research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structure variations within RSi2 and R2TSi3 silicides. Part I. Structure overview

CROSSMARK_Color_square_no_text.svg

aInstitute for Experimental Physics, Technical University Bergakademie Freiberg, 09596 Freiberg, Germany, bInstitute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany, cInstitute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany, and dSamara Center for Theoretical Materials Science, Samara National Research University, 443086 Samara, Russia
*Correspondence e-mail: Melanie.Nentwich@physik.tu-freiberg.de

Edited by J. Lipkowski, Polish Academy of Sciences, Poland (Received 19 December 2019; accepted 26 January 2020; online 12 March 2020)

Here, structural parameters of various structure reports on RSi2 and R2TSi3 compounds [where R is an alkaline earth metal, a rare earth metal (i.e. an element of the Sc group or a lathanide), or an actinide and T is a transition metal] are summarized. The parameters comprising composition, lattice parameters a and c, ratio c/a, formula unit per unit cell and structure type are tabulated. The relationships between the underlying structure types are presented within a group–subgroup scheme (Bärnighausen diagram). Additionally, unexpectedly missing compounds within the R2TSi3 compounds were examined with density functional theory and compounds that are promising candidates for synthesis are listed. Furthermore, a correlation was detected between the orthorhombic AlB2-like lattices of, for example, Ca2AgSi3 and the divalence of R and the monovalence of T. Finally, a potential tetragonal structure with ordered Si/T sites is proposed.

1. Introduction

The rare earth disilicides RSi2 have been the subject of numerous studies in the past few decades mainly due to their exciting magnetic properties, such as magnetic ordering phenomena (Wang et al., 2019[Wang, L. R., Tran, B., He, M. Q., Meingast, C., Abdel-Hafiez, M., Cao, C. D., Bitterlich, H., Löser, W. & Klingeler, R. (2019). J. Phys. Soc. Jpn, 88, 094709.]; Pan et al., 2013[Pan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. & Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.]; Kotsanidis et al., 1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.]; Li et al., 1998a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]; Bazela et al., 2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]; Inosov et al., 2009[Inosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. & Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.]), especially ferromagnetic ordering (Majumdar et al., 1998[Majumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409-410.], 1999b[Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.]; Li et al., 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.],b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]; Frontzek et al., 2004[Frontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. & Loewenhaupt, M. (2004). Physica B, 350, E187-E189.]), their spin-glass-like behavior (Li et al., 1998a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.], 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2002b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.]; Kimura et al., 1999[Kimura, A., Li, D. X. & Shiokawa, Y. (1999). Solid State Commun. 113, 131-134.]; Szytuła et al., 1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.], 2000[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (2000). Acta Phys. Pol. A, 97, 823-826.]; Paulose et al., 2003[Paulose, P. L., Sampathkumaran, E. V., Bitterlich, H., Behr, G. & Löser, W. (2003). Phys. Rev. B, 67, 212401.]; Lu et al., 2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.]) and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions (Li et al., 2002b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.]; Inosov et al., 2009[Inosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. & Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.]; Tang et al., 2010a[Tang, F., Link, P., Frontzek, M. D., Mignot, J.-M., Hoffmann, J.-U., Löser, W. & Loewenhaupt, M. (2010a). J. Phys. Conf. Ser. 251, 012017.],b[Tang, F., Link, P., Frontzek, M. D., Schneidewind, A., Löser, W. & Loewenhaupt, M. (2010b). J. Phys. Conf. Ser. 251, 012004.]; Lu et al., 2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.]), which have been studied since the early 1980s. In the middle of the 20th century, ternary compounds of composition U2TSi3 (with a transition metal T substituting one in four Si atoms) were a central research subject due to the emerging use of U-containing compounds in the military and the energy sector. Some of the formed structures are considered as prototypes for further R2TSi3 compounds.

As it has been widely discussed in the literature (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]; Pan et al., 2013[Pan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. & Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.]; Peter & Kanatzidis, 2012[Peter, S. C. & Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287-293.]), the RSi2 and R2TSi3 compounds crystallize with the hexagonal AlB2 and the tetragonal ThSi2 type and derivative structure types (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Some of the disilicides are polymorphic (Perri et al., 1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]; Brown & Norreys, 1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.]; Mayer et al., 1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]), meaning that they crystallize in two or more different phases (International Union for Crystallography, 2017[International Union for Crystallography (2017). Polymorphism. Online Dictionary of Crystallography.]). This reflects in the now obsolete structure-type names α-USi2 and α-ThSi2 for tetragonal ThSi2 as well as β-USi2 and β-ThSi2 for hexagonal AlB2 (Evers et al., 1980[Evers, J., Oehlinger, G. & Weiss, A. (1980). J. Less-Common Met. 69, 399-402.]; Yashima et al., 1982a[Yashima, H., Mori, H., Satoh, T. & Kohn, K. (1982a). Solid State Commun. 43, 193-197.],b[Yashima, H., Sato, N., Mori, H. & Satoh, T. (1982b). Solid State Commun. 43, 595-599.],c[Yashima, H., Satoh, T., Mori, H., Watanabe, D. & Ohtsuka, T. (1982c). Solid State Commun. 41, 1-4.]; Yashima & Satoh, 1982[Yashima, H. & Satoh, T. (1982). Solid State Commun. 41, 723-727.]; Lejay et al., 1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]; Evers et al., 1983[Evers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19-L23.]; Weigel et al., 1984[Weigel, F., Wittmann, F. D., Schuster, W. & Marquart, R. (1984). J. Less-Common Met. 102, 227-238.]; Sato et al., 1984[Sato, N., Mori, H., Yashima, H., Satoh, T. & Takei, H. (1984). Solid State Commun. 51, 139-142.]; Zhong et al., 1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.]; Chevalier et al., 1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.]; Dhar et al., 1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.]).

The relationship between the large variety of the derivatives from AlB2 and ThSi2 aristotypes can be nicely explained within the group–subgroup scheme, also known as Bärnig­hausen formalism (Bärnighausen, 1980[Bärnighausen, H. (1980). Commun. Math. Chem. 9, 139-175.]). The AlB2 structure is one of the simplest inorganic structure types. It has hexagonal space group P6/mmm (No. 191) and its unit cell incorporates only the two Wyckoff sites 1a and 2d (Hofmann & Jäniche, 1935[Hofmann, W. & Jäniche, W. (1935). Naturwissenschaften, 23, 851.]) occupied by one R atom on the Al site and two Si atoms on the B site, forming a two-dimensional Si network, similar to graphite. The unit cell of the ThSi2 structure also has only two occupied Wyckoff positions (4a and 8e), but the Si sublattice forms a more complex 3D network (Brauer & Mittius, 1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]).

Nowadays, 46 structure types derived from AlB2 (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]) and four from ThSi2 are known. They include binary and ternary intermetallic compounds with compositions RX2, RT2, RTX or R2TX3, where X is an element of the third or fourth group.

In this work, we systematize the occurrence of RSi2 and R2TSi3 compounds, where R = alkaline earth metal, lanthanide, actinide or member of the Sc group and T is a transition metal. We present 12 different structure types of these compounds derived from the AlB2 type. Six of these structure types have not been considered by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Additionally, we present three further structure types based on the tetragonal ThSi2 type. One of these types is purely hypothetical and considers the possibility of ordered Si/T positions in ThSi2-like structures. Furthermore, we order all structure reports for RSi2 and R2TSi3 compounds according to their R and T elements within an RT grid. After analyzing all element combinations, we choose nine promising compounds not found in the literature and perform DFT calculations to evaluate the probability of a successful synthesis. We discuss peculiarities of the distribution of structure types among the RSi2 and R2TSi3 compounds, based on a mapping of symmetries on the RT grid with corresponding symbols.

2. Methods

To gain a comprehensive overview of RSi2 and R2TSi3 compounds, we performed an extensive literature search by scanning the ICSD, SciFinder and Reaxys databases for all possible element combinations for T within the Cr to Zn groups and R within the Sc group, the alkaline earth metal, the lanthanides and the actinides. Only experiments at ambient conditions were considered. Additionally, we did not consider data sets if they were too incomplete, i.e. missing lattice parameters or an insufficient description of the symmetry. Additionally, we did not take incommensurately modulated structures into account, because these modulations mainly arise for nonstoichiometric disilicides within this family of compounds and because the descriptions do not conform with those of conventional symmetry. Please refer to Leisegang (2010[Leisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.]), Kubata et al. (2005[Kubata, C., Krumeich, F., Wörle, M. & Nesper, R. (2005). Z. Anorg. Allg. Chem. 631, 546-555.]) and Dshemuchadse (2008[Dshemuchadse, J. (2008). Diplomarbeit, Technische Universität Dresden, Germany.]) for further information. However, commensurable modulations are interpreted as superstructures.

Table 1[link] contains the tabulated data of the composition of the compounds as well as their structure parameters, i.e. lattice parameters a and c, ratios c/a, formula units per unit cell, and structure type. These data were used without further refinement. The compounds, discussed within this article, are more than solid solutions as most of them exhibit ordered structures and, therefore, have distinct structure types compared to similar stoichiometries. Within this article, only the formula units and the deviation of the compounds within the range of R and T elements is of interest. Part II (Nentwich et al., 2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]) will discuss and compare other parameters.

Table 1
Alphabetically sorted list of RSi2 and R2TSi3 compounds and their crystal data

R is an element of the alkaline earth metals, the scandium group, or the lanthanide or actinide series. T is a transition metal, Al or Si; thus a disilicide. The supercell can be identified by the formula units per unit cell. Lines written in blue indicate data sets not used for Fig. 9[link].

R T a (Å) b (Å) c (Å) c/a Formula units Structure type Thermal treatment Reference ICSD number
Am Si 4.0190   13.6880 3.4058 4 ThSi2 Weigel et al. (1977[Weigel, F., Wittmann, F. D. & Marquart, R. (1977). J. Less-Common Met. 56, 47-53.])  
    4.0150   13.7330 3.4204 4 ThSi2 Weigel et al. (1984[Weigel, F., Wittmann, F. D., Schuster, W. & Marquart, R. (1984). J. Less-Common Met. 102, 227-238.]) 43816
Ba Ag 8.6130 14.9270 19.6390 2.2802 16 Ba4Li2Si6 550°C, 1.5 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410520
Ca Ag 8.3150 8.6460 14.3910 1.7307 8 Ca2AgSi3 550°C, 1.5 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410522
  Ni 3.9880   4.3460 1.0898 1 AlB2 Bodak & Gladyshevskii (1968[Bodak, O. I. & Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.]) 20300
  Si 4.2830   13.5200 3.1567 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1453
    4.2830   13.5200 3.1567 4 ThSi2 Evers et al. (1978b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.])  
    4.2832   13.5420 3.1617 4 ThSi2 McWhan et al. (1967[McWhan, D. B., Compton, V. B., Silverman, M. S. & Soulen, J. R. (1967). J. Less-Common Met. 12, 75-76.]) 87392
    4.2830   13.5300 3.1590 4 ThSi2 Nakano & Yamanaka (1994[Nakano, H. & Yamanaka, S. (1994). J. Solid State Chem. 108, 260-266.])  
Ce Au 4.2220   14.3750 3.4048 4 t 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.2840   8.7010 1.0503 8 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.3060   8.6870 1.0459 8 Er2RhSi3 (190/194) Floating zone Majumdar et al. (2000[Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.])  
  Co 4.0440   4.1940 1.0371 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) 52846
    8.1040   4.1970 0.5179 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]) 83895
    8.1100   4.2200 0.5203 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Majumdar et al. (1999a[Majumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.])  
    8.1130   4.2190 0.5200 4 Ce2CoSi3/U2RuSi3 Floating zone Majumdar et al. (2000[Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.])  
    8.0890   8.4020 1.0387 8 Er2RhSi3 (190/194) 800°C, 5 days Patil et al. (2008[Patil, S., Iyer, K. K., Maiti, K. & Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.])  
  Cu 4.0600   4.2800 1.0542 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0770   4.3140 1.0581 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20303
    4.0590   4.2940 1.0579 1 AlB2 Hwang et al. (1996[Hwang, J. S., Lin, K. J. & Tien, C. (1996). Solid State Commun. 100, 169-172.])  
    4.0580   4.2960 1.0586 1 AlB2 850°C, 7 days Lu et al. (2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.])  
    8.0920   4.2060 0.5198 4 Ce2CoSi3/U2RuSi3 850°C, 7 days Lu et al. (2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.])  
    4.1360   4.2370 1.0244 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0650   4.3020 1.0583 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0640   4.3040 1.0591 1 AlB2 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
    8.1280   8.6080 1.0591 8 Er2RhSi3 (190/194) 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
  Fe 4.0680   4.1400 1.0177 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20304
    4.0620   4.2120 1.0369 1 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
  Ir 8.2120   4.2374 0.5160 4 Ce2CoSi3/U2RuSi3 Szlawska & Kaczorowski (2011[Szlawska, M. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.])  
  Ni 4.0390   4.2870 1.0614 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) 621652
    4.0480   4.2910 1.0600 1 AlB2 Dhar et al. (1994[Dhar, S. K., Balasubramanium, R., Pattalwar, S. M. & Vijayaraghavan, R. (1994). J. Alloys Compd. 210, 339-342.]) 658279
    4.0430   4.3020 1.0641 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20302
    4.0406   4.2801 1.0593 1 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    4.0610   4.1490 1.0217 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0710   4.2020 1.0322 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0485   4.2887 1.0593 1 AlB2 800°C, 7 days Rojas et al. 2010[Rojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. & Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192-3195.])  
    4.0450   4.2830 1.0588 1 AlB2 Szlawska & Kaczorowski (2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.]) 187100
  Pd 8.2631   17.1320 2.0733 16 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.2330   8.5650 1.0403 8 Er2RhSi3 (190/194) 750°C, 7 days Mallik & Sampathkumaran (1996[Mallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.])  
    4.1215   4.2723 1.0366 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.2500   4.3320 0.5251 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.2100   8.4100 1.0244 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 621958
    8.2310   8.4391 1.0253 8 Er2RhSi3 Kase et al. (2009[Kase, N., Muranaka, T. & Akimitsu, J. (2009). J. Magn. Magn. Mater. 321, 3380-3383.])  
    8.3270   8.5160 1.0227 8 Er2RhSi3 ([P\overline{6}2c]) 730°C, 4 days Leciejewicz et al. (1995[Leciejewicz, J., Stüsser, N., Szytuła, A. & Zygmunt, A. (1995). J. Magn. Magn. Mater. 147, 45-48.])  
    8.2370   8.4450 1.0253 8 Er2RhSi3 (190/194) 800°C, 5 days Patil et al. (2008[Patil, S., Iyer, K. K., Maiti, K. & Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.])  
    8.2300   8.4400 1.0255 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
    8.2240   4.2261 0.5139 4 Ce2CoSi3/U2RuSi3 Szlawska et al. (2009[Szlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. & Stępień-Damm, J. (2009). Phys. Rev. B, 79, 134435.]) 164827
    8.2620   8.4390 1.0214 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 106425
  Si 4.1900   13.9300 3.3246 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    4.2700   13.8800 3.2506 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.1415   13.7816 3.3277 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 622204
    4.1560   13.8400 3.3301 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25664
    4.1760   13.8480 3.3161 4 ThSi2-like 1100°C, 14 days Dhar et al. (1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.])  
    4.1910   13.8890 3.3140 4 ThSi2-defect 1100°C, 14 days Dhar et al. (1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.])  
    4.1940   13.9300 3.3214 4 ThSi2 Dijkman et al. (1982[Dijkman, W. H., Moleman, A. C., Kesseler, E., de Boer, F. R. & de Chatel, P. F. (1982). Valence Instabilities. Proceedings of the International Conference held 13-16 April 1982 in Zürich, Switzerland, edited by P. Wachter and H. Boppart, p. 515. North-Holland Publishing Company.]) 622206
    4.1900   13.9300 3.3246 4 ThSi2-defect or Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.])  
    4.1900   13.8800 3.3126 4 ThSi2 Lahiouel et al. (1986[Lahiouel, R., Galéra, R. M., Pierre, J. & Siaud, E. (1986). Solid State Commun. 58, 815-817.]) 622197
    4.2700   13.8800 3.2506 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.]) 622190
    4.1900   13.9400 3.3270 4 ThSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 622153
    4.1800   13.8900 3.3230 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.1700   13.8200 3.3141 4 ThSi2-defect 950°C, 7 days Murashita et al. (1991[Murashita, Y., Sakurai, J. & Satoh, T. (1991). Solid State Commun. 77, 789-792.])  
    4.1900   13.9200 3.3222 4 ThSi2 950°C, 7 days Murashita et al. (1991[Murashita, Y., Sakurai, J. & Satoh, T. (1991). Solid State Commun. 77, 789-792.])  
    4.2700   13.8800 3.2506 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
    4.1900   13.9200 3.3222 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.1500   13.8700 3.3422 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
    4.1920   13.9030 3.3166 4 ThSi2 Ruggiero & Olcese (1964[Ruggiero, A. F. & Olcese, G. L. (1964). Atti Accad. Naz Lincei Cl. Sci. Fis. Mat. Nat. Rend. 37, 169-174.]) 622138
    4.1780   13.8500 3.3150 4 ThSi2-defect 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.])  
    4.1880 4.1180 13.8800 3.3142 4 Nd□ xSi2−x 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.]) 622192
    4.1910   13.9490 3.3283 4 ThSi2 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.]) 622192
    4.1890   13.8920 3.3163 4 ThSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.]) 622175
    4.1840   13.8560 3.3117 4 ThSi2 Yashima et al. (1982c[Yashima, H., Satoh, T., Mori, H., Watanabe, D. & Ohtsuka, T. (1982c). Solid State Commun. 41, 1-4.])  
    4.1600   13.9000 3.3413 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31642
Cm Si 3.9630   13.7200 3.4620 4 ThSi2 Weigel & Marquart (1983[Weigel, F. & Marquart, R. (1983). J. Less-Common Met. 90, 283-290.])  
Dy Ni 3.9700   4.0130 1.0108 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 53369
  Pd 8.1110   8.0550 0.9931 8 h Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0620   4.0310 0.9924 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.0620   4.0310 0.9924 1 AlB2 750°C, 10 days Nimori & Li (2006[Nimori, S. & Li, D. X. (2006). J. Phys. Soc. Jpn, 75, 195-197.])  
    4.0612   4.0334 0.9932 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.1000   8.2000 1.0123 8 Er2RhSi3 ([P\overline{6}2c]) 900°C, 23 days Li et al. (2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.])  
  Rh 8.0970   7.8230 0.9662 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 630163
  Si 4.0400 3.9500 13.3300 3.2995 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    3.8300   4.1100 1.0731 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20248
    3.8310   4.1210 1.0757 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 630294
    3.8285 6.6312 4.1230 1.0769 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.6338   4.1200 0.6211 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8310 6.6355 4.1210 1.0757 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 53382
    3.8300   4.1200 1.0757 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 103369
    4.0450 3.9350 13.3190 3.2927 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 630287
    4.0300 3.9300 13.3200 3.3052 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.0300 3.9310 13.3200 3.3052 4 GdSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    3.9739   13.6760 3.4415 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 630314
    4.0400 3.9500 13.3400 3.3020 4 GdSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 630297
    4.0300   13.3800 3.3201 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150663
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.]) 630297
    4.0380 3.9370 13.3100 3.2962 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
Er Cu 3.9670   13.7300 3.4611 4 ThSi2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.]) 627257
  Ni 3.9600   3.9860 1.0066 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 53404
  Pd 4.0640   3.9910 0.9820 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.0920   7.9250 0.9794 8 h Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0427   3.9794 0.9843 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Rh 8.0780   8.7480 1.0829 8 Er2RhSi3 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97376
    8.0780   7.7480 0.9591 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97375
    8.0360   7.7120 0.9597 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 53413
    8.1130   7.7556 0.9559 8 Er2RhSi3 800°C, 14 days Gladyshevskii et al. (1992[Gladyshevskii, R. E., Cenzual, K. & Parthé, E. (1992). J. Alloys Compd. 189, 221-228.]) 300248
  Si 3.7930 6.5697 4.0820 1.0762 2 Er3□Si5 Auffret et al. (1990[Auffret, S., Pierre, J., Lambert, B., Soubeyroux, L. J. & Chroboczek, J. A. (1990). Physica B, 162, 271-280.])  
    3.7990   4.0890 1.0763 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20250
    3.7980   4.0880 1.0764 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 631146
    3.7990 6.5801 4.0895 1.0765 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.5818   4.0900 0.6214 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7990 6.5801 4.0900 1.0766 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 631159
    3.7800   4.0900 1.0820 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 631151
    3.7800   4.0800 1.0794 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 631140
    3.7850   4.0800 1.0779 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 631144
    3.8000   4.0900 1.0763 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 631153
    3.9370   13.6160 3.4585 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 631164
    3.7920   4.0830 1.0767 1 AlB2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 631150
    3.8000   4.0900 1.0763 1 AlB2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 631155
    6.5783   8.1760 1.2429 6 Tb3□Si5 700°C, 0 days Tsai et al. (2005[Tsai, W. C., Hsu, H. C., Hsu, H. F. & Chen, L. J. (2005). Appl. Surf. Sci. 244, 115-119.])  
Eu Ag 8.4200 14.8580 17.8640 2.1216 16 Ba4Li2Si6 900°C, 3 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410521
    4.1500   4.5150 1.0880 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 58453
    8.3060 9.0369 14.3770 1.7309 8 Ca2AgSi3 800°C, 5 days Sarkar et al. (2013[Sarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.]) 250524
  Co 4.0460   4.5000 1.1122 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 102379
  Cu 4.0762   4.4895 1.1014 1 AlB2-like Floating zone Cao et al. (2010[Cao, C., Klingeler, R., Vinzelberg, H., Leps, N., Löser, W., Behr, G., Muranyi, F., Kataev, V. & Büchner, B. (2010). Phys. Rev. B, 82, 134446.], 2011[Cao, C., Löser, W., Behr, G., Klingeler, R., Leps, N., Vinzelberg, H. & Büchner, B. (2011). J. Cryst. Growth, 318, 1009-1012.])  
    8.1890   8.9760 1.0961 8 Er2RhSi3 (190/194) 800°C, Majumdar et al. (1998[Majumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409-410.])  
    4.0950   4.4880 1.0960 1 AlB2 Majumdar et al. (1999b[Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.])  
    4.0800   4.4660 1.0946 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 53255
  Ni 4.0340   4.4960 1.1145 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 53436
  Pd 8.3188   4.3588 0.5240 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Rodewald et al. (2003[Rodewald, U. Ch., Hoffmann, R.-D., Pöttgen, R. & Sampathkumaran, E. V. (2003). Z. Naturforsch. Teil B, 58, 971-974.]) 391246
  Si 4.2900   13.3300 3.1072 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.]) 631674
    4.3040   13.6500 3.1715 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1454
    4.3030   13.6600 3.1745 4 ThSi2 Evers et al. (1983[Evers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19-L23.])  
    4.0520   4.4820 1.1061 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 103436
    4.2970   13.7040 3.1892 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 631683
    4.2900   13.6600 3.1841 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
Gd Pd 4.0790   4.0980 1.0047 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1580   8.1180 0.9951 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
  Pt 8.1390   8.3030 1.0201 8 Er2RhSi3 (190/194) 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.1120   7.9760 0.9832 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 636281
    8.1120   7.9760 0.9832 8 Er2RhSi3 Mulder et al. (1998[Mulder, F. M., Thiel, R. C., Tung, L. D., Franse, J. J. M. & Buschow, K. H. J. (1998). J. Alloys Compd. 264, 43-49.])  
  Si 4.0920 4.0130 13.4370 3.2837 4 Nd□Si2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.0200 4.1000 13.4300 3.3408 4 Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 636419
    3.8770   4.1720 1.0761 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 636432
    6.7204   4.1700 0.6205 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8770 6.7152 4.1720 1.0761 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 53633
    3.8700   4.1700 1.0775 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 636421
    4.0800 4.0100 13.4200 3.2892 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    3.8690 6.7013 4.1820 1.0809 2 Er3□Si5 800°C, 14 days Mulder et al. (1994[Mulder, F. M., Thiel, R. C. & Buschow, K. H. J. (1994). J. Alloys Compd. 205, 169-174.]) 658032
    3.8525   4.1470 1.0764 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 636450
    4.0438   13.8020 3.4131 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 636452
    4.1000 4.0100 13.6100 3.3195 4 o Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150661
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 636434
    4.0930 4.0090 13.4400 3.2837 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.0800 3.9960 13.4100 3.2868 4 GdSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
    4.0900 4.0100 13.4200 3.2812 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 636440
Ho Pd 8.1520   32.1680 3.9460 32 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1010   7.9960 0.9870 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    8.0994   32.0192 3.9533 32 h Floating zone Leisegang (2010[Leisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.])  
    8.1072   8.1072 1.0000 8 Er2RhSi3 (190/194) 800°C, 7 days Mo et al. (2015[Mo, Z. J., Shen, J., Yan, L. Q., Gao, X. Q., Tang, C. C., Wu, J. F., Sun, J. R. & Shen, B. G. (2015). J. Alloys Compd. 618, 512-515.]) 192586
    4.0459   3.9977 0.9881 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
    8.1000   32.0000 3.9506 32 Ho2PdSi3 Floating zone Tang et al. (2011[Tang, F., Frontzek, M. D., Dshemuchadse, J., Leisegang, T., Zschornak, M., Mietrach, R., Hoffmann, J.-U., Löser, W., Gemming, S., Meyer, D. C. & Loewenhaupt, M. (2011). Phys. Rev. B, 84, 104105.])  
    4.0460   3.9977 0.9881 4 Ce2CoSi3/U2RuSi3 750°C, 5 days Zajdel et al. (2015[Zajdel, P., Kisiel, A., Szytuła, A., Goraus, J., Balerna, A., Banaś, A., Starowicz, P., Konior, J., Cinque, G. & Grilli, A. (2015). Nucl. Instrum. Methods Phys. Res. B, 364, 76-84.])  
  Rh 8.0860   7.8040 0.9651 8 Er2RhSi3 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97374
    8.0860   7.8040 0.9651 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97373
    8.0720   7.7710 0.9627 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 639636
  Si 3.8070 6.5939 4.1060 1.0785 2 Er3□Si5 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0290 3.9170 13.2770 3.2954 4 Nd□xSi2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    3.8087 6.5969 4.1030 1.0773 2 Er3□Si5 1100°C, 8 days Eremenko et al. (1995[Eremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. & Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181-184.])  
    4.0230 3.9140 13.2820 3.3015 4 Nd□xSi2−x 1100°C, 8 days Eremenko et al. (1995[Eremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. & Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181-184.])  
    3.8160   4.1070 1.0763 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20249
    3.8160   4.1070 1.0763 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 639729
    3.8100 6.5991 4.1035 1.0770 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.5991   4.1100 0.6228 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8160 6.6095 4.1070 1.0763 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 639748
    4.0300 3.9700 13.3100 3.3027 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8000   4.1000 1.0789 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 56250
    3.9610   13.6450 3.4448 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 639750
    4.0150 3.9060 13.2200 3.2927 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 639731
    3.9900 3.9400 13.3000 3.3333 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 639743
    4.0280 3.9120 13.2870 3.2987 4 GdSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.])  
    4.0100 3.9120 13.2550 3.3055 4 GdSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.])  
La Al 4.3030   14.2100 3.3023 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
  Co 4.1880   4.3660 1.0425 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    8.1850   4.3500 0.5315 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Majumdar et al. (1999a[Majumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.])  
  Cu 4.0840   4.3950 1.0762 1 AlB2 Hwang et al. (1996[Hwang, J. S., Lin, K. J. & Tien, C. (1996). Solid State Commun. 100, 169-172.])  
    4.1440   4.2860 1.0343 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.]) 103037
    4.0710   4.3830 1.0766 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0840   4.3950 1.0762 1 AlB2 Tien et al. (1997[Tien, C., Luo, L. & Hwang, J. S. (1997). Phys. Rev. B, 56, 11710-11714.])  
  Fe 4.0800   4.3500 1.0662 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0690   4.1010 1.0079 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0970   4.3310 1.0571 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
  Ni 4.0930   4.3540 1.0638 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0770   4.3670 1.0711 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20305
    4.0450   4.3810 1.0831 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 641574
    4.0770   4.3000 1.0547 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0570   4.3880 1.0816 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0711   4.3737 1.0743 1 AlB2 800°C, 7 days Rojas et al. (2010[Rojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. & Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192-3195.])  
    4.0689   4.3753 1.0753 1 AlB2 Szlawska & Kaczorowski (2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.])  
  Pt 8.2900   4.4170 0.5328 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.2330   8.5940 1.0438 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 641751
    8.2800   8.6500 1.0447 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
  Si 4.3700   13.5600 3.1030 4 ThSi2 Bertaut & Blum (1950[Bertaut, E. F. & Blum, P. (1950). Acta Cryst. 3, 319.]) 174010
    4.3100   13.2800 3.0812 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.2612   13.7118 3.2178 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 641982
    4.2810   13.7500 3.2119 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25663
    4.3300   13.8300 3.1940 4 ThSi2-defect 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 641955
    4.3100   13.8000 3.2019 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.]) 641973
    4.1900 4.2700 13.9400 3.3270 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 641958
    4.2900   13.8700 3.2331 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 641961
    4.3260   13.8400 3.1993 4 ThSi2 Nakano & Yamanaka (1994[Nakano, H. & Yamanaka, S. (1994). J. Solid State Chem. 108, 260-266.]) 78028
    4.3100   13.8000 3.2019 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
    4.3000   13.8400 3.2186 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.3050   13.8400 3.2149 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
Lu Pd 4.0267   3.9218 0.9739 1 AlB2 Floating zone Cao et al. (2013[Cao, C., Blum, C. G. F., Ritschel, T., Rodan, S., Giebeler, L., Bombor, D., Wurmehl, S. & Löser, W. (2013). CrystEngComm, 15, 9052-9056.], 2014[Cao, C., Blum, C. G. F. & Löser, W. (2014). J. Cryst. Growth, 401, 593-595.]) 250596, 250597
  Si 3.7450   4.0500 1.0814 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20253
    3.7470   4.0460 1.0798 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 642610
    6.4952   4.0500 0.6235 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7450 6.4865 4.0500 1.0814 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 642613
    3.7400   4.0400 1.0802 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 642611
    3.7500   4.0500 1.0800 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 642607
Nd Ag 4.1750   14.3100 3.4275 4 ThSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 605613
  Cu 8.0760   8.4400 1.0451 8 Er2RhSi3 (190/194) 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
  Ni 4.0420   4.1630 1.0299 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20307
    4.0130   4.2020 1.0471 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 76594
    4.0200   4.2070 1.0465 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 645635
  Pd 8.1970   8.4020 1.0250 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.1050   4.2040 1.0241 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.1033   4.2039 1.0245 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 4.0927   4.2582 1.0404 1 AlB2 900°C, 23 days Li et al. (2001[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227-232.])  
    8.2170   4.2820 0.5211 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.1860   8.2720 1.0105 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 645781
    8.1710   8.2760 1.0129 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 57432
  Si 4.1800 4.1500 13.5600 3.2440 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.1016   13.4223 3.2725 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 645987
    4.1110   13.5600 3.2985 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25666
    4.1600 4.2000 13.6000 3.2692 4 Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 645941
    4.1800 4.1500 13.5600 3.2440 4 GdSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.])  
    4.1700 4.1300 13.6500 3.2734 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 645948
    4.1800 4.1600 13.6300 3.2608 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.1800 4.1500 13.5600 3.2440 4 GdSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    4.1650   13.6420 3.2754 4 GdSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 645989
    4.1110   13.5600 3.2985 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 645972
    4.1740 4.1540 13.6100 3.2607 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 645963
    3.9480 6.8381 4.2690 1.0813 2 Er3□Si5 Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1350 4.1010 13.7400 3.3229 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1470 4.1250 13.6700 3.2964 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1620   13.5800 3.2629 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.]) 645949
    4.1620   13.5800 3.2629 4 ThSi2 Raman (1968[Raman, A. (1968). Trans. Indian Inst. Met. 21, 5-8.]) 645985
    4.1850 4.1600 13.6100 3.2521 4 GdSi2 1050°C, 10 days Schobinger-Papamantellos et al. (1991[Schobinger-Papamantellos, P., Buschow, K. H. J. & Fischer, P. (1991). J. Magn. Magn. Mater. 97, 53-68.])  
Np Si 3.9680   13.7150 3.4564 4 ThSi2 Yaar et al. (1992[Yaar, I., Fredo, S., Gal, J., Potzel, W., Kalvius, G. M. & Litterst, F. J. (1992). Phys. Rev. B, 45, 9765.]) 657647
    3.9700   13.7000 3.4509 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31644
Pr Cu 4.0520   4.2550 1.0501 1 AlB2 Tien et al. (1997[Tien, C., Luo, L. & Hwang, J. S. (1997). Phys. Rev. B, 56, 11710-11714.])  
    4.0420   4.2050 1.0403 1 AlB2 900°C, 20 days Wang et al. (2014[Wang, F., Yuan, F.-Y., Wang, J.-Z., Feng, T.-F. & Hu, G.-Q. (2014). J. Alloys Compd. 592, 63-66.])  
  Ni 4.0450   4.2260 1.0447 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20306
    4.0210   4.0250 1.0010 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 646272
  Pd 8.2210   8.4660 1.0298 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0250   4.2070 1.0452 1 AlB2 Floating zone Xu et al. (2010[Xu, Y., Löser, W., Behr, G., Frontzek, M. D., Tang, F., Büchner, B. & Liu, L. (2010). J. Cryst. Growth, 312, 1992-1996.])  
  Pt 8.2300   4.3000 0.5225 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Si 4.2000   13.7600 3.2762 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.]) 649371
    4.2100   13.7300 3.2613 4 ThSi2-defect 800°C, 5 days Boutarek et al. (1994[Boutarck, N., Pierre, J., Lambert-Andron, B., L'Heritier, P. & Madar, R. (1994). J. Alloys Compd. 204, 251-260.]) 658012
    4.1315   13.4922 3.2657 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.])  
    4.1480   13.6700 3.2956 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25665
    4.2100   13.7300 3.2613 4 ThSi2-defect 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 649364
    4.2900   13.7600 3.2075 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.])  
    4.1700 4.1200 13.8200 3.3141 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 649365
    4.1600   13.7600 3.3077 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.2900   13.7600 3.2075 4 ThSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    4.2000   13.7600 3.2762 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 649376
    4.2000   13.7600 3.2762 4 ThSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
    4.1840   13.7300 3.2815 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.2000   13.7300 3.2690 4 ThSi2-defect Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
Pu Si 3.9670   13.7200 3.4585 4 ThSi2 Coffinberry & Ellinger (1955[Coffinberry, A. S. & Ellinger, F. H. (1955). Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 8, p. 826.]) 649973
    3.8750 6.7117 4.1020 1.0586 2 Er3□Si5 840°C, 42 days Land et al. (1965[Land, C. C., Johnson, K. A. & Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23-32.])  
    3.9680   13.7100 3.4551 4 ThSi2 Land et al. (1965[Land, C. C., Johnson, K. A. & Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23-32.]) 649969
    3.8840   4.0820 1.0510 1 AlB2 Runnals & Boucher (1955[Runnalls, O. J. C. & Boucher, R. R. (1955). Acta Cryst. 8, 592.]) 44867
    3.9800   13.5800 3.4121 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31645
Sc Si 3.6600 6.3393 3.8700 1.0574 2 Er3□Si5 Gladyshevskii & Émes-Misenko (1963[Gladyshevskii, E. I. & Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861.])  
    3.6600 6.3393 3.8700 1.0574 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 651822
    3.6620 6.3428 3.8790 1.0593 2 Er3□Si5 Kotroczo & McColm (1994[Kotroczo, V. & McColm, I. J. (1994). J. Alloys Compd. 203, 259-265.])  
    3.6620 6.3428 3.8790 1.0593 2 Er3□Si5 Kotroczo & McColm (1994[Kotroczo, V. & McColm, I. J. (1994). J. Alloys Compd. 203, 259-265.]) 657975
    3.6600   3.8700 1.0574 1 AlB2 Nörenberg et al. (2006[Nörenberg, C., Moram, M. A. & Dobson, P. J. (2006). Surf. Sci. 600, 4126-4131.])  
Sm Ni 4.0020   4.1600 1.0395 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20308
  Si 4.1050 4.0350 13.4600 3.2789 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.0417   13.3126 3.2938 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.])  
    4.0490   13.3600 3.2996 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25667
    4.1100 4.0600 13.4900 3.2822 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 652268
    4.1050 4.0350 13.4600 3.2789 4 o Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652273
    4.0800   13.5100 3.3113 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652274
    4.1040 4.0350 13.4600 3.2797 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
Sr Au 8.3407 9.2664 14.4465 1.7320 8 Ca2AgSi3 650°C, 7 days Zeiringer et al. (2015[Zeiringer, I., Grytsiv, A., Bauer, E., Giester, G. & Rogl, P. (2015). Z. Anorg. Allg. Chem. 641, 1404-1421.])  
  Ni 4.0690   4.6630 1.1460 1 AlB2 Bodak & Gladyshevskii (1968[Bodak, O. I. & Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.]) 20301
  Si 4.4380   13.8300 3.1163 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1455
  Si 4.4380   13.8300 3.1163 4 ThSi2 Evers et al. (1978b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.])  
    4.4290   13.8420 3.1253 4 ThSi2 Palenzona & Pani (2004[Palenzona, A. & Pani, M. (2004). J. Alloys Compd. 373, 214-219.]) 99238
    4.4390   13.8380 3.1174 4 ThSi2 Palenzona & Pani (2004[Palenzona, A. & Pani, M. (2004). J. Alloys Compd. 373, 214-219.])  
Tb Pd 4.0480   4.0370 0.9973 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1210   8.1000 0.9974 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0650   4.0520 0.9968 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.0643   4.0502 0.9965 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.1223   8.2368 1.0141 8 Er2RhSi3 ([P\overline{6}2c]) 900°C, 23 days Li et al. (2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.])  
  Rh 8.1100   7.8600 0.9692 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 650328
    8.1400   7.8120 0.9597 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 57483
  Si 3.8460 6.6615 4.1430 1.0772 2 Er3□Si5 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0570 3.9650 13.3770 3.2973 4 Nd□xSi2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    3.8470   4.1460 1.0777 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20247
    3.8470   4.1460 1.0777 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 652359
    6.6684   4.1500 0.6223 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8470 6.6632 4.1460 1.0777 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652375
    4.0450 3.9600 13.3800 3.3078 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8400   4.1400 1.0781 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652354
    3.9600 4.0500 13.3800 3.3788 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 652355
    3.9902   13.6920 3.4314 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 652377
    4.0500 3.9650 13.3600 3.2988 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 652360
    4.0400 3.9600 13.3900 3.3144 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 652370
Th Au 4.1972   14.3030 3.4077 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658096
  Co 4.0520   4.1510 1.0244 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658085
    4.0430   4.1890 1.0361 1 AlB2 950°C, 8 days Zhong et al. (1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.]) 53078
  Cu 4.0230   4.1910 1.0418 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 108410
  Fe 4.0993   14.1850 3.4603 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658089
  Ir 4.1366   14.3640 3.4724 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658094
    4.1200   14.3100 3.4733 4 ThSi2 Lejay et al. (1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]), Chevalier et al. (1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.])  
  Mn 4.1069   14.1130 3.4364 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658088
  Ni 4.0322   4.1891 1.0389 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 54299
  Os 4.1384   14.3784 3.4744 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658093
  Pd 4.1570   14.2820 3.4357 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658092
  Pt 4.1592   14.2850 3.4346 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658095
  Rh 4.1241   14.3870 3.4885 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658091
    4.1100   14.3200 3.4842 4 ThSi2 Lejay et al. (1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]), Chevalier et al. (1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.])  
  Ru 4.1242   14.4470 3.5030 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658090
  Si 4.1180   14.2210 3.4534 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    4.1340   14.3750 3.4773 4 ThSi2 Brauer & Mittius (1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]) 77320
    4.1260   14.3460 3.4770 4 ThSi2 Brauer & Mittius (1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]) 660234
    4.1360   4.1260 0.9976 1 AlB2 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    3.9850 6.9022 4.2280 1.0610 2 Er3□Si5 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    4.1360   4.1260 0.9976 1 AlB2 Brown (1961[Brown, A. (1961). Acta Cryst. 14, 860-865.]) 15449
    4.1350   14.3750 3.4764 4 ThSi2 Brown (1961[Brown, A. (1961). Acta Cryst. 14, 860-865.]) 652390
    3.9850   4.2200 1.0590 1 AlB2 Jacobson et al. (1956[Jacobson, E. L., Freeman, R. D., Tharp, A. G. & Searcy, A. W. (1956). J. Am. Chem. Soc. 78, 4850-4852.]) 26569
    4.1270   14.1940 3.4393 4 ThSi2 950°C, 8 days Zhong et al. (1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.])  
Tm Pd 4.0570   3.9700 0.9786 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.0710   7.8500 0.9726 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
  Si 3.7730   4.0700 1.0787 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20251
    3.7680   4.0700 1.0801 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 52468
    6.5298   4.0700 0.6233 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7730 6.5350 4.0700 1.0787 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 604540
    3.7600   4.0700 1.0824 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652455
    3.7700   4.0700 1.0796 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652451
U Au 4.1450   3.9890 0.9624 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.1450   3.9890 0.9624 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 106295
  Co 3.9870   3.8830 0.9739 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    3.9880   3.8830 0.9737 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 106494
    3.9880   3.8830 0.9737 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    3.9765   3.8980 0.9803 1 AlB2 Szlawska et al. (2011[Szlawska, M., Gnida, D. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.])  
  Cu 3.9710   13.9260 3.5069 4 ThSi2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 603112
    4.0090   3.9570 0.9870 1 AlB2 600°C, 49 days Pechev et al. (2000[Pechev, S., Roisnel, T., Chevalier, B., Darriet, B. & Etourneau, J. (2000). Solid State Sci. 2, 773-780.]) 92357
    3.9710   13.9260 3.5069 4 ThSi2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 602804
  Fe 4.0030   3.8570 0.9635 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0040   3.8640 0.9650 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 603109
    4.0100   3.8400 0.9576 1 AlB2 800°C, 7 days Lourdes Pinto (1966[Lourdes Pinto, M. de (1966). Acta Cryst. 21, 999.]) 53551
    4.0040   3.8640 0.9650 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    8.0030   3.8540 0.4816 4 Ce2CoSi3/U2RuSi3 800°C, 10 days Yamamura et al. (2006[Yamamura, T., Li, D. X., Yubuta, K. & Shiokawa, Y. (2006). J. Alloys Compd. 408-412, 1324-1328.])  
  Ir 4.0650   3.9140 0.9629 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0720   3.8950 0.9565 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57398
    4.0830   3.9320 0.9630 1 AlB2-like 800°C, 7 days Yubuta et al. (2006[Yubuta, K., Yamamura, T. & Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109-6116.])  
    4.0900   3.8540 0.9423 1 AlB2-like 800°C, 7 days Yubuta et al. (2006[Yubuta, K., Yamamura, T. & Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109-6116.])  
  Mn 8.0450   3.8082 0.4734 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
  Ni 3.9790   3.9460 0.9917 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    3.9790   3.9490 0.9925 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 54300
    3.9790   3.9490 0.9925 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    3.9720   3.9461 0.9935 1 AlB2 Schröder et al. (1995[Schröder, A., Collins, M. F., Stager, C. V., Garrett, J. D., Greedan, J. E. & Tun, Z. (1995). J. Magn. Magn. Mater. 140-144, 1407-1408.])  
  Os 8.1600   3.8440 0.4711 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0666   3.8517 0.9472 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57453, 54310
    8.1600   3.8440 0.4711 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.])  
  Pd 4.0800 7.0670 3.9390 0.9654 2 U2RhSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.]) 57172
    4.0830   3.9320 0.9630 1 AlB2 800°C, 3 days Li et al. (1998b[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.])  
    4.0850   3.9350 0.9633 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57467
  Pt 4.0730   3.9650 0.9735 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0840   3.9730 0.9728 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.])  
    4.0810   3.9700 0.9728 1 AlB2 800°C, 10 days Li et al. (1997[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. & Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261-266.])  
    4.0670   3.9640 0.9747 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 602802
    4.0840   3.9730 0.9728 1 AlB2 850°C, 5 days Sato et al. (1991[Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T., Sakatsume, S. & Komatsubara, T. (1991). J. Phys. Soc. Jpn, 60, 757-759.]) 54345
    4.0840   3.9730 0.9728 1 AlB2 Sato et al. (1992[Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T. & Komatsubara, T. (1992). J. Magn. Magn. Mater. 108, 115-116.])  
    4.0730   3.9600 0.9723 1 AlB2 800°C, 10 days Yamamura et al. (2006[Yamamura, T., Li, D. X., Yubuta, K. & Shiokawa, Y. (2006). J. Alloys Compd. 408-412, 1324-1328.])  
  Rh 4.0620 7.0360 3.9290 0.9673 2 U2RhSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.]) 57171
    4.0740   3.8810 0.9526 1 AlB2 800°C, 3 days Li et al. (1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.])  
    4.0760   3.8830 0.9526 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57485
    8.1011   3.9477 0.4873 4 Ce2CoSi3 Szlawska et al. (2016[Szlawska, M., Majewicz, M. & Kaczorowski, D. (2016). J. Alloys Compd. 662, 208-212.])  
  Ru 8.1480   3.8550 0.4731 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0750   3.8380 0.9418 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 108727
    8.1450   3.8496 0.4726 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.]) 78530
    8.1480   3.8550 0.4731 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.])  
  Si 3.8600   4.0700 1.0544 1 AlB2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    3.9500   13.6800 3.4633 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    3.8520   4.0280 1.0457 1 AlB2 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.]) 652472, 52469
    3.8430 6.6563 4.0690 1.0588 2 Er3□Si5 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    3.8520   4.0280 1.0457 1 AlB2 650°C Brown & Norreys (1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.])  
    3.8430 6.6563 4.0690 1.0588 2 Er3□Si5 650°C Brown & Norreys (1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.])  
    3.8390   4.0720 1.0607 1 AlB2 Dwight (1982[Dwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.]) 106053
    3.8390   4.7200 1.2295 1 AlB2 Dwight (1982[Dwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.]) 652476
    3.9220   14.1540 3.6089 4 ThSi2 Sasa & Uda (1976[Sasa, Y. & Uda, M. (1976). J. Solid State Chem. 18, 63-68.]) 203
    3.8600   4.0700 1.0544 1 AlB2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31646
    3.9800   13.7400 3.4523 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31643
Y Pd 8.1380   8.0410 0.9881 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    8.0910   8.0920 1.0001 8 Er2RhSi3 (190/194) 750°C, 7 days Mallik & Sampathkumaran (1996[Mallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.])  
  Pt 8.0990   8.1940 1.0117 8 Er2RhSi3 (190/194) 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.0860   7.8290 0.9682 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 650353
    8.1300   7.8800 0.9692 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
  Si 3.8400 6.6511 4.1400 1.0781 2 Er3□Si5 Baptist et al. (1988[Baptist, R., Pellissier, A. & Chauvet, G. (1988). Solid State Commun. 68, 555-559.])  
    6.6511   4.1400 0.6225 3 Yb3□Si5 Baptist et al. (1990[Baptist, R., Ferrer, S., Grenet, G. & Poon, H. C. (1990). Phys. Rev. Lett. 64, 311-314.])  
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    3.8420 6.6545 4.1400 1.0776 2 Er3□Si5 Gladyshevskii & Émes-Misenko (1963[Gladyshevskii, E. I. & Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861.])  
    3.8415 6.6537 4.1425 1.0784 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.6511   4.1400 0.6225 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8420 6.6545 4.1400 1.0776 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652588
    3.8383   4.1310 1.0763 1 AlB2 Kotur & Mokra (1994[Kotur, B. Y. & Mokra, I. R. (1994). Neorg. Mater. 30, 783-787.]) 658906
    4.0500 3.9500 13.2200 3.2642 4 GdSi2 Lazorenko et al. (1974[Lazorenko, V. I., Rud', B. M., Paderno, Yu. B. & Dvorina, L. A. (1974). Izv. Akad. Nauk. SSSR Neorg. Mater. 10, 1150-1151.]) 652570
    3.8500   4.1400 1.0753 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652584
    4.0500 3.9500 13.4000 3.3086 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8300   4.1400 1.0809 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652566
    3.8430   4.1430 1.0781 1 AlB2 800°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 52478
    4.0400 3.9500 13.2300 3.2748 4 GdSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652582
    4.0400   13.4200 3.3218 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150662
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
Yb Au 8.2003 14.1870 16.8690 2.0571 16 Ba4Li2Si6 800°C, 5 days Sarkar et al. (2013[Sarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.]) 250525
  Si 3.7710   4.0980 1.0867 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20252
    3.7840   4.0980 1.0830 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 52480
    6.5120   4.0900 0.6281 3 Yb3□Si5 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.])  
    6.5472   4.1000 0.6262 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7710 6.5316 4.0980 1.0867 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652601
    3.7700   4.1000 1.0875 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652598
    3.7610   4.0920 1.0880 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 652603
    3.9868   13.5410 3.3965 4 ThSi2 850°C, 3 days Peter & Kanatzidis (2012[Peter, S. C. & Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287-293.])  
    6.5120   4.0900 0.6281 3 Yb3□Si5 700°C, 21 days Pöttgen et al. (1998[Pöttgen, R., Hoffmann, R.-D. & Kußmann, D. (1998). Z. Anorg. Allg. Chem. 624, 945-951.])  

We used calculations based on density functional theory (DFT) to predict the stability of not yet reported RSi2 and R2TSi3 compounds. The formation energy ΔEtot is the difference of the total energy Etot of the compound and Etot of its elements, normalized to six atoms (R2Si4 or R2TSi3). Appendix B[link] presents the space groups of the unary R crystals. The more negative the formation energy, the more thermodynamically favorable is the formation of that compound. We considered a formation energy of up to −25 meV per atom as potentially stable at room temperature. However, this assumption does not take into account potential energy barriers which might kinetically hinder the formation of the ground state. The projector-augmented wave (PAW) method (Kresse & Joubert, 1999[Kresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758-1775.]) in spin-polarized Perdew–Burke–Ernzerhof parametrization (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) was employed as implemented in the VASP code (Kresse & Furthmüller, 1996[Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.]). Total energies have been converged better than 10−7 eV with a maximum kinetic energy of 320 eV for the planewave basis set and Γ-centered k-point meshes with spacings less than 0.02 × 2π Å−1. All structures have been fully relaxed, with respect to atomic positions as well as cell geometry within the space group, to forces less than 10−3 V Å−1. A Hubbard U correlation correction was not used because the Si framework with s- and p-orbitals governs the stability of the structure and because it would complicate the comparability of the formation energies within the R2TSi3 series.

3. Results and discussion

In this article, we treat the R2TSi3 compounds as a distinct phase with a fixed composition and not as a solid solution. As ternary phase diagrams are scarce for these compounds, we checked all available data, in particular the thermodynamic assessment of Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]), for compositional degrees of freedom in the corresponding phase diagram region and possibly prevailing solid solutions. Nevertheless, the vast majority of compounds were reported to form superstructures which, in general, allow only slight variations in stoichiometry. We discuss those structures as distinct phases due to the changes in symmetry at these particular compositions in the phase diagrams. Many ternary phase diagrams are often determined at elevated temperatures, which is beyond the scope of this work. The phase diagrams given by Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) are not at room temperature.

3.1. Structural relationships

The many structure types within compounds RSi2 and R2TSi3 compounds are related to each other according to their space groups and occupied Wyckoff positions. Starting from the highest symmetric structure, different perturbations induce symmetry reductions. Bärnighausen diagrams are the perfect tool to visualize these group–subgroup relationships in a simple and descriptive way. Fig. 1[link] presents the full Bärnighausen diagram for the RSi2 and R2TSi3 compounds analyzed in this work. This diagram is partially based on a diagram by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]), but is greatly extended.

[Figure 1]
Figure 1
Bärnighausen diagram for RSi2 and R2TSi3 compounds. The header of each box comprises the Hermann–Mauguin symbol of the space group, the range of ordering n and the structure type, whereas the body contains the occupied Wyckoff sites sorted by element. The arrows display the type of transformation between the structures: t is translationengleich, k is klassengleich and i is isomorphic. Fig. 2[link] comprises the respective structure plots. The fourth branch of AlB2-like compounds comprises the superstructures caused by interplays with vacancies (R3□Si5). A potential tetragonal superstructure is presented in the right-hand part of the diagram.

The presented Bärnighausen diagram would allow for further group–subgroup transitions; thus the authors cannot exclude the existence of further structure types within the RSi2 and R2TSi3 compounds and thus also additional branches in the diagram. However, the space groups we present here already have a high number of free parameters. The extension of the diagram by further symmetry reduction accompanied with further degrees of freedom without losing the rough lattice and symmetry is challenging.

Our diagram provides information about the type of transition (klassengleiche with perpetuation of lattice symmetry, translationengleiche with perpetuation of translational symmetry and isomorphous with perpetuation of both), the change of the lattice (direction and distance), the characteristics of the structure (space group, structure type and Wyckoff positions) as well as the absolute occurrence of the structure types in the literature. Additionally, Fig. 2[link] visualizes the atom arrangements of the different structures and presents their relationships in a hierarchical structure similar to the Bärnighausen diagram. In contrast, it focuses on the structural models and only shows these branches that include new structure types compared to Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Appendix A[link] includes tables with Wyckoff positions of all structure types taken into account within this article (Tables 2[link], 3[link], 4[link], 5[link], 6[link], 7[link], 8[link], 9[link], 10[link], 11[link], 12[link], 13[link], 14[link], 15[link], 16[link] and 17[link]).

Table 2
Wyckoff positions of the hexagonal aristotypic structure type AlB2 with space group P6/mmm (No. 191) and lattice parameters ah ≈ 3.00, ch ≈ 3.24 Å

Element Wyckoff symbol x y z
R 1a 0 0 0
Si/T 2d [1\over 3] [1\over 3] ½

Table 3
Wyckoff positions of the hexagonal structure type Ce2CoSi3 with space group P6/mmm (No. 191) and lattice parameters a ≈ 2ah, cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 3f ½ 0 0
T 2d [1\over 3] [2\over 3] ½
Si 6m xSi[1\over 6] 2xSi[2\over 6] ½

Table 4
Wyckoff positions of the hexagonal structure type U2RuSi3 with space group P6/mmm (No. 191) and lattice parameters a ≈ 2ah, cch

The Si site is only half occupied.

Element Wyckoff symbol x y z
R 1a 0 0 0
R 3f ½ 0 0
T 2d [1\over 3] [2\over 3] ½
Si 12o xSi[1\over 6] 2xSi[2\over 6] zSi ≈ ½

Table 5
Wyckoff positions of the hexagonal structure type Er2RhSi3 with space group P63/mmc (No. 194) and lattice parameters a ≈ 2ah, c ≈ 2ch

Element Wyckoff symbol x y z
R 2b 0 0 ¼
R 6h xR ≈ ½ 2xR ≈ 0 ¼
T 4f [1\over 3] [2\over 3] zT ≈ 0
Si 12k xSi[1\over 6] 2xSi[1\over 3] zSi ≈ 0

Table 6
Wyckoff positions of the hexagonal structure type Er2RhSi3 with space group [P{\overline 6}2c] (No. 190) and lattice parameters a ≈ 2ah, c ≈ 2ch

Element Wyckoff symbol x y z
R 2b 0 0 ¼
R 6h xR ≈ ½ yR ≈ ½ ¼
T 4f [1\over 3] [2\over 3] zT ≈ 0
Si 12h xSi[1\over 6] ySi[1\over 3] zSi ≈ 0

Table 7
Wyckoff positions of the orthorhombic structure type Ho2PdSi3 with space group I112/b (No. 15) and lattice parameters a ≈ 2ah, c ≈ 8ch

Element Wyckoff symbol x y z
R 4e 0 ¼ zR,1 ≈ 0
R 4e 0 ¼ zR,2[{1\over {8}}]
R 4e 0 ¼ zR,3[{2\over {8}}]
R 4e 0 ¼ zR,4[{3\over {8}}]
R 4e 0 ¼ zR,5[{4\over {8}}]
R 4e 0 ¼ zR,6[{5\over {8}}]
R 4e 0 ¼ zR,7[{6\over {8}}]
R 4e 0 ¼ zR,8[{7\over {8}}]
T 8f xT,1[1\over 6] yT,1[{1\over {12}}] zT,1[{7\over {16}}]
T 8f xT,2[1\over 6] yT,2[{1\over {12}}] zT,2[{{13}\over {16}}]
Si 8f xSi,1[1\over 6] ySi,1[{1\over {12}}] zSi,1[{{1}\over {16}}]
Si 8f xSi,2[1\over 6] ySi,2[{1\over {12}}] zSi,2[{{3}\over {16}}]
Si 8f xSi,3[1\over 6] ySi,3[{1\over {12}}] zSi,3[{{5}\over {16}}]
Si 8f xSi,4[1\over 6] ySi,4[{1\over {12}}] zSi,4[{{9}\over {16}}]
Si 8f xSi,5[1\over 6] ySi,5[{1\over {12}}] zSi,5[{{11}\over {16}}]
Si 8f xSi,6[1\over 6] ySi,6[{1\over {12}}] zSi,6[{{15}\over {16}}]

Table 8
Wyckoff positions of the orthorhombic structure type Er3□Si5 with space group Pmmm (No. 47) and lattice parameters aah, b[\sqrt{3}a_{{\rm h}}], cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 1f ½ ½ 0
Si/T 2p ½ ySi/T,1 ≈ ¼ ½
Si/T 2n 0 ySi/T,2 ≈ ¼ ½

Table 9
Wyckoff positions of the orthorhombic structure type U2RhSi3 with space group Pmmm (No. 47) and lattice parameters aah, b[\sqrt{3}a_{{\rm h}}], cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 1f ½ ½ 0
Si/T 2n 0 yT[1\over 3] ½
Si 2p ½ ySi[5\over 6] ½

Table 10
Wyckoff positions of the orthorhombic structure type Ca2AgSi3 with space group Fmmm (No. 69) and lattice parameters a ≈ 2ah, b ≈ 2ch, c[2\sqrt{3}a_{{\rm h}}]

Element Wyckoff symbol x y z
R 8i 0 0 zR ≈ ¼
R 8f ¼ ¼ ¼
T 8h 0 yT[2\over 3] 0
Si 8h 0 ySi,1[1\over 6] 0
Si 16o xSi,2 ≈ ¼ ySi,2[{1\over {12}}] 0

Table 11
Wyckoff positions of the orthorhombic structure type Ho3□Si5 with space group P2mm (No. 25) and lattice parameters a ≈ 3ah, [b\approx\sqrt{3}a_{{\rm h}}], c ≈ 2ch

Element Wyckoff symbol x y z
R 1a 0 yR,1 ≈ 0 0
R 1b [3\over 6] yR,2 ≈ ½ 0
R 2g xR,1[2\over 6] yR,3 ≈ 0 0
R 2g xR,2[1\over 6] yR,4 ≈ ½ 0
1c 0 y□,1[ {{2}\over {6}}] ½
1d [3\over 6] y□,1[{{5}\over {6}}] ½
Si 1c 0 ySi,1[{{4}\over{6}}] ½
Si 1d [3\over 6] ySi,2[{{5}\over{6}}] ½
Si 2h xSi,1[{{2}\over{6}}] ySi,3[{{4}\over{6}}] ½
Si 2h xSi,2[{{1}\over{6}}] ySi,4[{{5}\over{6}}] ½
Si 2h xSi,3[{{1}\over{6}}] ySi,5[{{1}\over{6}}] ½
Si 2h xSi,4[{{2}\over{6}}] ySi,6[{{2}\over{6}}] ½

Table 12
Wyckoff positions of the orthorhombic structure type Ba4Li2Si6 with space group Fddd (No. 70) and lattice parameters a ≈ 2ah, [b\approx 2\sqrt{3}a_{{\rm h}}], c ≈ 4ch

Element Wyckoff symbol x y z
R 16g [{1\over 8}] [{1\over 8}] zR,1[{2\over 8}]
R 16g [{1\over 8}] [{1\over 8}] zR,2[{6\over 8}]
T 16f [{1\over 8}] yT[{7\over {24}}] [{1\over 8}]
Si 16f [{1\over 8}] ySi,1[{11\over {24}}] [{1\over 8}]
Si 32h xSi,2[{1\over 8}] ySi,2[{7\over {24}}] zSi,2[{1\over 8}]

Table 13
Wyckoff positions of the Si vacancy cell of structure type Yb3□Si5 with space group [P\overline{6}2m] (No. 189) and lattice parameters [a\approx\sqrt{3}a_{{\rm h}}], cch

Element Wyckoff symbol x y z
R 3f xR[2\over 3] 0 0
1b 0 0 ½
Si 3g xSi[1\over 3] 0 ½
Si 2d [1\over 3] [2\over 3] ½

Table 14
Wyckoff positions of the Si vacancy cell of structure type Tb3□Si5 with space group [P\overline{6}2c] (No. 190) and lattice parameters [a\approx\sqrt{3}a_{{\rm h}}], c ≈ 2ch

Element Wyckoff symbol x y z
R 6g xR[1\over 3] 0 0
2c 0 0 ¼
Si 6h xSi[1\over 3] ySi[1\over 3] ¼
Si 2d [2\over 3] [1\over 3] ¼
Si 2b 0 0 ¼

Table 15
Wyckoff positions of the tetragonal structure type ThSi2 with space group I41/amd (No. 141) with lattice parameters atah, ct ≈ 13.4–14.4 Å

Element Wyckoff symbol x y z
R 4a 0 0 [1\over 8]
Si/T 8e 0 0 zSi/T[{7\over {24}}]

Table 16
Wyckoff positions of the orthorhombic structure type GdSi2 with space group Imma (No. 74) and lattice parameters aat, cct

Element Wyckoff symbol x y z
R 4e 0 ¼ zR[1\over 8]
Si/T 4e 0 ¼ zSi/T,1[{7\over {24}}]
Si/T 4e 0 ¼ zSi/T,2[{{11}\over {24}}]

Table 17
Wyckoff positions of the proposed orthorhombic superstructure of the tetragonal branch with space group C2221 (No. 20) and lattice parameters [a\approx\sqrt{2}a_{{\rm t}}], bct, [c\approx\sqrt{2}a_{{\rm t}}]

Element Wyckoff symbol x y z
R 4a xR ≈ ¼ 0 0
R 4b 0 yR ≈ ¼ ¼
T 4b xT ≈ 0 yT[{4\over {12}}] zT ≈ ¼
Si 4b xSi,1 ≈ 0 ySi,1[{2 \over {12}}] zSi,1 ≈ ¼
Si 8c xSi,2 ≈ ¼ ySi,2[{1 \over {12}}] zSi,2 ≈ 0
[Figure 2]
Figure 2
Models of the different observed structure types within RSi2 and R2TSi3 compounds (unit cell outlined in black). The AlB2-like structures are depicted such that the view onto the two-dimensional R network is almost identical. The common structure pattern of the ordered AlB2-like structures (gray frame at right top) is highlighted with a light-gray frame and red Si/T bonds. The structure types Ce2CoSi3 and U2RuSi3 are almost identical. In contrast to the U2RuSi3 type, the Si atoms of the Ce2CoSi3 type are on the highly symmetric z = ½ position. This is highlighted by the blurred Si location along the c direction. The tetragonal structures (gray frame at center top) compose a 3D Si/T subnetwork with incomplete hexagons at the faces (highlighted in orange). The structures are connected according to their symmetry relations (dashed lines, if the transition is not minimal; labels comprise the lattice transformation).
3.1.1. Compounds deduced from the AlB2 structure type

First, we will present the relationships of RSi2 and R2TSi3 compounds derived from the AlB2 structure. The lattice parameters are in the range of ah ≈ 3.8–4.2 Å and ch ≈ 3.9–4.5 Å, which is much higher than for the parent structure AlB2 itself (aAlB2 = 3.00 Å, cAlB2 = 3.24 Å).

Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]) gave an overview of the hexagonal and orthorhombic transitions of AlB2-related compounds. Only three of Hoffmann's Bärnighausen branches are applicable for the stoichiometries addressed here (RSi2 and R2TSi3). We identify further structure types not discussed by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]), analyze the relationships of all structure types in the following paragraphs and show the new structure types in the Bärnighausen diagram (Fig. 2[link]). Our Bärnighausen diagram (Fig. 2[link]) thus exhibits four main branches which result from interactions with a T element or an Si vacancy □.

The first branch of the Bärnighausen diagram describes the symmetrical relationships between the hexagonal derivatives of the AlB2 type. Fig. 2[link] shows that Ce2CoSi3 (Gordon et al., 1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]) has the same structural motif as the aristotype. The difference is the ordering of the T atoms resulting in isolated [Si6] rings, see top right of Fig. 2[link]. Only a certain part of this pattern is visible in the unit cell of Ce2CoSi3 and in other structure types of the RSi2 and R2TSi3 compounds, indicated by red bonds. Besides [Si6] rings, [T2Si4] hexagons also occur, with the T atoms opposing each other in the ring. This ordering change indicates the doubling of the unit-cell parameter a in the Ce2CoSi3 type and an isomorphous symmetry reduction. If the Si atoms are shifted along the c direction, the layers are no longer perfectly planar, but puckered. This arrangement can be described with the same space group as Ce2CoSi3, but with half-occupied Wyckoff site 12o, instead of fully occupied 6m, known as the structure type U2RuSi3 (Pöttgen et al., 1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.]). Fig. 2[link] shows both structure types within one subfigure with the different Si positions indicated by a series of atoms.

Compared to their ideal crystallographic positions, the Er2RhSi3 (P63/mmc) type (Gladyshevskii et al., 1992[Gladyshevskii, R. E., Cenzual, K. & Parthé, E. (1992). J. Alloys Compd. 189, 221-228.]) exhibits shifts of the T atoms along the c direction accompanied by distortions of the R atoms centering the [T2Si4] rings. This puckering results in a doubling of the c parameter and thus a further klassengleiche reduction of the symmetry of the Ce2CoSi3 or U2RuSi3 type. The reported noncentrosymmetric structure for Er2RhSi3 ([P\overline{6}2c]) (Chevalier et al., 1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) assumes additional distortions of the [Si6] rings and their centering R atoms by decoupled x and y coordinates resulting in a translationengleiche symmetry reduction of centrosymmetric Er2RhSi3 (P63/mmc).

The second branch only includes the Ho2PdSi3 structure type (Tang et al., 2011[Tang, F., Frontzek, M. D., Dshemuchadse, J., Leisegang, T., Zschornak, M., Mietrach, R., Hoffmann, J.-U., Löser, W., Gemming, S., Meyer, D. C. & Loewenhaupt, M. (2011). Phys. Rev. B, 84, 104105.]) with monoclinic space group I112/b (Nentwich et al., 2016[Nentwich, M., Zschornak, M., Richter, C., Novikov, D. V. & Meyer, D. C. (2016). J. Phys. Condens. Matter, 28, 066002.]). This structure contains eight Si/T layers with stacking sequence ABCDBADC. Each layer exhibits the same Si/T occupation pattern as the Ce2CoSi3 type. The [T2Si4] rings of adjacent layers are shifted and rotated by multiples of 60° around the c axis with respect to each other. The 12-fold coordinated R elements are located on two different Wyckoff positions, either coordinated by two [T2Si4] rings or by one [T2Si4] ring and one [Si6] ring. The Ho2PdSi3 type contains 32 subcells and is thus one of the largest structures within the AlB2 Bärnighausen diagram. The atoms are assumed to be on the ideal crystallographic position, without any distortions, although the space group would allow this. The transition from AlB2 type to Ho2PdSi3 involves several symmetry reduction steps, detailed in Fig. 1[link].

The third branch comprises the orthorhombic derivatives of the AlB2 type. The starting point for further reductions is an orthohexagonal setting with space group Cmmm and Wyckoff sequence 2a, 4k. This setting is still a missing link (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]), meaning that no report about a compound with this structure has been found. This space group has independent lattice parameters a and b – in contrast to all previous structure types – causing a translationengleiche symmetry reduction and making it an important starting point for five further structure types.

One of them is Ba4Li2Si6 (von Schnering et al., 1996[Schnering, H. G. von, Bolle, U., Curda, J., Peters, K., Carrillo-Cabrera, W., Somer, M., Schultheiss, M. & Wedig, U. (1996). Angew. Chem. 108, 1062-1064.]), which has perfectly ordered Si/T layers with the same occupational pattern as the Ce2CoSi3 type. As in the Ho2PdSi3 structure type, the Si/T atoms are perfectly ordered and form an ABCD stacking sequence, which is consistent with the two differently coordinated R sites as mentioned before. Accompanied with the anisotropic available space of the R site surrounded by one [T2Si4] and one [Si6] ring, its z component is not on the ideal crystallographic position resulting in a puckering of the R and Si/T layers. Identical R elements are connected along the former hexagonal a direction. These structural changes are accompanied with three consecutive klassengleiche symmetry reductions doubling the a and b parameters and quadrupling the c parameter.

A second structure type is U2RhSi3 (Pöttgen & Kaczorowski, 1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) with space group Pmmm (No. 47). Its Si/T atoms are partially ordered and only shifted along the b direction. These shifts induce a break in translational symmetry and a klassengleiche reduction. The Ho2PdSi3, Ba4Li2Si6 and Ca2AgSi3 structure types (Gordon et al., 1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]) have perfectly ordered Si/T layers and the same local arrangements around the R atoms. The R elements of the same Wyckoff site are connected along the orthorhombic a direction. These structural changes indicate the doubling of lattice parameters and a klassengleiche transition from structure type U2RhSi3. Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]) have already reported a second structure type with the same space group as U2RhSi3, but with a different Wyckoff sequence, namely Er3□Si5. This type represents the disordered nonstoichiometric disilicides. In addition to the disordered ones, we also found reports about ordered versions. The otherwise very detailed review by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]) did not discuss these variants, which form due to vacancy ordering. According to the real stoichiometry of RSi1.67, one Si atom is regularly missing in the Si hexagons (Roge et al., 1995[Roge, T. P., Palmino, F., Savall, C., Labrune, J. C., Wetzel, P., Pirri, C. & Gewinner, G. (1995). Phys. Rev. B, 51, 10998-11001.]). This arrangement can be realized by a hexagonal and a orthohexagonal setting (Auffret et al., 1990[Auffret, S., Pierre, J., Lambert, B., Soubeyroux, L. J. & Chroboczek, J. A. (1990). Physica B, 162, 271-280.]). The hexagonal setting will be discussed in the fourth branch. The orthohexagonal arrangement requires a triplication of the a parameter. We will refer to this setting as Ho3□Si5 type. We prepared a list of its atomic parameters in space group P1 (No. 1) and inserted it to the software FINDSYM (Stokes & Hatch, 2005[Stokes, H. T. & Hatch, D. M. (2005). J. Appl. Cryst. 38, 237-238.]), which determined the highest possible space group as Pmm2 (No. 25). We changed the setting to P2mm (No. 25) for a better comparability to its supergroup Pmmm (No. 47). Thus, the triplication causes a translationengleiche and a klassengleiche symmetry reduction, which is accompanied with potential shifts of all atoms within the a,b plane.

The fourth branch comprises the ordered R3□Si5 structures, which are not related to the disordered Er3□Si5 type within the Bärnighausen diagram.

d'Avitaya et al. (1989[d'Avitaya, F. A., Perio, A., Oberlin, J.-C., Campidelli, Y. & Chroboczek, J. A. (1989). Appl. Phys. Lett. 54, 2198-2200.]) described a [\sqrt{3}\times\sqrt{3}] low-energy electron diffraction (LEED) pattern of Er3□Si5 thin films. Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) determined the space group of this arrangement for Yb3□Si5 as [P\overline{6}2m] (No. 189), only allowing the x parameter of R and Si to deviate from its ideal crystallographic position. To consider the underlying symmetries of this arrangement, the cell needs to be enlarged and rotated with respect to the AlB2 unit cell using an isomorphous symmetry reduction. The location of the vacancy on an independent Wyckoff site is accompanied by a further translationengleiche symmetry reduction and an origin shift from space group P6/mmm to [P\overline{6}2m].

Another model proposed by Stauffer et al. (1992[Stauffer, L., Pirri, C., Wetzel, P., Mharchi, A., Paki, P., Bolmont, D., Gewinner, G. & Minot, C. (1992). Phys. Rev. B, 46, 13201-13206.]) is based on the aforementioned arrangement, but every second Si/T layer is rotated by 120° around c. We determined the space group of this vacancy ordering as [P\overline{6}2c], assuming that only the occupational pattern of the Si lattice would adapt, without changing the atomic positions. This results in a doubling of the c parameter, accompanied by a klassengleiche transition. The first reports concerning this arrangements used the compound Er3□Si5. However, this type name is already used for the disordered nonstoichiometric disilicides. Thus, we will refer to this structure type as Tb3□Si5 in accordance with the report by Luo et al. (1997[Luo, C. H., Shen, G. H. & Chen, L. J. (1997). Appl. Surf. Sci. 113-114, 457-461.]).

We did not consider cells based on the Ho3□Si5 type with doubled c parameter, as it is only reported for the [\sqrt{3}\times\sqrt{3}] type cells.

Further remarks. Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]) reported a further superstructure for Ce2PdSi3 with doubled lattice parameter a and quadrupled c, but did not focus on the specific space group. Therefore, we could not implement this report for the construction of the Bärnighausen diagram. During the literature research we additionally found structures of the EuGe2-type with space group [P\overline{3}1m] (No. 164). This structure type is very similar to the AlB2 type, but with a puckered Si sublattice, inducing a translationengleiche transition. Reports about this structure type refer to binary alkaline earth disilicides at non-ambient conditions (Evers et al., 1977b[Evers, J., Oehlinger, G. & Weiss, A. (1977b). Angew. Chem. 89, 673-674.]; Bordet et al., 2000[Bordet, P., Affronte, M., Sanfilippo, S., Núñez-Regueiro, M., Laborde, O., Olcese, G. L., Palenzona, A., LeFloch, S., Levy, D. & Hanfland, M. (2000). Phys. Rev. B, 62, 11392-11397.]; Brutti et al., 2006[Brutti, S., Nguyen-Manh, D. & Pettifor, D. (2006). Intermetallics, 14, 1472-1486.]) or with mixed R sites (Eisenmann et al., 1970[Eisenmann, B., Riekel, C., Schäfer, H. & Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 325-331.]; Evers et al., 1979[Evers, J., Oehlinger, G. & Weiss, A. (1979). Z. Naturforsch. Teil B, 34, 358-359.]) as well as theoretical considerations about the puckering only (Gemming & Seifert, 2003[Gemming, S. & Seifert, G. (2003). Phys. Rev. B, 68, 075416.]; Gemming et al., 2006[Gemming, S., Enyashin, A. & Schreiber, M. (2006). Amorphisation at Heterophase Interfaces. In Parallel Algorithms and Cluster Computing, Lecture Notes in Computational Science and Engineering, edited by K. H. Hoffmann and A. Meyer, pp. 235-254. Springer.]; Enyashin & Gemming, 2007[Enyashin, A. N. & Gemming, S. (2007). Phys. Status Solidi B, 244, 3593-3600.]; Flores-Livas et al., 2011[Flores-Livas, J. A., Debord, R., Botti, S., San Miguel, A., Pailhès, S. & Marques, M. A. L. (2011). Phys. Rev. B, 84, 184503.]). As these reports do not meet the requirements of experiments at ambient conditions, we did not consider this group of compounds within this work.

All aforementioned structure types will be termed AlB2-like in the following sections. By studying the atomic coordinates of the addressed space groups, we observed that the R elements form a rigid frame for the structure, as they are mostly the heaviest and largest elements in the structure and, thus, the most immobile. This also means that the Si/T atoms are more mobile and thus puckering of these layers is rather common.

3.1.2. Compounds deduced from ThSi2 structure type

Compounds of the ThSi2 type (Brauer & Mittius, 1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]) crystallized in space group I41/amd (No. 141), see gray box of Fig. 2[link] (with tetragonal lattice parameters atah, ct ≈ 13.4–14.4 Å). The Si/T atoms form a complex 3D network, in contrast to the 2D honeycombs in AlB2. So far, the only reported variation of the ThSi2 type is the GdSi2 structure (Perri et al., 1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]; Binder, 1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.]) with independent lattice parameters a and b. This degree of freedom causes a translationengleiche symmetry reduction to space group Imma (No. 74).

If the ThSi2 or GdSi2 type structures exhibit Si vacancies, these do not order regularly and only cause partially occupied Wyckoff positions. The proportion of vacancies is generally 10% (RSi1.8), thus almost one Si ion per tetragonal or orthorhombic unit cell is vacant. The resulting structures remain in the original space group and are called ThSi2-defect and Nd□xSi2−x, respectively.

In contrast to the distortive modulation of ThSi2, we did not find evidence for a tetragonal superstructure induced by ordering. This absence may be partially due to the small number of reports concerning tetragonal R2TSi3 compounds [18 structure reports in ten articles (Gordon et al., 1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]; Albering et al., 1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]; Kaczorowski & Noël, 1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]; Lejay et al., 1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]; Chevalier et al., 1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.]; Li et al., 2008[Li, D. X., Nimori, S., Yamamura, T. & Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.]; Mayer & Felner, 1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]; Pöttgen & Kaczorowski, 1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]; Raman & Steinfink, 1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.]; Raman, 1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])]. In order to shed light on a potential ordering, we constructed a tetragonal superstructure based on geometrical, chemical and electronic considerations. First, every Si atom has exactly one T element in its coordination. Second, every T element is coordinated by exactly three Si atoms. Third, every zigzag chain fulfills the 1:3 ratio of T:Si (zigzag chains explained in Section 3.2[link]). And fourth, short-range periodicity is mandatory; thus, no doubling of the unit cell along the c direction is expected. By choosing an arbitrary atom within the tetragonal Si/T network as the first T element, only two positions unfold positioning the next T element. Two atomic arrangements resulted following the aforementioned conditions. We transferred these patterns onto the simple space group P1 (No. 1) and imported them into the tool FINDSYM (Stokes & Hatch, 2005[Stokes, H. T. & Hatch, D. M. (2005). J. Appl. Cryst. 38, 237-238.]) to determine the space group. Both variants proved to be identical and to exhibit the space group C2221 (No. 20). We will refer to this new structure type with eight instead of four formula units as POTS (proposed ordered, tetragonal structure). The gray box in Fig. 2[link] visualizes the Si/T-ordering. As this structure has not been reported so far for R2TSi3 compounds, we decided to perform DFT calculations to estimate its stability, see Section 3.3[link].

These three structure types introduced in this section (§3.1.2[link]) will be addressed as ThSi2-like in the following.

3.2. Structure description

The hexagonal and the tetragonal subgroups of RSi2 and R2TSi3 compounds do not seem to be symmetrically related at first glance. The AlB2-like compounds exhibit graphite-like 2D networks of planar Si/T hexagons, whereas the Si/T atoms of ThSi2-like compounds form 3D networks. Still, the structures show similarities due to the trigonal coordination of the Si atoms. Fig. 3[link] illustrates the Si/T atoms in trigonal prisms, the 12-fold coordinated R atoms (connectors in black) and the Si/T zigzag chains (bonds in red/orange) in both structures.

[Figure 3]
Figure 3
Differences in the arrangement of Si/T (blue) zigzag chains in hexagonal (left) and tetragonal (right) RSi2 and R2TSi3 compounds. The consecutively added zigzag chains (red bonds) in hexagonal compounds always lie within the same plane, whereas in tetragonal compounds these layers are rotated by 90° along the bonds shown in orange. The 12-fold coordination of the R elements is highlighted for one atom ,as an example, with bonds shown in black.

Not only are the hexagonal honeycombs similar to graphite but also the tetragonal 3D network. The typical net exists simultaneously in planes perpendicular to the tetragonal at and bt directions which are interconnected by bonds along the ct direction. More precisely, two consecutive Si/T zigzag chains are rotated by 90° along the ct direction, thereby spanning the (100)t and (010)t faces of the unit cell and causing incomplete hexagons (see the orange bonds in the ThSi2 structure type in Fig. 2[link]). This additional symmetry degree of freedom causes a slight deformation of the trigonal Si/T arrangement in the tetragonal network. The Si—T bonds along the ct direction (in orange, interchain) elongate in comparison to the intrachain bonds (in red), see Fig. 3[link]. Further, the angle within the zigzag chains increases, whereas the other two angles decrease (between bonds shown in red and orange). Therefore, the chains with stronger bonds are slightly flattened compared to the ideal structure with perfect trigonal coordination. These structural differences between hexagonal and tetragonal structure types cause different crystal symmetries that permit a common origin in the Bärnighausen diagram for the RSi2 and R2TSi3 compounds.

3.3. Elemental combinations and stability analysis of missing links with DFT calculations

During the literature search, we collected numerous structure reports of various RSi2 and R2TSi3 compounds. Fig. 4[link] gives an overview of the reported compounds according to their appearance within the RT grid. In this RT diagram, we marked the number of reports with different colors, see Fig. 4[link]. This diagram does not include the elements of the Zn group as those compounds were only analyzed at elevated temperatures (Demchenko et al., 2002[Demchenko, P., Bodak, O. I. & Muratova, L. (2002). J. Alloys Compd. 346, 170-175.]; Malik et al., 2013[Malik, Z., Grytsiv, A., Rogl, P. & Giester, G. (2013). Intermetallics, 36, 118-126.]; Nasir et al., 2010[Nasir, N., Melnychenko-Koblyuk, N., Grytsiv, A., Rogl, P., Giester, G., Wosik, J. & Nauer, G. E. (2010). J. Solid State Chem. 183, 565-574.]; Romaka et al., 2012[Romaka, V. V., Falmbigl, M., Grytsiv, A. & Rogl, P. (2012). J. Solid State Chem. 186, 87-93.]; Salamakha et al., 1998[Salamakha, P., Demchenko, P., Sologub, O. & Bodak, O. (1998). J. Alloys Compd. 278, 227-230.]), which are out of the scope of this article. Additionally, we did not find any reports which include R2CrSi3 compounds. We assume that certain electron configurations are necessary for the formation of R2TSi3 compounds. Furthermore, some elements rarely appear within the R2Si and R2TSi3 compounds, such as Sm and Yb, which are highly volatile (Cao, 2014, private communication), Tc, which has a very low radio-active half-life and is very scarce (Holleman & Wiberg, 2007[Holleman, A. F. & Wiberg, N. (2007). Lehrbuch der anorganischen Chemie, 102nd ed. De Gruyter Reference Global.]), or Pm, which is radioactive (Cao, 2014, private communication; Frontzek, 2014, private communication). The interest in using La and Lu was lower as most of the research aimed for the magnetic properties that do not exist for these two elements (Frontzek, 2014, private communication). The cost of the elements seems to play a subordinate role, e.g. the more expensive Rh (89 000 USD per kg) compounds were analyzed more frequently than the ones containing Ir (36 000 USD per kg) (Haynes, 2012[Haynes, W. M. (2012). Editor. CRC Handbook of Chemistry and Physics, 93rd ed. Chemical Rubber Company.]).

[Figure 4]
Figure 4
Overview of the literature reports of RSi2 and R2TSi3 crystals. The number of reports is visualized with numbers and colors (few to very frequent: red – yellow – green – blue – purple). Additionally, to predict the stability for selected unreported structures, this study performed DFT calculations for the highlighted compounds (black circles).

These distributions are emphasized in Figs. 5[link], 6[link] and 7[link], which show systematic approaches in the literature. Fig. 5[link] gives an overview of RSi2 series with the corresponding authors and R elements. This summary shows the high interest in the lanthanide compounds compared to R elements of the alkaline earth metals and the actinides. Fig. 6[link] shows a similar illustration of T series within the R2TSi3 compounds. Sorted by T element and author, the corresponding R elements are highlighted. Within the 3d elements the largest variety was analyzed, mostly in combination with La and Ce. In contrast, the heavy lanthanides were more favored when 4d elements were used, which have been intensively studied. Finally, Fig. 7[link] shows the R series, sorted by R element and author, with highlighted T elements. Again, the focus on the 3d elements as well as La and Ce is clear. The most complete investigations were carried out for U and Th, which emphasizes their importance for reactor technology.

[Figure 5]
Figure 5
Overview of the RSi2 compounds that were analyzed systematically by the same first author. Some of the results were published in more than one article: Brauer (Brauer & Mittius, 1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]; Brauer & Haag, 1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]; Brauer & Haag, 1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]), Evers (Evers et al., 1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.],b[Evers, J., Oehlinger, G. & Weiss, A. (1977b). Angew. Chem. 89, 673-674.], 1978a[Evers, J., Oehlinger, G. & Weiss, A. (1978a). Angew. Chem. 90, 562-563.],b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.], 1983[Evers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19-L23.]; Evers, 1979[Evers, J. (1979). J. Solid State Chem. 28, 369-377.], 1980[Evers, J. (1980). J. Solid State Chem. 32, 77-86.]), Mayer:1 (Mayer et al., 1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.], 1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]; Mayer & Eshdat, 1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]), Perri (Perri et al., 1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.],b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]), Pierre (Pierre et al., 1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.], 1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.]).
[Figure 6]
Figure 6
Overview of the R2TSi3 compounds that were analyzed systematically by the same first author according to their T element (see color code). Some of the results were published in more than one article: Mayer:2 (Mayer & Tassa, 1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]; Mayer & Felner, 1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.], 1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.],b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]), Szlawska (Szlawska et al., 2007[Szlawska, M., Pikul, A. & Kaczorowski, D. (2007). Mater. Sci. Pol. 25, 1267.], 2009[Szlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. & Stępień-Damm, J. (2009). Phys. Rev. B, 79, 134435.], 2011[Szlawska, M., Gnida, D. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.], 2016[Szlawska, M., Majewicz, M. & Kaczorowski, D. (2016). J. Alloys Compd. 662, 208-212.]; Szlawska & Kaczorowski, 2011[Szlawska, M. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.], 2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.]), Li (Li et al., 1997[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. & Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261-266.], 1998,a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.],b[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.], 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2001[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227-232.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.], 2008[Li, D. X., Nimori, S., Yamamura, T. & Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]), Frontzek (Frontzek et al., 2004[Frontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. & Loewenhaupt, M. (2004). Physica B, 350, E187-E189.], 2006[Frontzek, M. D., Kreyssig, A., Doerr, M., Rotter, M., Behr, G., Löser, W., Mazilu, I. & Loewenhaupt, M. (2006). J. Magn. Magn. Mater. 301, 398-406.]; Frontzek, 2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.]), Mallik (Mallik & Sampathkumaran, 1996[Mallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.]; Mallik et al., 1998a[Mallik, R., Sampathkumaran, E. V. & Paulose, P. L. (1998a). Solid State Commun. 106, 169-172.],b[Mallik, R., Sampathkumaran, E. V., Strecker, M. & Wortmann, G. (1998b). Europhys. Lett. 41, 315-320.],c[Mallik, R., Sampathkumaran, E. V., Strecker, M., Wortmann, G., Paulose, P. L. & Ueda, Y. (1998c). J. Magn. Magn. Mater. 185, L135-L143.]), Xu (Xu et al., 2010[Xu, Y., Löser, W., Behr, G., Frontzek, M. D., Tang, F., Büchner, B. & Liu, L. (2010). J. Cryst. Growth, 312, 1992-1996.], 2011a[Xu, Y., Frontzek, M. D., Mazilu, I., Löser, W., Behr, G., Büchner, B. & Liu, L. (2011a). J. Cryst. Growth, 318, 942-946.],b[Xu, Y., Löser, W., Tang, F., Blum, C. G. F., Liu, L. & Büchner, B. (2011b). Cryst. Res. Technol. 46, 135-139.]), Li (Li et al., 1998b[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.], 2001[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227-232.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]).
[Figure 7]
Figure 7
Overview of the R2TSi3 compounds that were analyzed systematically by the same first author according to their R element (see color code). Some of the results were published in more than one article: Mayer:2 (Mayer & Tassa, 1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]; Mayer & Felner, 1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.], 1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.],b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]), Szlawska (Szlawska et al., 2007[Szlawska, M., Pikul, A. & Kaczorowski, D. (2007). Mater. Sci. Pol. 25, 1267.], 2009[Szlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. & Stępień-Damm, J. (2009). Phys. Rev. B, 79, 134435.], 2011[Szlawska, M., Gnida, D. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.], 2016[Szlawska, M., Majewicz, M. & Kaczorowski, D. (2016). J. Alloys Compd. 662, 208-212.]; Szlawska & Kaczorowski, 2011[Szlawska, M. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.], 2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.]), Li (Li et al., 1997[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. & Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261-266.], 1998a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.],b[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.], 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2001[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227-232.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.], 2008[Li, D. X., Nimori, S., Yamamura, T. & Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]), Frontzek (Frontzek et al., 2004[Frontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. & Loewenhaupt, M. (2004). Physica B, 350, E187-E189.], 2006[Frontzek, M. D., Kreyssig, A., Doerr, M., Rotter, M., Behr, G., Löser, W., Mazilu, I. & Loewenhaupt, M. (2006). J. Magn. Magn. Mater. 301, 398-406.]; Frontzek, 2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.]), Pottgen (Pöttgen & Kaczorowski, 1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]; Pöttgen et al., 1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.]), Majumdar (Majumdar et al., 1998[Majumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409-410.], 1999a[Majumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.],b[Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.], 2000[Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.], 2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.]).

By studying the RT diagram of Fig. 4[link] one main question arises: What are the stability relationships of those R2TSi3 compounds that are missing? To clarify this question, we sorted the compounds according their R element and discuss the Co, Rh and Pt series in the following sections.

We assumed ordered structures as DFT cannot evaluate mixed positions, except in the framework of virtual crystal approximations (VCA) using potential mixing. We adapted the structure type of the adjacent compounds within the RT grid or used the highly symmetric Ce2CoSi3 structure type with space group P6/mmm (No. 191) as the basis for the unknown compounds. Table 17[link] summarizes the formation energies and lattice parameters all considered compounds. We will compare the formation energy of an unreported compound with those of similar reported compounds to evaluate its relative stability.

The DFT results of all models indicate metallic structures, although the DFT band gap problem may suppress the appearance of small band gaps. Thus, all structures have an intrinsic buffer of electronic states at the Fermi level to account for stability considerations of the T coordination within the ionic Si/T subnetwork according to molecular orbital theory, see Nentwich et al. (2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]).

The first compound of interest is Nd2CoSi3. The series of Nd compounds is fairly complete, compare Fig. 4[link], for example, with reported Nd2RhSi3 (Chevalier et al., 1983[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 315-330.], 1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]; Szytuła et al., 1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]; Mitsufuji et al., 1996[Mitsufuji, S., Kagawa, T. & Kawamoto, M. (1996). Tohoku Daigaku Kinzoku Zairyo Kenkyusho Kyojiba Chodendo Zairyo Kenkyu Senta Nenji Hokoku, p. 223.]; Gribanov et al., 2010[Gribanov, A., Grytsiv, A., Rogl, P., Seropegin, Y. & Giester, G. (2010). J. Solid State Chem. 183, 1278-1289.]; Zajdel et al., 2015[Zajdel, P., Kisiel, A., Szytuła, A., Goraus, J., Balerna, A., Banaś, A., Starowicz, P., Konior, J., Cinque, G. & Grilli, A. (2015). Nucl. Instrum. Methods Phys. Res. B, 364, 76-84.]), which is the 4d analog compound to Nd2CoSi3. Additionally, we found comments on this compound in two publications, but without any information concerning property, structure and phase purity (Chevalier et al., 1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]; Szytuła et al., 1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]). The formation energies and existing structure types of La2CoSi3 and Ce2CoSi3 serve as references. Furthermore, the likewise hypothetical compound Pr2CoSi3 was also calculated. The blue markers in Fig. 8[link] show the respective formation energies ranging from −4.61 eV to −4.37 eV. The lowest energy results for R = Ce and the highest for R = Nd. As the formation energy of Pr2CoSi3 lies in between the reported compounds, we expect it to be stable. The energy difference between Nd2CoSi3 and La2CoSi3 (the reported compound with highest energy) is 25 meV per atom. This corresponds to the tolerance limit; thus, we conclude that Nd2CoSi3 could also be stable. This conclusion is supported by the reports of Mayer & Tassa (1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]) and Felner & Schieber (1973[Felner, I. & Schieber, M. (1973). Solid State Commun. 13, 457-461.]) on Pr2Co0.8Si3.2 and Nd2Co0.8Si3.2. They also synthesized samples with higher T content, which lead to `the disappearance of the AlB2 type phase, and the X-ray patterns obtained could not be interpreted' (Mayer & Tassa, 1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]). Nevertheless, we think that the synthesis of Pr2CoSi3 and Nd2CoSi3 and the interpretation of the corresponding X-ray patterns would be successful nowadays due to improved hardware and measurement techniques. Additionally, an enhanced thermal treatment would certainly improve the crystal quality regarding the Si/T ordering. Thus, we advise reinvestigating the R2TSi3 compounds discussed by Mayer & Tassa (1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]), with R = La, Ce, Pr, Nd, Sm, Gd and T = Fe, Co, Ni.

[Figure 8]
Figure 8
Formation energies of some R2TSi3 compounds in different structure types.

Another interesting compound is Eu2RhSi3. The Rh series is well represented in the RT diagram and its 3d analog Eu2CoSi exists. However, the R element Eu supposedly only forms a compound with Co, but not with Rh (Mayer & Tassa, 1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]; Mayer & Felner, 1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]). We also modeled R2RhSi3 compounds with R elements Gd, Tb, Dy and Ho again and used the formation energies of existing structures as references. For the Rh series, the formation energies range from −6.68 eV to −4.34 eV, with the not yet reported Eu2RhSi3 having the highest formation energy. Both tested symmetries –the higher symmetric Ce2CoSi3 and the lower symmetric Er2RhSi3 – gave almost the same results, for formation energies (−4.34 eV) and interatomic distances [da(R,R) ≈ 4.13 Å, dc(R,R) ≈ 4.27 Å]. The formation energy of Eu2RhSi3 differs from the second highest formation energy of Ho2RhSi3 by 160 meV per atom which exceeds the limit of 25 meV per atom, see green markers in Fig. 8[link]. Therefore, the Eu2RhSi3 compound in Ce2CoSi3 or Er2RhSi3 structure type is significantly less stable.

The third compound of interest is Eu2PtSi3. In the R2PtSi3 series only a few element combinations have not yet been experimentally confirmed. Nevertheless, we identified missing compounds for R between Nd and Gd. Due to the radioactivity and low abundance of Pm and the volatility of Sm, we chose the Eu compound for further investigation. In analogy to the Rh series, we additionally chose R = Gd, Tb, Dy as references for formation energy and structure. In addition we modeled the not-yet-reported compound Ho2PtSi3. We decided to calculate the compounds in the reported Er2RhSi3 ([P\overline{6}2c]) symmetry and additionally in the higher symmetric type Ce2CoSi3 as well as in the lowest possible symmetry P1 (No. 1) to evaluate the influence of the degrees of freedom onto the formation energies. The energies for the R2PtSi3 compounds range from −6.18 eV to −5.11 eV, see orange markers in Fig. 8[link]. Except for Eu, the energies of different compounds and also different structure types are very similar. As expected, the energies of the lower symmetric Er2RhSi3 structure types are always lower than those of the highly symmetric type Ce2CoSi3, due to the additional degrees of freedom in atomic positions. The spread is between 0 meV for Gd and 28 meV for Ho per atom and about additional 1 meV going down to P1 (No. 1). The energies of the low-symmetric versions of the R2PtSi3 compounds are even lower than that of existing Gd2PtSi3. The formation energy of the (still) hypothetical Ho2PtSi3 in Ce2CoSi3 type structure is 33 meV per atom higher than that of Gd2PtSi3, thus this high-symmetry type is certainly not stable. However, the lower symmetry types will very probably be stable. The formation energy of Eu2PtSi3 is 14 meV per atom higher than for Gd2PtSi3; therefore, the compound is in the two considered symmetries most probably accessible as the thermodynamically stable phase. On the one hand, these data show that in some cases (Eu2RhSi3, Eu2PtSi3 and Gd2PtSi3) the formation energy hardly changes for different structure types. On the other hand, the formation energy of different structure types may change so strongly that our relative limit of 25 meV per atom is by far exceeded and only the lower symmetric variations may be stable. This is the case for Tb2PtSi3, Dy2PtSi3 and Ho2PtSi3.

After analyzing those three R series, we discovered further characteristics in the RT diagram worth studying for different reasons. Compound La2PdSi3 attracted our attention because Chaika et al. (2001[Chaika, A. N., Ionov, A. M., Busse, M., Molodtsov, S. L., Majumdar, S., Behr, G., Sampathkumaran, E. V., Schneider, W. & Laubschat, C. (2001). Phys. Rev. B, 64, 125121.]) and Behr et al. (2008[Behr, G., Löser, W., Souptel, D., Fuchs, G., Mazilu, I., Cao, C., Köhler, A., Schultz, L. & Büchner, B. (2008). J. Cryst. Growth, 310, 2268-2276.]) have already successfully synthesized this compound, but did not determine the lattice parameters or structural information during their investigations. We performed DFT calculations for La2PdSi3 using the Ce2CoSi3 structure type as well. The formation energy is lower than for the chemically similar compound La2CoSi3 which was reported in the ordered structure type Ce2CoSi3. Thus, we conclude that the Ce2CoSi3 type may be a stable configuration for La2PdSi3, next to the disordered AlB2 type. The relaxed parameters a = 8.34 Å and c = 4.38 Å are very close to the lengths expected from the adjacent compounds La2RhSi3 and Ce2PdSi3 (a ≈ 8.25 Å, c ≈ 4.3 Å). We recommend checking La2PdSi3 for indicators of an ordered Si/T site, e.g. satellite reflections.

Furthermore, we wondered which structure would arise for stoichiometric BaSi2. Most reported space groups of BaSi2 are orthorhombic (Imai & Watanabe, 2010[Imai, Y. & Watanabe, A. (2010). Intermetallics, 18, 1432-1436.]; Evers, 1980[Evers, J. (1980). J. Solid State Chem. 32, 77-86.]; Janzon et al., 1970[Janzon, K. H., Schäfer, H. & Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 87-99.]; Kitano et al., 2001[Kitano, A., Moriguchi, K., Yonemura, M., Munetoh, S., Shintani, A., Fukuoka, H., Yamanaka, S., Nishibori, E., Takata, M. & Sakata, M. (2001). Phys. Rev. B, 64, 045206.]; Migas et al., 2007[Migas, D. B., Shaposhnikov, V. L. & Borisenko, V. E. (2007). Phys. Status Solidi B, 244, 2611-2618.]; Schäfer et al., 1963[Schäfer, H., Janzon, K. H. & Weiß, A. (1963). Angew. Chem. 75, 451-452.]; Evers et al., 1977b[Evers, J., Oehlinger, G. & Weiss, A. (1977b). Angew. Chem. 89, 673-674.], 1978a[Evers, J., Oehlinger, G. & Weiss, A. (1978a). Angew. Chem. 90, 562-563.]) and do not fit into our Bärnighausen diagram and are, therefore, not listed in Table 1[link] nor depicted in Figs. 4[link] and 9[link]. The only exception is a hexagonal phase determined by Gladyshevskii (1959[Gladyshevskii, E. I. (1959). Dopov. Akad. Nauk. Ukr. RSR, p. 294.]). In fact, the original sample had Li impurities and exhibits the structure type Ba4Li2Si6, discovered by von Schnering et al. (1996[Schnering, H. G. von, Bolle, U., Curda, J., Peters, K., Carrillo-Cabrera, W., Somer, M., Schultheiss, M. & Wedig, U. (1996). Angew. Chem. 108, 1062-1064.]). This finding explains the discrepancy with the tetragonal phases of the related alkaline earth compounds CaSi2 and SrSi2, e.g. Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.],b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.]). We tested both an hexagonal and a tetragonal variant for BaSi2 to evaluate which symmetry is more stable. Additionally, we modeled SrSi2 in both the hypothetical AlB2 and the already reported ThSi2 structure type to compare the formation energies. As expected, the formation energy of tetragonal SrSi2 is lower than the one of hexagonal SrSi2. The energies for both BaSi2 models are almost identical (−2.06 eV) and, thus, expected to be equally stable. Nevertheless, these data alone are not sufficient to convey the stability of BaSi2 to SrSi2 as the elements Ba and Sr are too different. Furthermore, given the degrees of freedom, the tetragonal model of BaSi2 relaxed into an orthorhombic lattice with differences in lattice parameters a and b in the order of 0.4%. It should be noted that the a parameters of hexagonal and tetragonal symmetry differ for both BaSi2 and SrSi2 compounds (see Table 18[link]), although they are alike for dimorphic compounds of the family, e.g. GdSi2.

Table 18
Formation energies (eV) and lattice parameters (Å) calculated with DFT

Formation energies are given for R2Si4 and R2TSi3 compounds, respectively (same amount of atoms within calculated range). Compounds marked with * have already been reported in the literature.

    Reported Calculated  
Compound Structure type a b c a b c ΔEtot
Co series
La2CoSi3 Ce2CoSi3* 8.185 a 4.350 8.14 a 4.34 −4.52
Ce2CoSi3 Ce2CoSi3* 8.110 a 4.220 8.01 a 4.08 −4.61
Pr2CoSi3 Ce2CoSi3 8.03 a 4.11 −4.58
La2CoSi3 Ce2CoSi3* 8.185 a 4.350 8.14 a 4.34 −4.52
Ce2CoSi3 Ce2CoSi3* 8.110 a 4.220 8.01 a 4.08 −4.61
Pr2CoSi3 Ce2CoSi3 8.03 a 4.11 −4.58
Nd2CoSi3 Ce2CoSi3 8.04 a 4.15 −4.37
 
Rh series
Eu2RhSi3 Ce2CoSi3 8.26 a 4.27 −4.35
  Er2RhSi3 8.26 a 8.55 −4.34
Gd2RhSi3 Er2RhSi3* 8.112 a 7.976 8.21 a 8.02 −6.68
Tb2RhSi3 Er2RhSi3* 8.110 a 7.860 8.18 a 7.90 −5.51
Dy2RhSi3 Er2RhSi3* 8.097 a 7.823 8.18 a 7.90 −5.45
Ho2RhSi3 Er2RhSi3* 8.086 a 7.804 8.18 a 7.89 −5.31
                 
Pt series
Eu2PtSi3 Ce2CoSi3 8.27 a 4.34 −5.11
  Er2RhSi3 8.27 a 8.67 −5.11
Gd2PtSi3 Ce2CoSi3 8.17 a 4.14 −5.97
  Er2RhSi3* 8.139 a 8.303 8.17 8.17 8.28 −5.97
Tb2PtSi3 Ce2CoSi3 8.15 a 4.08 −5.92
  Er2RhSi3 ([P\overline{6}2c])* 8.122 a 8.237 8.16 a 8.18 −6.17
  P1 8.16 a 8.17 −6.18
Dy2PtSi3 Ce2CoSi3 8.16 a 4.07 −5.84
  Er2RhSi3 ([P\overline{6}2c])* 8.22 8.23 8.33 −6.14
  P1 8.100 a 8.200 8.16 a 8.14 −6.14
Ho2PtSi3 Ce2CoSi3 8.16 a 4.07 −5.77
  Er2RhSi3 8.16 a 8.13 −6.04
  Er2RhSi3 ([P\overline{6}2c]) 8.16 8.16 8.10 −6.04
  P1 8.16 a 8.11 −6.05
                 
La2PdSi3
La2PdSi3 Ce2CoSi3* 8.34 a 4.38 −5.54
                 
SrSi2 versus BaSi2
SrSi2 ThSi2* 4.438 a 13.830 4.46 4.46 13.82 −2.21
  AlB2 4.14 a 4.64 −1.90
BaSi2 ThSi2 4.67 4.67 14.16 −2.06
  AlB2 4.17 a 5.06 −2.06
                 
Sr2AgSi3 versus Ba2AgSi3
Sr2AgSi3 Ba4Li2Si6 8.48 14.69 18.56 −2.83
  Ca2AgSi3 8.48 9.28 14.67 −2.74
Ba2AgSi3 Ba4Li2Si6* 8.613 14.927 19.639 8.63 14.97 19.84 −2.74
  Ca2AgSi3 9.11 10.19 15.58 −2.36
                 
Potential tetragonal structure with ordered Si/T sites
NdSi2 ThSi2* 3.968 a 13.715 4.12 a 14.05 −3.97
  AlB2 4.08 a 4.13 −4.20
Nd2AgSi3 ThSi2* 4.175 a 14.310
  POTS 5.96 5.93 14.54 −3.72
  Ce2CoSi3 8.35 a 4.28 −3.69
Nd2PdSi3 AlB2* 4.103 a 4.204
  Ce2CoSi3 8.26 a 4.24 −5.17
Nd2CuSi3 Ce2CoSi3 8.06 a 4.26 −4.23
  Er2RhSi3 ([P\overline{6}2c])* 8.076 a 8.440 8.07 a 8.46 −4.54
  P1 8.06 a 8.44 −4.14
Nd2NiSi3 Ce2CoSi3* 4.020 a 4.190 7.98 a 4.14 −6.32
[Figure 9]
Figure 9
RT diagram of the RSi2 and R2TSi3 compounds. The color of the markers symbolizes the range of ordering n, see Section 3.4[link]. If the structure is disordered (AlB2, ThSi2, GdSi2), then n = 0 and the symbol is gray. If the structure is ordered, the range of ordering accords to the number of stacks along c in the unit cell. Up to three markers on one grid position are possible, representing different publications.

Subsequently, we use the chemical similarity of Ba and Sr to evaluate which orthorhombic structure type is more favorable for compound Sr2AgSi3, as it is the only alkaline earth compound that has not yet been synthesized. Both, the Ba4Li2Si6 type of (Ba,Eu)2AgSi3 and the Ca2AgSi3 type are reasonable. We excluded other structure types as other chemically similar compounds only crystallize in those two structures. Here, chemically similar means a noble metal T and R preferring the +II oxidation state (e.g. alkaline earth metals, Eu and Yb). For T = Ag, Sr2AgSi3 is the only alkaline earth compound that has not yet been synthesized.

As a reference, we used Ba2AgSi3, also in both structure types. For Ba2AgSi3, the respective formation energies exhibited a clear preference for the reported Ca2AgSi3 type structure. However, the formation energies for both Sr2AgSi3 models are almost identical with a value of −2.83 eV, therefore we conclude that both structure types are equally stable. The formation energy of Sr2AgSi3 is slightly lower than that of Ba2AgSi3, which supports a stable structure.

Finally, we consider the potential tetragonal R2TSi3 superstructure as determined in Section 3.1[link]. We did not find reports on this ordered tetragonal structure and expect that it is energetically unfavored. Only a few articles on suitable compounds exist, mainly containing Th compounds (Albering et al., 1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]; Lejay et al., 1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]; Chevalier et al., 1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.]; Li et al., 2008[Li, D. X., Nimori, S., Yamamura, T. & Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.]; Raman, 1967[Raman, A. (1967). Naturwissenschaften, 54, 560.]; Kaczorowski & Noël, 1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]; Pöttgen & Kaczorowski, 1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) as well as U2CuSi3 (Albering et al., 1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]; Lejay et al., 1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]; Chevalier et al., 1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.]), La2AlSi3 (Raman & Steinfink, 1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.]), Ce2AuSi3 (Gordon et al., 1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]), Er2CuSi3 and Nd2AgSi3. We chose Nd2AgSi3 for better comparability, as several compounds with either Nd or Ag have already been examined in the previous discussions. To compare our hypothetical tetragonal superstructure with an existing structure, we chose the hexagonal Ce2CoSi3 type, since the most obvious tetragonal ThSi2 type exhibits mixed positions. We further took the disilicide NdSi2 into account in both ThSi2 and AlB2 type structures.

Please note that the lattice parameters of the POTS type (calculated) are related to those of the ThSi2 type (experimental) by rotation and elongation by a factor of [\approx\sqrt{2}]. Thus, the interatomic distances of both tetragonal structure types of Nd2AgSi3 are approximately the same aThSi2 = 4.12 Å ≈ 4.21 Å = aPOTS/[\sqrt{2}]. For Nd2CuSi3, we compared three different symmetries, the high symmetry Ce2CoSi3, experimentally confirmed Er2RhSi3 [(P\overline{6}2c)] and low symmetry P1 (No. 1). The lattice parameters of all three models are a = 8.06 Å and c ≈ 4.24 Å, which is in good agreement with the experimental values [Er2RhSi3 [(P\overline{6}2c)]-type].

The formation energies of Nd2AgSi3 stoichiometry are −3.69 eV for the Ce2CoSi3 type and −3.72 eV for the tetragonal superstructure. With an absolute formation energy which is lower by 0.30 eV per atom, the tetragonal type is clearly favored. In general, the superstructural order for tetragonal symmetries may be suppressed for further reasons. On the one hand, the 3D Si/T network itself may present kinetic barriers. On the other hand, the entropy of mixing may hinder structural ordering more severe for the degeneracies of the 3D Si/T network than for the planar stacking of hexagonal symmetries.

3.4. Structure distribution

Fig. 9[link] gives an overview of the scatter of structure types within the RSi2 and R2TSi3 compounds. This figure adapts the RT grid of Fig. 4[link] with symbols announcing symmetry and range of order. To quantify the ordering within the different structure types, we defined the range of order as zero if the Si/T atoms do not order and otherwise as the number of Si/T layers along c in the unit cell. The range of order is highlighted by the color of the marker. The symmetry is marked by shape: hexagon for hexagonal AlB2-like, open star for orthorhombic AlB2-like, diamond for tetragonal ThSi2, elongated diamond for orthorhombic GdSi2. For technical reasons, this diagram shows at most three reports of the same compound (left, right, bottom). Our algorithm chooses the datasets with the highest as well as the lowest a parameter and an additional dataset with a different structure type, to depict the most significant variations. Fig. 9[link] visualizes the range of order in dependence on the atomic number of the R and T cations; it depicts the following trends:

First, most of the compounds in the grid exhibit an hexagonal AlB2-like lattice. The other lattice types are mainly determined by the included R and T element. For example, the orthorhombic GdSi2 structure type arises exclusively for lanthanide disilicides. The tetragonal lattice is dominant for R = Th compounds as well as for the disilicides with light rare earth elements. Additional compounds with tetragonal lattice are Ce2AuSi3, Nd2AgSi3 and Er2CuSi3, all possessing a noble metal T element. Thus, the Fermi level of the T element affects the structural stability, see Nentwich et al. (2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]).

Furthermore, the completely ordered orthorhombic structure types Ca2AgSi3 and Ba4Li2Si6 are only reported for R2TSi3 compounds with the monovalent ions T = Ag, Au and the divalent ions R = Ca, Ba, Eu, Yb (Cardoso Gil et al., 1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]; Sarkar et al., 2013[Sarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.]). The partially ordered structure type U2RhSi3 additionally arises for U2PdSi3 (Chevalier et al., 1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.]). Here, we do not consider the compound Ba2LiSi3 itself, since Li does not accord with our limitations to the T elements. Thus, the ordered orthorhombic AlB2-like structure types are more probable if the T element is a monovalent atom and if the R element prefers the +II oxidation state – as for the alkaline earth metals.

Second, tetragonal LaSi2 does not follow the hexagonal symmetry of the disilicides with third group elements Sc and Y. This phenomenon illustrates the affiliation of Sc and Y to the heavy and of La to the light rare earth elements (RÖMPP Online, 2011[RÖMPP Online (2011). Seltenerdmetalle. Thieme Chemistry online encyclopedia.]).

Third, with increasing atomic number of R within the lanthanide disilicides, three structure types succeed each other. The tetragonal ThSi2 type is the dominant one for light rare earth elements (Ce–Eu), followed by the orthorhombic GdSi2 type in the intermediate range and the hexagonal AlB2 type for the heavy rare earth elements (according to the classification by Sitzmann; RÖMPP Online, 2011[RÖMPP Online (2011). Seltenerdmetalle. Thieme Chemistry online encyclopedia.]). This development is present in all samples independent of their thermal treatment, see Nentwich et al. (2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]). This meets an observation of Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]): upon heating the samples to 1600°C, they discovered two phase transformations, one from AlB2 type to GdSi2 type and another one from GdSi2 type to ThSi2 type. These transformations are reversible. A decreasing atomic number within the lanthanide group is accompanied with a significantly increasing radius and therefore with a higher space requirement. Increased thermal lattice vibrations at higher temperatures also cause higher space requirements. Thus, annealing has the same effect as decreasing the atomic number of R.

4. Conclusions

We present an extensive literature study of the RSi2 and R2TSi3 compounds crystallizing in AlB2- and ThSi2-like structures complemented by DFT calculations. The local similarities between these structures, e.g. threefold planar coordination of the Si/T atoms, twelvefold coordination of the R elements, are highlighted and discussed. Additionally, we systematized the structure data and arranged them in a Bärnighausen diagram showing the relationships between structure types. We were able to determine the space groups of the ordered nonstoichiometric disilicides as piezoelectric [P\overline{6}2m] (No. 189), [P\overline{6}2c] (No. 190) and P2mm (No. 25).

According to Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]), compounds La2FeSi3, La2CoSi3, La2NiSi3, Ce2CuSi3 and Ce2NiSi3 form a solid solution of structure type AlB2 (disordered Si/T sites). Nevertheless, as evident from the discussion, we conclude that superstructures are expected to be the thermodynamic equilibrium structures, although they may be hard to synthesize, as they require obtaining the exact chemical composition on the one hand and for a careful thermal treatment on the other hand.

Comparison of the symmetry distribution within the RT grid showed a special characteristic of the structure types Ca2AgSi3 and Ba4Li2Si6. These structure types only arise if R has the formal +II oxidation state and T is either Au or Ag. Additionally, these structures are reported to have ionic character, whereas all other compounds are reported to be metallic. The given RT diagram also shows a transition from tetragonal ThSi2 to orthorhombic GdSi2 to hexagonal AlB2 type within the lanthanide disilicides with increasing atomic number of R. The structure types behave similarly with increasing temperature when respective crystals are heated.

Figs. 5[link] to 7[link] emphasize the number of systematic investigations of the RSi2 and R2TSi3 compounds. On the one hand, these systematic investigations reduce systematic errors. On the other hand, the author's expectations may also have an impact on the evaluation (such as the structure type).

Concluding the DFT analysis, hypothetical compounds Ho2PtSi3, Pr2CoSi3, Eu2PtSi3 and Nd2CoSi3 are suggested to be stable, whereas Eu2RhSi3 will be unstable. Due to the positive results for Pr2CoSi3 and Nd2CoSi3, we recommend reinvestigating the R2TSi3 compounds reported by Mayer & Tassa (1969[Mayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173-177.]), with R = La, Ce, Pr, Nd, Sm, Gd and T = Fe, Co, Ni (originally with R2T0.8Si3.2 stoichiometry). To complete the crystal structure information of La2PdSi3, we predict the lattice parameters a = 8.34 Å and c = 4.38 Å in a Ce2CoSi3 type structure. With respect to the question whether Sr2AgSi3 prefers the Ca2AgSi3 or the Ba4Li2Si6 structure type, both models result in almost identical formation energies of −2.83 eV and are equally stable from a theoretical point of view. Likewise, BaSi2 may exhibit hexagonal as well as tetragonal symmetry, as the formation energy of both models is −1.03 eV. In comparison, the potential tetragonal superstructure is less favorable than a highly symmetric hexagonal structure. The results of this work do not exclude the existence of structures that are equally or more stable than the ones presented here. The solid solutions with disorder at the Si/T position may always present potential candidates for the ground state of a specific R2TSi3 compound.

At this point, the question of particular driving forces for a certain type of symmetry and the multiplicity of the superstructure symmetry types and structure types remains. This question will be addressed in the second part of this work (Nentwich et al., 2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]) focusing on the electronic structure.

APPENDIX A

Wyckoff positions of the different superstructures

Wyckoff positions of the different superstructures are presented here in Tables 2[link], 3[link], 4[link], 5[link], 6[link], 7[link], 8[link], 9[link], 10[link], 11[link], 12[link], 13[link], 14[link], 15[link], 16[link] and 17[link].

APPENDIX B

Fundamentals of the DFT calculations

To calculate the formation energies with DFT, it is necessary to know the energy of the components that make up the compound. Table 19[link] contains a list of the underlying single-element compounds used to calculate the formation energies in Table 18[link].

Table 19
Space groups of the unary R crystals used for standardization of the formation energies

Atomic number Element Space group ICSD code
14 Si [Fd\overline{3}m] (No. 227) 51688
27 Co P63/mmc (No. 194) 184251
28 Ni [Fm\overline{3}m] (No. 225) 646089
38 Sr [Fm\overline{3}m] (No. 225) 652875
45 Rh [Fm\overline{3}m] (No. 225) 171677
46 Pd [Fm\overline{3}m] (No. 225) 76148
47 Ag [Fm\overline{3}m] (No. 225) 181730
56 Ba [Im\overline{3}m] (No. 229) 108091
57 La P63/mmc (No. 194) 641382
58 Ce [Fm\overline{3}m] (No. 225) 620620
59 Pr [Fm\overline{3}m] (No. 225) 649185
60 Nd P63/mmc (No. 194) 164281
63 Eu [Im\overline{3}m] (No. 229) 604033
64 Gd P63/mmc (No. 194) 184250
65 Tb [R\overline{3}mH] (No. 166) 652944
66 Dy P63/mmc (No. 194) 95172
67 Ho [R\overline{3}mH] (No. 166) 639322
78 Pt [Fm\overline{3}m] (No. 225) 649490

Footnotes

These authors contributed equally to this work

Funding information

Funding for this research was provided by: European regional development fund (grant No. 100109976); Federal Ministry of Education and Research (grant No. 03EK3029A; grant No. 03SF0542A); Helmholtz Excellence Network (grant No. ExNet 0026); Deutsche Forschungsgemeinschaft (grant No. 324641898).

References

First citationAlbering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133–139.  CrossRef ICSD CAS Google Scholar
First citationAuffret, S., Pierre, J., Lambert, B., Soubeyroux, L. J. & Chroboczek, J. A. (1990). Physica B, 162, 271–280.  CrossRef ICSD CAS Google Scholar
First citationAuffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265–276.  CrossRef ICSD CAS Google Scholar
First citationd'Avitaya, F. A., Perio, A., Oberlin, J.-C., Campidelli, Y. & Chroboczek, J. A. (1989). Appl. Phys. Lett. 54, 2198–2200.  CAS Google Scholar
First citationBaptist, R., Ferrer, S., Grenet, G. & Poon, H. C. (1990). Phys. Rev. Lett. 64, 311–314.  CrossRef PubMed CAS Google Scholar
First citationBaptist, R., Pellissier, A. & Chauvet, G. (1988). Solid State Commun. 68, 555–559.  CrossRef CAS Google Scholar
First citationBärnighausen, H. (1980). Commun. Math. Chem. 9, 139–175.  Google Scholar
First citationBażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76–80.  Google Scholar
First citationBehr, G., Löser, W., Souptel, D., Fuchs, G., Mazilu, I., Cao, C., Köhler, A., Schultz, L. & Büchner, B. (2008). J. Cryst. Growth, 310, 2268–2276.  CrossRef CAS Google Scholar
First citationBenesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221–229.  CrossRef ICSD CAS Google Scholar
First citationBertaut, E. F. & Blum, P. (1950). Acta Cryst. 3, 319.  CrossRef ICSD IUCr Journals Google Scholar
First citationBinder, I. (1960). J. Am. Ceram. Soc. 43, 287–292.  CrossRef ICSD CAS Google Scholar
First citationBodak, O. I. & Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.  Google Scholar
First citationBodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.  Google Scholar
First citationBordet, P., Affronte, M., Sanfilippo, S., Núñez-Regueiro, M., Laborde, O., Olcese, G. L., Palenzona, A., LeFloch, S., Levy, D. & Hanfland, M. (2000). Phys. Rev. B, 62, 11392–11397.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBoutarck, N., Pierre, J., Lambert-Andron, B., L'Heritier, P. & Madar, R. (1994). J. Alloys Compd. 204, 251–260.  CrossRef ICSD Google Scholar
First citationBrauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210–211.  CrossRef CAS Google Scholar
First citationBrauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198–212.  CrossRef ICSD CAS Google Scholar
First citationBrauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325–339.  CrossRef ICSD CAS Google Scholar
First citationBrown, A. (1961). Acta Cryst. 14, 860–865.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationBrown, A. & Norreys, J. J. (1959). Nature, 183, 673.  CrossRef ICSD Google Scholar
First citationBrown, A. & Norreys, J. J. (1961). Nature, 191, 61–62.  CrossRef CAS Google Scholar
First citationBrutti, S., Nguyen-Manh, D. & Pettifor, D. (2006). Intermetallics, 14, 1472–1486.  CrossRef ICSD CAS Google Scholar
First citationCao, C., Blum, C. G. F. & Löser, W. (2014). J. Cryst. Growth, 401, 593–595.  CrossRef CAS Google Scholar
First citationCao, C., Blum, C. G. F., Ritschel, T., Rodan, S., Giebeler, L., Bombor, D., Wurmehl, S. & Löser, W. (2013). CrystEngComm, 15, 9052–9056.  CrossRef CAS Google Scholar
First citationCao, C., Klingeler, R., Vinzelberg, H., Leps, N., Löser, W., Behr, G., Muranyi, F., Kataev, V. & Büchner, B. (2010). Phys. Rev. B, 82, 134446.  CrossRef Google Scholar
First citationCao, C., Löser, W., Behr, G., Klingeler, R., Leps, N., Vinzelberg, H. & Büchner, B. (2011). J. Cryst. Growth, 318, 1009–1012.  CrossRef CAS Google Scholar
First citationCardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285–293.  CAS Google Scholar
First citationChaika, A. N., Ionov, A. M., Busse, M., Molodtsov, S. L., Majumdar, S., Behr, G., Sampathkumaran, E. V., Schneider, W. & Laubschat, C. (2001). Phys. Rev. B, 64, 125121.  CrossRef Google Scholar
First citationChevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 315–330.  CrossRef CAS Google Scholar
First citationChevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753–760.  CrossRef ICSD CAS Google Scholar
First citationChevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150–160.  CrossRef ICSD CAS Google Scholar
First citationChevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183–194.  CrossRef ICSD CAS Google Scholar
First citationCoffinberry, A. S. & Ellinger, F. H. (1955). Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 8, p. 826.  Google Scholar
First citationDemchenko, P., Bodak, O. I. & Muratova, L. (2002). J. Alloys Compd. 346, 170–175.  CrossRef ICSD CAS Google Scholar
First citationDhar, S. K., Balasubramanium, R., Pattalwar, S. M. & Vijayaraghavan, R. (1994). J. Alloys Compd. 210, 339–342.  CrossRef ICSD CAS Google Scholar
First citationDhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341–351.  CrossRef CAS Google Scholar
First citationDijkman, W. H., Moleman, A. C., Kesseler, E., de Boer, F. R. & de Chatel, P. F. (1982). Valence Instabilities. Proceedings of the International Conference held 13–16 April 1982 in Zürich, Switzerland, edited by P. Wachter and H. Boppart, p. 515. North-Holland Publishing Company.  Google Scholar
First citationDshemuchadse, J. (2008). Diplomarbeit, Technische Universität Dresden, Germany.  Google Scholar
First citationDwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.  Google Scholar
First citationEisenmann, B., Riekel, C., Schäfer, H. & Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 325–331.  CrossRef ICSD CAS Google Scholar
First citationEnyashin, A. N. & Gemming, S. (2007). Phys. Status Solidi B, 244, 3593–3600.  CrossRef CAS Google Scholar
First citationEremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. & Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181–184.  CrossRef CAS Google Scholar
First citationEvers, J. (1979). J. Solid State Chem. 28, 369–377.  CrossRef ICSD CAS Google Scholar
First citationEvers, J. (1980). J. Solid State Chem. 32, 77–86.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1979). Z. Naturforsch. Teil B, 34, 358–359.  CrossRef Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173–181.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1977b). Angew. Chem. 89, 673–674.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1978a). Angew. Chem. 90, 562–563.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249–258.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G. & Weiss, A. (1980). J. Less-Common Met. 69, 399–402.  CrossRef ICSD CAS Google Scholar
First citationEvers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19–L23.  CrossRef ICSD CAS Google Scholar
First citationFelner, I. & Schieber, M. (1973). Solid State Commun. 13, 457–461.  CrossRef ICSD CAS Google Scholar
First citationFlores-Livas, J. A., Debord, R., Botti, S., San Miguel, A., Pailhès, S. & Marques, M. A. L. (2011). Phys. Rev. B, 84, 184503.  Google Scholar
First citationFrontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.  Google Scholar
First citationFrontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. & Loewenhaupt, M. (2004). Physica B, 350, E187–E189.  CrossRef CAS Google Scholar
First citationFrontzek, M. D., Kreyssig, A., Doerr, M., Rotter, M., Behr, G., Löser, W., Mazilu, I. & Loewenhaupt, M. (2006). J. Magn. Magn. Mater. 301, 398–406.  CrossRef CAS Google Scholar
First citationGemming, S., Enyashin, A. & Schreiber, M. (2006). Amorphisation at Heterophase Interfaces. In Parallel Algorithms and Cluster Computing, Lecture Notes in Computational Science and Engineering, edited by K. H. Hoffmann and A. Meyer, pp. 235–254. Springer.  Google Scholar
First citationGemming, S. & Seifert, G. (2003). Phys. Rev. B, 68, 075416.  CrossRef Google Scholar
First citationGladyshevskii, E. I. (1959). Dopov. Akad. Nauk. Ukr. RSR, p. 294.  Google Scholar
First citationGladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.  Google Scholar
First citationGladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.  Google Scholar
First citationGladyshevskii, E. I. & Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861.  Google Scholar
First citationGladyshevskii, R. E., Cenzual, K. & Parthé, E. (1992). J. Alloys Compd. 189, 221–228.  CrossRef ICSD CAS Google Scholar
First citationGordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24–32.  CrossRef ICSD CAS Google Scholar
First citationGribanov, A., Grytsiv, A., Rogl, P., Seropegin, Y. & Giester, G. (2010). J. Solid State Chem. 183, 1278–1289.  CrossRef ICSD CAS Google Scholar
First citationHaynes, W. M. (2012). Editor. CRC Handbook of Chemistry and Physics, 93rd ed. Chemical Rubber Company.  Google Scholar
First citationHoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127–145.  CrossRef CAS Google Scholar
First citationHofmann, W. & Jäniche, W. (1935). Naturwissenschaften, 23, 851.  CrossRef ICSD Google Scholar
First citationHolleman, A. F. & Wiberg, N. (2007). Lehrbuch der anorganischen Chemie, 102nd ed. De Gruyter Reference Global.  Google Scholar
First citationHoussay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156–161.  CrossRef ICSD CAS Google Scholar
First citationHwang, J. S., Lin, K. J. & Tien, C. (1996). Solid State Commun. 100, 169–172.  CrossRef CAS Google Scholar
First citationIandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213–220.  CrossRef ICSD CAS Google Scholar
First citationImai, Y. & Watanabe, A. (2010). Intermetallics, 18, 1432–1436.  CrossRef ICSD CAS Google Scholar
First citationInosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. & Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.  CrossRef Google Scholar
First citationInternational Union for Crystallography (2017). Polymorphism. Online Dictionary of Crystallography.  Google Scholar
First citationJacobson, E. L., Freeman, R. D., Tharp, A. G. & Searcy, A. W. (1956). J. Am. Chem. Soc. 78, 4850–4852.  CrossRef ICSD CAS Google Scholar
First citationJanzon, K. H., Schäfer, H. & Weiss, A. (1970). Z. Anorg. Allg. Chem. 372, 87–99.  CrossRef ICSD CAS Google Scholar
First citationJi, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287–289.  CrossRef CAS Google Scholar
First citationKaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185–9195.  CrossRef ICSD CAS Google Scholar
First citationKase, N., Muranaka, T. & Akimitsu, J. (2009). J. Magn. Magn. Mater. 321, 3380–3383.  CrossRef CAS Google Scholar
First citationKimura, A., Li, D. X. & Shiokawa, Y. (1999). Solid State Commun. 113, 131–134.  CrossRef CAS Google Scholar
First citationKitano, A., Moriguchi, K., Yonemura, M., Munetoh, S., Shintani, A., Fukuoka, H., Yamanaka, S., Nishibori, E., Takata, M. & Sakata, M. (2001). Phys. Rev. B, 64, 045206.  CrossRef ICSD Google Scholar
First citationKnapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.  Google Scholar
First citationKoleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277–285.  CrossRef ICSD CAS Google Scholar
First citationKotroczo, V. & McColm, I. J. (1994). J. Alloys Compd. 203, 259–265.  CrossRef ICSD CAS Google Scholar
First citationKotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199–204.  CrossRef CAS Google Scholar
First citationKotur, B. Y. & Mokra, I. R. (1994). Neorg. Mater. 30, 783–787.  CAS Google Scholar
First citationKresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15–50.  CrossRef CAS Web of Science Google Scholar
First citationKresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758–1775.  Web of Science CrossRef CAS Google Scholar
First citationKubata, C., Krumeich, F., Wörle, M. & Nesper, R. (2005). Z. Anorg. Allg. Chem. 631, 546–555.  CrossRef ICSD CAS Google Scholar
First citationLahiouel, R., Galéra, R. M., Pierre, J. & Siaud, E. (1986). Solid State Commun. 58, 815–817.  CrossRef ICSD CAS Google Scholar
First citationLand, C. C., Johnson, K. A. & Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23–32.  CrossRef ICSD CAS Google Scholar
First citationLawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568–575.  CrossRef ICSD CAS Google Scholar
First citationLazorenko, V. I., Rud', B. M., Paderno, Yu. B. & Dvorina, L. A. (1974). Izv. Akad. Nauk. SSSR Neorg. Mater. 10, 1150–1151.  CAS Google Scholar
First citationLeciejewicz, J., Stüsser, N., Szytuła, A. & Zygmunt, A. (1995). J. Magn. Magn. Mater. 147, 45–48.  CrossRef CAS Google Scholar
First citationLeisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.  Google Scholar
First citationLejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67–71.  CrossRef CAS Google Scholar
First citationLi, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263–8274.  CrossRef CAS Google Scholar
First citationLi, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863–866.  CrossRef CAS Google Scholar
First citationLi, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211–213.  CrossRef Google Scholar
First citationLi, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227–232.  CrossRef CAS Google Scholar
First citationLi, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.  CrossRef Google Scholar
First citationLi, D. X., Nimori, S., Yamamura, T. & Shiokawa, Y. (2008). J. Appl. Phys. 103, 07B715.  CrossRef Google Scholar
First citationLi, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434–7437.  CrossRef CAS Google Scholar
First citationLi, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. & Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261–266.  CrossRef CAS Google Scholar
First citationLi, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329–333, 506–507.  CrossRef Google Scholar
First citationLi, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233–2238.  CrossRef CAS Google Scholar
First citationLourdes Pinto, M. de (1966). Acta Cryst. 21, 999.  Google Scholar
First citationLu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175–2179.  CrossRef CAS Google Scholar
First citationLuo, C. H., Shen, G. H. & Chen, L. J. (1997). Appl. Surf. Sci. 113–114, 457–461.  CrossRef Google Scholar
First citationMajumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509–514.  CrossRef CAS Google Scholar
First citationMajumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409–410.  Google Scholar
First citationMajumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770–6774.  CrossRef CAS Google Scholar
First citationMajumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99–106.  CrossRef CAS Google Scholar
First citationMajumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207–14211.  CrossRef CAS Google Scholar
First citationMalik, Z., Grytsiv, A., Rogl, P. & Giester, G. (2013). Intermetallics, 36, 118–126.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13–L17.  CrossRef CAS Google Scholar
First citationMallik, R., Sampathkumaran, E. V. & Paulose, P. L. (1998a). Solid State Commun. 106, 169–172.  CrossRef CAS Google Scholar
First citationMallik, R., Sampathkumaran, E. V., Strecker, M. & Wortmann, G. (1998b). Europhys. Lett. 41, 315–320.  CrossRef CAS Google Scholar
First citationMallik, R., Sampathkumaran, E. V., Strecker, M., Wortmann, G., Paulose, P. L. & Ueda, Y. (1998c). J. Magn. Magn. Mater. 185, L135–L143.  CrossRef CAS Google Scholar
First citationMayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693–696.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904–1908.  CrossRef ICSD CAS Google Scholar
First citationMayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25–31.  CrossRef ICSD CAS Google Scholar
First citationMayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355–356.  CrossRef ICSD CAS Google Scholar
First citationMayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292–296.  CrossRef ICSD CAS Google Scholar
First citationMayer, I. P. & Tassa, M. (1969). J. Less-Common Met. 19, 173–177.  CrossRef ICSD CAS Google Scholar
First citationMayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842–844.  CrossRef ICSD CAS Google Scholar
First citationMcWhan, D. B., Compton, V. B., Silverman, M. S. & Soulen, J. R. (1967). J. Less-Common Met. 12, 75–76.  CrossRef ICSD CAS Google Scholar
First citationMigas, D. B., Shaposhnikov, V. L. & Borisenko, V. E. (2007). Phys. Status Solidi B, 244, 2611–2618.  CrossRef ICSD CAS Google Scholar
First citationMitsufuji, S., Kagawa, T. & Kawamoto, M. (1996). Tohoku Daigaku Kinzoku Zairyo Kenkyusho Kyojiba Chodendo Zairyo Kenkyu Senta Nenji Hokoku, p. 223.  Google Scholar
First citationMo, Z. J., Shen, J., Yan, L. Q., Gao, X. Q., Tang, C. C., Wu, J. F., Sun, J. R. & Shen, B. G. (2015). J. Alloys Compd. 618, 512–515.  CrossRef ICSD CAS Google Scholar
First citationMulder, F. M., Thiel, R. C. & Buschow, K. H. J. (1994). J. Alloys Compd. 205, 169–174.  CrossRef ICSD CAS Google Scholar
First citationMulder, F. M., Thiel, R. C., Tung, L. D., Franse, J. J. M. & Buschow, K. H. J. (1998). J. Alloys Compd. 264, 43–49.  CrossRef CAS Google Scholar
First citationMurashita, Y., Sakurai, J. & Satoh, T. (1991). Solid State Commun. 77, 789–792.  CrossRef CAS Google Scholar
First citationNakano, H. & Yamanaka, S. (1994). J. Solid State Chem. 108, 260–266.  CrossRef ICSD CAS Google Scholar
First citationNasir, N., Melnychenko-Koblyuk, N., Grytsiv, A., Rogl, P., Giester, G., Wosik, J. & Nauer, G. E. (2010). J. Solid State Chem. 183, 565–574.  CrossRef ICSD CAS Google Scholar
First citationNentwich, M., Zschornak, M., Richter, C., Novikov, D. V. & Meyer, D. C. (2016). J. Phys. Condens. Matter, 28, 066002.  CrossRef PubMed Google Scholar
First citationNentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.  Google Scholar
First citationNesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12–16 June 1979, Stuttgart, Germany, pp. 150–152.  Google Scholar
First citationNimori, S. & Li, D. X. (2006). J. Phys. Soc. Jpn, 75, 195–197.  CrossRef Google Scholar
First citationNörenberg, C., Moram, M. A. & Dobson, P. J. (2006). Surf. Sci. 600, 4126–4131.  Google Scholar
First citationPalenzona, A. & Pani, M. (2004). J. Alloys Compd. 373, 214–219.  CrossRef ICSD CAS Google Scholar
First citationPan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. & Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.  CrossRef Google Scholar
First citationPatil, S., Iyer, K. K., Maiti, K. & Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.  CrossRef Google Scholar
First citationPaulose, P. L., Sampathkumaran, E. V., Bitterlich, H., Behr, G. & Löser, W. (2003). Phys. Rev. B, 67, 212401.  CrossRef Google Scholar
First citationPechev, S., Roisnel, T., Chevalier, B., Darriet, B. & Etourneau, J. (2000). Solid State Sci. 2, 773–780.  CrossRef ICSD CAS Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPerri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073–2074.  CrossRef ICSD Google Scholar
First citationPerri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616–619.  CrossRef ICSD CAS Google Scholar
First citationPeter, S. C. & Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287–293.  CrossRef ICSD CAS Google Scholar
First citationSarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006–8013.  CrossRef ICSD CAS Google Scholar
First citationPierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86–96.  CrossRef CAS Google Scholar
First citationPierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321–329.  CrossRef ICSD CAS Google Scholar
First citationPöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463–467.  Google Scholar
First citationPöttgen, R., Hoffmann, R.-D. & Kußmann, D. (1998). Z. Anorg. Allg. Chem. 624, 945–951.  Google Scholar
First citationPöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157–159.  Google Scholar
First citationRaman, A. (1967). Naturwissenschaften, 54, 560.  CrossRef Google Scholar
First citationRaman, A. (1968). Trans. Indian Inst. Met. 21, 5–8.  CAS Google Scholar
First citationRaman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789–1791.  CrossRef ICSD CAS Google Scholar
First citationRodewald, U. Ch., Hoffmann, R.-D., Pöttgen, R. & Sampathkumaran, E. V. (2003). Z. Naturforsch. Teil B, 58, 971–974.  CrossRef CAS Google Scholar
First citationRoge, T. P., Palmino, F., Savall, C., Labrune, J. C., Wetzel, P., Pirri, C. & Gewinner, G. (1995). Phys. Rev. B, 51, 10998–11001.  CrossRef CAS Google Scholar
First citationRojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. & Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192–3195.  CrossRef CAS Google Scholar
First citationRomaka, V. V., Falmbigl, M., Grytsiv, A. & Rogl, P. (2012). J. Solid State Chem. 186, 87–93.  CrossRef ICSD CAS Google Scholar
First citationRÖMPP Online (2011). Seltenerdmetalle. Thieme Chemistry online encyclopedia.  Google Scholar
First citationRuggiero, A. F. & Olcese, G. L. (1964). Atti Accad. Naz Lincei Cl. Sci. Fis. Mat. Nat. Rend. 37, 169–174.  CAS Google Scholar
First citationRunnalls, O. J. C. & Boucher, R. R. (1955). Acta Cryst. 8, 592.  CrossRef ICSD IUCr Journals Google Scholar
First citationSalamakha, P., Demchenko, P., Sologub, O. & Bodak, O. (1998). J. Alloys Compd. 278, 227–230.  CrossRef CAS Google Scholar
First citationSasa, Y. & Uda, M. (1976). J. Solid State Chem. 18, 63–68.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T. & Komatsubara, T. (1992). J. Magn. Magn. Mater. 108, 115–116.  CrossRef CAS Google Scholar
First citationSato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T., Sakatsume, S. & Komatsubara, T. (1991). J. Phys. Soc. Jpn, 60, 757–759.  CrossRef ICSD CAS Google Scholar
First citationSato, N., Mori, H., Yashima, H., Satoh, T. & Takei, H. (1984). Solid State Commun. 51, 139–142.  CrossRef CAS Google Scholar
First citationSchäfer, H., Janzon, K. H. & Weiß, A. (1963). Angew. Chem. 75, 451–452.  Google Scholar
First citationSchnering, H. G. von, Bolle, U., Curda, J., Peters, K., Carrillo-Cabrera, W., Somer, M., Schultheiss, M. & Wedig, U. (1996). Angew. Chem. 108, 1062–1064.  Google Scholar
First citationSchobinger-Papamantellos, P., Buschow, K. H. J. & Fischer, P. (1991). J. Magn. Magn. Mater. 97, 53–68.  CAS Google Scholar
First citationSchröder, A., Collins, M. F., Stager, C. V., Garrett, J. D., Greedan, J. E. & Tun, Z. (1995). J. Magn. Magn. Mater. 140–144, 1407–1408.  Google Scholar
First citationSekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274–278.  CrossRef ICSD CAS Google Scholar
First citationSengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.  Google Scholar
First citationShaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880–6887.  CrossRef ICSD CAS Google Scholar
First citationStauffer, L., Pirri, C., Wetzel, P., Mharchi, A., Paki, P., Bolmont, D., Gewinner, G. & Minot, C. (1992). Phys. Rev. B, 46, 13201–13206.  CrossRef CAS Google Scholar
First citationStokes, H. T. & Hatch, D. M. (2005). J. Appl. Cryst. 38, 237–238.  CrossRef CAS IUCr Journals Google Scholar
First citationSzlawska, M., Gnida, D. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.  CrossRef Google Scholar
First citationSzlawska, M. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.  CrossRef Google Scholar
First citationSzlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.  CrossRef ICSD Google Scholar
First citationSzlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. & Stępień-Damm, J. (2009). Phys. Rev. B, 79, 134435.  CrossRef ICSD Google Scholar
First citationSzlawska, M., Majewicz, M. & Kaczorowski, D. (2016). J. Alloys Compd. 662, 208–212.  CrossRef ICSD CAS Google Scholar
First citationSzlawska, M., Pikul, A. & Kaczorowski, D. (2007). Mater. Sci. Pol. 25, 1267.  Google Scholar
First citationSzytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365–375.  Google Scholar
First citationSzytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (2000). Acta Phys. Pol. A, 97, 823–826.  Google Scholar
First citationSzytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302–306.  Google Scholar
First citationTang, F., Frontzek, M. D., Dshemuchadse, J., Leisegang, T., Zschornak, M., Mietrach, R., Hoffmann, J.-U., Löser, W., Gemming, S., Meyer, D. C. & Loewenhaupt, M. (2011). Phys. Rev. B, 84, 104105.  CrossRef Google Scholar
First citationTang, F., Link, P., Frontzek, M. D., Mignot, J.-M., Hoffmann, J.-U., Löser, W. & Loewenhaupt, M. (2010a). J. Phys. Conf. Ser. 251, 012017.  CrossRef Google Scholar
First citationTang, F., Link, P., Frontzek, M. D., Schneidewind, A., Löser, W. & Loewenhaupt, M. (2010b). J. Phys. Conf. Ser. 251, 012004.  CrossRef Google Scholar
First citationTien, C., Luo, L. & Hwang, J. S. (1997). Phys. Rev. B, 56, 11710–11714.  CrossRef CAS Google Scholar
First citationTsai, W. C., Hsu, H. C., Hsu, H. F. & Chen, L. J. (2005). Appl. Surf. Sci. 244, 115–119.  CrossRef CAS Google Scholar
First citationWang, F., Yuan, F.-Y., Wang, J.-Z., Feng, T.-F. & Hu, G.-Q. (2014). J. Alloys Compd. 592, 63–66.  CrossRef CAS Google Scholar
First citationWang, L. R., Tran, B., He, M. Q., Meingast, C., Abdel-Hafiez, M., Cao, C. D., Bitterlich, H., Löser, W. & Klingeler, R. (2019). J. Phys. Soc. Jpn, 88, 094709.  CrossRef Google Scholar
First citationWeigel, F. & Marquart, R. (1983). J. Less-Common Met. 90, 283–290.  CrossRef ICSD CAS Google Scholar
First citationWeigel, F., Wittmann, F. D. & Marquart, R. (1977). J. Less-Common Met. 56, 47–53.  CrossRef ICSD CAS Google Scholar
First citationWeigel, F., Wittmann, F. D., Schuster, W. & Marquart, R. (1984). J. Less-Common Met. 102, 227–238.  CrossRef ICSD CAS Google Scholar
First citationWeitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076–2080.  CrossRef ICSD CAS Google Scholar
First citationXu, Y., Frontzek, M. D., Mazilu, I., Löser, W., Behr, G., Büchner, B. & Liu, L. (2011a). J. Cryst. Growth, 318, 942–946.  CrossRef CAS Google Scholar
First citationXu, Y., Löser, W., Behr, G., Frontzek, M. D., Tang, F., Büchner, B. & Liu, L. (2010). J. Cryst. Growth, 312, 1992–1996.  CrossRef CAS Google Scholar
First citationXu, Y., Löser, W., Tang, F., Blum, C. G. F., Liu, L. & Büchner, B. (2011b). Cryst. Res. Technol. 46, 135–139.  CrossRef CAS Google Scholar
First citationYaar, I., Fredo, S., Gal, J., Potzel, W., Kalvius, G. M. & Litterst, F. J. (1992). Phys. Rev. B, 45, 9765.  CrossRef ICSD Google Scholar
First citationYamamura, T., Li, D. X., Yubuta, K. & Shiokawa, Y. (2006). J. Alloys Compd. 408–412, 1324–1328.  CrossRef CAS Google Scholar
First citationYashima, H., Mori, H., Satoh, T. & Kohn, K. (1982a). Solid State Commun. 43, 193–197.  CrossRef CAS Google Scholar
First citationYashima, H., Sato, N., Mori, H. & Satoh, T. (1982b). Solid State Commun. 43, 595–599.  CrossRef CAS Google Scholar
First citationYashima, H. & Satoh, T. (1982). Solid State Commun. 41, 723–727.  CrossRef CAS Google Scholar
First citationYashima, H., Satoh, T., Mori, H., Watanabe, D. & Ohtsuka, T. (1982c). Solid State Commun. 41, 1–4.  CrossRef CAS Google Scholar
First citationYubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286–289.  CrossRef CAS Google Scholar
First citationYubuta, K., Yamamura, T. & Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109–6116.  CrossRef CAS PubMed Google Scholar
First citationZachariasen, W. H. (1949). Acta Cryst. 2, 94–99.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationZajdel, P., Kisiel, A., Szytuła, A., Goraus, J., Balerna, A., Banaś, A., Starowicz, P., Konior, J., Cinque, G. & Grilli, A. (2015). Nucl. Instrum. Methods Phys. Res. B, 364, 76–84.  CrossRef CAS Google Scholar
First citationZeiringer, I., Grytsiv, A., Bauer, E., Giester, G. & Rogl, P. (2015). Z. Anorg. Allg. Chem. 641, 1404–1421.  CrossRef ICSD CAS Google Scholar
First citationZhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229–1238.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds