research papers
Co-crystals of an organic triselenocyanate with ditopic Lewis bases: recurrent chalcogen bond interactions motifs
aISCR (Institut de Sciences Chimiques de Rennes), Universite Rennes, CNRS, UMR 6226, 35000 Rennes, France, and bDepartment of Chemistry and Biochemistry, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
*Correspondence e-mail: marc.fourmigue@univ-rennes1.fr
Organic selenocyanates R–Se–CN can act as an chalcogen bond (ChB) donor (through the Se atom) and acceptor (through the N atom lone pair). Co-crystallization of tri-substituted 1,3,5-tris(selenocyanatomethyl)-2,4,6-trimethylbenzene (1) is investigated with different ditopic Lewis bases acting as chalcogen bond (ChB) acceptors to investigate the outcome of the competition, as ChB acceptor, between the nitrogen lone pair of the SeCN group and other Lewis bases involving pyridinyl or carbonyl functions. In the presence of tetramethylpyrazine (TMP), benzoquinone (BQ) and para-dinitrobenzene (pDNB) as ditopic Lewis bases, a recurrent oligomeric motif stabilized by six ChB interactions is observed, involving six SeCN groups and the ChB acceptor sites of TMP, BQ and pDNB in the 2:1 adducts (1)2·TMP, (1)2·BQ and (1)2·pDNB.
Keywords: chalcogen bond; sigma-hole interactions.
1. Introduction
Following extensive investigations on halogen bonding interactions as a rediscovered tool in crystal engineering (Cavallo et al., 2016; Gilday et al., 2015), recent approaches have highlighted the generality of the σ-hole concept (Cavallo et al., 2014) and its extension to chalcogen (S, Se, Te), pnictogen (P, As, Sb) and tetrel (Si, Ge, Sn) elements. Halogen atoms are well known to develop one single σ-hole in the prolongation of the C—X bond, allowing for an unprecedented predictability in crystal engineering strategies. The situation is rather different with chalcogens since the presence of two covalent bonds leads to the appearance of two σ-holes (Wang et al., 2009; Alkorta et al., 2018; Bleiholder et al., 2006); as theoretically analyzed in model compounds (Politzer et al., 2017; Pascoe et al., 2017; Bauzá & Frontera, 2018), and experimentally illustrated in the crystal structures of Se(CN)2 (Klapötke et al., 2004; Klapötke et al., 2008), selenophthalic anhydride (Brezgunova et al., 2013) and tellurophene derivatives (Benz et al., 2016; Sánchez-Sanz & Trujillo, 2018). Similar to halogen bonding, chalcogen bond donors are also investigated as Lewis acids in catalysis (Wonner et al., 2017; Benz et al., 2018). We recently postulated that the unsymmetrical substitution of the chalcogen atom, for example in organic selenocyanates R—Se—CN could strongly favor one σ-hole over the other. We found indeed that crystal structures of organic selenocyanates exhibit a recurrent supramolecular motif where the Se atom interacts with the lone pair on the N atom of a neighboring SeCN moiety (Jeannin et al., 2018), leading to the formation of extended chains ⋯Se(R)CN⋯Se(R)CN⋯, most probably stabilized by cooperativity. The formation of these motifs is hindered when the selenocyanate is faced with stronger Lewis bases (such as 4,4′-bipyridine) and the Se atoms then interact with the pyridinic nitrogen atom, with an even shorter Se⋯N distance (Huynh et al., 2017). Intermolecular (Maartmann-Moe et al., 1984) as well as intramolecular (Wang et al., 2018) Se⋯O2N– interactions can also displace the nitrogen atom of the SeCN moiety from interaction with a neighboring Se atom.
In the course of our investigations of the solid-state arrangement of benzylic selenocyanates, we turned our attention to tri-substituted derivatives such as 1,3,5-tris(selenocyanatomethyl)-2,4,6-trimethylbenzene (1). It was found to crystallize either alone or as a solvate with DMF or AcOEt (Jeannin et al., 2018). In the three structures, we confirmed the formation of recurrent linear ChB motifs where the lone pair of the nitrogen atom in the R—Se—CN moiety interacts as with the σ-hole located on the Se atom, essentially in the prolongation of the NC–Se bond. As shown in Fig. 1(a) for the DMF solvate, i.e. (1)·DMF, this interaction pattern was complemented with a side interaction between the Se atom and the oxygen atom of DMF. On the other hand, in the AcOEt solvate [Fig. 1(b)], the carbonyl oxygen atom displaces one nitrogen atom of a SeCN group to enter into a strong Se⋯O=C(OEt)Me interaction (Jeannin et al., 2018). A question then arises about the outcome of the ChB competition of a given Se atom as a ChB donor, when interacting either with the N atom of a neighboring SeCN moiety or with another We report here on the outcome of the co-crystallization of (1) with three different ditopic Lewis bases, namely tetramethylpyrazine (TMP), benzoquinone (BQ) and para-dinitrobenzene (pDNB), allowing us to evaluate the robustness of these one-dimensional ⋯Se(R)CN⋯Se(R)CN⋯ motifs.
2. Experimental
2.1. Crystal growth
Compound (1) was prepared as described by Jeannin et al. (2018). All cocrystals were obtained from vapor diffusion of diethyl ether into ethyl acetate (2 ml) mixtures of two equivalents of (1) (10.7 mg, 11 mg and 10.8 mg, respectively) and one equivalent of either TMP (2.2 mg), BQ (3.5 mg) or pDNB (2.8 mg).
2.2. Crystallography
Single-crystal X-ray diffraction data were collected at room temperature on an APEXII Bruker-AXS diffractometer operating with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The structures were solved by using the SIR92 (Altomare et al., 1994) program and then refined with full-matrix least-square methods based on F2 (SHELXL-2014/7; Sheldrick, 2015) with the aid of the WINGX (Farrugia, 2012) program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. Crystallographic data on X-ray data collection and structure refinements are given in Table 1.
3. Results and discussion
Co-crystallization of (1) with either TMP, BQ or pDNB was performed by mixing solutions of both partners in ethyl acetate and diffusing the mixture with diethyl ether. Crystals formed after two days. All three co-crystals crystallize in the triclinic system, , with the tris(selenocyanate) derivative (1) in the general position in the and the ditopic ChB acceptor on the inversion center; hence the 2:1 stoichiometry, that is (1)2·TMP, (1)2·BQ and (1)2·pDNB. The three structures are closely related (Fig. 2). Among the three independent SeCN groups in (1), two are engaged in an Se⋯NC ChB while the third one is engaged in a ChB with the oxygen or nitrogen atom of the coformer, TMP, BQ or pDNB. It gives rise locally to the recurring of inversion-centered oligomeric ChB motifs shown in Fig. 3.
A comparison of the ChB characteristics within the three compounds (see Table 2 and Scheme 1) shows a large dispersion of the Se⋯NC ChB distances, from 2.96 to 3.31 Å, that is a reduction ratio (RR) relative to the sum of the van der Waals radii (1.90 + 1.55 = 3.45 Å) in the range 0.86–0.96. The Se⋯O ChB contacts are slightly shorter, with RR down to 0.86, in line with the smaller van der Waals radius of O (1.52 Å) versus N (1.55 Å).
|
The closely related structural motifs found in (1)2·TMP, (1)2·BQ and (1)2·pDNB, are also found in their solid-state organization in the crystal. As shown in Fig. 4, we note the recurrent formation of stacks of (1), interconnected through the Se⋯(O, N) ChB interaction with TMP, BQ or pDNB molecules acting as ditopic ChB acceptors between the chains.
