations, dispersion of bond lengths about

their mean value (distortion). However, these studies were

typically limited to a single configuration of the oxidation state

and coordination number of an ion, and often consisted of few

data.

1.1. Anion coordination number

Smith & Bailey (1963) examined bond lengths for Si4+O4

and Al3+O4 tetrahedra in a series of silicate and alumino-

silicate minerals and attributed variation in mean bond length

to the degree of polymerization of these tetrahedra. Shannon
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& Prewitt (1969) provided the first list of ionic radii as a

function of coordination number for anions, citing the influ-

ence of the work of Goldschmidt et al. (1926) and Slaughter

(1966), and went on to propose that the variation observed by

Smith & Bailey (1963) was actually due to variation in mean

anion-coordination number (hCNi). Brown & Gibbs (1969)

correlated mean bond length to mean anion coordination for

SiO4 in 46 structures, reporting a coefficient of determination

(R2) of 0.6. However, their data set excluded feldspars and

zeolites due to the ambiguity of the anion coordination

number, and several sodium silicates, citing the development

of strong d–p �-bonding in the presence of highly electro-

positive Na that seemed to override the effect of cation

coordination of O2� on the Si—O bond (now discredited).

While recognizing appreciable discrepancy in different struc-

ture types, Baur (1971) commented that ‘this correlation is

without doubt valid’, but noted that the discrepancy between

observed and calculated mean Si—O distances is appreciable

in certain structures, e.g. 0.017 Å in topaz. Since the beginning

of the 1970s, it has been accepted that the radius of O2� varies

monotonically as a function of its coordination number.

1.2. Electronegativity

Following proposals by Noll (1963) and Lazarev (1964) that

individual interatomic distances depend on the electro-

negativity of nearest-neighbour cations in the structure,

Brown & Gibbs (1969, 1970) showed a correlation between

individual bond lengths and (1) electronegativity of the non-

tetrahedrally coordinated cations in four isostructural C2/m

amphiboles (tremolite, Mn-cummingtonite, glaucophane and

grunerite), (2) the residual electron density on O, and (3) bond

order. Shannon (1971) found a positive correlation between

effective ionic radius (mean bond length corrected for anion

coordination number) and the average electronegativity of all

cations in the structure for TO4 polyhedra (T = B3+, Si4+, P5+,

As5+, V5+, S6+, Se6+, Cr6+ and Mo6+). Baur (1971) examined a

series of strictly isostructural pyroxenes with the formula

MM0Si2O6 and found no correlation of individual [4]Si4+—O

distances with the electronegativity of the M ion. He states

that a rigorous examination of C2/m amphiboles was not

possible due to wide variation in anion coordination number

and valence state of the next-nearest-neighbour cations,

making the different amphiboles not strictly isostructural.

Baur concludes that the search for a correlation between bond

length and the electronegativity of the other cations in the

structure is probably futile for [4]Si4+—O bonds.

Shannon & Calvo (1973a) analyzed mean bond lengths in 62

phosphates, 21 arsenates and 22 vanadates and showed

correlations between the observed mean bond lengths and the

mean electronegativity of the cations in the structure (R2 =

0.01–0.30), and between the effective ionic radius (the mean

bond length minus the radius of O2� as a function of coordi-

nation number) and the mean electronegativity of the cations

in the structure (R2 = 0.46–0.72). They list other potential

factors affecting mean bond lengths worth considering,

namely the valence of the next-nearest-neighbour cations and

their bond lengths to oxygen. Jeitschko et al. (1976) also found

correlations (R2 not given) between mean [4]Fe3+—O bond

lengths and the electronegativity of the next-nearest neigh-

bour cations and the 57Fe Mössbauer isomer shift for six oxide

structures.

1.3. Bond-length distortion

Brown & Shannon (1973) correlated mean bond length with

the mean-square relative deviation of bond lengths from their

average value (herein referred to as distortion, �) for V5+,

Cu2+, Mg2+, Li+, Zn2+ and Co2+ in octahedral coordination

(sample sizes � 20 coordination polyhedra), reporting R2

values ranging from 0.18 to 0.96, where

� ¼
1

n

Xn

i¼1

h
Ri � R
� �

=R
i2

ð1Þ

for a coordination number n. They point out that the corre-

lation is remarkably high for ions showing large distortion, and

that other effects such as anion coordination become more

important in explaining mean bond-length variations in

slightly distorted octahedra. Shannon & Calvo (1973b) and

Shannon et al. (1975) showed similar correlations for [6]Cu2+—

O and [6]Mn3+—O, respectively, with R2 = 0.79 for 25 Cu2+—O

octahedra and R2 = 0.67 for 16 Mn3+—O octahedra in 25

crystal structures. Shannon (1976) showed the dependence of

mean bond length on distortion for a series of ion configura-

tions octahedrally coordinated to O2�: Mo6+ (n = 38, R2 =

0.55), W6+ (n = 7, R2 = 0.56), V5+ (n = 16, R2 = 0.96), Nb5+(n =

29, R2 = 0.48), Ta5+ (n = 6, R2 = 0.66), Mn3+ (n = 15, R2 = 0.67),

Cu2+ (n = 26, R2 = 0.67), Mg2+ (n = 28, R2 = 0.52), Co2+ (n = 15,

R2 = 0.18), Zn2+ (n = 16, R2 = 0.41) and Li+ (n = 11, R2 = 0.66).

Shannon (1976) cites partial site occupancy, covalence (i.e.

differences in electronegativity of the bonded atoms) and

electron delocalization (in non-oxides) as other potential

factors affecting mean bond length. Baur (1974) showed that

mean [4]P5+—O bond lengths are affected by both anion

coordination and tetrahedral distortion for a sample of 211

phosphate tetrahedra: R2 = 0.03 for dependence on anion

hCNi (R2 = 0.24 when correcting for distortion), and R2 = 0.12

for dependence on distortion (R2 = 0.36 when correcting for

anion hCNi). Baur found no correlation between mean bond

length and O—O distance in phosphates, and stated that

additional factors must be at play in explaining mean bond-

length variations, citing the average electronegativity of the

cations bonded to the oxygen atoms as a potential candidate.

