research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Co-crystals of an organic tri­seleno­cyanate with ditopic Lewis bases: recurrent chalcogen bond interactions motifs

CROSSMARK_Color_square_no_text.svg

aISCR (Institut de Sciences Chimiques de Rennes), Universite Rennes, CNRS, UMR 6226, 35000 Rennes, France, and bDepartment of Chemistry and Biochemistry, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
*Correspondence e-mail: marc.fourmigue@univ-rennes1.fr

Edited by A. Nangia, CSIR–National Chemical Laboratory, India (Received 22 October 2018; accepted 15 December 2018; online 19 January 2019)

Organic seleno­cyanates R–Se–CN can act as an amphoteric chalcogen bond (ChB) donor (through the Se atom) and acceptor (through the N atom lone pair). Co-crystallization of tri-s­ubstituted 1,3,5-tris­(seleno­cyanato­methyl)-2,4,6-tri­methyl­benzene (1) is investigated with different ditopic Lewis bases acting as chalcogen bond (ChB) acceptors to investigate the outcome of the competition, as ChB acceptor, between the nitro­gen lone pair of the SeCN group and other Lewis bases involving pyridinyl or carbonyl functions. In the presence of tetra­methyl­pyrazine (TMP), benzo­quinone (BQ) and para-di­nitro­benzene (pDNB) as ditopic Lewis bases, a recurrent oligomeric motif stabilized by six ChB interactions is observed, involving six SeCN groups and the ChB acceptor sites of TMP, BQ and pDNB in the 2:1 adducts (1)2·TMP, (1)2·BQ and (1)2·pDNB.

1. Introduction

Following extensive investigations on halogen bonding interactions as a rediscovered tool in crystal engineering (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]), recent approaches have highlighted the generality of the σ-hole concept (Cavallo et al., 2014[Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2014). Cryst. Growth Des. 14, 2697-2702.]) and its extension to chalcogen (S, Se, Te), pnictogen (P, As, Sb) and tetrel (Si, Ge, Sn) elements. Halogen atoms are well known to develop one single σ-hole in the prolongation of the C—X bond, allowing for an unprecedented predictability in crystal engineering strategies. The situation is rather different with chalcogens since the presence of two covalent bonds leads to the appearance of two σ-holes (Wang et al., 2009[Wang, W., Ji, B. & Zhang, Y. (2009). J. Phys. Chem. A, 113, 8132-8135.]; Alkorta et al., 2018[Alkorta, I., Elguero, J. & Del Bene, J. E. (2018). ChemPhysChem, 19, 1756-1765.]; Bleiholder et al., 2006[Bleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666-2674.]); as theoretically analyzed in model compounds (Politzer et al., 2017[Politzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166-32178.]; Pascoe et al., 2017[Pascoe, D. J., Ling, K. B. & Cockroft, S. L. (2017). J. Am. Chem. Soc. 139, 15160-15167.]; Bauzá & Frontera, 2018[Bauzá, A. & Frontera, A. (2018). Molecules, 23, 699.]), and experimentally illustrated in the crystal structures of Se(CN)2 (Klapötke et al., 2004[Klapötke, T. M., Krumm, B., Gálvez-Ruiz, J., Nöth, H. & Schwab, I. (2004). Eur. J. Inorg. Chem. pp. 4764-4769.]; Klapötke et al., 2008[Klapötke, T. M., Krumm, B. & Scherr, M. (2008). Inorg. Chem. 47, 7025-7028.]), seleno­phthalic anhydride (Brezgunova et al., 2013[Brezgunova, M., Lieffrig, J., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Ángyán, J., Fourmigué, M. & Espinosa, E. (2013). Cryst. Growth Des. 13, 3283-3289.]) and tellurophene derivatives (Benz et al., 2016[Benz, S., Macchione, M., Verolet, Q., Mareda, J., Sakai, N. & Matile, S. (2016). J. Am. Chem. Soc. 138, 9093-9096.]; Sánchez-Sanz & Trujillo, 2018[Sánchez-Sanz, G. & Trujillo, C. (2018). J. Phys. Chem. A, 122, 1369-1377.]). Similar to halogen bonding, chalcogen bond donors are also investigated as Lewis acids in catalysis (Wonner et al., 2017[Wonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017). Chem. Eur. J. 23, 16972-16975.]; Benz et al., 2018[Benz, S., Poblador-Bahamonde, A. I., Low-Ders, N. & Matile, S. (2018). Angew. Chem. Int. Ed. 57, 5408-5412.]). We recently postulated that the unsymmetrical substitution of the chalcogen atom, for example in organic seleno­cyanates R—Se—CN could strongly favor one σ-hole over the other. We found indeed that crystal structures of organic seleno­cyanates exhibit a recurrent supramolecular motif where the Se atom interacts with the lone pair on the N atom of a neighboring SeCN moiety (Jeannin et al., 2018[Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502-10509.]), leading to the formation of extended chains ⋯Se(R)CN⋯Se(R)CN⋯, most probably stabilized by cooperativity. The formation of these motifs is hindered when the seleno­cyanate is faced with stronger Lewis bases (such as 4,4′-bi­pyridine) and the Se atoms then interact with the pyridinic nitro­gen atom, with an even shorter Se⋯N distance (Huynh et al., 2017[Huynh, H.-T., Jeannin, O. & Fourmigué, M. (2017). Chem. Commun. 53, 8467-8469.]). Intermolecular (Maartmann-Moe et al., 1984[Maartmann-Moe, K., Sanderud, K. A. & Songstad, J. (1984). Acta Chem. Scand. 38, 187-200.]) as well as intramolecular (Wang et al., 2018[Wang, H., Liu, J. & Wang, W. (2018). Phys. Chem. Chem. Phys. 20, 5227-5234.]) Se⋯O2N– interactions can also displace the nitro­gen atom of the SeCN moiety from interaction with a neighboring Se atom.

In the course of our investigations of the solid-state arrangement of benzylic seleno­cyanates, we turned our attention to tri-substituted derivatives such as 1,3,5-tris­(seleno­cyanato­methyl)-2,4,6-tri­methyl­benzene (1). It was found to crystallize either alone or as a solvate with DMF or AcOEt (Jeannin et al., 2018[Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502-10509.]). In the three structures, we confirmed the formation of recurrent linear ChB motifs where the lone pair of the nitro­gen atom in the R—Se—CN moiety interacts as Lewis base with the σ-hole located on the Se atom, essentially in the prolongation of the NC–Se bond. As shown in Fig. 1[link](a) for the DMF solvate, i.e. (1)·DMF, this interaction pattern was complemented with a side interaction between the Se atom and the oxygen atom of DMF. On the other hand, in the AcOEt solvate [Fig. 1[link](b)], the carbonyl oxygen atom displaces one nitro­gen atom of a SeCN group to enter into a strong Se⋯O=C(OEt)Me interaction (Jeannin et al., 2018[Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502-10509.]). A question then arises about the outcome of the ChB competition of a given Se atom as a ChB donor, when interacting either with the N atom of a neighboring SeCN moiety or with another Lewis base. We report here on the outcome of the co-crystallization of (1) with three different ditopic Lewis bases, namely tetra­methyl­pyrazine (TMP), benzo­quinone (BQ) and para-di­nitro­benzene (pDNB), allowing us to evaluate the robustness of these one-dimensional ⋯Se(R)CN⋯Se(R)CN⋯ motifs.

