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Two novel definitions of chemical coordination numbers – valence entropy

coordination number nVECN and valence diversity coordination number
nVDCN – are proposed. Their originality stems from the fact that they are the

first definitions based solely on bond valences. The expressions for them are

derived from their definitions and their properties are studied. The unexpected

close relationship of nVECN to Shannon entropy and nVDCN to diversity are

revealed and the names of the new coordination numbers are taken therefrom.

Finally, as an example, a study of arsenic(III) lone electron pair stereoactivity

with respect to AsIII coordination number is carried out to demonstrate the

usefulness and advantages of the new definitions as well as to compare them

with the existing ones.

1. Introduction

Coordination number (CN) is one of the basic concepts used

in chemistry and like other fundamental chemical ideas such

as molecule, chemical bond or atomic core it lacks a precise

and straightforward definition. This was pointed out quite

some time ago by Hoppe (1970) in his engrossing paper where

he dubbed CN an ‘inorganic chameleon’. Defining the basic

ideas remains not only problematic within the scope of

chemistry but pertains also to crystallography as exemplified

by a rather fuzzy definition of a crystal being any solid that has

essentially discrete diffraction pattern (IUCr, 1992).

According to IUPAC Compendium of Chemical Terminology

(Gold Book) the CN of a specified atom in a chemical species

is the number of atoms directly linked to that specified atom

or, in an inorganic coordination entity, CN is the number of �-

bonds between ligands and the central atom (IUPAC, 1997). It

is explicitly said in the IUPAC definition that ‘the term is used

in a different sense in the crystallographic description of

crystals’. And it is in the extended solids that problems in

defining CN start to crop up. Intuitively, it is often accepted

that CN equals the number of nearest neighbours in a crystal

structure (Giacovazzo et al., 2011). For instance, every Xe

atom in solid Xe has 12 closest neighbours and consequently

its CN is 12; every Na+ cation in sodium chloride is surrounded

by six closest Cl� anions which gives Na+ a CN of 6 in this

compound. Finding the closest neighbours seems to be fairly

simple, but it is only such in high-symmetry structures. As the

symmetry is lowered the distances between coordination

centres and ligands become varied and the distinction between

the closest and not closest but very close ligands gets unclear.

The CN is often expressed in such cases as a sum of two
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natural numbers e.g. in body-centred cubic (b.c.c.) structures

CN is written as 8 + 6. The International Union of Crystal-

lography Commission on Crystallographic Nomenclature

Subcommittee on the Nomenclature of Inorganic Structure

Types proposed another definition: CN is equal to the number

of coordinating atoms and their choice depends on the

bonding model used and the type of calculations (Lima-de-

Faria et al., 1990), which is not a very precise definition either.

Even this short introduction shows that defining CN is not

as straightforward as it may seem at a first glance. Therefore,

we propose new approaches to the issue based on bond

valence model and define two original CN concepts aiming at

easing some of the above mentioned difficulties. The paper is

organized as follows. Section 2 gives historical background

with a brief description of some CN concepts presented in the

literature so far which in our opinion are the most significant

ones. Our CN definitions are given in Section 3 together with

an inspection of their properties, their relationship to the

notions of diversity and entropy and with a comparison to

Hoppe’s (1979) effective coordination number. We proceed in

Section 4 to apply the proposed definitions to the analysis of

arsenic(III) coordination sphere in oxocompounds.

2. Historical background

The presented list does not pretend to be exhaustive and only

the most prominent ideas in the authors’ view are described.

The ideas are introduced in the chronological sequence but

where necessary there are some departures from it in favour of

the logical order. Generally, CN definitions can be grouped

into two classes – geometrical and chemical (Allig & Trömel,

1992). Geometrical CNs are based solely on geometrical

parameters such as distances between atoms, coordination

polyhedra and solid angles subtended by the faces of these

polyhedra. Chemical definitions, on the other hand, also take

into account some chemical knowledge as to which interac-

tions are significant. The latter concepts are much less popular

in the literature and they usually lead to lower CNs than the

geometrical ones.

The first definition that we mention presented by Frank &

Kasper (1958) is a geometrical one and relies on the ideas of

atomic domains and neighbours. Atomic domain of a central

atom is the space in which all points are nearer to the centre of

that atom than to any other atom. The concept of atomic

domain is equivalent to the idea of Voronoi polyhedron.

Neighbour is an atom whose atomic domain shares a face with

the atomic domain of the atom in question and, finally, CN is

the number of neighbours of the atom. Another approach to

define the neighbours of the central atom was proposed by

Brunner & Schwarzenbach (1971) and it involves the analysis

of histograms in which the number of neighbours of the atom

is plotted as a function of their distances. The CN is defined by

a maximum ‘gap’ in the histogram which is the largest differ-

ence in distances between consecutive shells of neighbours.

This approach has its drawbacks and gives counterintuitive

results even for very simple nets, e.g. for a planar square net it

gives a CN of 20. This was noticed by Brunner (1977) and he

later proposed to examine the histogram with the number of

neighbours of the central atom plotted as a function of reci-

procal distances. Similarly, as in the previous definition the

largest ‘gap’ in the histogram is used to evaluate CN.