Baur (1977, 1978) examined the correlation of anion coor-

dination number, average cation electronegativity in the

structure, tetrahedral distortion and other potential factors on

mean bond length for 314 [4]Si4+—O polyhedra, and with a

multiple regression analysis showed that only anion coordi-

nation number, the number of bridging anions per tetrahedron

and the mean value of the secant of the bridging angles Si—

O—T correlate significantly with mean bond-length variations

(combined R2 = 0.58). Electronegativity and distortion showed

no correlation to mean bond length. Baur (1978) assessed the

significance of the correlations between [4]Si4+—O mean bond-
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length and the variables he studied via t-tests (presumably

from the multiple regression and not from individual corre-

lations). His statistical analysis was more rigorous than similar

studies at the time; however, Baur mentions (1) correlation

between some of the independent variables he used, and

stated that he tried to minimize their effect and (2) reports a

combined R2 value of 0.58 between mean bond length and the

anion coordination number and the number of bridging anions

per tetrahedron, and 0.65 to the secant of the bridging angles

Si—O—T. Stepwise regression analysis and the reporting of

adjusted R2 values would have further improved the validity of

the results.

Hawthorne & Faggiani (1979) used 41 [4]V5+—O coordi-

nation polyhedra to show a correlation (R2 not reported)

between mean bond length and anion coordination number

and the average electronegativity of the next-nearest-neigh-

bour cations (as opposed to the electronegativity of all cations

in the structure, as was carried out before that), finding no

significant correlation with tetrahedral distortion, tetrahedral

angle variance or the number of bridging anions per tetra-

hedron.

Much has since been written about bond-length distortion

and its effect on mean bond length, focusing particularly on

the bond-valence model of chemical bonding (e.g. Brown,

1992, 2002, 2006, 2009, 2014, 2016; Urusov & Orlov, 1999;

Urusov, 2003, 2006b, 2014; Bosi, 2014). Hawthorne et al. (1996)

found no significant correlation between mean bond length

and distortion for BO3 and BO4 groups. Urusov (2006a)

examined mean bond-length variations in Mn3+F6 octahedra

and described a correlation with distortion with R2 = 0.38 for

116 coordination polyhedra. Urusov (2008) described a

correlation of mean bond length and distortion for Mo6+O6

octahedra, with R2 = 0.28 in 826 coordination polyhedra, and

Urusov & Serezhkin (2009) reported R2 values of 0.83 and

0.46 for 190 V5+O6 polyhedra and 200 V4+O6 polyhedra,

respectively, as well as a qualitative correlation for V3+O6 and

V2+O6.

More recently, Gagné & Hawthorne (2016a) showed a

correlation between mean bond length and (1) bond-length

distortion and (2) the ratio of Ueq or B (the mean atom

displacement derived during crystal structure refinement)

between [6]Na+ and its bonded anions in oxides, with R2 = 0.52

for distortion, 0.57 for Ueq ratio, and an adjusted R2 of 0.68 for

both (n = 56), and showed for alkali-metal and alkaline-earth-

metal ions bonded to O2� that the extent of distortion is highly

correlated to the observed curvature of the bond-valence

curve of the isoelectronic series to which the constituent ion

belongs.

2. Purpose of this work

Persuasive examples have been reported describing correla-

tions between mean bond length and bond-length distortion

for ion configurations prone to large distortions (e.g. Brown &

Shannon, 1973; Shannon, 1976) but the generality of this

relation is not established for all ion configurations. Further-

more, the importance of other factors outlined above remains

unclear. Here, we clarify these effects by using the results of a

very large bond-length dispersion analysis carried out by the

authors for 135 cations in 462 configurations, for a total of

180 331 bond lengths and 31 514 coordination polyhedra from

9367 refined crystal structures (described by Gagné &

Hawthorne, 2015, 2016a, 2017a,b; Gagné, 2017). Our data set

is being released as it is published (e.g. Gagné & Hawthorne,

2016a) with the hope of encouraging further detailed studies.

3. Variables considered in this work

The following variables were systematically evaluated for all

ion configurations as potential causal factors underlying mean

bond-length variation: (1) bond-length distortion, (2) mean

coordination number of the oxygen atoms bonded to the

cation (previous references used the less accurate mean

coordination number of all oxygen atoms of the structure), (3)

mean electronegativity (h�i) of the cations bonded to the

oxygen atoms of the coordination polyhedron, (4) mean

ionization energy (hIEi) of the cations bonded to the oxygen

atoms of the coordination polyhedron (new).

Other factors can affect observed mean bond lengths, e.g.

multiple occupancy of a site, partial site occupancy, electron

delocalization, but these effects have (hopefully) been elimi-

nated from our data set by careful filtering. Other potential

errors may be present in the data and lead to unaccounted

variability in mean bond length: undetected errors in the

ICSD database (e.g. transcription), experimental variability/

uncertainty, experimental error, and failure to report solid

solution at the site of interest.

4. Statistical significance

The reporting of statistical significance for the correlations

cited in the Introduction has been scarce. This is a cause for

concern as some of the correlations reported as ‘significant’

have not been tested for a specific confidence level. Here, we

have tested all correlations for statistical significance on an

individual basis, and via multiple-regression analysis (Student

t-test, 95% confidence level). In addition, we have not

excluded different types of data (e.g. alkali-metal silicates

from a consideration of Si4+—O bonds) from our analysis in

order to avoid bias due to pre-conceived notions of causality.

There are two distinct issues with regard to correlation: (1)

whether the dependent parameter is significantly correlated to

the independent parameter, which is determined from the p-

value for the null hypothesis that the slope of the correlation

between variables is equal to zero; (2) the value of R2, which

indicates the proportion of the variation of the dependent

parameter that can be attributed to the independent variable.

In particular, a correlation may be very low (i.e. a small R2

value), but the dependent parameter can nonetheless be

significantly correlated to the independent parameter (i.e. p <

0.05 and 0.01 for the 95 and 99% confidence levels, respec-

tively).
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5. The effect of sample size

In order to gauge the reliability of the correlations developed

here, we have examined the variation of (1) p-values, and (2)

R2 values as a function of sample size for SiO4, using data

taken at random from our data set of 334 coordination poly-

hedra. For a large set of data, one expects p-values to be

independent of sample size, such that a statistically significant

correlation may be ascribed as such regardless of the number

of data. As the number of data decreases, eventually the p-

values and R2 values will become unreliable, and it is

obviously important to know at what number of data the

analysis begins to become unreliable.