[Figure 1]
Figure 1
Details of the ChB interactions (orange thick dotted lines for the Se⋯N interactions, red thin dotted lines for the Se⋯O interactions) in the solvates of (1) with: (a) DMF, (b) AcOEt. Hydrogen atoms were omitted for clarity. Only one of the two disordered AcOEt molecules in (b) is shown.

2. Experimental

2.1. Crystal growth

Compound (1) was prepared as described by Jeannin et al. (2018[Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502-10509.]). All cocrystals were obtained from vapor diffusion of di­ethyl ether into ethyl acetate (2 ml) mixtures of two equivalents of (1) (10.7 mg, 11 mg and 10.8 mg, respectively) and one equivalent of either TMP (2.2 mg), BQ (3.5 mg) or pDNB (2.8 mg).

2.2. Crystallography

Single-crystal X-ray diffraction data were collected at room temperature on an APEXII Bruker-AXS diffractometer operating with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods using the SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.]) program and then refined with full-matrix least-square methods based on F2 (SHELXL-2014/7; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) with the aid of the WINGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. Crystallographic data on X-ray data collection and structure refinements are given in Table 1[link].

Table 1
Experimental details

For each structure determination: T = 296 (2) K, triclinic, space group P[\overline{1}], Z = 2, Bruker-AXS APEXII diffractometer, multi-scan absorption correction (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]), H-atom parameters constrained.

  (1)·0.5TMP (1)·0.5BQ (1)·0.5pDNB
Crystal data
Chemical formula C15H15N3Se3·0.5(C8H12N2) C15H15N3Se3·0.5(C6H4O2) C15H15N3Se3·0.5(C6H4N2O4)
Mr 542.28 528.23 558.23
a, b, c (Å) 9.797 (3), 10.560 (3), 10.656 (3) 10.008 (2), 10.4345 (19), 10.760 (2) 10.187 (3), 10.415 (2), 11.232 (3)
α, β, γ (°) 87.528 (10), 69.844 (8), 87.528 (9) 93.538 (5), 117.528 (5), 95.282 (5) 75.891 (8), 82.213 (9), 61.753 (8)
V3) 1033.5 (5) 985.3 (3) 1017.8 (5)
μ (mm−1) 5.35 5.61 5.44
Crystal size (mm) 0.13 × 0.04 × 0.02 0.28 × 0.02 × 0.01 0.31 × 0.03 × 0.01
 
Data collection
Tmin, Tmax 0.774, 0.899 0.874, 0.945 0.822, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 25 685, 4706, 2995 24 136, 4486, 2412 16 919, 4665, 2903
Rint 0.057 0.088 0.050
(sin θ/λ)max−1) 0.648 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 1.00 0.054, 0.140, 1.00 0.042, 0.106, 0.97
No. of reflections 4706 4486 4665
No. of parameters 240 229 247
Δρmax, Δρmin (e Å−3) 0.70, −0.53 0.82, −0.66 1.10, −0.47
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.]), SHELXL2014/7 (Sheldrick, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), ORTEP for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

3. Results and discussion

Co-crystallization of (1) with either TMP, BQ or pDNB was performed by mixing solutions of both partners in ethyl acetate and diffusing the mixture with di­ethyl ether. Crystals formed after two days. All three co-crystals crystallize in the triclinic system, space group [P\bar 1], with the tris(seleno­cyanate) derivative (1) in the general position in the unit cell, and the ditopic ChB acceptor on the inversion center; hence the 2:1 stoichiometry, that is (1)2·TMP, (1)2·BQ and (1)2·pDNB. The three structures are closely related (Fig. 2[link]). Among the three independent SeCN groups in (1), two are engaged in an Se⋯NC ChB while the third one is engaged in a ChB with the oxygen or nitro­gen atom of the coformer, TMP, BQ or pDNB. It gives rise locally to the recurring of inversion-centered oligomeric ChB motifs shown in Fig. 3[link].

[Figure 2]
Figure 2
Views of the ChB interactions in: (a) (1)2·TMP, (b) (1)2·BQ and (c) (1)2·pDNB. Hydrogen atoms have been omitted for clarity. The ChB interactions are indicated as orange (Se⋯N) or red (Se⋯O) dotted lines.
[Figure 3]
Figure 3
Schematic representation of the oligomeric chalcogen-bonded motifs found in: (a) (1)2·TMP, (b) (1)2·BQ and (c) (1)2·pDNB.

A comparison of the ChB characteristics within the three compounds (see Table 2[link] and Scheme 1[link]) shows a large dispersion of the Se⋯NC ChB distances, from 2.96 to 3.31 Å, that is a reduction ratio (RR) relative to the sum of the van der Waals radii (1.90 + 1.55 = 3.45 Å) in the range 0.86–0.96. The Se⋯O ChB contacts are slightly shorter, with RR down to 0.86, in line with the smaller van der Waals radius of O (1.52 Å) versus N (1.55 Å).

[Scheme 1]

Table 2
ChB characteristics

Refer to Scheme 1[link] for positions of the ChB.

  ChB a ChB b ChB c  
  Se⋯N (Å) C—Se⋯N (°) Se⋯N (Å) C—Se⋯N (°) Se⋯N,O (Å) C—Se⋯N,O (°) Reference
TMP 3.096 (6) 178.8 (2) 3.029 (11) 175.0 (2) 3.171 (11) (N) 172.6 (2) (N) This work
BQ 3.315 (15) 177.1 (3) 3.192 (10) 174.6 (3) 2.966 (13) (O) 170.7 (3) (O) This work
pDNB 3.063 (20) 178.8 (2) 2.989 (9) 175.3 (2) 3.231 (11) (O) 161.9 (2) (O) This work
               
AcOEt 3.174 (4) 177.0 (1) 2.965 (3) 174.9 (1) 2.925 (6) (O) 166.5 (2) (O) Jeannin et al. (2018[Jeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502-10509.])
2.871 (3) (O) 168.8 (2) (O)
†The oxygen atom of the carbonyl group in AcOEt is disordered on two equiprobable positions.

The closely related structural motifs found in (1)2·TMP, (1)2·BQ and (1)2·pDNB, are also found in their solid-state organization in the crystal. As shown in Fig. 4[link], we note the recurrent formation of stacks of (1), interconnected through the Se⋯(O, N) ChB interaction with TMP, BQ or pDNB molecules acting as ditopic ChB acceptors between the chains.

[Figure 4]
Figure 4
Solid state organization in (a) (1)2·TMP viewed in projection along c axis, (b) (1)2·BQ viewed in projection along ac and (c) (1)2·pDNB viewed in projection along ab.

The efficiency of benzylic seleno­cyanates such as (1) to act as strong ChB donors can be traced back from the amplitude of the σ-hole generated on the selenium atom. As shown in Fig. 5[link], the electrostatic surface potential (ESP) map calculated with an extremum surface potential Vs (see Politzer et al., 2017[Politzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166-32178.]) for (1) shows the presence of positively charged areas in the prolongation of the three C—Se bonds, with Vs,max of 41.1 kcal mol−1. This value can be compared with that calculated for the model benzyl­seleno­cyanate PhCH2–SeCN molecule where it amounts to 36.4 kcal mol−1, or with that calculated for the reference halogen bond donor F5C6–I (35.7 kcal mol−1) under the same conditions. These calculations demonstrate that tri-substitution actually activates the three individual ChB donor moieties.