The Frank–Kasper CN suffers from some problems and one

of them was pointed out by O’Keeffe (1979). Namely, the

atomic domain for an atom in b.c.c. structure is the Archi-

medean truncated octahedron and, consequently, the Frank–

Kasper CN is 14, even though there are only eight closest

neighbours of any atom. Furthermore, the Frank–Kasper

approach yields a CN of 16(!) for diamond. CNs higher than

that of closest packing (12) do not seem to be reasonable.

O’Keeffe proposed to weight the contribution of atomic

domain faces to CN by the solid angle that they subtend at the

centre of the polyhedron. Such an approach gives CNs of 10.16

and 4.54 for the b.c.c. and diamond structures, respectively.

O’Keeffe’s definition has not been widely applied in the

literature, probably because calculating of solid angles is quite

complicated, especially for low-symmetry structures. Inter-

estingly, O’Keeffe (1979) was convinced that in order to be

useful, the concept of CN must be based on solely geometrical

principles rather than on weighting schemes relying on the

ideas about bond strengths.

Another disadvantage of the Frank–Kasper definition is

that CN is inherently greater than or equal to 4. In order to

overcome this problem (but not only this one) Allig & Trömel

(1992) proposed a chemical CN which essentially consists in

reducing the geometrical CN by excluding from consideration

the atoms that have the same sign of oxidation state (number)

as the central atom. Carter (1978) proposed yet another

definition of chemical CN:

1

CNw

¼
XN

i

wiAiPN
j wjAj

 !2

; ð1Þ

where Ai is a measure of central atom interaction with its i th

neighbour and wi are finite weighting factors (indices i and j

enumerate neighbours of the central atom). He proposed

bond strengths, bond energies, force constants for the bond-

stretching motion, overlap integrals or bond orders as the

reasonable measures Ai but noted that they could also be

based on some geometric parameters. Additionally, he put a

few important constraints on CN which his definition fulfilled:

(a) CN is dimensionless and � 1 if any neighbours with non-

zero Ai exist; (b) CN is a continuous function of the Ai but its

slope not necessarily so; (c) if N interactions exist such that

A1 ¼ A2 ¼ � � � ¼ AN for all neighbours with non-zero Ai, then

CN = N; (d) if some of the Ai are unequal then CN < N; (e) if

m of the Ai are equal and large and ðN �mÞ are equal and

small, then N > CN > m (Carter, 1978).

Last but not least, we mention Hoppe’s definition of

effective coordination number (ECoN) which we consider

particularly important for structural chemists and crystal-

lographers. It is based on the idea of fictive ionic radii (FIR)

defined for every pair of atoms in a crystal structure:
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FIRðh! iÞj ¼ dðh! iÞj
R hð Þ

R hð Þ þ R ið Þ
; ð2Þ

where dðh! iÞj is the bond length between coordination

centre h and ligand i in a j th given shell, and R hð Þ and R ið Þ are

ionic radii of h and i. Interatomic contacts are sorted in an

ascending order and grouped into shells indexed by subscript j.

All contacts/bonds in a shell exhibit the same value of FIR.

FIR are averaged to obtain mean fictive ionic radius

(MEFIR). The weighted arithmetic average is applied with the

following weights:

nðh! iÞj exp 1�
FIRðh! iÞj

FIRðh! iÞ1

� �6
" #

; ð3Þ

where nðh! iÞj is the number of distances between coordi-

nation centre h and ligands i in a j th shell.

The ECoN is calculated using this formula:

ECoN h! ið Þ ¼
X1
j¼1

nðh! iÞj exp 1�
FIRðh! iÞj

MEFIRðh! iÞ

� �6
" #

:

ð4Þ

The exponent was arbitrarily set to 6 so that ECoN would give

intuitive CNs of 4, 6 and 12 for diamond, �-Po and c.c.p. of

spheres, respectively. There are also iterative variants of
nMEFIR and nECoN described very well in the original paper

(Hoppe, 1979). They differ significantly from the non-iterative

variant only if there are large variations in consecutive FIR. It

is worth noting that in principle all of the described geome-

trical CN concepts may be used to study intermolecular

interactions and ‘molecular’ CNs in solids. That is, they are not

restricted to atoms as the central and ligating entities. This was

also noticed and explicitly stated by Hoppe (1979) with

reference to ECoN in his paper. nECoN has been used not

only for the geometrical analysis of crystal structures but also

to calculate charge distribution (CHARDI) in extended solids.

This was introduced by Hoppe et al. (1989) and later devel-

oped by Nespolo and co-workers (Nespolo et al., 1999, 2001;

Eon & Nespolo, 2015; Nespolo, 2016). CHARDI may be used

for the prediction of bond strengths along with other

approaches, such as resonance bond number (Rutherford,

1998).

3. Valence diversity and valence entropy coordination
numbers

3.1. Definitions

The proposed definitions belong to the class of chemical

ones and are based on the valences si of bonds/contacts

between the coordination centre and ligands (Brown, 2009,

2016; Brown & Poeppelmeier, 2014). Let us define valence

diversity coordination number of order n (nVDCN, kVDCN;n)

such that: PN
i¼1 si

kVDCN;n

¼

PN
i¼1 sn

i

kVDCN;n

 !1=n

; ð5Þ

where si is the bond valence of i th bond, the summation goes

from 1 to N bonds taken into account and n, called the VDCN

order, is a positive number (although in principle it could be

any real number except for 0).