The efficiency of benzylic selenocyanates such as (1) to act as strong ChB donors can be traced back from the amplitude of the σ-hole generated on the selenium atom. As shown in Fig. 5, the electrostatic (ESP) map calculated with an extremum Vs (see Politzer et al., 2017) for (1) shows the presence of positively charged areas in the prolongation of the three C—Se bonds, with Vs,max of 41.1 kcal mol−1. This value can be compared with that calculated for the model benzylselenocyanate PhCH2–SeCN molecule where it amounts to 36.4 kcal mol−1, or with that calculated for the reference halogen bond donor F5C6–I (35.7 kcal mol−1) under the same conditions. These calculations demonstrate that tri-substitution actually activates the three individual ChB donor moieties.
These similarities also demonstrate that the three ChB acceptors used here can play a very similar role as ditopic Lewis bases. An interesting analogy can be made with halogen bonding (XB) if we compare reported structures involving these three molecules (TMP, BQ, pDNB) and a common XB donor such as 1,4-diiodoperfluorobenzene. Indeed, p-I2F4C6 has been reported to co-crystallize with TMP (CSD refcode JAQMAQ; Syssa-Magalé et al., 2005) and BQ (CSD refcode ZARFUV; Liu et al., 2012), while the non-fluorinated 1,4-diiodobenzene has been co-crystallized with pDNB (CSD refcode YESZEB; Allen et al., 1994). As shown in Fig. 6, the three reported structures show a recurrent 1D structure where TMP, BQ and pDNB also play a similar role.
In conclusion, we have shown here that specific supramolecular motifs can be obtained from the ChB interaction of the tri-substituted derivative (1) with three different ditopic Lewis bases: TMP, BQ and pDNB. The sizeable ChB interactions with the nitro group in DNB allow us to infer that benzylic selenocyanate derivatives such as (1) could be used for the detection of nitrated molecules of interest for their energetic properties, such as TNT (trinitrotoluene) or HNS (hexanitrostilbene) (Schubert & Kuznetsov, 2012; Caygill et al., 2012).
Supporting information
https://doi.org/10.1107/S2052520618017778/aw5020sup1.cif
contains datablocks global, 1TMP, 1BQ, pDNB. DOI:Details on DFT calculations. DOI: https://doi.org/10.1107/S2052520618017778/aw5020sup2.pdf
For all structures, data collection: Bruker APEX2 (Bruker, 2014); cell
Bruker APEX2 (Bruker, 2014); data reduction: Bruker APEX2 (Bruker, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C15H15N3Se3·0.5(C8H12N2) | Z = 2 |
Mr = 542.28 | F(000) = 530 |
Triclinic, P1 | Dx = 1.743 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.797 (3) Å | Cell parameters from 6066 reflections |
b = 10.560 (3) Å | θ = 2.9–26.0° |
c = 10.656 (3) Å | µ = 5.35 mm−1 |
α = 87.528 (10)° | T = 296 K |
β = 69.844 (8)° | Prism, colorless |
γ = 87.528 (9)° | 0.13 × 0.04 × 0.02 mm |
V = 1033.5 (5) Å3 |
APEXII, Bruker-AXS diffractometer | 2995 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
CCD rotation images, thick slices scans | θmax = 27.4°, θmin = 1.9° |
Absorption correction: multi-scan [Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA] | h = −12→11 |
Tmin = 0.774, Tmax = 0.899 | k = −13→13 |
25685 measured reflections | l = −13→13 |
4706 independent reflections |
Refinement on F2 | Primary atom site location: direct - structure invariant direct methods |
Least-squares matrix: full | Secondary atom site location: direct - structure invariant direct methods |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0366P)2 + 0.8648P] where P = (Fo2 + 2Fc2)/3 |
4706 reflections | (Δ/σ)max = 0.001 |
240 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1028 (4) | 0.0541 (3) | 0.6188 (4) | 0.0294 (9) | |
C2 | 1.0005 (4) | 0.1473 (3) | 0.6089 (4) | 0.0301 (9) | |
C3 | 0.8647 (4) | 0.1574 (3) | 0.7117 (4) | 0.0307 (9) | |
C4 | 0.8305 (4) | 0.0742 (4) | 0.8242 (4) | 0.0316 (9) | |
C5 | 0.9339 (4) | −0.0186 (3) | 0.8325 (4) | 0.0313 (9) | |
C6 | 1.0712 (4) | −0.0283 (4) | 0.7316 (4) | 0.0312 (9) | |
C7 | 1.2445 (4) | 0.0403 (4) | 0.5037 (4) | 0.0389 (10) | |
H7A | 1.2234 | 0.0436 | 0.4211 | 0.047* | |
H7B | 1.2874 | −0.0428 | 0.5115 | 0.047* | |
C8 | 1.0357 (4) | 0.2374 (4) | 0.4879 (4) | 0.0434 (10) | |
H8A | 1.1349 | 0.2621 | 0.4626 | 0.065* | |
H8B | 0.9723 | 0.3112 | 0.5095 | 0.065* | |
H8C | 1.022 | 0.1957 | 0.4149 | 0.065* | |
C9 | 0.7544 (4) | 0.2563 (4) | 0.7001 (4) | 0.0392 (10) | |
H9A | 0.6581 | 0.2282 | 0.7533 | 0.047* | |
H9B | 0.7592 | 0.2633 | 0.6076 | 0.047* | |
C10 | 0.6826 (4) | 0.0883 (4) | 0.9335 (4) | 0.0482 (11) | |
H10A | 0.6774 | 0.0293 | 1.0059 | 0.072* | |
H10B | 0.6077 | 0.0714 | 0.898 | 0.072* | |
H10C | 0.6694 | 0.1731 | 0.9654 | 0.072* | |
C11 | 0.8979 (4) | −0.1095 (4) | 0.9517 (4) | 0.0373 (10) | |
H11A | 0.8177 | −0.0733 | 1.0241 | 0.045* | |
