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Multi-slice simulations of electron diffraction by three-dimensional protein

crystals have indicated that structure solution would be severely impeded by

dynamical diffraction, especially when crystals are more than a few unit cells

thick. In practice, however, dynamical diffraction turned out to be less of a

problem than anticipated on the basis of these simulations. Here it is shown that

two scattering phenomena, which are usually omitted from multi-slice

simulations, reduce the dynamical effect: solvent scattering reduces the phase

differences within the exit beam and inelastic scattering followed by elastic

scattering results in diffusion of dynamical scattering out of Bragg peaks. Thus,

these independent phenomena provide potential reasons for the apparent

discrepancy between theory and practice in protein electron crystallography.

1. Introduction

The 2017 Nobel Prize in Chemistry for Henderson, Frank and

Dubochet who were key contributors to the development of

cryo-electron microscopy (cryo-EM) for acquiring three-

dimensional atomic, structural information of biological

complexes, confirmed the enormous impact of methods that

employ electron scattering for structure determination.1 In

cryo-EM, the scattered electrons are imaged on a direct

electron detector by a series of electron lenses, yielding a

projection image of the scattering molecular complex.

Because of the limited total electron dose that a biological

sample can tolerate, the phase contrast of such a sample is

weak and image quality is degraded by electron-optical

distortions and potential drifts during the exposure, the signal-

to-noise ratio (SNR) of cryo-EM data is poor at high resolu-

tion.

1.1. Mismatch between the theory and experiment

Measuring electron scattering data from protein crystals in

diffraction mode, rather than in imaging microscopy mode,

circumvents or reduces several of the phenomena that

compromise the signal-to-noise ratio in cryo-EM. Thus,

measuring in diffraction mode can result in a reduction by

orders of magnitude of the electron dose required for

achieving high resolution when imaging three-dimensional

protein crystals. Analysis of published data for lysozyme

nanocrystals of similar size and identical space group in either

imaging or in diffraction mode under optimal conditions

(Nederlof et al., 2013; Clabbers et al., 2017) indicates that
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1 We define ‘electron scattering’ as any phenomenon that changes energy,
phase and/or momentum of an electron, and reserve the term ‘electron
diffraction’ exclusively for elastic events, which essentially preserve the energy
of the electron.

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052520619009661&domain=pdf&date_stamp=2019-08-01


diffraction data requires an electron dose that is about three

orders of magnitude lower to yield a similar Bragg signal by

imaging (Fig. 1). The top-left panel in Fig. 1 shows the Fourier

transform of a lysozyme nano-crystal (Nederlof et al., 2013).

Subsequent images of the same crystal still diffracted, but

high-resolution spots were already noticeably fading (data not

shown). The resolution of the Bragg spots was isotropic,

indicating that there was no noticeable beam - or sample drift.

The plot in the lower-left panel in Fig. 1 indicates the signal-to-

noise ratio of this imaging data. Significant data up to about

3.7 Å resolution could be distinguished unequivocally. The

small peaks at higher resolution are most likely due to noise

fluctuations. The top right panel in Fig. 1 shows a diffraction

pattern of a lysozyme nano-crystal from a three-dimensional

electron diffraction data set comprising about 30� of rotation

data (Clabbers et al., 2017). The plot in the lower-right panel in

Fig. 1 was calculated similarly to the plot of the imaging data.

Significant diffraction data to 2.1 Å were clearly visible,

despite a total electron dose that was 100 times lower than in

the imaging data.

Recently, this difference in data quality was explained from

first principles, indicating that the combination of several

independent fundamental effects, rather than technological

limitations, underlie this observation (Clabbers & Abrahams,

2018). These fundamental effects include loss of coherency

within the sample due to inelastic events, Ewald sphere

curvature, signal loss in imaging of samples with a thickness of

50 nm and higher due to focal spread, independency of Friedel

mates in diffraction (but not in imaging) and chromatic

dispersion due to momentum loss upon elastic scattering. For

protein crystals, but likely also for non-crystalline biological

samples, there are therefore clear benefits of collecting data in

diffraction mode. Yet the point has been made in the literature

by several key experts in the field that such data would be

severely compromised by multiple or dynamical diffraction

(Glaeser & Downing, 1993; Subramanian et al., 2015). Multi-

slice calculations indicated that dynamical diffraction would

invalidate retrieving the phase information – that is lost in

diffraction data, but that is essential for structure interpreta-

tion – by conventional crystallographic methods, which are

based on kinematic diffraction theory and therefore assumes

single elastic scattering. A prime hallmark of dynamical

diffraction of a weak phase object is that Friedel pairs can

have very different intensities, unlike in kinematic, single

scattering diffraction data. Multislice calculations indicated

such differences to occur even at modest crystal thickness

(Glaeser & Downing, 1993). Nevertheless, protein structures

have been solved by conventional phasing methods using

electron diffraction data of relatively thick crystals (e.g.

Hattne et al., 2015; Clabbers et al., 2017), that had differences

between Friedel pairs smaller than anticipated on the basis of

earlier predictions based on multislice calculations (Glaeser &

Downing, 1993). We therefore concluded that the theoretical

analysis must have been incomplete.

1.2. Scattering events described by particle and wave models

High-energy electrons (usually 80 keVand up) are scattered

elastically through Coulomb attraction by the nucleus and

inelastically scattered through Coulomb repulsion by the inner

and outer-shell electrons (Egerton, 2011). According to a

classical (particle) description, upon elastic scattering, the

electron can change its direction, but loses virtually no energy,

whereas upon inelastic scattering it hardly changes direction,

but loses energy and coherency. The probability of scattering

is determined by the atomic scattering cross section. The mean

free path for electron (elastical or inelastical) scattering

describes the average distance which an electron travels

without being scattered and it is given by � = A(NA��)�1,

where A is the atomic weight, � is the density, NA is the

Avogadro number and � is the total (elastic or inelastic,

respectively) scattering cross section. Alternatively, treating

electron as a wave, the scattering process can be described by

the complex-valued scattering amplitudes. The differential

cross-section d�/d� = |f(�, ’)|2 gives the probability that an

electron is scattered into the solid angle d�, where f(�, ’)

denotes the scattering amplitude for the direction determined
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Figure 1
Imaging lysozyme nanocrystal in imaging and diffraction mode. The top-
left panel shows the Fourier transform of a 300 keV electron image of a
�100 nm-thick lysozyme nano-crystal (measured at Scherzer focus)
collected using a Titan Krios EM with a Falcon direct electron detector
(Nederlof et al., 2013). The illuminated crystal volume was about 400 nm
� 200 nm � 100 nm and the electron dose was about 6 e� Å�2. The
lower-left panel indicates the signal-to-noise ratio of this imaging data.
The circle indicates 3 Å resolution. A peak search routine identified
potential Bragg spots above background (van Genderen et al., 2016). The
average peak height of these spots was plotted as a function of resolution
with a solid line. The average diffuse background was plotted with a
dotted line. The top right panel shows a diffraction pattern of a lysozyme
nanocrystal. The crystal had a very similar size to the crystal of the left
panel and had the same space group. The 200 keV data were collected
using a Titan Krios EM equipped with a Medipix direct electron detector.
The diffracted crystal volume was about 1000 nm� 200 nm� 100 nm and
the electron dose was 0.06 e� Å�2. The lower-right panel indicates the
plot which was calculated in a similar way to the corresponding lower-left
plot of the imaging data.



by the polar angle � and azimuth ’ and which is found by

solving the Schrödinger equation. The scattering amplitudes

f(�, ’) for elastic scattering have typically a much broader

distribution that that for inelastic scattering. The total scat-

tering cross-section � is obtained from the differential cross

section by integrating over the solid angle. The intensity

distribution of a scattered wave in the far-field gives the

distribution of probabilities of detecting an electron at a

selected location on the detector.

1.3. Importance of accounting for inelastic scattering

Henderson (1995) indicated the importance of considering

inelastic scattering in electron microscopy of biological

specimens in terms of radiation damage. Here we extend this

analysis to include its effect on the quality of the elastic signal.

Like kinematically scattered electrons, dynamically scat-

tered electrons are diffracted in directions determined by the

wavelength of the diffracted radiation, the reciprocal lattice

parameters and the crystal orientation. Since these values do

not change upon multiple elastic diffraction, both kinematic

and dynamic diffraction are focused into Bragg spots.

However, the situation may change if at least one of the

multiple scattering events was inelastic. Then the electron lost

some energy, resulting in a longer wavelength and loss of

coherency.

The ratio of inelastic scattering can be approximated as

Z/20 (Egerton, 2011, p. 126), where Z is the atomic number.

Hydrogen is a particularly strong inelastic scatterer of elec-

trons and composes more that 50% of the atoms of a biolo-

gical sample. In a previous analysis of inelastic scattering,

biological sample were treated as all-carbon leading to an

inelastic versus elastic scattering ratio of 3:1 (Henderson,

1995), but a calculation based on the true atomic composition

of hydrated protein samples, indicated a ratio of 4:1. Please

note that ignoring inelastic scattering in multislice calculations

is not equivalent to filtering out inelastically scattered elec-

trons using an energy filter. For instance, if we ignore inelastic

scattering in our calculations, all electrons emerge from a thick

sample being scattered dynamically, resulting in highly dyna-

mical diffraction data. In reality, however, virtually all elec-

trons will have scattered inelastically at least once, and would

be removed by the energy filter, resulting in no diffraction

data whatsoever.

1.4. Importance of accounting for multiple electron scat-
tering

Both elastic and inelastic scattering cross sections are

relatively high for electrons, therefore multiple electron scat-

tering (‘dynamical diffraction’) can occur even when the

sample is thin.

Protein crystals contain on average about 50% disordered

solvent. Because it is disordered, it will not contribute signif-

icantly to higher resolution crystal diffraction, but instead give

rise to a diffuse, mostly radially symmetrical diffraction signal.

The signal has therefore frequently been ignored for studies at

high resolution, since its signal can be considered to be part of

the background when integrating Bragg spots. Here, we make

the point that the diffraction signal of the solvent scattering

potential cannot be ignored in multislice calculations. An

underlying assumption of the statement that in kinematic,

single scatter electron diffraction, the Friedel pairs must have

similar intensities, is that the sample is a weak phase object.

The essential feature of a weak phase object is that it only

introduces a small additional phase ’ into the travelling

electron wavefunction. The transmission function of the weak

phase object be approximated as exp(i’) / 1 + i’. However,

by ignoring the phase shift caused by the disordered solvent,

this principle is violated. For instance, when the interprotein

cavities align with the electron beam, the assumption that they

do not contain solvent leads to a zero phase shift at these

locations, and as a result to a strong phase shift difference

between the locations occupied by the protein molecule and

cavities. However, in reality the cavities are filled with solvent,

and therefore induce a phase shift comparable to the phase

shift experienced by the beam passing through protein. So,

ignoring the solvent potential incorrectly converts a protein

crystal from a weak phase object into a strong phase object.

This exaggerates the differences within Friedel pairs.

Below we provide simulations which include two important

phenomena that are not usually included in calculations:

inelastic scattering and bulk solvent diffraction.

2. Simulations

2.1. Effects of inelastic scattering

In this section we treat electron scattering as a particle

phenomenon. In elastic scattering, the electron can change

direction, whilst its wavelength remains constant within

measuring accuracy (assuming the particle interpretation). In

inelastic scattering however, the electron hardly changes

direction, yet it loses some of its energy [on average about

40 eV for high-energy electrons – see Egerton (2011) for a full

discussion]. For instance, at 300 kV, the scattering curve of an

inelastic electron is about two orders of magnitude narrower

than that of an elastically scattered electron. Thus, after an

electron has scattered elastically, any subsequent inelastic

scattering events will hardly change its scattering angle. For

crystal diffraction, this means that electrons that only scat-

tered inelastically end up in the direct beam. Electrons that

scattered elastically and subsequently scattered one or more

times inelastically, still end up in the Bragg peak, as they

hardly changed direction. So, for these electrons, inelastic

scattering results in a small peak broadening. However, this

does not mean that inelastic scattering does not affect

diffracted amplitudes.

Inelastic scattering is not a coherent event. Concomitant

with the energy loss upon inelastic electron scattering, the

electron therefore also loses coherency. It can be described by

a wavefront with a strongly pronounced amplitude in the

direction of the incident electron originating from the location

of the inelastic event. The consequence of this loss of coher-

ency, is that subsequent elastic scattering is no longer coherent
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with elastically scattered electrons. So elastic scattering that

occurs after an inelastic event is no longer confined to Bragg

spots, as its wavefunction no longer interferes laterally with

the sample, but only along the direction of the electron.

Therefore, its probability distribution has become radially

symmetric about an axis defined by the direction of the last

elastic scattering event. For the subsequent discussion we

distinguish several combinations of elastic and inelastic scat-

tering events illustrated in Fig. 2.

Deviations from translational symmetry or phonons cause

incoherencies within the sample, resulting in diffusion of the

diffraction data out of Bragg spots. Our discussion focuses

instead on incoherencies of the beam, that are induced by the

sample (which could be fully or only partially ordered). So, the

results of our simulation would not necessarily be equivalent

with multislice simulations that model diffuse scatter using a

‘frozen phonon’ algorithm (Loane et al., 1991), as in this

algorithm, the electrons remain coherent.

For a disordered sample, the probabilities of these various

types of multiple scattering can be calculated by assuming the

scattering to be a Poisson process, that is exclusively deter-

mined by atomic scattering cross sections. Such a Poisson

process requires scattering to have time interval invariance:

the probability of an electron being scattered should be

independent of whether or when it has already been scattered

before. This assumption is clearly not valid when atoms line up

along a crystal lattice in tight columns parallel to the electron

beam, such is the case for crystals with small unit cells that are

aligned with the electron beam. In that case, if an electron

encounters an atom in the column, it will certainly be

encountering another atom further down, since high-energy

electron scattering amplitudes have a narrow angular distri-

bution. This results in a process that has been referred to as

electron channelling and enhances the dynamic effects. In

imaging, it results in a thickness dependent modulation of

observed image intensity at the projected positions of aligned

columns (e.g. Howie, 1966; Op de Beeck & Van Dyck, 1996).

However, in crystals of biological molecules, the atoms do

not line up. This allows us to model the probability of scat-

tering Ps(z) after traversing a sample over a distance z (in nm)

as an exponential decay:

Ps zð Þ ¼ 1� exp �
z

�

� �
¼ 1� exp ���zð Þ; ð1Þ

where � is the average total atomic scattering cross section (in

nm2) and � is the density (in atoms per nm3).

The total elastic atomic scattering cross sections �e(Z) can

be approximated as a function of the atomic number Z by an

equation based on the Lenz model for electron scattering [see

for instance Egerton (2011, p. 115) for further details on the

equations obtained with the Lenz model]:

�eðZÞ � 1:87� 10�4
� �

Z4=3ðc=�Þ2 ðÅ
2
Þ; ð2Þ

where c is speed of light and � is relativistic speed of the

traversing free electron.

The total inelastic scattering cross section �i(Z) can

conveniently and with reasonable accuracy be approximated

from �e(Z) according to Egerton (2011):

�i Zð Þ � 20�e Zð Þ=Z: ð3Þ

We assumed an average specific density for a protein of

1.35 g ml�1 and an average fractional atomic composition of

protein to be H0.48C0.32N0.09O0.09S0.02. The number of mole-

cules in nm3 can be evaluated as N = � /m, where m is the mass

of one molecule, calculated as m = M/NA, here M is the molar

mass and NA is the Avogadro number. The calculation shows

that a protein on average contains about 106 atoms per nm3

(including hydrogens). Since proteins are hydrated, the

contribution of solvating water also needs to be considered.

Water has a fractional atomic composition of H0.67O0.33 and a

density of about 101 atoms per nm3. The fractional atomic

composition of a protein crystal containing 50%(v/v) solvent –

which is the average for protein crystals (e.g. Kantardjieff &

Rupp, 2003) – therefore is: H0.57C0.17N0.05O0.20S0.01. Similar

considerations lead to a fractional atomic composition for

nucleic acid of H0.52C0.15N0.06O0.20P0.02.

Given this fractional atomic composition, it is straightfor-

ward to calculate the total elastic and inelastic elastic scat-

tering cross sections of the average atom of a biological

sample by taking the weighted average of its composing

atomic scattering total cross sections as inferred from equa-

tions 2 and 3 (Table 1). These values indicate that biological

samples tend to scatter less elastically than was presumed in an

earlier analysis: only one in five scattering events is elastic,

instead of one in three. The main reason for this discrepancy is

that biological samples contain significant amounts of
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526 Latychevskaia and Abrahams � Inelastic scattering and solvent scattering Acta Cryst. (2019). B75, 523–531

Table 1
Atomic elastic and inelastic scattering total cross sections in Å2 (�e and �i,
respectively) of an average atom of a hydrated protein or nucleic acid, as
a function of the energy of the impinging electron.

keV scattered e� 100 120 200 300 500 1000

�e protein 0.0042 0.0036 0.0026 0.0021 0.0017 0.0014
�e nucleic acid 0.0047 0.0041 0.0035 0.0029 0.0024 0.0021
�i protein 0.0174 0.0152 0.0108 0.0087 0.0070 0.0059
�i nucleic acid 0.0181 0.0158 0.0135 0.0113 0.0090 0.0079

Figure 2
Several types of multiple scattering that each have a different effect on
the measured diffracted intensities. Elastic events are indicated by a
change in direction, inelastic events are indicated by ovals. Each
combination has an associated probability, determined by the elastic
and inelastic scattering cross sections and the thickness of the sample.



hydrogen atoms, for which only one in twenty scattering

events is elastic, and that the earlier analysis approximated a

biological sample as only containing carbon.

Using the atomic elastic and inelastic scattering factors for

the average biological atom, the probabilities of (multiple)

elastic and inelastic scattering as a function of sample thick-

ness can now be calculated from a system of differential

equations. First, we define:

Pe(dz) = �e�dz is the probability of scattering elastically

over a distance dz.

Pi(dz) = �i�dz is the probability of scattering inelastically

over a distance dz.

Pt(dz) = Pe(dz) + Pi(dz) is the total probability of scattering

over a distance dz.