[Figure 5]
Figure 5
Three views of the computed electrostatic surface potential of (1) (0.001 a.u. molecular surface). Potential scale ranges from −10 kcal mol−1 to 30 kcal mol−1. From DFT calculations with B3LYP functional, 6-31+G** basis set for C, H and N, LANDL2Ddp ECP basis set for Se.

These similarities also demonstrate that the three ChB acceptors used here can play a very similar role as ditopic Lewis bases. An interesting analogy can be made with halogen bonding (XB) if we compare reported structures involving these three molecules (TMP, BQ, pDNB) and a common XB donor such as 1,4-di­iodo­perfluoro­benzene. Indeed, p-I2F4C6 has been reported to co-crystallize with TMP (CSD refcode JAQMAQ; Syssa-Magalé et al., 2005[Syssa-Magalé, J.-L., Boubekeur, K., Palvadeau, P., Meerschaut, A. & Schöllhorn, B. (2005). CrystEngComm, 7, 302-308.]) and BQ (CSD refcode ZARFUV; Liu et al., 2012[Liu, P., Ruan, C., Li, T. & Ji, B. (2012). Acta Cryst. E68, o1431.]), while the non-fluorinated 1,4-diiodo­benzene has been co-crystallized with pDNB (CSD refcode YESZEB; Allen et al., 1994[Allen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729-2730.]). As shown in Fig. 6[link], the three reported structures show a recurrent 1D structure where TMP, BQ and pDNB also play a similar role.

[Figure 6]
Figure 6
Detail of the one-dimensional structures stabilized by 1,4-di­iodo­perfluoro­benzene XB with the three ditopic molecules (a) TMP, (b) BQ and (c) pDNB, acting as analogous XB acceptors.

In conclusion, we have shown here that specific supra­molecular motifs can be obtained from the ChB interaction of the tri-substituted derivative (1) with three different ditopic Lewis bases: TMP, BQ and pDNB. The sizeable ChB interactions with the nitro group in DNB allow us to infer that benzylic seleno­cyanate derivatives such as (1) could be used for the detection of nitrated molecules of interest for their energetic properties, such as TNT (tri­nitro­toluene) or HNS (hexa­nitro­stilbene) (Schubert & Kuznetsov, 2012[Schubert, H. & Kuznetsov, A. (2012). Editors. Detection of Bulk Explosives: Advanced Techniques against Terrorism. NATO ARW Proceedings, Springer.]; Caygill et al., 2012[Caygill, J. S., Davis, F. & Higson, S. P. J. (2012). Talanta, 88, 14-29.]).

Supporting information


Computing details top

For all structures, data collection: Bruker APEX2 (Bruker, 2014); cell refinement: Bruker APEX2 (Bruker, 2014); data reduction: Bruker APEX2 (Bruker, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

