research papers
From E-vanillyl oxime
to space the of low-temperatureaInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria, and bX-ray Centre, TU Wien, 1060 Vienna, Austria
*Correspondence e-mail: bstoeger@mail.tuwien.ac.at
The E-vanillyl oxime {1-[(E)-(hydroxyimino)methyl]-4-hydroxy-3-methoxybenzene, C8H9NO3} has been analysed by single-crystal and powder X-ray diffraction. The high-temperature (HT) phase (P21/a, Z′ = 1) transforms into the low-temperature (LT) phase (threefold , Z′ = 6) at ca 190 K. The point operations lost on cooling, {m[010], 2[010]}, are retained as twin operations and constitute the The screw rotations and glide reflections are retained in the LT phase as partial operations acting on a subset of Euclidean space . The full symmetry of the LT phase, including partial operations, is described by a disconnected space which is built of three connected components.
ofKeywords: phase transitions; local symmetry; groupoids; partial symmetry.
1. Introduction
The vanillin-derived oxime 1-[(E)-(hydroxyimino)methyl]-4-hydroxy-3-methoxybenzene, 1, is a key precursor in the synthesis of bioactive compounds, notably members of the capsaicinoid family found in hot pepper (Gannett et al., 1988). The of 1 at room temperature has been determined by Jerslev & Larsen (1991). The authors noted that the crystals feature a on cooling, but owing to no low-temperature structure was determined with their point-detector-equipped diffractometer system.
Our group is interested in the symmetry aspects of phase transitions (group/subgroup relations, twinning). Since 1 is easily synthesized from commercial vanillin and hydroxylammonium chloride, we decided to re-evaluate the low-temperature (LT) polymorph using a modern diffractometer system equipped with a two-dimensional detector. Indeed, with such a setup, structural characterization of the twinned LT crystals was unproblematic. In this work, we give a detailed symmetry analysis of the of 1.
When a 1 is of this kind. But here, additionally, some of the lost operations remain not only active as domain-mapping operations, but also inside the for distinct subspaces of the structure. They thus represent an intermediate step between retained and lost symmetry operations. Special attention will be paid to these partial operations.
undergoes a with a group–subgroup relation, the symmetry operations lost at the transition are retained as operations mapping either orientation (twin) or antiphase domains (in the case of pure translations). Thus, the operations remain active as domain-mapping operations. The of2. Experimental
2.1. Preparation
Compound 1 was synthesized by reacting vanillin with hydroxylammonium chloride in MeOH and using K2CO3 as a base. After cooling and filtration, large (>1 mm edge length) yellow blocks were grown by recrystallization from MeOH.
2.2. Single-crystal diffraction
Intensity data from single crystals of 1 were collected on a Bruker Kappa APEX II diffractometer system equipped with a CCD detector in a dry stream of nitrogen at 300 (high temperature, HT) and 100 K (LT) using graphite-monochromated Mo Kα radiation. Processing of the HT data was routine. Reflections of the LT data were attributed to two domains using the RLATT tool (Bruker, 2017). Frame data were reduced to intensity values (in the LT case with overlap information) using SAINT-Plus (Bruker, 2017). The structures were solved with SHELXT (Sheldrick, 2015) and refined with Jana2006 (Petříček et al., 2014) against F2. Molecular graphics were produced with the program Mercury (Macrae et al., 2008). Electron-density maps were plotted with MCE (Husák & Kratochvíl, 2003). Crystal and instrumental data are summarized in Table 1.
|
2.3. Settings and labelling
Refinements of both phases were performed in the usual settings (conventional monoclinic setting with a less obtuse β angle for the HT data and a reduced setting for the LT data) to minimize correlation of positional and displacement parameters [HT: P21/c, a ≃ 6.37 Å, b ≃ 16.65 Å, c ≃ 7.58 Å, β ≃ 93.95°; LT: : a ≃ 7.36 Å, b ≃ 17.56 Å, c ≃ 19.38 Å, α ≃ 68.69°, β ≃ 83.98°, γ ≃ 87.90°]. For the HT phase, this corresponds to the setting chosen by Jerslev & Larsen (1991). In this case, the published labelling (Fig. 1) and atomic coordinates were adopted. For the LT phase, which contains Z′ = 6 crystallographically independent molecules, the letters a–f were appended to disambiguate the atom names.
Unfortunately, the structures are difficult to relate using these settings. Therefore, the structural descriptions will be based on unconventional settings (Nespolo & Aroyo, 2016) with highly acute and obtuse cell angles. The a and b basis vectors of these settings span distinct crystallochemical layers extending in the (001) plane and the c vector connects two adjacent layers. Moreover, the [100] direction and (010) planes of both structure models are equivalent. These common directions and planes will therefore be given without differentiation. For others, an `HT' or `LT' subscript will specify the appropriate reference system. In the HT phase, the lattices are related by (aHT, bHT, cHT) = (2aHT,C + cHT,C, bHT,C, −aHT,C) (P21/a, a ≃ 14.37 Å, b ≃ 16.65 Å, c ≃ 6.37 Å, β ≃ 148.26°), whereby the subscript `C' stands for `conventional' and indicates the usual setting. In the LT phase, the relationship is more complex and can be expressed by
(, a ≃ 42.55 Å, b ≃ 21.69 Å, c ≃ 20.00 Å, α ≃ 130.36°, β ≃ 170.40°, γ ≃ 48.97°), where `R' stands for `reduced'. The positional coordinates and displacement parameters with respect to the unconventional settings are deposited in format in the supporting information. An overview of the cell parameters is compiled in Table 2.
|
2.4. Displacement parameters
Some atoms of the HT phase exhibited strongly anisotropic atomic displacement parameters (ADPs) and difference electron-density peaks were observed in the vicinity of these atoms. Attempts to model these positions as occupationally disordered failed (the distinct atoms collapsed to a single position). Therefore, the atoms were described using anharmonic ADPs up to tensor rank 4. With increased rank, the residuals improved distinctly (Table 3). Positive difference electron-density peaks decreased when increasing the rank to 3, but did not improve further when going to 4. Since rank 4 tensors resulted in a low data-to-parameter ratio of 5.7 and unreasonable geometries of the probability density, the data discussed herein are based on the rank 3 refinements. A short comparison of the refinements is given in the supporting information.
|
2.5. Low-temperature X-ray powder diffraction
Low-temperature X-ray powder diffraction experiments were performed on a Panalytical X'Pert Pro diffractometer equipped with an Oxford PheniX cryo-chamber in Bragg–Brentano geometry using Cu Kα1,2 radiation (λ = 1.540598 and 1.544426 Å) with an Ni filter and an X'celerator multi-channel detector. The ground bulk sample was placed on an Si single crystal cut along the (711) plane. Scans were recorded in a vacuum in the 2θ = 10–70° range in 5 K steps from 250 to 100 K and back to 250 K with heating and cooling rates of 1 K min−1 and 5 min isotherms between scans.
3. Results and discussion
3.1. Crystal chemistry
Compound 1 crystallizes in a structure built of distinct crystallochemical layers parallel to (001) (Fig. 2). In these layers, the molecules are connected by strong O—H⋯N and O—H⋯O hydrogen bonds, as has already been discussed by Jerslev & Larsen (1991). The oxime units are connected, forming molecule pairs located on centres of inversion in the HT phase. Moreover, the phenol groups donate to the O atom of the oxime units. Thus, a two-dimensional network composed of hexameric rings is formed. The cycles are symmetric by inversion in the HT phase. The crystallochemical layers are connected by van der Waals interactions.
3.2. Space-group symmetry reduction and twinning
The LT phase is a threefold
that can be derived from the HT phase. The basis vectors of both phases are related up to minor distortions byA schematic comparison of the lattices is provided in the supporting information. Accordingly, the reciprocal bases are related by
In other words,
and therefore the LT phase can be considered as a threefold commensurately modulated structure with the modulation wavevector
(modulo minor deviations from monoclinic metrics).
Since the lattice of the LT phase is triclinic, the m to . Thus, in total the symmetry groups of the HT and LT phases are related by a group/subgroup relation of index 6, which can be decomposed into two maximal group/subgroup relations according to Hermann's theorem (Hermann, 1929):
of the HT phase cannot be retained. Indeed, it is reduced by an index of 2 from 2/(i) A translationengleiche (same lattice, different crystal class) symmetry reduction of index 2.
(ii) A klassengleiche (same different lattice) symmetry reduction of index 3.
The lost point operations are retained as twin operations in the LT crystal. Accordingly, the
consists of the operations . Since the is threefold, the is 3 (overlap of every third reflection). The which is derived from the lattice parameters, is 0.28°.Owing to the threefold
each of the two twin domains may exist in three antiphase domain states, which are related by the translations of the HT phase that are not symmetry operations of the LT phase. Since domains related by translation produce the same diffraction pattern, these antiphase domains are difficult to observe by diffraction. They might, for example, cause enlargement of reflections owing to a limited domain size. No such effects were observed.3.3. Partial operations in the LT phase
Fig. 3 gives a comparison of the crystallochemical layers of the HT and LT phases projected onto the (001) layer plane. The molecules in the LT phase are coloured according to space-group symmetry equivalence. The LT layer can be considered as a threefold commensurately modulated form of the HT layer with the modulation wavevector
In the [010]HT direction a succession of all six non-equivalent molecules is observed. In the (001) projection, the HT and LT structures are virtually indistinguishable. In projection along [100], on the other hand, the orientations of the molecules in the LT phase exhibit a pronounced deviation from the HT phase (Fig. 4).
A further observation from the [100] projection is that the a and b molecules in the LT phase adopt an orientation corresponding to the (averaged) position of the molecules in the HT phase. In a sense, this region of the structure is retained on cooling, though devoid of dynamic disorder. It is marked by a grey background in Fig. 5. Thus, besides inversion and translation, some of the operations of the P21/a symmetry of the HT phase are still valid for the LT phase, albeit only for a subset of the molecules. These operations are called partial operations, because they act on a subset of Euclidean space (as in partial functions).
The orientations of the remaining four molecules differ distinctly from those in the HT phase (Fig. 4). Nevertheless, the molecules of the pairs c/d and e/f each feature strikingly similar deviations. Indeed the molecules of these pairs are likewise related by a subset of the operations of the HT phase. The resulting regions of molecules equivalent by partial operations are marked by blue (c/d) and orange (e/f) backgrounds in Fig. 5.
3.4. Groupoids
The algebraic structure describing the whole symmetry of a structure, including partial operations, is a space ). Multiple equivalent definitions of a have been given. Here, we use groupoids in the categorical sense (Ehresmann, 1957; Simmons, 2011). A is composed of a set of objects and a set of operations (also called morphisms) . Each operation has a source and a target object .
(Ito & Sadanaga, 1976The fundamental difference between groups and groupoids is that the composition of b after a) is defined if and only if the target of the first is the source of the second operation [trg(a) = src(b)]. The source and target of the composed operation are the source of the first and the target of the second operation: = src(a) and = trg(b). In diagram form (operations a, b and objects i, j, k):
operations is not closed. The composition (The remaining group axioms remain fulfilled. The composition is associative: = . For every object there is a neutral element 1i such that = a and = a. For every there exists an inverse a−1 such that = 1src(a) and = 1trg(a).
In a symmetry description of the LT phase by a
, the objects represent the individual molecules. The molecules could, for example, be identified by a unique number. Here, will be the subspace of Euclidean space occupied by the individual molecules. will be partitioned in such a way that every point belongs to at least one molecule or a boundary between two molecules and the space occupied by a particular molecule is simply connected (no holes). Thus, a connection between equivalence according to partial operations and topology can be established.The operations are symmetry operations of the HT phase, associated with a source and a target molecule. Note that here we are not interested in every possible motion relating two molecules, but only those which have a representative in the HT phase. It is easily seen that the composition of these operations forms a Z′ = 1, molecule on the general position). Thus, in the LT phase two molecules are related by either one or zero partial operations.
In the HT phase each molecule is mapped onto every other one by exactly one operation (Since not all objects are related by operations (e.g. a and c molecules), is said to be disconnected. It can be decomposed into three connected components according to = , where contains only the subspaces of occupied by the a and b molecules, etc.
In Fig. 6, the operations relating a subsection of the molecules are schematized. More precisely, Fig. 6(a) represents a full subgroupoid of : it contains a part of the objects, but all operations between these objects. Figs. 6(b) and 6(c) show full subgroupoids of and , respectively. Notably, each of these subgroupoids has a representative of a point-group operation of the HT phase. In a sense, the of the overall including partial operations, is still 2/m. Table 4 lists the in table form, whereby operations and objects are given up to the translation lattice of the LT phase.
|
3.5. Partial operation equivalence and topology
By choosing subspaces of as are mapped onto themselves by the operations of the , and subgroupoids of , respectively. These regions can be written as the union of objects, viz. as , and .
objects, a relationship between partial operations and topology is established. All objects of a connected component are related by partial operations. Thus, the areas with grey, blue and orange backgrounds in Fig. 5Fig. 5 suggests topologies periodic in zero (a/b) and one (c/d and e/f) dimensions, the last extending normal to qL [equation (8)]. This picture reverses when considering the interlayer van der Waals interactions (Fig. 7). The a/b pairs are connected to two-dimensional sheets with holes in a checkerboard pattern (Fig. 8). The c/d and e/f rods, on the other hand, do not connect to other rods of the same kind and therefore remain rods even when considering the full structure (Fig. 7). These two- and one-dimensionally periodic subspaces extend normal to the modulation vector q [equation (7)].
3.6. Desymmetrization
Since partial operations are in general only valid for subsets of a crystal, interactions with the remaining parts will usually induce slight deviations from the idealized model. To quantify this a = 14.182 Å, b = 16.361 Å, c = 19.995 Å, α = 90.22°, β = 170.40°, γ = 89.82°, showing a slight deviation from the ideal metrics (α = γ = 90°). The cell parameters were then idealized as α = γ = 90°, by projecting b onto c × a. Finally, the symmetry operations of the P21/a group of the HT phase were applied to map the molecules onto the `same' position. In Fig. 9, an overlay of the six molecules thus obtained is given. Whereas in projection on (001) all molecules map onto each other (see Section 3.3), in projection along [100] the a/b, c/d and e/f pairs are clearly identified. Table 5 lists the distances between the corresponding atoms in these pairs. In general the distance between the atoms related by partial operations is small, on average <0.2 Å, demonstrating the validity of the description.
the coordinates of the LT phase were transformed into a pseudo-monoclinic coordinate system corresponding to the HT phase. The cell parameters thus obtained are
|
3.7. Symmetry reduction and topology
Traditionally, displacive phase transitions are characterized by group/subgroup relations (Müller, 2013). But, as has been shown in Section 3.6, on cooling some of the symmetry operations remain active for a subspace of . To describe the symmetry relationship using these partial operations, one can consider the of the HT phase as being a with a single object, viz. . Each operation of maps onto itself.
and can be related by a F: . A functor maps the objects and operations of a in a way that is compatible with the structure of the groupoids: = . Here, F maps every object of onto the single object of and every partial operation of the LT phase onto the corresponding global operation of the HT phase. This kind of functor is often designated as a `forgetful functor' (Simmons, 2011), as it `forgets' the structure, in this case the objects (molecules) that the operations relate.
functor (the category theoretical equivalent of a homomorphism)It has to be emphasized that the image of F (the operations in corresponding to operations in ) does not form a For example, double application of the 21 operations of Fig. 6 produces a lattice translation, which is not in the image of F. The preimage F−1(a) of a global operation in the HT phase is the set of all corresponding (partial) operations in the LT phase. More interesting than F−1(a) itself is the set of all source and target objects of the operations in F−1(a), which will be designated as src(F−1(a)) and trg(F−1(a)), respectively.
Three cases can be differentiated:
(i) If , then likewise and a is a full operation of the LT phase. These correspond to the symmetry operations of the of the LT phase.
(ii) If ∪ src(F−1(a)) = ∅, then likewise ∪ trg(F−1(a)) = ∅ and the operation is lost on cooling. These are a subset of the translations and inversions.
(iii) If , then likewise . These a can be considered as proper partial operations. Examples are the 21 screw rotations and the a glide reflections.
Operations of the second and third kind may lead to 1 this is the case for the twin operations but not for the anti-phase domain translations.
or anti-phase domains. Thus, twin or anti-phase domain operations may have representatives in the space In the case ofFig. 10 shows the ∪ src(F−1(a)) (dark grey) and ∪ trg(F−1(a)) (light grey) regions of screw rotations with intrinsic translation (6n + 1)bLT/2 and glide reflections with intrinsic translation (6n + 1)aLT/2, . The inverse operations with intrinsic translation (6n + 5)bLT/2 and (6n + 5)aLT/2, transform the regions marked with light grey into those marked with dark grey. Concerning the source and target objects, there are three kinds of these operations, viz. with rotation axes at (¼+3n/2, y, 0), (¾+3n/2, y, 0) and () with respect to the basis of the HT phase. The corresponding glide planes are located at (x, ¼+3n/2, z), (x, ¾+3n/2, z) and () (Fig. 10).
For screw rotations with intrinsic translation (6n + 3)bLT/2 and glide reflections with intrinsic translation (6n + 3)bLT/2, there are again three types of operation. Here, ∪ src(F−1(a)) = ∪ trg(F−1(a)) (medium grey in Fig. 11).
As can be seen in Figs. 10 and 11, the partial screws and glides apply to distinct layers parallel to (010). This means that the LT phase can be considered as an order–disorder (OD) structure. Details of such a description are provided in the supporting information.
3.8. X-ray powder diffraction
Since the crystallographic symmetries of the HT and LT phases are related by a non-maximal group/subgroup relationship of index 6, one could suspect intermediate phases. During an attempt to show such a phase by single-crystal diffraction, a crystal spontaneously converted from the HT to the LT phase during data collection at 200 K. To give further proof of the absence of an intermediate phase, low-temperature powder diffraction was performed in a cooling (250→100 K) and a subsequent heating (100→250 K) cycle (Fig. 12). As expected, neither on heating nor on cooling were additional phases observed. In scans at 190 K (cooling) and 195 K (heating) both phases exist, suggesting a of the first order.
4. Conclusions
By considering partial operations, we have established a connection between symmetry and topology in two ways, firstly by partitioning into regions equivalent according to partial operations, and secondly by generalizing the symmetry reduction. A full operation of the HT phase is split into several partial operations in the LT phase, each acting on different subspaces of . These might be split further in a subsequent hypothetical
Thus, the concept of symmetry reduction is generalized by considering the subspace of for which an operation of the high-symmetry phase stays active. Previously, only the extreme cases (loss of symmetry, active on ∅ and retention of symmetry, active on ) were considered.More work is necessary to investigate whether other phase transitions can be viewed in the light of
Moreover, the connection between the topologies presented here and the approach of modulated structures is as yet unclear.5. Related literature
References cited in the supporting information include: Dornberger & Schiff (1961) and Fichtner (1979).