Such a choice of name and the restriction to positive orders

will be justified in x3.2. The left-hand side of equation (5)

brings to mind weighted arithmetic mean with all ‘weights’

equal to the inverse of nVDCN. However, the weights do not

sum to unity, clearly indicating the expression is not a

weighted arithmetic mean. Similarly, the right-hand side of

this equation looks like weighted power mean. nVDCN is the

inverse of such weight for which the two expressions resem-

bling means are equal. It should also be mentioned that the

left-hand side of equation (5) is the average ligand bond order

mentioned by Carter (1978).

After a few algebraic transformations one gets the following

formula for nVDCN:

kVDCN;n ¼
XN

i¼1

si

S

� �n

" #1=ð1�nÞ

; ð6Þ

where S ¼
PN

i¼1 si is the bond valence sum (BVS) for the

coordination centre.

Equation (6) permits for the calculation of 0VDCN, but

becomes indeterminate for n = 1. It can be shown though that

its limit at n! 1 exists and equals:

kVDCN;1 ¼
YN

i¼1

si

S

� �� si=Sð Þ

ð7Þ

or

ln kVDCN;1 ¼ �
XN

i¼1

si

S

� �
ln

si

S

� �
: ð8Þ

Now let us define the valence entropy coordination number of

order n (nVECN, kVECN;n) such that:

PN
i¼1 sn

i

kVECN;n

 !1
n

¼ lim
�!0

PN
i¼1 snþ�

i

kVECN;n

 !1=ðnþ�Þ

: ð9Þ

This yields the following formula for calculating nVECN (see

Appendix A for derivation):

ln kVECN;n ¼ �
XN

i¼1

sn
i

Sn

� �
ln

sn
i

Sn

� �
; ð10Þ

where Sn ¼
PN

i¼1 sn
i . For n 6¼ 1 Sn does not correspond to the

BVS of coordination centre. Again, n can, in principle, be any

real number. We suppose, however, that only nVECN of

positive orders will be of practical importance. Note that
1VDCN and 1VECN are identical.

It can be shown that the same expression for nVECN results

from a different definition (see Appendix B for derivation).
nVECN is such a number that:
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@

PN

i¼1
sn

i

kVECN;n

� �1=n
" #

@n
¼ 0: ð11Þ

It means that nVECN is such a ‘weight’ that minimizes the

expression resembling power mean at an a priori given posi-

tive n or that maximizes the expression for a negative n (see

Fig. S1 for an illustration of this).

3.2. Relationship with diversity and Shannon entropy

It is noteworthy that the expression for nVDCN is identical

to the expression for species diversity of index q (qD) used in

ecology (Hill, 1973; Jost, 2006):

qD ¼
XN

i¼1

p
q
i

 ! 1
1�q

¼ expðHqÞ; ð12Þ

where pi is the abundance of species i expressed as the

probability of finding an individual of species i in the whole

ecosystem. This fact is the reason for calling the CN defined by

equation (1) nVDCN. In the case of nVDCN, pi can be treated

as the relative contribution of a certain bond to the total

valence S of central atom. The diversity of order q is closely

related to Rényi entropy of order q (Hq) as indicated in

equation (12).

It is noteworthy that diversity of index 1 equals to e raised

to the power of Shannon entropy H1 (Jost, 2006):

1D ¼ exp �
XN

i¼1

pi ln pi

 !
¼ expðH1Þ: ð13Þ

It follows that nVECN of any order and 1VDCN are closely

related to Shannon entropy expressed in natural units of

information (nat). It is worth mentioning here that Lalik

(2005) proposed to use entropy to define a measure of

distortion for coordination polyhedra. However, he did not

notice that it can be used as a CN or at least he did not

mention this in his publication (Lalik, 2005). Information

theory has been recently harnessed to the study of disordered

solid materials and probably will become increasingly more

important in the field (Varn & Crutchfield, 2016).

We want to stress, nonetheless, that the relationship of the

herein defined nVDCN and nVECN with information theory

in general as well as diversity and entropy in particular came

as a surprise and is a consequence of the adopted definitions.

This link has, however, profound consequences as one may

envisage a whole new suite of CNs based on the diversity with

the pi probabilities expressed in terms of different quantities

than bond valences which measure bond strengths. For

instance, given that bond energies are roughly proportional to

squares of bond valences (Brown, 2009) 2VECN can be

treated as a first-order entropic CN based on bond energies.

3.3. Properties and discussion

The relationship of nVDCN with diversity of index q

permits for the straightforward translation of the properties of

diversity to the properties of nVDCN. Namely, 0VDCN is

equal to N no matter what the values of pi and, consequently,

si are. The contribution of weak interactions i.e. bonds with

low valences decreases with growing n. For n ¼ 1 the contri-

butions of both weak and strong bonds to 1VDCN (and to
1VECN as well) are perfectly balanced (Jost, 2006). In the

special case that all bonds have exactly the same bond valence,

both nVDCN and nVECN are equal to N for all the values of n.