(1TMP) top
Crystal data top
C15H15N3Se3·0.5(C8H12N2)Z = 2
Mr = 542.28F(000) = 530
Triclinic, P1Dx = 1.743 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.797 (3) ÅCell parameters from 6066 reflections
b = 10.560 (3) Åθ = 2.9–26.0°
c = 10.656 (3) ŵ = 5.35 mm1
α = 87.528 (10)°T = 296 K
β = 69.844 (8)°Prism, colorless
γ = 87.528 (9)°0.13 × 0.04 × 0.02 mm
V = 1033.5 (5) Å3
Data collection top
APEXII, Bruker-AXS
diffractometer
2995 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
CCD rotation images, thick slices scansθmax = 27.4°, θmin = 1.9°
Absorption correction: multi-scan
[Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA]
h = 1211
Tmin = 0.774, Tmax = 0.899k = 1313
25685 measured reflectionsl = 1313
4706 independent reflections
Refinement top
Refinement on F2Primary atom site location: direct - structure invariant direct methods
Least-squares matrix: fullSecondary atom site location: direct - structure invariant direct methods
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.8648P]
where P = (Fo2 + 2Fc2)/3
4706 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.52 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1028 (4)0.0541 (3)0.6188 (4)0.0294 (9)
C21.0005 (4)0.1473 (3)0.6089 (4)0.0301 (9)
C30.8647 (4)0.1574 (3)0.7117 (4)0.0307 (9)
C40.8305 (4)0.0742 (4)0.8242 (4)0.0316 (9)
C50.9339 (4)0.0186 (3)0.8325 (4)0.0313 (9)
C61.0712 (4)0.0283 (4)0.7316 (4)0.0312 (9)
C71.2445 (4)0.0403 (4)0.5037 (4)0.0389 (10)
H7A1.22340.04360.42110.047*
H7B1.28740.04280.51150.047*
C81.0357 (4)0.2374 (4)0.4879 (4)0.0434 (10)
H8A1.13490.26210.46260.065*
H8B0.97230.31120.50950.065*
H8C1.0220.19570.41490.065*
C90.7544 (4)0.2563 (4)0.7001 (4)0.0392 (10)
H9A0.65810.22820.75330.047*
H9B0.75920.26330.60760.047*
C100.6826 (4)0.0883 (4)0.9335 (4)0.0482 (11)
H10A0.67740.02931.00590.072*
H10B0.60770.07140.8980.072*
H10C0.66940.17310.96540.072*
C110.8979 (4)0.1095 (4)0.9517 (4)0.0373 (10)
H11A0.81770.07331.02410.045*
H11B0.98120.11840.98110.045*
C121.1824 (4)0.1278 (4)0.7429 (4)0.0433 (11)
H12A1.14680.17060.82880.065*
H12B1.27190.08790.73320.065*
H12C1.19930.18820.67390.065*
C131.3945 (4)0.1482 (4)0.6551 (5)0.0438 (11)
C140.8745 (5)0.3741 (4)0.8774 (5)0.0471 (11)
C150.7040 (5)0.2280 (4)0.8454 (4)0.0477 (12)
C161.3556 (4)0.5056 (4)0.5626 (5)0.0463 (11)
C171.4503 (5)0.4974 (4)0.6338 (5)0.0495 (12)
C181.1947 (5)0.5059 (5)0.6306 (5)0.0645 (14)
H18A1.1480.51430.56490.097*
H18B1.1650.57580.68980.097*
H18C1.16770.42780.68110.097*
C191.3974 (6)0.4993 (6)0.7839 (5)0.0805 (17)
H19A1.35230.42060.82030.121*
H19B1.32790.56810.81390.121*
H19C1.47820.51040.81330.121*
N11.4041 (5)0.1377 (5)0.7626 (5)0.0769 (14)
N20.9312 (5)0.3468 (4)0.9517 (5)0.0692 (12)
N30.6192 (5)0.2007 (4)0.7970 (4)0.0652 (12)
N41.4053 (4)0.5085 (3)0.4280 (4)0.0502 (10)
Se11.39051 (5)0.16930 (4)0.49006 (5)0.04673 (15)
Se20.78128 (5)0.42823 (4)0.75911 (5)0.05066 (15)
Se30.84421 (5)0.28103 (4)0.91729 (4)0.04628 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (19)0.027 (2)0.035 (2)0.0007 (16)0.0106 (16)0.0056 (17)
C20.030 (2)0.031 (2)0.031 (2)0.0081 (17)0.0104 (16)0.0018 (17)
C30.029 (2)0.026 (2)0.040 (2)0.0029 (16)0.0154 (17)0.0015 (18)
C40.0302 (19)0.030 (2)0.034 (2)0.0069 (17)0.0090 (16)0.0066 (18)
C50.037 (2)0.026 (2)0.033 (2)0.0069 (17)0.0137 (17)0.0004 (17)
C60.030 (2)0.028 (2)0.038 (2)0.0050 (16)0.0148 (17)0.0021 (18)
C70.037 (2)0.033 (2)0.042 (2)0.0030 (18)0.0080 (19)0.0043 (19)
C80.044 (2)0.046 (3)0.040 (2)0.001 (2)0.015 (2)0.008 (2)
C90.034 (2)0.040 (2)0.047 (3)0.0018 (18)0.0184 (19)0.001 (2)
C100.039 (2)0.049 (3)0.044 (3)0.001 (2)0.000 (2)0.006 (2)
C110.047 (2)0.030 (2)0.036 (2)0.0021 (18)0.0155 (19)0.0030 (18)
C120.039 (2)0.038 (2)0.051 (3)0.0006 (19)0.014 (2)0.007 (2)
C130.030 (2)0.043 (3)0.057 (3)0.0063 (19)0.011 (2)0.006 (2)
C140.055 (3)0.034 (3)0.057 (3)0.002 (2)0.025 (2)0.005 (2)
C150.051 (3)0.047 (3)0.038 (3)0.016 (2)0.003 (2)0.004 (2)
C160.035 (2)0.032 (2)0.064 (3)0.0003 (18)0.008 (2)0.007 (2)
C170.043 (3)0.045 (3)0.056 (3)0.002 (2)0.012 (2)0.008 (2)
C180.040 (3)0.065 (3)0.080 (4)0.001 (2)0.009 (2)0.002 (3)
C190.060 (3)0.109 (5)0.064 (4)0.004 (3)0.012 (3)0.006 (3)
N10.068 (3)0.098 (4)0.069 (3)0.028 (3)0.025 (3)0.003 (3)
N20.093 (3)0.053 (3)0.080 (3)0.002 (2)0.053 (3)0.001 (2)
N30.059 (3)0.079 (3)0.060 (3)0.008 (2)0.024 (2)0.003 (2)
N40.040 (2)0.044 (2)0.059 (3)0.0024 (17)0.0091 (19)0.0069 (19)
Se10.0380 (2)0.0469 (3)0.0507 (3)0.0098 (2)0.0092 (2)0.0056 (2)
Se20.0595 (3)0.0351 (3)0.0643 (3)0.0101 (2)0.0309 (2)0.0058 (2)
Se30.0597 (3)0.0320 (2)0.0470 (3)0.0110 (2)0.0179 (2)0.0059 (2)
Geometric parameters (Å, º) top
C1—C21.402 (5)C11—Se31.991 (4)
C1—C61.405 (5)C11—H11A0.97
C1—C71.509 (5)C11—H11B0.97
C2—C31.405 (5)C12—H12A0.96
C2—C81.517 (5)C12—H12B0.96
C3—C41.407 (5)C12—H12C0.96
C3—C91.502 (5)C13—N11.181 (6)
C4—C51.401 (5)C13—Se11.777 (5)
C4—C101.520 (5)C14—N21.134 (5)
C5—C61.406 (5)C14—Se21.854 (5)
C5—C111.508 (5)C15—N31.141 (6)
C6—C121.513 (5)C15—Se31.847 (6)
C7—Se11.983 (4)C16—N41.346 (6)
C7—H7A0.97C16—C171.385 (6)
C7—H7B0.97C16—C181.490 (6)
C8—H8A0.96C17—N4i1.339 (5)
C8—H8B0.96C17—C191.502 (7)
C8—H8C0.96C18—H18A0.96
C9—Se22.004 (4)C18—H18B0.96
C9—H9A0.97C18—H18C0.96
C9—H9B0.97C19—H19A0.96
C10—H10A0.96C19—H19B0.96
C10—H10B0.96C19—H19C0.96
C10—H10C0.96N4—C17i1.339 (5)