H11B | 0.9812 | −0.1184 | 0.9811 | 0.045* | |
C12 | 1.1824 (4) | −0.1278 (4) | 0.7429 (4) | 0.0433 (11) | |
H12A | 1.1468 | −0.1706 | 0.8288 | 0.065* | |
H12B | 1.2719 | −0.0879 | 0.7332 | 0.065* | |
H12C | 1.1993 | −0.1882 | 0.6739 | 0.065* | |
C13 | 1.3945 (4) | 0.1482 (4) | 0.6551 (5) | 0.0438 (11) | |
C14 | 0.8745 (5) | 0.3741 (4) | 0.8774 (5) | 0.0471 (11) | |
C15 | 0.7040 (5) | −0.2280 (4) | 0.8454 (4) | 0.0477 (12) | |
C16 | 1.3556 (4) | 0.5056 (4) | 0.5626 (5) | 0.0463 (11) | |
C17 | 1.4503 (5) | 0.4974 (4) | 0.6338 (5) | 0.0495 (12) | |
C18 | 1.1947 (5) | 0.5059 (5) | 0.6306 (5) | 0.0645 (14) | |
H18A | 1.148 | 0.5143 | 0.5649 | 0.097* | |
H18B | 1.165 | 0.5758 | 0.6898 | 0.097* | |
H18C | 1.1677 | 0.4278 | 0.6811 | 0.097* | |
C19 | 1.3974 (6) | 0.4993 (6) | 0.7839 (5) | 0.0805 (17) | |
H19A | 1.3523 | 0.4206 | 0.8203 | 0.121* | |
H19B | 1.3279 | 0.5681 | 0.8139 | 0.121* | |
H19C | 1.4782 | 0.5104 | 0.8133 | 0.121* | |
N1 | 1.4041 (5) | 0.1377 (5) | 0.7626 (5) | 0.0769 (14) | |
N2 | 0.9312 (5) | 0.3468 (4) | 0.9517 (5) | 0.0692 (12) | |
N3 | 0.6192 (5) | −0.2007 (4) | 0.7970 (4) | 0.0652 (12) | |
N4 | 1.4053 (4) | 0.5085 (3) | 0.4280 (4) | 0.0502 (10) | |
Se1 | 1.39051 (5) | 0.16930 (4) | 0.49006 (5) | 0.04673 (15) | |
Se2 | 0.78128 (5) | 0.42823 (4) | 0.75911 (5) | 0.05066 (15) | |
Se3 | 0.84421 (5) | −0.28103 (4) | 0.91729 (4) | 0.04628 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0269 (19) | 0.027 (2) | 0.035 (2) | −0.0007 (16) | −0.0106 (16) | −0.0056 (17) |
C2 | 0.030 (2) | 0.031 (2) | 0.031 (2) | −0.0081 (17) | −0.0104 (16) | −0.0018 (17) |
C3 | 0.029 (2) | 0.026 (2) | 0.040 (2) | −0.0029 (16) | −0.0154 (17) | −0.0015 (18) |
C4 | 0.0302 (19) | 0.030 (2) | 0.034 (2) | −0.0069 (17) | −0.0090 (16) | −0.0066 (18) |
C5 | 0.037 (2) | 0.026 (2) | 0.033 (2) | −0.0069 (17) | −0.0137 (17) | −0.0004 (17) |
C6 | 0.030 (2) | 0.028 (2) | 0.038 (2) | −0.0050 (16) | −0.0148 (17) | −0.0021 (18) |
C7 | 0.037 (2) | 0.033 (2) | 0.042 (2) | −0.0030 (18) | −0.0080 (19) | −0.0043 (19) |
C8 | 0.044 (2) | 0.046 (3) | 0.040 (2) | 0.001 (2) | −0.015 (2) | 0.008 (2) |
C9 | 0.034 (2) | 0.040 (2) | 0.047 (3) | −0.0018 (18) | −0.0184 (19) | −0.001 (2) |
C10 | 0.039 (2) | 0.049 (3) | 0.044 (3) | 0.001 (2) | 0.000 (2) | 0.006 (2) |
C11 | 0.047 (2) | 0.030 (2) | 0.036 (2) | −0.0021 (18) | −0.0155 (19) | −0.0030 (18) |
C12 | 0.039 (2) | 0.038 (2) | 0.051 (3) | 0.0006 (19) | −0.014 (2) | 0.007 (2) |
C13 | 0.030 (2) | 0.043 (3) | 0.057 (3) | −0.0063 (19) | −0.011 (2) | −0.006 (2) |
C14 | 0.055 (3) | 0.034 (3) | 0.057 (3) | 0.002 (2) | −0.025 (2) | −0.005 (2) |
C15 | 0.051 (3) | 0.047 (3) | 0.038 (3) | −0.016 (2) | −0.003 (2) | −0.004 (2) |
C16 | 0.035 (2) | 0.032 (2) | 0.064 (3) | 0.0003 (18) | −0.008 (2) | 0.007 (2) |
C17 | 0.043 (3) | 0.045 (3) | 0.056 (3) | −0.002 (2) | −0.012 (2) | 0.008 (2) |
C18 | 0.040 (3) | 0.065 (3) | 0.080 (4) | 0.001 (2) | −0.009 (2) | −0.002 (3) |
C19 | 0.060 (3) | 0.109 (5) | 0.064 (4) | 0.004 (3) | −0.012 (3) | 0.006 (3) |
N1 | 0.068 (3) | 0.098 (4) | 0.069 (3) | −0.028 (3) | −0.025 (3) | −0.003 (3) |
N2 | 0.093 (3) | 0.053 (3) | 0.080 (3) | 0.002 (2) | −0.053 (3) | −0.001 (2) |
N3 | 0.059 (3) | 0.079 (3) | 0.060 (3) | −0.008 (2) | −0.024 (2) | −0.003 (2) |
N4 | 0.040 (2) | 0.044 (2) | 0.059 (3) | 0.0024 (17) | −0.0091 (19) | 0.0069 (19) |
Se1 | 0.0380 (2) | 0.0469 (3) | 0.0507 (3) | −0.0098 (2) | −0.0092 (2) | 0.0056 (2) |
Se2 | 0.0595 (3) | 0.0351 (3) | 0.0643 (3) | 0.0101 (2) | −0.0309 (2) | −0.0058 (2) |
Se3 | 0.0597 (3) | 0.0320 (2) | 0.0470 (3) | −0.0110 (2) | −0.0179 (2) | 0.0059 (2) |
C1—C2 | 1.402 (5) | C11—Se3 | 1.991 (4) |
C1—C6 | 1.405 (5) | C11—H11A | 0.97 |
C1—C7 | 1.509 (5) | C11—H11B | 0.97 |
C2—C3 | 1.405 (5) | C12—H12A | 0.96 |
C2—C8 | 1.517 (5) | C12—H12B | 0.96 |
C3—C4 | 1.407 (5) | C12—H12C | 0.96 |
C3—C9 | 1.502 (5) | C13—N1 | 1.181 (6) |
C4—C5 | 1.401 (5) | C13—Se1 | 1.777 (5) |
C4—C10 | 1.520 (5) | C14—N2 | 1.134 (5) |
C5—C6 | 1.406 (5) | C14—Se2 | 1.854 (5) |
C5—C11 | 1.508 (5) | C15—N3 | 1.141 (6) |
C6—C12 | 1.513 (5) | C15—Se3 | 1.847 (6) |
C7—Se1 | 1.983 (4) | C16—N4 | 1.346 (6) |
C7—H7A | 0.97 | C16—C17 | 1.385 (6) |
C7—H7B | 0.97 | C16—C18 | 1.490 (6) |
C8—H8A | 0.96 | C17—N4i | 1.339 (5) |
C8—H8B | 0.96 | C17—C19 | 1.502 (7) |
C8—H8C | 0.96 | C18—H18A | 0.96 |
C9—Se2 | 2.004 (4) | C18—H18B | 0.96 |
C9—H9A | 0.97 | C18—H18C | 0.96 |
C9—H9B | 0.97 | C19—H19A | 0.96 |
C10—H10A | 0.96 | C19—H19B | 0.96 |
C10—H10B | 0.96 | C19—H19C | 0.96 |
C10—H10C | 0.96 | N4—C17i | 1.339 (5) |
C2—C1—C6 | 120.4 (3) | H10A—C10—H10C | 109.5 |
C2—C1—C7 | 118.8 (3) | H10B—C10—H10C | 109.5 |
C6—C1—C7 | 120.8 (3) | C5—C11—Se3 | 114.4 (3) |
C1—C2—C3 | 119.8 (3) | C5—C11—H11A | 108.7 |
C1—C2—C8 | 120.3 (3) | Se3—C11—H11A | 108.7 |