All of these trends are illustrated in Fig. 1. Besides, nVECN

falls more quickly than nVDCN with the growing dispropor-

tion between bond valences for CN orders higher than 1 as

illustrated in Fig. 1. The contrary holds for orders between 0

and 1. Importantly, nVDCN fulfils all the restrictions put forth

by Carter (1978).

Moreover, one may say, paraphrasing Hill (1973), that
nVDCN is figuratively a measure of how many bonds there are

in the coordination sphere of a particular coordination centre,

if we examine the bonds sorted in the descending order

according to their valences down to a certain depth. If we

check superficially (e.g. by using 2VDCN) we will see the
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Figure 1
(a) nVDCN and (b) nVECN as functions of various orders on bond
valences in an AX2 system. Coordination centre of total valence 2
denoted with a black circle is surrounded by two ligands illustrated with
open circles. The bond valences of the bonds between them are s1 and s2.
The CN orders are given next to the corresponding curves.

Figure 2
nVDCN and nVECN as functions of the order n for an AX3 system. The A
and X species are drawn as black and open circles, respectively.



stronger bonds. If we look deeply (e.g. by using 0VDCN) we

will count all the bonds. Therefore, the nVDCNs of various

orders have a natural intuitive interpretation, albeit a rather

vague one (Hill, 1973). Negative nVDCN orders were

excluded because they may lead to greater values of CN than

the number of ligands around coordination centre which is

physically impossible (see Fig. 2).

One may show that nVECN converges for n!þ1 and

n!�1 to the number of bonds with highest and lowest

bond valence in a given coordination sphere, respectively (see

Fig. 2 for an illustration and Appendix C for a proof). This

indicates that for n = 1 there is a perfect balance between weak

and strong bonds i.e. neither group is favoured, for n > 1

strong bonds are favoured and for n < 1 weak ones. It also

follows that kVECN,n � N and the equality occurs only if the

VECN order is 0 or if all bonds in the coordination sphere

have the same bond valence (see Fig. 1). It must be stressed

that nVECN, similarly to nVDCN, fulfils all the restrictions

imposed on CNs by Carter (1978).

Last but not least, it can be proven for AxBy compounds

crystallizing with one symmetry independent atom A and one

symmetry independent atom B that (see Appendix D for

proof):

x kVECN;nA ¼ y kVECN;nB: ð14Þ

nVECN and nECoN are to the best of our knowledge the only

CNs which may adopt non-integer values and satisfy this

condition.

One may argue that the dependence of nVDCN and nVECN

on n is their weakness. However, we are confident that the

opposite is true. Different properties that depend on CN, such

as the stereoactivity of lone electron pair or the chemical shift

in NMR, may be affected more significantly either by weak or

strong bonds. Consequently, the choice of appropriate CN

order n may be critical in correlating and/or predicting the

relationship of a particular property with CN.

Let us compare nVDCN and nVECN with ECoN before

proceeding to an application of the newly defined CNs to an

exemplary problem in structural chemistry. Organic carbo-

nates containing CO3 moiety and organic phosphates(V) with

a PO4 moiety were chosen as model systems with conventional

CNs of 3 and 4, respectively. The CSD (version 5.39 with

updates, August 2018) searches were restricted to the struc-

tures containing CO3 or PO4 skeleton, respectively. Only

structures containing neither errors nor disorder and that with

an R factor of less than 0.05 and with the mean �(C�C)

smaller than 0.005 Å were taken into account. The bond

valence parameters of Gagné and Hawthorne (2015) were

used. The BVS rule was checked and structures for which BVS

deviated by more than 0.5 from the ideal values of 4 and 5 for

carbon and phosphorus, respectively, were rejected. There

were four such structures both for CO3 and for PO4 moieties.

The resulting data sets comprise 569 (1047) entries with 688

CO3 (1688 PO4) fragments. Iterative nECoN was calculated for

both data sets and it was found that it does not change

significantly after four and three iterations for carbonates and

phosphates(V), respectively. The difference indicates that C—

O bonds are more varied in the CO3 fragments than P—O

bonds in phosphates(V). Then, the iterative nECoN was

correlated with nVECN and nVDCN of various orders (see

Fig. 3). It was found that ECoN correlates linearly with
1VECN (and, of course, with 1VDCN). However, the slopes of

the linear relationship between them is much smaller than one

(0.15 and 0.22 for CO3 and PO4 coordination spheres,

research papers
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Figure 3
The correlation between iterative nECoN and nVECN as well as nVDCN
of various orders for (a, c) CO3 and (b, d) PO4 moieties. The black lines
denote the y = x function.

Figure 4
The correlation between iterative 2ECoN and 1VECN as well as 4VDCN
for MLn moieties where M = Al, Ga, In and L = O, S, Se. The black line
denotes the y = x function



respectively). The slope becomes close to one for nVECN and
nVDCN orders significantly higher than 1 which indicates that

ECoN disproportionately favours strong bonds over weaker

ones. It is noteworthy that for nVECN and nVDCN orders

higher than one the data lie on distinct lines which permits

their separation into classes. The values of nVECN and
nVDCN change slightly when different bond valence para-

meters are used (see Fig. S2 for an illustration).