C2—C1—C6120.4 (3)H10A—C10—H10C109.5
C2—C1—C7118.8 (3)H10B—C10—H10C109.5
C6—C1—C7120.8 (3)C5—C11—Se3114.4 (3)
C1—C2—C3119.8 (3)C5—C11—H11A108.7
C1—C2—C8120.3 (3)Se3—C11—H11A108.7
C3—C2—C8119.9 (3)C5—C11—H11B108.7
C2—C3—C4120.5 (3)Se3—C11—H11B108.7
C2—C3—C9119.7 (3)H11A—C11—H11B107.6
C4—C3—C9119.9 (3)C6—C12—H12A109.5
C5—C4—C3119.1 (3)C6—C12—H12B109.5
C5—C4—C10122.0 (4)H12A—C12—H12B109.5
C3—C4—C10118.9 (3)C6—C12—H12C109.5
C4—C5—C6121.1 (3)H12A—C12—H12C109.5
C4—C5—C11119.6 (3)H12B—C12—H12C109.5
C6—C5—C11119.3 (3)N1—C13—Se1176.3 (4)
C1—C6—C5119.2 (3)N2—C14—Se2176.7 (4)
C1—C6—C12120.3 (3)N3—C15—Se3176.5 (4)
C5—C6—C12120.5 (3)N4—C16—C17121.2 (4)
C1—C7—Se1115.6 (3)N4—C16—C18116.9 (4)
C1—C7—H7A108.4C17—C16—C18121.8 (4)
Se1—C7—H7A108.4N4i—C17—C16121.5 (4)
C1—C7—H7B108.4N4i—C17—C19116.4 (4)
Se1—C7—H7B108.4C16—C17—C19122.1 (4)
H7A—C7—H7B107.4C16—C18—H18A109.5
C2—C8—H8A109.5C16—C18—H18B109.5
C2—C8—H8B109.5H18A—C18—H18B109.5
H8A—C8—H8B109.5C16—C18—H18C109.5
C2—C8—H8C109.5H18A—C18—H18C109.5
H8A—C8—H8C109.5H18B—C18—H18C109.5
H8B—C8—H8C109.5C17—C19—H19A109.5
C3—C9—Se2114.2 (3)C17—C19—H19B109.5
C3—C9—H9A108.7H19A—C19—H19B109.5
Se2—C9—H9A108.7C17—C19—H19C109.5
C3—C9—H9B108.7H19A—C19—H19C109.5
Se2—C9—H9B108.7H19B—C19—H19C109.5
H9A—C9—H9B107.6C17i—N4—C16117.3 (4)
C4—C10—H10A109.5C13—Se1—C797.41 (18)
C4—C10—H10B109.5C14—Se2—C997.04 (18)
H10A—C10—H10B109.5C15—Se3—C1196.98 (18)
C4—C10—H10C109.5
C6—C1—C2—C30.8 (5)C2—C1—C6—C12179.2 (4)
C7—C1—C2—C3176.6 (3)C7—C1—C6—C123.3 (5)
C6—C1—C2—C8179.1 (3)C4—C5—C6—C12.1 (5)
C7—C1—C2—C83.4 (5)C11—C5—C6—C1178.1 (3)
C1—C2—C3—C40.2 (5)C4—C5—C6—C12179.1 (4)
C8—C2—C3—C4179.8 (3)C11—C5—C6—C120.7 (5)
C1—C2—C3—C9179.2 (3)C2—C1—C7—Se177.1 (4)
C8—C2—C3—C90.8 (5)C6—C1—C7—Se1105.4 (4)
C2—C3—C4—C50.1 (5)C2—C3—C9—Se283.7 (4)
C9—C3—C4—C5179.1 (3)C4—C3—C9—Se297.3 (4)
C2—C3—C4—C10179.9 (3)C4—C5—C11—Se3101.7 (4)
C9—C3—C4—C101.1 (5)C6—C5—C11—Se378.4 (4)
C3—C4—C5—C61.0 (5)N4—C16—C17—N4i0.2 (7)
C10—C4—C5—C6178.7 (4)C18—C16—C17—N4i177.0 (4)
C3—C4—C5—C11179.1 (3)N4—C16—C17—C19177.5 (5)
C10—C4—C5—C111.1 (6)C18—C16—C17—C195.3 (7)
C2—C1—C6—C52.0 (5)C17—C16—N4—C17i0.2 (7)
C7—C1—C6—C5175.4 (3)C18—C16—N4—C17i177.1 (4)
Symmetry code: (i) x+3, y+1, z+1.
(1BQ) top
Crystal data top
C15H15N3Se3·0.5(C6H4O2)Z = 2
Mr = 528.23F(000) = 512
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.008 (2) ÅCell parameters from 3951 reflections
b = 10.4345 (19) Åθ = 2.7–24.6°
c = 10.760 (2) ŵ = 5.61 mm1
α = 93.538 (5)°T = 296 K
β = 117.528 (5)°Needle, yellow
γ = 95.282 (5)°0.28 × 0.02 × 0.01 mm
V = 985.3 (3) Å3
Data collection top
APEXII, Bruker-AXS
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube2412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
[Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA]
h = 1212
Tmin = 0.874, Tmax = 0.945k = 139
24136 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: direct - structure invariant direct methods
Least-squares matrix: fullSecondary atom site location: direct - structure invariant direct methods
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0523P)2 + 1.8613P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.66 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2459 (7)0.1361 (5)0.1014 (6)0.0321 (14)
C20.3681 (6)0.0463 (5)0.1990 (6)0.0340 (14)
C30.3457 (7)0.0362 (5)0.2937 (6)0.0338 (14)
C40.2058 (7)0.0294 (5)0.2918 (6)0.0348 (14)
C50.0830 (6)0.0576 (5)0.1908 (6)0.0349 (14)
C60.1044 (6)0.1417 (5)0.0958 (6)0.0351 (14)
C70.2677 (7)0.2239 (6)0.0014 (7)0.0436 (16)
H7A0.36080.190.00240.052*
H7B0.18420.22210.0950.052*
C80.5219 (7)0.0412 (7)0.2045 (7)0.0507 (17)
H8A0.51810.00530.12310.076*
H8B0.54880.12720.20540.076*
H8C0.59660.01210.28850.076*
C90.4780 (7)0.1338 (5)0.4028 (7)0.0404 (15)
H9A0.57260.10830.41180.048*
H9B0.48020.13110.49370.048*
C100.1824 (8)0.1204 (6)0.3930 (7)0.0491 (17)
H10A0.27920.15480.47130.074*
H10B0.12080.07390.42680.074*
H10C0.13240.19020.34520.074*
C110.0713 (7)0.0630 (6)0.1813 (7)0.0437 (16)
H11A0.14610.06760.08270.052*
H11B0.07580.0170.22920.052*
C120.0276 (7)0.2393 (6)0.0105 (7)0.0502 (18)
H12A0.00140.2770.07850.075*
H12B0.11570.19640.05770.075*
H12C0.04940.30610.03750.075*
C130.4240 (9)0.3722 (7)0.2222 (9)0.066 (2)
C140.4365 (8)0.2799 (6)0.1744 (9)0.0514 (18)
C150.0408 (8)0.1809 (7)0.4401 (9)0.0529 (19)
C160.0120 (9)0.5398 (7)0.3680 (8)0.060 (2)
C170.1339 (9)0.5270 (7)0.4971 (9)0.067 (2)
H170.21980.54590.49080.08*
C180.1471 (8)0.4896 (6)0.6225 (8)0.056 (2)
H180.24090.4820.70320.067*
N10.5095 (9)0.3534 (6)0.3385 (8)0.091 (3)
N20.4193 (7)0.2576 (7)0.0607 (8)0.0695 (18)
N30.1399 (8)0.1689 (6)0.5479 (8)0.073 (2)
O10.0224 (7)0.5746 (6)0.2513 (7)0.0907 (19)
Se10.27892 (10)0.40669 (7)0.03883 (8)0.0644 (3)
Se20.46601 (8)0.31386 (6)0.35479 (8)0.0526 (2)
Se30.12835 (8)0.21052 (7)0.26265 (8)0.0524 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (4)0.030 (3)0.030 (3)0.006 (3)0.019 (3)0.009 (3)
C20.031 (3)0.034 (3)0.038 (3)0.010 (3)0.015 (3)0.013 (3)
C30.038 (4)0.023 (3)0.034 (3)0.003 (2)0.010 (3)0.007 (3)
C40.036 (4)0.035 (3)0.036 (3)0.007 (3)0.017 (3)0.008 (3)
C50.033 (3)0.036 (3)0.041 (4)0.011 (3)0.020 (3)0.010 (3)
C60.033 (4)0.035 (3)0.030 (3)0.002 (3)0.009 (3)0.006 (3)
C70.048 (4)0.039 (3)0.041 (4)0.007 (3)0.019 (3)0.002 (3)
C80.041 (4)0.053 (4)0.058 (4)0.001 (3)0.026 (3)0.007 (3)