C3—C2—C8 | 119.9 (3) | C5—C11—H11B | 108.7 |
C2—C3—C4 | 120.5 (3) | Se3—C11—H11B | 108.7 |
C2—C3—C9 | 119.7 (3) | H11A—C11—H11B | 107.6 |
C4—C3—C9 | 119.9 (3) | C6—C12—H12A | 109.5 |
C5—C4—C3 | 119.1 (3) | C6—C12—H12B | 109.5 |
C5—C4—C10 | 122.0 (4) | H12A—C12—H12B | 109.5 |
C3—C4—C10 | 118.9 (3) | C6—C12—H12C | 109.5 |
C4—C5—C6 | 121.1 (3) | H12A—C12—H12C | 109.5 |
C4—C5—C11 | 119.6 (3) | H12B—C12—H12C | 109.5 |
C6—C5—C11 | 119.3 (3) | N1—C13—Se1 | 176.3 (4) |
C1—C6—C5 | 119.2 (3) | N2—C14—Se2 | 176.7 (4) |
C1—C6—C12 | 120.3 (3) | N3—C15—Se3 | 176.5 (4) |
C5—C6—C12 | 120.5 (3) | N4—C16—C17 | 121.2 (4) |
C1—C7—Se1 | 115.6 (3) | N4—C16—C18 | 116.9 (4) |
C1—C7—H7A | 108.4 | C17—C16—C18 | 121.8 (4) |
Se1—C7—H7A | 108.4 | N4i—C17—C16 | 121.5 (4) |
C1—C7—H7B | 108.4 | N4i—C17—C19 | 116.4 (4) |
Se1—C7—H7B | 108.4 | C16—C17—C19 | 122.1 (4) |
H7A—C7—H7B | 107.4 | C16—C18—H18A | 109.5 |
C2—C8—H8A | 109.5 | C16—C18—H18B | 109.5 |
C2—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | C16—C18—H18C | 109.5 |
C2—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | C17—C19—H19A | 109.5 |
C3—C9—Se2 | 114.2 (3) | C17—C19—H19B | 109.5 |
C3—C9—H9A | 108.7 | H19A—C19—H19B | 109.5 |
Se2—C9—H9A | 108.7 | C17—C19—H19C | 109.5 |
C3—C9—H9B | 108.7 | H19A—C19—H19C | 109.5 |
Se2—C9—H9B | 108.7 | H19B—C19—H19C | 109.5 |
H9A—C9—H9B | 107.6 | C17i—N4—C16 | 117.3 (4) |
C4—C10—H10A | 109.5 | C13—Se1—C7 | 97.41 (18) |
C4—C10—H10B | 109.5 | C14—Se2—C9 | 97.04 (18) |
H10A—C10—H10B | 109.5 | C15—Se3—C11 | 96.98 (18) |
C4—C10—H10C | 109.5 | ||
C6—C1—C2—C3 | −0.8 (5) | C2—C1—C6—C12 | −179.2 (4) |
C7—C1—C2—C3 | 176.6 (3) | C7—C1—C6—C12 | 3.3 (5) |
C6—C1—C2—C8 | 179.1 (3) | C4—C5—C6—C1 | −2.1 (5) |
C7—C1—C2—C8 | −3.4 (5) | C11—C5—C6—C1 | 178.1 (3) |
C1—C2—C3—C4 | −0.2 (5) | C4—C5—C6—C12 | 179.1 (4) |
C8—C2—C3—C4 | 179.8 (3) | C11—C5—C6—C12 | −0.7 (5) |
C1—C2—C3—C9 | −179.2 (3) | C2—C1—C7—Se1 | 77.1 (4) |
C8—C2—C3—C9 | 0.8 (5) | C6—C1—C7—Se1 | −105.4 (4) |
C2—C3—C4—C5 | 0.1 (5) | C2—C3—C9—Se2 | −83.7 (4) |
C9—C3—C4—C5 | 179.1 (3) | C4—C3—C9—Se2 | 97.3 (4) |
C2—C3—C4—C10 | 179.9 (3) | C4—C5—C11—Se3 | 101.7 (4) |
C9—C3—C4—C10 | −1.1 (5) | C6—C5—C11—Se3 | −78.4 (4) |
C3—C4—C5—C6 | 1.0 (5) | N4—C16—C17—N4i | −0.2 (7) |
C10—C4—C5—C6 | −178.7 (4) | C18—C16—C17—N4i | 177.0 (4) |
C3—C4—C5—C11 | −179.1 (3) | N4—C16—C17—C19 | 177.5 (5) |
C10—C4—C5—C11 | 1.1 (6) | C18—C16—C17—C19 | −5.3 (7) |
C2—C1—C6—C5 | 2.0 (5) | C17—C16—N4—C17i | 0.2 (7) |
C7—C1—C6—C5 | −175.4 (3) | C18—C16—N4—C17i | −177.1 (4) |
Symmetry code: (i) −x+3, −y+1, −z+1. |
C15H15N3Se3·0.5(C6H4O2) | Z = 2 |
Mr = 528.23 | F(000) = 512 |
Triclinic, P1 | Dx = 1.781 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.008 (2) Å | Cell parameters from 3951 reflections |
b = 10.4345 (19) Å | θ = 2.7–24.6° |
c = 10.760 (2) Å | µ = 5.61 mm−1 |
α = 93.538 (5)° | T = 296 K |
β = 117.528 (5)° | Needle, yellow |
γ = 95.282 (5)° | 0.28 × 0.02 × 0.01 mm |
V = 985.3 (3) Å3 |
APEXII, Bruker-AXS diffractometer | 4486 independent reflections |
Radiation source: fine-focus sealed tube | 2412 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan [Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA] | h = −12→12 |
Tmin = 0.874, Tmax = 0.945 | k = −13→9 |
24136 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: direct - structure invariant direct methods |
Least-squares matrix: full | Secondary atom site location: direct - structure invariant direct methods |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0523P)2 + 1.8613P] where P = (Fo2 + 2Fc2)/3 |
4486 reflections | (Δ/σ)max < 0.001 |
229 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2459 (7) | −0.1361 (5) | 0.1014 (6) | 0.0321 (14) | |
C2 | 0.3681 (6) | −0.0463 (5) | 0.1990 (6) | 0.0340 (14) | |
C3 | 0.3457 (7) | 0.0362 (5) | 0.2937 (6) | 0.0338 (14) | |
C4 | 0.2058 (7) | 0.0294 (5) | 0.2918 (6) | 0.0348 (14) | |
C5 | 0.0830 (6) | −0.0576 (5) | 0.1908 (6) | 0.0349 (14) | |
C6 | 0.1044 (6) | −0.1417 (5) | 0.0958 (6) | 0.0351 (14) | |
C7 | 0.2677 (7) | −0.2239 (6) | −0.0014 (7) | 0.0436 (16) | |
H7A | 0.3608 | −0.19 | −0.0024 | 0.052* | |
H7B | 0.1842 | −0.2221 | −0.095 | 0.052* | |
C8 | 0.5219 (7) | −0.0412 (7) | 0.2045 (7) | 0.0507 (17) | |
H8A | 0.5181 | −0.0053 | 0.1231 | 0.076* | |
H8B | 0.5488 | −0.1272 | 0.2054 | 0.076* | |
H8C | 0.5966 | 0.0121 | 0.2885 | 0.076* | |
C9 | 0.4780 (7) | 0.1338 (5) | 0.4028 (7) | 0.0404 (15) | |
H9A | 0.5726 | 0.1083 | 0.4118 | 0.048* | |
H9B | 0.4802 | 0.1311 | 0.4937 | 0.048* | |
C10 | 0.1824 (8) | 0.1204 (6) | 0.3930 (7) | 0.0491 (17) | |
H10A | 0.2792 | 0.1548 | 0.4713 | 0.074* | |
H10B | 0.1208 | 0.0739 | 0.4268 | 0.074* | |
H10C | 0.1324 | 0.1902 | 0.3452 | 0.074* | |
C11 | −0.0713 (7) | −0.0630 (6) | 0.1813 (7) | 0.0437 (16) | |
H11A | −0.1461 | −0.0676 | 0.0827 | 0.052* | |