Fig. 1 shows the effect of sample size on the statistical

significance of the correlation between mean bond length and

(a) bond-length distortion, (b) mean coordination number of

the oxygen atoms bonded to the cation, (c) mean electro-

negativity, and (d) mean ionization energy of the cations

bonded to the oxygen atoms of the coordination polyhedron,

using p-values (i.e. the lower the p-value, the greater the

significance of the correlation). Fig. 2 shows the corresponding

effect on R2. For distortion [Figs. 1(a) and 2(a)], the p-values

are very irregular but are always > 0.05, indicating no signifi-

cant correlation, but the R2 values (which are � 0.00 in the

parent distribution) become irregular at lower numbers of

data, and can show high correlations even though the p-values

indicate that we may not reject the hypothesis that there is no

correlation. For mean coordination number of the oxygen

atoms bonded to the cation [Figs. 1(b) and 2(b)] and for mean

ionization energy of the cations bonded to the oxygen atoms

of the coordination polyhedron [Figs. 1(d) and 2(d)], the p-

values are close to zero at larger numbers of data (indicative

of significant correlation) and show low variability in R2

(indicating the same degree of contribution to the variation in

the dependent variable), but both p-values and R2 values

oscillate wildly for small numbers of data. The behaviour for

the mean electronegativity of the cations bonded to the

oxygen atoms resembles that of distortion except that for

some number of samples, the p-values suggest significant

correlation although most of the corresponding R2 values do

not. To summarize, Figs. 1 and 2 indicate a strong drop in

reliability of the regression-analysis results below � 35 coor-

dination polyhedra, and suggest that robust results require at

least 100 coordination polyhedra. A notable accidental

correlation found from this study of sample size is that of

mean bond length and mean ionization energy of the cations

bonded to the oxygen atoms of the coordination polyhedron,

which is found to be statistically significant at the 99.9%

confidence level, with R2 = �0.66 for 15 polyhedra [Figs. 1(d)

and 2(d)], whereas R2 = 0.08 for the parent distribution with

n = 334 (note that throughout this work, a negative symbol

before R2 indicates that the observed correlation with mean

bond length is negative).

Here, we report correlations for sample sizes as low as 16

coordination polyhedra, primarily to make these data avail-

able to people working on these compositions, but note that

conclusions drawn for ion configurations with less than � 100

coordination polyhedra cannot be considered statistically

reliable; this proviso extends to conclusions drawn from

previous studies.

6. Stepwise regression analysis

A stepwise regression analysis based on t-tests (95% confi-

dence level) was used to eliminate misleading correlations

between the variables of this study. A step-by-step procedure

of the stepwise regression analysis for [6]Na+ is shown in

Table 1. When individually correlated to mean bond length, p-

values for (1) bond-length distortion, (2) mean coordination of

the bonded anions, (3) mean electronegativity (h�i)and (4)

mean ionization energy (hIEi) of the next-nearest-neighbour
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Figure 1
The effect of sample size on the statistical significance of the correlation
between mean bond length and (a) bond-length distortion, (b) mean
coordination number of the oxygen atoms bonded to the cation, (c) mean
electronegativity and (d) mean ionization energy of the cations bonded to
the oxygen atoms of the coordination polyhedron, as measured by p-
values, for SiO4.

Figure 2
The effect of sample size on R2 for (a) bond-length distortion, (b) mean
coordination number of the oxygen atoms bonded to the cation, (c) mean
electronegativity and (d) mean ionization energy of the cations bonded to
the oxygen atoms of the coordination polyhedron, for SiO4. The dashed
lines show the value for the parent distribution (n = 334).



cations are 5.4 � 10�8, 1.9 � 10�3, 1.5 � 10�3, 0.26, respec-

tively. The first step of the regression analysis shows that

factoring in the variable with lowest p-value (italicized, i.e.

distortion), leads to a R2 value of 0.24. The p-values of the

other three variables update, and the mean electronegativity

of the next-nearest-neighbour cation then gets factored in as

the remaining variable with the lowest p-value below the

threshold of 0.05, leading to an adjusted R2 value of 0.27.

Interestingly, this then results in a p-value of 0.24 (above 0.05)

for the mean coordination of the bonded anions. However,

including the mean ionization energy of the next-nearest-

neighbour cation in the next step (its p-value having dropped

below 0.05) brings back its p-value below 0.05 for the final

step. Thus all variables get included in the regression analysis,

and are construed as significant. We note that running the

regression for a 99% confidence level, the refinement would

have stopped after step 2, and only bond-length distortion and

the mean electronegativity of the next-nearest-neighbour

cation would have been included as significant.

Another example of correlation between variables was

observed for [6]V5+, for which individual p-values of 4.9� 10�4

and 8.1 � 10�4 are obtained for the distortion and ionization

energy, respectively, and 0.079 for electronegativity. Including

either distortion or ionization energy in the first step of the

multiple regression subsequently lowers the p-value for elec-

tronegativity below the threshold of 0.05, but brings the other

variable above the threshold to � 0.2–0.3 which is then

discarded. In this situation, distortion is the variable factored

in for having the lowest p-value. These issues show that

correlation of individual variables to mean bond length can be

misleading, and it is imperative that this effect be dealt with

appropriately via stepwise regression analysis due to the less

manageable issues we have raised above with regard to

statistical significance and sample size.

7. Results

We selected samples for 55 ion configurations from our bond-

length dispersion analysis, bonded solely to O2�, with a

minimum size of � 20 coordination polyhedra. Stepwise

regression analysis was performed (based on p-values < 0.05)

with mean bond length as the dependent variable and (1)

bond-length distortion, (2) mean coordination of the bonded

anions, (3) mean electronegativity and (4) mean ionization

energy of the next-nearest-neighbour cations as independent

variables. Results are listed in Table 2 for correlations signif-

icant at the 95% confidence level (at 99% shown in bold) in

the form of R2 values, and adjusted R2 values for ion config-

urations for which two or more potential factors are statisti-

cally significant for a 95% confidence level. Results are

arranged in decreasing order of R2. Of the 220 individual

correlation trials (55 per variable), 77 are significant at the

95% confidence level and 62 at the 99% confidence level. Of

the 77 correlations that are significant at the 99% confidence

level, 42 involve distortion, 14 involve mean coordination of

the bonded anions, 13 involve mean ionization energy of the

next-nearest-neighbour cations, and eight involve the mean

electronegativity of the next-nearest-neighbour cations.