C90.038 (4)0.032 (3)0.042 (4)0.007 (3)0.011 (3)0.008 (3)
C100.052 (4)0.051 (4)0.044 (4)0.002 (3)0.026 (3)0.007 (3)
C110.043 (4)0.038 (3)0.054 (4)0.009 (3)0.025 (3)0.010 (3)
C120.032 (4)0.054 (4)0.056 (4)0.003 (3)0.014 (3)0.003 (3)
C130.062 (5)0.043 (4)0.070 (6)0.006 (4)0.010 (5)0.009 (4)
C140.055 (5)0.044 (4)0.060 (5)0.010 (3)0.029 (4)0.017 (4)
C150.042 (4)0.057 (4)0.074 (6)0.008 (3)0.038 (4)0.023 (4)
C160.063 (5)0.042 (4)0.055 (5)0.003 (3)0.013 (4)0.005 (4)
C170.055 (5)0.057 (5)0.075 (6)0.002 (4)0.024 (5)0.008 (4)
C180.038 (4)0.045 (4)0.058 (5)0.002 (3)0.003 (4)0.000 (4)
N10.102 (6)0.059 (4)0.066 (5)0.011 (4)0.001 (4)0.016 (4)
N20.062 (4)0.081 (5)0.076 (5)0.016 (3)0.038 (4)0.027 (4)
N30.048 (4)0.073 (5)0.074 (5)0.006 (3)0.008 (4)0.018 (4)
O10.092 (4)0.099 (5)0.069 (4)0.008 (3)0.031 (4)0.015 (4)
Se10.0763 (6)0.0383 (4)0.0574 (5)0.0103 (3)0.0144 (4)0.0032 (3)
Se20.0525 (5)0.0330 (4)0.0600 (5)0.0034 (3)0.0178 (4)0.0046 (3)
Se30.0416 (4)0.0567 (4)0.0604 (5)0.0011 (3)0.0259 (4)0.0125 (3)
Geometric parameters (Å, º) top
C1—C61.385 (8)C10—H10B0.96
C1—C21.399 (8)C10—H10C0.96
C1—C71.498 (8)C11—Se31.982 (6)
C2—C31.403 (8)C11—H11A0.97
C2—C81.509 (8)C11—H11B0.97
C3—C41.385 (8)C12—H12A0.96
C3—C91.529 (8)C12—H12B0.96
C4—C51.398 (8)C12—H12C0.96
C4—C101.514 (8)C13—N11.134 (9)
C5—C61.410 (8)C13—Se11.816 (8)
C5—C111.495 (8)C14—N21.159 (9)
C6—C121.517 (8)C14—Se21.829 (8)
C7—Se11.983 (6)C15—N31.114 (9)
C7—H7A0.97C15—Se31.857 (9)
C7—H7B0.97C16—O11.240 (9)
C8—H8A0.96C16—C18i1.460 (11)
C8—H8B0.96C16—C171.466 (10)
C8—H8C0.96C17—C181.323 (10)
C9—Se21.978 (6)C17—H170.93
C9—H9A0.97C18—C16i1.460 (11)
C9—H9B0.97C18—H180.93
C10—H10A0.96
C6—C1—C2120.8 (5)H9A—C9—H9B107.7
C6—C1—C7119.9 (5)C4—C10—H10A109.5
C2—C1—C7119.3 (5)C4—C10—H10B109.5
C1—C2—C3118.7 (5)H10A—C10—H10B109.5
C1—C2—C8120.4 (5)C4—C10—H10C109.5
C3—C2—C8120.9 (5)H10A—C10—H10C109.5
C4—C3—C2121.1 (5)H10B—C10—H10C109.5
C4—C3—C9119.2 (5)C5—C11—Se3114.9 (4)
C2—C3—C9119.7 (5)C5—C11—H11A108.5
C3—C4—C5119.8 (5)Se3—C11—H11A108.5
C3—C4—C10120.6 (5)C5—C11—H11B108.5
C5—C4—C10119.5 (5)Se3—C11—H11B108.5
C4—C5—C6119.6 (5)H11A—C11—H11B107.5
C4—C5—C11121.2 (5)C6—C12—H12A109.5
C6—C5—C11119.2 (5)C6—C12—H12B109.5
C1—C6—C5119.9 (5)H12A—C12—H12B109.5
C1—C6—C12120.5 (5)C6—C12—H12C109.5
C5—C6—C12119.6 (5)H12A—C12—H12C109.5
C1—C7—Se1114.8 (4)H12B—C12—H12C109.5
C1—C7—H7A108.6N1—C13—Se1176.6 (9)
Se1—C7—H7A108.6N2—C14—Se2179.2 (7)
C1—C7—H7B108.6N3—C15—Se3176.5 (7)
Se1—C7—H7B108.6O1—C16—C18i119.7 (7)
H7A—C7—H7B107.5O1—C16—C17121.1 (8)
C2—C8—H8A109.5C18i—C16—C17119.2 (7)
C2—C8—H8B109.5C18—C17—C16121.9 (8)
H8A—C8—H8B109.5C18—C17—H17119
C2—C8—H8C109.5C16—C17—H17119
H8A—C8—H8C109.5C17—C18—C16i118.9 (7)
H8B—C8—H8C109.5C17—C18—H18120.6
C3—C9—Se2113.6 (4)C16i—C18—H18120.6
C3—C9—H9A108.9C13—Se1—C796.6 (3)
Se2—C9—H9A108.9C14—Se2—C997.2 (3)
C3—C9—H9B108.9C15—Se3—C1197.3 (3)
Se2—C9—H9B108.9
C6—C1—C2—C31.5 (8)C7—C1—C6—C5178.9 (5)
C7—C1—C2—C3179.4 (5)C2—C1—C6—C12179.9 (5)
C6—C1—C2—C8179.8 (5)C7—C1—C6—C122.0 (8)
C7—C1—C2—C82.3 (8)C4—C5—C6—C11.2 (8)
C1—C2—C3—C40.1 (8)C11—C5—C6—C1178.7 (5)
C8—C2—C3—C4178.2 (5)C4—C5—C6—C12177.9 (5)
C1—C2—C3—C9179.1 (5)C11—C5—C6—C122.2 (8)
C8—C2—C3—C90.9 (8)C6—C1—C7—Se175.7 (6)
C2—C3—C4—C52.3 (8)C2—C1—C7—Se1106.4 (5)
C9—C3—C4—C5178.7 (5)C4—C3—C9—Se277.2 (6)
C2—C3—C4—C10179.0 (5)C2—C3—C9—Se2103.8 (5)
C9—C3—C4—C102.0 (8)C4—C5—C11—Se3102.8 (6)
C3—C4—C5—C62.8 (8)C6—C5—C11—Se377.3 (6)
C10—C4—C5—C6179.6 (5)O1—C16—C17—C18179.7 (7)
C3—C4—C5—C11177.1 (5)C18i—C16—C17—C180.1 (11)
C10—C4—C5—C110.3 (8)C16—C17—C18—C16i0.1 (11)
C2—C1—C6—C51.0 (8)
Symmetry code: (i) x, y1, z+1.
(pDNB) top
Crystal data top
C15H15N3Se3·0.5(C6H4N2O4)Z = 2
Mr = 558.23F(000) = 542
Triclinic, P1Dx = 1.821 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.187 (3) ÅCell parameters from 4815 reflections
b = 10.415 (2) Åθ = 2.7–24.5°
c = 11.232 (3) ŵ = 5.44 mm1
α = 75.891 (8)°T = 296 K
β = 82.213 (9)°Needle, colorless
γ = 61.753 (8)°0.31 × 0.03 × 0.01 mm
V = 1017.8 (5) Å3
Data collection top
APEXII, Bruker-AXS
diffractometer
4665 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
[Sheldrick, G.M. (2014). SADABS Bruker AXS Inc., Madison, Wisconsin, USA]
h = 1213
Tmin = 0.822, Tmax = 0.947k = 913
16919 measured reflectionsl = 1414
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.8073P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4665 reflectionsΔρmax = 1.10 e Å3
247 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7626 (4)0.3551 (4)0.6373 (3)0.0294 (9)
C20.8745 (4)0.2905 (4)0.5518 (3)0.0318 (9)
C30.8465 (4)0.2250 (4)0.4688 (3)0.0298 (9)
C40.7094 (5)0.2235 (4)0.4722 (3)0.0315 (9)
C50.5986 (4)0.2900 (4)0.5582 (4)0.0315 (9)
C60.6261 (4)0.3537 (4)0.6419 (3)0.0313 (9)
C70.7900 (5)0.4315 (5)0.7228 (4)0.0386 (10)
H7A0.70070.52420.72720.046*
H7B0.86940.45650.68760.046*
C81.0239 (5)0.2899 (5)0.5492 (4)0.0473 (11)
H8A1.01110.37480.5780.071*
H8B1.06380.29440.46660.071*
H8C1.09140.20040.60130.071*
C90.9653 (5)0.1547 (5)0.3778 (4)0.0401 (10)
H9A0.97240.05850.37780.048*
H9B1.060.13750.40440.048*
C100.6805 (5)0.1521 (5)0.3825 (4)0.0472 (12)
H10A0.62270.22810.3160.071*
H10B0.62680.09850.4240.071*
H10C0.77380.08460.35090.071*
C110.4483 (5)0.2965 (5)0.5572 (4)0.0396 (10)
H11A0.43710.2810.47820.048*
H11B0.37260.3960.56420.048*
C120.5088 (5)0.4197 (5)0.7361 (4)0.0440 (11)