H11B | −0.0758 | 0.017 | 0.2292 | 0.052* | |
C12 | −0.0276 (7) | −0.2393 (6) | −0.0105 (7) | 0.0502 (18) | |
H12A | −0.0014 | −0.277 | −0.0785 | 0.075* | |
H12B | −0.1157 | −0.1964 | −0.0577 | 0.075* | |
H12C | −0.0494 | −0.3061 | 0.0375 | 0.075* | |
C13 | 0.4240 (9) | −0.3722 (7) | 0.2222 (9) | 0.066 (2) | |
C14 | 0.4365 (8) | 0.2799 (6) | 0.1744 (9) | 0.0514 (18) | |
C15 | 0.0408 (8) | −0.1809 (7) | 0.4401 (9) | 0.0529 (19) | |
C16 | −0.0120 (9) | −0.5398 (7) | 0.3680 (8) | 0.060 (2) | |
C17 | 0.1339 (9) | −0.5270 (7) | 0.4971 (9) | 0.067 (2) | |
H17 | 0.2198 | −0.5459 | 0.4908 | 0.08* | |
C18 | 0.1471 (8) | −0.4896 (6) | 0.6225 (8) | 0.056 (2) | |
H18 | 0.2409 | −0.482 | 0.7032 | 0.067* | |
N1 | 0.5095 (9) | −0.3534 (6) | 0.3385 (8) | 0.091 (3) | |
N2 | 0.4193 (7) | 0.2576 (7) | 0.0607 (8) | 0.0695 (18) | |
N3 | 0.1399 (8) | −0.1689 (6) | 0.5479 (8) | 0.073 (2) | |
O1 | −0.0224 (7) | −0.5746 (6) | 0.2513 (7) | 0.0907 (19) | |
Se1 | 0.27892 (10) | −0.40669 (7) | 0.03883 (8) | 0.0644 (3) | |
Se2 | 0.46601 (8) | 0.31386 (6) | 0.35479 (8) | 0.0526 (2) | |
Se3 | −0.12835 (8) | −0.21052 (7) | 0.26265 (8) | 0.0524 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.040 (4) | 0.030 (3) | 0.030 (3) | 0.006 (3) | 0.019 (3) | 0.009 (3) |
C2 | 0.031 (3) | 0.034 (3) | 0.038 (3) | 0.010 (3) | 0.015 (3) | 0.013 (3) |
C3 | 0.038 (4) | 0.023 (3) | 0.034 (3) | 0.003 (2) | 0.010 (3) | 0.007 (3) |
C4 | 0.036 (4) | 0.035 (3) | 0.036 (3) | 0.007 (3) | 0.017 (3) | 0.008 (3) |
C5 | 0.033 (3) | 0.036 (3) | 0.041 (4) | 0.011 (3) | 0.020 (3) | 0.010 (3) |
C6 | 0.033 (4) | 0.035 (3) | 0.030 (3) | 0.002 (3) | 0.009 (3) | 0.006 (3) |
C7 | 0.048 (4) | 0.039 (3) | 0.041 (4) | 0.007 (3) | 0.019 (3) | 0.002 (3) |
C8 | 0.041 (4) | 0.053 (4) | 0.058 (4) | 0.001 (3) | 0.026 (3) | −0.007 (3) |
C9 | 0.038 (4) | 0.032 (3) | 0.042 (4) | 0.007 (3) | 0.011 (3) | 0.008 (3) |
C10 | 0.052 (4) | 0.051 (4) | 0.044 (4) | −0.002 (3) | 0.026 (3) | −0.007 (3) |
C11 | 0.043 (4) | 0.038 (3) | 0.054 (4) | 0.009 (3) | 0.025 (3) | 0.010 (3) |
C12 | 0.032 (4) | 0.054 (4) | 0.056 (4) | 0.003 (3) | 0.014 (3) | 0.003 (3) |
C13 | 0.062 (5) | 0.043 (4) | 0.070 (6) | 0.006 (4) | 0.010 (5) | 0.009 (4) |
C14 | 0.055 (5) | 0.044 (4) | 0.060 (5) | 0.010 (3) | 0.029 (4) | 0.017 (4) |
C15 | 0.042 (4) | 0.057 (4) | 0.074 (6) | 0.008 (3) | 0.038 (4) | 0.023 (4) |
C16 | 0.063 (5) | 0.042 (4) | 0.055 (5) | 0.003 (3) | 0.013 (4) | −0.005 (4) |
C17 | 0.055 (5) | 0.057 (5) | 0.075 (6) | −0.002 (4) | 0.024 (5) | −0.008 (4) |
C18 | 0.038 (4) | 0.045 (4) | 0.058 (5) | −0.002 (3) | 0.003 (4) | 0.000 (4) |
N1 | 0.102 (6) | 0.059 (4) | 0.066 (5) | 0.011 (4) | 0.001 (4) | 0.016 (4) |
N2 | 0.062 (4) | 0.081 (5) | 0.076 (5) | 0.016 (3) | 0.038 (4) | 0.027 (4) |
N3 | 0.048 (4) | 0.073 (5) | 0.074 (5) | 0.006 (3) | 0.008 (4) | 0.018 (4) |
O1 | 0.092 (4) | 0.099 (5) | 0.069 (4) | 0.008 (3) | 0.031 (4) | −0.015 (4) |
Se1 | 0.0763 (6) | 0.0383 (4) | 0.0574 (5) | 0.0103 (3) | 0.0144 (4) | −0.0032 (3) |
Se2 | 0.0525 (5) | 0.0330 (4) | 0.0600 (5) | −0.0034 (3) | 0.0178 (4) | 0.0046 (3) |
Se3 | 0.0416 (4) | 0.0567 (4) | 0.0604 (5) | −0.0011 (3) | 0.0259 (4) | 0.0125 (3) |
C1—C6 | 1.385 (8) | C10—H10B | 0.96 |
C1—C2 | 1.399 (8) | C10—H10C | 0.96 |
C1—C7 | 1.498 (8) | C11—Se3 | 1.982 (6) |
C2—C3 | 1.403 (8) | C11—H11A | 0.97 |
C2—C8 | 1.509 (8) | C11—H11B | 0.97 |
C3—C4 | 1.385 (8) | C12—H12A | 0.96 |
C3—C9 | 1.529 (8) | C12—H12B | 0.96 |
C4—C5 | 1.398 (8) | C12—H12C | 0.96 |
C4—C10 | 1.514 (8) | C13—N1 | 1.134 (9) |
C5—C6 | 1.410 (8) | C13—Se1 | 1.816 (8) |
C5—C11 | 1.495 (8) | C14—N2 | 1.159 (9) |
C6—C12 | 1.517 (8) | C14—Se2 | 1.829 (8) |
C7—Se1 | 1.983 (6) | C15—N3 | 1.114 (9) |
C7—H7A | 0.97 | C15—Se3 | 1.857 (9) |
C7—H7B | 0.97 | C16—O1 | 1.240 (9) |
C8—H8A | 0.96 | C16—C18i | 1.460 (11) |
C8—H8B | 0.96 | C16—C17 | 1.466 (10) |
C8—H8C | 0.96 | C17—C18 | 1.323 (10) |
C9—Se2 | 1.978 (6) | C17—H17 | 0.93 |
C9—H9A | 0.97 | C18—C16i | 1.460 (11) |
C9—H9B | 0.97 | C18—H18 | 0.93 |
C10—H10A | 0.96 | ||
C6—C1—C2 | 120.8 (5) | H9A—C9—H9B | 107.7 |
C6—C1—C7 | 119.9 (5) | C4—C10—H10A | 109.5 |
C2—C1—C7 | 119.3 (5) | C4—C10—H10B | 109.5 |
C1—C2—C3 | 118.7 (5) | H10A—C10—H10B | 109.5 |
C1—C2—C8 | 120.4 (5) | C4—C10—H10C | 109.5 |
C3—C2—C8 | 120.9 (5) | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 121.1 (5) | H10B—C10—H10C | 109.5 |
C4—C3—C9 | 119.2 (5) | C5—C11—Se3 | 114.9 (4) |
C2—C3—C9 | 119.7 (5) | C5—C11—H11A | 108.5 |
C3—C4—C5 | 119.8 (5) | Se3—C11—H11A | 108.5 |
C3—C4—C10 | 120.6 (5) | C5—C11—H11B | 108.5 |
C5—C4—C10 | 119.5 (5) | Se3—C11—H11B | 108.5 |
C4—C5—C6 | 119.6 (5) | H11A—C11—H11B | 107.5 |
C4—C5—C11 | 121.2 (5) | C6—C12—H12A | 109.5 |
C6—C5—C11 | 119.2 (5) | C6—C12—H12B | 109.5 |
C1—C6—C5 | 119.9 (5) | H12A—C12—H12B | 109.5 |