7.1. Bond-length distortion

The correlation between bond-length distortion and mean

bond length is significant, and the underlying mechanism (the

distortion theorem) is well known (e.g. Brown & Shannon,

1973; Allmann, 1975; Brown, 1978, 2002; Urusov, 2003).

Fig. 3 shows the variation in mean bond length as a function

of distortion for [6]Zn2+, [6]Ti4+, [6]V4+, [6]Ta5+, [6]Mo6+, [5]Cu2+,
[6]Cu2+ and [6]Nb5+, which are statistically significant at the

99% confidence level and have R2
� 0.60. Fig. 4 shows plots

for [4]P5+ (n = 685, R2 = 0.01) and [4]S6+ (n = 68, R2 = 0.15),

which despite being statistically significant at the 99% confi-

dence level show very low correlation to bond-length distor-

tion. Fig. 4(a) is a good example of how R2 values must not be

used to draw conclusions with regard to correlation between

mean bond length and other variables, as is often the case;

whereas an R2 value of 0.01 may seem to indicate that mean

bond length is insignificantly correlated to bond-length

distortion for [4]P5+, the p-value of 8.5� 10�13 clearly indicates

the contrary, whereby the null hypothesis that the slope of the

correlation is zero is rejected at the 99% confidence level. In

this case, extreme variation above and below the trend line

due to other factors leads to an extremely low R2 value, and

should not be confused with the significance of the correlation

with distortion. Thus this example stresses that the important

parameter in determining a correlation is the p-value obtained

from a Student t-test, whereas R2 measures how much of the

variation in the dependent variable is correlated with the

independent variable.

The relation between mean bond length and bond-length

distortion may be predicted by expressing the bond lengths in

equation (1) as bond valences. From the bond-valence model

(Brown, 2002, 2016), bond valence is related to bond length

s ¼ exp
h�

Ro � R
�
=B
i
; ð2Þ

where s is the bond valence of a bond of length R, and Ro and

B are the bond-valence parameters of the ion pair. We may re-

arrange equation (2) to
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Table 1
Evolution of p-values, R2 and adjusted R2 as variables are added to the
stepwise multiple-regression analysis for NaO6 (n = 112 coordination
polyhedra).

hIEi is the mean ionization energy and h�i is the mean electronegativity.
Numbers in italics indicate lowest p-value.

p-value

Step Distortion

h�i of next-
nearest-
neighbour
cation

hIEi of next-
nearest-
neighbour
cation

Bonded
anion
hCNi R2

Adjusted
R2

1 5.4 � 10�8 1.5 � 10�3 0.26 1.9 � 10�3 0.24
2 7.9 � 10�3 0.41 8.0 � 10�3 0.28 0.27
3 0.045 0.24 0.31 0.29
4 1.6 � 10�3 0.37 0.35



R ¼ Ro � B ln s ð3Þ

and for mean bond lengths (RÞ to

R ¼
1

n

Xn

i¼1

�
Ro � B ln si

�
: ð4Þ

We may then substitute R and R into equation (1), where the

sum outside the brackets is taken over the n bonds of the

polyhedron

� ¼
1

n

Xn

i¼1

Ro � B ln sið Þ � 1
n

Pn
i¼1 Ro � B ln sið Þ

1
n

Pn
i¼1

Ro � B ln sið Þ

0
BB@

1
CCA

2
664

3
775

2

: ð5Þ

Thus equation (5) gives the predicted distortion value of a

coordination polyhedron as a function of bond valence and

bond-valence parameters Ro and B for any ion pair. The
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Table 2
Coefficients of determination R2 of the individual correlations to mean
bond length for samples statistically significant at 95% confidence
intervals (normal font) and at 99% confidence intervals (bold font) from
stepwise multiple-regression analysis, and adjusted R2 values for ion
configurations for which two or more potential factors are statistically
significant at 95% confidence intervals.

hIEi is the mean ionization energy and h�i is the mean electronegativity.
Dashes indicate lack of statistical significance.

Sample
size Distortion

Bonded
anion
hCNi

h�i of
next-
nearest-
neighbour
cation

hIEi of
next-
nearest-
neighbour
cation

Adjusted
R2

[6]Ti4+ 57 0.75 0.21 – – 0.81
[5]Cu2+ 22 0.65 0.19 – – 0.77
[6]Ta5+ 35 0.73 – – �0.01 0.77
[6]Zn2+ 16 0.76 – – –
[6]V4+ 29 0.74 – – –
[6]Cu2+ 29 0.63 0.24 – – 0.72
[6]Nb5+ 38 0.60 0.17 – – 0.71
[6]Mo6+ 59 0.68 – – –
[6]Co2+ 24 0.51 – – �0.14 0.66
[6]Mn2+ 43 0.57 – – �0.03 0.62
[6]Te6+ 21 0.28 – 0.10 �0.04 0.59
[6]Fe3+ 39 0.34 0.39 – – 0.59
[6]V5+ 20 0.50 – 0.16 – 0.56
[12]Ba2+ 47 0.55 – – –
[6]W6+ 35 0.50 – – –
[4]Ga3+ 27 – 0.29 �0.17 �0.33 0.48
[6]Sb5+ 19 0.45 – – –
[6]Cd2+ 26 0.39 – – –
[9]Ba2+ 54 0.39 – – –
[7]Ca2+ 30 0.28 – – �0.10 0.38
[4]Se6+ 21 0.35 – – –
[4]B3+ 148 0.33 0.05 – – 0.35
[6]Na+ 112 0.24 0.08 0.09 0.01 0.35
[6]Al3+ 49 0.23 0.15 – – 0.34
[4]Be2+ 29 0.22 0.28 – – 0.34
[9]K+ 50 0.33 – – –
[8]Ca2+ 53 0.32 – – –
[5]Na+ 25 0.32 – – –
[6]Mg2+ 45 0.17 0.13 – – 0.32
[6]Li+ 26 0.15 – �0.21 – 0.30
[4]Zn2+ 32 – – – �0.29
[6]Fe2+ 28 0.27 – – –
[6]Ca2+ 23 – – – �0.26
[6]Ni2+ 52 – 0.22 0.00 – 0.26
[10]Ba2+ 56 0.02 – – �0.17 0.26
[4]Cr6+ 28 0.24 – – –
[7]Na+ 31 0.21 – – –
[4]Li+ 88 0.19 – – –
[4]Al3+ 58 – 0.17 – –
[10]K+ 40 0.17 – – –
[8]K+ 26 0.16 – – –
[4]S6+ 68 0.15 – – –
[7]U6+ 69 0.15 – – –
[4]As5+ 59 – – 0.02 �0.09 0.15
[4]P5+ 685 0.01 – �0.01 �0.07 0.14
[3]B3+ 237 – 0.10 – –
[4]Mo6+ 171 0.09 – – –
[4]Si4+ 335 – – – �0.08
[3]C4+ 67 �0.07 – – –
[4]V5+ 96 0.06 – – –
[3]N5+ 37 – – – –
[4]Na+ 32 – – – –
[8]Na+ 42 – – – –
[12]K+ 31 – – – –
[4]Ge4+ 64 – – – –
Mean R2 0.35 0.19 0.00 �0.12
Weighted mean R2 0.16 0.04 0.00 �0.03