H12A0.44390.52210.70230.066*
H12B0.55550.41380.80730.066*
H12C0.45180.36540.7590.066*
C130.9562 (8)0.1316 (6)0.8556 (5)0.0750 (18)
C140.8938 (5)0.4509 (6)0.2443 (4)0.0458 (11)
C150.5742 (6)0.0177 (6)0.6603 (4)0.0446 (11)
C160.4477 (7)0.1332 (6)0.0274 (4)0.0576 (14)
C170.5966 (7)0.0544 (6)0.0116 (5)0.0680 (16)
H170.6610.09190.01930.082*
C180.3507 (7)0.0832 (6)0.0164 (5)0.0648 (15)
H180.24890.14130.02760.078*
N111.0246 (10)0.0148 (6)0.8390 (5)0.141 (3)
N20.8630 (5)0.5639 (5)0.2635 (4)0.0625 (12)
N30.6727 (5)0.1317 (6)0.6509 (4)0.0696 (13)
N40.3869 (8)0.2844 (6)0.0585 (4)0.0791 (16)
O10.2556 (7)0.3623 (5)0.0522 (5)0.1136 (19)
O20.4768 (7)0.3155 (5)0.0890 (5)0.1110 (18)
Se10.84403 (7)0.31350 (6)0.89203 (4)0.05981 (18)
Se20.93243 (6)0.27375 (5)0.20684 (4)0.05169 (17)
Se30.40943 (5)0.15159 (5)0.68743 (4)0.04589 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.029 (2)0.023 (2)0.0131 (18)0.0053 (17)0.0053 (16)
C20.033 (2)0.033 (2)0.029 (2)0.0160 (19)0.0061 (18)0.0028 (17)
C30.032 (2)0.027 (2)0.025 (2)0.0088 (18)0.0022 (17)0.0042 (16)
C40.041 (2)0.028 (2)0.027 (2)0.0168 (19)0.0101 (18)0.0008 (17)
C50.035 (2)0.029 (2)0.030 (2)0.0149 (18)0.0025 (18)0.0030 (17)
C60.034 (2)0.029 (2)0.027 (2)0.0112 (18)0.0018 (17)0.0027 (17)
C70.049 (3)0.041 (2)0.029 (2)0.022 (2)0.0018 (19)0.0076 (19)
C80.035 (3)0.062 (3)0.050 (3)0.023 (2)0.001 (2)0.020 (2)
C90.042 (3)0.039 (2)0.032 (2)0.012 (2)0.0008 (19)0.0120 (19)
C100.057 (3)0.051 (3)0.046 (3)0.030 (2)0.001 (2)0.021 (2)
C110.044 (3)0.042 (2)0.033 (2)0.021 (2)0.0069 (19)0.0019 (19)
C120.040 (3)0.048 (3)0.047 (3)0.018 (2)0.007 (2)0.021 (2)
C130.124 (5)0.051 (3)0.032 (3)0.025 (4)0.012 (3)0.007 (2)
C140.042 (3)0.055 (3)0.044 (3)0.026 (2)0.001 (2)0.009 (2)
C150.042 (3)0.053 (3)0.043 (3)0.028 (3)0.002 (2)0.007 (2)
C160.089 (4)0.051 (3)0.036 (3)0.036 (3)0.011 (3)0.014 (2)
C170.090 (5)0.075 (4)0.052 (3)0.050 (4)0.009 (3)0.017 (3)
C180.073 (4)0.059 (3)0.050 (3)0.019 (3)0.012 (3)0.022 (3)
N110.258 (9)0.049 (3)0.056 (4)0.017 (4)0.014 (4)0.017 (3)
N20.059 (3)0.058 (3)0.079 (3)0.031 (2)0.002 (2)0.019 (2)
N30.059 (3)0.072 (3)0.070 (3)0.028 (3)0.012 (2)0.014 (3)
N40.122 (5)0.057 (3)0.050 (3)0.035 (4)0.015 (3)0.019 (3)
O10.133 (5)0.060 (3)0.114 (4)0.010 (3)0.003 (4)0.035 (3)
O20.166 (5)0.094 (4)0.107 (4)0.077 (4)0.020 (4)0.055 (3)
Se10.0785 (4)0.0578 (3)0.0344 (3)0.0178 (3)0.0103 (2)0.0182 (2)
Se20.0685 (4)0.0520 (3)0.0304 (3)0.0231 (3)0.0065 (2)0.0151 (2)
Se30.0452 (3)0.0480 (3)0.0469 (3)0.0255 (2)0.0043 (2)0.0079 (2)
Geometric parameters (Å, º) top
C1—C61.391 (5)C10—H10C0.96
C1—C21.402 (5)C11—Se31.977 (4)
C1—C71.513 (5)C11—H11A0.97
C2—C31.408 (5)C11—H11B0.97
C2—C81.516 (6)C12—H12A0.96
C3—C41.400 (6)C12—H12B0.96
C3—C91.495 (5)C12—H12C0.96
C4—C51.406 (5)C13—N111.128 (7)
C4—C101.518 (5)C13—Se11.807 (6)
C5—C61.399 (5)C14—N21.133 (6)
C5—C111.501 (6)C14—Se21.840 (5)
C6—C121.502 (5)C15—N31.154 (6)
C7—Se11.983 (4)C15—Se31.828 (5)
C7—H7A0.97C16—C181.347 (8)
C7—H7B0.97C16—C171.352 (8)
C8—H8A0.96C16—N41.507 (7)
C8—H8B0.96C17—C18i1.374 (7)
C8—H8C0.96C17—H170.93
C9—Se21.989 (4)C18—C17i1.373 (7)
C9—H9A0.97C18—H180.93
C9—H9B0.97N4—O11.193 (7)
C10—H10A0.96N4—O21.217 (7)
C10—H10B0.96
C6—C1—C2121.0 (3)C4—C10—H10A109.5
C6—C1—C7119.8 (4)C4—C10—H10B109.5
C2—C1—C7119.1 (4)H10A—C10—H10B109.5
C1—C2—C3119.0 (4)C4—C10—H10C109.5
C1—C2—C8120.6 (4)H10A—C10—H10C109.5
C3—C2—C8120.4 (4)H10B—C10—H10C109.5
C4—C3—C2120.5 (3)C5—C11—Se3115.8 (3)
C4—C3—C9120.0 (4)C5—C11—H11A108.3
C2—C3—C9119.6 (4)Se3—C11—H11A108.3
C3—C4—C5119.4 (3)C5—C11—H11B108.3
C3—C4—C10120.0 (4)Se3—C11—H11B108.3
C5—C4—C10120.5 (4)H11A—C11—H11B107.4
C6—C5—C4120.5 (4)C6—C12—H12A109.5
C6—C5—C11120.0 (4)C6—C12—H12B109.5
C4—C5—C11119.6 (4)H12A—C12—H12B109.5
C1—C6—C5119.5 (4)C6—C12—H12C109.5
C1—C6—C12120.5 (4)H12A—C12—H12C109.5
C5—C6—C12119.9 (4)H12B—C12—H12C109.5
C1—C7—Se1115.1 (3)N11—C13—Se1176.3 (6)
C1—C7—H7A108.5N2—C14—Se2176.1 (5)
Se1—C7—H7A108.5N3—C15—Se3173.8 (4)
C1—C7—H7B108.5C18—C16—C17123.1 (5)
Se1—C7—H7B108.5C18—C16—N4118.3 (6)
H7A—C7—H7B107.5C17—C16—N4118.6 (6)
C2—C8—H8A109.5C16—C17—C18i117.5 (5)
C2—C8—H8B109.5C16—C17—H17121.3
H8A—C8—H8B109.5C18i—C17—H17121.3
C2—C8—H8C109.5C16—C18—C17i119.4 (5)
H8A—C8—H8C109.5C16—C18—H18120.3
H8B—C8—H8C109.5C17i—C18—H18120.3
C3—C9—Se2114.7 (3)O1—N4—O2125.8 (6)
C3—C9—H9A108.6O1—N4—C16117.5 (7)
Se2—C9—H9A108.6O2—N4—C16116.7 (6)
C3—C9—H9B108.6C13—Se1—C798.5 (2)
Se2—C9—H9B108.6C14—Se2—C996.84 (19)
H9A—C9—H9B107.6C15—Se3—C1198.19 (19)
C6—C1—C2—C30.8 (5)C7—C1—C6—C123.6 (6)
C7—C1—C2—C3177.3 (3)C4—C5—C6—C12.0 (6)
C6—C1—C2—C8178.8 (4)C11—C5—C6—C1176.1 (3)
C7—C1—C2—C83.1 (6)C4—C5—C6—C12177.9 (4)
C1—C2—C3—C40.4 (5)C11—C5—C6—C123.9 (6)
C8—C2—C3—C4179.1 (4)C6—C1—C7—Se180.4 (4)
C1—C2—C3—C9179.6 (3)C2—C1—C7—Se1101.5 (4)
C8—C2—C3—C90.0 (6)C4—C3—C9—Se276.3 (4)
C2—C3—C4—C50.9 (6)C2—C3—C9—Se2104.6 (4)
C9—C3—C4—C5180.0 (3)C6—C5—C11—Se378.3 (4)
C2—C3—C4—C10179.8 (4)C4—C5—C11—Se3103.6 (4)
C9—C3—C4—C100.7 (6)C18—C16—C17—C18i0.3 (9)
C3—C4—C5—C61.7 (6)N4—C16—C17—C18i179.8 (4)
C10—C4—C5—C6179.0 (4)C17—C16—C18—C17i0.3 (9)
C3—C4—C5—C11176.5 (3)N4—C16—C18—C17i179.8 (4)
C10—C4—C5—C112.9 (6)C18—C16—N4—O112.0 (8)
C2—C1—C6—C51.6 (6)C17—C16—N4—O1167.9 (6)
C7—C1—C6—C5176.5 (3)C18—C16—N4—O2167.4 (5)
C2—C1—C6—C12178.4 (4)C17—C16—N4—O212.7 (7)
Symmetry code: (i) x+1, y, z.
 