C1—C6—C12 | 120.5 (5) | C6—C12—H12C | 109.5 |
C5—C6—C12 | 119.6 (5) | H12A—C12—H12C | 109.5 |
C1—C7—Se1 | 114.8 (4) | H12B—C12—H12C | 109.5 |
C1—C7—H7A | 108.6 | N1—C13—Se1 | 176.6 (9) |
Se1—C7—H7A | 108.6 | N2—C14—Se2 | 179.2 (7) |
C1—C7—H7B | 108.6 | N3—C15—Se3 | 176.5 (7) |
Se1—C7—H7B | 108.6 | O1—C16—C18i | 119.7 (7) |
H7A—C7—H7B | 107.5 | O1—C16—C17 | 121.1 (8) |
C2—C8—H8A | 109.5 | C18i—C16—C17 | 119.2 (7) |
C2—C8—H8B | 109.5 | C18—C17—C16 | 121.9 (8) |
H8A—C8—H8B | 109.5 | C18—C17—H17 | 119 |
C2—C8—H8C | 109.5 | C16—C17—H17 | 119 |
H8A—C8—H8C | 109.5 | C17—C18—C16i | 118.9 (7) |
H8B—C8—H8C | 109.5 | C17—C18—H18 | 120.6 |
C3—C9—Se2 | 113.6 (4) | C16i—C18—H18 | 120.6 |
C3—C9—H9A | 108.9 | C13—Se1—C7 | 96.6 (3) |
Se2—C9—H9A | 108.9 | C14—Se2—C9 | 97.2 (3) |
C3—C9—H9B | 108.9 | C15—Se3—C11 | 97.3 (3) |
Se2—C9—H9B | 108.9 | ||
C6—C1—C2—C3 | 1.5 (8) | C7—C1—C6—C5 | −178.9 (5) |
C7—C1—C2—C3 | 179.4 (5) | C2—C1—C6—C12 | 179.9 (5) |
C6—C1—C2—C8 | 179.8 (5) | C7—C1—C6—C12 | 2.0 (8) |
C7—C1—C2—C8 | −2.3 (8) | C4—C5—C6—C1 | −1.2 (8) |
C1—C2—C3—C4 | 0.1 (8) | C11—C5—C6—C1 | 178.7 (5) |
C8—C2—C3—C4 | −178.2 (5) | C4—C5—C6—C12 | 177.9 (5) |
C1—C2—C3—C9 | 179.1 (5) | C11—C5—C6—C12 | −2.2 (8) |
C8—C2—C3—C9 | 0.9 (8) | C6—C1—C7—Se1 | −75.7 (6) |
C2—C3—C4—C5 | −2.3 (8) | C2—C1—C7—Se1 | 106.4 (5) |
C9—C3—C4—C5 | 178.7 (5) | C4—C3—C9—Se2 | −77.2 (6) |
C2—C3—C4—C10 | −179.0 (5) | C2—C3—C9—Se2 | 103.8 (5) |
C9—C3—C4—C10 | 2.0 (8) | C4—C5—C11—Se3 | −102.8 (6) |
C3—C4—C5—C6 | 2.8 (8) | C6—C5—C11—Se3 | 77.3 (6) |
C10—C4—C5—C6 | 179.6 (5) | O1—C16—C17—C18 | 179.7 (7) |
C3—C4—C5—C11 | −177.1 (5) | C18i—C16—C17—C18 | −0.1 (11) |
C10—C4—C5—C11 | −0.3 (8) | C16—C17—C18—C16i | 0.1 (11) |
C2—C1—C6—C5 | −1.0 (8) |
Symmetry code: (i) −x, −y−1, −z+1. |
C15H15N3Se3·0.5(C6H4N2O4) | Z = 2 |
Mr = 558.23 | F(000) = 542 |
Triclinic, P1 | Dx = 1.821 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.187 (3) Å | Cell parameters from 4815 reflections |
b = 10.415 (2) Å | θ = 2.7–24.5° |
c = 11.232 (3) Å | µ = 5.44 mm−1 |
α = 75.891 (8)° | T = 296 K |
β = 82.213 (9)° | Needle, colorless |
γ = 61.753 (8)° | 0.31 × 0.03 × 0.01 mm |
V = 1017.8 (5) Å3 |
APEXII, Bruker-AXS diffractometer | 4665 independent reflections |
Radiation source: fine-focus sealed tube | 2903 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
CCD rotation images, thick slices scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan [Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA] | h = −12→13 |
Tmin = 0.822, Tmax = 0.947 | k = −9→13 |
16919 measured reflections | l = −14→14 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.8073P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
4665 reflections | Δρmax = 1.10 e Å−3 |
247 parameters | Δρmin = −0.47 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7626 (4) | 0.3551 (4) | 0.6373 (3) | 0.0294 (9) | |
C2 | 0.8745 (4) | 0.2905 (4) | 0.5518 (3) | 0.0318 (9) | |
C3 | 0.8465 (4) | 0.2250 (4) | 0.4688 (3) | 0.0298 (9) | |
C4 | 0.7094 (5) | 0.2235 (4) | 0.4722 (3) | 0.0315 (9) | |
C5 | 0.5986 (4) | 0.2900 (4) | 0.5582 (4) | 0.0315 (9) | |
C6 | 0.6261 (4) | 0.3537 (4) | 0.6419 (3) | 0.0313 (9) | |
C7 | 0.7900 (5) | 0.4315 (5) | 0.7228 (4) | 0.0386 (10) | |
H7A | 0.7007 | 0.5242 | 0.7272 | 0.046* | |
H7B | 0.8694 | 0.4565 | 0.6876 | 0.046* | |
C8 | 1.0239 (5) | 0.2899 (5) | 0.5492 (4) | 0.0473 (11) | |
H8A | 1.0111 | 0.3748 | 0.578 | 0.071* | |
H8B | 1.0638 | 0.2944 | 0.4666 | 0.071* | |
H8C | 1.0914 | 0.2004 | 0.6013 | 0.071* | |
C9 | 0.9653 (5) | 0.1547 (5) | 0.3778 (4) | 0.0401 (10) | |
H9A | 0.9724 | 0.0585 | 0.3778 | 0.048* | |
H9B | 1.06 | 0.1375 | 0.4044 | 0.048* | |
C10 | 0.6805 (5) | 0.1521 (5) | 0.3825 (4) | 0.0472 (12) | |
H10A | 0.6227 | 0.2281 | 0.316 | 0.071* | |
H10B | 0.6268 | 0.0985 | 0.424 | 0.071* | |
H10C | 0.7738 | 0.0846 | 0.3509 | 0.071* | |
C11 | 0.4483 (5) | 0.2965 (5) | 0.5572 (4) | 0.0396 (10) | |
H11A | 0.4371 | 0.281 | 0.4782 | 0.048* | |
H11B | 0.3726 | 0.396 | 0.5642 | 0.048* | |
C12 | 0.5088 (5) | 0.4197 (5) | 0.7361 (4) | 0.0440 (11) | |
H12A | 0.4439 | 0.5221 | 0.7023 | 0.066* | |
H12B | 0.5555 | 0.4138 | 0.8073 | 0.066* | |
H12C | 0.4518 | 0.3654 | 0.759 | 0.066* | |
C13 | 0.9562 (8) | 0.1316 (6) | 0.8556 (5) | 0.0750 (18) | |
C14 | 0.8938 (5) | 0.4509 (6) | 0.2443 (4) | 0.0458 (11) | |
C15 | 0.5742 (6) | −0.0177 (6) | 0.6603 (4) | 0.0446 (11) | |
C16 | 0.4477 (7) | 0.1332 (6) | 0.0274 (4) | 0.0576 (14) | |
C17 | 0.5966 (7) | 0.0544 (6) | 0.0116 (5) | 0.0680 (16) | |
H17 | 0.661 | 0.0919 | 0.0193 | 0.082* | |
C18 | 0.3507 (7) | 0.0832 (6) | 0.0164 (5) | 0.0648 (15) | |
H18 | 0.2489 | 0.1413 | 0.0276 | 0.078* | |
N11 | 1.0246 (10) | 0.0148 (6) | 0.8390 (5) | 0.141 (3) | |
N2 | 0.8630 (5) | 0.5639 (5) | 0.2635 (4) | 0.0625 (12) | |