Figure 3
Bond-length distortion plots for (a) [6]Zn2+, (b) [6]Ti4+, (c) [6]V4+, (d)
[6]Ta5+, (e) [6]Mo6+, (f) [5]Cu2+, (g) [6]Cu2+ and (h) [6]Nb5+ bonded to O2�.
The dashed line indicates the equation predicted by the distortion
theorem.



advantage of using bond valences directly for the purpose of

these calculations is that they are easily adjusted to conform

with the valence-sum rule, where the sum of the bond valences

of an ion is exactly equal to its oxidation state; this is much less

straightforward with equation (1). It has been noted that

different arrangements of bond valences s give slightly

different relations between mean bond length and distortion

(Urusov, 2003), and that the value of � calculated with

equation (5) unescapably depends on the details of the indi-

vidual bond valences of the polyhedron. However, it is only at

extreme values of distortion that the relations for the different

modes of distortion become significantly different.

We have calculated the relation between distortion and

mean bond length using equation (5) for values of distortion

typical of the ion pairs studied. In Figs. 3 and 4, the solid line is

the fit to the experimental data, and the dashed line is the

predicted curve calculated using data points generated from

equation (5). Comparison of equation (5) with the observed

slopes for the 42 ion configurations that show statistically

significant correlations with distortion at the 95% confidence

level shows an average difference of 96% in the observed and

calculated slopes; this value varies only slightly when using

high values for distortion. From the stepwise multiple

regression, we know that these deviations do not correlate

significantly with variations in the other parameters tested

here (mean anion coordination number, electronegativity of

the next-nearest-neighbour cations, ionization energy of the

next-nearest-neighbour cations). Thus there are two possible

explanations: (1) the lack of agreement is due to small sample

size [which does not accord with the data for [4]P5+, Fig. 4(a)];

(2) there is another significant parameter that has not been

identified as yet (discussed below).

We note that on the basis of R2 for those significant

correlations, mean bond length generally correlates strongly

with bond-length distortion for highly distorted configurations

and weakly for weakly distorted configurations, in accord with

Brown & Shannon (1973). However, two of the four strongest

correlations observed in this study are for weakly distorted

configurations: [6]Zn2+, n = 16, R2 = 0.76 and [6]Ta5+, n = 35, R2 =

0.73. ZnO6 was one of the six octahedrally coordinated

configurations studied by Brown & Shannon (1973), and they

obtained R2 = 0.41, also for n = 16; this difference in R2 value is

an example of how sample sizes lower than � 100 coordina-

tion polyhedra may show significant variability in R2 values

(see The effect of sample size).

7.2. Mean coordination number of the bonded anions

There are 14 of 55 correlations that are statistically signifi-

cant at the 95% confidence level for mean coordination

number of the bonded anions, with a mean R2 value of 0.19

(weighted by the number of coordination polyhedra, R2 =

0.04) obtained for an average sample size of 68 polyhedra.

Fig. 5 shows data for the strongest correlation, Fe3+O6, with n =

39 and R2 = 0.39, where the dashed line gives the correlation

expected by summing the radii given by Shannon (1976).

The combination of (1) the small number of statistically

significant correlations, (2) the mean R2 value of those that are

and (3) concerns about sample size, brings into question the

general significance of the mean coordination number of the

bonded anions as a causal factor of mean bond-length varia-

tion. However, this concept is embedded in the scientific

literature (perhaps epitomized by a citation count of � 40 000

for Shannon, 1976) and requires further consideration. Thus it

is necessary for us to consider the original work on which this

idea is based.

Brown & Gibbs (1969) considered the variation of

h
[4]Si4+—Oi as a function of the mean coordination number of

O2� in 46 minerals; linear regression gave R2 = 0.60, but the

correlation was not tested for statistical significance. The study

of Brown and Gibbs focused specifically on minerals and

explicitly excluded Na silicates (and also all other alkali-metal

silicates) ‘because of the highly electropositive nature of Na

and the concomitant development of strong d–p �-bonding’.

However, the subsequent development of empirical ionic radii

(Shannon & Prewitt, 1969) placed no such restrictions on the

use of these radii, which are widely used for all inorganic

structures, including alkali-metal oxides. The question arises as

to whether the correlation given by Brown & Gibbs (1969),

which Shannon & Prewitt (1969) describe as pivotal in
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Figure 4
Bond-length distortion plots for (a) [4]P5+ and (b) [4]S6+, showing no
correlation between bond-length distortion and mean bond length. The
dashed line indicates the equation predicted by the distortion theorem.

Figure 5
Mean bond length as a function of the mean anion coordination number
of the bonded oxygen atoms for Fe3+O6.



deriving anion radii as a function of coordination number, is

generally applicable.