Similar comparison of the herein proposed CNs with ECoN

was conducted for inorganic compounds. Oxides, sulfides and

selenides of aluminium, gallium and indium were chosen as

model systems and structures of their polymorphs were

retrieved from ICSD (Belsky et al., 2002; Hellenbrandt, 2004).

The structures were checked and the limit on coordination was

decided manually for every coordination centre. Then 1VECN,
4VDCN and 2ECoN were calculated. The results are given in

Table S1. In this case similar trends are observed as for organic

carbonates and phosphates, but the sample is much smaller

(see Fig. 4). There are two distinct curves for 1VECN – one

starting from point with coordinates (4, 4) and the other from

point (6, 6) – and there are two additional points which would

belong to the curve starting from (5, 5), were there more

structures with five ligands around coordination centre in the

database.

4. Application to the analysis of arsenic(III)
coordination sphere in oxocompounds

4.1. Introduction and methodological details

In order to prove the usefulness of the proposed CN defi-

nitions and to show one of their possible applications 1VECN

has been applied to study the correlation between the

stereoactivity of AsIII lone electron pair (LEP) and arsenic

CN. There are numerous studies of LEPs stereoactivity of p-

block elements (Wang & Liebau, 1996; Sidey, 2008; Christy &

Mills, 2013; Gagné & Hawthorne, 2018, 2018a) and Rahm has

recently proposed a novel descriptor to quantify the nature of

LEPs – HELP – high-ELF localization domain population

(Rahm & Christe, 2013; Rahm, 2015). Arsenic(III) was chosen

as the stereoactivity of its LEP has not been studied as

extensively as for other elements, because of our long-term

interest in this element and for the sake of simplicity. Namely,

AsIII is heavy enough for its coordination sphere to be

extended to contain both primary and secondary bonds, but it

is relatively easy to place a boundary as to which As� � �O

contacts should be taken into account and which can be

neglected. In the following paragraphs we will use the

Alcock’s (1972) concept of secondary bonds which are weak

interactions of coordination centre possessing LEP with

ligands located trans with respect the strong primary bonds of

the coordination centre (see Fig. 5).

The study was restricted to inorganic compounds of

arsenic(III) with only oxygen atoms as ligands. Structural data

were collected from the ICSD by searching for all compounds

containing AsIII and oxygen ligands up to 3.6 Å from the

arsenic (Belsky et al., 2002; Hellenbrandt, 2004). PLATON

and bash scripts were used for the extraction of As—O bond

lengths and bond angles from the cif files retrieved from the

database (Spek, 2009). The data were then carefully analysed

using LibreOffice Calc and structures with disorder, refined to

R1 values higher than 10%, with incorrectly assigned arsenic

oxidation state as +3 and with unusually short or long As—O

bonds were removed from the data set. This led to a dataset

containing 546 coordination spheres of arsenic determined

under ambient conditions and 141 coordination spheres

determined in high-pressure (up to 30 GPa) experiments of

ours which were treated separately (Guńka, Dziubek et al.,

2015; Guńka, Dranka et al., 2015). The exponential relation-

ship between bond valence and bond length was utilized:

si ¼ exp
R0 � ri

B

� �
; ð15Þ

where ri is bond length, R0 is the bond length of unit valence

and B is the parameter describing the bond softness. The R0

and B parameters of 1.775 and 0.423 Å, respectively, calcu-

lated by Gagné & Hawthorne (2015) were used. For the high-

pressure data the dependence of R0 on pressure proposed by

Brown was utilized (Brown et al., 2003). The analysis was

restricted up to six oxygen ligands i.e. the coordination sphere

of As was restricted to three primary As—O bonds and up to

three secondary As� � �O bonds. The stereoactivity of As LEP

was assessed by the magnitude of the resultant bond valence

vector (BVV) of arsenic atom using the approach of Zachara

(2007). For the computations arsenic coordination centre was

treated as As5+ and LEP was treated as an additional pseu-

doligand with a bond valence of sLEP = �2. The BVV asso-

ciated with LEP was taken as the negative of the arsenic

resultant BVV calculated as the sum of BVVs associated with

real ligands [see Fig. 5(b)]. If the LEP were fully stereoactive,

the magnitude of the BVV associated with it should be

||vLEP|| = sLEP(1 � sLEP/QAs) = 2(1 � 2/5) = 1.2 v.u. The

decrease in the LEP stereoactivity causes lowering of this

value. Again the As5+ bond valence parameters from Gagné &

Hawthorne (2015) of 1.765 and 0.352 Å were used. The source

code for the LibreOffice functions to calculate nVECN,
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Figure 5
(a) Top and (b) side view of the idealized AsIII coordination sphere with
secondary As� � �O interactions located trans with respect to primary As—
O bonds. As and O atoms are marked as black and open circles,
respectively. LEP is represented as a grey circle and ellipse in (a) and (b),
respectively. Additionally, the resultant BVV vector of arsenic and the
BVV associated with LEP are drawn as blue and red arrows, respectively.



nVDCN and nECoN are available in the supporting informa-

tion and an instruction how to import them is detailed in xS1.

4.2. Results and discussion for ambient-pressure structures

The histogram of bond valence sums (BVS, denoted S) for

AsIII coordination spheres shows a normal distribution

centred on 3 (see Fig. S3 for the histogram and for the normal

probability plot). This indicates that the adopted cut-off for

the As� � �O distances of 3.6 Å is correct. As expected there is

no correlation between the BVS and 1VECN and only a weak

one between BVS and LEP stereoactivity described by the

resulting bond valence vector denoted ||vAs|| (see Fig. 6). The

Pearson correlation coefficients r are 0.02 and 0.47, respec-

tively. The correlation between 1VECN and LEP stereo-

activity is stronger (r = �0.57; see Fig. 7). Two clusters of data

points can be discerned in the plot. The first one concentrated

around 1VECN of 3 and ||vAs|| of 1.2 v.u. corresponding to

AsO3  -tetrahedra in which arsenic atom does not form any

significant secondary bonds. The second one, corresponding to

coordination spheres comprising both primary and secondary

bonds, contains many more data points, is larger and

concentrated around 1VECN of 3.5 and ||vAs|| of 1.1 v.u.

Interestingly, the correlation between 1VECN and ||vAs||

follows roughly a crude model derived as follows. Suppose

there is an isolated AsO3  -tetrahedron. There are only three

primary As—O bonds and LEP stereoactivity is maximal with

the corresponding ||vAs|| value of 1.2 v.u. The LEP stereo-

activity would be minimal i.e. ||vAs|| = 0 when As would form

six As—O bonds of equal bond valences (see Fig. 5). 1VECN is

for the latter case six and for the former three. Assuming a

linear relationship one gets the following dependence of ||vAs||

on 1VECN:

jjvAsjj ¼ �0:40kVECN;1 þ 2:40: ð16Þ

This function is represented by a dashed blue line in Fig. 7. It is

slightly off the data points and the following equation

describes the experimental points much better (solid red line

in Fig. 7):

jjvAsjj ¼ �0:40kVECN;1 þ 2:50: ð17Þ

This indicates that LEP stereoactivity is enhanced for higher
1VECNs. The origin of this effect remains unclear. For the

sake of completeness, the line fitted to data points by least-

squares method is drawn as solid black line in Fig. 7. It devi-
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Figure 6
(a) 1VECN and (b) the resultant BVV magnitude ||vAs|| plotted as a
function of bond valence sum S for AsIII coordination spheres
determined at ambient pressure and at high pressure (HP) up to 30 GPa.

Figure 7
The resultant BVV magnitude ||vAs|| plotted as a function of 1VECN. The
dashed blue line and solid red line correspond to the crude models
relating ||vAs|| and 1VECN described in the main text whereas the solid
black line is the least-squares fit to the data points. Only the ambient
pressure data were taken into account.



ates significantly from the crude model as it is anchored

around the centres of the aforementioned clusters.

4.3. Results and discussion for high-pressure structures

We discuss the high-pressure (HP) structures of arsenolite

As4O6 up to 30 GPa and claudetite II As2O3 up to 21 GPa

separately as HP is expected to exert additional stress on the

As coordination sphere which may perturb the LEP stereo-

activity. Indeed, even when R0 dependence on pressure is

taken into account BVSs for AsIII are increased compared to

ambient pressure data (see Fig. 6) and there is a clear corre-

lation of BVS with pressure [see Fig. 8(a)]. Note the abrupt

drop in BVS and ||vAs|| in Fig. 8 accompanying the �0 ! �
phase transition for claudetite II around 10.5 GPa (Guńka,

Dranka et al., 2015). The drop reveals that the first-order

phase transition may be treated as a structural transformation

which relieves the increase of BVS and ||vAs|| with increasing

pressure in �, �0 and �00 phases of claudetite II. Conversely,
1VECN grows monotonically with pressure both for arsenolite

and claudetite II despite the phase transitions in claudetite II

[see Fig. 8(c)]. The observed trend was expected – increased

pressure forces As and O atoms to be closer together resulting

in the increase of As 1VECN. However, the increased 1VECN

was not accompanied by a reduction in the stereoactivity of

LEP (see Fig. 7) which we ascribe to the anisotropic stress

introduced by pressure (Guńka et al., 2018).

The HP arsenolite data offered an opportunity to validate

experimentally the proved relation (14). See Table S2 for the
1VECN values of As and O together with their ratio which

equals exactly As and O stoichiometric ratio. These data also

were also used to compare the Hoppe’s ECoN with 1VECN

(see Fig. 9 and Table S2 for numerical values). ECoN is less

sensitive to the approaching of O atoms towards As which

further confirms the observations made in x3.3 for carbonates

and phosphates(V). The reason for this is that ECoN is a

purely geometrical CN while 1VECN is based on bond

valences. Therefore, we conclude nVECN and nVDCN are

definitely better than ECoN for studying changes in bonding

situations of coordination centre. Having said that, we want to

stress that there are applications where ECoN is more

appropriate. For instance, studying how molecular environ-

ment in crystal structures changes as a function of pressure

using nVECN would require a whole theory of ‘intermolecular

interactions valences’ and, consequently, ECoN is better

suited for this purpose for now. Another example of a problem

for which ECoN is more appropriate than nVECN is the

illustration of the fact that the As crystallographic orbit in

arsenolite approaches the cubic closest packing of spheres as

pressure is increased (Guńka et al., 2018). This can be

demonstrated by plotting iterative 7ECoN(As/As) as a func-

tion of pressure and showing that ECoN converges to 12 at HP
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Figure 8
(a) BVS, (b) resultant BVV magnitude ||vAs|| and (c) 1VECN plotted as a
function of pressure for the HP data of arsenolite (filled red squares) and
claudetite II (open blues squares). Note the spread of values for
claudetite II data resulting from the fact there is more than one As atom
in the asymmetric unit. The values were averaged for every pressure and
plotted as filled blue squares.

Figure 9
1VECNAs and 2ECoN(As/O) in arsenolite crystal structures plotted as a
function of pressure. Note the �16-fold difference in the increments of
the scales on the two Y axes.



(see Fig. S4). VECN is not suitable for this as there are no

As—As bonds in arsenolite.

5. Summary and conclusions

Basing on the bond valence model we presented two novel

definitions of chemical CNs which unexpectedly turned out to

be related to the information theory concepts of diversity and

entropy. The valence entropy and valence diversity coordi-

nation numbers are flexible as their definitions include an

additional parameter n called order. This makes it possible to

choose such a CN order that balances properly the contribu-

tions of higher and lower bond valences to CN and, as a result,

makes the CN most suitable for correlating a particular

chemical property with it. Both nVECN and nVDCN fulfil the

restrictions imposed on CNs by Carter (1978). On one hand,

our results imply that geometrical CNs, the most sophisticated

of which is Hoppe’s (1979) ECoN, are more useful than

chemical CNs for studying strictly geometrical changes in

crystal structures. On the other hand, we have shown that
nVECN and nVDCN operating with bond valences are

intrinsically better suited than geometrical CNs for studying

structural relationships and transitions which involve interplay

between primary and secondary bonds. The analysis of

systems with other CNs are the subject of further studies in

our group.

APPENDIX A
Derivation of the expression for nVECN from definition
– equation (9)

Before calculating the limit in equation (9) let us perform

some transformations:

PN
i¼1sn

i

kVECN;n

 !1
n

¼

PN
i¼1snþ�

i

kVECN;n

 !1=ðnþ�Þ

: ð18Þ

Let us set Sn �
PN

i¼1sn
i and take natural logarithm of the

equation (18):

1

n
ln Sn � ln kVECN;n

� �
¼

1

nþ �
ln
XN

i¼1
snþ�

i � ln kVECN;n

� �
:

ð19Þ

Now let us multiply both sides of equation (19) by nðnþ �Þ
and sort the resulting terms. It follows that:

ln kVECN;n ¼ ln Sn �
n

�
ln

PN
i¼1snþ�

i

Sn

: ð20Þ

Let us now calculate the limit for �! 0 of the second term on

the right-hand side of equation (20) using L’Hospital’s rule

(the 0/0 indeterminate form):

lim�!0

n

�
ln

PN
i¼1snþ�

i

Sn

¼ lim�!0

n SnPN

i¼1
snþ�

i

1
Sn

PN
i¼1snþ�

i ln si

1

¼
n

Sn

PN
i¼1

sn
i ln si: ð21Þ

Inserting this into equation (20) gives

ln kVECN;n ¼ ln Sn �
n

Sn

PN
i¼1

sn
i ln si; ð22Þ

which after additional simple but tedious transformations:

ln kVECN;n ¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

1

¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

� Sn

� �

¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

þ ln Sn

� �

¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

�
XN

i¼1

sn
i

Sn

ln Sn

¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

� ln Sn

XN

i¼1

sn
i

Sn

¼ ln Sn �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

� ln Sn ð23Þ

leads to

ln kVECN;n ¼ �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

: ð24Þ

APPENDIX B
Derivation of the expression for nVECN from the
differential expression

Let us notice first that:

½ln f ðxÞ	0 ¼
1

f ðxÞ
f 0 xð Þ ) f 0ðxÞ ¼ f ðxÞ½ln f ðxÞ	0: ð25Þ

Let us make use of equation (25) in order to differentiate the

function from the left-hand side of equation (11):

f nð Þ :¼

PN
i¼1sn

i

k

 !1=n

ð26Þ

@f nð Þ

@n
¼

PN
i¼1sn

i

k

 !1=n

1

n
ln

PN
i¼1sn

i

k

 !" #0

¼

PN
i¼1sn

i

k

 !1=n

�
1

n2
ln

PN
i¼1sn

i

k
þ

1

n

kPN
i¼1sn

i

PN
i¼1sn

i ln si

k

 !
ð27Þ

f 0 nð Þ ¼

PN
i¼1sn

i

k

 !1=n

1

n

PN
i¼1sn

i ln siPN
i¼1sn

i

�
1

n2
ln

PN
i¼1sn

i

k

 !
ð28Þ

f 0 nð Þ ¼
Sn

kVECN;n

� �1=n
1

n

PN
i¼1sn

i ln si

Sn

�
1

n
ln

Sn

kVECN;n

 !
¼ 0

ð29Þ

PN
i¼1sn

i ln si

Sn

�
1

n
ln

Sn

kVECN;n

¼ 0 ð30Þ
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�
1

n
ln

Sn

kVECN;n

¼

PN
i¼1sn

i ln si

Sn

ð31Þ

ln Sn � ln kVECN;n ¼ n

PN
i¼1sn

i ln si

Sn

ð32Þ

Equation (32) leads to the same expression for nVECN as

equation (22). Note that k is used instead of kVECN;n in

equations (26)–(28) as the latter is a special value of the

former for which f 0ðnÞ ¼ 0.