N3 | 0.6727 (5) | −0.1317 (6) | 0.6509 (4) | 0.0696 (13) | |
N4 | 0.3869 (8) | 0.2844 (6) | 0.0585 (4) | 0.0791 (16) | |
O1 | 0.2556 (7) | 0.3623 (5) | 0.0522 (5) | 0.1136 (19) | |
O2 | 0.4768 (7) | 0.3155 (5) | 0.0890 (5) | 0.1110 (18) | |
Se1 | 0.84403 (7) | 0.31350 (6) | 0.89203 (4) | 0.05981 (18) | |
Se2 | 0.93243 (6) | 0.27375 (5) | 0.20684 (4) | 0.05169 (17) | |
Se3 | 0.40943 (5) | 0.15159 (5) | 0.68743 (4) | 0.04589 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.035 (2) | 0.029 (2) | 0.023 (2) | −0.0131 (18) | −0.0053 (17) | −0.0053 (16) |
C2 | 0.033 (2) | 0.033 (2) | 0.029 (2) | −0.0160 (19) | −0.0061 (18) | −0.0028 (17) |
C3 | 0.032 (2) | 0.027 (2) | 0.025 (2) | −0.0088 (18) | −0.0022 (17) | −0.0042 (16) |
C4 | 0.041 (2) | 0.028 (2) | 0.027 (2) | −0.0168 (19) | −0.0101 (18) | −0.0008 (17) |
C5 | 0.035 (2) | 0.029 (2) | 0.030 (2) | −0.0149 (18) | −0.0025 (18) | −0.0030 (17) |
C6 | 0.034 (2) | 0.029 (2) | 0.027 (2) | −0.0112 (18) | −0.0018 (17) | −0.0027 (17) |
C7 | 0.049 (3) | 0.041 (2) | 0.029 (2) | −0.022 (2) | −0.0018 (19) | −0.0076 (19) |
C8 | 0.035 (3) | 0.062 (3) | 0.050 (3) | −0.023 (2) | 0.001 (2) | −0.020 (2) |
C9 | 0.042 (3) | 0.039 (2) | 0.032 (2) | −0.012 (2) | −0.0008 (19) | −0.0120 (19) |
C10 | 0.057 (3) | 0.051 (3) | 0.046 (3) | −0.030 (2) | 0.001 (2) | −0.021 (2) |
C11 | 0.044 (3) | 0.042 (2) | 0.033 (2) | −0.021 (2) | −0.0069 (19) | −0.0019 (19) |
C12 | 0.040 (3) | 0.048 (3) | 0.047 (3) | −0.018 (2) | 0.007 (2) | −0.021 (2) |
C13 | 0.124 (5) | 0.051 (3) | 0.032 (3) | −0.025 (4) | −0.012 (3) | −0.007 (2) |
C14 | 0.042 (3) | 0.055 (3) | 0.044 (3) | −0.026 (2) | 0.001 (2) | −0.009 (2) |
C15 | 0.042 (3) | 0.053 (3) | 0.043 (3) | −0.028 (3) | 0.002 (2) | −0.007 (2) |
C16 | 0.089 (4) | 0.051 (3) | 0.036 (3) | −0.036 (3) | 0.011 (3) | −0.014 (2) |
C17 | 0.090 (5) | 0.075 (4) | 0.052 (3) | −0.050 (4) | 0.009 (3) | −0.017 (3) |
C18 | 0.073 (4) | 0.059 (3) | 0.050 (3) | −0.019 (3) | 0.012 (3) | −0.022 (3) |
N11 | 0.258 (9) | 0.049 (3) | 0.056 (4) | −0.017 (4) | −0.014 (4) | −0.017 (3) |
N2 | 0.059 (3) | 0.058 (3) | 0.079 (3) | −0.031 (2) | −0.002 (2) | −0.019 (2) |
N3 | 0.059 (3) | 0.072 (3) | 0.070 (3) | −0.028 (3) | 0.012 (2) | −0.014 (3) |
N4 | 0.122 (5) | 0.057 (3) | 0.050 (3) | −0.035 (4) | 0.015 (3) | −0.019 (3) |
O1 | 0.133 (5) | 0.060 (3) | 0.114 (4) | −0.010 (3) | 0.003 (4) | −0.035 (3) |
O2 | 0.166 (5) | 0.094 (4) | 0.107 (4) | −0.077 (4) | 0.020 (4) | −0.055 (3) |
Se1 | 0.0785 (4) | 0.0578 (3) | 0.0344 (3) | −0.0178 (3) | −0.0103 (2) | −0.0182 (2) |
Se2 | 0.0685 (4) | 0.0520 (3) | 0.0304 (3) | −0.0231 (3) | 0.0065 (2) | −0.0151 (2) |
Se3 | 0.0452 (3) | 0.0480 (3) | 0.0469 (3) | −0.0255 (2) | 0.0043 (2) | −0.0079 (2) |
C1—C6 | 1.391 (5) | C10—H10C | 0.96 |
C1—C2 | 1.402 (5) | C11—Se3 | 1.977 (4) |
C1—C7 | 1.513 (5) | C11—H11A | 0.97 |
C2—C3 | 1.408 (5) | C11—H11B | 0.97 |
C2—C8 | 1.516 (6) | C12—H12A | 0.96 |
C3—C4 | 1.400 (6) | C12—H12B | 0.96 |
C3—C9 | 1.495 (5) | C12—H12C | 0.96 |
C4—C5 | 1.406 (5) | C13—N11 | 1.128 (7) |
C4—C10 | 1.518 (5) | C13—Se1 | 1.807 (6) |
C5—C6 | 1.399 (5) | C14—N2 | 1.133 (6) |
C5—C11 | 1.501 (6) | C14—Se2 | 1.840 (5) |
C6—C12 | 1.502 (5) | C15—N3 | 1.154 (6) |
C7—Se1 | 1.983 (4) | C15—Se3 | 1.828 (5) |
C7—H7A | 0.97 | C16—C18 | 1.347 (8) |
C7—H7B | 0.97 | C16—C17 | 1.352 (8) |
C8—H8A | 0.96 | C16—N4 | 1.507 (7) |
C8—H8B | 0.96 | C17—C18i | 1.374 (7) |
C8—H8C | 0.96 | C17—H17 | 0.93 |
C9—Se2 | 1.989 (4) | C18—C17i | 1.373 (7) |
C9—H9A | 0.97 | C18—H18 | 0.93 |
C9—H9B | 0.97 | N4—O1 | 1.193 (7) |
C10—H10A | 0.96 | N4—O2 | 1.217 (7) |
C10—H10B | 0.96 | ||
C6—C1—C2 | 121.0 (3) | C4—C10—H10A | 109.5 |
C6—C1—C7 | 119.8 (4) | C4—C10—H10B | 109.5 |
C2—C1—C7 | 119.1 (4) | H10A—C10—H10B | 109.5 |
C1—C2—C3 | 119.0 (4) | C4—C10—H10C | 109.5 |
C1—C2—C8 | 120.6 (4) | H10A—C10—H10C | 109.5 |
C3—C2—C8 | 120.4 (4) | H10B—C10—H10C | 109.5 |
C4—C3—C2 | 120.5 (3) | C5—C11—Se3 | 115.8 (3) |
C4—C3—C9 | 120.0 (4) | C5—C11—H11A | 108.3 |
C2—C3—C9 | 119.6 (4) | Se3—C11—H11A | 108.3 |
C3—C4—C5 | 119.4 (3) | C5—C11—H11B | 108.3 |
C3—C4—C10 | 120.0 (4) | Se3—C11—H11B | 108.3 |
C5—C4—C10 | 120.5 (4) | H11A—C11—H11B | 107.4 |
C6—C5—C4 | 120.5 (4) | C6—C12—H12A | 109.5 |
C6—C5—C11 | 120.0 (4) | C6—C12—H12B | 109.5 |
C4—C5—C11 | 119.6 (4) | H12A—C12—H12B | 109.5 |
C1—C6—C5 | 119.5 (4) | C6—C12—H12C | 109.5 |
C1—C6—C12 | 120.5 (4) | H12A—C12—H12C | 109.5 |
C5—C6—C12 | 119.9 (4) | H12B—C12—H12C | 109.5 |
C1—C7—Se1 | 115.1 (3) | N11—C13—Se1 | 176.3 (6) |
C1—C7—H7A | 108.5 | N2—C14—Se2 | 176.1 (5) |
Se1—C7—H7A | 108.5 | N3—C15—Se3 | 173.8 (4) |
C1—C7—H7B | 108.5 | C18—C16—C17 | 123.1 (5) |
Se1—C7—H7B | 108.5 | C18—C16—N4 | 118.3 (6) |
H7A—C7—H7B | 107.5 | C17—C16—N4 | 118.6 (6) |
C2—C8—H8A | 109.5 | C16—C17—C18i | 117.5 (5) |
C2—C8—H8B | 109.5 | C16—C17—H17 | 121.3 |