The plot of hSi—Oi distance versus mean anion coordina-

tion number for our sample of 334 hSi—Oi distances is shown

in Fig. 6; R2 is 0.056 and the resulting regression equation is

hSi—Oi = 1.614 (3) + 0.0030 (7) hOCNi. The resulting p-value

of 0.00119 is significant at the 99% confidence level, and hence

hSi—Oi has a significant correlation with mean anion coor-

dination number even though it involves only a small amount

of the total variation in hSi—Oi as indicated by the value of

R2. The corresponding equation of Brown & Gibbs (1969), for

n = 46, is hSi—Oi = 1.579 + 0.015 hOCNi, with a slope five times

as steep as that in Fig. 6.

Next, we extracted all hSi—Oi values for structures with a

mean coordination number for O2� of [4] from our data set of

334 coordination polyhedra, resulting in 49 mean distances.

Fig. 7 shows a histogram of these values, together with the

range of hSi—Oi values taken from the trend line on the graph

of Brown & Gibbs (1969) and the sum of the [4]Si4+ and [4]O2�

radii from Shannon (1976). The total variation in hSi—Oi

distances we observe here for a mean anion coordination of

[4] has a range twice that of the distances used to establish the

correlation of hSi—Oi distance to mean anion coordination

number of Brown & Gibbs (1969) (whose mean anion coor-

dinations ranged from [2] to [4]). According to the idea that a

mean bond length may be predicted from the sum of the

coordination-dependent ionic radii for both cation and anion,

all data in Fig. 7 should fall exactly at the sum of the ionic radii

for [4]Si4+ and [4]O2�: 1.640 Å. As is obvious from Fig. 7, this is

clearly not the case; we observe nearly as much variation in

mean bond length for a mean anion coordination number of

[4] (� 1.61–1.66 Å) as there is for all data (� 1.59–1.66 Å),

calling into contention the idea that the principal cause of

variation in mean bond length for a specific ion configuration

(e.g. [4]Si4+ bonded to O2�) is variation in the mean coordi-

nation number of the bonded anions.

7.2.1. Prediction of mean bond length. In Fig. 8, we

correlate the mean bond lengths of the 55 ion configurations

studied here to the cation radii derived by Shannon (1976),

resulting in a R2 value of 0.998. This being the case, we may

test the hypothesis that assigning different radii to different

anion coordinations of O2� results in the prediction of more

accurate mean bond lengths. We have tested this hypothesis

for 11 ions and 1703 coordination polyhedra for which the

mean coordination number of the bonded oxygen atoms are

known. We generated two sets of data: (1) Shannon (1976)

cation radius + 1.38 Å, and (2) Shannon (1976) cation + anion

radius, i.e. both function of coordination number. We used

1.38 Å for the fixed radius of O2� as it is the mean observed

ionic radius for that sample. Sums (1) and (2) were then

compared to the observed mean bond lengths, and the

resulting R2 values are given in Table 3. Fig. 9 shows the match

for Mo6+ in coordination numbers 4 and 6.

We list p-values in Table 3 with regard to the probability

that sets (1) and (2) are identical. Thus, we find that for nine of
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Figure 6
Mean Si—O distance versus mean coordination number of the bonded
oxygen atoms for 334 SiO4 coordination polyhedra.

Figure 7
Distribution of mean Si—O distances for structures with a mean
coordination number for O2� of [4]. The range of hSi—Oi values taken
from the trend line on the graph of Brown & Gibbs (1969) and the sum of
the [4]Si4+ and [4]O2� radii from Shannon (1976) are shown.

Figure 8
Mean bond length as a function of Shannon (1976) cation ionic radius for
the 55 ion configurations considered in this work.



the 11 ions considered, assigning O2� a radii dependent on its

mean coordination number leads to results statistically iden-

tical at the 95% confidence level to those obtained by

assigning O2� a fixed radius. For the other two ions (B3+ and

Mo6+), we find that using a variable anion coordination

number leads to significantly worse results (at the 95%

confidence level) than those obtained using a fixed radius for

O2�.

Whereas Student t-tests show that mean bond lengths are

significantly correlated with the mean coordination number of

the bonded anions for some ion configurations, the R2 values

associated with these correlations are very low (Table 2),

indicating that even when statistically significant, the contri-

bution of variable bonded-anion coordination number to the

total variation of mean bond length is very small (of the

general order of 5%).

In light of the above results, we conclude that the use of

current anion radii for different mean bonded-anion coordi-

nation numbers is not justified.

7.3. Electronegativity of the next-nearest-neighbour cations

We treated electronegativity in the same way as Hawthorne

& Faggiani (1979), who calculated the mean electronegativity

of the next-nearest-neighbour cations (as opposed to taking an

average of the electronegativity of all cations in the structure).

We tested four scales of electronegativity: Allred & Rochow

(1958), Pauling (1960), Zhang (1982) and Allen (1989), and

elected to use the scale of Pauling (1960) as it gave marginally

better results.

Of the eight statistically significant correlations (95%

confidence level) for mean electronegativity of the next-

nearest-neighbour cations, a mean R2 value of 0.00 (weighted,

0.00) is obtained for an average sample size of 125 polyhedra.

Removing the potentially overwhelming effect of [4]P5+ leads

to no change in R2 values. Thus it seems that Baur (1971) was

correct in dismissing this potential factor as of no significance

(discussing SiO4) and we do not consider it further.

7.4. Ionization energy of the next-nearest-neighbour cations

There has been no previous attempt to correlate the mean

ionization energy of the next-nearest-neighbour cations to

mean bond length.