Multiple scattering in an amorphous material can be

modelled analytically using a Poisson distribution (e.g. Childs

& Misell, 1972; Egerton, 2011, p. 175):

Pm;n ¼
1

m!

t

�e

� �m

exp �
t

�e

� �
1

n!

t

�i

� �n

exp �
t

�i

� �
; ð4Þ

where Pm,n is the probability that a transmitted electron

suffers m elastic n inelastic collisions, t is the thickness, �e and

�i are the elastic and inelastic mean free paths, respectively.

However, this equation is independent of the order of the

elastic and inelastic events, while this order is relevant for the

spatial distribution of the observed diffraction. So instead of

using an analytic approach, we used the finite difference

method that can take the order of the events into account.

The probabilities of the various types of single and multiple

scattering as illustrated in Fig. 2 can now be calculated as

follows:

Pcoh zþ dzð Þ ¼ Pcoh zð Þ 1� Pt dzð Þ
� 	

ð5Þ

is the probability that the electron is scattered neither elasti-

cally nor inelastically at a sample depth of z + dz. Such

unscattered electrons end up in the direct beam.

Pinc zþ dzð Þ ¼ Pinc zð Þ þ Pcoh zð ÞPi dzð Þ
� 	

1� Pe dzð Þ
� 	

ð6Þ

is the probability that electrons that scattered only inelasti-

cally (at least once). Previously unscattered electrons that

scatter inelastically within the slice dz contribute to Pinc(z).

Electrons that have only scattered inelastically, but that scatter

elastically within the slice dz reduce Pinc(z). Electrons that

only scattered inelastically end up in the central beam.

Pkin zþ dzð Þ ¼ Pkin zð Þ þ Pcoh zð ÞPe dzð Þ
� 	� �

1� Pt dzð Þ
� 	

ð7Þ

is the probability that electrons that scattered elastically once.

Such electrons end up in a Bragg spot and can be used for

structure solution using established, kinematic crystal-

lographic theory.

Previously unscattered electrons that scatter elastically

within the slice dz contribute to Pkin(z). Kinematically scat-

tered electrons that scatter a second time within the slice dz

reduce Pkin(z). Depending on the type of the second scattering

event, the inelastic or elastic, probabilities Pkinc or Pdyn result

(see also Fig. 2):

Pkinc zþdzð Þ ¼ Pkinc zð ÞþPkin zþdzð Þ
Pi dzð Þ

1�Pt dzð Þ


 �
1�Pe dzð Þ
� 	

ð8Þ

is the probability that kinematically diffracted, incoherent

electrons first scattered elastically one single time, and after a

subsequent inelastic event are no longer coherent. The prob-

ability of inelastic scattering Pi(dz) is scaled by [1 � Pt(dz)]�1

to correct for additional scattering within the slice dz. Inter-

action with the crystal lattice was therefore coherent only up

to the depth of the inelastic event. It is therefore as if such

electrons experienced a thinner crystal. They will end up in a

Bragg spot and can be used be used for structure determina-

tion.

Pdyn zþ dzð Þ ¼ Pdyn zð Þ þ Pkin zð Þ
Pe dzð Þ

1� Pt dzð Þ


 �
1� Pi dzð Þ
� 	

ð9Þ

is the probability that dynamically scattered, coherent elec-

trons scattered multiple times, always elastically. They end up

in a Bragg spot and can be used for structure solution only

if methods are used that take dynamical diffraction into

account.

Pdinc zþ dzð Þ ¼ Pdinc zð Þ þ Pdyn zð Þ
Pi dzð Þ

1� Pt dzð Þ


 �
1� Pe dzð Þ
� 	

ð10Þ

is the probability that dynamically scattered, incoherent

electron scattered multiple times, always elastically, then it

scattered one or more times inelastically. It will end up in a

Bragg spot and can be used for structure determination if

methods are used that take dynamical diffraction into account.

However, because this electron experienced a thinner crystal

coherently, dynamical corrections have to assume a thinner

crystal, so the dynamical effect is less pronounced.

Prad zþ dzð Þ ¼ Prad zð Þ þ Pinc zþ dzð Þ
Pe dzð Þ

1� Pe dzð Þ
ð11Þ

is the probability that electrons that first scattered inelastically

and subsequently elastically. The normalization of Pe(dz) by

[1� Pe(dz)]2 takes account of multiple elastic events within

the slice dz. The scattered wavefront originating from the

location of the last inelastic scattering event exhibit a strongly

pronounced scattering amplitude in the direction of the inci-

dent electron. Upon further elastic scattering events, this

electron will not interfere with other elastically scattering

electrons, hence the electron will not end up in a Bragg spot.

Instead, it has a radially diffuse scattering probability. It

will be considered as background by data integration

programs.
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Pdif zþdzð Þ ¼ Pdif zð Þþ Pdinc zþdzð ÞþPkinc zþdzð Þ
� 	 Pe dzð Þ

1�Pe dzð Þ

ð12Þ

is the probability that an incoherent electron with a radially

asymmetric diffuse scattering distribution first scattered elas-

tically at least one time, then it scattered inelastically,

rendering it incoherent. Subsequent elastic scattering diffuses

its probability distribution according to a convolution of a

radially symmetric distribution with the Bragg diffraction

pattern. It will be considered as background by data integra-

tion programs.

The probabilities were calculated as a function of sample

thickness z, using a finite difference method starting from z =

0, where Pcoh(0) = 1, and all the other probabilities are zero:

Pinc(0) = Pkin(0) = Pdyn(0) = Pinc(0) = Prad(0) = Pdif(0) = 0.

Then, the thickness was increased to z + dz ! dz and the

probabilities were re-calculated. Next, the thickness was

increased to z + dz ! 2dz and the probabilities were re-

calculated from the probabilities at dz, and so forth. The

obtained distributions are shown in Fig. 3. Because the total

scattering cross sections are linearly proportional to (c/�)2, the

shapes of these probability curves are constant, except for a

scale factor (c/�)2 for the axis corresponding to the sample

thickness.

Here, we only consider the probabilities of events that end

up in Bragg spots: Pinc(z) + Pkinc(z) account for the kinematic

signal in a Bragg spot, whilst Pdyn(z) + Pdinc(z) account for the

dynamical effect in a Bragg spot. We assume that the diffuse

signals Prad(z) and Pdif(z) can be removed by the data inte-

gration program. Even when the probability of diffuse scat-

tering is (much) higher than the probability of Bragg

scattering, it may not deteriorate the quality of the data very

much, because the diffuse signal is spread over a much larger

area than the Bragg signal. In Fig. 4, we consider the effect of

ignoring inelastic scattering on the dynamical fraction of the

Bragg signal, ignoring diffuse scattering.

We conclude from these calculations, that inelastic scat-

tering reduces the fraction of dynamically scattered electrons

in Bragg spots. It may therefore be beneficial to collect data of

thick crystals without an energy filter. This may seem para-

doxical, as neither the purely kinematical, nor the dynamical

signal are reduced by an energy filter, as they resulted exclu-

sively from elastic scattering events. However, an energy filter

would remove electrons that first scattered elastically (one or

more times) and that subsequently lost energy due to one or

more inelastic events. Without an energy filter, these electrons

would still end up in or very close to Bragg spots and could be

used for structure determination and refinement. So filtering

out these electrons would reduce the useful signal. Further-

more, our calculations indicate that the incoherent kinema-

tical Bragg signal is much stronger than the incoherent
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Figure 4
The solid curve corresponds to the calculated dynamical fraction of
intensity in a Bragg spot as a function of sample thickness, taking inelastic
scattering into account and assuming a 200 keV electron. The dashed
curve assumes there is no inelastic scattering (or that the data have been
measured using an energy filter and inelastically scattered electrons have
been removed). The horizontal axis must be rescaled as explained in the
legend to Fig. 2 for other electron energies. The asymptote of the solid
curve is about 0.25, indicating that irrespective of the sample thickness,
the kinematical fraction of a Bragg spot corresponds to at least 75% of
the total intensity. The dashed curve eventually reaches unit, indicating
that for very thick samples, the intensity in the Bragg spots becomes
exclusively dynamical.

Figure 3
Probabilities of the various types (summarized in Fig. 2) of a 200 keV
electron scattering in a hydrated protein sample. For other electron
energies the horizontal axis has to be rescaled by a factor of 0.4835(c/�)2.
For 100 keV, 120 keV, 300 keV, 500 keV and 1000 keV, the rescaling
factors are, therefore, 0.62, 0.71, 1.25, 1.42 and 1.83, respectively. So, for
instance at 100 keV, the peak of Pkin(z) occurs at a thickness of
approximately 45 nm (0.62 � 70 nm), instead of at 70 nm.



dynamical Bragg signal [Pkinc(z) � Pdinc(z); see Fig. 3].

Removing the incoherent Bragg scattering with an energy

filter would therefore reduce the ratio between the integrated

kinematical diffraction and the integrated dynamical from

[Pkin(z) + Pkinc(z)]/[Pdyn(z) + Pdinc(z)] to Pkin(z)/Pdyn(z).

2.2. Effects of bulk solvent elastic scattering in multislice
simulations

In this section we treat electron scattering as a wave

phenomenon. In multislice calculations, the sample is divided

into slices normal to the direction of the electron beam. For

each slice, the projected potential is calculated. Each slice

diffracts the beam that passes through, according to its

projected potential. So, the beam that hits a slice has been

modified by all the previous slices. This series of Fresnel

diffraction calculations cumulates into the ‘exit beam’ wave-

function when the beam leaves the final slice (Cowley &

Moodie, 1957). We did not include the absorption potential of

the sample in these multislice calculations, since this was also

not considered by Glaeser & Downing (1993), and here we

compare between including and excluding the effect of bulk

solvent using their approach. The simulated scattering

potential of protein and disordered water was only about 5 nm

thick. Based on the average inelastic cross section of hydrated

protein, a 5 nm thick sample would correspond to a loss of

overall coherency due to inelastic effects of only about 7%.

Ignoring the absorption potential of the sample therefore

overestimates the ratio between kinematic and dynamical

scattering, but only a fraction of 3 to 4%. We also did not

include Ewald sphere curvature in our comparison between

Friedel mates in our multislice calculations, as this was also not

considered by Glaeser & Downing (1993). We are aware that

excluding the Ewald sphere curvature in multislice calcula-

tions will inflate the apparent RFriedel as a function of resolu-

tion. However, this effect is additive and is unaffected by the

presence of absence of scattering potential of disordered

water. The diffraction pattern is calculated by taking the

Fourier transform of this exit wave and replacing its resulting

complex values with their squared amplitudes.

In order to simulate the effect of including elastic scattering

by the bulk solvent on the level of observable dynamical

scattering, as monitored by differences within Friedel pairs,

the following protocol was applied:

(1) Bacteriorhodopsin (trimer) atomic coordinates were

downloaded from Protein Data Bank (PDB) entry 1brd

(Henderson et al., 1990).

(2) We assumed an orthorhombic unit cell of 63 � 63 �

52 Å3.

(3) The sequence of atoms was re-arranged in order of

increasing z-coordinate, and numbered as a1, a2 . . . .

(4) An incident plane wave with unit amplitude was

assumed.

(5) The coordinates of the first atom a1 were read out from

text file as ðx
ð1Þ
1 ; y

ð1Þ
1 ; z1Þ. The chemical origin of the atom is A1.

(6) The transmission function in plane z1 was calculated as

tðx1; y1; z1Þ ¼ exp½i�vzðx1; y1Þ	, where � is the interaction

parameter and vz(x1, y1) is the projected 200 keV electron

scattering potential of atom a1, calculated as described by

Kirkland (2010) from the tabulated parameters corresponding

to the chemical origin of A1. The transmission function and the

complex-valued wavefront distributions were sampled with

630 � 630 pixels, with a pixel size of 0.1 Å. The exit wave in

plane (x1, y1, z1) was calculated as

(7) U0(x1, y1, z1) = t(x1, y1, z1).

(8) The z-coordinate of the next atom a2 was read out: z2.

The distance �z = z2 � z1 was calculated.

(9) The wavefunction U0(x1, y1, z1) was propagated for �z

by employing the angular spectrum method (Kirkland, 2010).

The resulting wavefront is U2(x2, y2, z2).

(10) The wavefunction was propagated atom by atom

through the sample by repeating steps 6 to 8 until all atoms

had been taken into account.

In order to simulate the effect of bulk water, a random

distribution of randomly rotated water molecules within the

three-dimensional volume used for the multislice calculations

was created based on an average density of water of about 33

molecules per nm3. Then the atoms of the bacteriorhodopsin

trimer were inserted and the water molecules with coordinates

that were located within 1.5 Å of any atom of the bacter-

iorhodopsin trimer were removed. The amount of the

remaining water molecules corresponded to solvent content of

about 70%. Next, the coordinates of all the atoms of the

bacteriorhodopsin trimer and of the water molecules were

electron crystallography
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Figure 5
Distributions of electron exit wave which passed through the bacter-
iorhodopsin trimer without (top) or with (bottom) the inclusion or
randomly placed water molecules, demonstrating the effect of bulk
solvent scattering (the scale bar is 1 nm). The left panels show the
amplitudes of the exit wave, the left panels show the phase of the exit
wave. The transmission functions and the wavefunctions during the
multislicing simulations were sampled with an accuracy of 0.1 Å.



listed all together as (x, y, z) coordinates in order of increasing

z-coordinate, and numbered as a1, a2 . . . . The mulstilsice

simulations were done as described above in steps (4)–(10).

The simulations were repeated 10 times with different random

distribution of water molecules, and the resulting distributions

were averaged. Fig. 5 shows the amplitude and phase distri-

butions of the calculated exit wave, where in the simulation

bulk solvent scattering was excluded (Fig. 5, top) or included

(Fig. 5, bottom). The diffraction pattern was calculated as

square of the amplitude of the Fourier transform of this exit

wave (not shown).

Glaeser & Downing (1993) calculated the differences within

Friedel pairs due to dynamical electron scattering in a multi-

slice simulation of the same bacteriorhodopsin atomic coor-

dinates that we used for our simulations. However, unlike our

simulations, these earlier calculations did not assess the

contribution of disordered bulk solvent molecules on the

magnitude of dynamical scattering. In order to quantify this

effect, Glaeser and Downing used the non-standard RFriedel

statistics. In X-ray crystallography, differences within Friedel

pairs are quantified by Ranom (Dauter, 2006):

Ranom kj jð Þ ¼ 2

P
F kð Þ
�� ��2 � F �kð Þ

�� ��2��� ���
P

F kð Þ
�� ��2 þ F �kð Þ

�� ��2��� ��� ð13Þ

Though mathematically not equivalent, within the range of

RFriedel in Fig. 6, the difference between RFriedel and Ranom is

negligible. If Ewald sphere curvature is ignored, at low reso-

lution they are equivalent, whilst at 2 Å resolution Ranom =

0.9RFriedel. The RFriedel statistic is calculated from the two-

dimensional Fourier transform of the exit wave and (unlike

Ranom) is not calculated from a three-dimensional data set.

RFriedel therefore ignores Ewald sphere curvature. It therefore

inflates differences within Friedel pairs.

RFriedel kj jð Þ ¼ 2

P
F kð Þ
�� ��� F �kð Þ

�� ���� ��P
F kð Þ
�� ��þ F �kð Þ

�� ���� �� ð14Þ

The RFriedel(|k|) statistic of our multislice calculations is plotted

as a function of resolution in Fig. 6. The three-dimensional

near-equivalent of RFriedel(|k|) that takes Ewald sphere

curvature into account is Ranom(|k|). In practice, the Ranom(|k|)

of experimental protein and organic crystal diffraction data

turns can be much lower than the RFriedel(|k|) based on

multislice calculations (e.g. Clabbers et al., 2019). This indi-

cates that Ewald sphere curvature should not be ignored.

Also, crystal bending and other types of disorder that are

difficult to model in multislice calculations, and that will flatten

out the electron scattering potentials, are prone to further

reduce the ratio between the experimental Ranom(|k|) and

theoretical RFriedel(|k|). Thus, these latter effects are likely

contributors to reducing the apparent dynamical effect in

experimental data (Subramanian et al., 2015). According to

our simulations, RFriedel(|k|) is less than 10% at low resolution

and increases to about 40% at 2 Å resolution if bulk solvent

scattering is excluded. However, RFriedel(|k|) increases only to

half this value (20%) if bulk solvent is included. The average

RFriedel over this resolution range is 20% when bulk water

scattering is excluded and 10% if bulk solvent is included in

the simulations. Thus, excluding the scattering contribution of

the bulk solvent, inflated the differences within Friedel pairs

by a factor of two in our calculations.

3. Discussion and conclusions

We have demonstrated that two effects that are usually

excluded from multislice calculations of high-energy electron

diffraction by protein samples can have a significant effect on

the outcome of such simulations. The exclusion of the scat-

tering potential of disordered bulk solvent results in a severe

over-estimation of the dynamical scattering effects. For

protein crystals with a thickness of several hundred nano-

metres, the effect of inelastic scattering also significantly

contributes to a reduction in dynamical scattering, compared

to naı̈ve theory ignoring inelastic effects. Our results explain

the discrepancy between theory and practice in protein crys-

tallography. Here, the theory predicted electron diffraction of

three-dimensional protein crystallography would not be

possible because of dynamical scattering. However, in prac-

tice, it could be successfully realized even when crystals were

up to 500 nm thick (e.g. Shi et al., 2013). We assume our results

may also impact on single particle cryo-EM, especially upon

reducing the electron energy from 300 keV to 100 keV, which

recently was shown to reduce inelastic scattering as a fraction

of elastic diffraction (Peet et al., 2019). At 100 keV electron

energy, multiple elastic and inelastic events are about twice as

likely, compared to 300 keV electrons, so multiple scattering

electron crystallography
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Figure 6
The effect of including bulk water in multislice calculations of 200 keV
electron scattering within a protein sample on differences within Friedel
pairs, as a function of resolution (in Å). The vertical axis is RFriedel(|k|),
calculated over resolution bins as indicated in the text.



events may also have to be taken into account for single

particle structure determination.
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