H8A—C8—H8B | 109.5 | C18i—C17—H17 | 121.3 |
C2—C8—H8C | 109.5 | C16—C18—C17i | 119.4 (5) |
H8A—C8—H8C | 109.5 | C16—C18—H18 | 120.3 |
H8B—C8—H8C | 109.5 | C17i—C18—H18 | 120.3 |
C3—C9—Se2 | 114.7 (3) | O1—N4—O2 | 125.8 (6) |
C3—C9—H9A | 108.6 | O1—N4—C16 | 117.5 (7) |
Se2—C9—H9A | 108.6 | O2—N4—C16 | 116.7 (6) |
C3—C9—H9B | 108.6 | C13—Se1—C7 | 98.5 (2) |
Se2—C9—H9B | 108.6 | C14—Se2—C9 | 96.84 (19) |
H9A—C9—H9B | 107.6 | C15—Se3—C11 | 98.19 (19) |
C6—C1—C2—C3 | 0.8 (5) | C7—C1—C6—C12 | −3.6 (6) |
C7—C1—C2—C3 | −177.3 (3) | C4—C5—C6—C1 | 2.0 (6) |
C6—C1—C2—C8 | −178.8 (4) | C11—C5—C6—C1 | −176.1 (3) |
C7—C1—C2—C8 | 3.1 (6) | C4—C5—C6—C12 | −177.9 (4) |
C1—C2—C3—C4 | −0.4 (5) | C11—C5—C6—C12 | 3.9 (6) |
C8—C2—C3—C4 | 179.1 (4) | C6—C1—C7—Se1 | 80.4 (4) |
C1—C2—C3—C9 | −179.6 (3) | C2—C1—C7—Se1 | −101.5 (4) |
C8—C2—C3—C9 | 0.0 (6) | C4—C3—C9—Se2 | 76.3 (4) |
C2—C3—C4—C5 | 0.9 (6) | C2—C3—C9—Se2 | −104.6 (4) |
C9—C3—C4—C5 | −180.0 (3) | C6—C5—C11—Se3 | −78.3 (4) |
C2—C3—C4—C10 | −179.8 (4) | C4—C5—C11—Se3 | 103.6 (4) |
C9—C3—C4—C10 | −0.7 (6) | C18—C16—C17—C18i | −0.3 (9) |
C3—C4—C5—C6 | −1.7 (6) | N4—C16—C17—C18i | 179.8 (4) |
C10—C4—C5—C6 | 179.0 (4) | C17—C16—C18—C17i | 0.3 (9) |
C3—C4—C5—C11 | 176.5 (3) | N4—C16—C18—C17i | −179.8 (4) |
C10—C4—C5—C11 | −2.9 (6) | C18—C16—N4—O1 | −12.0 (8) |
C2—C1—C6—C5 | −1.6 (6) | C17—C16—N4—O1 | 167.9 (6) |
C7—C1—C6—C5 | 176.5 (3) | C18—C16—N4—O2 | 167.4 (5) |
C2—C1—C6—C12 | 178.4 (4) | C17—C16—N4—O2 | −12.7 (7) |
Symmetry code: (i) −x+1, −y, −z. |
Funding information
The following funding is acknowledged: Agence Nationale de la Recherche (grant No. ANR-17-CE07-0025-02 to Marc Fourmigué); Rennes Metropole (bursary No. A17.612 to Asia Marie S. Riel); French Embassy in Washington (Chateaubriand Fellowship) (award to Asia Marie S. Riel); National Science Foundation (grant No. CAREER CHE-1555324).
References
Alkorta, I., Elguero, J. & Del Bene, J. E. (2018). ChemPhysChem, 19, 1756–1765. Google Scholar
Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729–2730. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436. CrossRef Web of Science IUCr Journals Google Scholar
Bauzá, A. & Frontera, A. (2018). Molecules, 23, 699. Google Scholar
Benz, S., Macchione, M., Verolet, Q., Mareda, J., Sakai, N. & Matile, S. (2016). J. Am. Chem. Soc. 138, 9093–9096. CrossRef CAS Google Scholar
Benz, S., Poblador-Bahamonde, A. I., Low-Ders, N. & Matile, S. (2018). Angew. Chem. Int. Ed. 57, 5408–5412. CrossRef CAS Google Scholar
Bleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666–2674. Web of Science CrossRef PubMed CAS Google Scholar
Brezgunova, M., Lieffrig, J., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Ángyán, J., Fourmigué, M. & Espinosa, E. (2013). Cryst. Growth Des. 13, 3283–3289. CrossRef CAS Google Scholar
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2014). Cryst. Growth Des. 14, 2697–2702. Web of Science CrossRef CAS Google Scholar
Caygill, J. S., Davis, F. & Higson, S. P. J. (2012). Talanta, 88, 14–29. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195. Web of Science CrossRef CAS PubMed Google Scholar
Huynh, H.-T., Jeannin, O. & Fourmigué, M. (2017). Chem. Commun. 53, 8467–8469. CrossRef CAS Google Scholar
Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502–10509. CrossRef CAS Google Scholar
Klapötke, T. M., Krumm, B., Gálvez-Ruiz, J., Nöth, H. & Schwab, I. (2004). Eur. J. Inorg. Chem. pp. 4764–4769. Google Scholar
Klapötke, T. M., Krumm, B. & Scherr, M. (2008). Inorg. Chem. 47, 7025–7028. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, P., Ruan, C., Li, T. & Ji, B. (2012). Acta Cryst. E68, o1431. CrossRef IUCr Journals Google Scholar
Maartmann-Moe, K., Sanderud, K. A. & Songstad, J. (1984). Acta Chem. Scand. 38, 187–200. Google Scholar
Pascoe, D. J., Ling, K. B. & Cockroft, S. L. (2017). J. Am. Chem. Soc. 139, 15160–15167. CrossRef CAS Google Scholar
Politzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166–32178. CrossRef CAS Google Scholar
Sánchez-Sanz, G. & Trujillo, C. (2018). J. Phys. Chem. A, 122, 1369–1377. Google Scholar
Schubert, H. & Kuznetsov, A. (2012). Editors. Detection of Bulk Explosives: Advanced Techniques against Terrorism. NATO ARW Proceedings, Springer. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Syssa-Magalé, J.-L., Boubekeur, K., Palvadeau, P., Meerschaut, A. & Schöllhorn, B. (2005). CrystEngComm, 7, 302–308. Google Scholar
Wang, H., Liu, J. & Wang, W. (2018). Phys. Chem. Chem. Phys. 20, 5227–5234. CrossRef CAS Google Scholar
Wang, W., Ji, B. & Zhang, Y. (2009). J. Phys. Chem. A, 113, 8132–8135. CrossRef Google Scholar
Wonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017). Chem. Eur. J. 23, 16972–16975. CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.