Of the 13 statistically significant correlations (95% confi-

dence level) for mean coordination number of the bonded

anions, a mean R2 value of �0.12 (weighted, �0.03) is

obtained for an average sample size of 114 polyhedra. Using a

99% confidence level leads to the same R2 values. Although

we observe correlations that are stronger than those to mean

electronegativity of the next-nearest-neighbour cations, there

are no grounds to qualify these results as significant; the

correlation is not observed for 42 of the 55 ion configurations

studied, and those that are correlated give low R2 values on a

scale that is questionable with regard to sample size (as

discussed above). A similar attempt to correlate Lewis acid

strength to mean bond length gave very similar results, as

Lewis acid strength is highly correlated with ionization energy

(R2 = 0.90 for 135 cations; Gagné & Hawthorne, 2017c). These

results give no new insight and are not reported.
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Acta Cryst. (2017). B73, 1019–1031 Olivier Charles Gagné et al. � Mean bond-length variations in crystals 1027

Table 3
Prediction of mean bond length with and without discrimination for anion
coordination number.

n

Cation + anion
radius
(Å)

Cation radius
+ 1.38
(Å) p-value

Al3+ 107 0.96 0.96 0.44
B3+ 385 0.96 0.97 0.00
Ba2+ 157 0.41 0.41 0.72
Ca2+ 106 0.68 0.69 0.38
Cu2+ 51 0.80 0.75 0.19
K+ 147 0.42 0.46 0.59
Li+ 114 0.80 0.80 0.24
Mo6+ 230 0.97 0.99 0.02
Na+ 242 0.50 0.55 0.55
V5+ 116 0.96 0.98 0.13
Zn2+ 48 0.90 0.92 0.42
Mean 0.76 0.77 0.33

Figure 9
Prediction of mean bond length for Mo6+O6 octahedra (n = 230) from the
addition of Shannon (1976) cation radius and (a) 1.38 Å for the ionic
radius of oxygen, independent of coordination number, and (b) Shannon
(1976) ionic radius of oxygen, dependent of coordination number.



7.5. The effect of structure type

The prediction of bond lengths in solids has been proposed

by drawing a parallel between crystal structures and electrical

networks, and by solving the equivalent of Kirchhoff’s circuit

laws for the network of chemical bonds to obtain a priori bond

valences (Mackay & Finney, 1973; Brown, 1977, 1981, 1987;

Rutherford, 1990, 1998; O’Keeffe, 1990). These equivalent

rules for chemical-bond networks are called the valence-sum

rule and the equal-valence rule by Brown (1977, 2002, 2016).

The a priori bond valences calculated by this method are

intrinsic to every crystal structure. By assigning specific ions to

the sites of the structure, a priori bond lengths may be

calculated using the appropriate bond-valence parameters,

giving the length that each bond in the structure would ideally

adopt. Despite the number of times this method has been

proposed by different authors, there has been little follow-up

work with regard to its application.

With regard to variations in individual bond lengths, Gagné

& Hawthorne (2016b) showed a very high correlation between

observed and a priori bond lengths for the compositionally

rich milarite-group minerals (n = 111 bonds, R2 = 0.99),

showing that adherence to the variety of a priori bond lengths

calculated for the individual sites of a crystal structure is a

primary candidate as the principal underlying cause of indi-

vidual bond-length variation in crystals. In Fig. 10, we show

that this correlation is also present for the mean bond lengths,

where the solid line denotes a 1:1 relation). Thus within a

structure type, the a priori bond lengths are highly correlated

with the observed mean bond lengths. The same behaviour

was shown by Bosi & Lucchesi (2007) who correlated a priori

to observed mean bond lengths for sites in the tourmaline

structure.

To investigate the effect of different structure types on the

correlation of a priori mean bond lengths with observed mean

bond lengths, we solved for the a priori bond valences of

27 structures containing [4]Al3+ (56 polyhedra), 26 structures

containing [6]Al3+ (46 polyhedra), and 25 structures containing
[12]Ba2+ (37 polyhedra), and calculated the corresponding

a priori bond lengths and mean bond lengths using the bond-

valence parameters of Gagné & Hawthorne (2015) (see
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Figure 10
Observed mean bond length versus a priori mean bond length for 14
milarite-group minerals for which a reliable structure refinement and
chemical analysis are available. Shown for fully occupied sites; plotted
line is for a 1:1 correlation.

Figure 11
Observed mean bond length versus a priori mean bond length for (a)
[4]Al3+, (b) [6]Al3+ and (c) [12]Ba2+, from 27, 26 and 25 structure
refinements, respectively. The solid line is for a 1:1 correlation; dashed
line represents the best-fit equation. These plots show the inability of the
a priori bond lengths to reproduce observed mean bond lengths to any
significant extent between structure types.



Table S1). The variation of observed mean bond length with

a priori mean bond length is shown in Fig. 11, where the solid

lines are for y = x, and the dashed lines are the least-squares

fit. The correlation is statistically significant at the 95%

confidence level for [6]Al3+ only [p-value 0.015, with R2 = 0.13;

Fig. 11(a)]. The lack of correlation for [4]Al3+ and [12]Ba2+

structures [Figs. 11(b) and 11(c)] and the very small R2 for the

correlation involving the [6]Al3+ structures indicates that

a priori bond lengths do not reproduce observed mean bond

lengths to any significant extent between structure types.

7.5.1. Structural strain: a measure of the effect of structure
type on mean bond lengths. It is apparent from this empirical

evidence that structure type is a major control on the variation

in mean bond length for specific ion configurations, and that

the magnitude of this effect goes well beyond that of the other

variables analyzed in this work.

The following issues arise: (1) how does one describe this

effect in a manner that relates to the bond topology of a crystal

structure and (2) how does one reduce this description to a

simple scalar quantity that one can correlate with variations in

mean bond length?

Any finite graph can be embedded in three-dimensional

Euclidean space. This embedding maintains the connectivity

of the graph, but does not necessarily maintain any metric

aspects that one wishes to associate with the edges of that

graph. This issue is of particular importance with regard to the

principal axioms of bond-valence theory, the valence-sum rule

and the loop rule (Brown, 2002, 2016). As noted above, a

priori bond valences can be calculated by applying these

axioms to the topology of the bond network with specific ions

at specific vertices and the corresponding a priori bond lengths

can be calculated from bond-valence parameters.

The inability of a structure to adopt its a priori bond lengths

causes stress that produces strain in the structure. Brown

(2014) defined steric constraints as ‘those that arise when a

bond network cannot be mapped into three-dimensional space

without straining the a priori bond lengths calculated with the

network equations’, whereby some bonds may have to be

stretched and others compressed for the structure to ‘fit’ into

three-dimensional space. To this definition, Brown (2016) adds

the constraints of space-group symmetry, because as well as

fitting into three-dimensional space, the structure is also

constrained to obey the symmetry properties of its space

group.

In a theoretical study of mean bond lengths using the bond-

valence model, Bosi (2014) states that observed mean bond

lengths result from the addition of the mean bond length for

an undistorted polyhedron and a correction term for distor-

tion. He then breaks down the distortion term into several

terms: distortion caused by (a) the topology of the structure,

i.e. the non-equivalence of bonds, (b) isotropic steric strain, (c)

anisotropic steric strain, and (d) anisotropic electronic strain.

Bosi concludes that the difference between an observed and a

theoretical coordination polyhedron is caused by the occur-

rence of strain.

Thus the degree of fit between an a priori structure and an

observed structure has been designated as strain, and various

definitions have been proposed for this. The following was

proposed by Brown (2014):

strain ¼
Robs � Ra priori

Ra priori

� �
; ð6Þ

where the magnitude of the strain of individual bonds results

from the proportional difference between the observed bond

length Robs and its corresponding a priori bond length, Ra priori.

More comprehensive ways in which structural strain can be

measured have been proposed with regard to the bond-

valence model with the calculation of the Global Instability

Index (GII; Salinas-Sanchez et al. 1992), and the Bond Strain

Index (BSI; Preiser et al. 1999). The GII evaluates the differ-

ence between the bond-valence sums at the sites of the

structure compared to their ideal values by calculating the

root-mean-square deviation of the bond-valence sums from

their atomic valences, averaged over all atoms in the formula

unit

GII ¼

��X
j

sij � Vi

�2�1=2

; ð7Þ

where sij is the observed bond-valence of ion i with coordi-

nation number j. The BSI is defined as the root-mean-square

deviation between the a priori and observed bond valences,

averaged over all bonds in the formula unit

BSI ¼
D�

Sij � sij

	2E1=2

; ð8Þ

where Sij is the a priori bond valence.

The inability of a structure to attain its a priori bond lengths

within the constraints of its space-group symmetry will lead to

adjustments in the structure whereby the (mean) bond lengths

adjust from their set of ideal values to some set of compromise

values that do conform to the space-group symmetry of the

crystal. Strain as expressed by the BSI is a good expression of

that compromise.

It is probable that the way forward in understanding

variations in mean bond lengths in crystals will involve:

(1) Calculating the a priori bond valences and bond lengths

for a wide variety of structure types for each ion configuration

of interest.

(2) Calculating the bond strain index (BSI) for these

structures.

(3) Correlating bond topology, BSI and space-group

symmetry with variations in mean bond lengths.

For point (3), we note that some of these factors have

partially and implicitly been correlated to mean bond length

via the bond-length distortion index. For example, bond-

length distortion as represented in equation (1) is inclusive of

the effect of structural distortion for given bond topologies

(distortion caused by the fact that different bond topologies

have different a priori bond valences, i.e. not always the

Pauling bond strength, which inherently creates some varia-

tion in mean bond lengths). It could also be argued that space-

group symmetry is implicitly embedded into the bond-length

distortion index, as the physical distortion of the polyhedron
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changes the symmetry of the structure. However, implicit

inclusion of these factors in the distortion index is unsa-

tisfactory for the purpose of demonstrating statistical signifi-

cance. The extent for which these factors individually

contribute to mean bond-length variations, and their under-

lying mechanism, are unclear; a way to examine these factors

explicitly must be devised.

There are many indices that may be used to describe the

topology of a crystal structure (e.g. the number of topologi-

cally independent bonds, and their multiplicity) and the

symmetry properties of the corresponding space group (e.g.

the number of symmetry operations), and what variables can

be used to quantitatively represent bond topology and space-

group symmetry is not immediately clear. It seems probable

that their proper examination, as part of work on points (1) to

(3), will result in a clarification of the reasons underlying the

overwhelming effect that structure type has on mean bond

length.

8. Summary and conclusion

(1) Following a review of previous work on the variation of

mean bond length in oxide and oxysalt crystals, we use 55

cation configurations bonded to O2� to analyze the relation

between mean bond lengths and (a) bond-length distortion,

(b) mean coordination number of the oxygen atoms bonded to

the cation, (c) mean electronegativity of the next-nearest-

neighbour cations, and (d) mean ionization energy of the

cations bonded to the oxygen atoms of the coordination

polyhedron via stepwise multiple regression analysis at the

95% confidence level.

(2) Of the 55 ion configurations examined, 42 show a

correlation between mean bond length and bond-length

distortion significant at the 95% confidence level. However, a

mean R2 of 0.35 indicates that mean bond length must

correlate with other factors hitherto not identified.

(3) We find that previously published correlations between

mean bond length and mean coordination number of the

bonded anions are not of general applicability to inorganic

oxide and oxysalt structures.

(4) Compared to assigning O2� a fixed radius, use of

currently accepted anion-coordination-dependent radii for

O2� in the prediction of mean bond lengths leads to statisti-

cally identical results at the 95% confidence level for nine of

11 ions tested, and less accurate predictions for the other two

ions using the anion-coordination-dependent radii for O2�.

(5) Points (3) and (4) indicate that the currently accepted

ionic radii for O2� in different coordinations are not justified

by the experimental data.

(6) We find no correlation between mean bond length and

the mean electronegativity and mean ionization energy of the

cations bonded to the oxygen atoms of the coordination

polyhedron.

(7) Calculation of a priori bond lengths for many ion

configurations in a single structure-type leads to linear rela-

tions between a priori and observed mean bond lengths.

However, calculation of a priori bond lengths for a single ion

configuration in many different structure-types leads to

negligible correlation between a priori and observed mean

bond lengths across structure types.

(8) We suggest that the wide variation in mean bond length

for a single ion configuration is a result of the inability of a

structure to attain its ideal (a priori) bond lengths within the

constraints of its space-group symmetry. The structure adjusts

from its set of ideal bond lengths (and corresponding mean

bond lengths) to some set of ‘compromise’ bond lengths that

do conform to the space-group symmetry of the crystal, and

the Bond Strain Index (Preiser et al., 1999) is an expression of

the magnitude of that compromise.

It is apparent that future work on understanding variations

in mean bond length in crystals should be directed toward the

elucidation of the stress created from the mismatch between

a priori and observed bond valences in crystal structures. This

will entail the calculation of a priori bond valences and bond

lengths in a wide variety of structure types, to be compared

with observed bond valences and bond lengths via various

strain indices. In turn, it will be necessary to derive simple

descriptors for (1) bond topology, and (2) space-group

symmetry that may be examined for correlation with mean

bond length.
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