Supporting information
https://doi.org/10.1107/S2052520619008461/um5028sup1.cif
contains datablocks ht_r2_conv, ht_r3_conv, ht_r4_conv, lt_conv, ht_r2_unconv, ht_r3_unconv, ht_r4_unconv, lt_unconv. DOI:Structure factors: contains datablock ht_r2_conv. DOI: https://doi.org/10.1107/S2052520619008461/um5028ht_r2_convsup2.hkl
Structure factors: contains datablock ht_r3_conv. DOI: https://doi.org/10.1107/S2052520619008461/um5028ht_r3_convsup3.hkl
Structure factors: contains datablock ht_r4_conv. DOI: https://doi.org/10.1107/S2052520619008461/um5028ht_r4_convsup4.hkl
Structure factors: contains datablock lt_conv. DOI: https://doi.org/10.1107/S2052520619008461/um5028lt_convsup5.hkl
Additional theory. DOI: https://doi.org/10.1107/S2052520619008461/um5028sup6.pdf
For all structures, data collection: Apex 3 (Bruker, 2016); cell
SAINT-Plus (Bruker, 2016); data reduction: SAINT-Plus (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: Jana 2006 (Petříček et al., 2014); molecular graphics: Mercury (Macrae et al., 2008).C8O3NH9 | F(000) = 352 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ycb | Cell parameters from 3387 reflections |
a = 6.3704 (3) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 7.5759 (4) Å | T = 300 K |
β = 93.9516 (16)° | Block, yellow |
V = 801.81 (7) Å3 | 0.50 × 0.45 × 0.32 mm |
Z = 4 |
Bruker KAPPA APEX II CCD diffractometer | 2358 independent reflections |
Radiation source: X-ray tube | 1540 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.022 |
ω– and φ–scans | θmax = 30.1°, θmin = 2.5° |
Absorption correction: multi-scan SADABS | h = −8→8 |
Tmin = 0.95, Tmax = 0.97 | k = −23→23 |
8632 measured reflections | l = −10→8 |
Refinement on F2 | 28 constraints |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.144 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.96 | (Δ/σ)max = 0.040 |
2358 reflections | Δρmax = 0.24 e Å−3 |
117 parameters | Δρmin = −0.20 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5001 (2) | 0.43988 (9) | 0.23149 (19) | 0.0515 (5) | |
C2 | 0.5777 (2) | 0.36179 (8) | 0.25116 (16) | 0.0427 (4) | |
C3 | 0.46142 (19) | 0.29739 (8) | 0.18525 (15) | 0.0388 (4) | |
C4 | 0.2628 (2) | 0.31003 (8) | 0.09743 (17) | 0.0438 (4) | |
C5 | 0.1850 (2) | 0.38648 (10) | 0.0799 (2) | 0.0649 (5) | |
C6 | 0.3026 (3) | 0.45111 (10) | 0.1462 (3) | 0.0726 (6) | |
C7 | 0.6207 (3) | 0.50935 (10) | 0.2962 (2) | 0.0651 (5) | |
N8 | 0.79513 (19) | 0.50381 (7) | 0.38462 (16) | 0.0546 (4) | |
O9 | 0.8830 (2) | 0.57969 (6) | 0.42753 (18) | 0.0768 (5) | |
O10 | 0.14754 (15) | 0.24758 (7) | 0.02917 (14) | 0.0562 (4) | |
O11 | 0.52114 (14) | 0.21884 (6) | 0.19375 (14) | 0.0562 (3) | |
C12 | 0.7249 (2) | 0.20123 (9) | 0.2728 (2) | 0.0595 (5) | |
H1o10 | 0.208 (3) | 0.1973 (14) | 0.066 (3) | 0.087 (6)* | |
H1o9 | 0.9915 (18) | 0.5693 (12) | 0.500 (2) | 0.091 (7)* | |
H1c2 | 0.713331 | 0.352867 | 0.311195 | 0.0512* | |
H1c5 | 0.048413 | 0.395338 | 0.021464 | 0.0778* | |
H1c6 | 0.246583 | 0.504445 | 0.132897 | 0.0871* | |
H1c7 | 0.564775 | 0.561907 | 0.2704 | 0.0782* | |
H1c12 | 0.751888 | 0.144746 | 0.263153 | 0.0713* | |
H2c12 | 0.828434 | 0.230746 | 0.213196 | 0.0713* | |
H3c12 | 0.731843 | 0.21632 | 0.395344 | 0.0713* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0432 (8) | 0.0419 (7) | 0.0669 (8) | −0.0016 (6) | −0.0152 (6) | −0.0018 (6) |
C2 | 0.0333 (6) | 0.0442 (7) | 0.0490 (7) | −0.0013 (5) | −0.0082 (5) | −0.0012 (5) |
C3 | 0.0326 (6) | 0.0400 (7) | 0.0434 (6) | 0.0010 (5) | −0.0015 (5) | 0.0009 (5) |
C4 | 0.0343 (6) | 0.0448 (7) | 0.0509 (7) | −0.0039 (5) | −0.0081 (5) | −0.0008 (5) |
C5 | 0.0453 (8) | 0.0494 (9) | 0.0947 (11) | 0.0033 (7) | −0.0324 (7) | 0.0000 (8) |
C6 | 0.0571 (10) | 0.0422 (8) | 0.1124 (13) | 0.0053 (7) | −0.0381 (9) | −0.0023 (8) |
C7 | 0.0550 (9) | 0.0391 (8) | 0.0966 (11) | 0.0013 (7) | −0.0288 (8) | −0.0029 (7) |
N8 | 0.0493 (7) | 0.0368 (6) | 0.0748 (8) | −0.0064 (5) | −0.0166 (5) | −0.0034 (5) |
O9 | 0.0678 (8) | 0.0365 (6) | 0.1194 (9) | −0.0074 (5) | −0.0424 (7) | −0.0020 (6) |
O10 | 0.0424 (5) | 0.0453 (6) | 0.0774 (7) | −0.0045 (4) | −0.0201 (5) | −0.0032 (5) |
O11 | 0.0402 (5) | 0.0404 (6) | 0.0848 (7) | 0.0033 (4) | −0.0178 (5) | −0.0043 (5) |
C12 | 0.0394 (7) | 0.0511 (9) | 0.0857 (11) | 0.0075 (7) | −0.0112 (7) | 0.0067 (8) |
C1—C2 | 1.396 (2) | C6—H1c6 | 0.96 |
C1—C6 | 1.387 (2) | C7—N8 | 1.261 (2) |
C1—C7 | 1.455 (2) | C7—H1c7 | 0.96 |
C2—C3 | 1.3772 (18) | N8—O9 | 1.4109 (16) |
C2—H1c2 | 0.96 | O9—H1o9 | 0.871 (13) |
C3—C4 | 1.4043 (17) | O10—H1o10 | 0.95 (2) |
C3—O11 | 1.3626 (16) | O11—C12 | 1.4219 (17) |
C4—C5 | 1.369 (2) | C12—H1c12 | 0.96 |
C4—O10 | 1.3550 (17) | C12—H2c12 | 0.96 |
C5—C6 | 1.386 (2) | C12—H3c12 | 0.96 |
C5—H1c5 | 0.96 | ||
C2—C1—C6 | 118.59 (13) | C1—C6—H1c6 | 119.51 |
C2—C1—C7 | 122.02 (12) | C5—C6—H1c6 | 119.51 |
C6—C1—C7 | 119.39 (14) | C1—C7—N8 | 123.12 (14) |
C1—C2—C3 | 120.62 (11) | C1—C7—H1c7 | 118.44 |
C1—C2—H1c2 | 119.69 | N8—C7—H1c7 | 118.44 |
C3—C2—H1c2 | 119.69 | C7—N8—O9 | 112.20 (12) |
C2—C3—C4 | 119.97 (12) | N8—O9—H1o9 | 104.7 (13) |
C2—C3—O11 | 126.08 (11) | C4—O10—H1o10 | 111.3 (12) |
C4—C3—O11 | 113.94 (11) | C3—O11—C12 | 117.49 (10) |
C3—C4—C5 | 119.58 (13) | O11—C12—H1c12 | 109.47 |
C3—C4—O10 | 120.84 (12) | O11—C12—H2c12 | 109.47 |
C5—C4—O10 | 119.58 (12) | O11—C12—H3c12 | 109.47 |
C4—C5—C6 | 120.25 (14) | H1c12—C12—H2c12 | 109.47 |
C4—C5—H1c5 | 119.87 | H1c12—C12—H3c12 | 109.47 |
C6—C5—H1c5 | 119.87 | H2c12—C12—H3c12 | 109.47 |
C1—C6—C5 | 120.98 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.95 (2) | 2.04 (2) | 2.8233 (16) | 137.5 (16) |
O10—H1o10···O11 | 0.95 (2) | 2.185 (19) | 2.6530 (14) | 108.9 (15) |
O9—H1o9···N8ii | 0.871 (13) | 1.982 (16) | 2.7862 (17) | 153.0 (18) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1. |
C8O3NH9 | F(000) = 352 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ycb | Cell parameters from 3387 reflections |
a = 6.3704 (3) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 7.5759 (4) Å | T = 300 K |
β = 93.9516 (16)° | Block, yellow |
V = 801.81 (7) Å3 | 0.50 × 0.45 × 0.32 mm |
Z = 4 |
Bruker KAPPA APEX II CCD diffractometer | 2358 independent reflections |
Radiation source: X-ray tube | 1540 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.022 |
ω– and φ–scans | θmax = 30.1°, θmin = 2.5° |
Absorption correction: multi-scan SADABS | h = −8→8 |
Tmin = 0.95, Tmax = 0.97 | k = −23→23 |
8632 measured reflections | l = −10→8 |
Refinement on F2 | 28 constraints |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.117 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.63 | (Δ/σ)max = 0.049 |
2358 reflections | Δρmax = 0.16 e Å−3 |
237 parameters | Δρmin = −0.16 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5000 (4) | 0.43984 (18) | 0.2317 (4) | 0.0517 (4) | |
C2 | 0.5767 (4) | 0.36176 (17) | 0.2498 (3) | 0.0429 (3) | |
C3 | 0.4606 (4) | 0.29772 (17) | 0.1848 (3) | 0.0390 (3) | |
C4 | 0.2639 (4) | 0.31016 (18) | 0.0980 (3) | 0.0439 (3) | |
C5 | 0.1871 (4) | 0.3859 (2) | 0.0789 (4) | 0.0651 (5) | |
C6 | 0.3046 (5) | 0.45061 (19) | 0.1457 (4) | 0.0731 (5) | |
C7 | 0.6211 (5) | 0.50901 (18) | 0.2977 (4) | 0.0657 (5) | |
N8 | 0.7954 (4) | 0.50308 (13) | 0.3849 (3) | 0.0546 (3) | |
O9 | 0.8812 (4) | 0.57960 (12) | 0.4288 (3) | 0.0769 (4) | |
O10 | 0.1477 (3) | 0.24756 (13) | 0.0295 (3) | 0.0566 (3) | |
O11 | 0.5207 (3) | 0.21922 (11) | 0.1932 (3) | 0.0564 (3) | |
C12 | 0.7248 (4) | 0.20090 (15) | 0.2721 (4) | 0.0596 (4) | |
H1o10 | 0.207 (3) | 0.1972 (14) | 0.068 (3) | 0.095 (6)* | |
H1o9 | 0.9906 (17) | 0.5681 (11) | 0.4996 (18) | 0.089 (6)* | |
H1c2 | 0.712916 | 0.352677 | 0.308696 | 0.0514* | |
H1c5 | 0.051208 | 0.394748 | 0.019122 | 0.0781* | |
H1c6 | 0.248602 | 0.503911 | 0.131681 | 0.0877* | |
H1c7 | 0.565124 | 0.561685 | 0.273339 | 0.0788* | |
H1c12 | 0.751235 | 0.144443 | 0.260919 | 0.0715* | |
H2c12 | 0.82868 | 0.230625 | 0.21336 | 0.0715* | |
H3c12 | 0.731743 | 0.215306 | 0.395021 | 0.0715* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0438 (6) | 0.0416 (6) | 0.0671 (7) | −0.0009 (5) | −0.0149 (5) | −0.0020 (5) |
C2 | 0.0337 (5) | 0.0443 (6) | 0.0491 (6) | −0.0014 (5) | −0.0079 (4) | −0.0007 (5) |
C3 | 0.0328 (5) | 0.0401 (6) | 0.0436 (5) | 0.0004 (4) | −0.0014 (4) | 0.0008 (4) |
C4 | 0.0348 (5) | 0.0442 (6) | 0.0512 (6) | −0.0035 (5) | −0.0079 (4) | −0.0004 (5) |
C5 | 0.0464 (7) | 0.0491 (8) | 0.0946 (9) | 0.0029 (6) | −0.0329 (6) | 0.0000 (7) |
C6 | 0.0575 (8) | 0.0420 (7) | 0.1137 (11) | 0.0054 (6) | −0.0375 (8) | −0.0023 (7) |
C7 | 0.0553 (8) | 0.0398 (7) | 0.0974 (10) | 0.0019 (6) | −0.0281 (7) | −0.0035 (6) |
N8 | 0.0490 (6) | 0.0371 (5) | 0.0749 (6) | −0.0064 (4) | −0.0171 (5) | −0.0033 (5) |
O9 | 0.0675 (6) | 0.0369 (5) | 0.1197 (8) | −0.0073 (4) | −0.0423 (6) | −0.0022 (5) |
O10 | 0.0428 (5) | 0.0465 (5) | 0.0773 (6) | −0.0044 (4) | −0.0199 (4) | −0.0030 (4) |
O11 | 0.0408 (5) | 0.0402 (5) | 0.0851 (6) | 0.0031 (4) | −0.0176 (4) | −0.0042 (4) |
C12 | 0.0394 (6) | 0.0515 (8) | 0.0858 (9) | 0.0072 (6) | −0.0106 (6) | 0.0067 (6) |
C1—C2 | 1.392 (4) | C6—H1c6 | 0.96 |
C1—C6 | 1.376 (4) | C7—N8 | 1.256 (4) |
C1—C7 | 1.456 (4) | C7—H1c7 | 0.96 |
C2—C3 | 1.370 (4) | N8—O9 | 1.417 (3) |
C2—H1c2 | 0.96 | O9—H1o9 | 0.871 (12) |
C3—C4 | 1.390 (4) | O10—H1o10 | 0.96 (2) |
C3—O11 | 1.363 (3) | O11—C12 | 1.426 (3) |
C4—C5 | 1.357 (4) | C12—H1c12 | 0.96 |
C4—O10 | 1.361 (4) | C12—H2c12 | 0.96 |
C5—C6 | 1.388 (4) | C12—H3c12 | 0.96 |
C5—H1c5 | 0.96 | ||
C2—C1—C6 | 117.9 (3) | C1—C6—H1c6 | 119.35 |
C2—C1—C7 | 122.1 (2) | C5—C6—H1c6 | 119.35 |
C6—C1—C7 | 120.0 (3) | C1—C7—N8 | 123.1 (3) |
C1—C2—C3 | 121.0 (2) | C1—C7—H1c7 | 118.43 |
C1—C2—H1c2 | 119.52 | N8—C7—H1c7 | 118.43 |
C3—C2—H1c2 | 119.52 | C7—N8—O9 | 111.4 (2) |
C2—C3—C4 | 120.1 (3) | N8—O9—H1o9 | 103.1 (12) |
C2—C3—O11 | 125.9 (2) | C4—O10—H1o10 | 111.3 (12) |
C4—C3—O11 | 114.0 (2) | C3—O11—C12 | 118.04 (19) |
C3—C4—C5 | 119.7 (3) | O11—C12—H1c12 | 109.47 |
C3—C4—O10 | 121.0 (3) | O11—C12—H2c12 | 109.47 |
C5—C4—O10 | 119.3 (2) | O11—C12—H3c12 | 109.47 |
C4—C5—C6 | 120.1 (3) | H1c12—C12—H2c12 | 109.47 |
C4—C5—H1c5 | 119.97 | H1c12—C12—H3c12 | 109.47 |
C6—C5—H1c5 | 119.97 | H2c12—C12—H3c12 | 109.47 |
C1—C6—C5 | 121.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.96 (2) | 2.04 (2) | 2.822 (3) | 137.9 (16) |
O10—H1o10···O11 | 0.96 (2) | 2.183 (19) | 2.646 (2) | 108.4 (15) |
O9—H1o9···N8ii | 0.871 (12) | 1.967 (14) | 2.781 (3) | 155.1 (16) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1. |
C8O3NH9 | F(000) = 352 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ycb | Cell parameters from 3387 reflections |
a = 6.3704 (3) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 7.5759 (4) Å | T = 300 K |
β = 93.9516 (16)° | Block, yellow |
V = 801.81 (7) Å3 | 0.50 × 0.45 × 0.32 mm |
Z = 4 |
Bruker KAPPA APEX II CCD diffractometer | 2358 independent reflections |
Radiation source: X-ray tube | 1540 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.022 |
ω– and φ–scans | θmax = 30.1°, θmin = 2.5° |
Absorption correction: multi-scan SADABS | h = −8→8 |
Tmin = 0.95, Tmax = 0.97 | k = −23→23 |
8632 measured reflections | l = −10→8 |
Refinement on F2 | 28 constraints |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.076 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
S = 1.73 | (Δ/σ)max = 0.009 |
2358 reflections | Δρmax = 0.17 e Å−3 |
417 parameters | Δρmin = −0.12 e Å−3 |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4990 (10) | 0.4394 (3) | 0.2312 (5) | 0.0569 (16) | |
C2 | 0.5778 (6) | 0.3625 (4) | 0.2508 (4) | 0.0517 (15) | |
C3 | 0.4642 (12) | 0.2993 (4) | 0.1868 (6) | 0.0463 (17) | |
C4 | 0.2669 (13) | 0.3104 (3) | 0.1000 (6) | 0.0499 (17) | |
C5 | 0.1866 (5) | 0.3855 (4) | 0.0791 (4) | 0.0716 (15) | |
C6 | 0.3032 (10) | 0.4499 (3) | 0.1449 (6) | 0.0805 (18) | |
C7 | 0.6176 (8) | 0.5086 (3) | 0.2968 (5) | 0.0766 (18) | |
N8 | 0.7943 (5) | 0.50265 (16) | 0.3846 (4) | 0.0614 (11) | |
O9 | 0.8816 (4) | 0.57942 (13) | 0.4282 (3) | 0.0858 (11) | |
O10 | 0.1482 (3) | 0.2483 (2) | 0.0301 (3) | 0.0664 (10) | |
O11 | 0.5204 (4) | 0.21967 (17) | 0.1930 (2) | 0.0625 (9) | |
C12 | 0.7243 (5) | 0.20109 (15) | 0.2724 (4) | 0.0740 (16) | |
H1o10 | 0.193 (3) | 0.2022 (14) | 0.064 (3) | 0.100 (9)* | |
H1o9 | 0.989 (2) | 0.5665 (12) | 0.500 (2) | 0.126 (10)* | |
H1c2 | 0.713994 | 0.353976 | 0.310243 | 0.062* | |
H1c5 | 0.050457 | 0.393686 | 0.01941 | 0.0859* | |
H1c6 | 0.246984 | 0.503187 | 0.13028 | 0.0966* | |
H1c7 | 0.560512 | 0.56115 | 0.273129 | 0.092* | |
H1c12 | 0.750234 | 0.144578 | 0.261642 | 0.0887* | |
H2c12 | 0.828723 | 0.230576 | 0.213773 | 0.0887* | |
H3c12 | 0.731181 | 0.215634 | 0.395324 | 0.0887* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.056 (3) | 0.037 (3) | 0.075 (2) | −0.005 (2) | −0.0137 (19) | −0.0056 (17) |
C2 | 0.047 (2) | 0.049 (3) | 0.0568 (19) | −0.007 (3) | −0.0117 (14) | −0.003 (2) |
C3 | 0.039 (3) | 0.048 (4) | 0.0516 (19) | 0.014 (3) | −0.0035 (18) | 0.006 (2) |
C4 | 0.050 (4) | 0.039 (3) | 0.0586 (19) | −0.012 (3) | −0.006 (2) | −0.0062 (19) |
C5 | 0.052 (2) | 0.054 (3) | 0.103 (3) | −0.001 (3) | −0.0373 (17) | −0.001 (2) |
C6 | 0.066 (3) | 0.051 (3) | 0.119 (3) | 0.007 (3) | −0.037 (2) | 0.000 (2) |
C7 | 0.067 (3) | 0.048 (3) | 0.110 (3) | 0.009 (3) | −0.030 (2) | 0.003 (2) |
N8 | 0.057 (2) | 0.0388 (18) | 0.086 (2) | −0.0121 (15) | −0.0180 (15) | −0.0071 (13) |
O9 | 0.0768 (18) | 0.0440 (16) | 0.130 (2) | −0.0098 (13) | −0.0425 (15) | −0.0022 (13) |
O10 | 0.0549 (15) | 0.0537 (17) | 0.0870 (17) | −0.0041 (17) | −0.0217 (12) | −0.0020 (15) |
O11 | 0.0449 (15) | 0.0471 (18) | 0.0920 (15) | 0.0061 (11) | −0.0198 (10) | −0.0046 (10) |
C12 | 0.052 (2) | 0.063 (3) | 0.105 (3) | 0.0168 (19) | −0.013 (2) | 0.009 (2) |
C1—C2 | 1.380 (9) | C6—H1c6 | 0.96 |
C1—C6 | 1.379 (8) | C7—N8 | 1.271 (5) |
C1—C7 | 1.447 (7) | C7—H1c7 | 0.96 |
C2—C3 | 1.349 (9) | N8—O9 | 1.424 (4) |
C2—H1c2 | 0.96 | O9—H1o9 | 0.870 (15) |
C3—C4 | 1.390 (10) | O10—H1o10 | 0.85 (2) |
C3—O11 | 1.373 (8) | O11—C12 | 1.427 (4) |
C4—C5 | 1.357 (9) | C12—H1c12 | 0.96 |
C4—O10 | 1.366 (7) | C12—H2c12 | 0.96 |
C5—C6 | 1.378 (8) | C12—H3c12 | 0.96 |
C5—H1c5 | 0.96 | ||
C2—C1—C6 | 118.6 (5) | C1—C6—H1c6 | 119.34 |
C2—C1—C7 | 121.6 (5) | C5—C6—H1c6 | 119.34 |
C6—C1—C7 | 119.7 (5) | C1—C7—N8 | 122.7 (4) |
C1—C2—C3 | 120.2 (5) | C1—C7—H1c7 | 118.64 |
C1—C2—H1c2 | 119.88 | N8—C7—H1c7 | 118.64 |
C3—C2—H1c2 | 119.88 | C7—N8—O9 | 111.7 (3) |
C2—C3—C4 | 120.8 (6) | N8—O9—H1o9 | 101.6 (14) |
C2—C3—O11 | 127.5 (6) | C4—O10—H1o10 | 113.4 (14) |
C4—C3—O11 | 111.7 (5) | C3—O11—C12 | 116.8 (4) |
C3—C4—C5 | 119.9 (6) | O11—C12—H1c12 | 109.47 |
C3—C4—O10 | 122.8 (5) | O11—C12—H2c12 | 109.47 |
C5—C4—O10 | 117.3 (6) | O11—C12—H3c12 | 109.47 |
C4—C5—C6 | 119.1 (5) | H1c12—C12—H2c12 | 109.47 |
C4—C5—H1c5 | 120.45 | H1c12—C12—H3c12 | 109.47 |
C6—C5—H1c5 | 120.45 | H2c12—C12—H3c12 | 109.47 |
C1—C6—C5 | 121.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.85 (2) | 2.10 (2) | 2.839 (4) | 144.2 (18) |
O10—H1o10···O11 | 0.85 (2) | 2.26 (2) | 2.640 (3) | 107.3 (17) |
O9—H1o9···N8ii | 0.870 (15) | 1.958 (17) | 2.782 (4) | 157.5 (19) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1. |
C8H9NO3 | Z = 12 |
Mr = 167.2 | F(000) = 1056 |
Triclinic, P1 | Dx = 1.435 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.3634 (8) Å | Cell parameters from 4932 reflections |
b = 17.5614 (18) Å | θ = 2.8–32.6° |
c = 19.3782 (19) Å | µ = 0.11 mm−1 |
α = 68.688 (3)° | T = 100 K |
β = 83.981 (3)° | Block, yellow |
γ = 87.900 (3)° | 0.53 × 0.34 × 0.25 mm |
V = 2321.6 (4) Å3 |
Bruker KAPPA APEX II CCD diffractometer | 13829 reflections with I > 3σ(I) |
Radiation source: X-ray tube | Rint = 0 |
ω– and φ–scans | θmax = 32.8°, θmin = 1.1° |
Absorption correction: multi-scan SADABS | h = −11→11 |
Tmin = 0.94, Tmax = 0.97 | k = −24→26 |
16877 measured reflections | l = 0→29 |
16862 independent reflections |
Refinement on F2 | 168 constraints |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0035999999I2) |
S = 1.42 | (Δ/σ)max = 0.042 |
16862 reflections | Δρmax = 0.41 e Å−3 |
698 parameters | Δρmin = −0.24 e Å−3 |
15 restraints |
x | y | z | Uiso*/Ueq | ||
O9a | −0.13651 (14) | 0.58633 (6) | 0.66613 (5) | 0.0192 (3) | |
O10a | −0.49842 (13) | 0.24983 (6) | 1.03627 (5) | 0.0171 (3) | |
O11a | −0.29314 (13) | 0.22148 (6) | 0.92612 (5) | 0.0168 (3) | |
N8a | −0.16684 (15) | 0.51071 (6) | 0.72528 (6) | 0.0161 (3) | |
C1a | −0.33207 (17) | 0.44727 (8) | 0.84475 (7) | 0.0142 (3) | |
C2a | −0.27621 (17) | 0.36772 (8) | 0.85131 (7) | 0.0146 (4) | |
C3a | −0.33149 (17) | 0.30153 (8) | 0.91488 (7) | 0.0138 (4) | |
C4a | −0.44166 (17) | 0.31444 (8) | 0.97387 (7) | 0.0142 (4) | |
C5a | −0.49580 (17) | 0.39277 (8) | 0.96753 (7) | 0.0158 (4) | |
C6a | −0.44153 (17) | 0.45902 (8) | 0.90307 (7) | 0.0163 (4) | |
C7a | −0.27870 (17) | 0.51786 (8) | 0.77790 (7) | 0.0150 (4) | |
C12a | −0.20580 (19) | 0.20544 (8) | 0.86326 (7) | 0.0185 (4) | |
O9b | 0.06147 (14) | 0.42492 (6) | 0.65514 (5) | 0.0206 (3) | |
O10b | 0.45751 (13) | 0.75673 (6) | 0.28725 (5) | 0.0175 (3) | |
O11b | 0.29252 (14) | 0.79076 (6) | 0.40087 (5) | 0.0182 (3) | |
N8b | 0.10041 (16) | 0.50144 (7) | 0.59781 (6) | 0.0167 (3) | |
C1b | 0.26847 (17) | 0.56430 (8) | 0.47827 (7) | 0.0150 (4) | |
C2b | 0.24322 (17) | 0.64520 (8) | 0.47514 (7) | 0.0145 (4) | |
C3b | 0.30615 (16) | 0.70953 (8) | 0.41151 (7) | 0.0131 (4) | |
C4b | 0.39506 (17) | 0.69402 (8) | 0.34956 (7) | 0.0148 (4) | |
C5b | 0.42010 (18) | 0.61455 (8) | 0.35285 (7) | 0.0176 (4) | |
C6b | 0.35729 (18) | 0.54978 (8) | 0.41713 (7) | 0.0190 (4) | |
C7b | 0.20476 (18) | 0.49390 (8) | 0.54355 (7) | 0.0171 (4) | |
C12b | 0.2273 (2) | 0.81125 (8) | 0.46416 (7) | 0.0187 (4) | |
O9c | 0.35542 (14) | 0.92000 (6) | 0.21646 (5) | 0.0192 (3) | |
O10c | 0.01267 (14) | 1.25361 (6) | 0.37204 (6) | 0.0182 (3) | |
O11c | 0.19480 (14) | 1.28630 (6) | 0.23816 (5) | 0.0175 (3) | |
N8c | 0.32487 (15) | 0.99636 (6) | 0.22470 (6) | 0.0161 (3) | |
C1c | 0.15944 (16) | 1.06061 (7) | 0.30214 (7) | 0.0141 (4) | |
C2c | 0.21048 (17) | 1.14137 (8) | 0.25571 (7) | 0.0144 (4) | |
C3c | 0.15885 (16) | 1.20534 (8) | 0.27855 (7) | 0.0136 (4) | |
C4c | 0.06017 (17) | 1.19122 (8) | 0.34843 (7) | 0.0138 (4) | |
C5c | 0.00756 (18) | 1.11229 (8) | 0.39299 (7) | 0.0174 (4) | |
C6c | 0.05624 (18) | 1.04712 (8) | 0.37003 (7) | 0.0167 (4) | |
C7c | 0.21361 (17) | 0.98979 (8) | 0.28207 (7) | 0.0154 (4) | |
C12c | 0.25618 (18) | 1.30729 (8) | 0.16119 (7) | 0.0179 (4) | |
O9d | 0.55764 (15) | 1.08083 (6) | 0.09938 (6) | 0.0201 (3) | |
O10d | 0.98593 (14) | 0.74369 (6) | −0.03568 (5) | 0.0184 (3) | |
O11d | 0.81184 (14) | 0.71417 (6) | 0.09937 (5) | 0.0186 (3) | |
N8d | 0.59890 (16) | 1.00383 (7) | 0.09396 (6) | 0.0152 (3) | |
C1d | 0.77044 (17) | 0.93952 (8) | 0.01785 (7) | 0.0140 (4) | |
C2d | 0.74910 (17) | 0.85935 (8) | 0.07054 (7) | 0.0145 (4) | |
C3d | 0.82027 (17) | 0.79429 (8) | 0.05271 (7) | 0.0128 (4) | |
C4d | 0.91345 (17) | 0.80699 (8) | −0.01791 (7) | 0.0133 (4) | |
C5d | 0.93174 (19) | 0.88571 (8) | −0.06996 (7) | 0.0177 (4) | |
C6d | 0.86174 (19) | 0.95151 (8) | −0.05177 (7) | 0.0186 (4) | |
C7d | 0.70255 (18) | 1.01080 (8) | 0.03486 (7) | 0.0169 (4) | |
C12d | 0.71606 (19) | 0.69723 (8) | 0.17147 (7) | 0.0197 (4) | |
O9e | 1.01071 (14) | 0.57440 (6) | 0.02823 (5) | 0.0209 (3) | |
O10e | 0.51996 (14) | 0.24391 (6) | 0.37489 (5) | 0.0190 (3) | |
O11e | 0.64700 (13) | 0.21803 (6) | 0.25082 (5) | 0.0172 (3) | |
N8e | 0.93250 (15) | 0.49962 (7) | 0.07715 (6) | 0.0166 (3) | |
C1e | 0.78935 (16) | 0.43340 (7) | 0.20095 (7) | 0.0139 (4) | |
C2e | 0.76578 (17) | 0.35774 (8) | 0.19342 (7) | 0.0141 (4) | |
C3e | 0.67700 (16) | 0.29405 (7) | 0.25129 (7) | 0.0127 (4) | |
C4e | 0.60705 (17) | 0.30586 (8) | 0.31761 (7) | 0.0143 (4) | |
C5e | 0.63109 (17) | 0.37998 (8) | 0.32499 (7) | 0.0163 (4) | |
C6e | 0.72200 (17) | 0.44372 (8) | 0.26703 (7) | 0.0162 (4) | |
C7e | 0.87880 (17) | 0.50249 (8) | 0.14106 (7) | 0.0161 (4) | |
C12e | 0.73514 (19) | 0.20037 (8) | 0.18882 (7) | 0.0190 (4) | |
O9f | 0.48103 (15) | 0.07523 (6) | 0.42337 (6) | 0.0224 (3) | |
O10f | 0.96618 (14) | −0.25369 (6) | 0.29188 (5) | 0.0192 (3) | |
O11f | 0.82287 (14) | −0.28187 (6) | 0.43075 (5) | 0.0177 (3) | |
N8f | 0.55873 (16) | 0.00082 (7) | 0.42251 (6) | 0.0169 (3) | |
C1f | 0.69983 (17) | −0.06408 (7) | 0.34111 (7) | 0.0141 (3) | |
C2f | 0.71547 (17) | −0.14124 (8) | 0.39792 (7) | 0.0143 (4) | |
C3f | 0.80182 (16) | −0.20423 (8) | 0.38128 (7) | 0.0132 (3) | |
C4f | 0.87784 (17) | −0.19226 (8) | 0.30814 (7) | 0.0133 (3) | |
C5f | 0.86102 (18) | −0.11673 (8) | 0.25241 (7) | 0.0162 (4) | |
C6f | 0.77170 (17) | −0.05323 (8) | 0.26888 (7) | 0.0160 (4) | |
C7f | 0.61216 (17) | 0.00489 (8) | 0.35640 (7) | 0.0169 (4) | |
C12f | 0.73790 (19) | −0.29994 (8) | 0.50459 (7) | 0.0188 (4) | |
H1c2a | −0.199396 | 0.359185 | 0.81158 | 0.0175* | |
H1c5a | −0.57086 | 0.401559 | 1.007545 | 0.019* | |
H1c6a | −0.480061 | 0.513195 | 0.898924 | 0.0195* | |
H1c7a | −0.328308 | 0.570623 | 0.77325 | 0.018* | |
H1c12a | −0.193696 | 0.147493 | 0.875629 | 0.0222* | |
H2c12a | −0.278097 | 0.227725 | 0.822034 | 0.0222* | |
H3c12a | −0.087012 | 0.230351 | 0.849971 | 0.0222* | |
H1c2b | 0.182467 | 0.65581 | 0.517035 | 0.0174* | |
H1c5b | 0.480645 | 0.603846 | 0.310973 | 0.0211* | |
H1c6b | 0.375469 | 0.494594 | 0.419247 | 0.0227* | |
H1c7b | 0.242358 | 0.44017 | 0.545867 | 0.0205* | |
H1c12b | 0.240653 | 0.868969 | 0.452013 | 0.0224* | |
H2c12b | 0.100848 | 0.796427 | 0.477904 | 0.0224* | |
H3c12b | 0.296813 | 0.782083 | 0.505008 | 0.0224* | |
H1c2c | 0.280617 | 1.151499 | 0.208597 | 0.0172* | |
H1c5c | −0.062883 | 1.102376 | 0.440007 | 0.0209* | |
H1c6c | 0.018432 | 0.992644 | 0.401159 | 0.02* | |
H1c7c | 0.164559 | 0.937004 | 0.31268 | 0.0185* | |
H1c12c | 0.249145 | 1.365438 | 0.136263 | 0.0215* | |
H2c12c | 0.380329 | 1.289809 | 0.156228 | 0.0215* | |
H3c12c | 0.180369 | 1.280748 | 0.139284 | 0.0215* | |
H1c2d | 0.685224 | 0.850027 | 0.118705 | 0.0175* | |
H1c5d | 0.992696 | 0.894925 | −0.11859 | 0.0212* | |
H1c6d | 0.876805 | 1.005966 | −0.087877 | 0.0224* | |
H1c7d | 0.737044 | 1.064449 | 0.000498 | 0.0203* | |
H1c12d | 0.704387 | 0.639171 | 0.196809 | 0.0237* | |
H2c12d | 0.782651 | 0.719679 | 0.199675 | 0.0237* | |
H3c12d | 0.596854 | 0.721453 | 0.166337 | 0.0237* | |
H1c2e | 0.811274 | 0.350171 | 0.148083 | 0.017* | |
H1c5e | 0.585065 | 0.387722 | 0.370195 | 0.0195* | |
H1c6e | 0.738359 | 0.495072 | 0.272636 | 0.0195* | |
H1c7e | 0.897996 | 0.551786 | 0.14995 | 0.0193* | |
H1c12e | 0.702147 | 0.146345 | 0.193088 | 0.0228* | |
H2c12e | 0.697188 | 0.239383 | 0.14339 | 0.0228* | |
H3c12e | 0.865143 | 0.203547 | 0.188438 | 0.0228* | |
H1c2f | 0.66605 | −0.149787 | 0.448025 | 0.0172* | |
H1c5f | 0.910978 | −0.108116 | 0.202359 | 0.0194* | |
H1c6f | 0.759575 | −0.001199 | 0.229804 | 0.0192* | |
H1c7f | 0.594186 | 0.054769 | 0.315517 | 0.0203* | |
H1c12f | 0.75964 | −0.356092 | 0.533982 | 0.0226* | |
H2c12f | 0.788061 | −0.265245 | 0.526357 | 0.0226* | |
H3c12f | 0.608825 | −0.290657 | 0.503121 | 0.0226* | |
H1o10a | −0.458 (2) | 0.2055 (6) | 1.0298 (10) | 0.026 (5)* | |
H1o10d | 0.969 (2) | 0.6961 (5) | −0.0003 (7) | 0.023 (5)* | |
H1o10e | 0.524 (3) | 0.2001 (7) | 0.3638 (10) | 0.033 (5)* | |
H1o10c | 0.054 (3) | 1.3015 (5) | 0.3426 (10) | 0.044 (6)* | |
H1o9e | 1.056 (3) | 0.5685 (4) | −0.0128 (5) | 0.067 (8)* | |
H1o10f | 0.946 (3) | −0.3021 (5) | 0.3256 (8) | 0.033 (5)* | |
H1o9f | 0.450 (3) | 0.0641 (12) | 0.4706 (3) | 0.042 (6)* | |
H1o9d | 0.474 (2) | 1.0692 (13) | 0.1370 (8) | 0.051 (7)* | |
H1o10b | 0.410 (2) | 0.8016 (6) | 0.2903 (10) | 0.030 (5)* | |
H1o9a | −0.050 (2) | 0.5806 (3) | 0.6342 (6) | 0.050 (6)* | |
H1o9c | 0.4441 (19) | 0.9319 (12) | 0.1808 (8) | 0.037 (5)* | |
H1o9b | −0.022 (2) | 0.4314 (3) | 0.6876 (7) | 0.051 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O9a | 0.0287 (5) | 0.0120 (4) | 0.0126 (4) | 0.0000 (3) | 0.0020 (4) | −0.0002 (3) |
O10a | 0.0250 (5) | 0.0134 (4) | 0.0101 (4) | −0.0002 (4) | 0.0037 (3) | −0.0023 (3) |
O11a | 0.0259 (5) | 0.0122 (4) | 0.0114 (4) | 0.0023 (3) | 0.0023 (3) | −0.0044 (3) |
N8a | 0.0221 (5) | 0.0120 (5) | 0.0115 (5) | −0.0015 (4) | −0.0009 (4) | −0.0013 (4) |
C1a | 0.0154 (5) | 0.0153 (5) | 0.0115 (5) | −0.0004 (4) | −0.0019 (4) | −0.0042 (4) |
C2a | 0.0172 (5) | 0.0141 (5) | 0.0115 (5) | −0.0007 (4) | 0.0004 (4) | −0.0039 (4) |
C3a | 0.0162 (5) | 0.0128 (5) | 0.0113 (5) | −0.0009 (4) | −0.0005 (4) | −0.0033 (4) |
C4a | 0.0167 (5) | 0.0151 (5) | 0.0096 (5) | −0.0009 (4) | −0.0006 (4) | −0.0031 (4) |
C5a | 0.0178 (5) | 0.0162 (6) | 0.0133 (5) | 0.0015 (4) | 0.0019 (4) | −0.0062 (4) |
C6a | 0.0182 (5) | 0.0156 (6) | 0.0148 (5) | 0.0017 (4) | −0.0006 (4) | −0.0058 (4) |
C7a | 0.0179 (5) | 0.0133 (5) | 0.0133 (5) | −0.0008 (4) | −0.0014 (4) | −0.0041 (4) |
C12a | 0.0265 (6) | 0.0165 (6) | 0.0136 (6) | 0.0047 (5) | 0.0002 (5) | −0.0077 (5) |
O9b | 0.0300 (5) | 0.0126 (4) | 0.0143 (4) | −0.0012 (4) | 0.0058 (4) | −0.0009 (3) |
O10b | 0.0233 (5) | 0.0145 (4) | 0.0113 (4) | −0.0001 (4) | 0.0045 (3) | −0.0023 (4) |
O11b | 0.0284 (5) | 0.0127 (4) | 0.0129 (4) | −0.0018 (4) | 0.0038 (4) | −0.0054 (3) |
N8b | 0.0225 (5) | 0.0121 (5) | 0.0126 (5) | −0.0015 (4) | 0.0000 (4) | −0.0013 (4) |
C1b | 0.0157 (5) | 0.0146 (5) | 0.0134 (5) | −0.0005 (4) | 0.0000 (4) | −0.0040 (4) |
C2b | 0.0172 (5) | 0.0142 (5) | 0.0112 (5) | −0.0008 (4) | 0.0003 (4) | −0.0042 (4) |
C3b | 0.0145 (5) | 0.0115 (5) | 0.0124 (5) | 0.0003 (4) | −0.0010 (4) | −0.0032 (4) |
C4b | 0.0157 (5) | 0.0160 (6) | 0.0118 (5) | −0.0009 (4) | −0.0003 (4) | −0.0042 (4) |
C5b | 0.0214 (6) | 0.0178 (6) | 0.0130 (6) | −0.0008 (5) | 0.0029 (5) | −0.0060 (5) |
C6b | 0.0239 (6) | 0.0159 (6) | 0.0150 (6) | −0.0008 (5) | 0.0034 (5) | −0.0045 (5) |
C7b | 0.0200 (6) | 0.0148 (5) | 0.0147 (6) | −0.0016 (4) | 0.0003 (4) | −0.0035 (4) |
C12b | 0.0255 (6) | 0.0166 (6) | 0.0148 (6) | 0.0006 (5) | 0.0008 (5) | −0.0074 (5) |
O9c | 0.0289 (5) | 0.0114 (4) | 0.0181 (4) | 0.0005 (3) | 0.0037 (4) | −0.0080 (3) |
O10c | 0.0244 (5) | 0.0140 (4) | 0.0160 (5) | −0.0006 (4) | 0.0038 (4) | −0.0069 (4) |
O11c | 0.0263 (5) | 0.0126 (4) | 0.0122 (4) | −0.0017 (3) | 0.0029 (3) | −0.0041 (3) |
N8c | 0.0226 (5) | 0.0100 (4) | 0.0170 (5) | 0.0007 (4) | −0.0007 (4) | −0.0067 (4) |
C1c | 0.0152 (5) | 0.0134 (5) | 0.0147 (5) | 0.0003 (4) | 0.0000 (4) | −0.0066 (4) |
C2c | 0.0165 (5) | 0.0153 (5) | 0.0115 (5) | −0.0006 (4) | 0.0000 (4) | −0.0056 (4) |
C3c | 0.0144 (5) | 0.0142 (5) | 0.0114 (5) | −0.0008 (4) | −0.0003 (4) | −0.0038 (4) |
C4c | 0.0148 (5) | 0.0139 (5) | 0.0127 (5) | 0.0013 (4) | −0.0003 (4) | −0.0052 (4) |
C5c | 0.0203 (6) | 0.0171 (6) | 0.0149 (5) | −0.0007 (4) | 0.0030 (4) | −0.0069 (5) |
C6c | 0.0202 (6) | 0.0135 (5) | 0.0156 (5) | −0.0010 (4) | 0.0018 (4) | −0.0051 (4) |
C7c | 0.0186 (5) | 0.0131 (5) | 0.0157 (5) | 0.0000 (4) | −0.0017 (4) | −0.0066 (4) |
C12c | 0.0246 (6) | 0.0174 (6) | 0.0105 (5) | −0.0017 (5) | 0.0024 (5) | −0.0045 (5) |
O9d | 0.0306 (5) | 0.0099 (4) | 0.0188 (5) | 0.0020 (4) | 0.0060 (4) | −0.0063 (4) |
O10d | 0.0262 (5) | 0.0133 (4) | 0.0141 (5) | 0.0019 (4) | 0.0031 (4) | −0.0047 (4) |
O11d | 0.0280 (5) | 0.0128 (4) | 0.0121 (4) | −0.0002 (4) | 0.0054 (4) | −0.0029 (3) |
N8d | 0.0219 (5) | 0.0096 (4) | 0.0140 (5) | 0.0025 (4) | 0.0001 (4) | −0.0047 (4) |
C1d | 0.0178 (5) | 0.0123 (5) | 0.0115 (5) | 0.0013 (4) | 0.0004 (4) | −0.0045 (4) |
C2d | 0.0169 (5) | 0.0154 (6) | 0.0110 (5) | 0.0009 (4) | −0.0001 (4) | −0.0047 (5) |
C3d | 0.0151 (5) | 0.0137 (5) | 0.0090 (5) | −0.0006 (4) | −0.0006 (4) | −0.0036 (4) |
C4d | 0.0167 (5) | 0.0127 (5) | 0.0101 (5) | 0.0018 (4) | 0.0002 (4) | −0.0043 (4) |
C5d | 0.0238 (6) | 0.0158 (6) | 0.0120 (5) | 0.0014 (5) | 0.0039 (5) | −0.0048 (5) |
C6d | 0.0262 (6) | 0.0127 (5) | 0.0139 (6) | 0.0026 (5) | 0.0029 (5) | −0.0026 (4) |
C7d | 0.0226 (6) | 0.0126 (5) | 0.0135 (5) | 0.0019 (4) | 0.0016 (5) | −0.0034 (4) |
C12d | 0.0259 (6) | 0.0174 (6) | 0.0127 (5) | −0.0019 (5) | 0.0061 (5) | −0.0037 (5) |
O9e | 0.0300 (5) | 0.0133 (4) | 0.0159 (5) | −0.0051 (4) | 0.0069 (4) | −0.0031 (3) |
O10e | 0.0287 (5) | 0.0138 (4) | 0.0118 (4) | −0.0036 (4) | 0.0063 (4) | −0.0035 (4) |
O11e | 0.0244 (4) | 0.0143 (4) | 0.0137 (4) | −0.0033 (3) | 0.0035 (3) | −0.0073 (3) |
N8e | 0.0192 (5) | 0.0133 (5) | 0.0149 (5) | −0.0025 (4) | 0.0020 (4) | −0.0031 (4) |
C1e | 0.0145 (5) | 0.0149 (5) | 0.0120 (5) | 0.0002 (4) | −0.0018 (4) | −0.0042 (4) |
C2e | 0.0163 (5) | 0.0146 (5) | 0.0110 (5) | −0.0007 (4) | −0.0002 (4) | −0.0043 (4) |
C3e | 0.0144 (5) | 0.0120 (5) | 0.0113 (5) | 0.0000 (4) | −0.0012 (4) | −0.0037 (4) |
C4e | 0.0160 (5) | 0.0144 (5) | 0.0113 (5) | 0.0000 (4) | −0.0011 (4) | −0.0032 (4) |
C5e | 0.0202 (6) | 0.0173 (6) | 0.0119 (5) | 0.0007 (4) | −0.0001 (4) | −0.0064 (4) |
C6e | 0.0205 (6) | 0.0149 (5) | 0.0131 (5) | −0.0009 (4) | −0.0005 (4) | −0.0051 (4) |
C7e | 0.0193 (5) | 0.0142 (5) | 0.0139 (5) | −0.0014 (4) | −0.0001 (4) | −0.0044 (4) |
C12e | 0.0244 (6) | 0.0182 (6) | 0.0167 (6) | −0.0005 (5) | 0.0009 (5) | −0.0098 (5) |
O9f | 0.0348 (6) | 0.0126 (4) | 0.0188 (5) | 0.0066 (4) | 0.0028 (4) | −0.0066 (4) |
O10f | 0.0281 (5) | 0.0131 (4) | 0.0143 (5) | 0.0043 (4) | 0.0018 (4) | −0.0041 (4) |
O11f | 0.0260 (5) | 0.0135 (4) | 0.0106 (4) | 0.0033 (4) | 0.0008 (3) | −0.0017 (3) |
N8f | 0.0227 (5) | 0.0108 (4) | 0.0167 (5) | 0.0030 (4) | 0.0014 (4) | −0.0053 (4) |
C1f | 0.0168 (5) | 0.0125 (5) | 0.0132 (5) | 0.0008 (4) | −0.0004 (4) | −0.0052 (4) |
C2f | 0.0166 (5) | 0.0142 (5) | 0.0119 (5) | −0.0002 (4) | −0.0002 (4) | −0.0047 (4) |
C3f | 0.0153 (5) | 0.0133 (5) | 0.0096 (5) | 0.0004 (4) | −0.0013 (4) | −0.0026 (4) |
C4f | 0.0152 (5) | 0.0129 (5) | 0.0123 (5) | −0.0003 (4) | 0.0001 (4) | −0.0053 (4) |
C5f | 0.0219 (6) | 0.0145 (5) | 0.0106 (5) | 0.0002 (4) | 0.0011 (4) | −0.0036 (4) |
C6f | 0.0203 (6) | 0.0127 (5) | 0.0135 (5) | −0.0001 (4) | −0.0003 (4) | −0.0034 (4) |
C7f | 0.0209 (6) | 0.0134 (5) | 0.0153 (5) | 0.0026 (4) | 0.0007 (4) | −0.0048 (4) |
C12f | 0.0263 (6) | 0.0177 (6) | 0.0103 (5) | −0.0016 (5) | 0.0007 (5) | −0.0029 (5) |
O9a—H1o9a | 0.870 (13) | O9d—H1o9d | 0.870 (15) |
O10a—C4a | 1.3622 (14) | O10d—C4d | 1.3546 (19) |
O10a—H1o10a | 0.870 (14) | O10d—H1o10d | 0.870 (8) |
O11a—C3a | 1.3654 (17) | O11d—C3d | 1.3679 (14) |
O11a—C12a | 1.4313 (18) | O11d—C12d | 1.4300 (17) |
N8a—C7a | 1.2818 (17) | N8d—C7d | 1.2770 (17) |
C1a—C2a | 1.4059 (19) | C1d—C2d | 1.4097 (16) |
C1a—C6a | 1.3913 (19) | C1d—C6d | 1.3892 (19) |
C1a—C7a | 1.4599 (15) | C1d—C7d | 1.465 (2) |
C2a—C3a | 1.3867 (15) | C2d—C3d | 1.380 (2) |
C2a—H1c2a | 0.96 | C2d—H1c2d | 0.96 |
C3a—C4a | 1.4131 (19) | C3d—C4d | 1.4092 (18) |
C4a—C5a | 1.383 (2) | C4d—C5d | 1.3850 (16) |
C5a—C6a | 1.3952 (15) | C5d—C6d | 1.393 (2) |
C5a—H1c5a | 0.96 | C5d—H1c5d | 0.96 |
C6a—H1c6a | 0.96 | C6d—H1c6d | 0.96 |
C7a—H1c7a | 0.96 | C7d—H1c7d | 0.96 |
C12a—H1c12a | 0.96 | C12d—H1c12d | 0.96 |
C12a—H2c12a | 0.96 | C12d—H2c12d | 0.96 |
C12a—H3c12a | 0.96 | C12d—H3c12d | 0.96 |
O9b—H1o9b | 0.870 (14) | O9e—H1o9e | 0.870 (12) |
O10b—C4b | 1.3552 (14) | O10e—C4e | 1.3604 (14) |
O10b—H1o10b | 0.870 (13) | O10e—H1o10e | 0.870 (16) |
O11b—C3b | 1.3666 (17) | O11e—C3e | 1.3646 (18) |
O11b—C12b | 1.4312 (19) | O11e—C12e | 1.4331 (18) |
N8b—C7b | 1.2797 (18) | N8e—C7e | 1.2783 (19) |
C1b—C2b | 1.406 (2) | C1e—C2e | 1.407 (2) |
C1b—C6b | 1.393 (2) | C1e—C6e | 1.395 (2) |
C1b—C7b | 1.4596 (16) | C1e—C7e | 1.4586 (15) |
C2b—C3b | 1.3847 (15) | C2e—C3e | 1.3871 (15) |
C2b—H1c2b | 0.96 | C2e—H1c2e | 0.96 |
C3b—C4b | 1.416 (2) | C3e—C4e | 1.417 (2) |
C4b—C5b | 1.380 (2) | C4e—C5e | 1.380 (2) |
C5b—C6b | 1.3953 (16) | C5e—C6e | 1.3950 (16) |
C5b—H1c5b | 0.96 | C5e—H1c5e | 0.96 |
C6b—H1c6b | 0.96 | C6e—H1c6e | 0.96 |
C7b—H1c7b | 0.96 | C7e—H1c7e | 0.96 |
C12b—H1c12b | 0.96 | C12e—H1c12e | 0.96 |
C12b—H2c12b | 0.96 | C12e—H2c12e | 0.96 |
C12b—H3c12b | 0.96 | C12e—H3c12e | 0.96 |
O9c—H1o9c | 0.870 (13) | O9f—H1o9f | 0.870 (6) |
O10c—C4c | 1.3546 (19) | O10f—C4f | 1.3560 (18) |
O10c—H1o10c | 0.870 (11) | O10f—H1o10f | 0.870 (9) |
O11c—C3c | 1.3708 (15) | O11f—C3f | 1.3666 (14) |
O11c—C12c | 1.4269 (16) | O11f—C12f | 1.4272 (16) |
N8c—C7c | 1.2819 (17) | N8f—C7f | 1.2770 (19) |
C1c—C2c | 1.4152 (16) | C1f—C2f | 1.4114 (16) |
C1c—C6c | 1.3932 (18) | C1f—C6f | 1.3905 (18) |
C1c—C7c | 1.463 (2) | C1f—C7f | 1.461 (2) |
C2c—C3c | 1.378 (2) | C2f—C3f | 1.377 (2) |
C2c—H1c2c | 0.96 | C2f—H1c2f | 0.96 |
C3c—C4c | 1.4091 (18) | C3f—C4f | 1.4115 (18) |
C4c—C5c | 1.3843 (17) | C4f—C5f | 1.3841 (16) |
C5c—C6c | 1.394 (2) | C5f—C6f | 1.392 (2) |
C5c—H1c5c | 0.96 | C5f—H1c5f | 0.96 |
C6c—H1c6c | 0.96 | C6f—H1c6f | 0.96 |
C7c—H1c7c | 0.96 | C7f—H1c7f | 0.96 |
C12c—H1c12c | 0.96 | C12f—H1c12f | 0.96 |
C12c—H2c12c | 0.96 | C12f—H2c12f | 0.96 |
C12c—H3c12c | 0.96 | C12f—H3c12f | 0.96 |
C4a—O10a—H1o10a | 107.7 (10) | C4d—O10d—H1o10d | 114.3 (9) |
C3a—O11a—C12a | 115.94 (9) | C3d—O11d—C12d | 116.56 (11) |
C2a—C1a—C6a | 119.33 (10) | C2d—C1d—C6d | 119.11 (13) |
C2a—C1a—C7a | 121.48 (12) | C2d—C1d—C7d | 121.93 (12) |
C6a—C1a—C7a | 119.19 (12) | C6d—C1d—C7d | 118.95 (10) |
C1a—C2a—C3a | 120.35 (12) | C1d—C2d—C3d | 119.82 (12) |
C1a—C2a—H1c2a | 119.83 | C1d—C2d—H1c2d | 120.09 |
C3a—C2a—H1c2a | 119.83 | C3d—C2d—H1c2d | 120.09 |
O11a—C3a—C2a | 125.60 (12) | O11d—C3d—C2d | 125.32 (11) |
O11a—C3a—C4a | 114.67 (10) | O11d—C3d—C4d | 113.95 (12) |
C2a—C3a—C4a | 119.71 (12) | C2d—C3d—C4d | 120.72 (11) |
O10a—C4a—C3a | 120.25 (12) | O10d—C4d—C3d | 121.22 (10) |
O10a—C4a—C5a | 119.83 (12) | O10d—C4d—C5d | 119.47 (12) |
C3a—C4a—C5a | 119.90 (10) | C3d—C4d—C5d | 119.31 (13) |
C4a—C5a—C6a | 120.12 (12) | C4d—C5d—C6d | 120.03 (12) |
C4a—C5a—H1c5a | 119.94 | C4d—C5d—H1c5d | 119.98 |
C6a—C5a—H1c5a | 119.94 | C6d—C5d—H1c5d | 119.99 |
C1a—C6a—C5a | 120.59 (12) | C1d—C6d—C5d | 120.99 (11) |
C1a—C6a—H1c6a | 119.71 | C1d—C6d—H1c6d | 119.51 |
C5a—C6a—H1c6a | 119.71 | C5d—C6d—H1c6d | 119.51 |
N8a—C7a—C1a | 121.24 (12) | N8d—C7d—C1d | 122.07 (11) |
N8a—C7a—H1c7a | 119.38 | N8d—C7d—H1c7d | 118.97 |
C1a—C7a—H1c7a | 119.38 | C1d—C7d—H1c7d | 118.97 |
O11a—C12a—H1c12a | 109.47 | O11d—C12d—H1c12d | 109.47 |
O11a—C12a—H2c12a | 109.47 | O11d—C12d—H2c12d | 109.47 |
O11a—C12a—H3c12a | 109.47 | O11d—C12d—H3c12d | 109.47 |
H1c12a—C12a—H2c12a | 109.47 | H1c12d—C12d—H2c12d | 109.47 |
H1c12a—C12a—H3c12a | 109.47 | H1c12d—C12d—H3c12d | 109.47 |
H2c12a—C12a—H3c12a | 109.47 | H2c12d—C12d—H3c12d | 109.47 |
C4b—O10b—H1o10b | 107.8 (10) | C4e—O10e—H1o10e | 109.2 (11) |
C3b—O11b—C12b | 117.02 (9) | C3e—O11e—C12e | 116.21 (9) |
C2b—C1b—C6b | 119.46 (10) | C2e—C1e—C6e | 119.35 (10) |
C2b—C1b—C7b | 122.52 (12) | C2e—C1e—C7e | 122.07 (12) |
C6b—C1b—C7b | 118.02 (13) | C6e—C1e—C7e | 118.57 (13) |
C1b—C2b—C3b | 119.87 (13) | C1e—C2e—C3e | 120.21 (13) |
C1b—C2b—H1c2b | 120.07 | C1e—C2e—H1c2e | 119.9 |
C3b—C2b—H1c2b | 120.07 | C3e—C2e—H1c2e | 119.9 |
O11b—C3b—C2b | 126.23 (13) | O11e—C3e—C2e | 125.62 (13) |
O11b—C3b—C4b | 113.62 (10) | O11e—C3e—C4e | 114.60 (10) |
C2b—C3b—C4b | 120.15 (13) | C2e—C3e—C4e | 119.77 (13) |
O10b—C4b—C3b | 120.40 (13) | O10e—C4e—C3e | 120.43 (13) |
O10b—C4b—C5b | 119.73 (13) | O10e—C4e—C5e | 119.66 (12) |
C3b—C4b—C5b | 119.87 (10) | C3e—C4e—C5e | 119.89 (10) |
C4b—C5b—C6b | 119.91 (13) | C4e—C5e—C6e | 120.27 (13) |
C4b—C5b—H1c5b | 120.04 | C4e—C5e—H1c5e | 119.87 |
C6b—C5b—H1c5b | 120.04 | C6e—C5e—H1c5e | 119.87 |
C1b—C6b—C5b | 120.74 (13) | C1e—C6e—C5e | 120.50 (13) |
C1b—C6b—H1c6b | 119.63 | C1e—C6e—H1c6e | 119.75 |
C5b—C6b—H1c6b | 119.63 | C5e—C6e—H1c6e | 119.75 |
N8b—C7b—C1b | 122.16 (13) | N8e—C7e—C1e | 122.23 (13) |
N8b—C7b—H1c7b | 118.92 | N8e—C7e—H1c7e | 118.88 |
C1b—C7b—H1c7b | 118.92 | C1e—C7e—H1c7e | 118.88 |
O11b—C12b—H1c12b | 109.47 | O11e—C12e—H1c12e | 109.47 |
O11b—C12b—H2c12b | 109.47 | O11e—C12e—H2c12e | 109.47 |
O11b—C12b—H3c12b | 109.47 | O11e—C12e—H3c12e | 109.47 |
H1c12b—C12b—H2c12b | 109.47 | H1c12e—C12e—H2c12e | 109.47 |
H1c12b—C12b—H3c12b | 109.47 | H1c12e—C12e—H3c12e | 109.47 |
H2c12b—C12b—H3c12b | 109.47 | H2c12e—C12e—H3c12e | 109.47 |
C4c—O10c—H1o10c | 115.3 (12) | C4f—O10f—H1o10f | 114.7 (11) |
C3c—O11c—C12c | 116.88 (12) | C3f—O11f—C12f | 116.75 (11) |
C2c—C1c—C6c | 119.43 (13) | C2f—C1f—C6f | 119.08 (13) |
C2c—C1c—C7c | 122.33 (11) | C2f—C1f—C7f | 121.72 (12) |
C6c—C1c—C7c | 118.24 (10) | C6f—C1f—C7f | 119.19 (10) |
C1c—C2c—C3c | 119.57 (11) | C1f—C2f—C3f | 119.82 (12) |
C1c—C2c—H1c2c | 120.22 | C1f—C2f—H1c2f | 120.09 |
C3c—C2c—H1c2c | 120.22 | C3f—C2f—H1c2f | 120.09 |
O11c—C3c—C2c | 125.39 (11) | O11f—C3f—C2f | 125.49 (11) |
O11c—C3c—C4c | 113.74 (13) | O11f—C3f—C4f | 113.73 (12) |
C2c—C3c—C4c | 120.86 (11) | C2f—C3f—C4f | 120.78 (10) |
O10c—C4c—C3c | 121.22 (11) | O10f—C4f—C3f | 120.91 (10) |
O10c—C4c—C5c | 119.47 (12) | O10f—C4f—C5f | 119.81 (12) |
C3c—C4c—C5c | 119.29 (14) | C3f—C4f—C5f | 119.28 (13) |
C4c—C5c—C6c | 120.41 (12) | C4f—C5f—C6f | 120.07 (12) |
C4c—C5c—H1c5c | 119.8 | C4f—C5f—H1c5f | 119.97 |
C6c—C5c—H1c5c | 119.8 | C6f—C5f—H1c5f | 119.97 |
C1c—C6c—C5c | 120.38 (11) | C1f—C6f—C5f | 120.96 (10) |
C1c—C6c—H1c6c | 119.81 | C1f—C6f—H1c6f | 119.52 |
C5c—C6c—H1c6c | 119.81 | C5f—C6f—H1c6f | 119.52 |
N8c—C7c—C1c | 121.74 (11) | N8f—C7f—C1f | 121.99 (10) |
N8c—C7c—H1c7c | 119.13 | N8f—C7f—H1c7f | 119 |
C1c—C7c—H1c7c | 119.13 | C1f—C7f—H1c7f | 119 |
O11c—C12c—H1c12c | 109.47 | O11f—C12f—H1c12f | 109.47 |
O11c—C12c—H2c12c | 109.47 | O11f—C12f—H2c12f | 109.47 |
O11c—C12c—H3c12c | 109.47 | O11f—C12f—H3c12f | 109.47 |
H1c12c—C12c—H2c12c | 109.47 | H1c12f—C12f—H2c12f | 109.47 |
H1c12c—C12c—H3c12c | 109.47 | H1c12f—C12f—H3c12f | 109.47 |
H2c12c—C12c—H3c12c | 109.47 | H2c12f—C12f—H3c12f | 109.47 |
D—H···A | D—H | H···A | D···A | D—H···A |
O10a—H1o10a···O11a | 0.870 (14) | 2.166 (18) | 2.6700 (15) | 116.5 (11) |
O10a—H1o10a···O9di | 0.870 (14) | 2.119 (10) | 2.8021 (15) | 134.9 (16) |
O10d—H1o10d···O11d | 0.870 (8) | 2.263 (14) | 2.6682 (15) | 108.4 (10) |
O10d—H1o10d···O9e | 0.870 (8) | 2.024 (9) | 2.7816 (15) | 144.9 (13) |
O10e—H1o10e···O11e | 0.870 (16) | 2.194 (19) | 2.6747 (16) | 114.5 (11) |
O10e—H1o10e···O9f | 0.870 (16) | 2.092 (11) | 2.7791 (15) | 135.4 (16) |
O10c—H1o10c···O9aii | 0.870 (11) | 2.026 (13) | 2.7955 (15) | 146.8 (18) |
O10c—H1o10c···O11c | 0.870 (11) | 2.276 (19) | 2.6652 (15) | 107.1 (13) |
O9e—H1o9e···N8eiii | 0.870 (12) | 2.012 (11) | 2.7830 (18) | 147.1 (13) |
O10f—H1o10f···O9biv | 0.870 (9) | 2.052 (9) | 2.8097 (15) | 145.0 (14) |
O10f—H1o10f···O11f | 0.870 (9) | 2.284 (16) | 2.6597 (15) | 106.0 (11) |
O9f—H1o9f···N8fiv | 0.870 (6) | 1.964 (6) | 2.7812 (16) | 156.1 (19) |
O9d—H1o9d···N8c | 0.870 (15) | 1.966 (15) | 2.7805 (14) | 155 (2) |
O10b—H1o10b···O11b | 0.870 (13) | 2.169 (19) | 2.6503 (16) | 114.5 (12) |
O10b—H1o10b···O9c | 0.870 (13) | 2.104 (11) | 2.8048 (14) | 137.2 (16) |
O9a—H1o9a···N8b | 0.870 (13) | 2.022 (11) | 2.7889 (17) | 146.4 (6) |
O9c—H1o9c···N8d | 0.870 (13) | 1.972 (13) | 2.7887 (14) | 156.0 (18) |
O9b—H1o9b···N8a | 0.870 (14) | 2.017 (11) | 2.7871 (17) | 146.9 (5) |
Symmetry codes: (i) x−1, y−1, z+1; (ii) −x, −y+2, −z+1; (iii) −x+2, −y+1, −z; (iv) −x+1, −y, −z+1. |
C8O3NH9 | Z = 4 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 3387 reflections |
a = 14.3673 (6) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 6.3704 (3) Å | T = 300 K |
β = 148.261 (7)° | Block, yellow |
V = 801.81 (18) Å3 | 0.50 × 0.45 × 0.32 mm |
Bruker KAPPA APEX II CCD diffractometer | 8632 measured reflections |
Radiation source: X-ray tube | Rint = 0.022 |
Graphite monochromator | θmax = 30.1°, θmin = 2.5° |
ω– and φ–scans | h = −20→20 |
Absorption correction: multi-scan SADABS | k = −23→23 |
Tmin = 0.95, Tmax = 0.97 | l = −8→8 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.23149 (19) | 0.43988 (9) | −0.0371 (4) | 0.052 (2) | |
C2 | 0.25116 (16) | 0.36179 (8) | −0.0754 (4) | 0.0427 (18) | |
C3 | 0.18525 (15) | 0.29739 (8) | −0.0909 (4) | 0.0388 (16) | |
C4 | 0.09743 (17) | 0.31003 (8) | −0.0679 (4) | 0.0438 (18) | |
C5 | 0.0799 (2) | 0.38648 (10) | −0.0252 (5) | 0.065 (3) | |
C6 | 0.1462 (3) | 0.45111 (10) | −0.0102 (6) | 0.073 (3) | |
C7 | 0.2962 (2) | 0.50935 (10) | −0.0282 (5) | 0.065 (3) | |
N8 | 0.38462 (16) | 0.50381 (7) | −0.0259 (4) | 0.055 (2) | |
O9 | 0.42753 (18) | 0.57969 (6) | −0.0279 (4) | 0.077 (3) | |
O10 | 0.02917 (14) | 0.24758 (7) | −0.0892 (3) | 0.0562 (18) | |
O11 | 0.19375 (14) | 0.21884 (6) | −0.1336 (3) | 0.0562 (18) | |
C12 | 0.2728 (2) | 0.20123 (9) | −0.1793 (5) | 0.059 (3) | |
H1o10 | 0.066 (3) | 0.1973 (14) | −0.076 (6) | 0.087 (6)* | |
H1o9 | 0.500 (2) | 0.5693 (12) | 0.009 (4) | 0.091 (7)* | |
H1c2 | 0.311195 | 0.352867 | −0.090941 | 0.0512* | |
H1c5 | 0.021464 | 0.395338 | −0.005485 | 0.0778* | |
H1c6 | 0.132897 | 0.504445 | 0.019211 | 0.0871* | |
H1c7 | 0.2704 | 0.561907 | −0.023975 | 0.0782* | |
H1c12 | 0.263153 | 0.144746 | −0.225582 | 0.0713* | |
H2c12 | 0.213196 | 0.230746 | −0.402042 | 0.0713* | |
H3c12 | 0.395344 | 0.21632 | 0.058845 | 0.0713* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0669 (8) | 0.0419 (7) | 0.0788 (9) | −0.0018 (6) | 0.0673 (8) | −0.0007 (6) |
C2 | 0.0490 (7) | 0.0442 (7) | 0.0554 (7) | −0.0012 (5) | 0.0477 (6) | −0.0003 (5) |
C3 | 0.0434 (6) | 0.0400 (7) | 0.0446 (7) | 0.0009 (5) | 0.0393 (6) | 0.0003 (5) |
C4 | 0.0509 (7) | 0.0448 (7) | 0.0572 (7) | −0.0008 (5) | 0.0494 (7) | 0.0013 (6) |
C5 | 0.0947 (11) | 0.0494 (9) | 0.1173 (11) | 0.0000 (8) | 0.1010 (10) | −0.0017 (8) |
C6 | 0.1124 (13) | 0.0422 (8) | 0.1399 (13) | −0.0023 (8) | 0.1198 (13) | −0.0048 (8) |
C7 | 0.0966 (11) | 0.0391 (8) | 0.1182 (12) | −0.0029 (7) | 0.1009 (11) | −0.0033 (7) |
N8 | 0.0748 (8) | 0.0368 (6) | 0.0880 (8) | −0.0034 (5) | 0.0750 (7) | 0.0004 (5) |
O9 | 0.1194 (9) | 0.0365 (6) | 0.1524 (10) | −0.0020 (6) | 0.1282 (9) | 0.0021 (6) |
O10 | 0.0774 (7) | 0.0453 (6) | 0.0914 (7) | −0.0032 (5) | 0.0792 (7) | −0.0004 (5) |
O11 | 0.0848 (7) | 0.0404 (6) | 0.0945 (7) | −0.0043 (5) | 0.0846 (7) | −0.0056 (5) |
C12 | 0.0857 (11) | 0.0511 (9) | 0.0888 (11) | 0.0067 (8) | 0.0819 (10) | 0.0020 (7) |
C1—C2 | 1.396 (3) | C6—H1c6 | 0.960 |
C1—C6 | 1.387 (6) | C7—N8 | 1.261 (5) |
C1—C7 | 1.455 (4) | C7—H1c7 | 0.960 |
C2—C3 | 1.377 (3) | N8—O9 | 1.411 (2) |
C2—H1c2 | 0.960 | O9—H1o9 | 0.87 (3) |
C3—C4 | 1.404 (4) | O10—H1o10 | 0.95 (3) |
C3—O11 | 1.3626 (19) | O11—C12 | 1.422 (5) |
C4—C5 | 1.369 (3) | C12—H1c12 | 0.960 |
C4—O10 | 1.355 (3) | C12—H2c12 | 0.960 |
C5—C6 | 1.386 (4) | C12—H3c12 | 0.960 |
C5—H1c5 | 0.960 | ||
C2—C1—C6 | 118.6 (2) | C1—C6—H1c6 | 119.5 |
C2—C1—C7 | 122.0 (3) | C5—C6—H1c6 | 119.5) |
C6—C1—C7 | 119.4 (2) | C1—C7—N8 | 123.1 (2) |
C1—C2—C3 | 120.6 (3) | C1—C7—H1c7 | 118.4 |
C1—C2—H1c2 | 119.7 | N8—C7—H1c7 | 118.4 |
C3—C2—H1c2 | 119.69 | C7—N8—O9 | 112.20 (19) |
C2—C3—C4 | 119.97 (17) | N8—O9—H1o9 | 104.7 (14) |
C2—C3—O11 | 126.1 (3) | C4—O10—H1o10 | 111 (3) |
C4—C3—O11 | 113.9 (2) | C3—O11—C12 | 117.5 (2) |
C3—C4—C5 | 119.6 (2) | O11—C12—H1c12 | 109.5 |
C3—C4—O10 | 120.84 (17) | O11—C12—H2c12 | 109.5 |
C5—C4—O10 | 119.6 (3) | O11—C12—H3c12 | 109.5 |
C4—C5—C6 | 120.3 (4) | H1c12—C12—H2c12 | 109.5 |
C4—C5—H1c5 | 119.9 | H1c12—C12—H3c12 | 109.5 |
C6—C5—H1c5 | 119.9 | H2c12—C12—H3c12 | 109.5 |
C1—C6—C5 | 121.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.95 (3) | 2.04 (3) | 2.8233 (16) | 137 (4) |
O10—H1o10···O11 | 0.95 (3) | 2.19 (5) | 2.653 (4) | 109 (3) |
O9—H1o9···N8ii | 0.87 (3) | 1.98 (3) | 2.786 (4) | 153.0 (19) |
Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+1, −y+1, −z. |
C8O3NH9 | Z = 4 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 3387 reflections |
a = 14.3673 (6) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 6.3704 (3) Å | T = 300 K |
β = 148.261 (7)° | Block, yellow |
V = 801.81 (18) Å3 | 0.50 × 0.45 × 0.32 mm |
Bruker KAPPA APEX II CCD diffractometer | 8632 measured reflections |
Radiation source: X-ray tube | Rint = 0.022 |
Graphite monochromator | θmax = 30.1°, θmin = 2.5° |
ω– and φ–scans | h = −20→20 |
Absorption correction: multi-scan SADABS | k = −23→23 |
Tmin = 0.95, Tmax = 0.97 | l = −8→8 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2317 (4) | 0.43984 (18) | −0.0366 (8) | 0.0517 (19) | |
C2 | 0.2498 (3) | 0.36176 (17) | −0.0771 (8) | 0.0429 (15) | |
C3 | 0.1848 (3) | 0.29772 (17) | −0.0909 (7) | 0.0390 (14) | |
C4 | 0.0980 (3) | 0.31016 (18) | −0.0680 (8) | 0.0439 (16) | |
C5 | 0.0789 (4) | 0.3859 (2) | −0.0293 (9) | 0.065 (2) | |
C6 | 0.1457 (4) | 0.45061 (19) | −0.0132 (10) | 0.073 (3) | |
C7 | 0.2977 (4) | 0.50901 (18) | −0.0258 (9) | 0.066 (3) | |
N8 | 0.3849 (3) | 0.50308 (13) | −0.0256 (7) | 0.0546 (17) | |
O9 | 0.4288 (3) | 0.57960 (12) | −0.0236 (7) | 0.077 (2) | |
O10 | 0.0295 (3) | 0.24756 (13) | −0.0888 (6) | 0.0566 (15) | |
O11 | 0.1932 (3) | 0.21922 (11) | −0.1344 (6) | 0.0564 (15) | |
C12 | 0.2721 (4) | 0.20090 (15) | −0.1806 (8) | 0.060 (2) | |
H1o10 | 0.068 (3) | 0.1972 (14) | −0.072 (6) | 0.095 (6)* | |
H1o9 | 0.4996 (18) | 0.5681 (11) | 0.009 (4) | 0.089 (6)* | |
H1c2 | 0.308696 | 0.352677 | −0.095524 | 0.0514* | |
H1c5 | 0.019122 | 0.394748 | −0.012964 | 0.0781* | |
H1c6 | 0.131681 | 0.503911 | 0.01476 | 0.0877* | |
H1c7 | 0.273339 | 0.561685 | −0.018446 | 0.0788* | |
H1c12 | 0.260919 | 0.144443 | −0.229397 | 0.0715* | |
H2c12 | 0.21336 | 0.230625 | −0.40196 | 0.0715* | |
H3c12 | 0.395021 | 0.215306 | 0.058299 | 0.0715* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0671 (7) | 0.0416 (6) | 0.0789 (8) | −0.0020 (5) | 0.0674 (7) | −0.0013 (5) |
C2 | 0.0491 (6) | 0.0443 (6) | 0.0554 (6) | −0.0007 (5) | 0.0477 (6) | 0.0001 (5) |
C3 | 0.0436 (5) | 0.0401 (6) | 0.0448 (6) | 0.0008 (4) | 0.0394 (5) | 0.0005 (4) |
C4 | 0.0512 (6) | 0.0442 (6) | 0.0573 (6) | −0.0004 (5) | 0.0495 (6) | 0.0015 (5) |
C5 | 0.0946 (9) | 0.0491 (8) | 0.1181 (10) | 0.0000 (7) | 0.1013 (9) | −0.0015 (7) |
C6 | 0.1137 (11) | 0.0420 (7) | 0.1405 (12) | −0.0023 (7) | 0.1206 (11) | −0.0049 (7) |
C7 | 0.0974 (10) | 0.0398 (7) | 0.1183 (11) | −0.0035 (6) | 0.1012 (10) | −0.0041 (6) |
N8 | 0.0749 (6) | 0.0371 (5) | 0.0885 (7) | −0.0033 (5) | 0.0754 (6) | 0.0005 (5) |
O9 | 0.1197 (8) | 0.0369 (5) | 0.1524 (9) | −0.0022 (5) | 0.1284 (8) | 0.0019 (5) |
O10 | 0.0773 (6) | 0.0465 (5) | 0.0914 (6) | −0.0030 (4) | 0.0791 (6) | −0.0003 (4) |
O11 | 0.0851 (6) | 0.0402 (5) | 0.0947 (6) | −0.0042 (4) | 0.0847 (6) | −0.0054 (4) |
C12 | 0.0858 (9) | 0.0515 (8) | 0.0883 (9) | 0.0067 (6) | 0.0817 (9) | 0.0022 (6) |
C1—C2 | 1.392 (5) | C6—H1c6 | 0.960 |
C1—C6 | 1.376 (11) | C7—N8 | 1.256 (10) |
C1—C7 | 1.456 (7) | C7—H1c7 | 0.960 |
C2—C3 | 1.370 (6) | N8—O9 | 1.417 (5) |
C2—H1c2 | 0.960 | O9—H1o9 | 0.87 (3) |
C3—C4 | 1.390 (9) | O10—H1o10 | 0.96 (3) |
C3—O11 | 1.363 (4) | O11—C12 | 1.426 (8) |
C4—C5 | 1.357 (6) | C12—H1c12 | 0.960 |
C4—O10 | 1.361 (6) | C12—H2c12 | 0.960 |
C5—C6 | 1.388 (8) | C12—H3c12 | 0.960 |
C5—H1c5 | 0.960 | ||
C2—C1—C6 | 117.9 (4) | C1—C6—H1c6 | 119.4 |
C2—C1—C7 | 122.1 (6) | C5—C6—H1c6 | 119.4 |
C6—C1—C7 | 120.0 (4) | C1—C7—N8 | 123.1 (4) |
C1—C2—C3 | 121.0 (6) | C1—C7—H1c7 | 118.4 |
C1—C2—H1c2 | 119.5 | N8—C7—H1c7 | 118.4 |
C3—C2—H1c2 | 119.5 | C7—N8—O9 | 111.4 (4) |
C2—C3—C4 | 120.1 (4) | N8—O9—H1o9 | 103.1 (13) |
C2—C3—O11 | 125.9 (5) | C4—O10—H1o10 | 111 (3) |
C4—C3—O11 | 114.0 (4) | C3—O11—C12 | 118.0 (4) |
C3—C4—C5 | 119.7 (5) | O11—C12—H1c12 | 109.5 |
C3—C4—O10 | 121.0 (4) | O11—C12—H2c12 | 109.5 |
C5—C4—O10 | 119.3 (6) | O11—C12—H3c12 | 109.5 |
C4—C5—C6 | 120.1 (7) | H1c12—C12—H2c12 | 109.5 |
C4—C5—H1c5 | 120.0 | H1c12—C12—H3c12 | 109.5 |
C6—C5—H1c5 | 120.0) | H2c12—C12—H3c12 | 109.5 |
C1—C6—C5 | 121.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.96 (3) | 2.04 (3) | 2.822 (3) | 138 (4) |
O10—H1o10···O11 | 0.96 (3) | 2.18 (5) | 2.646 (7) | 108 (3) |
O9—H1o9···N8ii | 0.87 (3) | 1.97 (3) | 2.781 (7) | 155.1 (18) |
Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+1, −y+1, −z. |
C8O3NH9 | Z = 4 |
Mr = 167.2 | Dx = 1.385 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 3387 reflections |
a = 14.3673 (6) Å | θ = 2.5–30.1° |
b = 16.6534 (9) Å | µ = 0.11 mm−1 |
c = 6.3704 (3) Å | T = 300 K |
β = 148.261 (7)° | Block, yellow |
V = 801.81 (18) Å3 | 0.50 × 0.45 × 0.32 mm |
Bruker KAPPA APEX II CCD diffractometer | 8632 measured reflections |
Radiation source: X-ray tube | Rint = 0.022 |
Graphite monochromator | θmax = 30.1°, θmin = 2.5° |
ω– and φ–scans | h = −20→20 |
Absorption correction: multi-scan SADABS | k = −23→23 |
Tmin = 0.95, Tmax = 0.97 | l = −8→8 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2312 (5) | 0.4394 (3) | −0.0367 (14) | 0.057 (6) | |
C2 | 0.2508 (4) | 0.3625 (4) | −0.0762 (10) | 0.052 (5) | |
C3 | 0.1868 (6) | 0.2993 (4) | −0.0905 (17) | 0.046 (6) | |
C4 | 0.1000 (6) | 0.3104 (3) | −0.0668 (18) | 0.050 (6) | |
C5 | 0.0791 (4) | 0.3855 (4) | −0.0283 (10) | 0.072 (7) | |
C6 | 0.1449 (6) | 0.4499 (3) | −0.0135 (16) | 0.081 (8) | |
C7 | 0.2968 (5) | 0.5086 (3) | −0.0240 (12) | 0.077 (8) | |
N8 | 0.3846 (4) | 0.50265 (16) | −0.0250 (9) | 0.061 (5) | |
O9 | 0.4282 (3) | 0.57942 (13) | −0.0252 (8) | 0.086 (6) | |
O10 | 0.0301 (3) | 0.2483 (2) | −0.0880 (7) | 0.066 (5) | |
O11 | 0.1930 (2) | 0.21967 (17) | −0.1344 (6) | 0.062 (4) | |
C12 | 0.2724 (4) | 0.20109 (15) | −0.1794 (9) | 0.074 (9) | |
H1o10 | 0.064 (3) | 0.2022 (14) | −0.065 (6) | 0.100 (9)* | |
H1o9 | 0.500 (2) | 0.5665 (12) | 0.011 (5) | 0.126 (10)* | |
H1c2 | 0.310243 | 0.353976 | −0.093508 | 0.062* | |
H1c5 | 0.01941 | 0.393686 | −0.011637 | 0.0859* | |
H1c6 | 0.13028 | 0.503187 | 0.013576 | 0.0966* | |
H1c7 | 0.273129 | 0.56115 | −0.014254 | 0.092* | |
H1c12 | 0.261642 | 0.144578 | −0.22695 | 0.0887* | |
H2c12 | 0.213773 | 0.230576 | −0.401177 | 0.0887* | |
H3c12 | 0.395324 | 0.215634 | 0.059467 | 0.0887* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.075 (2) | 0.037 (3) | 0.088 (3) | −0.0056 (17) | 0.074 (2) | −0.0025 (19) |
C2 | 0.0568 (19) | 0.049 (3) | 0.069 (2) | −0.003 (2) | 0.0565 (19) | 0.001 (2) |
C3 | 0.0516 (19) | 0.048 (4) | 0.055 (2) | 0.006 (2) | 0.0476 (19) | −0.002 (2) |
C4 | 0.0586 (19) | 0.039 (3) | 0.066 (3) | −0.0062 (19) | 0.055 (2) | 0.001 (2) |
C5 | 0.103 (3) | 0.054 (3) | 0.130 (3) | −0.001 (2) | 0.111 (3) | −0.001 (2) |
C6 | 0.119 (3) | 0.051 (3) | 0.147 (3) | 0.000 (2) | 0.125 (3) | −0.003 (3) |
C7 | 0.110 (3) | 0.048 (3) | 0.133 (3) | 0.003 (2) | 0.113 (3) | −0.002 (3) |
N8 | 0.086 (2) | 0.0388 (18) | 0.100 (2) | −0.0071 (13) | 0.0853 (19) | 0.0001 (14) |
O9 | 0.130 (2) | 0.0440 (16) | 0.163 (2) | −0.0022 (13) | 0.137 (2) | 0.0033 (14) |
O10 | 0.0870 (17) | 0.0537 (17) | 0.1040 (18) | −0.0020 (15) | 0.0886 (17) | 0.0004 (16) |
O11 | 0.0920 (15) | 0.0471 (18) | 0.1034 (16) | −0.0046 (10) | 0.0921 (14) | −0.0073 (11) |
C12 | 0.105 (3) | 0.063 (3) | 0.109 (3) | 0.009 (2) | 0.100 (3) | −0.001 (2) |
C1—C2 | 1.380 (10) | C6—H1c6 | 0.960 |
C1—C6 | 1.379 (16) | C7—N8 | 1.271 (12) |
C1—C7 | 1.447 (10) | C7—H1c7 | 0.960 (6) |
C2—C3 | 1.349 (12) | N8—O9 | 1.424 (5) |
C2—H1c2 | 0.960 | O9—H1o9 | 0.87 (4) |
C3—C4 | 1.390 (19) | O10—H1o10 | 0.85 (3) |
C3—O11 | 1.373 (8) | O11—C12 | 1.427 (9) |
C4—C5 | 1.357 (11) | C12—H1c12 | 0.960 |
C4—O10 | 1.366 (10) | C12—H2c12 | 0.960 |
C5—C6 | 1.378 (11) | C12—H3c12 | 0.960 |
C5—H1c5 | 0.960 | ||
C2—C1—C6 | 118.6 (7) | C1—C6—H1c6 | 119.3 |
C2—C1—C7 | 121.6 (9) | C5—C6—H1c6 | 119.3 |
C6—C1—C7 | 119.7 (6) | C1—C7—N8 | 122.7 (6) |
C1—C2—C3 | 120.2 (9) | C1—C7—H1c7 | 118.6 |
C1—C2—H1c2 | 119.9 | N8—C7—H1c7 | 118.6 |
C3—C2—H1c2 | 119.9 | C7—N8—O9 | 111.7 (4) |
C2—C3—C4 | 120.8 (7) | N8—O9—H1o9 | 101.6 (15) |
C2—C3—O11 | 127.5 (11) | C4—O10—H1o10 | 113 (3) |
C4—C3—O11 | 111.7 (8) | C3—O11—C12 | 116.8 (6) |
C3—C4—C5 | 119.9 (8) | O11—C12—H1c12 | 109.5 |
C3—C4—O10 | 122.8 (6) | O11—C12—H2c12 | 109.5 |
C5—C4—O10 | 117.3 (10) | O11—C12—H3c12 | 109.5 |
C4—C5—C6 | 119.1 (9) | H1c12—C12—H2c12 | 109.5 |
C4—C5—H1c5 | 120.5 | H1c12—C12—H3c12 | 109.5 |
C6—C5—H1c5 | 120.5 | H2c12—C12—H3c12 | 109.5 |
C1—C6—C5 | 121.3 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1o10···O9i | 0.85 (3) | 2.10 (3) | 2.839 (4) | 144 (5) |
O10—H1o10···O11 | 0.85 (3) | 2.26 (5) | 2.640 (7) | 107 (3) |
O9—H1o9···N8ii | 0.87 (4) | 1.96 (4) | 2.782 (8) | 157 (2) |
Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+1, −y+1, −z. |
C8H9NO3 | V = 2322 (11) Å3 |
Mr = 167.2 | Z = 12 |
Triclinic, P1 | Dx = 1.435 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 42.550 (4) Å | Cell parameters from 4932 reflections |
b = 21.687 (2) Å | θ = 2.8–32.6° |
c = 19.9952 (19) Å | µ = 0.11 mm−1 |
α = 130.368 (12)° | T = 100 K |
β = 170.40 (4)° | Block, yellow |
γ = 48.973 (11)° | 0.53 × 0.34 × 0.25 mm |
Bruker KAPPA APEX II CCD diffractometer | Rint = 0 |
Radiation source: X-ray tube | θmax = 32.8°, θmin = 1.1° |
ω– and φ–scans | h = −64→33 |
Absorption correction: multi-scan SADABS | k = −32→26 |
Tmin = 0.94, Tmax = 0.97 | l = −11→30 |
16877 measured reflections |
x | y | z | Uiso*/Ueq | ||
O9a | 0.52963 (15) | 0.58633 (6) | 2.3117 (3) | 0.019 (16) | |
O10a | 0.53784 (14) | 0.24983 (6) | 2.3618 (3) | 0.017 (16) | |
O11a | 0.63299 (14) | 0.22148 (6) | 2.4136 (3) | 0.017 (15) | |
N8a | 0.55844 (16) | 0.51071 (6) | 2.3529 (4) | 0.016 (17) | |
C1a | 0.51269 (18) | 0.44727 (8) | 2.3174 (4) | 0.014 (17) | |
C2a | 0.57510 (19) | 0.36772 (8) | 2.3692 (4) | 0.015 (18) | |
C3a | 0.58339 (19) | 0.30153 (8) | 2.3832 (4) | 0.014 (18) | |
C4a | 0.53221 (18) | 0.31444 (8) | 2.3527 (4) | 0.014 (18) | |
C5a | 0.47172 (18) | 0.39277 (8) | 2.3037 (4) | 0.016 (18) | |
C6a | 0.46154 (18) | 0.45902 (8) | 2.2852 (4) | 0.016 (19) | |
C7a | 0.49920 (18) | 0.51786 (8) | 2.2941 (4) | 0.015 (18) | |
C12a | 0.6575 (2) | 0.20544 (8) | 2.3836 (4) | 0.02 (2) | |
O9b | 0.71661 (15) | 0.42492 (6) | 2.5133 (3) | 0.021 (17) | |
O10b | 0.74475 (14) | 0.75673 (6) | 2.5335 (3) | 0.017 (16) | |
O11b | 0.69339 (15) | 0.79076 (6) | 2.5784 (3) | 0.018 (16) | |
N8b | 0.69822 (17) | 0.50144 (7) | 2.4957 (4) | 0.017 (18) | |
C1b | 0.74674 (18) | 0.56430 (8) | 2.5361 (4) | 0.015 (19) | |
C2b | 0.71836 (18) | 0.64520 (8) | 2.5571 (4) | 0.014 (19) | |
C3b | 0.71767 (18) | 0.70953 (8) | 2.5564 (4) | 0.013 (17) | |
C4b | 0.74463 (18) | 0.69402 (8) | 2.5328 (4) | 0.015 (18) | |
C5b | 0.7729 (2) | 0.61455 (8) | 2.5133 (4) | 0.02 (2) | |
C6b | 0.7744 (2) | 0.54978 (8) | 2.5157 (4) | 0.02 (2) | |
C7b | 0.74831 (19) | 0.49390 (8) | 2.5341 (4) | 0.02 (2) | |
C12b | 0.6915 (2) | 0.81125 (8) | 2.6584 (5) | 0.02 (2) | |
O9c | 0.57188 (15) | 0.92000 (6) | 2.2802 (3) | 0.019 (17) | |
O10c | 0.38471 (15) | 1.25361 (6) | 2.3951 (3) | 0.018 (16) | |
O11c | 0.43295 (15) | 1.28630 (6) | 2.3904 (3) | 0.017 (16) | |
N8c | 0.54957 (16) | 0.99636 (6) | 2.3202 (4) | 0.016 (17) | |
C1c | 0.46158 (18) | 1.06061 (7) | 2.2859 (4) | 0.014 (18) | |
C2c | 0.46619 (18) | 1.14137 (8) | 2.3294 (4) | 0.014 (18) | |
C3c | 0.43741 (18) | 1.20534 (8) | 2.3587 (4) | 0.014 (17) | |
C4c | 0.40860 (18) | 1.19122 (8) | 2.3568 (4) | 0.014 (18) | |
C5c | 0.4006 (2) | 1.11229 (8) | 2.3064 (4) | 0.02 (2) | |
C6c | 0.42626 (19) | 1.04712 (8) | 2.2697 (4) | 0.017 (19) | |
C7c | 0.49569 (19) | 0.98979 (8) | 2.2632 (4) | 0.015 (18) | |
C12c | 0.4174 (2) | 1.30729 (8) | 2.3032 (4) | 0.02 (2) | |
O9d | 0.65701 (16) | 1.08083 (6) | 2.4942 (3) | 0.020 (18) | |
O10d | 0.95025 (15) | 0.74369 (6) | 2.6085 (3) | 0.018 (16) | |
O11d | 0.91121 (15) | 0.71417 (6) | 2.6359 (3) | 0.019 (16) | |
N8d | 0.69286 (17) | 1.00383 (7) | 2.4835 (4) | 0.015 (17) | |
C1d | 0.78829 (18) | 0.93952 (8) | 2.5340 (4) | 0.014 (19) | |
C2d | 0.81964 (19) | 0.85935 (8) | 2.5692 (4) | 0.015 (18) | |
C3d | 0.87298 (18) | 0.79429 (8) | 2.5930 (4) | 0.013 (17) | |
C4d | 0.89554 (18) | 0.80699 (8) | 2.5802 (4) | 0.013 (18) | |
C5d | 0.8618 (2) | 0.88571 (8) | 2.5393 (4) | 0.02 (2) | |
C6d | 0.8100 (2) | 0.95151 (8) | 2.5197 (4) | 0.02 (2) | |
C7d | 0.73741 (19) | 1.01080 (8) | 2.5205 (4) | 0.02 (2) | |
C12d | 0.8875 (2) | 0.69723 (8) | 2.6438 (4) | 0.02 (2) | |
O9e | 1.03894 (15) | 0.57440 (6) | 2.6805 (3) | 0.021 (17) | |
O10e | 0.89486 (15) | 0.24391 (6) | 2.4085 (3) | 0.019 (17) | |
O11e | 0.89783 (14) | 0.21803 (6) | 2.2645 (3) | 0.017 (15) | |
N8e | 1.00965 (17) | 0.49962 (7) | 2.5961 (4) | 0.017 (17) | |
C1e | 0.99030 (18) | 0.43340 (7) | 2.6150 (4) | 0.014 (17) | |
C2e | 0.95920 (19) | 0.35774 (8) | 2.4695 (4) | 0.014 (18) | |
C3e | 0.92830 (17) | 0.29405 (7) | 2.4019 (4) | 0.013 (17) | |
C4e | 0.92466 (18) | 0.30586 (8) | 2.4728 (4) | 0.014 (18) | |
C5e | 0.95608 (19) | 0.37998 (8) | 2.6171 (4) | 0.016 (19) | |
C6e | 0.98903 (18) | 0.44372 (8) | 2.6888 (4) | 0.016 (19) | |
C7e | 1.01986 (18) | 0.50249 (8) | 2.6833 (4) | 0.016 (19) | |
C12e | 0.9240 (2) | 0.20037 (8) | 2.2371 (4) | 0.02 (2) | |
O9f | 0.90440 (16) | 0.07523 (6) | 2.3074 (3) | 0.022 (18) | |
O10f | 1.25807 (15) | −0.25369 (6) | 2.5543 (3) | 0.019 (17) | |
O11f | 1.25361 (15) | −0.28187 (6) | 2.6561 (3) | 0.018 (15) | |
N8f | 0.98124 (17) | 0.00082 (7) | 2.3858 (4) | 0.017 (18) | |
C1f | 1.04094 (18) | −0.06408 (7) | 2.3589 (4) | 0.014 (18) | |
C2f | 1.11339 (18) | −0.14124 (8) | 2.4835 (4) | 0.014 (18) | |
C3f | 1.18310 (18) | −0.20423 (8) | 2.5432 (4) | 0.013 (17) | |
C4f | 1.18597 (18) | −0.19226 (8) | 2.4878 (4) | 0.013 (18) | |
C5f | 1.11343 (19) | −0.11673 (8) | 2.3625 (4) | 0.016 (19) | |
C6f | 1.04059 (18) | −0.05323 (8) | 2.2968 (4) | 0.016 (19) | |
C7f | 0.96856 (19) | 0.00489 (8) | 2.2984 (4) | 0.017 (19) | |
C12f | 1.2425 (2) | −0.29994 (8) | 2.6896 (4) | 0.02 (2) | |
H1c2a | 0.612184 | 0.359185 | 2.395133 | 0.0175* | |
H1c5a | 0.436685 | 0.401559 | 2.282474 | 0.019* | |
H1c6a | 0.418863 | 0.513195 | 2.249845 | 0.0195* | |
H1c7a | 0.444942 | 0.570623 | 2.233757 | 0.018* | |
H1c12a | 0.681933 | 0.147493 | 2.386988 | 0.0222* | |
H2c12a | 0.543937 | 0.227725 | 2.137633 | 0.0222* | |
H3c12a | 0.762959 | 0.230351 | 2.60624 | 0.0222* | |
H1c2b | 0.699502 | 0.65581 | 2.571849 | 0.0174* | |
H1c5b | 0.791618 | 0.603846 | 2.498055 | 0.0211* | |
H1c6b | 0.794716 | 0.494594 | 2.503273 | 0.0227* | |
H1c7b | 0.788225 | 0.44017 | 2.562487 | 0.0205* | |
H1c12b | 0.692666 | 0.868969 | 2.706314 | 0.0224* | |
H2c12b | 0.578752 | 0.796427 | 2.431835 | 0.0224* | |
H3c12b | 0.801821 | 0.782083 | 2.890733 | 0.0224* | |
H1c2c | 0.489214 | 1.151499 | 2.338524 | 0.0172* | |
H1c5c | 0.377124 | 1.102376 | 2.296631 | 0.0209* | |
H1c6c | 0.419591 | 0.992644 | 2.232985 | 0.02* | |
H1c7c | 0.477239 | 0.937004 | 2.204162 | 0.0185* | |
H1c12c | 0.385408 | 1.365438 | 2.272517 | 0.0215* | |
H2c12c | 0.536557 | 1.289809 | 2.519151 | 0.0215* | |
H3c12c | 0.319653 | 1.280748 | 2.059338 | 0.0215* | |
H1c2d | 0.803929 | 0.850027 | 2.57659 | 0.0175* | |
H1c5d | 0.874106 | 0.894925 | 2.524547 | 0.0212* | |
H1c6d | 0.788928 | 1.005966 | 2.495945 | 0.0224* | |
H1c7d | 0.737542 | 1.064449 | 2.540031 | 0.0203* | |
H1c12d | 0.901196 | 0.639171 | 2.638372 | 0.0237* | |
H2c12d | 0.982326 | 0.719679 | 2.884006 | 0.0237* | |
H3c12d | 0.763191 | 0.721453 | 2.414172 | 0.0237* | |
H1c2e | 0.959357 | 0.350171 | 2.416968 | 0.017* | |
H1c5e | 0.95526 | 0.387722 | 2.668437 | 0.0195* | |
H1c6e | 1.010995 | 0.495072 | 2.789698 | 0.0195* | |
H1c7e | 1.047946 | 0.551786 | 2.797628 | 0.0193* | |
H1c12e | 0.895235 | 0.146345 | 2.129903 | 0.0228* | |
H2c12e | 0.840578 | 0.239383 | 2.063929 | 0.0228* | |
H3c12e | 1.053581 | 0.203547 | 2.499147 | 0.0228* | |
H1c2f | 1.114075 | −0.149787 | 2.526388 | 0.0172* | |
H1c5f | 1.113337 | −0.108116 | 2.320917 | 0.0194* | |
H1c6f | 0.989379 | −0.001199 | 2.207363 | 0.0192* | |
H1c7f | 0.909703 | 0.054769 | 2.189692 | 0.0203* | |
H1c12f | 1.293622 | −0.356092 | 2.765134 | 0.0226* | |
H2c12f | 1.314418 | −0.265245 | 2.889948 | 0.0226* | |
H3c12f | 1.111946 | −0.290657 | 2.436356 | 0.0226* | |
H1o10a | 0.572 (3) | 0.2055 (6) | 2.379 (6) | 0.026 (5)* | |
H1o10d | 0.969 (2) | 0.6961 (5) | 2.633 (5) | 0.023 (5)* | |
H1o10e | 0.888 (3) | 0.2001 (7) | 2.340 (6) | 0.033 (5)* | |
H1o10c | 0.396 (3) | 1.3015 (5) | 2.437 (6) | 0.044 (6)* | |
H1o9e | 1.044 (3) | 0.5685 (4) | 2.643 (6) | 0.067 (8)* | |
H1o10f | 1.272 (3) | −0.3021 (5) | 2.567 (6) | 0.033 (5)* | |
H1o9f | 0.921 (3) | 0.0641 (12) | 2.376 (6) | 0.042 (6)* | |
H1o9d | 0.611 (2) | 1.0692 (13) | 2.429 (5) | 0.051 (7)* | |
H1o10b | 0.700 (3) | 0.8016 (6) | 2.493 (6) | 0.030 (5)* | |
H1o9a | 0.584 (2) | 0.5806 (3) | 2.384 (5) | 0.050 (6)* | |
H1o9c | 0.625 (2) | 0.9319 (12) | 2.363 (5) | 0.037 (5)* | |
H1o9b | 0.665 (2) | 0.4314 (3) | 2.449 (5) | 0.051 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O9a | 0.0298 (5) | 0.0120 (4) | 0.0301 (6) | −0.0001 (4) | 0.0296 (6) | 0.0023 (4) |
O10a | 0.0274 (5) | 0.0134 (4) | 0.0276 (6) | −0.0011 (4) | 0.0271 (5) | 0.0012 (4) |
O11a | 0.0274 (5) | 0.0122 (4) | 0.0277 (6) | 0.0005 (4) | 0.0273 (5) | 0.0021 (4) |
N8a | 0.0214 (6) | 0.0120 (5) | 0.0206 (6) | −0.0019 (4) | 0.0206 (6) | 0.0004 (4) |
C1a | 0.0145 (6) | 0.0153 (5) | 0.0140 (6) | −0.0020 (4) | 0.0139 (6) | 0.0005 (4) |
C2a | 0.0179 (6) | 0.0141 (5) | 0.0177 (7) | −0.0022 (4) | 0.0174 (6) | 0.0000 (5) |
C3a | 0.0163 (6) | 0.0128 (5) | 0.0159 (6) | −0.0022 (4) | 0.0158 (6) | −0.0001 (5) |
C4a | 0.0164 (6) | 0.0151 (5) | 0.0158 (7) | −0.0021 (4) | 0.0158 (6) | 0.0005 (5) |
C5a | 0.0198 (6) | 0.0162 (6) | 0.0206 (7) | −0.0010 (4) | 0.0199 (6) | 0.0012 (5) |
C6a | 0.0186 (6) | 0.0156 (6) | 0.0190 (7) | −0.0006 (4) | 0.0185 (6) | 0.0015 (5) |
C7a | 0.0175 (6) | 0.0133 (5) | 0.0169 (7) | −0.0023 (4) | 0.0169 (6) | −0.0003 (5) |
C12a | 0.0266 (7) | 0.0165 (6) | 0.0270 (7) | 0.0015 (5) | 0.0266 (7) | 0.0034 (5) |
O9b | 0.0341 (6) | 0.0126 (4) | 0.0350 (6) | −0.0015 (4) | 0.0342 (6) | 0.0010 (4) |
O10b | 0.0266 (5) | 0.0145 (4) | 0.0274 (6) | −0.0011 (4) | 0.0266 (5) | 0.0015 (4) |
O11b | 0.0310 (5) | 0.0127 (4) | 0.0301 (6) | −0.0038 (4) | 0.0303 (5) | −0.0020 (4) |
N8b | 0.0227 (6) | 0.0121 (5) | 0.0223 (6) | −0.0019 (4) | 0.0221 (6) | 0.0004 (4) |
C1b | 0.0165 (6) | 0.0146 (5) | 0.0167 (7) | −0.0021 (4) | 0.0162 (6) | 0.0002 (5) |
C2b | 0.0178 (6) | 0.0142 (5) | 0.0174 (7) | −0.0024 (4) | 0.0173 (6) | −0.0001 (5) |
C3b | 0.0145 (6) | 0.0115 (5) | 0.0147 (6) | −0.0010 (4) | 0.0142 (6) | 0.0008 (5) |
C4b | 0.0160 (6) | 0.0160 (6) | 0.0157 (7) | −0.0025 (4) | 0.0155 (6) | 0.0001 (5) |
C5b | 0.0239 (7) | 0.0178 (6) | 0.0238 (7) | −0.0031 (5) | 0.0235 (7) | −0.0005 (5) |
C6b | 0.0269 (7) | 0.0159 (6) | 0.0273 (8) | −0.0025 (5) | 0.0267 (7) | 0.0000 (5) |
C7b | 0.0209 (6) | 0.0148 (5) | 0.0206 (7) | −0.0029 (5) | 0.0203 (7) | −0.0004 (5) |
C12b | 0.0263 (7) | 0.0166 (6) | 0.0257 (7) | −0.0023 (5) | 0.0257 (7) | −0.0002 (5) |
O9c | 0.0322 (5) | 0.0114 (4) | 0.0322 (6) | −0.0026 (4) | 0.0320 (6) | −0.0017 (4) |
O10c | 0.0278 (5) | 0.0140 (4) | 0.0279 (6) | −0.0033 (4) | 0.0276 (5) | −0.0015 (4) |
O11c | 0.0283 (5) | 0.0126 (4) | 0.0275 (6) | −0.0032 (4) | 0.0276 (5) | −0.0012 (4) |
N8c | 0.0228 (6) | 0.0100 (4) | 0.0224 (6) | −0.0019 (4) | 0.0224 (6) | −0.0010 (4) |
C1c | 0.0162 (6) | 0.0134 (5) | 0.0163 (6) | −0.0023 (4) | 0.0160 (6) | −0.0007 (4) |
C2c | 0.0170 (6) | 0.0153 (5) | 0.0165 (6) | −0.0028 (4) | 0.0164 (6) | −0.0005 (5) |
C3c | 0.0148 (6) | 0.0142 (5) | 0.0146 (6) | −0.0023 (4) | 0.0144 (6) | 0.0000 (5) |
C4c | 0.0154 (6) | 0.0139 (5) | 0.0158 (6) | −0.0008 (4) | 0.0153 (6) | 0.0011 (5) |
C5c | 0.0233 (6) | 0.0171 (6) | 0.0234 (7) | −0.0033 (5) | 0.0230 (7) | −0.0010 (5) |
C6c | 0.0223 (6) | 0.0135 (5) | 0.0225 (7) | −0.0029 (4) | 0.0220 (6) | −0.0010 (5) |
C7c | 0.0183 (6) | 0.0131 (5) | 0.0176 (7) | −0.0026 (4) | 0.0176 (6) | −0.0010 (5) |
C12c | 0.0261 (7) | 0.0174 (6) | 0.0252 (7) | −0.0034 (5) | 0.0253 (7) | −0.0005 (5) |
O9d | 0.0356 (6) | 0.0099 (4) | 0.0370 (6) | −0.0005 (4) | 0.0361 (6) | 0.0003 (4) |
O10d | 0.0287 (5) | 0.0133 (4) | 0.0295 (6) | 0.0000 (4) | 0.0288 (6) | 0.0018 (4) |
O11d | 0.0317 (5) | 0.0128 (4) | 0.0322 (6) | −0.0013 (4) | 0.0316 (5) | 0.0008 (4) |
N8d | 0.0224 (6) | 0.0096 (4) | 0.0229 (6) | 0.0006 (4) | 0.0224 (6) | 0.0016 (4) |
C1d | 0.0184 (6) | 0.0123 (5) | 0.0187 (7) | −0.0006 (4) | 0.0183 (6) | 0.0011 (5) |
C2d | 0.0172 (6) | 0.0154 (6) | 0.0172 (7) | −0.0010 (5) | 0.0169 (6) | 0.0013 (5) |
C3d | 0.0149 (5) | 0.0137 (5) | 0.0143 (6) | −0.0020 (4) | 0.0143 (6) | 0.0003 (5) |
C4d | 0.0171 (6) | 0.0127 (5) | 0.0174 (6) | 0.0000 (4) | 0.0170 (6) | 0.0018 (5) |
C5d | 0.0267 (7) | 0.0158 (6) | 0.0275 (7) | −0.0005 (5) | 0.0268 (7) | 0.0018 (5) |
C6d | 0.0284 (7) | 0.0127 (5) | 0.0299 (8) | 0.0015 (5) | 0.0288 (7) | 0.0035 (5) |
C7d | 0.0241 (7) | 0.0126 (5) | 0.0251 (7) | 0.0005 (5) | 0.0243 (7) | 0.0024 (5) |
C12d | 0.0304 (7) | 0.0174 (6) | 0.0308 (8) | −0.0033 (5) | 0.0302 (7) | −0.0003 (5) |
O9e | 0.0352 (6) | 0.0133 (4) | 0.0347 (6) | −0.0061 (4) | 0.0345 (6) | −0.0036 (4) |
O10e | 0.0330 (5) | 0.0138 (4) | 0.0323 (6) | −0.0048 (4) | 0.0323 (6) | −0.0024 (4) |
O11e | 0.0272 (5) | 0.0143 (4) | 0.0257 (5) | −0.0060 (4) | 0.0262 (5) | −0.0042 (4) |
N8e | 0.0215 (5) | 0.0133 (5) | 0.0215 (6) | −0.0036 (4) | 0.0211 (6) | −0.0013 (4) |
C1e | 0.0138 (6) | 0.0149 (5) | 0.0136 (6) | −0.0015 (4) | 0.0134 (6) | 0.0008 (5) |
C2e | 0.0165 (6) | 0.0146 (5) | 0.0161 (6) | −0.0023 (4) | 0.0159 (6) | 0.0000 (5) |
C3e | 0.0141 (6) | 0.0120 (5) | 0.0139 (6) | −0.0015 (4) | 0.0137 (6) | 0.0003 (5) |
C4e | 0.0156 (6) | 0.0144 (5) | 0.0155 (6) | −0.0013 (4) | 0.0152 (6) | 0.0011 (5) |
C5e | 0.0203 (6) | 0.0173 (6) | 0.0199 (7) | −0.0019 (5) | 0.0198 (7) | 0.0006 (5) |
C6e | 0.0205 (6) | 0.0149 (5) | 0.0197 (7) | −0.0028 (4) | 0.0197 (6) | −0.0006 (5) |
C7e | 0.0199 (6) | 0.0142 (5) | 0.0194 (7) | −0.0030 (4) | 0.0193 (6) | −0.0008 (5) |
C12e | 0.0257 (7) | 0.0182 (6) | 0.0247 (7) | −0.0043 (5) | 0.0249 (7) | −0.0022 (5) |
O9f | 0.0371 (6) | 0.0126 (4) | 0.0391 (7) | 0.0037 (4) | 0.0378 (6) | 0.0049 (4) |
O10f | 0.0294 (5) | 0.0131 (4) | 0.0308 (6) | 0.0025 (4) | 0.0298 (6) | 0.0043 (4) |
O11f | 0.0262 (5) | 0.0135 (4) | 0.0271 (5) | 0.0025 (4) | 0.0263 (5) | 0.0048 (4) |
N8f | 0.0245 (6) | 0.0108 (4) | 0.0258 (6) | 0.0008 (4) | 0.0249 (6) | 0.0019 (4) |
C1f | 0.0172 (6) | 0.0125 (5) | 0.0173 (6) | −0.0013 (4) | 0.0170 (6) | 0.0003 (5) |
C2f | 0.0170 (6) | 0.0142 (5) | 0.0167 (7) | −0.0020 (4) | 0.0165 (6) | 0.0001 (5) |
C3f | 0.0146 (5) | 0.0133 (5) | 0.0145 (6) | −0.0006 (4) | 0.0142 (6) | 0.0017 (5) |
C4f | 0.0159 (6) | 0.0129 (5) | 0.0157 (6) | −0.0023 (4) | 0.0155 (6) | −0.0006 (5) |
C5f | 0.0226 (6) | 0.0145 (5) | 0.0224 (7) | −0.0012 (4) | 0.0222 (7) | 0.0011 (5) |
C6f | 0.0206 (6) | 0.0127 (5) | 0.0205 (7) | −0.0014 (4) | 0.0202 (6) | 0.0006 (5) |
C7f | 0.0221 (6) | 0.0134 (5) | 0.0232 (7) | 0.0006 (5) | 0.0223 (7) | 0.0024 (5) |
C12f | 0.0263 (7) | 0.0177 (6) | 0.0251 (7) | −0.0027 (5) | 0.0253 (7) | 0.0005 (5) |
O9a—H1o9a | 0.87 (12) | O9d—H1o9d | 0.87 (14) |
O10a—C4a | 1.362 (9) | O10d—C4d | 1.355 (9) |
O10a—H1o10a | 0.87 (9) | O10d—H1o10d | 0.87 (7) |
O11a—C3a | 1.365 (4) | O11d—C3d | 1.368 (4) |
O11a—C12a | 1.431 (15) | O11d—C12d | 1.430 (15) |
N8a—C7a | 1.282 (14) | N8d—C7d | 1.277 (15) |
C1a—C2a | 1.406 (6) | C1d—C2d | 1.410 (6) |
C1a—C6a | 1.391 (15) | C1d—C6d | 1.389 (16) |
C1a—C7a | 1.460 (10) | C1d—C7d | 1.465 (10) |
C2a—C3a | 1.387 (10) | C2d—C3d | 1.380 (10) |
C2a—H1c2a | 0.960 (11) | C2d—H1c2d | 0.960 (11) |
C3a—C4a | 1.413 (16) | C3d—C4d | 1.409 (16) |
C4a—C5a | 1.383 (6) | C4d—C5d | 1.385 (6) |
C5a—C6a | 1.395 (10) | C5d—C6d | 1.393 (11) |
C5a—H1c5a | 0.960 (11) | C5d—H1c5d | 0.960 (12) |
C6a—H1c6a | 0.960 (4) | C6d—H1c6d | 0.960 (5) |
C7a—H1c7a | 0.960 (4) | C7d—H1c7d | 0.960 (5) |
C12a—H1c12a | 0.960 (2) | C12d—H1c12d | 0.960 (2) |
C12a—H2c12a | 0.960 (10) | C12d—H2c12d | 0.960 (10) |
C12a—H3c12a | 0.960 (9) | C12d—H3c12d | 0.960 (10) |
O9b—H1o9b | 0.87 (13) | O9e—H1o9e | 0.87 (18) |
O10b—C4b | 1.355 (9) | O10e—C4e | 1.360 (9) |
O10b—H1o10b | 0.87 (8) | O10e—H1o10e | 0.87 (9) |
O11b—C3b | 1.367 (4) | O11e—C3e | 1.365 (4) |
O11b—C12b | 1.431 (15) | O11e—C12e | 1.433 (15) |
N8b—C7b | 1.280 (15) | N8e—C7e | 1.278 (15) |
C1b—C2b | 1.406 (5) | C1e—C2e | 1.407 (6) |
C1b—C6b | 1.393 (16) | C1e—C6e | 1.395 (15) |
C1b—C7b | 1.460 (10) | C1e—C7e | 1.459 (10) |
C2b—C3b | 1.385 (10) | C2e—C3e | 1.387 (10) |
C2b—H1c2b | 0.960 (11) | C2e—H1c2e | 0.960 (11) |
C3b—C4b | 1.416 (15) | C3e—C4e | 1.417 (15) |
C4b—C5b | 1.380 (6) | C4e—C5e | 1.380 (6) |
C5b—C6b | 1.395 (11) | C5e—C6e | 1.395 (10) |
C5b—H1c5b | 0.960 (12) | C5e—H1c5e | 0.960 (11) |
C6b—H1c6b | 0.960 (4) | C6e—H1c6e | 0.960 (4) |
C7b—H1c7b | 0.960 (5) | C7e—H1c7e | 0.960 (5) |
C12b—H1c12b | 0.9600 (18) | C12e—H1c12e | 0.960 (3) |
C12b—H2c12b | 0.960 (10) | C12e—H2c12e | 0.960 (8) |
C12b—H3c12b | 0.960 (10) | C12e—H3c12e | 0.960 (12) |
O9c—H1o9c | 0.87 (11) | O9f—H1o9f | 0.87 (16) |
O10c—C4c | 1.355 (9) | O10f—C4f | 1.356 (9) |
O10c—H1o10c | 0.87 (7) | O10f—H1o10f | 0.87 (7) |
O11c—C3c | 1.371 (4) | O11f—C3f | 1.367 (5) |
O11c—C12c | 1.427 (15) | O11f—C12f | 1.427 (15) |
N8c—C7c | 1.282 (15) | N8f—C7f | 1.277 (15) |
C1c—C2c | 1.415 (6) | C1f—C2f | 1.411 (6) |
C1c—C6c | 1.393 (16) | C1f—C6f | 1.390 (16) |
C1c—C7c | 1.463 (10) | C1f—C7f | 1.461 (10) |
C2c—C3c | 1.378 (10) | C2f—C3f | 1.377 (10) |
C2c—H1c2c | 0.960 (11) | C2f—H1c2f | 0.960 (11) |
C3c—C4c | 1.409 (15) | C3f—C4f | 1.411 (15) |
C4c—C5c | 1.384 (6) | C4f—C5f | 1.384 (7) |
C5c—C6c | 1.394 (11) | C5f—C6f | 1.392 (10) |
C5c—H1c5c | 0.960 (12) | C5f—H1c5f | 0.960 (12) |
C6c—H1c6c | 0.960 (4) | C6f—H1c6f | 0.960 (5) |
C7c—H1c7c | 0.960 (4) | C7f—H1c7f | 0.960 (5) |
C12c—H1c12c | 0.9600 (19) | C12f—H1c12f | 0.960 (3) |
C12c—H2c12c | 0.960 (10) | C12f—H2c12f | 0.960 (8) |
C12c—H3c12c | 0.960 (9) | C12f—H3c12f | 0.960 (12) |
C4a—O10a—H1o10a | 108 (9) | C4d—O10d—H1o10d | 114 (9) |
C3a—O11a—C12a | 115.9 (6) | C3d—O11d—C12d | 116.6 (6) |
C2a—C1a—C6a | 119.3 (7) | C2d—C1d—C6d | 119.1 (7) |
C2a—C1a—C7a | 121.5 (9) | C2d—C1d—C7d | 121.9 (10) |
C6a—C1a—C7a | 119.2 (4) | C6d—C1d—C7d | 118.9 (5) |
C1a—C2a—C3a | 120.3 (10) | C1d—C2d—C3d | 119.8 (10) |
C1a—C2a—H1c2a | 119.8 (7) | C1d—C2d—H1c2d | 120.1 (7) |
C3a—C2a—H1c2a | 119.8 (4) | C3d—C2d—H1c2d | 120.1 (5) |
O11a—C3a—C2a | 125.6 (10) | O11d—C3d—C2d | 125.3 (10) |
O11a—C3a—C4a | 114.7 (6) | O11d—C3d—C4d | 113.9 (6) |
C2a—C3a—C4a | 119.7 (5) | C2d—C3d—C4d | 120.7 (5) |
O10a—C4a—C3a | 120.2 (4) | O10d—C4d—C3d | 121.2 (4) |
O10a—C4a—C5a | 119.8 (9) | O10d—C4d—C5d | 119.5 (10) |
C3a—C4a—C5a | 119.9 (7) | C3d—C4d—C5d | 119.3 (7) |
C4a—C5a—C6a | 120.1 (10) | C4d—C5d—C6d | 120.0 (11) |
C4a—C5a—H1c5a | 119.9 (7) | C4d—C5d—H1c5d | 120.0 (7) |
C6a—C5a—H1c5a | 119.9 (4) | C6d—C5d—H1c5d | 120.0 (5) |
C1a—C6a—C5a | 120.6 (5) | C1d—C6d—C5d | 121.0 (5) |
C1a—C6a—H1c6a | 119.7 (7) | C1d—C6d—H1c6d | 119.5 (7) |
C5a—C6a—H1c6a | 119.7 (10) | C5d—C6d—H1c6d | 119.5 (11) |
N8a—C7a—C1a | 121.2 (4) | N8d—C7d—C1d | 122.1 (5) |
N8a—C7a—H1c7a | 119.4 (7) | N8d—C7d—H1c7d | 119.0 (7) |
C1a—C7a—H1c7a | 119.4 (10) | C1d—C7d—H1c7d | 119.0 (10) |
O11a—C12a—H1c12a | 109.5 (8) | O11d—C12d—H1c12d | 109.5 (8) |
O11a—C12a—H2c12a | 109.5 (6) | O11d—C12d—H2c12d | 109.5 (6) |
O11a—C12a—H3c12a | 109.5 (6) | O11d—C12d—H3c12d | 109.5 (7) |
H1c12a—C12a—H2c12a | 109.5 (6) | H1c12d—C12d—H2c12d | 109.5 (7) |
H1c12a—C12a—H3c12a | 109.5 (6) | H1c12d—C12d—H3c12d | 109.5 (6) |
H2c12a—C12a—H3c12a | 109.5 (9) | H2c12d—C12d—H3c12d | 109.5 (9) |
C4b—O10b—H1o10b | 108 (9) | C4e—O10e—H1o10e | 109 (9) |
C3b—O11b—C12b | 117.0 (6) | C3e—O11e—C12e | 116.2 (6) |
C2b—C1b—C6b | 119.5 (7) | C2e—C1e—C6e | 119.3 (7) |
C2b—C1b—C7b | 122.5 (9) | C2e—C1e—C7e | 122.1 (9) |
C6b—C1b—C7b | 118.0 (5) | C6e—C1e—C7e | 118.6 (5) |
C1b—C2b—C3b | 119.9 (10) | C1e—C2e—C3e | 120.2 (10) |
C1b—C2b—H1c2b | 120.1 (7) | C1e—C2e—H1c2e | 119.9 (7) |
C3b—C2b—H1c2b | 120.1 (4) | C3e—C2e—H1c2e | 119.9 (4) |
O11b—C3b—C2b | 126.2 (9) | O11e—C3e—C2e | 125.6 (9) |
O11b—C3b—C4b | 113.6 (7) | O11e—C3e—C4e | 114.6 (6) |
C2b—C3b—C4b | 120.1 (5) | C2e—C3e—C4e | 119.8 (5) |
O10b—C4b—C3b | 120.4 (4) | O10e—C4e—C3e | 120.4 (4) |
O10b—C4b—C5b | 119.7 (10) | O10e—C4e—C5e | 119.7 (10) |
C3b—C4b—C5b | 119.9 (7) | C3e—C4e—C5e | 119.9 (7) |
C4b—C5b—C6b | 119.9 (10) | C4e—C5e—C6e | 120.3 (10) |
C4b—C5b—H1c5b | 120.0 (8) | C4e—C5e—H1c5e | 119.9 (7) |
C6b—C5b—H1c5b | 120.0 (5) | C6e—C5e—H1c5e | 119.9 (5) |
C1b—C6b—C5b | 120.7 (5) | C1e—C6e—C5e | 120.5 (5) |
C1b—C6b—H1c6b | 119.6 (8) | C1e—C6e—H1c6e | 119.7 (7) |
C5b—C6b—H1c6b | 119.6 (11) | C5e—C6e—H1c6e | 119.8 (10) |
N8b—C7b—C1b | 122.2 (5) | N8e—C7e—C1e | 122.2 (5) |
N8b—C7b—H1c7b | 118.9 (7) | N8e—C7e—H1c7e | 118.9 (7) |
C1b—C7b—H1c7b | 118.9 (10) | C1e—C7e—H1c7e | 118.9 (10) |
O11b—C12b—H1c12b | 109.5 (9) | O11e—C12e—H1c12e | 109.5 (8) |
O11b—C12b—H2c12b | 109.5 (6) | O11e—C12e—H2c12e | 109.5 (6) |
O11b—C12b—H3c12b | 109.5 (6) | O11e—C12e—H3c12e | 109.5 (7) |
H1c12b—C12b—H2c12b | 109.5 (6) | H1c12e—C12e—H2c12e | 109.5 (7) |
H1c12b—C12b—H3c12b | 109.5 (5) | H1c12e—C12e—H3c12e | 109.5 (5) |
H2c12b—C12b—H3c12b | 109.5 (10) | H2c12e—C12e—H3c12e | 109.5 (9) |
C4c—O10c—H1o10c | 115 (10) | C4f—O10f—H1o10f | 115 (10) |
C3c—O11c—C12c | 116.9 (6) | C3f—O11f—C12f | 116.7 (6) |
C2c—C1c—C6c | 119.4 (7) | C2f—C1f—C6f | 119.1 (7) |
C2c—C1c—C7c | 122.3 (9) | C2f—C1f—C7f | 121.7 (10) |
C6c—C1c—C7c | 118.2 (5) | C6f—C1f—C7f | 119.2 (5) |
C1c—C2c—C3c | 119.6 (9) | C1f—C2f—C3f | 119.8 (10) |
C1c—C2c—H1c2c | 120.2 (7) | C1f—C2f—H1c2f | 120.1 (7) |
C3c—C2c—H1c2c | 120.2 (4) | C3f—C2f—H1c2f | 120.1 (5) |
O11c—C3c—C2c | 125.4 (9) | O11f—C3f—C2f | 125.5 (9) |
O11c—C3c—C4c | 113.7 (6) | O11f—C3f—C4f | 113.7 (6) |
C2c—C3c—C4c | 120.9 (5) | C2f—C3f—C4f | 120.8 (5) |
O10c—C4c—C3c | 121.2 (4) | O10f—C4f—C3f | 120.9 (4) |
O10c—C4c—C5c | 119.5 (10) | O10f—C4f—C5f | 119.8 (10) |
C3c—C4c—C5c | 119.3 (7) | C3f—C4f—C5f | 119.3 (7) |
C4c—C5c—C6c | 120.4 (10) | C4f—C5f—C6f | 120.1 (10) |
C4c—C5c—H1c5c | 119.8 (7) | C4f—C5f—H1c5f | 120.0 (7) |
C6c—C5c—H1c5c | 119.8 (5) | C6f—C5f—H1c5f | 120.0 (5) |
C1c—C6c—C5c | 120.4 (5) | C1f—C6f—C5f | 121.0 (5) |
C1c—C6c—H1c6c | 119.8 (7) | C1f—C6f—H1c6f | 119.5 (7) |
C5c—C6c—H1c6c | 119.8 (11) | C5f—C6f—H1c6f | 119.5 (11) |
N8c—C7c—C1c | 121.7 (5) | N8f—C7f—C1f | 122.0 (5) |
N8c—C7c—H1c7c | 119.1 (7) | N8f—C7f—H1c7f | 119.0 (7) |
C1c—C7c—H1c7c | 119.1 (10) | C1f—C7f—H1c7f | 119.0 (10) |
O11c—C12c—H1c12c | 109.5 (8) | O11f—C12f—H1c12f | 109.5 (8) |
O11c—C12c—H2c12c | 109.5 (5) | O11f—C12f—H2c12f | 109.5 (6) |
O11c—C12c—H3c12c | 109.5 (6) | O11f—C12f—H3c12f | 109.5 (7) |
H1c12c—C12c—H2c12c | 109.5 (6) | H1c12f—C12f—H2c12f | 109.5 (7) |
H1c12c—C12c—H3c12c | 109.5 (5) | H1c12f—C12f—H3c12f | 109.5 (6) |
H2c12c—C12c—H3c12c | 109.5 (10) | H2c12f—C12f—H3c12f | 109.5 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10a—H1o10a···O11a | 0.87 (9) | 2.17 (16) | 2.670 (12) | 116 (8) |
O10a—H1o10a···O9di | 0.87 (9) | 2.12 (4) | 2.802 (3) | 135 (13) |
O10d—H1o10d···O11d | 0.87 (7) | 2.26 (15) | 2.668 (13) | 108 (8) |
O10d—H1o10d···O9e | 0.87 (7) | 2.02 (2) | 2.782 (2) | 145 (13) |
O10e—H1o10e···O11e | 0.87 (9) | 2.19 (17) | 2.675 (12) | 114 (9) |
O10e—H1o10e···O9f | 0.87 (9) | 2.09 (4) | 2.7791 (19) | 135 (13) |
O10c—H1o10c···O9a | 0.87 (7) | 2.03 (3) | 2.796 (4) | 147 (14) |
O10c—H1o10c···O11c | 0.87 (7) | 2.28 (17) | 2.665 (13) | 107 (10) |
O9e—H1o9e···N8e | 0.87 (18) | 2.01 (14) | 2.783 (12) | 147 (5) |
O10f—H1o10f···O9b | 0.87 (7) | 2.05 (3) | 2.8097 (18) | 145 (14) |
O10f—H1o10f···O11f | 0.87 (7) | 2.28 (17) | 2.660 (13) | 106 (9) |
O9f—H1o9f···N8f | 0.87 (16) | 1.96 (13) | 2.781 (13) | 156 (6) |
O9d—H1o9d···N8c | 0.87 (14) | 1.97 (12) | 2.780 (12) | 155 (4) |
O10b—H1o10b···O11b | 0.87 (8) | 2.17 (16) | 2.650 (12) | 114 (9) |
O10b—H1o10b···O9c | 0.87 (8) | 2.10 (4) | 2.805 (6) | 137 (13) |
O9a—H1o9a···N8b | 0.87 (12) | 2.02 (10) | 2.789 (12) | 146 (3) |
O9c—H1o9c···N8d | 0.87 (11) | 1.97 (10) | 2.789 (12) | 156 (3) |
O9b—H1o9b···N8a | 0.87 (13) | 2.02 (11) | 2.787 (12) | 147 (3) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors thank Werner Artner for performing the LT powder diffraction experiments. The critical remarks of an anonymous referee helped in distinctly improving the quality of the manuscript.
References
Bruker, (2017). APEXII, RLATT, SAINT-Plus, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dornberger-Schiff, K. & Grell-Niemann, H. (1961). Acta Cryst. 14, 167–177. CrossRef IUCr Journals Web of Science Google Scholar
Ehresmann, C. (1957). Jahresber. DMV, 60, 49–77. Google Scholar
Fichtner, K. (1979). Krist. Techn. 14, 1073–1078. CrossRef CAS Google Scholar
Gannett, P. M., Nagel, D. L., Reilly, P. J., Lawson, T., Sharpe, J. & Toth, B. (1988). J. Org. Chem. 53, 1064–1071. CrossRef CAS Google Scholar
Hermann, C. (1929). Z. Kristallogr. 69, 533–555. Google Scholar
Husák, M. & Kratochvíl, B. (2003). J. Appl. Cryst. 36, 1104. CrossRef IUCr Journals Google Scholar
Ito, T. & Sadanaga, R. (1976). Proc. Japan Acad. 52, 119–121. CrossRef Google Scholar
Jerslev, B., Larsen, S., Ratajczak, E., Sillesen, A. & Pellicer, J. (1991). Acta Chem. Scand. 45, 285–291. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Müller, U. (2013). Symmetry Relationships Between Crystal Structures. IUCr Texts on Crystallography, Vol. 18. Oxford University Press. Google Scholar
Nespolo, M. & Aroyo, M. I. (2016). Acta Cryst. A72, 523–538. Web of Science CrossRef IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simmons, H. (2011). An Introduction to Category Theory. Cambridge University Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.