The analysis of equation (29) indicates that for positive

values of n f 0ðnÞ changes sign from negative to positive indi-

cating that f ðnÞ has a minimum at particular n determined by

the order of kVECN;n. Conversely, for negative kVECN;n orders

f 0ðnÞ changes sign from positive to negative indicating that

f ðnÞ has a maximum for this particular value of n.

APPENDIX C
Derivation of VECN of positive and negative infinite
orders

Let us assume without loss of generality that:

s ¼ s1 ¼ s2 ¼ � � � ¼ sm < smþ1 < . . . < sN�Mþ1 ¼ sN�Mþ2 ¼ � � �

¼ sN ¼ S; ð33Þ

where m and M are positive natural numbers. This assumption

means that there are m bonds/contacts with lowest valence s

and M bonds with highest valence S in some coordination

sphere. Let us notice in the beginning that:

limn!þ1

si

S

� �n

¼
1; i ¼ N �M þ 1;N �M þ 2; . . . ;N

0; i ¼ 1; 2; . . . ;N �M

�
ð34Þ

Besides, it can be shown using L’Hospital’s rule (the 1/1

indeterminate form) that for i ¼ 1; 2; . . . ;N �M:

limn!þ1n
si

S

� �n

¼ lim
n

si

S

� ��n ¼ limn!þ1

1
si

S

� ��n
ln si

S

� � ¼ 0: ð35Þ

We may now proceed to calculate the +1VECN:

ln kVECN;þ1 ¼ limn!þ1 �
XN

i¼1

sn
i

Sn

ln
sn

i

Sn

¼ �
XN

i¼1
limn!þ1

ð
si

S
Þ

nPN
j¼1ð

sj

S
Þ

n ln
ð

si

S
Þ

nPN
j¼1ð

sj

S
Þ

n : ð36Þ

Using the values of limits given in (34) and (35) it follows that:

ln kVECN;þ1 ¼ �
XN�M

i¼1
limn!þ1

si

S

� �n

M
ln

si

S

� �n

M
�XN

i¼N�Mþ1

1

M
ln

1

M

¼ 0�M
1

M
ln

1

M
¼ ln M: ð37Þ

Thus, kVECN;þ1 ¼ M. It can be analogously shown that

kVECN;�1 ¼ m by dividing all terms by s instead of S and

taking a limit to �1 in (36). One has to notice that:

limn!�1

si

s

� �n

¼
1; i ¼ 1; 2; � � � ;m

0; i ¼ mþ 1;mþ 2; � � � ;N

�
: ð38Þ

APPENDIX D
Proof that the ratio of VECN for two coordination
centres for highly symmetric structures is
stoichiometric

We will prove that for binary compound AxBy crystallizing

with one symmetry independent atom A and one symmetry

independent atom B the ratio of nVECN for A and B is

stoichiometric. Firstly, let us notice that bonds/contacts

between atoms A and B can be divided into shells according to

the AB separation or the respective bond valence. For atom A

there are N1A;N2A; :::;NmA bonds/contacts of valences

s1; s2; :::; sm, respectively, in m shells. Similarly, for atom B

there are N1B;N2B; :::;NmB of the same valences s1; s2; :::; sm,

respectively. Of course,
Pm

j¼1NjA ¼ NA and
Pm

j¼1NjB ¼ NB

where index j is used for enumerating shells. Index i will be

used, just as everywhere else in the manuscript, for enumer-

ating bonds/contacts. The stoichiometry of the compound

enforces that

8j
NjA

NjB

¼
y

x
ð39Þ

and consequently

NA

NB

¼
y

x
: ð40Þ

Besides

SnB ¼
Xm

i¼1
si ¼

Xm

j¼1
NjBsj ¼

Xm

j¼1

x

y
NjAsj ¼

x

y
SnA: ð41Þ

Equations (39) and (41) indicate that

NjA

SnA

¼
NjB

SnB

: ð42Þ

Let us now transform the expression for VECN of atom B:

ln kVECN;nB ¼�
XNB

i¼1

sn
i

SnB

ln
sn

i

SnB

¼ �
Xm

j¼1
NjB

sn
j

SnB

ln
sn

j

SnB

¼ �
Xm

j¼1
NjA

sn
j

SnA

ln
sn

j

x
y SnA

¼ �
XNA

i¼1

sn
i

SnA

ln
sn

i

SnA

� ln
x

y
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XNA

i¼1

sn
i

SnA

ln
sn

i

SnA

þ
XNA

i¼1

sn
i

SnA

ln
x

y

¼ ln kVECN;nA þ ln
x

y
; ð43Þ

ln
kVECN;nB

kVECN;n A

¼ ln
x

y
ð44Þ
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kVECN;n A

kVECN;n B

¼
y

x
; ð45Þ

QED.
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