Funding information

The following funding is acknowledged: Agence Nationale de la Recherche (grant No. ANR-17-CE07-0025-02 to Marc Fourmigué); Rennes Metropole (bursary No. A17.612 to Asia Marie S. Riel); French Embassy in Washington (Chateaubriand Fellowship) (award to Asia Marie S. Riel); National Science Foundation (grant No. CAREER CHE-1555324).

References

First citationAlkorta, I., Elguero, J. & Del Bene, J. E. (2018). ChemPhysChem, 19, 1756–1765.  Google Scholar
First citationAllen, F. H., Goud, B. S., Hoy, V. J., Howard, J. A. K. & Desiraju, G. R. (1994). J. Chem. Soc. Chem. Commun. pp. 2729–2730.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBauzá, A. & Frontera, A. (2018). Molecules, 23, 699.  Google Scholar
First citationBenz, S., Macchione, M., Verolet, Q., Mareda, J., Sakai, N. & Matile, S. (2016). J. Am. Chem. Soc. 138, 9093–9096.  CrossRef CAS Google Scholar
First citationBenz, S., Poblador-Bahamonde, A. I., Low-Ders, N. & Matile, S. (2018). Angew. Chem. Int. Ed. 57, 5408–5412.  CrossRef CAS Google Scholar
First citationBleiholder, C., Werz, D. B., Köppel, H. & Gleiter, R. (2006). J. Am. Chem. Soc. 128, 2666–2674.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrezgunova, M., Lieffrig, J., Aubert, E., Dahaoui, S., Fertey, P., Lebègue, S., Ángyán, J., Fourmigué, M. & Espinosa, E. (2013). Cryst. Growth Des. 13, 3283–3289.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCavallo, G., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2014). Cryst. Growth Des. 14, 2697–2702.  Web of Science CrossRef CAS Google Scholar
First citationCaygill, J. S., Davis, F. & Higson, S. P. J. (2012). Talanta, 88, 14–29.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuynh, H.-T., Jeannin, O. & Fourmigué, M. (2017). Chem. Commun. 53, 8467–8469.  CrossRef CAS Google Scholar
First citationJeannin, O., Huynh, H.-T., Riel, A. M. S. & Fourmigué, M. (2018). New J. Chem. 42, 10502–10509.  CrossRef CAS Google Scholar
First citationKlapötke, T. M., Krumm, B., Gálvez-Ruiz, J., Nöth, H. & Schwab, I. (2004). Eur. J. Inorg. Chem. pp. 4764–4769.  Google Scholar
First citationKlapötke, T. M., Krumm, B. & Scherr, M. (2008). Inorg. Chem. 47, 7025–7028.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, P., Ruan, C., Li, T. & Ji, B. (2012). Acta Cryst. E68, o1431.  CrossRef IUCr Journals Google Scholar
First citationMaartmann-Moe, K., Sanderud, K. A. & Songstad, J. (1984). Acta Chem. Scand. 38, 187–200.  Google Scholar
First citationPascoe, D. J., Ling, K. B. & Cockroft, S. L. (2017). J. Am. Chem. Soc. 139, 15160–15167.  CrossRef CAS Google Scholar
First citationPolitzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166–32178.  CrossRef CAS Google Scholar
First citationSánchez-Sanz, G. & Trujillo, C. (2018). J. Phys. Chem. A, 122, 1369–1377.  Google Scholar
First citationSchubert, H. & Kuznetsov, A. (2012). Editors. Detection of Bulk Explosives: Advanced Techniques against Terrorism. NATO ARW Proceedings, Springer.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSyssa-Magalé, J.-L., Boubekeur, K., Palvadeau, P., Meerschaut, A. & Schöllhorn, B. (2005). CrystEngComm, 7, 302–308.  Google Scholar
First citationWang, H., Liu, J. & Wang, W. (2018). Phys. Chem. Chem. Phys. 20, 5227–5234.  CrossRef CAS Google Scholar
First citationWang, W., Ji, B. & Zhang, Y. (2009). J. Phys. Chem. A, 113, 8132–8135.  CrossRef Google Scholar
First citationWonner, P., Vogel, L., Kniep, F. & Huber, S. M. (2017). Chem. Eur. J. 23, 16972–16975.  CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds