research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Structure variations within RSi2 and R2TSi3 silicides. Part I. Structure overview

CROSSMARK_Color_square_no_text.svg

aInstitute for Experimental Physics, Technical University Bergakademie Freiberg, 09596 Freiberg, Germany, bInstitute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany, cInstitute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany, and dSamara Center for Theoretical Materials Science, Samara National Research University, 443086 Samara, Russia
*Correspondence e-mail: Melanie.Nentwich@physik.tu-freiberg.de

Edited by J. Lipkowski, Polish Academy of Sciences, Poland (Received 19 December 2019; accepted 26 January 2020; online 12 March 2020)

Here, structural parameters of various structure reports on RSi2 and R2TSi3 compounds [where R is an alkaline earth metal, a rare earth metal (i.e. an element of the Sc group or a lathanide), or an actinide and T is a transition metal] are summarized. The parameters comprising composition, lattice parameters a and c, ratio c/a, formula unit per unit cell and structure type are tabulated. The relationships between the underlying structure types are presented within a group–subgroup scheme (Bärnighausen diagram). Additionally, unexpectedly missing compounds within the R2TSi3 compounds were examined with density functional theory and compounds that are promising candidates for synthesis are listed. Furthermore, a correlation was detected between the orthorhombic AlB2-like lattices of, for example, Ca2AgSi3 and the divalence of R and the monovalence of T. Finally, a potential tetragonal structure with ordered Si/T sites is proposed.

1. Introduction

The rare earth disilicides RSi2 have been the subject of numerous studies in the past few decades mainly due to their exciting magnetic properties, such as magnetic ordering phenomena (Wang et al., 2019[Wang, L. R., Tran, B., He, M. Q., Meingast, C., Abdel-Hafiez, M., Cao, C. D., Bitterlich, H., Löser, W. & Klingeler, R. (2019). J. Phys. Soc. Jpn, 88, 094709.]; Pan et al., 2013[Pan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. & Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.]; Kotsanidis et al., 1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.]; Li et al., 1998a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]; Bazela et al., 2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]; Inosov et al., 2009[Inosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. & Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.]), especially ferromagnetic ordering (Majumdar et al., 1998[Majumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409-410.], 1999b[Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.]; Li et al., 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.],b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.], 2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.]; Frontzek et al., 2004[Frontzek, M. D., Kreyssig, A., Doerr, M., Hoffman, J., Hohlwein, D., Bitterlich, H., Behr, G. & Loewenhaupt, M. (2004). Physica B, 350, E187-E189.]), their spin-glass-like behavior (Li et al., 1998a[Li, D. X., Kimura, A., Homma, Y., Shiokawa, Y., Uesawa, A. & Suzuki, T. (1998a). Solid State Commun. 108, 863-866.], 1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.], 2002b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.], 2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.]; Kimura et al., 1999[Kimura, A., Li, D. X. & Shiokawa, Y. (1999). Solid State Commun. 113, 131-134.]; Szytuła et al., 1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.], 2000[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (2000). Acta Phys. Pol. A, 97, 823-826.]; Paulose et al., 2003[Paulose, P. L., Sampathkumaran, E. V., Bitterlich, H., Behr, G. & Löser, W. (2003). Phys. Rev. B, 67, 212401.]; Lu et al., 2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.]) and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions (Li et al., 2002b[Li, D. X., Shiokawa, Y., Nimori, S., Haga, Y., Yamamoto, E., Matsuda, T. D. & Ōnuki, Y. (2002b). Physica B, 329-333, 506-507.]; Inosov et al., 2009[Inosov, D. S., Evtushinsky, D. V., Koitzsch, A., Zabolotnyy, V. B., Borisenko, S. V., Kordyuk, A. A., Frontzek, M. D., Loewenhaupt, M., Löser, W., Mazilu, I., Bitterlich, H., Behr, G., Hoffmann, J.-U., Follath, R. & Büchner, B. (2009). Phys. Rev. Lett. 102, 145276.]; Tang et al., 2010a[Tang, F., Link, P., Frontzek, M. D., Mignot, J.-M., Hoffmann, J.-U., Löser, W. & Loewenhaupt, M. (2010a). J. Phys. Conf. Ser. 251, 012017.],b[Tang, F., Link, P., Frontzek, M. D., Schneidewind, A., Löser, W. & Loewenhaupt, M. (2010b). J. Phys. Conf. Ser. 251, 012004.]; Lu et al., 2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.]), which have been studied since the early 1980s. In the middle of the 20th century, ternary compounds of composition U2TSi3 (with a transition metal T substituting one in four Si atoms) were a central research subject due to the emerging use of U-containing compounds in the military and the energy sector. Some of the formed structures are considered as prototypes for further R2TSi3 compounds.

As it has been widely discussed in the literature (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]; Pan et al., 2013[Pan, Z.-Y., Cao, C., Bai, X.-J., Song, R.-B., Zheng, J.-B. & Duan, L.-B. (2013). Chin. Phys. B, 22, 056102.]; Peter & Kanatzidis, 2012[Peter, S. C. & Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287-293.]), the RSi2 and R2TSi3 compounds crystallize with the hexagonal AlB2 and the tetragonal ThSi2 type and derivative structure types (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Some of the disilicides are polymorphic (Perri et al., 1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]; Brown & Norreys, 1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.]; Mayer et al., 1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]), meaning that they crystallize in two or more different phases (International Union for Crystallography, 2017[International Union for Crystallography (2017). Polymorphism. Online Dictionary of Crystallography.]). This reflects in the now obsolete structure-type names α-USi2 and α-ThSi2 for tetragonal ThSi2 as well as β-USi2 and β-ThSi2 for hexagonal AlB2 (Evers et al., 1980[Evers, J., Oehlinger, G. & Weiss, A. (1980). J. Less-Common Met. 69, 399-402.]; Yashima et al., 1982a[Yashima, H., Mori, H., Satoh, T. & Kohn, K. (1982a). Solid State Commun. 43, 193-197.],b[Yashima, H., Sato, N., Mori, H. & Satoh, T. (1982b). Solid State Commun. 43, 595-599.],c[Yashima, H., Satoh, T., Mori, H., Watanabe, D. & Ohtsuka, T. (1982c). Solid State Commun. 41, 1-4.]; Yashima & Satoh, 1982[Yashima, H. & Satoh, T. (1982). Solid State Commun. 41, 723-727.]; Lejay et al., 1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]; Evers et al., 1983[Evers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19-L23.]; Weigel et al., 1984[Weigel, F., Wittmann, F. D., Schuster, W. & Marquart, R. (1984). J. Less-Common Met. 102, 227-238.]; Sato et al., 1984[Sato, N., Mori, H., Yashima, H., Satoh, T. & Takei, H. (1984). Solid State Commun. 51, 139-142.]; Zhong et al., 1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.]; Chevalier et al., 1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.]; Dhar et al., 1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.]).

The relationship between the large variety of the derivatives from AlB2 and ThSi2 aristotypes can be nicely explained within the group–subgroup scheme, also known as Bärnig­hausen formalism (Bärnighausen, 1980[Bärnighausen, H. (1980). Commun. Math. Chem. 9, 139-175.]). The AlB2 structure is one of the simplest inorganic structure types. It has hexagonal space group P6/mmm (No. 191) and its unit cell incorporates only the two Wyckoff sites 1a and 2d (Hofmann & Jäniche, 1935[Hofmann, W. & Jäniche, W. (1935). Naturwissenschaften, 23, 851.]) occupied by one R atom on the Al site and two Si atoms on the B site, forming a two-dimensional Si network, similar to graphite. The unit cell of the ThSi2 structure also has only two occupied Wyckoff positions (4a and 8e), but the Si sublattice forms a more complex 3D network (Brauer & Mittius, 1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]).

Nowadays, 46 structure types derived from AlB2 (Hoffmann & Pöttgen, 2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]) and four from ThSi2 are known. They include binary and ternary intermetallic compounds with compositions RX2, RT2, RTX or R2TX3, where X is an element of the third or fourth group.

In this work, we systematize the occurrence of RSi2 and R2TSi3 compounds, where R = alkaline earth metal, lanthanide, actinide or member of the Sc group and T is a transition metal. We present 12 different structure types of these compounds derived from the AlB2 type. Six of these structure types have not been considered by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Additionally, we present three further structure types based on the tetragonal ThSi2 type. One of these types is purely hypothetical and considers the possibility of ordered Si/T positions in ThSi2-like structures. Furthermore, we order all structure reports for RSi2 and R2TSi3 compounds according to their R and T elements within an RT grid. After analyzing all element combinations, we choose nine promising compounds not found in the literature and perform DFT calculations to evaluate the probability of a successful synthesis. We discuss peculiarities of the distribution of structure types among the RSi2 and R2TSi3 compounds, based on a mapping of symmetries on the RT grid with corresponding symbols.

2. Methods

To gain a comprehensive overview of RSi2 and R2TSi3 compounds, we performed an extensive literature search by scanning the ICSD, SciFinder and Reaxys databases for all possible element combinations for T within the Cr to Zn groups and R within the Sc group, the alkaline earth metal, the lanthanides and the actinides. Only experiments at ambient conditions were considered. Additionally, we did not consider data sets if they were too incomplete, i.e. missing lattice parameters or an insufficient description of the symmetry. Additionally, we did not take incommensurately modulated structures into account, because these modulations mainly arise for nonstoichiometric disilicides within this family of compounds and because the descriptions do not conform with those of conventional symmetry. Please refer to Leisegang (2010[Leisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.]), Kubata et al. (2005[Kubata, C., Krumeich, F., Wörle, M. & Nesper, R. (2005). Z. Anorg. Allg. Chem. 631, 546-555.]) and Dshemuchadse (2008[Dshemuchadse, J. (2008). Diplomarbeit, Technische Universität Dresden, Germany.]) for further information. However, commensurable modulations are interpreted as superstructures.

Table 1[link] contains the tabulated data of the composition of the compounds as well as their structure parameters, i.e. lattice parameters a and c, ratios c/a, formula units per unit cell, and structure type. These data were used without further refinement. The compounds, discussed within this article, are more than solid solutions as most of them exhibit ordered structures and, therefore, have distinct structure types compared to similar stoichiometries. Within this article, only the formula units and the deviation of the compounds within the range of R and T elements is of interest. Part II (Nentwich et al., 2020[Nentwich, M., Zschornak, M., Sonntag, M., Leisegang, T. & Meyer, D. C. (2020). Acta Cryst. B, Submitted.]) will discuss and compare other parameters.

Table 1
Alphabetically sorted list of RSi2 and R2TSi3 compounds and their crystal data

R is an element of the alkaline earth metals, the scandium group, or the lanthanide or actinide series. T is a transition metal, Al or Si; thus a disilicide. The supercell can be identified by the formula units per unit cell. Lines written in blue indicate data sets not used for Fig. 9[link].

R T a (Å) b (Å) c (Å) c/a Formula units Structure type Thermal treatment Reference ICSD number
Am Si 4.0190   13.6880 3.4058 4 ThSi2 Weigel et al. (1977[Weigel, F., Wittmann, F. D. & Marquart, R. (1977). J. Less-Common Met. 56, 47-53.])  
    4.0150   13.7330 3.4204 4 ThSi2 Weigel et al. (1984[Weigel, F., Wittmann, F. D., Schuster, W. & Marquart, R. (1984). J. Less-Common Met. 102, 227-238.]) 43816
Ba Ag 8.6130 14.9270 19.6390 2.2802 16 Ba4Li2Si6 550°C, 1.5 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410520
Ca Ag 8.3150 8.6460 14.3910 1.7307 8 Ca2AgSi3 550°C, 1.5 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410522
  Ni 3.9880   4.3460 1.0898 1 AlB2 Bodak & Gladyshevskii (1968[Bodak, O. I. & Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.]) 20300
  Si 4.2830   13.5200 3.1567 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1453
    4.2830   13.5200 3.1567 4 ThSi2 Evers et al. (1978b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.])  
    4.2832   13.5420 3.1617 4 ThSi2 McWhan et al. (1967[McWhan, D. B., Compton, V. B., Silverman, M. S. & Soulen, J. R. (1967). J. Less-Common Met. 12, 75-76.]) 87392
    4.2830   13.5300 3.1590 4 ThSi2 Nakano & Yamanaka (1994[Nakano, H. & Yamanaka, S. (1994). J. Solid State Chem. 108, 260-266.])  
Ce Au 4.2220   14.3750 3.4048 4 t 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.2840   8.7010 1.0503 8 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.3060   8.6870 1.0459 8 Er2RhSi3 (190/194) Floating zone Majumdar et al. (2000[Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.])  
  Co 4.0440   4.1940 1.0371 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) 52846
    8.1040   4.1970 0.5179 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.]) 83895
    8.1100   4.2200 0.5203 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Majumdar et al. (1999a[Majumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.])  
    8.1130   4.2190 0.5200 4 Ce2CoSi3/U2RuSi3 Floating zone Majumdar et al. (2000[Majumdar, S., Sampathkumaran, E. V., Paulose, P. L., Bitterlich, H., Löser, W. & Behr, G. (2000). Phys. Rev. B, 62, 14207-14211.])  
    8.0890   8.4020 1.0387 8 Er2RhSi3 (190/194) 800°C, 5 days Patil et al. (2008[Patil, S., Iyer, K. K., Maiti, K. & Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.])  
  Cu 4.0600   4.2800 1.0542 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0770   4.3140 1.0581 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20303
    4.0590   4.2940 1.0579 1 AlB2 Hwang et al. (1996[Hwang, J. S., Lin, K. J. & Tien, C. (1996). Solid State Commun. 100, 169-172.])  
    4.0580   4.2960 1.0586 1 AlB2 850°C, 7 days Lu et al. (2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.])  
    8.0920   4.2060 0.5198 4 Ce2CoSi3/U2RuSi3 850°C, 7 days Lu et al. (2013[Lu, J. J., Gan, K. J., Mo, T. S. & Lin, T. C. (2013). J. Supercond. Nov. Magn. 26, 2175-2179.])  
    4.1360   4.2370 1.0244 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0650   4.3020 1.0583 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0640   4.3040 1.0591 1 AlB2 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
    8.1280   8.6080 1.0591 8 Er2RhSi3 (190/194) 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
  Fe 4.0680   4.1400 1.0177 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20304
    4.0620   4.2120 1.0369 1 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
  Ir 8.2120   4.2374 0.5160 4 Ce2CoSi3/U2RuSi3 Szlawska & Kaczorowski (2011[Szlawska, M. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 094430.])  
  Ni 4.0390   4.2870 1.0614 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) 621652
    4.0480   4.2910 1.0600 1 AlB2 Dhar et al. (1994[Dhar, S. K., Balasubramanium, R., Pattalwar, S. M. & Vijayaraghavan, R. (1994). J. Alloys Compd. 210, 339-342.]) 658279
    4.0430   4.3020 1.0641 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20302
    4.0406   4.2801 1.0593 1 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    4.0610   4.1490 1.0217 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0710   4.2020 1.0322 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0485   4.2887 1.0593 1 AlB2 800°C, 7 days Rojas et al. 2010[Rojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. & Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192-3195.])  
    4.0450   4.2830 1.0588 1 AlB2 Szlawska & Kaczorowski (2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.]) 187100
  Pd 8.2631   17.1320 2.0733 16 h 750°C, 14 days Gordon et al. (1997[Gordon, R. A., Warren, C. J., Alexander, M. G., DiSalvo, F. J. & Pöttgen, R. (1997). J. Alloys Compd. 248, 24-32.])  
    8.2330   8.5650 1.0403 8 Er2RhSi3 (190/194) 750°C, 7 days Mallik & Sampathkumaran (1996[Mallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.])  
    4.1215   4.2723 1.0366 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.2500   4.3320 0.5251 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.2100   8.4100 1.0244 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 621958
    8.2310   8.4391 1.0253 8 Er2RhSi3 Kase et al. (2009[Kase, N., Muranaka, T. & Akimitsu, J. (2009). J. Magn. Magn. Mater. 321, 3380-3383.])  
    8.3270   8.5160 1.0227 8 Er2RhSi3 ([P\overline{6}2c]) 730°C, 4 days Leciejewicz et al. (1995[Leciejewicz, J., Stüsser, N., Szytuła, A. & Zygmunt, A. (1995). J. Magn. Magn. Mater. 147, 45-48.])  
    8.2370   8.4450 1.0253 8 Er2RhSi3 (190/194) 800°C, 5 days Patil et al. (2008[Patil, S., Iyer, K. K., Maiti, K. & Sampathkumaran, E. V. (2008). Phys. Rev. B, 77, 094443.])  
    8.2300   8.4400 1.0255 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
    8.2240   4.2261 0.5139 4 Ce2CoSi3/U2RuSi3 Szlawska et al. (2009[Szlawska, M., Kaczorowski, D., Ślebarski, A., Gulay, L. & Stępień-Damm, J. (2009). Phys. Rev. B, 79, 134435.]) 164827
    8.2620   8.4390 1.0214 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 106425
  Si 4.1900   13.9300 3.3246 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    4.2700   13.8800 3.2506 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.1415   13.7816 3.3277 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 622204
    4.1560   13.8400 3.3301 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25664
    4.1760   13.8480 3.3161 4 ThSi2-like 1100°C, 14 days Dhar et al. (1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.])  
    4.1910   13.8890 3.3140 4 ThSi2-defect 1100°C, 14 days Dhar et al. (1987[Dhar, S. K., Gschneidner, K. A., Lee, W. H., Klavins, P. & Shelton, R. N. (1987). Phys. Rev. B, 36, 341-351.])  
    4.1940   13.9300 3.3214 4 ThSi2 Dijkman et al. (1982[Dijkman, W. H., Moleman, A. C., Kesseler, E., de Boer, F. R. & de Chatel, P. F. (1982). Valence Instabilities. Proceedings of the International Conference held 13-16 April 1982 in Zürich, Switzerland, edited by P. Wachter and H. Boppart, p. 515. North-Holland Publishing Company.]) 622206
    4.1900   13.9300 3.3246 4 ThSi2-defect or Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.])  
    4.1900   13.8800 3.3126 4 ThSi2 Lahiouel et al. (1986[Lahiouel, R., Galéra, R. M., Pierre, J. & Siaud, E. (1986). Solid State Commun. 58, 815-817.]) 622197
    4.2700   13.8800 3.2506 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.]) 622190
    4.1900   13.9400 3.3270 4 ThSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 622153
    4.1800   13.8900 3.3230 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.1700   13.8200 3.3141 4 ThSi2-defect 950°C, 7 days Murashita et al. (1991[Murashita, Y., Sakurai, J. & Satoh, T. (1991). Solid State Commun. 77, 789-792.])  
    4.1900   13.9200 3.3222 4 ThSi2 950°C, 7 days Murashita et al. (1991[Murashita, Y., Sakurai, J. & Satoh, T. (1991). Solid State Commun. 77, 789-792.])  
    4.2700   13.8800 3.2506 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
    4.1900   13.9200 3.3222 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.1500   13.8700 3.3422 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
    4.1920   13.9030 3.3166 4 ThSi2 Ruggiero & Olcese (1964[Ruggiero, A. F. & Olcese, G. L. (1964). Atti Accad. Naz Lincei Cl. Sci. Fis. Mat. Nat. Rend. 37, 169-174.]) 622138
    4.1780   13.8500 3.3150 4 ThSi2-defect 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.])  
    4.1880 4.1180 13.8800 3.3142 4 Nd□ xSi2−x 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.]) 622192
    4.1910   13.9490 3.3283 4 ThSi2 1000°C, 3 days Shaheen & Schilling (1987[Shaheen, S. A. & Schilling, J. S. (1987). Phys. Rev. B, 35, 6880-6887.]) 622192
    4.1890   13.8920 3.3163 4 ThSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.]) 622175
    4.1840   13.8560 3.3117 4 ThSi2 Yashima et al. (1982c[Yashima, H., Satoh, T., Mori, H., Watanabe, D. & Ohtsuka, T. (1982c). Solid State Commun. 41, 1-4.])  
    4.1600   13.9000 3.3413 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31642
Cm Si 3.9630   13.7200 3.4620 4 ThSi2 Weigel & Marquart (1983[Weigel, F. & Marquart, R. (1983). J. Less-Common Met. 90, 283-290.])  
Dy Ni 3.9700   4.0130 1.0108 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 53369
  Pd 8.1110   8.0550 0.9931 8 h Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0620   4.0310 0.9924 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.0620   4.0310 0.9924 1 AlB2 750°C, 10 days Nimori & Li (2006[Nimori, S. & Li, D. X. (2006). J. Phys. Soc. Jpn, 75, 195-197.])  
    4.0612   4.0334 0.9932 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.1000   8.2000 1.0123 8 Er2RhSi3 ([P\overline{6}2c]) 900°C, 23 days Li et al. (2013[Li, D. X., Yamamura, T., Homma, Y., Yubuta, K., Shikama, T., Aoki, D., Nimori, S. & Haga, Y. (2013). J. Korean Phys. Soc. 62, 2233-2238.])  
  Rh 8.0970   7.8230 0.9662 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 630163
  Si 4.0400 3.9500 13.3300 3.2995 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    3.8300   4.1100 1.0731 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20248
    3.8310   4.1210 1.0757 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 630294
    3.8285 6.6312 4.1230 1.0769 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.6338   4.1200 0.6211 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8310 6.6355 4.1210 1.0757 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 53382
    3.8300   4.1200 1.0757 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 103369
    4.0450 3.9350 13.3190 3.2927 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 630287
    4.0300 3.9300 13.3200 3.3052 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.0300 3.9310 13.3200 3.3052 4 GdSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    3.9739   13.6760 3.4415 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 630314
    4.0400 3.9500 13.3400 3.3020 4 GdSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 630297
    4.0300   13.3800 3.3201 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150663
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.]) 630297
    4.0380 3.9370 13.3100 3.2962 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
Er Cu 3.9670   13.7300 3.4611 4 ThSi2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.]) 627257
  Ni 3.9600   3.9860 1.0066 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 53404
  Pd 4.0640   3.9910 0.9820 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.0920   7.9250 0.9794 8 h Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0427   3.9794 0.9843 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Rh 8.0780   8.7480 1.0829 8 Er2RhSi3 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97376
    8.0780   7.7480 0.9591 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97375
    8.0360   7.7120 0.9597 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 53413
    8.1130   7.7556 0.9559 8 Er2RhSi3 800°C, 14 days Gladyshevskii et al. (1992[Gladyshevskii, R. E., Cenzual, K. & Parthé, E. (1992). J. Alloys Compd. 189, 221-228.]) 300248
  Si 3.7930 6.5697 4.0820 1.0762 2 Er3□Si5 Auffret et al. (1990[Auffret, S., Pierre, J., Lambert, B., Soubeyroux, L. J. & Chroboczek, J. A. (1990). Physica B, 162, 271-280.])  
    3.7990   4.0890 1.0763 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20250
    3.7980   4.0880 1.0764 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 631146
    3.7990 6.5801 4.0895 1.0765 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.5818   4.0900 0.6214 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7990 6.5801 4.0900 1.0766 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 631159
    3.7800   4.0900 1.0820 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 631151
    3.7800   4.0800 1.0794 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 631140
    3.7850   4.0800 1.0779 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 631144
    3.8000   4.0900 1.0763 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 631153
    3.9370   13.6160 3.4585 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 631164
    3.7920   4.0830 1.0767 1 AlB2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 631150
    3.8000   4.0900 1.0763 1 AlB2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 631155
    6.5783   8.1760 1.2429 6 Tb3□Si5 700°C, 0 days Tsai et al. (2005[Tsai, W. C., Hsu, H. C., Hsu, H. F. & Chen, L. J. (2005). Appl. Surf. Sci. 244, 115-119.])  
Eu Ag 8.4200 14.8580 17.8640 2.1216 16 Ba4Li2Si6 900°C, 3 days Cardoso Gil et al. (1999[Cardoso Gil, R., Carrillo-Cabrera, W., Schultheiss, M., Peters, K. & von Schnering, H. G. (1999). Z. Anorg. Allg. Chem. 625, 285-293.]) 410521
    4.1500   4.5150 1.0880 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 58453
    8.3060 9.0369 14.3770 1.7309 8 Ca2AgSi3 800°C, 5 days Sarkar et al. (2013[Sarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.]) 250524
  Co 4.0460   4.5000 1.1122 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 102379
  Cu 4.0762   4.4895 1.1014 1 AlB2-like Floating zone Cao et al. (2010[Cao, C., Klingeler, R., Vinzelberg, H., Leps, N., Löser, W., Behr, G., Muranyi, F., Kataev, V. & Büchner, B. (2010). Phys. Rev. B, 82, 134446.], 2011[Cao, C., Löser, W., Behr, G., Klingeler, R., Leps, N., Vinzelberg, H. & Büchner, B. (2011). J. Cryst. Growth, 318, 1009-1012.])  
    8.1890   8.9760 1.0961 8 Er2RhSi3 (190/194) 800°C, Majumdar et al. (1998[Majumdar, S., Mallik, R. & Sampathkumaran, E. V. (1998). Proceedings of the DAE Solid State Physics Symposium, 41, 409-410.])  
    4.0950   4.4880 1.0960 1 AlB2 Majumdar et al. (1999b[Majumdar, S., Mallik, R., Sampathkumaran, E. V., Rupprecht, K. & Wortmann, G. (1999b). Phys. Rev. B, 60, 6770-6774.])  
    4.0800   4.4660 1.0946 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 53255
  Ni 4.0340   4.4960 1.1145 1 AlB2 Mayer & Felner (1973a[Mayer, I. P. & Felner, I. (1973a). J. Solid State Chem. 8, 355-356.]) 53436
  Pd 8.3188   4.3588 0.5240 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Rodewald et al. (2003[Rodewald, U. Ch., Hoffmann, R.-D., Pöttgen, R. & Sampathkumaran, E. V. (2003). Z. Naturforsch. Teil B, 58, 971-974.]) 391246
  Si 4.2900   13.3300 3.1072 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.]) 631674
    4.3040   13.6500 3.1715 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1454
    4.3030   13.6600 3.1745 4 ThSi2 Evers et al. (1983[Evers, J., Oehlinger, G., Weiss, A. & Hulliger, F. (1983). J. Less-Common Met. 90, L19-L23.])  
    4.0520   4.4820 1.1061 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 103436
    4.2970   13.7040 3.1892 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 631683
    4.2900   13.6600 3.1841 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
Gd Pd 4.0790   4.0980 1.0047 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1580   8.1180 0.9951 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
  Pt 8.1390   8.3030 1.0201 8 Er2RhSi3 (190/194) 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.1120   7.9760 0.9832 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 636281
    8.1120   7.9760 0.9832 8 Er2RhSi3 Mulder et al. (1998[Mulder, F. M., Thiel, R. C., Tung, L. D., Franse, J. J. M. & Buschow, K. H. J. (1998). J. Alloys Compd. 264, 43-49.])  
  Si 4.0920 4.0130 13.4370 3.2837 4 Nd□Si2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.0200 4.1000 13.4300 3.3408 4 Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 636419
    3.8770   4.1720 1.0761 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 636432
    6.7204   4.1700 0.6205 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8770 6.7152 4.1720 1.0761 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 53633
    3.8700   4.1700 1.0775 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 636421
    4.0800 4.0100 13.4200 3.2892 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    3.8690 6.7013 4.1820 1.0809 2 Er3□Si5 800°C, 14 days Mulder et al. (1994[Mulder, F. M., Thiel, R. C. & Buschow, K. H. J. (1994). J. Alloys Compd. 205, 169-174.]) 658032
    3.8525   4.1470 1.0764 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 636450
    4.0438   13.8020 3.4131 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 636452
    4.1000 4.0100 13.6100 3.3195 4 o Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150661
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
    4.0900 4.0100 13.4400 3.2861 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 636434
    4.0930 4.0090 13.4400 3.2837 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.0800 3.9960 13.4100 3.2868 4 GdSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
    4.0900 4.0100 13.4200 3.2812 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 636440
Ho Pd 8.1520   32.1680 3.9460 32 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1010   7.9960 0.9870 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    8.0994   32.0192 3.9533 32 h Floating zone Leisegang (2010[Leisegang, T. (2010). Röntgenographische Untersuchung von Seltenerdverbindungen mit besonderer Berücksichtigung modulierter Strukturen, Vol. 7, 1st ed. Freiberger Forschungshefte: E, Naturwissenschaften. TU Bergakademie.])  
    8.1072   8.1072 1.0000 8 Er2RhSi3 (190/194) 800°C, 7 days Mo et al. (2015[Mo, Z. J., Shen, J., Yan, L. Q., Gao, X. Q., Tang, C. C., Wu, J. F., Sun, J. R. & Shen, B. G. (2015). J. Alloys Compd. 618, 512-515.]) 192586
    4.0459   3.9977 0.9881 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
    8.1000   32.0000 3.9506 32 Ho2PdSi3 Floating zone Tang et al. (2011[Tang, F., Frontzek, M. D., Dshemuchadse, J., Leisegang, T., Zschornak, M., Mietrach, R., Hoffmann, J.-U., Löser, W., Gemming, S., Meyer, D. C. & Loewenhaupt, M. (2011). Phys. Rev. B, 84, 104105.])  
    4.0460   3.9977 0.9881 4 Ce2CoSi3/U2RuSi3 750°C, 5 days Zajdel et al. (2015[Zajdel, P., Kisiel, A., Szytuła, A., Goraus, J., Balerna, A., Banaś, A., Starowicz, P., Konior, J., Cinque, G. & Grilli, A. (2015). Nucl. Instrum. Methods Phys. Res. B, 364, 76-84.])  
  Rh 8.0860   7.8040 0.9651 8 Er2RhSi3 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97374
    8.0860   7.8040 0.9651 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 4 days Bazela et al. (2003[Bażela, W., Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A. & Zygmunt, A. (2003). J. Alloys Compd. 360, 76-80.]) 97373
    8.0720   7.7710 0.9627 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 639636
  Si 3.8070 6.5939 4.1060 1.0785 2 Er3□Si5 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0290 3.9170 13.2770 3.2954 4 Nd□xSi2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    3.8087 6.5969 4.1030 1.0773 2 Er3□Si5 1100°C, 8 days Eremenko et al. (1995[Eremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. & Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181-184.])  
    4.0230 3.9140 13.2820 3.3015 4 Nd□xSi2−x 1100°C, 8 days Eremenko et al. (1995[Eremenko, V. N., Listovnichii, V. E., Luzan, S. P., Buyanov, Y. I. & Martsenyuk, P. S. (1995). J. Alloys Compd. 219, 181-184.])  
    3.8160   4.1070 1.0763 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20249
    3.8160   4.1070 1.0763 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 639729
    3.8100 6.5991 4.1035 1.0770 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.5991   4.1100 0.6228 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8160 6.6095 4.1070 1.0763 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 639748
    4.0300 3.9700 13.3100 3.3027 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8000   4.1000 1.0789 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 56250
    3.9610   13.6450 3.4448 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 639750
    4.0150 3.9060 13.2200 3.2927 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 639731
    3.9900 3.9400 13.3000 3.3333 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 639743
    4.0280 3.9120 13.2870 3.2987 4 GdSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.])  
    4.0100 3.9120 13.2550 3.3055 4 GdSi2 Weitzer et al. (1991[Weitzer, F., Schuster, J. C., Bauer, J. & Jounel, B. (1991). J. Mater. Sci. 26, 2076-2080.])  
La Al 4.3030   14.2100 3.3023 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
  Co 4.1880   4.3660 1.0425 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    8.1850   4.3500 0.5315 4 Ce2CoSi3/U2RuSi3 750°C, 7 days Majumdar et al. (1999a[Majumdar, S., Mahesh Kumar, M., Mallik, R. & Sampathkumaran, E. V. (1999a). Solid State Commun. 110, 509-514.])  
  Cu 4.0840   4.3950 1.0762 1 AlB2 Hwang et al. (1996[Hwang, J. S., Lin, K. J. & Tien, C. (1996). Solid State Commun. 100, 169-172.])  
    4.1440   4.2860 1.0343 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.]) 103037
    4.0710   4.3830 1.0766 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0840   4.3950 1.0762 1 AlB2 Tien et al. (1997[Tien, C., Luo, L. & Hwang, J. S. (1997). Phys. Rev. B, 56, 11710-11714.])  
  Fe 4.0800   4.3500 1.0662 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0690   4.1010 1.0079 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0970   4.3310 1.0571 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
  Ni 4.0930   4.3540 1.0638 1 AlB2 Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.])  
    4.0770   4.3670 1.0711 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20305
    4.0450   4.3810 1.0831 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 641574
    4.0770   4.3000 1.0547 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0570   4.3880 1.0816 1 AlB2 Raman (1967[Raman, A. (1967). Naturwissenschaften, 54, 560.])  
    4.0711   4.3737 1.0743 1 AlB2 800°C, 7 days Rojas et al. (2010[Rojas, D. P., Rodríguez Fernández, J., Espeso, J. I., Gómez Sal, J. C., da Silva, L. M., Gandra, F. G., dos Santos, A. O. & Medina, A. N. (2010). J. Magn. Magn. Mater. 322, 3192-3195.])  
    4.0689   4.3753 1.0753 1 AlB2 Szlawska & Kaczorowski (2012[Szlawska, M. & Kaczorowski, D. (2012). Phys. Rev. B, 85, 134423.])  
  Pt 8.2900   4.4170 0.5328 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.2330   8.5940 1.0438 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 641751
    8.2800   8.6500 1.0447 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
  Si 4.3700   13.5600 3.1030 4 ThSi2 Bertaut & Blum (1950[Bertaut, E. F. & Blum, P. (1950). Acta Cryst. 3, 319.]) 174010
    4.3100   13.2800 3.0812 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.2612   13.7118 3.2178 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 641982
    4.2810   13.7500 3.2119 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25663
    4.3300   13.8300 3.1940 4 ThSi2-defect 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 641955
    4.3100   13.8000 3.2019 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.]) 641973
    4.1900 4.2700 13.9400 3.3270 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 641958
    4.2900   13.8700 3.2331 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 641961
    4.3260   13.8400 3.1993 4 ThSi2 Nakano & Yamanaka (1994[Nakano, H. & Yamanaka, S. (1994). J. Solid State Chem. 108, 260-266.]) 78028
    4.3100   13.8000 3.2019 4 t Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.])  
    4.3000   13.8400 3.2186 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.3050   13.8400 3.2149 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.])  
Lu Pd 4.0267   3.9218 0.9739 1 AlB2 Floating zone Cao et al. (2013[Cao, C., Blum, C. G. F., Ritschel, T., Rodan, S., Giebeler, L., Bombor, D., Wurmehl, S. & Löser, W. (2013). CrystEngComm, 15, 9052-9056.], 2014[Cao, C., Blum, C. G. F. & Löser, W. (2014). J. Cryst. Growth, 401, 593-595.]) 250596, 250597
  Si 3.7450   4.0500 1.0814 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20253
    3.7470   4.0460 1.0798 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 642610
    6.4952   4.0500 0.6235 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7450 6.4865 4.0500 1.0814 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 642613
    3.7400   4.0400 1.0802 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 642611
    3.7500   4.0500 1.0800 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 642607
Nd Ag 4.1750   14.3100 3.4275 4 ThSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 605613
  Cu 8.0760   8.4400 1.0451 8 Er2RhSi3 (190/194) 800°C, 7 days Yubuta et al. (2009[Yubuta, K., Yamamura, T., Li, D. X. & Shiokawa, Y. (2009). Solid State Commun. 149, 286-289.])  
  Ni 4.0420   4.1630 1.0299 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20307
    4.0130   4.2020 1.0471 1 AlB2 700°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 76594
    4.0200   4.2070 1.0465 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 645635
  Pd 8.1970   8.4020 1.0250 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.1050   4.2040 1.0241 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.1033   4.2039 1.0245 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 4.0927   4.2582 1.0404 1 AlB2 900°C, 23 days Li et al. (2001[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2001). Solid State Commun. 120, 227-232.])  
    8.2170   4.2820 0.5211 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.1860   8.2720 1.0105 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 645781
    8.1710   8.2760 1.0129 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 57432
  Si 4.1800 4.1500 13.5600 3.2440 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.1016   13.4223 3.2725 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.]) 645987
    4.1110   13.5600 3.2985 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25666
    4.1600 4.2000 13.6000 3.2692 4 Nd□xSi2−x 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 645941
    4.1800 4.1500 13.5600 3.2440 4 GdSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.])  
    4.1700 4.1300 13.6500 3.2734 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 645948
    4.1800 4.1600 13.6300 3.2608 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.1800 4.1500 13.5600 3.2440 4 GdSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    4.1650   13.6420 3.2754 4 GdSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 645989
    4.1110   13.5600 3.2985 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 645972
    4.1740 4.1540 13.6100 3.2607 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 645963
    3.9480 6.8381 4.2690 1.0813 2 Er3□Si5 Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1350 4.1010 13.7400 3.3229 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1470 4.1250 13.6700 3.2964 4 Nd□xSi2−x Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
    4.1620   13.5800 3.2629 4 ThSi2 1000°C, 4 days Raman & Steinfink (1967[Raman, A. & Steinfink, H. (1967). Inorg. Chem. 6, 1789-1791.]) 645949
    4.1620   13.5800 3.2629 4 ThSi2 Raman (1968[Raman, A. (1968). Trans. Indian Inst. Met. 21, 5-8.]) 645985
    4.1850 4.1600 13.6100 3.2521 4 GdSi2 1050°C, 10 days Schobinger-Papamantellos et al. (1991[Schobinger-Papamantellos, P., Buschow, K. H. J. & Fischer, P. (1991). J. Magn. Magn. Mater. 97, 53-68.])  
Np Si 3.9680   13.7150 3.4564 4 ThSi2 Yaar et al. (1992[Yaar, I., Fredo, S., Gal, J., Potzel, W., Kalvius, G. M. & Litterst, F. J. (1992). Phys. Rev. B, 45, 9765.]) 657647
    3.9700   13.7000 3.4509 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31644
Pr Cu 4.0520   4.2550 1.0501 1 AlB2 Tien et al. (1997[Tien, C., Luo, L. & Hwang, J. S. (1997). Phys. Rev. B, 56, 11710-11714.])  
    4.0420   4.2050 1.0403 1 AlB2 900°C, 20 days Wang et al. (2014[Wang, F., Yuan, F.-Y., Wang, J.-Z., Feng, T.-F. & Hu, G.-Q. (2014). J. Alloys Compd. 592, 63-66.])  
  Ni 4.0450   4.2260 1.0447 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20306
    4.0210   4.0250 1.0010 1 AlB2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.]) 646272
  Pd 8.2210   8.4660 1.0298 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0250   4.2070 1.0452 1 AlB2 Floating zone Xu et al. (2010[Xu, Y., Löser, W., Behr, G., Frontzek, M. D., Tang, F., Büchner, B. & Liu, L. (2010). J. Cryst. Growth, 312, 1992-1996.])  
  Pt 8.2300   4.3000 0.5225 4 Ce2CoSi3/U2RuSi3 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Si 4.2000   13.7600 3.2762 4 ThSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.]) 649371
    4.2100   13.7300 3.2613 4 ThSi2-defect 800°C, 5 days Boutarek et al. (1994[Boutarck, N., Pierre, J., Lambert-Andron, B., L'Heritier, P. & Madar, R. (1994). J. Alloys Compd. 204, 251-260.]) 658012
    4.1315   13.4922 3.2657 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.])  
    4.1480   13.6700 3.2956 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25665
    4.2100   13.7300 3.2613 4 ThSi2-defect 800°C, 1 day Houssay et al. (1989[Houssay, E., Rouault, A., Thomas, O., Madar, R. & Sénateur, J. P. (1989). Appl. Surf. Sci. 38, 156-161.]) 649364
    4.2900   13.7600 3.2075 4 ThSi2 Lawrence et al. (1984[Lawrence, J. M., den Boer, M. L., Parks, R. D. & Smith, J. L. (1984). Phys. Rev. B, 29, 568-575.])  
    4.1700 4.1200 13.8200 3.3141 4 GdSi2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 649365
    4.1600   13.7600 3.3077 4 ThSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.])  
    4.2900   13.7600 3.2075 4 ThSi2 Mayer & Felner (1973b[Mayer, I. P. & Felner, I. (1973b). J. Solid State Chem. 7, 292-296.])  
    4.2000   13.7600 3.2762 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 649376
    4.2000   13.7600 3.2762 4 ThSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
    4.1840   13.7300 3.2815 4 ThSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.])  
    4.2000   13.7300 3.2690 4 ThSi2-defect Pierre et al. (1990[Pierre, J., Auffret, S., Siaud, E., Madar, R., Houssay, E., Rouault, A. & Sénateur, J. P. (1990). J. Magn. Magn. Mater. 89, 86-96.])  
Pu Si 3.9670   13.7200 3.4585 4 ThSi2 Coffinberry & Ellinger (1955[Coffinberry, A. S. & Ellinger, F. H. (1955). Proceedings of the United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 8, p. 826.]) 649973
    3.8750 6.7117 4.1020 1.0586 2 Er3□Si5 840°C, 42 days Land et al. (1965[Land, C. C., Johnson, K. A. & Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23-32.])  
    3.9680   13.7100 3.4551 4 ThSi2 Land et al. (1965[Land, C. C., Johnson, K. A. & Ellinger, F. H. (1965). J. Nucl. Mater. 15, 23-32.]) 649969
    3.8840   4.0820 1.0510 1 AlB2 Runnals & Boucher (1955[Runnalls, O. J. C. & Boucher, R. R. (1955). Acta Cryst. 8, 592.]) 44867
    3.9800   13.5800 3.4121 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31645
Sc Si 3.6600 6.3393 3.8700 1.0574 2 Er3□Si5 Gladyshevskii & Émes-Misenko (1963[Gladyshevskii, E. I. & Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861.])  
    3.6600 6.3393 3.8700 1.0574 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 651822
    3.6620 6.3428 3.8790 1.0593 2 Er3□Si5 Kotroczo & McColm (1994[Kotroczo, V. & McColm, I. J. (1994). J. Alloys Compd. 203, 259-265.])  
    3.6620 6.3428 3.8790 1.0593 2 Er3□Si5 Kotroczo & McColm (1994[Kotroczo, V. & McColm, I. J. (1994). J. Alloys Compd. 203, 259-265.]) 657975
    3.6600   3.8700 1.0574 1 AlB2 Nörenberg et al. (2006[Nörenberg, C., Moram, M. A. & Dobson, P. J. (2006). Surf. Sci. 600, 4126-4131.])  
Sm Ni 4.0020   4.1600 1.0395 1 AlB2 Gladyshevskii & Bodak (1965[Gladyshevskii, E. I. & Bodak, O. I. (1965). Dopov. Akad. Nauk. Ukr. RSR, p. 601.]) 20308
  Si 4.1050 4.0350 13.4600 3.2789 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    4.0417   13.3126 3.2938 4 ThSi2 Brauer & Haag (1950[Brauer, G. & Haag, H. (1950). Naturwissenschaften, 37, 210-211.])  
    4.0490   13.3600 3.2996 4 ThSi2 Brauer & Haag (1952[Brauer, G. & Haag, H. (1952). Z. Anorg. Allg. Chem. 267, 198-212.]) 25667
    4.1100 4.0600 13.4900 3.2822 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 652268
    4.1050 4.0350 13.4600 3.2789 4 o Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652273
    4.0800   13.5100 3.3113 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652274
    4.1040 4.0350 13.4600 3.2797 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
Sr Au 8.3407 9.2664 14.4465 1.7320 8 Ca2AgSi3 650°C, 7 days Zeiringer et al. (2015[Zeiringer, I., Grytsiv, A., Bauer, E., Giester, G. & Rogl, P. (2015). Z. Anorg. Allg. Chem. 641, 1404-1421.])  
  Ni 4.0690   4.6630 1.1460 1 AlB2 Bodak & Gladyshevskii (1968[Bodak, O. I. & Gladyshevskii, E. I. (1968). Dopovi. Akad. Nauk Ukr. RSR Ser. A, 10, 944.]) 20301
  Si 4.4380   13.8300 3.1163 4 ThSi2 Evers et al. (1977a[Evers, J., Oehlinger, G. & Weiss, A. (1977a). J. Solid State Chem. 20, 173-181.]) 1455
  Si 4.4380   13.8300 3.1163 4 ThSi2 Evers et al. (1978b[Evers, J., Oehlinger, G. & Weiss, A. (1978b). J. Less-Common Met. 60, 249-258.])  
    4.4290   13.8420 3.1253 4 ThSi2 Palenzona & Pani (2004[Palenzona, A. & Pani, M. (2004). J. Alloys Compd. 373, 214-219.]) 99238
    4.4390   13.8380 3.1174 4 ThSi2 Palenzona & Pani (2004[Palenzona, A. & Pani, M. (2004). J. Alloys Compd. 373, 214-219.])  
Tb Pd 4.0480   4.0370 0.9973 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.1210   8.1000 0.9974 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    4.0650   4.0520 0.9968 1 AlB2 750°C, 10 days Li et al. (2003[Li, D. X., Nimori, S., Shiokawa, Y., Haga, Y., Yamamoto, E. & Onuki, Y. (2003). Phys. Rev. B, 68, 012413.])  
    4.0643   4.0502 0.9965 1 AlB2 750°C, 5 days Szytuła et al. (1999[Szytuła, A., Hofmann, M., Penc, B., Ślaski, M., Majumdar, S., Sampathkumaran, E. V. & Zygmunt, A. (1999). J. Magn. Magn. Mater. 202, 365-375.])  
  Pt 8.1223   8.2368 1.0141 8 Er2RhSi3 ([P\overline{6}2c]) 900°C, 23 days Li et al. (2002a[Li, D. X., Nimori, S., Homma, Y. & Shiokawa, Y. (2002a). J. Phys. Soc. Jpn, 71, 211-213.])  
  Rh 8.1100   7.8600 0.9692 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 650328
    8.1400   7.8120 0.9597 8 Er2RhSi3 ([P\overline{6}2c]) 800°C, 54 days Szytuła et al. (1993[Szytuła, A., Leciejewicz, J. & Małetka, K. (1993). J. Magn. Magn. Mater. 118, 302-306.]) 57483
  Si 3.8460 6.6615 4.1430 1.0772 2 Er3□Si5 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    4.0570 3.9650 13.3770 3.2973 4 Nd□xSi2−x 800°C, 1 day Auffret et al. (1991[Auffret, S., Pierre, J., Lambert-Andron, B., Madar, R., Houssay, E., Schmitt, D. & Siaud, E. (1991). Physica B, 173, 265-276.])  
    3.8470   4.1460 1.0777 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20247
    3.8470   4.1460 1.0777 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 652359
    6.6684   4.1500 0.6223 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8470 6.6632 4.1460 1.0777 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652375
    4.0450 3.9600 13.3800 3.3078 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8400   4.1400 1.0781 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652354
    3.9600 4.0500 13.3800 3.3788 4 GdSi2 Mayer & Eshdat (1968[Mayer, I. P. & Eshdat, Y. (1968). Inorg. Chem. 7, 1904-1908.]) 652355
    3.9902   13.6920 3.4314 4 ThSi2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 652377
    4.0500 3.9650 13.3600 3.2988 4 GdSi2 Pierre et al. (1988[Pierre, J., Siaud, E. & Frachon, D. (1988). J. Less-Common Met. 139, 321-329.]) 652360
    4.0400 3.9600 13.3900 3.3144 4 GdSi2 Sekizawa & Yasukouchi (1966[Sekizawa, K. & Yasukōchi, K. (1966). J. Phys. Soc. Jpn, 21, 274-278.]) 652370
Th Au 4.1972   14.3030 3.4077 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658096
  Co 4.0520   4.1510 1.0244 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658085
    4.0430   4.1890 1.0361 1 AlB2 950°C, 8 days Zhong et al. (1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.]) 53078
  Cu 4.0230   4.1910 1.0418 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 108410
  Fe 4.0993   14.1850 3.4603 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658089
  Ir 4.1366   14.3640 3.4724 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658094
    4.1200   14.3100 3.4733 4 ThSi2 Lejay et al. (1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]), Chevalier et al. (1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.])  
  Mn 4.1069   14.1130 3.4364 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658088
  Ni 4.0322   4.1891 1.0389 1 AlB2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 54299
  Os 4.1384   14.3784 3.4744 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658093
  Pd 4.1570   14.2820 3.4357 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658092
  Pt 4.1592   14.2850 3.4346 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658095
  Rh 4.1241   14.3870 3.4885 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658091
    4.1100   14.3200 3.4842 4 ThSi2 Lejay et al. (1983[Lejay, P., Chevalier, B., Etourneau, J., Tarascon, J. M. & Hagenmuller, P. (1983). Mater. Res. Bull. 18, 67-71.]), Chevalier et al. (1986[Chevalier, B., Zhong, W.-X., Buffat, B., Etourneau, J., Hagenmuller, P., Lejay, P., Porte, L., Tran Minh Duc, Besnus, M. J. & Kappler, J. P. (1986). Mater. Res. Bull. 21, 183-194.])  
  Ru 4.1242   14.4470 3.5030 4 ThSi2 800°C, 7 days Albering et al. (1994[Albering, J. H., Pöttgen, R., Jeitschko, W., Hoffmann, R.-D., Chevalier, B. & Etourneau, J. (1994). J. Alloys Compd. 206, 133-139.]) 658090
  Si 4.1180   14.2210 3.4534 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    4.1340   14.3750 3.4773 4 ThSi2 Brauer & Mittius (1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]) 77320
    4.1260   14.3460 3.4770 4 ThSi2 Brauer & Mittius (1942[Brauer, G. & Mittius, A. (1942). Z. Anorg. Allg. Chem. 249, 325-339.]) 660234
    4.1360   4.1260 0.9976 1 AlB2 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    3.9850 6.9022 4.2280 1.0610 2 Er3□Si5 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    4.1360   4.1260 0.9976 1 AlB2 Brown (1961[Brown, A. (1961). Acta Cryst. 14, 860-865.]) 15449
    4.1350   14.3750 3.4764 4 ThSi2 Brown (1961[Brown, A. (1961). Acta Cryst. 14, 860-865.]) 652390
    3.9850   4.2200 1.0590 1 AlB2 Jacobson et al. (1956[Jacobson, E. L., Freeman, R. D., Tharp, A. G. & Searcy, A. W. (1956). J. Am. Chem. Soc. 78, 4850-4852.]) 26569
    4.1270   14.1940 3.4393 4 ThSi2 950°C, 8 days Zhong et al. (1985[Zhong, W. X., Ng, W. L., Chevalier, B., Etourneau, J. & Hagenmuller, P. (1985). Mater. Res. Bull. 20, 1229-1238.])  
Tm Pd 4.0570   3.9700 0.9786 1 h Floating zone Frontzek (2009[Frontzek, M. D. (2009). Dissertation, Technische Universität Dresden, Germany.])  
    8.0710   7.8500 0.9726 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
  Si 3.7730   4.0700 1.0787 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20251
    3.7680   4.0700 1.0801 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 52468
    6.5298   4.0700 0.6233 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7730 6.5350 4.0700 1.0787 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 604540
    3.7600   4.0700 1.0824 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652455
    3.7700   4.0700 1.0796 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652451
U Au 4.1450   3.9890 0.9624 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.1450   3.9890 0.9624 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 106295
  Co 3.9870   3.8830 0.9739 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    3.9880   3.8830 0.9737 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 106494
    3.9880   3.8830 0.9737 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    3.9765   3.8980 0.9803 1 AlB2 Szlawska et al. (2011[Szlawska, M., Gnida, D. & Kaczorowski, D. (2011). Phys. Rev. B, 84, 134410.])  
  Cu 3.9710   13.9260 3.5069 4 ThSi2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 603112
    4.0090   3.9570 0.9870 1 AlB2 600°C, 49 days Pechev et al. (2000[Pechev, S., Roisnel, T., Chevalier, B., Darriet, B. & Etourneau, J. (2000). Solid State Sci. 2, 773-780.]) 92357
    3.9710   13.9260 3.5069 4 ThSi2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 602804
  Fe 4.0030   3.8570 0.9635 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0040   3.8640 0.9650 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 603109
    4.0100   3.8400 0.9576 1 AlB2 800°C, 7 days Lourdes Pinto (1966[Lourdes Pinto, M. de (1966). Acta Cryst. 21, 999.]) 53551
    4.0040   3.8640 0.9650 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    8.0030   3.8540 0.4816 4 Ce2CoSi3/U2RuSi3 800°C, 10 days Yamamura et al. (2006[Yamamura, T., Li, D. X., Yubuta, K. & Shiokawa, Y. (2006). J. Alloys Compd. 408-412, 1324-1328.])  
  Ir 4.0650   3.9140 0.9629 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0720   3.8950 0.9565 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57398
    4.0830   3.9320 0.9630 1 AlB2-like 800°C, 7 days Yubuta et al. (2006[Yubuta, K., Yamamura, T. & Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109-6116.])  
    4.0900   3.8540 0.9423 1 AlB2-like 800°C, 7 days Yubuta et al. (2006[Yubuta, K., Yamamura, T. & Shiokawa, Y. (2006). J. Phys. Condens. Matter, 18, 6109-6116.])  
  Mn 8.0450   3.8082 0.4734 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
  Ni 3.9790   3.9460 0.9917 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    3.9790   3.9490 0.9925 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.]) 54300
    3.9790   3.9490 0.9925 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.])  
    3.9720   3.9461 0.9935 1 AlB2 Schröder et al. (1995[Schröder, A., Collins, M. F., Stager, C. V., Garrett, J. D., Greedan, J. E. & Tun, Z. (1995). J. Magn. Magn. Mater. 140-144, 1407-1408.])  
  Os 8.1600   3.8440 0.4711 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0666   3.8517 0.9472 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57453, 54310
    8.1600   3.8440 0.4711 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.])  
  Pd 4.0800 7.0670 3.9390 0.9654 2 U2RhSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.]) 57172
    4.0830   3.9320 0.9630 1 AlB2 800°C, 3 days Li et al. (1998b[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A., Dönni, A., Suzuki, T., Haga, Y., Yamamoto, E., Honma, T. & Ōnuki, Y. (1998b). Phys. Rev. B, 57, 7434-7437.])  
    4.0850   3.9350 0.9633 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57467
  Pt 4.0730   3.9650 0.9735 1 AlB2 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0840   3.9730 0.9728 1 AlB2 800°C, 10 days Kaczorowski & Noël (1993[Kaczorowski, D. & Noël, H. (1993). J. Phys. Condens. Matter, 5, 9185-9195.])  
    4.0810   3.9700 0.9728 1 AlB2 800°C, 10 days Li et al. (1997[Li, D. X., Shiokawa, Y., Homma, Y., Uesawa, A. & Suzuki, T. (1997). J. Magn. Magn. Mater. 176, 261-266.])  
    4.0670   3.9640 0.9747 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 602802
    4.0840   3.9730 0.9728 1 AlB2 850°C, 5 days Sato et al. (1991[Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T., Sakatsume, S. & Komatsubara, T. (1991). J. Phys. Soc. Jpn, 60, 757-759.]) 54345
    4.0840   3.9730 0.9728 1 AlB2 Sato et al. (1992[Sato, N., Kagawa, M., Tanaka, K., Takeda, N., Satoh, T. & Komatsubara, T. (1992). J. Magn. Magn. Mater. 108, 115-116.])  
    4.0730   3.9600 0.9723 1 AlB2 800°C, 10 days Yamamura et al. (2006[Yamamura, T., Li, D. X., Yubuta, K. & Shiokawa, Y. (2006). J. Alloys Compd. 408-412, 1324-1328.])  
  Rh 4.0620 7.0360 3.9290 0.9673 2 U2RhSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.]) 57171
    4.0740   3.8810 0.9526 1 AlB2 800°C, 3 days Li et al. (1999[Li, D. X., Dönni, A., Kimura, Y., Shiokawa, Y., Homma, Y., Haga, Y., Yamamoto, E., Honma, T. & Onuki, Y. (1999). J. Phys. Condens. Matter, 11, 8263-8274.])  
    4.0760   3.8830 0.9526 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 57485
    8.1011   3.9477 0.4873 4 Ce2CoSi3 Szlawska et al. (2016[Szlawska, M., Majewicz, M. & Kaczorowski, D. (2016). J. Alloys Compd. 662, 208-212.])  
  Ru 8.1480   3.8550 0.4731 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Chevalier et al. (1996[Chevalier, B., Pöttgen, R., Darriet, B., Gravereau, P. & Etourneau, J. (1996). J. Alloys Compd. 233, 150-160.])  
    4.0750   3.8380 0.9418 1 AlB2 800°C, 8 days Pöttgen & Kaczorowski (1993[Pöttgen, R. & Kaczorowski, D. (1993). J. Alloys Compd. 201, 157-159.]) 108727
    8.1450   3.8496 0.4726 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.]) 78530
    8.1480   3.8550 0.4731 4 Ce2CoSi3/U2RuSi3 800°C, 60 days Pöttgen et al. (1994[Pöttgen, R., Gravereau, P., Darriet, B., Chevalier, B., Hickey, E. & Etourneau, J. (1994). J. Mater. Chem. 4, 463-467.])  
  Si 3.8600   4.0700 1.0544 1 AlB2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    3.9500   13.6800 3.4633 4 ThSi2 Benesovsky et al. (1966[Benesovsky, F., Nowotny, H., Rieger, W. & Rassaerts, H. (1966). Monatsh. Chem. 97, 221-229.])  
    3.8520   4.0280 1.0457 1 AlB2 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.]) 652472, 52469
    3.8430 6.6563 4.0690 1.0588 2 Er3□Si5 Brown & Norreys (1959[Brown, A. & Norreys, J. J. (1959). Nature, 183, 673.])  
    3.8520   4.0280 1.0457 1 AlB2 650°C Brown & Norreys (1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.])  
    3.8430 6.6563 4.0690 1.0588 2 Er3□Si5 650°C Brown & Norreys (1961[Brown, A. & Norreys, J. J. (1961). Nature, 191, 61-62.])  
    3.8390   4.0720 1.0607 1 AlB2 Dwight (1982[Dwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.]) 106053
    3.8390   4.7200 1.2295 1 AlB2 Dwight (1982[Dwight, A. E. (1982). Report ANL-82-14. Argonne National Laboratory, IL, USA.]) 652476
    3.9220   14.1540 3.6089 4 ThSi2 Sasa & Uda (1976[Sasa, Y. & Uda, M. (1976). J. Solid State Chem. 18, 63-68.]) 203
    3.8600   4.0700 1.0544 1 AlB2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31646
    3.9800   13.7400 3.4523 4 ThSi2 Zachariasen (1949[Zachariasen, W. H. (1949). Acta Cryst. 2, 94-99.]) 31643
Y Pd 8.1380   8.0410 0.9881 8 h 750°C, 5 days Kotsanidis et al. (1990[Kotsanidis, P. A., Yakinthos, J. K. & Gamari-Seale, E. (1990). J. Magn. Magn. Mater. 87, 199-204.])  
    8.0910   8.0920 1.0001 8 Er2RhSi3 (190/194) 750°C, 7 days Mallik & Sampathkumaran (1996[Mallik, R. & Sampathkumaran, E. V. (1996). J. Magn. Magn. Mater. 164, L13-L17.])  
  Pt 8.0990   8.1940 1.0117 8 Er2RhSi3 (190/194) 750°C, 14 days Majumdar et al. (2001[Majumdar, S., Sampathkumaran, E. V., Brando, M., Hemberger, J. & Loidl, A. (2001). J. Magn. Magn. Mater. 236, 99-106.])  
  Rh 8.0860   7.8290 0.9682 8 Er2RhSi3 800°C, 4 days Chevalier et al. (1984[Chevalier, B., Lejay, P., Etourneau, J. & Hagenmuller, P. (1984). Solid State Commun. 49, 753-760.]) 650353
    8.1300   7.8800 0.9692 8 Er2RhSi3 (190/194) 800°C, 5 days Sengupta et al. (2003[Sengupta, K., Rayaprol, S. & Sampathkumaran, E. V. (2003). arXiv preprint cond-mat/0309701.])  
  Si 3.8400 6.6511 4.1400 1.0781 2 Er3□Si5 Baptist et al. (1988[Baptist, R., Pellissier, A. & Chauvet, G. (1988). Solid State Commun. 68, 555-559.])  
    6.6511   4.1400 0.6225 3 Yb3□Si5 Baptist et al. (1990[Baptist, R., Ferrer, S., Grenet, G. & Poon, H. C. (1990). Phys. Rev. Lett. 64, 311-314.])  
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Binder (1960[Binder, I. (1960). J. Am. Ceram. Soc. 43, 287-292.])  
    3.8420 6.6545 4.1400 1.0776 2 Er3□Si5 Gladyshevskii & Émes-Misenko (1963[Gladyshevskii, E. I. & Émes-Misenko, E. I. (1963). Zh. Strukt. Khim. 4, 861.])  
    3.8415 6.6537 4.1425 1.0784 2 Er3□Si5 1000°C, 10 days Ji et al. (2004[Ji, C.-X., Huang, M., Yang, J.-H., Chang, Y. A., Ragan, R., Chen, Y., Ohlberg, D. A. A. & Williams, R. S. (2004). Appl. Phys. A, 78, 287-289.])  
    6.6511   4.1400 0.6225 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.8420 6.6545 4.1400 1.0776 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652588
    3.8383   4.1310 1.0763 1 AlB2 Kotur & Mokra (1994[Kotur, B. Y. & Mokra, I. R. (1994). Neorg. Mater. 30, 783-787.]) 658906
    4.0500 3.9500 13.2200 3.2642 4 GdSi2 Lazorenko et al. (1974[Lazorenko, V. I., Rud', B. M., Paderno, Yu. B. & Dvorina, L. A. (1974). Izv. Akad. Nauk. SSSR Neorg. Mater. 10, 1150-1151.]) 652570
    3.8500   4.1400 1.0753 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652584
    4.0500 3.9500 13.4000 3.3086 4 o Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.])  
    3.8300   4.1400 1.0809 1 AlB2 450°C, 0.5 days Mayer et al. (1967[Mayer, I. P., Yanir, E. & Shidlovsky, I. (1967). Inorg. Chem. 6, 842-844.]) 652566
    3.8430   4.1430 1.0781 1 AlB2 800°C, 2 days Mayer & Felner (1972[Mayer, I. P. & Felner, I. (1972). J. Less-Common Met. 29, 25-31.]) 52478
    4.0400 3.9500 13.2300 3.2748 4 GdSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 652582
    4.0400   13.4200 3.3218 4 ThSi2 Perri et al. (1959b[Perri, J. A., Binder, I. & Post, B. (1959b). J. Phys. Chem. 63, 616-619.]) 150662
    4.0400 3.9500 13.3300 3.2995 4 GdSi2 Perri et al. (1959a[Perri, J. A., Banks, E. & Post, B. (1959a). J. Phys. Chem. 63, 2073-2074.])  
Yb Au 8.2003 14.1870 16.8690 2.0571 16 Ba4Li2Si6 800°C, 5 days Sarkar et al. (2013[Sarkar, S., Gutmann, M. J. & Peter, S. C. (2013). CrystEngComm, 15, 8006-8013.]) 250525
  Si 3.7710   4.0980 1.0867 1 AlB2 Gladyshevskii (1963[Gladyshevskii, E. I. (1963). Dopov. Akad. Nauk. Ukr. RSR Ser. A, p. 886.]) 20252
    3.7840   4.0980 1.0830 1 AlB2 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.]) 52480
    6.5120   4.0900 0.6281 3 Yb3□Si5 700°C, 3 days Iandelli et al. (1979[Iandelli, A., Palenzona, A. & Olcese, G. L. (1979). J. Less-Common Met. 64, 213-220.])  
    6.5472   4.1000 0.6262 3 Yb3□Si5 Knapp & Picraux (1985[Knapp, J. A. & Picraux, S. T. (1985). MRS Proceedings, 54, 261.])  
    3.7710 6.5316 4.0980 1.0867 2 Er3□Si5 Koleshko et al. (1986[Koleshko, V. M., Belitsky, V. F. & Khodin, A. A. (1986). Thin Solid Films, 141, 277-285.]) 652601
    3.7700   4.1000 1.0875 1 AlB2 Mayer et al. (1962[Mayer, I. P., Banks, E. & Post, B. (1962). J. Phys. Chem. 66, 693-696.]) 652598
    3.7610   4.0920 1.0880 1 AlB2 Nesper et al. (1979[Nesper, R., von Schnering, H. G. & Curda, J. (1979). VI International Conference Solid on Compounds of Transition Elements, 12-16 June 1979, Stuttgart, Germany, pp. 150-152.]) 652603
    3.9868   13.5410 3.3965 4 ThSi2 850°C, 3 days Peter & Kanatzidis (2012[Peter, S. C. & Kanatzidis, M. G. (2012). Z. Anorg. Allg. Chem. 638, 287-293.])  
    6.5120   4.0900 0.6281 3 Yb3□Si5 700°C, 21 days Pöttgen et al. (1998[Pöttgen, R., Hoffmann, R.-D. & Kußmann, D. (1998). Z. Anorg. Allg. Chem. 624, 945-951.])  

We used calculations based on density functional theory (DFT) to predict the stability of not yet reported RSi2 and R2TSi3 compounds. The formation energy ΔEtot is the difference of the total energy Etot of the compound and Etot of its elements, normalized to six atoms (R2Si4 or R2TSi3). Appendix B[link] presents the space groups of the unary R crystals. The more negative the formation energy, the more thermodynamically favorable is the formation of that compound. We considered a formation energy of up to −25 meV per atom as potentially stable at room temperature. However, this assumption does not take into account potential energy barriers which might kinetically hinder the formation of the ground state. The projector-augmented wave (PAW) method (Kresse & Joubert, 1999[Kresse, G. & Joubert, D. (1999). Phys. Rev. B, 59, 1758-1775.]) in spin-polarized Perdew–Burke–Ernzerhof parametrization (Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) was employed as implemented in the VASP code (Kresse & Furthmüller, 1996[Kresse, G. & Furthmüller, J. (1996). Comput. Mater. Sci. 6, 15-50.]). Total energies have been converged better than 10−7 eV with a maximum kinetic energy of 320 eV for the planewave basis set and Γ-centered k-point meshes with spacings less than 0.02 × 2π Å−1. All structures have been fully relaxed, with respect to atomic positions as well as cell geometry within the space group, to forces less than 10−3 V Å−1. A Hubbard U correlation correction was not used because the Si framework with s- and p-orbitals governs the stability of the structure and because it would complicate the comparability of the formation energies within the R2TSi3 series.

3. Results and discussion

In this article, we treat the R2TSi3 compounds as a distinct phase with a fixed composition and not as a solid solution. As ternary phase diagrams are scarce for these compounds, we checked all available data, in particular the thermodynamic assessment of Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]), for compositional degrees of freedom in the corresponding phase diagram region and possibly prevailing solid solutions. Nevertheless, the vast majority of compounds were reported to form superstructures which, in general, allow only slight variations in stoichiometry. We discuss those structures as distinct phases due to the changes in symmetry at these particular compositions in the phase diagrams. Many ternary phase diagrams are often determined at elevated temperatures, which is beyond the scope of this work. The phase diagrams given by Bodak & Gladyshevskii (1985[Bodak, O. I. & Gladyshevskii, E. I. (1985). Ternary Systems Containing Rare Earth Metals. Lviv: Vyshcha Shkola.]) are not at room temperature.

3.1. Structural relationships

The many structure types within compounds RSi2 and R2TSi3 compounds are related to each other according to their space groups and occupied Wyckoff positions. Starting from the highest symmetric structure, different perturbations induce symmetry reductions. Bärnighausen diagrams are the perfect tool to visualize these group–subgroup relationships in a simple and descriptive way. Fig. 1[link] presents the full Bärnighausen diagram for the RSi2 and R2TSi3 compounds analyzed in this work. This diagram is partially based on a diagram by Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]), but is greatly extended.

[Figure 1]
Figure 1
Bärnighausen diagram for RSi2 and R2TSi3 compounds. The header of each box comprises the Hermann–Mauguin symbol of the space group, the range of ordering n and the structure type, whereas the body contains the occupied Wyckoff sites sorted by element. The arrows display the type of transformation between the structures: t is translationengleich, k is klassengleich and i is isomorphic. Fig. 2[link] comprises the respective structure plots. The fourth branch of AlB2-like compounds comprises the superstructures caused by interplays with vacancies (R3□Si5). A potential tetragonal superstructure is presented in the right-hand part of the diagram.

The presented Bärnighausen diagram would allow for further group–subgroup transitions; thus the authors cannot exclude the existence of further structure types within the RSi2 and R2TSi3 compounds and thus also additional branches in the diagram. However, the space groups we present here already have a high number of free parameters. The extension of the diagram by further symmetry reduction accompanied with further degrees of freedom without losing the rough lattice and symmetry is challenging.

Our diagram provides information about the type of transition (klassengleiche with perpetuation of lattice symmetry, translationengleiche with perpetuation of translational symmetry and isomorphous with perpetuation of both), the change of the lattice (direction and distance), the characteristics of the structure (space group, structure type and Wyckoff positions) as well as the absolute occurrence of the structure types in the literature. Additionally, Fig. 2[link] visualizes the atom arrangements of the different structures and presents their relationships in a hierarchical structure similar to the Bärnighausen diagram. In contrast, it focuses on the structural models and only shows these branches that include new structure types compared to Hoffmann & Pöttgen (2001[Hoffmann, R.-D. & Pöttgen, R. (2001). Z. Kristallogr. Cryst. Mater. 216, 127-145.]). Appendix A[link] includes tables with Wyckoff positions of all structure types taken into account within this article (Tables 2[link], 3[link], 4[link], 5[link], 6[link], 7[link], 8[link], 9[link], 10[link], 11[link], 12[link], 13[link], 14[link], 15[link], 16[link] and 17[link]).

Table 2
Wyckoff positions of the hexagonal aristotypic structure type AlB2 with space group P6/mmm (No. 191) and lattice parameters ah ≈ 3.00, ch ≈ 3.24 Å

Element Wyckoff symbol x y z
R 1a 0 0 0
Si/T 2d [1\over 3] [1\over 3] ½

Table 3
Wyckoff positions of the hexagonal structure type Ce2CoSi3 with space group P6/mmm (No. 191) and lattice parameters a ≈ 2ah, cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 3f ½ 0 0
T 2d [1\over 3] [2\over 3] ½
Si 6m xSi[1\over 6] 2xSi[2\over 6] ½

Table 4
Wyckoff positions of the hexagonal structure type U2RuSi3 with space group P6/mmm (No. 191) and lattice parameters a ≈ 2ah, cch

The Si site is only half occupied.

Element Wyckoff symbol x y z
R 1a 0 0 0
R 3f ½ 0 0
T 2d [1\over 3] [2\over 3] ½
Si 12o xSi[1\over 6] 2xSi[2\over 6] zSi ≈ ½

Table 5
Wyckoff positions of the hexagonal structure type Er2RhSi3 with space group P63/mmc (No. 194) and lattice parameters a ≈ 2ah, c ≈ 2ch

Element Wyckoff symbol x y z
R 2b 0 0 ¼
R 6h xR ≈ ½ 2xR ≈ 0 ¼
T 4f [1\over 3] [2\over 3] zT ≈ 0
Si 12k xSi[1\over 6] 2xSi[1\over 3] zSi ≈ 0

Table 6
Wyckoff positions of the hexagonal structure type Er2RhSi3 with space group [P{\overline 6}2c] (No. 190) and lattice parameters a ≈ 2ah, c ≈ 2ch

Element Wyckoff symbol x y z
R 2b 0 0 ¼
R 6h xR ≈ ½ yR ≈ ½ ¼
T 4f [1\over 3] [2\over 3] zT ≈ 0
Si 12h xSi[1\over 6] ySi[1\over 3] zSi ≈ 0

Table 7
Wyckoff positions of the orthorhombic structure type Ho2PdSi3 with space group I112/b (No. 15) and lattice parameters a ≈ 2ah, c ≈ 8ch

Element Wyckoff symbol x y z
R 4e 0 ¼ zR,1 ≈ 0
R 4e 0 ¼ zR,2[{1\over {8}}]
R 4e 0 ¼ zR,3[{2\over {8}}]
R 4e 0 ¼ zR,4[{3\over {8}}]
R 4e 0 ¼ zR,5[{4\over {8}}]
R 4e 0 ¼ zR,6[{5\over {8}}]
R 4e 0 ¼ zR,7[{6\over {8}}]
R 4e 0 ¼ zR,8[{7\over {8}}]
T 8f xT,1[1\over 6] yT,1[{1\over {12}}] zT,1[{7\over {16}}]
T 8f xT,2[1\over 6] yT,2[{1\over {12}}] zT,2[{{13}\over {16}}]
Si 8f xSi,1[1\over 6] ySi,1[{1\over {12}}] zSi,1[{{1}\over {16}}]
Si 8f xSi,2[1\over 6] ySi,2[{1\over {12}}] zSi,2[{{3}\over {16}}]
Si 8f xSi,3[1\over 6] ySi,3[{1\over {12}}] zSi,3[{{5}\over {16}}]
Si 8f xSi,4[1\over 6] ySi,4[{1\over {12}}] zSi,4[{{9}\over {16}}]
Si 8f xSi,5[1\over 6] ySi,5[{1\over {12}}] zSi,5[{{11}\over {16}}]
Si 8f xSi,6[1\over 6] ySi,6[{1\over {12}}] zSi,6[{{15}\over {16}}]

Table 8
Wyckoff positions of the orthorhombic structure type Er3□Si5 with space group Pmmm (No. 47) and lattice parameters aah, b[\sqrt{3}a_{{\rm h}}], cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 1f ½ ½ 0
Si/T 2p ½ ySi/T,1 ≈ ¼ ½
Si/T 2n 0 ySi/T,2 ≈ ¼ ½

Table 9
Wyckoff positions of the orthorhombic structure type U2RhSi3 with space group Pmmm (No. 47) and lattice parameters aah, b[\sqrt{3}a_{{\rm h}}], cch

Element Wyckoff symbol x y z
R 1a 0 0 0
R 1f ½ ½ 0
Si/T 2n 0 yT[1\over 3] ½
Si 2p ½ ySi[5\over 6] ½

Table 10
Wyckoff positions of the orthorhombic structure type Ca2AgSi3 with space group Fmmm (No. 69) and lattice parameters a ≈ 2ah, b ≈ 2ch, c[2\sqrt{3}a_{{\rm h}}]

Element Wyckoff symbol x y z
R 8i 0 0 zR ≈ ¼
R 8f ¼ ¼ ¼
T 8h 0 yT[2\over 3] 0
Si 8h 0 ySi,1[1\over 6] 0
Si 16o xSi,2 ≈ ¼ ySi,2[{1\over {12}}] 0

Table 11
Wyckoff positions of the orthorhombic structure type Ho3□Si5 with space group P2mm (No. 25) and lattice parameters a ≈ 3ah, [b\approx\sqrt{3}a_{{\rm h}}], c ≈ 2ch

Element Wyckoff symbol x y z
R 1a 0 yR,1 ≈ 0 0
R 1b [3\over 6] yR,2 ≈ ½ 0
R 2g xR,1[2\over 6] yR,3 ≈ 0 0
R 2g xR,2[1\over 6] yR,4 ≈ ½ 0
1c 0 y□,1[ {{2}\over {6}}] ½
1d [3\over 6] y□,1[{{5}\over {6}}] ½
Si 1c 0 ySi,1[{{4}\over{6}}] ½
Si 1d [3\over 6] ySi,2[{{5}\over{6}}] ½
Si 2h xSi,1