research papers
The modulated low-temperature structure of malayaite, CaSnOSiO4
aMineralogisch-Petrographisches Institut, Universität Hamburg, Germany, bFachgebiet Kristallographie, FB Geowissenschaften, Universität Bremen, Germany, and cMAPEX Center for Materials and Processes, Universität Bremen, Germany
*Correspondence e-mail: thomas.malcherek@uni-hamburg.de
The q = 0.2606 (8)b*, that are absent at room temperature. The computed phonon dispersion indicates unstable modes associated with dynamic displacements of the Ca atoms. The largest-frequency modulus of these phonon instabilities is located close to a wavevector of q = 0.3b*. These results indicate that the malayaite is incommensurately modulated by static displacement of the Ca atoms at low temperatures, caused by the softening of an optic phonon with Bg symmetry.
of the mineral malayaite has been studied by single-crystal X-ray diffraction at a temperature of 20 K and by calculation of its phonon dispersion using density functional perturbation theory. The X-ray diffraction data show first-order satellite diffraction maxima at positionsKeywords: modulation; optic phonon; titanite; satellite reflections; DFPT.
B-IncStrDB reference: 16372EQKyWN
1. Introduction
Malayaite is the tin analogue of the common accessory mineral titanite, CaTiOSiO4 (Takenouchi, 1976; Higgins & Ribbe, 1977). The of malayaite at room temperature is described in C2/c.1 It consists of parallel, kinked chains of corner-sharing SnO6 octahedra, laterally connected by isolated SiO4 tetrahedra. In contrast to malayaite, pure titanite transforms from C2/c to P21/c at temperatures below 490 K (Taylor & Brown, 1976), forming a with ordered out-of-centre displacements of the Ti atoms inside their distorted octahedral coordination environment (Higgins & Ribbe, 1976; Speer & Gibbs, 1976).
With regard to the mechanism of et al., 1991; Salje et al., 1993; Zhang et al., 1995; Kek et al., 1997; Hayward et al., 2000; Malcherek et al., 2001; Malcherek, 2001). Analogous phase transitions also occur in structural analogues containing other d0 transition elements (Malcherek et al., 2004; Malcherek, 2007). The macroscopic formation of the ordered titanite structure is however suppressed in most natural titanite crystals which invariably contain impurity atoms such as Al or Fe (Higgins & Ribbe, 1976; Oberti et al., 1991). One well known example of a cation substitution that suppresses the out-of-centre displacement of the octahedrally coordinated cation is that of Sn for Ti in the titanite–malayaite (Kunz et al., 1997), which is a consequence of the absence of the second-order Jahn–Teller effect in the SnO6 octahedron (Kunz & Brown, 1995). When studying the computational prediction of the ordered titanite phase using density functional perturbation theory (DFPT), Malcherek & Fischer (2018) used malayaite as a reference system for the undistorted C2/c However, the calculated phonon dispersion of malayaite showed that several modes that are dominated by motion of the Ca atom are unstable at various wavevectors (Malcherek & Fischer, 2018). This prompted us to investigate the low-temperature of malayaite in order to test whether any transition to a lower-symmetry structure occurs.
and the nature of an intermediate polymorph between 490 and 825 K, the to the ordered titanite structure has been studied by numerous authors (GhoseThe Ca atom occupies interstices in the framework of corner-sharing SnO6 octahedra and SiO4 tetrahedra. At room temperature, the thermal displacement of Ca is strongly anisotropic (Higgins & Ribbe, 1977; Groat et al., 1996), with its largest displacement amplitude extending subparallel to [001], i.e. the octahedral chain direction in the C2/c setting. Anomalies in the in the temperature evolution of the Ca mean-square displacement as well as in the infrared and Raman spectra of malayaite have been observed near 500 K (Groat et al., 1996; Meyer et al., 1998; Zhang et al., 1999), but with no obvious change in symmetry occurring at this temperature. Malayaite is further known to undergo a transition to triclinic symmetry at a pressure of 4.95 GPa, accompanied by an increase of the Ca from seven to eight (Rath et al., 2003). Structural analogues of malayaite, such as CaGe2O5 or CaZrGeO5, exhibit temperature-driven monoclinic–triclinic (Malcherek & Ellemann-Olesen, 2005). Even natural titanite, albeit Ta- and Al-rich, has been observed in triclinic symmetry (Lussier et al., 2009), possibly driven by cation ordering. In the following we will describe another distortion of the malayaite structure that occurs at low temperatures and involves long-range modulation of the monoclinic malayaite structure.
2. Experimental and computational methods
X-ray diffraction measurements of a natural single crystal of malayaite have been carried out at the P24 synchrotron beamline of PETRAIII/DESY in Hamburg, Germany. The temperature of the crystal was controlled using a Cryocool-LT He gas-stream cooler. Synchrotron radiation with λ = 0.61992 Å was obtained using a water-cooled Si double-crystal monochromator. Diffraction data were collected in ϕ and ω scans at two detector positions on a four-circle kappa diffractometer (EH1). Scattered X-rays have been detected using a MARCCD165 detector. Integration, reduction and correction of the scattering data were performed using CrysAlisPRO (Rigaku Oxford Diffraction, 2015). Because of ice formation, diffraction data arising from four of the ω scans have been omitted from the final low-temperature data set (Table 1). Structure has been conducted using Jana2006 (Petříček et al., 2014).
|
The investigated malayaite crystal is from the El Hammam mine, Morocco (Sonnet & Verkaeren, 1989). The sample material has been characterized by electron microprobe analysis, yielding an average stoichiometry of Ca(Sn0.97Ti0.03)SiO5, with a very small, spatially inhomogeneous Ti4+ admixture.
First-principles calculations were performed by means of variational DFPT (Gonze, 1997; Gonze & Lee, 1997) as implemented in the CASTEP computer code (Clark et al., 2005; Refson et al., 2006). Details of these calculations are described by Malcherek & Fischer (2018). The plane-wave basis-set cut-off was set to 1200 eV. Norm-conserving pseudopotentials from the Bennett & Rappe pseudopotential library (Bennett, 2012), generated using the OPIUM code (Rappe et al., 1990), have been employed. An irreducible set of 16 k-points in the (BZ) has been sampled. The Monkhorst–Pack mesh was 4 × 4 × 3. Phonon calculations were conducted with the zero-pressure optimized Calculations for the base-centred lattice were carried out using the with transformed cell parameters ar = br ≠ cr = c, α′ = β′ ≠ γ′.
In the following, results of these calculations are reported in the conventional C-centred setting. A 2 × 2 × 2 mesh of q vectors was used to calculate the phonon dispersion. The exchange-correlation (XC) energy contributions have been treated in the generalized gradient approximation (GGA) using the PBE and PBEsol functionals (Perdew et al., 1996, 2008).
3. Results
Fig. 1 shows the calculated phonon dispersion of malayaite based on the two GGA approximations PBE and PBEsol. It is noteworthy that, unlike similar calculations made for titanite (Malcherek & Fischer, 2018), the two functionals yield very similar features, indicating that the results are not heavily dependent on the choice of functional. However, with PBEsol, especially frequencies in the Si–O stretching region above 800 cm−1 are systematically higher than frequencies obtained with the PBE approximation, due to the smaller volume overestimation calculated with PBEsol (Table 2). On the other hand, this tendency is reversed for the lowest calculated frequencies, where PBEsol yields systematically lower frequencies than PBE. Two at least partially unstable phonon mode branches are indicated in malayaite, plotted with negative frequencies in Fig. 1. Both modes are dominated by motion of the Ca atoms parallel to [001]. While some of the details for the lowest-frequency range seem to depend on the choice of XC functional, the Raman active Bg mode has mostly imaginary frequency along the path section A-Γ-Y-V-Y-Γ, with the largest modulus located between Γ and Y, parallel to b* [cf. the inset of Fig. 1 and Malcherek & Fischer (2018) concerning path details] in both XC approximations. Compared with this, the infrared active Bu mode is stable for most wavevectors, with the exception of those approaching the Y special point. This instability is enhanced with the PBEsol XC functional, which also predicts imaginary frequency for the transverse optical (TO) mode at the Γ point, due to larger LO/TO (LO = longitudinal optical) splitting compared with the PBE result. The type of motion associated with these two Bg and Bu modes is pictured in Fig. 2 for the Γ point, as well as for the BZ boundary point Y (0, 1, 0).
|
In light of the existence of a high-pressure C2/c. The of this triclinic structure is the of the C2/c structure with possible distortions. DFPT calculations based on a malayaite relaxed in triclinic symmetry did indeed render all phonon modes stable. However, the actual low-temperature of malayaite turned out to be different, as shown in the following.
to a triclinic malayaite polymorph and similar, but temperature-driven monoclinic to triclinic transitions in isostructural compounds, one plausible way to overcome the encountered dynamic instabilities is a to triclinic symmetry and , which is a maximal ofFig. 3 depicts a section of the hk7 layer of measured at a temperature of 20 K. Satellite reflections (m = 1, −1) with a modulation vector of q = 0.2606 (8)b* can be distinguished from the main reflections with m = 0 in this and other layers of Only first-order satellite reflections are observed. The position of these satellites relative to the Γ and Y points of the first BZ (Fig. 3) is indeed close to the calculated shallow `minimum' of imaginary phonon frequency of the lowest-frequency Bg mode (indicated by an arrow in Fig. 1). That the calculated phonon instability matches the observed structure modulation rather well is further indicated by the fact that the Ca atoms of the refined modulated structure at 20 K do show the largest displacements, directed parallel to [001] (Fig. 4). The good agreement of these experimental observations with the dynamic structure modulations induced by the Bg mode is demonstrated in Fig. 5, where the refined modulated structure is superimposed with a snapshot of the calculated phonon with wavevector (0, 0.3, 0), indicating a good match of both structure projections.
Thus the observed incommensurate structure modulation can be understood as a result of softening of the dynamic displacements associated with this phonon mode, i.e. static displacements of the atoms according to a single irreducible representation. The predicted instability of the phonon mode in the 0 K approximation supports the development of such static displacements at a certain, yet unknown The wavelength of the modulation at 20 K amounts to approximately 4b.
The resulting structure is described in the C2/c(0β0)s0 (de Wolff et al., 1981; Janssen et al., 2004). Using the parent and the modulation vector as input with the Isosubgroup utility (Stokes et al., 2016, 2019), C2/c(0β0)s0 appears as a possible isotropy of C2/c, with LD2 as the active irreducible representation. The symmetry of malayaite remains monoclinic at 20 K. A few, low-intensity violations of the diffraction conditions for the c-glide plane appear above the 3σ(I) level in the h0l layer. These violations however appear irrespective of temperature and are likely caused by multiple scattering effects. No significant deviation from the monoclinic metric is observed.
Even at 20 K the Ca displacement tensor remains strongly anisotropic. The largest eigenvalue of the harmonic displacement tensor is about four times larger than the other two eigenvalues (0.0132, 0.0029 and 0.0030 Å2, respectively). This anisotropy is however smaller and more symmetric than for the room-temperature displacement tensor [0.0412, 0.0062 and 0.0037 Å2, also compare Higgins & Ribbe (1977)].
There is very little contraction of the unit-cell volume occurring down to 20 K (Table 2). a is almost constant and b even slightly expands with respect to the room-temperature value, while c contracts by a mere 0.0045 Å. The observed slight increase in the β angle continues the trend observed by Groat et al. (1996) at higher temperatures.
The Ca—O distances vary most strongly due to the structural modulation. This does predominantly affect the Ca—O3 distances subparallel to the octahedral chain direction (corresponding to [001] in the present setting), which vary between 2.7088 (6) and 2.7587 (6) Å, following the Ca displacement depicted in Fig. 4. The respective room-temperature bond distance is 2.7413 (5) Å.
It is instructive to compare these Ca—O bond-length modulations with the Ca—O bond-length changes induced by the transition to triclinic symmetry observed at high-pressure conditions by Rathet al. (2003) (Fig. 6). At 5.77 GPa, the two Ca—O3 distances that are subparallel to the octahedral chain direction amount to 2.69 (1) and 2.743 (1) Å. The bond-length difference of 0.05 Å induced by the shift of the Ca atom is almost identical to the modulation range of the Ca—O3 bonds in the structure at 20 K. This emphasizes that the modulation described here and the triclinic distortion are induced by instability of the same type of atomic motion, with a finite wavevector (LD, Fig. 5) in the former and a zero wavevector [Γ, Fig. 2(b)] in the latter case.
The occurrence of the triclinically distorted structure in compounds of general composition CaMOXO4 has been linked to a critical monoclinic distortion of the framework of octahedral chains and XO4 tetrahedra (Malcherek & Ellemann-Olesen, 2005). As the monoclinic β angle does not decrease with falling temperature (Table 2), such a critical monoclinic distortion is only attained in malayaite under high-pressure conditions, where the decrease of β below 113° correlates with the volume compression.
Based on bond-valence calculations with parameters taken from Brese & O'Keeffe (1991), the room-temperature structure of malayaite does exhibit overbonding of Sn and O1, due to a rather short Sn—O1 bond distance of 1.9470 (3) Å. This overbonding persists at 20 K, where the modulation however hardly affects the Sn—O1 bond distance.
4. Conclusions
On the basis of the computational results, the Bg optic phonon, leading to a transverse modulation of the Ca position with a period of close to 34 Å along [010]. The displacement is most pronounced along [001], i.e. the direction of the octahedral chains in the C2/c setting. While, to the best of the authors' knowledge, no at similarly low temperatures has so far been conducted for titanite, it is unlikely that similar modulations occur in titanite, as the available phonon calculations for this compound (Gutmann et al., 2013; Malcherek & Fischer, 2018) do not indicate any similar instabilities for the ordered P21/c structure. The titanite phonon modes corresponding to the unstable modes of malayaite are stable in the GGA approximation, albeit at low frequency, even in the C2/c symmetry (Malcherek & Fischer, 2018). The second-order Jahn–Teller effect associated with the Ti atoms dominates in titanite, leading to the formation of a fully ordered structure that involves an ordered arrangement of short and long Ti—O bonds, modifying the position and dynamics of the Ca atoms in its wake. In malayaite this static distortion of the structural framework is absent and the monoclinic base-centred structure is retained to the lowest temperatures, with the lowest-frequency mode of the Ca atoms eventually softening to form the modulated structure. The exact temperature of the to this modulated structure remains to be determined.
of malayaite at 20 K appears to be modulated by a softSupporting information
B-IncStrDB reference: 16372EQKyWN
https://doi.org/10.1107/S2052520620003807/dk5091sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2052520620003807/dk5091Isup2.hkl
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2052520620003807/dk5091IIsup3.hkl
For both structures, data collection: CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015); cell
CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015); data reduction: CrysAlis PRO 1.171.38.46 (Rigaku OD, 2015); program(s) used to refine structure: Jana2006; molecular graphics: Jmol.CaO5SiSn | F(000) = 496 |
Mr = 266.9 | Dx = 4.557 Mg m−3 |
Monoclinic, C2/c(0β0)s0† | Synchrotron radiation, λ = 0.61992 Å |
q = 0.260600b* | Cell parameters from 7943 reflections |
a = 6.6663 (3) Å | θ = 2.7–51.0° |
b = 8.8954 (4) Å | µ = 5.53 mm−1 |
c = 7.1475 (3) Å | T = 20 K |
β = 113.405 (5)° | Irregular, yellow |
V = 388.97 (3) Å3 | 0.16 × 0.09 × 0.09 mm |
Z = 4 |
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, x2, −x3+1/2, x4+1/2; (3) −x1, −x2, −x3, −x4; (4) x1, −x2, x3+1/2, −x4+1/2; (5) x1+1/2, x2+1/2, x3, x4; (6) −x1+1/2, x2+1/2, −x3+1/2, x4+1/2; (7) −x1+1/2, −x2+1/2, −x3, −x4; (8) x1+1/2, −x2+1/2, x3+1/2, −x4+1/2. |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 7250 independent reflections |
Radiation source: synchrotron | 5161 reflections with I > 3σ(I) |
Synchrotron monochromator | Rint = 0.031 |
ω and φ scans | θmax = 50.9°, θmin = 2.8° |
Absorption correction: multi-scan CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −13→13 |
Tmin = 0.742, Tmax = 1 | k = −19→19 |
26411 measured reflections | l = −17→16 |
Refinement on F2 | 0 constraints |
R[F2 > 2σ(F2)] = 0.044 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.01I2) |
wR(F2) = 0.204 | (Δ/σ)max = 0.001 |
S = 1.30 | Δρmax = 1.48 e Å−3 |
7250 reflections | Δρmin = −2.04 e Å−3 |
68 parameters | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 9000 (1200) |
x | y | z | Uiso*/Ueq | ||
Sn | 0 | 0 | 0 | 0.00218 (5) | |
Si | 0 | 0.68161 (8) | 0.25 | 0.00251 (8) | |
Ca | 0 | 0.33686 (4) | 0.25 | 0.00636 (6) | |
O1 | 0 | 0.08680 (8) | 0.25 | 0.00419 (13) | |
O2 | 0.32451 (8) | 0.06735 (6) | 0.08692 (6) | 0.00470 (10) | |
O3 | 0.39036 (8) | 0.28755 (6) | 0.37253 (6) | 0.00441 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.00195 (7) | 0.00243 (7) | 0.00197 (6) | −0.000036 (7) | 0.00059 (4) | −0.000037 (7) |
Si | 0.00203 (12) | 0.00273 (16) | 0.00246 (9) | 0 | 0.00057 (7) | 0 |
Ca | 0.00311 (9) | 0.00301 (9) | 0.01036 (8) | 0 | −0.00008 (6) | 0 |
O1 | 0.0063 (2) | 0.0032 (2) | 0.00339 (13) | 0 | 0.00219 (12) | 0 |
O2 | 0.00358 (15) | 0.00427 (16) | 0.00513 (11) | −0.00070 (10) | 0.00053 (9) | −0.00116 (9) |
O3 | 0.00412 (15) | 0.00376 (18) | 0.00522 (12) | −0.00012 (9) | 0.00172 (9) | −0.00076 (9) |
Average | Minimum | Maximum | |
Sn—Sii | 3.3487 (6) | 3.3449 (6) | 3.3526 (6) |
Sn—Siii | 3.4901 (8) | 3.4871 (8) | 3.4932 (8) |
Sn—Siiii | 3.3487 (6) | 3.3449 (6) | 3.3526 (6) |
Sn—Siiv | 3.4901 (8) | 3.4871 (8) | 3.4932 (8) |
Sn—Ca | 3.4888 (3) | 3.4758 (3) | 3.5021 (3) |
Sn—Caii | 3.4173 (8) | 3.4132 (8) | 3.4213 (8) |
Sn—Cav | 3.4888 (3) | 3.4758 (3) | 3.5021 (3) |
Sn—Caiv | 3.4173 (8) | 3.4132 (8) | 3.4213 (8) |
Sn—O1 | 1.9466 (5) | 1.9451 (5) | 1.9480 (5) |
Sn—O1v | 1.9466 (5) | 1.9451 (5) | 1.9480 (5) |
Sn—O2 | 2.0873 (8) | 2.0845 (8) | 2.0902 (8) |
Sn—O2v | 2.0873 (8) | 2.0845 (8) | 2.0902 (8) |
Sn—O3vi | 2.0992 (5) | 2.0982 (5) | 2.1002 (5) |
Sn—O3vii | 2.0992 (5) | 2.0982 (5) | 2.1002 (5) |
Si—Ca | 3.0669 (8) | 3.0667 (8) | 3.0670 (8) |
Si—O1viii | 3.4382 (9) | 3.4328 (9) | 3.4436 (9) |
Si—O1ix | 3.4382 (9) | 3.4328 (9) | 3.4436 (9) |
Si—O2viii | 1.6363 (7) | 1.6348 (7) | 1.6378 (7) |
Si—O2x | 1.6362 (7) | 1.6348 (7) | 1.6378 (7) |
Si—O2iii | 3.3656 (8) | 3.3555 (8) | 3.3756 (8) |
Si—O2xi | 3.3656 (8) | 3.3555 (8) | 3.3756 (8) |
Si—O3viii | 1.6425 (8) | 1.6418 (8) | 1.6432 (8) |
Si—O3x | 1.6425 (8) | 1.6418 (8) | 1.6432 (8) |
Ca—O1 | 2.2245 (8) | 2.2244 (8) | 2.2246 (8) |
Ca—O2viii | 2.4183 (7) | 2.4148 (7) | 2.4219 (7) |
Ca—O2x | 2.4182 (7) | 2.4148 (7) | 2.4219 (7) |
Ca—O2xii | 3.1828 (7) | 3.1344 (7) | 3.2319 (7) |
Ca—O2xiii | 3.1834 (7) | 3.1344 (7) | 3.2319 (7) |
Ca—O3 | 2.4333 (9) | 2.4317 (9) | 2.4352 (9) |
Ca—O3xiv | 2.4333 (9) | 2.4317 (9) | 2.4352 (9) |
Ca—O3xv | 2.7335 (6) | 2.7082 (6) | 2.7587 (6) |
Ca—O3vii | 2.7333 (6) | 2.7082 (6) | 2.7587 (6) |
O1—O2 | 2.8411 (9) | 2.8389 (9) | 2.8432 (9) |
O1—O2xiv | 2.8410 (9) | 2.8389 (9) | 2.8432 (9) |
O1—O2v | 2.8671 (8) | 2.8668 (8) | 2.8675 (8) |
O1—O2xvi | 2.8671 (8) | 2.8668 (8) | 2.8675 (8) |
O1—O3 | 2.9861 (10) | 2.9813 (10) | 2.9909 (10) |
O1—O3xvii | 2.9826 (9) | 2.9811 (9) | 2.9840 (9) |
O1—O3xiv | 2.9862 (10) | 2.9813 (10) | 2.9909 (10) |
O1—O3vi | 2.9826 (9) | 2.9811 (9) | 2.9840 (9) |
O1—O3xv | 2.7379 (7) | 2.7350 (7) | 2.7407 (7) |
O1—O3vii | 2.7378 (7) | 2.7350 (7) | 2.7407 (7) |
O2—O2xviii | 2.5644 (8) | 2.5644 (8) | 2.5644 (8) |
O2—O2xix | 3.2808 (10) | 3.2756 (10) | 3.2862 (10) |
O2—O2xii | 3.4798 (8) | 3.4581 (8) | 3.5019 (8) |
O2—O3 | 2.7360 (8) | 2.7326 (8) | 2.7394 (8) |
O2—O3xviii | 2.6639 (9) | 2.6583 (9) | 2.6696 (9) |
O2—O3vi | 2.9428 (9) | 2.9383 (9) | 2.9473 (9) |
O2—O3xii | 3.2809 (7) | 3.2692 (7) | 3.2929 (7) |
O2—O3vii | 2.9778 (10) | 2.9769 (10) | 2.9786 (10) |
O3—O3xviii | 2.6906 (10) | 2.6906 (10) | 2.6906 (10) |
O3—O3xv | 3.1587 (10) | 3.1550 (10) | 3.1624 (10) |
Sii—Sn—Siii | 108.705 (10) | 108.593 (10) | 108.819 (10) |
Sii—Sn—Siiii | 179.9 (2) | 179.869 (9) | 180.0 (5) |
Sii—Sn—Siiv | 71.295 (10) | 71.182 (10) | 71.406 (10) |
Sii—Sn—Ca | 116.947 (8) | 116.497 (8) | 117.392 (8) |
Sii—Sn—Caii | 64.444 (6) | 64.152 (6) | 64.731 (6) |
Sii—Sn—Cav | 63.053 (8) | 62.511 (8) | 63.600 (8) |
Sii—Sn—Caiv | 115.556 (6) | 115.284 (6) | 115.834 (6) |
Sii—Sn—O1 | 81.12 (2) | 81.01 (2) | 81.24 (2) |
Sii—Sn—O1v | 98.88 (2) | 98.70 (2) | 99.06 (2) |
Sii—Sn—O2 | 107.675 (16) | 107.415 (16) | 107.930 (16) |
Sii—Sn—O2v | 72.325 (16) | 72.088 (16) | 72.568 (16) |
Sii—Sn—O3vi | 23.197 (19) | 23.071 (19) | 23.320 (19) |
Sii—Sn—O3vii | 156.803 (19) | 156.663 (19) | 156.946 (19) |
Siii—Sn—Siiii | 71.295 (10) | 71.182 (10) | 71.406 (10) |
Siii—Sn—Siiv | 180.0 (5) | 180.0 (5) | 180.0 (5) |
Siii—Sn—Ca | 62.258 (9) | 62.101 (9) | 62.417 (9) |
Siii—Sn—Caii | 52.705 (12) | 52.679 (12) | 52.735 (12) |
Siii—Sn—Cav | 117.742 (9) | 117.631 (9) | 117.851 (9) |
Siii—Sn—Caiv | 127.295 (12) | 127.228 (12) | 127.363 (12) |
Siii—Sn—O1 | 72.219 (15) | 72.021 (15) | 72.421 (15) |
Siii—Sn—O1v | 107.781 (15) | 107.593 (15) | 107.965 (15) |
Siii—Sn—O2 | 17.954 (18) | 17.836 (18) | 18.070 (18) |
Siii—Sn—O2v | 162.046 (18) | 161.904 (18) | 162.193 (18) |
Siii—Sn—O3vi | 95.590 (18) | 95.348 (18) | 95.836 (18) |
Siii—Sn—O3vii | 84.410 (18) | 84.167 (18) | 84.649 (18) |
Siiii—Sn—Siiv | 108.705 (10) | 108.593 (10) | 108.819 (10) |
Siiii—Sn—Ca | 63.053 (8) | 62.511 (8) | 63.600 (8) |
Siiii—Sn—Caii | 115.556 (6) | 115.284 (6) | 115.834 (6) |
Siiii—Sn—Cav | 116.947 (8) | 116.497 (8) | 117.392 (8) |
Siiii—Sn—Caiv | 64.444 (6) | 64.152 (6) | 64.731 (6) |
Siiii—Sn—O1 | 98.88 (2) | 98.70 (2) | 99.06 (2) |
Siiii—Sn—O1v | 81.12 (2) | 81.01 (2) | 81.24 (2) |
Siiii—Sn—O2 | 72.325 (16) | 72.088 (16) | 72.568 (16) |
Siiii—Sn—O2v | 107.675 (16) | 107.415 (16) | 107.930 (16) |
Siiii—Sn—O3vi | 156.803 (19) | 156.663 (19) | 156.946 (19) |
Siiii—Sn—O3vii | 23.197 (19) | 23.071 (19) | 23.320 (19) |
Siiv—Sn—Ca | 117.742 (9) | 117.631 (9) | 117.851 (9) |
Siiv—Sn—Caii | 127.295 (12) | 127.228 (12) | 127.363 (12) |
Siiv—Sn—Cav | 62.258 (9) | 62.101 (9) | 62.417 (9) |
Siiv—Sn—Caiv | 52.705 (12) | 52.679 (12) | 52.735 (12) |
Siiv—Sn—O1 | 107.781 (15) | 107.593 (15) | 107.965 (15) |
Siiv—Sn—O1v | 72.219 (15) | 72.021 (15) | 72.421 (15) |
Siiv—Sn—O2 | 162.046 (18) | 161.904 (18) | 162.193 (18) |
Siiv—Sn—O2v | 17.954 (18) | 17.836 (18) | 18.070 (18) |
Siiv—Sn—O3vi | 84.410 (18) | 84.167 (18) | 84.649 (18) |
Siiv—Sn—O3vii | 95.590 (18) | 95.348 (18) | 95.836 (18) |
Ca—Sn—Caii | 107.182 (7) | 106.787 (6) | 107.565 (6) |
Ca—Sn—Cav | 179.49 (4) | 179.192 (6) | 180.0 (5) |
Ca—Sn—Caiv | 72.818 (6) | 72.438 (6) | 73.210 (6) |
Ca—Sn—O1 | 35.82 (2) | 35.46 (2) | 36.19 (2) |
Ca—Sn—O1v | 144.18 (2) | 143.66 (2) | 144.69 (2) |
Ca—Sn—O2 | 79.157 (17) | 78.880 (17) | 79.433 (17) |
Ca—Sn—O2v | 100.843 (17) | 100.708 (17) | 100.979 (17) |
Ca—Sn—O3vi | 128.447 (15) | 128.050 (15) | 128.841 (15) |
Ca—Sn—O3vii | 51.553 (15) | 51.151 (15) | 51.958 (15) |
Caii—Sn—Cav | 72.818 (7) | 72.438 (7) | 73.210 (7) |
Caii—Sn—Caiv | 179.9 (2) | 179.859 (6) | 180.0 (5) |
Caii—Sn—O1 | 92.533 (14) | 92.044 (14) | 93.012 (14) |
Caii—Sn—O1v | 87.467 (14) | 86.988 (14) | 87.957 (14) |
Caii—Sn—O2 | 44.434 (17) | 44.361 (17) | 44.507 (17) |
Caii—Sn—O2v | 135.566 (17) | 135.400 (17) | 135.733 (17) |
Caii—Sn—O3vi | 44.896 (17) | 44.825 (17) | 44.965 (17) |
Caii—Sn—O3vii | 135.104 (17) | 135.069 (17) | 135.141 (17) |
Cav—Sn—Caiv | 107.182 (7) | 106.787 (6) | 107.565 (6) |
Cav—Sn—O1 | 144.18 (2) | 143.66 (2) | 144.69 (2) |
Cav—Sn—O1v | 35.82 (2) | 35.46 (2) | 36.19 (2) |
Cav—Sn—O2 | 100.843 (17) | 100.708 (17) | 100.979 (17) |
Cav—Sn—O2v | 79.157 (17) | 78.880 (17) | 79.433 (17) |
Cav—Sn—O3vi | 51.553 (15) | 51.151 (15) | 51.958 (15) |
Cav—Sn—O3vii | 128.447 (15) | 128.050 (15) | 128.841 (15) |
Caiv—Sn—O1 | 87.467 (14) | 86.988 (14) | 87.957 (14) |
Caiv—Sn—O1v | 92.533 (14) | 92.044 (14) | 93.012 (14) |
Caiv—Sn—O2 | 135.566 (17) | 135.400 (17) | 135.733 (17) |
Caiv—Sn—O2v | 44.434 (17) | 44.361 (17) | 44.507 (17) |
Caiv—Sn—O3vi | 135.104 (17) | 135.069 (17) | 135.141 (17) |
Caiv—Sn—O3vii | 44.896 (17) | 44.825 (17) | 44.965 (17) |
O1—Sn—O1v | 179.89 (16) | 179.81 (3) | 180.0 (5) |
O1—Sn—O2 | 89.48 (2) | 89.36 (2) | 89.59 (2) |
O1—Sn—O2v | 90.52 (2) | 90.49 (2) | 90.56 (2) |
O1—Sn—O3vi | 94.91 (2) | 94.82 (2) | 95.01 (2) |
O1—Sn—O3vii | 85.09 (2) | 84.98 (2) | 85.19 (2) |
O1v—Sn—O2 | 90.52 (2) | 90.49 (2) | 90.56 (2) |
O1v—Sn—O2v | 89.48 (2) | 89.36 (2) | 89.59 (2) |
O1v—Sn—O3vi | 85.09 (2) | 84.98 (2) | 85.19 (2) |
O1v—Sn—O3vii | 94.91 (2) | 94.82 (2) | 95.01 (2) |
O2—Sn—O2v | 179.87 (14) | 179.77 (2) | 180.0 (5) |
O2—Sn—O3vi | 89.32 (2) | 89.19 (2) | 89.46 (2) |
O2—Sn—O3vii | 90.68 (2) | 90.58 (2) | 90.78 (2) |
O2v—Sn—O3vi | 90.68 (2) | 90.58 (2) | 90.78 (2) |
O2v—Sn—O3vii | 89.32 (2) | 89.19 (2) | 89.46 (2) |
O3vi—Sn—O3vii | 180.0 (5) | 180.0 (5) | 180.0 (5) |
Snxx—Si—Snviii | 108.706 (8) | 108.611 (8) | 108.801 (8) |
Snxx—Si—Snxxi | 64.497 (13) | 64.497 (13) | 64.497 (13) |
Snxx—Si—Snx | 117.532 (9) | 117.434 (9) | 117.631 (9) |
Snxx—Si—Ca | 147.747 (9) | 147.073 (9) | 148.430 (9) |
Snxx—Si—O1viii | 114.389 (15) | 114.237 (15) | 114.543 (15) |
Snxx—Si—O1ix | 90.114 (14) | 89.997 (14) | 90.230 (14) |
Snxx—Si—O2viii | 107.26 (2) | 106.72 (2) | 107.81 (2) |
Snxx—Si—O2x | 138.94 (3) | 138.73 (3) | 139.14 (3) |
Snxx—Si—O2iii | 36.223 (12) | 36.099 (12) | 36.347 (12) |
Snxx—Si—O2xi | 71.602 (16) | 71.515 (16) | 71.688 (16) |
Snxx—Si—O3viii | 83.89 (3) | 83.83 (3) | 83.96 (3) |
Snxx—Si—O3x | 30.22 (2) | 30.07 (2) | 30.38 (2) |
Snviii—Si—Snxxi | 117.532 (9) | 117.434 (9) | 117.631 (9) |
Snviii—Si—Snx | 124.85 (2) | 124.85 (2) | 124.85 (2) |
Snviii—Si—Ca | 62.429 (10) | 62.318 (10) | 62.535 (10) |
Snviii—Si—O1viii | 32.624 (9) | 32.623 (9) | 32.624 (9) |
Snviii—Si—O1ix | 127.96 (2) | 127.91 (2) | 128.02 (2) |
Snviii—Si—O2viii | 23.16 (2) | 23.00 (2) | 23.31 (2) |
Snviii—Si—O2x | 110.14 (3) | 109.90 (3) | 110.38 (3) |
Snviii—Si—O2iii | 74.282 (11) | 74.096 (11) | 74.469 (11) |
Snviii—Si—O2xi | 152.271 (16) | 152.033 (16) | 152.511 (16) |
Snviii—Si—O3viii | 90.10 (2) | 90.01 (2) | 90.20 (2) |
Snviii—Si—O3x | 121.961 (17) | 121.888 (17) | 122.033 (17) |
Snxxi—Si—Snx | 108.706 (8) | 108.611 (8) | 108.801 (8) |
Snxxi—Si—Ca | 147.755 (9) | 147.073 (9) | 148.430 (9) |
Snxxi—Si—O1viii | 90.113 (14) | 89.997 (14) | 90.230 (14) |
Snxxi—Si—O1ix | 114.390 (15) | 114.237 (15) | 114.543 (15) |
Snxxi—Si—O2viii | 138.94 (3) | 138.73 (3) | 139.14 (3) |
Snxxi—Si—O2x | 107.27 (2) | 106.72 (2) | 107.81 (2) |
Snxxi—Si—O2iii | 71.602 (16) | 71.515 (16) | 71.688 (16) |
Snxxi—Si—O2xi | 36.223 (12) | 36.099 (12) | 36.347 (12) |
Snxxi—Si—O3viii | 30.22 (2) | 30.07 (2) | 30.38 (2) |
Snxxi—Si—O3x | 83.89 (3) | 83.83 (3) | 83.96 (3) |
Snx—Si—Ca | 62.427 (10) | 62.318 (10) | 62.535 (10) |
Snx—Si—O1viii | 127.96 (2) | 127.91 (2) | 128.02 (2) |
Snx—Si—O1ix | 32.624 (9) | 32.623 (9) | 32.624 (9) |
Snx—Si—O2viii | 110.14 (3) | 109.90 (3) | 110.38 (3) |
Snx—Si—O2x | 23.15 (2) | 23.00 (2) | 23.31 (2) |
Snx—Si—O2iii | 152.271 (16) | 152.033 (16) | 152.511 (16) |
Snx—Si—O2xi | 74.283 (11) | 74.096 (11) | 74.469 (11) |
Snx—Si—O3viii | 121.961 (17) | 121.888 (17) | 122.033 (17) |
Snx—Si—O3x | 90.10 (2) | 90.01 (2) | 90.20 (2) |
Ca—Si—O1viii | 75.804 (17) | 75.366 (16) | 76.235 (17) |
Ca—Si—O1ix | 75.798 (17) | 75.366 (16) | 76.235 (17) |
Ca—Si—O2viii | 51.59 (3) | 51.46 (3) | 51.72 (3) |
Ca—Si—O2x | 51.59 (3) | 51.46 (3) | 51.72 (3) |
Ca—Si—O2iii | 131.567 (13) | 131.148 (13) | 131.990 (13) |
Ca—Si—O2xi | 131.571 (13) | 131.148 (13) | 131.990 (13) |
Ca—Si—O3viii | 125.01 (3) | 124.36 (3) | 125.66 (3) |
Ca—Si—O3x | 125.01 (3) | 124.36 (3) | 125.66 (3) |
O1viii—Si—O1ix | 151.60 (3) | 151.60 (3) | 151.60 (3) |
O1viii—Si—O2viii | 55.17 (3) | 54.93 (3) | 55.40 (3) |
O1viii—Si—O2x | 105.45 (3) | 105.36 (3) | 105.55 (3) |
O1viii—Si—O2iii | 79.349 (16) | 79.056 (16) | 79.641 (16) |
O1viii—Si—O2xi | 120.687 (18) | 120.445 (18) | 120.930 (18) |
O1viii—Si—O3viii | 60.26 (2) | 60.19 (2) | 60.34 (2) |
O1viii—Si—O3x | 141.03 (3) | 140.98 (3) | 141.08 (3) |
O1ix—Si—O2viii | 105.45 (3) | 105.36 (3) | 105.55 (3) |
O1ix—Si—O2x | 55.16 (3) | 54.93 (3) | 55.40 (3) |
O1ix—Si—O2iii | 120.687 (18) | 120.445 (18) | 120.930 (18) |
O1ix—Si—O2xi | 79.349 (16) | 79.056 (16) | 79.641 (16) |
O1ix—Si—O3viii | 141.03 (3) | 140.98 (3) | 141.08 (3) |
O1ix—Si—O3x | 60.26 (2) | 60.19 (2) | 60.34 (2) |
O2viii—Si—O2x | 103.19 (5) | 103.18 (5) | 103.19 (5) |
O2viii—Si—O2iii | 80.09 (2) | 79.58 (2) | 80.62 (2) |
O2viii—Si—O2xi | 175.13 (3) | 174.83 (3) | 175.43 (3) |
O2viii—Si—O3viii | 113.12 (3) | 112.98 (3) | 113.25 (3) |
O2viii—Si—O3x | 108.68 (3) | 108.28 (3) | 109.08 (3) |
O2x—Si—O2iii | 175.13 (3) | 174.83 (3) | 175.43 (3) |
O2x—Si—O2xi | 80.10 (2) | 79.58 (2) | 80.62 (2) |
O2x—Si—O3viii | 108.68 (3) | 108.28 (3) | 109.08 (3) |
O2x—Si—O3x | 113.11 (3) | 112.98 (3) | 113.25 (3) |
O2iii—Si—O2xi | 96.86 (2) | 96.86 (2) | 96.86 (2) |
O2iii—Si—O3viii | 72.85 (3) | 72.74 (3) | 72.97 (3) |
O2iii—Si—O3x | 62.19 (3) | 61.87 (3) | 62.52 (3) |
O2xi—Si—O3viii | 62.19 (3) | 61.87 (3) | 62.52 (3) |
O2xi—Si—O3x | 72.85 (3) | 72.74 (3) | 72.97 (3) |
O3viii—Si—O3x | 109.98 (5) | 109.98 (5) | 109.98 (5) |
Sn—Ca—Snviii | 107.180 (6) | 106.744 (6) | 107.605 (6) |
Sn—Ca—Snxiv | 61.615 (7) | 61.613 (7) | 61.617 (7) |
Sn—Ca—Snx | 115.729 (6) | 115.223 (6) | 116.224 (6) |
Sn—Ca—Si | 149.199 (7) | 147.962 (7) | 150.423 (8) |
Sn—Ca—O1 | 30.809 (11) | 30.504 (11) | 31.109 (11) |
Sn—Ca—O2viii | 125.436 (14) | 124.498 (14) | 126.361 (14) |
Sn—Ca—O2x | 151.240 (17) | 150.504 (17) | 151.954 (17) |
Sn—Ca—O2xii | 76.570 (12) | 76.010 (12) | 77.129 (12) |
Sn—Ca—O2xiii | 133.800 (14) | 133.339 (14) | 134.262 (15) |
Sn—Ca—O3 | 79.160 (15) | 78.732 (15) | 79.580 (15) |
Sn—Ca—O3xiv | 83.016 (16) | 82.678 (16) | 83.344 (16) |
Sn—Ca—O3xv | 95.931 (16) | 95.834 (16) | 96.029 (16) |
Sn—Ca—O3vii | 36.978 (12) | 36.802 (12) | 37.151 (12) |
Snviii—Ca—Snxiv | 115.724 (6) | 115.223 (6) | 116.224 (6) |
Snviii—Ca—Snx | 129.732 (12) | 129.723 (12) | 129.740 (12) |
Snviii—Ca—Si | 64.866 (7) | 64.768 (7) | 64.972 (7) |
Snviii—Ca—O1 | 115.125 (12) | 114.992 (12) | 115.257 (12) |
Snviii—Ca—O2viii | 37.176 (14) | 37.091 (14) | 37.264 (14) |
Snviii—Ca—O2x | 94.389 (17) | 94.219 (17) | 94.559 (17) |
Snviii—Ca—O2xii | 93.789 (12) | 93.028 (12) | 94.542 (12) |
Snviii—Ca—O2xiii | 72.936 (11) | 72.483 (11) | 73.392 (11) |
Snviii—Ca—O3 | 161.135 (18) | 160.149 (18) | 162.078 (19) |
Snviii—Ca—O3xiv | 37.510 (14) | 37.460 (14) | 37.560 (14) |
Snviii—Ca—O3xv | 120.720 (15) | 119.630 (15) | 121.828 (15) |
Snviii—Ca—O3vii | 80.384 (13) | 79.977 (13) | 80.785 (13) |
Snxiv—Ca—Snx | 107.174 (6) | 106.744 (6) | 107.605 (6) |
Snxiv—Ca—Si | 149.186 (7) | 147.962 (7) | 150.423 (8) |
Snxiv—Ca—O1 | 30.806 (11) | 30.504 (11) | 31.109 (11) |
Snxiv—Ca—O2viii | 151.231 (17) | 150.504 (17) | 151.954 (17) |
Snxiv—Ca—O2x | 125.427 (14) | 124.498 (14) | 126.361 (14) |
Snxiv—Ca—O2xii | 133.803 (14) | 133.339 (14) | 134.262 (15) |
Snxiv—Ca—O2xiii | 76.565 (12) | 76.010 (12) | 77.129 (12) |
Snxiv—Ca—O3 | 83.011 (16) | 82.678 (16) | 83.344 (16) |
Snxiv—Ca—O3xiv | 79.156 (15) | 78.732 (15) | 79.580 (15) |
Snxiv—Ca—O3xv | 36.976 (12) | 36.802 (12) | 37.151 (12) |
Snxiv—Ca—O3vii | 95.931 (16) | 95.834 (16) | 96.029 (16) |
Snx—Ca—Si | 64.868 (7) | 64.768 (7) | 64.972 (7) |
Snx—Ca—O1 | 115.122 (12) | 114.992 (12) | 115.257 (12) |
Snx—Ca—O2viii | 94.392 (17) | 94.219 (17) | 94.559 (17) |
Snx—Ca—O2x | 37.177 (14) | 37.091 (14) | 37.264 (14) |
Snx—Ca—O2xii | 72.942 (11) | 72.483 (11) | 73.392 (11) |
Snx—Ca—O2xiii | 93.780 (12) | 93.028 (12) | 94.542 (12) |
Snx—Ca—O3 | 37.511 (14) | 37.460 (14) | 37.560 (14) |
Snx—Ca—O3xiv | 161.123 (18) | 160.149 (18) | 162.078 (19) |
Snx—Ca—O3xv | 80.381 (13) | 79.977 (13) | 80.785 (13) |
Snx—Ca—O3vii | 120.735 (15) | 119.630 (15) | 121.828 (15) |
Si—Ca—O1 | 179.02 (3) | 178.463 (14) | 180.0 (5) |
Si—Ca—O2viii | 32.020 (13) | 31.974 (13) | 32.064 (13) |
Si—Ca—O2x | 32.020 (13) | 31.974 (13) | 32.064 (13) |
Si—Ca—O2xii | 74.476 (13) | 73.761 (13) | 75.181 (13) |
Si—Ca—O2xiii | 74.467 (13) | 73.761 (13) | 75.181 (13) |
Si—Ca—O3 | 100.381 (16) | 100.099 (16) | 100.652 (16) |
Si—Ca—O3xiv | 100.377 (16) | 100.099 (16) | 100.652 (16) |
Si—Ca—O3xv | 113.878 (15) | 112.865 (15) | 114.902 (15) |
Si—Ca—O3vii | 113.889 (15) | 112.865 (15) | 114.902 (15) |
O1—Ca—O2viii | 147.969 (16) | 147.278 (16) | 148.627 (16) |
O1—Ca—O2x | 147.962 (16) | 147.278 (16) | 148.627 (16) |
O1—Ca—O2xii | 105.531 (18) | 104.735 (18) | 106.320 (18) |
O1—Ca—O2xiii | 105.525 (18) | 104.735 (18) | 106.320 (18) |
O1—Ca—O3 | 79.609 (19) | 79.465 (19) | 79.764 (19) |
O1—Ca—O3xiv | 79.612 (19) | 79.465 (19) | 79.764 (19) |
O1—Ca—O3xv | 66.113 (17) | 65.689 (16) | 66.536 (17) |
O1—Ca—O3vii | 66.116 (17) | 65.689 (16) | 66.536 (17) |
O2viii—Ca—O2x | 64.039 (19) | 64.037 (19) | 64.042 (19) |
O2viii—Ca—O2xii | 70.20 (2) | 69.46 (2) | 70.93 (2) |
O2viii—Ca—O2xiii | 83.38 (2) | 82.807 (19) | 83.97 (2) |
O2viii—Ca—O3 | 124.73 (2) | 124.04 (2) | 125.40 (2) |
O2viii—Ca—O3xiv | 74.68 (2) | 74.57 (2) | 74.80 (2) |
O2viii—Ca—O3xv | 135.03 (2) | 133.86 (2) | 136.22 (2) |
O2viii—Ca—O3vii | 88.800 (18) | 88.013 (18) | 89.578 (18) |
O2x—Ca—O2xii | 83.39 (2) | 82.807 (19) | 83.97 (2) |
O2x—Ca—O2xiii | 70.19 (2) | 69.46 (2) | 70.93 (2) |
O2x—Ca—O3 | 74.68 (2) | 74.57 (2) | 74.80 (2) |
O2x—Ca—O3xiv | 124.72 (2) | 124.04 (2) | 125.40 (2) |
O2x—Ca—O3xv | 88.793 (18) | 88.013 (18) | 89.578 (18) |
O2x—Ca—O3vii | 135.04 (2) | 133.86 (2) | 136.22 (2) |
O2xii—Ca—O2xiii | 148.94 (2) | 148.94 (2) | 148.94 (2) |
O2xii—Ca—O3 | 70.044 (17) | 69.424 (17) | 70.654 (17) |
O2xii—Ca—O3xiv | 115.974 (17) | 115.010 (17) | 116.929 (17) |
O2xii—Ca—O3xv | 145.142 (17) | 144.840 (17) | 145.434 (17) |
O2xii—Ca—O3vii | 52.865 (17) | 52.203 (17) | 53.526 (17) |
O2xiii—Ca—O3 | 115.963 (17) | 115.010 (17) | 116.929 (17) |
O2xiii—Ca—O3xiv | 70.036 (17) | 69.424 (17) | 70.654 (17) |
O2xiii—Ca—O3xv | 52.856 (17) | 52.203 (17) | 53.526 (17) |
O2xiii—Ca—O3vii | 145.137 (17) | 144.840 (17) | 145.434 (17) |
O3—Ca—O3xiv | 159.20 (3) | 159.17 (3) | 159.23 (3) |
O3—Ca—O3xv | 75.12 (2) | 74.75 (2) | 75.49 (2) |
O3—Ca—O3vii | 96.36 (2) | 95.36 (2) | 97.35 (2) |
O3xiv—Ca—O3xv | 96.35 (2) | 95.36 (2) | 97.35 (2) |
O3xiv—Ca—O3vii | 75.12 (2) | 74.75 (2) | 75.49 (2) |
O3xv—Ca—O3vii | 132.23 (2) | 132.22 (2) | 132.23 (2) |
Sn—O1—Snxiv | 133.26 (4) | 133.26 (4) | 133.26 (4) |
Sn—O1—Sixvii | 116.794 (15) | 116.701 (15) | 116.888 (15) |
Sn—O1—Siii | 75.157 (16) | 74.955 (16) | 75.356 (16) |
Sn—O1—Ca | 113.37 (2) | 112.71 (2) | 114.03 (3) |
Sn—O1—O2 | 47.279 (15) | 47.201 (15) | 47.357 (15) |
Sn—O1—O2xiv | 129.05 (2) | 128.65 (2) | 129.46 (2) |
Sn—O1—O2v | 46.718 (17) | 46.639 (17) | 46.798 (17) |
Sn—O1—O2xvi | 107.83 (3) | 107.45 (3) | 108.21 (3) |
Sn—O1—O3 | 100.88 (2) | 100.61 (2) | 101.14 (2) |
Sn—O1—O3xvii | 90.28 (3) | 90.14 (3) | 90.42 (3) |
Sn—O1—O3xiv | 106.604 (17) | 106.550 (17) | 106.657 (17) |
Sn—O1—O3vi | 44.526 (17) | 44.467 (17) | 44.585 (17) |
Sn—O1—O3xv | 165.74 (2) | 165.29 (2) | 166.19 (2) |
Sn—O1—O3vii | 49.812 (16) | 49.739 (16) | 49.884 (16) |
Snxiv—O1—Sixvii | 75.154 (16) | 74.955 (16) | 75.356 (16) |
Snxiv—O1—Siii | 116.796 (15) | 116.701 (15) | 116.888 (15) |
Snxiv—O1—Ca | 113.37 (2) | 112.71 (2) | 114.03 (3) |
Snxiv—O1—O2 | 129.06 (2) | 128.65 (2) | 129.46 (2) |
Snxiv—O1—O2xiv | 47.279 (15) | 47.201 (15) | 47.357 (15) |
Snxiv—O1—O2v | 107.83 (3) | 107.45 (3) | 108.21 (3) |
Snxiv—O1—O2xvi | 46.717 (17) | 46.639 (17) | 46.798 (17) |
Snxiv—O1—O3 | 106.603 (17) | 106.550 (17) | 106.657 (17) |
Snxiv—O1—O3xvii | 44.526 (17) | 44.467 (17) | 44.585 (17) |
Snxiv—O1—O3xiv | 100.87 (2) | 100.61 (2) | 101.14 (2) |
Snxiv—O1—O3vi | 90.28 (3) | 90.14 (3) | 90.42 (3) |
Snxiv—O1—O3xv | 49.811 (16) | 49.739 (16) | 49.884 (16) |
Snxiv—O1—O3vii | 165.73 (2) | 165.29 (2) | 166.19 (2) |
Sixvii—O1—Siii | 151.60 (3) | 151.60 (3) | 151.60 (3) |
Sixvii—O1—Ca | 75.802 (19) | 75.484 (19) | 76.120 (19) |
Sixvii—O1—O2 | 155.656 (19) | 155.449 (19) | 155.868 (19) |
Sixvii—O1—O2xiv | 28.210 (13) | 28.115 (13) | 28.309 (13) |
Sixvii—O1—O2v | 73.100 (18) | 73.018 (18) | 73.183 (18) |
Sixvii—O1—O2xvi | 121.69 (2) | 121.42 (2) | 121.96 (2) |
Sixvii—O1—O3 | 125.82 (3) | 125.76 (3) | 125.87 (3) |
Sixvii—O1—O3xvii | 82.43 (2) | 82.33 (2) | 82.53 (2) |
Sixvii—O1—O3xiv | 28.530 (16) | 28.478 (16) | 28.583 (16) |
Sixvii—O1—O3vi | 124.72 (2) | 124.61 (2) | 124.83 (2) |
Sixvii—O1—O3xv | 77.240 (19) | 76.898 (19) | 77.590 (19) |
Sixvii—O1—O3vii | 91.174 (19) | 90.938 (19) | 91.414 (19) |
Siii—O1—Ca | 75.801 (19) | 75.484 (19) | 76.120 (19) |
Siii—O1—O2 | 28.212 (13) | 28.115 (13) | 28.309 (13) |
Siii—O1—O2xiv | 155.660 (19) | 155.449 (19) | 155.868 (19) |
Siii—O1—O2v | 121.69 (2) | 121.42 (2) | 121.96 (2) |
Siii—O1—O2xvi | 73.101 (18) | 73.018 (18) | 73.183 (18) |
Siii—O1—O3 | 28.531 (16) | 28.478 (16) | 28.583 (16) |
Siii—O1—O3xvii | 124.72 (2) | 124.61 (2) | 124.83 (2) |
Siii—O1—O3xiv | 125.82 (3) | 125.76 (3) | 125.87 (3) |
Siii—O1—O3vi | 82.43 (2) | 82.33 (2) | 82.53 (2) |
Siii—O1—O3xv | 91.179 (19) | 90.938 (19) | 91.414 (19) |
Siii—O1—O3vii | 77.247 (19) | 76.898 (19) | 77.590 (19) |
Ca—O1—O2 | 93.49 (2) | 92.85 (2) | 94.13 (2) |
Ca—O1—O2xiv | 93.50 (2) | 92.85 (2) | 94.13 (2) |
Ca—O1—O2v | 118.57 (2) | 118.15 (2) | 118.99 (2) |
Ca—O1—O2xvi | 118.57 (2) | 118.15 (2) | 118.99 (2) |
Ca—O1—O3 | 53.275 (17) | 53.186 (17) | 53.359 (17) |
Ca—O1—O3xvii | 153.19 (2) | 152.53 (2) | 153.84 (2) |
Ca—O1—O3xiv | 53.274 (17) | 53.186 (17) | 53.359 (17) |
Ca—O1—O3vi | 153.18 (2) | 152.53 (2) | 153.84 (2) |
Ca—O1—O3xv | 65.909 (19) | 65.232 (19) | 66.58 (2) |
Ca—O1—O3vii | 65.903 (19) | 65.232 (19) | 66.58 (2) |
O2—O1—O2xiv | 173.01 (3) | 173.00 (3) | 173.01 (3) |
O2—O1—O2v | 94.00 (2) | 93.89 (2) | 94.10 (2) |
O2—O1—O2xvi | 82.65 (2) | 82.17 (2) | 83.13 (2) |
O2—O1—O3 | 55.940 (19) | 55.829 (19) | 56.049 (19) |
O2—O1—O3xvii | 112.42 (3) | 112.30 (3) | 112.54 (3) |
O2—O1—O3xiv | 129.27 (3) | 129.12 (2) | 129.42 (2) |
O2—O1—O3vi | 60.65 (2) | 60.56 (2) | 60.73 (2) |
O2—O1—O3xv | 118.72 (2) | 118.31 (2) | 119.12 (2) |
O2—O1—O3vii | 64.49 (2) | 64.46 (2) | 64.52 (2) |
O2xiv—O1—O2v | 82.64 (2) | 82.17 (2) | 83.13 (2) |
O2xiv—O1—O2xvi | 94.00 (2) | 93.89 (2) | 94.10 (2) |
O2xiv—O1—O3 | 129.27 (3) | 129.12 (2) | 129.42 (2) |
O2xiv—O1—O3xvii | 60.65 (2) | 60.56 (2) | 60.73 (2) |
O2xiv—O1—O3xiv | 55.937 (19) | 55.829 (19) | 56.049 (19) |
O2xiv—O1—O3vi | 112.42 (3) | 112.30 (3) | 112.54 (3) |
O2xiv—O1—O3xv | 64.49 (2) | 64.46 (2) | 64.52 (2) |
O2xiv—O1—O3vii | 118.71 (2) | 118.31 (2) | 119.12 (2) |
O2v—O1—O2xvi | 122.86 (3) | 122.86 (3) | 122.86 (3) |
O2v—O1—O3 | 144.22 (2) | 143.79 (2) | 144.63 (2) |
O2v—O1—O3xvii | 68.20 (2) | 67.93 (2) | 68.47 (2) |
O2v—O1—O3xiv | 76.162 (18) | 76.030 (18) | 76.290 (18) |
O2v—O1—O3vi | 61.16 (2) | 61.16 (2) | 61.16 (2) |
O2v—O1—O3xv | 147.13 (3) | 146.63 (3) | 147.64 (3) |
O2v—O1—O3vii | 63.292 (18) | 63.167 (18) | 63.416 (18) |
O2xvi—O1—O3 | 76.159 (18) | 76.030 (18) | 76.290 (18) |
O2xvi—O1—O3xvii | 61.16 (2) | 61.16 (2) | 61.16 (2) |
O2xvi—O1—O3xiv | 144.21 (2) | 143.79 (2) | 144.63 (2) |
O2xvi—O1—O3vi | 68.20 (2) | 67.93 (2) | 68.47 (2) |
O2xvi—O1—O3xv | 63.290 (18) | 63.167 (18) | 63.416 (18) |
O2xvi—O1—O3vii | 147.14 (3) | 146.63 (3) | 147.64 (3) |
O3—O1—O3xvii | 137.24 (2) | 137.10 (2) | 137.39 (2) |
O3—O1—O3xiv | 106.54 (3) | 106.54 (3) | 106.54 (3) |
O3—O1—O3vi | 109.46 (2) | 109.39 (2) | 109.54 (2) |
O3—O1—O3xv | 66.82 (2) | 66.71 (2) | 66.94 (2) |
O3—O1—O3vii | 84.57 (2) | 84.18 (2) | 84.96 (2) |
O3xvii—O1—O3xiv | 109.46 (2) | 109.39 (2) | 109.54 (2) |
O3xvii—O1—O3vi | 53.62 (2) | 53.62 (2) | 53.62 (2) |
O3xvii—O1—O3xv | 94.34 (2) | 94.30 (2) | 94.37 (2) |
O3xvii—O1—O3vii | 130.77 (2) | 130.60 (2) | 130.95 (2) |
O3xiv—O1—O3vi | 137.25 (2) | 137.10 (2) | 137.39 (2) |
O3xiv—O1—O3xv | 84.56 (2) | 84.18 (2) | 84.96 (2) |
O3xiv—O1—O3vii | 66.82 (2) | 66.71 (2) | 66.94 (2) |
O3vi—O1—O3xv | 130.78 (2) | 130.60 (2) | 130.95 (2) |
O3vi—O1—O3vii | 94.34 (2) | 94.30 (2) | 94.37 (2) |
O3xv—O1—O3vii | 131.81 (3) | 131.81 (3) | 131.81 (3) |
Sn—O2—Siii | 138.89 (4) | 138.62 (4) | 139.17 (4) |
Sn—O2—Siiii | 71.451 (16) | 71.331 (15) | 71.567 (16) |
Sn—O2—Caii | 98.39 (2) | 98.23 (2) | 98.55 (2) |
Sn—O2—Caxii | 120.044 (19) | 119.544 (18) | 120.537 (19) |
Sn—O2—O1 | 43.245 (16) | 43.166 (16) | 43.326 (16) |
Sn—O2—O1v | 42.757 (14) | 42.715 (13) | 42.800 (14) |
Sn—O2—O2xviii | 137.22 (3) | 136.73 (3) | 137.73 (3) |
Sn—O2—O2xix | 126.38 (2) | 126.31 (2) | 126.46 (2) |
Sn—O2—O2xii | 92.67 (2) | 92.54 (2) | 92.81 (2) |
Sn—O2—O3 | 105.53 (3) | 105.34 (3) | 105.71 (3) |
Sn—O2—O3xviii | 148.63 (3) | 148.16 (3) | 149.08 (3) |
Sn—O2—O3vi | 45.503 (16) | 45.391 (16) | 45.616 (16) |
Sn—O2—O3xii | 79.993 (18) | 79.868 (18) | 80.116 (18) |
Sn—O2—O3vii | 44.822 (16) | 44.781 (16) | 44.864 (16) |
Siii—O2—Siiii | 99.91 (3) | 99.38 (3) | 100.43 (3) |
Siii—O2—Caii | 96.39 (3) | 96.22 (3) | 96.56 (3) |
Siii—O2—Caxii | 89.94 (3) | 89.63 (3) | 90.25 (3) |
Siii—O2—O1 | 96.62 (3) | 96.29 (3) | 96.95 (3) |
Siii—O2—O1v | 169.38 (4) | 168.57 (4) | 170.18 (4) |
Siii—O2—O2xviii | 38.41 (3) | 38.37 (3) | 38.45 (3) |
Siii—O2—O2xix | 94.64 (3) | 94.46 (3) | 94.82 (3) |
Siii—O2—O2xii | 72.31 (3) | 71.95 (3) | 72.67 (3) |
Siii—O2—O3 | 33.51 (2) | 33.43 (2) | 33.60 (2) |
Siii—O2—O3xviii | 35.74 (2) | 35.56 (2) | 35.92 (2) |
Siii—O2—O3vi | 133.90 (3) | 133.17 (3) | 134.65 (3) |
Siii—O2—O3xii | 111.91 (3) | 111.20 (3) | 112.60 (3) |
Siii—O2—O3vii | 111.78 (3) | 111.41 (3) | 112.15 (3) |
Siiii—O2—Caii | 163.30 (2) | 162.89 (2) | 163.72 (2) |
Siiii—O2—Caxii | 66.801 (12) | 66.426 (12) | 67.170 (13) |
Siiii—O2—O1 | 82.841 (19) | 82.816 (19) | 82.867 (19) |
Siiii—O2—O1v | 70.141 (19) | 69.991 (19) | 70.288 (19) |
Siiii—O2—O2xviii | 138.21 (3) | 137.73 (3) | 138.68 (3) |
Siiii—O2—O2xix | 108.896 (19) | 108.181 (19) | 109.598 (19) |
Siiii—O2—O2xii | 27.594 (12) | 27.423 (12) | 27.763 (12) |
Siiii—O2—O3 | 85.75 (2) | 85.47 (2) | 86.02 (2) |
Siiii—O2—O3xviii | 79.52 (2) | 79.04 (2) | 79.99 (2) |
Siiii—O2—O3vi | 115.59 (2) | 115.53 (2) | 115.66 (2) |
Siiii—O2—O3xii | 28.579 (13) | 28.491 (13) | 28.666 (13) |
Siiii—O2—O3vii | 29.203 (14) | 29.103 (14) | 29.300 (14) |
Caii—O2—Caxii | 109.80 (2) | 109.07 (2) | 110.54 (2) |
Caii—O2—O1 | 98.94 (2) | 98.54 (2) | 99.33 (2) |
Caii—O2—O1v | 93.35 (2) | 92.85 (2) | 93.86 (2) |
Caii—O2—O2xviii | 57.979 (18) | 57.846 (18) | 58.116 (18) |
Caii—O2—O2xix | 65.888 (18) | 64.739 (18) | 67.062 (18) |
Caii—O2—O2xii | 168.14 (2) | 168.05 (2) | 168.24 (2) |
Caii—O2—O3 | 110.11 (2) | 109.90 (2) | 110.33 (2) |
Caii—O2—O3xviii | 112.54 (2) | 112.17 (2) | 112.92 (2) |
Caii—O2—O3vi | 52.892 (17) | 52.843 (17) | 52.940 (17) |
Caii—O2—O3xii | 138.70 (3) | 138.08 (3) | 139.33 (3) |
Caii—O2—O3vii | 143.20 (3) | 143.08 (3) | 143.33 (3) |
Caxii—O2—O1 | 149.62 (2) | 149.26 (2) | 149.98 (2) |
Caxii—O2—O1v | 82.769 (17) | 82.294 (17) | 83.238 (18) |
Caxii—O2—O2xviii | 102.17 (3) | 102.07 (3) | 102.28 (3) |
Caxii—O2—O2xix | 43.910 (14) | 43.482 (14) | 44.330 (15) |
Caxii—O2—O2xii | 67.576 (17) | 67.156 (17) | 67.991 (17) |
Caxii—O2—O3 | 112.00 (2) | 111.78 (2) | 112.21 (2) |
Caxii—O2—O3xviii | 54.877 (18) | 54.712 (18) | 55.038 (18) |
Caxii—O2—O3vi | 129.83 (2) | 129.63 (2) | 130.02 (2) |
Caxii—O2—O3xii | 44.197 (15) | 43.817 (14) | 44.573 (15) |
Caxii—O2—O3vii | 93.952 (19) | 93.470 (19) | 94.427 (19) |
O1—O2—O1v | 86.00 (2) | 85.90 (2) | 86.11 (2) |
O1—O2—O2xviii | 101.27 (2) | 101.10 (2) | 101.45 (2) |
O1—O2—O2xix | 162.06 (3) | 161.52 (3) | 162.61 (3) |
O1—O2—O2xii | 86.20 (2) | 86.02 (2) | 86.37 (2) |
O1—O2—O3 | 64.71 (2) | 64.53 (2) | 64.90 (2) |
O1—O2—O3xviii | 122.50 (3) | 122.39 (3) | 122.60 (3) |
O1—O2—O3vi | 62.06 (2) | 62.02 (2) | 62.09 (2) |
O1—O2—O3xii | 106.61 (2) | 106.57 (2) | 106.65 (2) |
O1—O2—O3vii | 56.075 (19) | 55.991 (19) | 56.161 (19) |
O1v—O2—O2xviii | 151.05 (3) | 150.51 (3) | 151.60 (3) |
O1v—O2—O2xix | 85.46 (2) | 85.27 (2) | 85.66 (2) |
O1v—O2—O2xii | 97.68 (2) | 97.35 (2) | 98.00 (2) |
O1v—O2—O3 | 144.39 (3) | 144.27 (3) | 144.51 (3) |
O1v—O2—O3xviii | 135.30 (3) | 134.65 (3) | 135.95 (3) |
O1v—O2—O3vi | 56.210 (18) | 56.113 (18) | 56.310 (18) |
O1v—O2—O3xii | 57.571 (18) | 57.441 (18) | 57.698 (18) |
O1v—O2—O3vii | 61.332 (19) | 61.312 (19) | 61.352 (19) |
O2xviii—O2—O2xix | 79.27 (2) | 78.88 (2) | 79.66 (2) |
O2xviii—O2—O2xii | 110.65 (2) | 110.33 (2) | 110.95 (2) |
O2xviii—O2—O3 | 60.24 (2) | 60.14 (2) | 60.34 (2) |
O2xviii—O2—O3xviii | 63.07 (2) | 63.05 (2) | 63.09 (2) |
O2xviii—O2—O3vi | 102.38 (2) | 101.81 (2) | 102.96 (2) |
O2xviii—O2—O3xii | 141.99 (3) | 141.51 (3) | 142.45 (3) |
O2xviii—O2—O3vii | 144.80 (3) | 144.55 (3) | 145.04 (3) |
O2xix—O2—O2xii | 110.57 (2) | 109.73 (2) | 111.39 (2) |
O2xix—O2—O3 | 128.09 (3) | 127.95 (3) | 128.21 (3) |
O2xix—O2—O3xviii | 74.00 (2) | 73.63 (2) | 74.36 (2) |
O2xix—O2—O3vi | 100.17 (2) | 99.72 (2) | 100.63 (2) |
O2xix—O2—O3xii | 81.85 (2) | 81.24 (2) | 82.44 (2) |
O2xix—O2—O3vii | 131.08 (2) | 130.43 (2) | 131.71 (2) |
O2xii—O2—O3 | 62.372 (18) | 62.243 (18) | 62.499 (18) |
O2xii—O2—O3xviii | 56.109 (19) | 55.749 (19) | 56.464 (19) |
O2xii—O2—O3vi | 138.06 (2) | 137.97 (2) | 138.15 (2) |
O2xii—O2—O3xii | 47.632 (15) | 47.314 (15) | 47.945 (15) |
O2xii—O2—O3vii | 47.953 (17) | 47.794 (17) | 48.108 (17) |
O3—O2—O3xviii | 59.75 (2) | 59.73 (2) | 59.78 (2) |
O3—O2—O3vi | 118.17 (3) | 117.79 (3) | 118.56 (3) |
O3—O2—O3xii | 110.00 (2) | 109.60 (2) | 110.40 (2) |
O3—O2—O3vii | 84.76 (2) | 84.54 (2) | 84.97 (2) |
O3xviii—O2—O3vi | 164.87 (2) | 164.35 (2) | 165.41 (2) |
O3xviii—O2—O3xii | 80.13 (2) | 79.59 (2) | 80.67 (2) |
O3xviii—O2—O3vii | 104.06 (2) | 103.55 (2) | 104.56 (2) |
O3vi—O2—O3xii | 113.28 (2) | 113.240 (19) | 113.32 (2) |
O3vi—O2—O3vii | 90.33 (2) | 90.24 (2) | 90.42 (2) |
O3xii—O2—O3vii | 50.639 (19) | 50.516 (19) | 50.758 (19) |
Snx—O3—Siii | 126.58 (4) | 126.30 (4) | 126.86 (4) |
Snx—O3—Ca | 97.59 (2) | 97.48 (2) | 97.70 (2) |
Snx—O3—Caxv | 91.466 (18) | 91.240 (18) | 91.698 (18) |
Snx—O3—O1 | 141.10 (3) | 140.86 (3) | 141.34 (3) |
Snx—O3—O1ix | 40.560 (13) | 40.510 (13) | 40.610 (13) |
Snx—O3—O1xv | 45.102 (17) | 45.066 (17) | 45.139 (17) |
Snx—O3—O2 | 153.30 (3) | 153.05 (3) | 153.56 (3) |
Snx—O3—O2xviii | 120.29 (3) | 119.83 (3) | 120.75 (3) |
Snx—O3—O2x | 45.173 (16) | 45.141 (16) | 45.206 (16) |
Snx—O3—O2xii | 91.06 (2) | 90.99 (2) | 91.13 (2) |
Snx—O3—O2xxii | 44.500 (16) | 44.425 (16) | 44.576 (16) |
Snx—O3—O3xviii | 95.57 (3) | 95.38 (3) | 95.75 (3) |
Snx—O3—O3xv | 97.12 (2) | 96.88 (2) | 97.37 (2) |
Siii—O3—Ca | 123.38 (3) | 122.68 (2) | 124.09 (3) |
Siii—O3—Caxv | 107.03 (3) | 106.42 (3) | 107.63 (3) |
Siii—O3—O1 | 91.20 (3) | 91.12 (3) | 91.29 (3) |
Siii—O3—O1ix | 98.20 (4) | 98.13 (4) | 98.27 (4) |
Siii—O3—O1xv | 139.34 (3) | 138.95 (3) | 139.72 (3) |
Siii—O3—O2 | 33.37 (2) | 33.32 (2) | 33.42 (2) |
Siii—O3—O2xviii | 35.58 (2) | 35.36 (2) | 35.80 (2) |
Siii—O3—O2x | 151.02 (4) | 150.84 (4) | 151.21 (4) |
Siii—O3—O2xii | 78.57 (3) | 78.51 (3) | 78.63 (3) |
Siii—O3—O2xxii | 88.61 (3) | 88.18 (3) | 89.03 (3) |
Siii—O3—O3xviii | 35.01 (3) | 34.99 (3) | 35.03 (3) |
Siii—O3—O3xv | 132.64 (4) | 132.44 (4) | 132.83 (4) |
Ca—O3—Caxv | 104.88 (2) | 104.34 (2) | 105.41 (2) |
Ca—O3—O1 | 47.116 (18) | 47.042 (18) | 47.184 (18) |
Ca—O3—O1ix | 94.88 (2) | 94.44 (2) | 95.33 (2) |
Ca—O3—O1xv | 96.31 (2) | 95.88 (2) | 96.73 (2) |
Ca—O3—O2 | 91.65 (2) | 91.02 (2) | 92.27 (2) |
Ca—O3—O2xviii | 141.86 (3) | 141.56 (3) | 142.15 (3) |
Ca—O3—O2x | 52.425 (18) | 52.349 (18) | 52.501 (18) |
Ca—O3—O2xii | 65.760 (17) | 64.772 (17) | 66.760 (17) |
Ca—O3—O2xxii | 142.08 (3) | 141.90 (3) | 142.28 (3) |
Ca—O3—O3xviii | 123.06 (2) | 122.25 (2) | 123.88 (2) |
Ca—O3—O3xv | 56.760 (17) | 56.179 (17) | 57.337 (18) |
Caxv—O3—O1 | 84.70 (2) | 84.64 (2) | 84.76 (2) |
Caxv—O3—O1ix | 130.58 (2) | 130.46 (2) | 130.71 (2) |
Caxv—O3—O1xv | 47.976 (18) | 47.726 (18) | 48.235 (18) |
Caxv—O3—O2 | 110.33 (2) | 109.60 (2) | 111.04 (2) |
Caxv—O3—O2xviii | 72.272 (19) | 71.458 (19) | 73.065 (18) |
Caxv—O3—O2x | 101.24 (2) | 100.87 (2) | 101.63 (2) |
Caxv—O3—O2xii | 170.55 (3) | 169.96 (3) | 171.16 (3) |
Caxv—O3—O2xxii | 80.991 (17) | 80.891 (17) | 81.087 (17) |
Caxv—O3—O3xviii | 129.88 (2) | 129.34 (2) | 130.40 (2) |
Caxv—O3—O3xv | 48.117 (14) | 47.905 (14) | 48.337 (14) |
O1—O3—O1ix | 137.24 (2) | 137.08 (2) | 137.41 (2) |
O1—O3—O1xv | 113.18 (3) | 113.02 (3) | 113.33 (3) |
O1—O3—O2 | 59.35 (2) | 59.26 (2) | 59.43 (2) |
O1—O3—O2xviii | 95.35 (2) | 95.20 (2) | 95.49 (2) |
O1—O3—O2x | 97.65 (2) | 97.43 (2) | 97.87 (2) |
O1—O3—O2xii | 87.625 (18) | 87.307 (18) | 87.947 (18) |
O1—O3—O2xxii | 164.96 (2) | 164.84 (2) | 165.09 (2) |
O1—O3—O3xviii | 116.40 (2) | 116.34 (2) | 116.46 (2) |
O1—O3—O3xv | 52.827 (17) | 52.766 (16) | 52.888 (17) |
O1ix—O3—O1xv | 85.66 (2) | 85.61 (2) | 85.71 (2) |
O1ix—O3—O2 | 113.91 (3) | 113.58 (3) | 114.24 (3) |
O1ix—O3—O2xviii | 116.15 (3) | 116.04 (3) | 116.26 (3) |
O1ix—O3—O2x | 57.297 (19) | 57.219 (19) | 57.375 (19) |
O1ix—O3—O2xii | 54.230 (15) | 54.085 (15) | 54.375 (15) |
O1ix—O3—O2xxii | 57.505 (17) | 57.487 (17) | 57.524 (17) |
O1ix—O3—O3xviii | 63.19 (2) | 63.13 (2) | 63.24 (2) |
O1ix—O3—O3xv | 128.94 (3) | 128.71 (3) | 129.18 (3) |
O1xv—O3—O2 | 158.20 (3) | 157.72 (3) | 158.67 (3) |
O1xv—O3—O2xviii | 107.06 (2) | 106.47 (2) | 107.64 (2) |
O1xv—O3—O2x | 60.497 (19) | 60.441 (19) | 60.55 (2) |
O1xv—O3—O2xii | 131.70 (3) | 131.59 (3) | 131.81 (3) |
O1xv—O3—O2xxii | 59.435 (19) | 59.373 (19) | 59.498 (19) |
O1xv—O3—O3xviii | 129.80 (3) | 129.56 (3) | 130.04 (3) |
O1xv—O3—O3xv | 60.350 (19) | 60.176 (19) | 60.525 (19) |
O2—O3—O2xviii | 56.685 (19) | 56.585 (19) | 56.788 (19) |
O2—O3—O2x | 137.63 (2) | 137.15 (2) | 138.12 (2) |
O2—O3—O2xii | 69.996 (19) | 69.606 (19) | 70.396 (19) |
O2—O3—O2xxii | 121.97 (3) | 121.58 (3) | 122.35 (3) |
O2—O3—O3xviii | 58.79 (2) | 58.62 (2) | 58.97 (2) |
O2—O3—O3xv | 108.83 (3) | 108.55 (3) | 109.11 (3) |
O2xviii—O3—O2x | 164.88 (2) | 164.36 (2) | 165.39 (2) |
O2xviii—O3—O2xii | 114.02 (3) | 113.79 (3) | 114.26 (3) |
O2xviii—O3—O2xxii | 75.95 (2) | 75.44 (2) | 76.45 (2) |
O2xviii—O3—O3xviii | 61.45 (2) | 61.30 (2) | 61.61 (2) |
O2xviii—O3—O3xv | 110.02 (2) | 109.65 (2) | 110.39 (2) |
O2x—O3—O2xii | 74.322 (19) | 74.099 (19) | 74.547 (19) |
O2x—O3—O2xxii | 89.67 (2) | 89.57 (2) | 89.78 (2) |
O2x—O3—O3xviii | 118.40 (3) | 118.29 (3) | 118.52 (3) |
O2x—O3—O3xv | 72.48 (2) | 72.27 (2) | 72.69 (2) |
O2xii—O3—O2xxii | 107.05 (2) | 106.73 (2) | 107.36 (2) |
O2xii—O3—O3xviii | 58.835 (19) | 58.651 (19) | 59.018 (19) |
O2xii—O3—O3xv | 122.51 (2) | 122.07 (2) | 122.95 (2) |
O2xxii—O3—O3xviii | 70.53 (2) | 70.22 (2) | 70.83 (2) |
O2xxii—O3—O3xv | 118.18 (2) | 117.99 (2) | 118.36 (2) |
O3xviii—O3—O3xv | 167.19 (3) | 167.04 (3) | 167.34 (3) |
Symmetry codes: (i) x1, x2−1, x3, x4; (ii) x1+1/2, x2−1/2, x3, x4; (iii) −x1, −x2+1, −x3, −x4; (iv) −x1−1/2, −x2+1/2, −x3, −x4; (v) −x1, −x2, −x3, −x4; (vi) −x1+1/2, x2−1/2, −x3+1/2, x4+1/2; (vii) x1−1/2, −x2+1/2, x3−1/2, −x4+1/2; (viii) x1−1/2, x2+1/2, x3, x4; (ix) x1+1/2, x2+1/2, x3, x4; (x) −x1+1/2, x2+1/2, −x3+1/2, x4+1/2; (xi) x1, −x2+1, x3+1/2, −x4+1/2; (xii) −x1+1/2, −x2+1/2, −x3, −x4; (xiii) x1−1/2, −x2+1/2, x3+1/2, −x4+1/2; (xiv) −x1, x2, −x3+1/2, x4+1/2; (xv) −x1+1/2, −x2+1/2, −x3+1, −x4; (xvi) x1, −x2, x3+1/2, −x4+1/2; (xvii) x1−1/2, x2−1/2, x3, x4; (xviii) −x1+1, x2, −x3+1/2, x4+1/2; (xix) −x1+1, −x2, −x3, −x4; (xx) x1, x2+1, x3, x4; (xxi) −x1, x2+1, −x3+1/2, x4+1/2; (xxii) x1+1/2, −x2+1/2, x3+1/2, −x4+1/2. |
CaO5SiSn | F(000) = 496 |
Mr = 266.9 | Dx = 4.552 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.61992 Å |
Hall symbol: -C 2yc | Cell parameters from 11467 reflections |
a = 6.6667 (2) Å | θ = 3.7–51° |
b = 8.8934 (3) Å | µ = 5.52 mm−1 |
c = 7.1520 (3) Å | T = 298 K |
β = 113.323 (3)° | Irregular, yellow |
V = 389.39 (3) Å3 | 0.16 × 0.09 × 0.09 mm |
Z = 4 |
Esperanto-CrysAlisPro-abstract goniometer imported esperanto images diffractometer | 2748 independent reflections |
Radiation source: synchrotron | 2651 reflections with I > 3σ(I) |
Synchrotron monochromator | Rint = 0.019 |
ω and φ scans | θmax = 50.9°, θmin = 3.7° |
Absorption correction: multi-scan CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | h = −16→13 |
Tmin = 0.754, Tmax = 1 | k = −19→21 |
11739 measured reflections | l = −16→17 |
Refinement on F2 | 0 constraints |
R[F2 > 2σ(F2)] = 0.026 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.01I2) |
wR(F2) = 0.113 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.70 e Å−3 |
2748 reflections | Δρmin = −0.67 e Å−3 |
41 parameters | Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 5800 (900) |
x | y | z | Uiso*/Ueq | ||
Sn | 0 | 0 | 0 | 0.00385 (4) | |
Si | 0 | 0.68145 (5) | 0.25 | 0.00444 (6) | |
Ca | 0 | 0.33729 (4) | 0.25 | 0.01704 (7) | |
O1 | 0 | 0.08665 (6) | 0.25 | 0.00729 (10) | |
O2 | 0.32452 (6) | 0.06780 (5) | 0.08695 (6) | 0.00756 (7) | |
O3 | 0.39029 (6) | 0.28799 (4) | 0.37214 (5) | 0.00670 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.00400 (5) | 0.00386 (5) | 0.00362 (5) | −0.000007 (5) | 0.00145 (4) | −0.000202 (5) |
Si | 0.00380 (8) | 0.00502 (13) | 0.00446 (8) | 0 | 0.00157 (6) | 0 |
Ca | 0.00667 (7) | 0.00372 (8) | 0.03245 (15) | 0 | −0.00108 (7) | 0 |
O1 | 0.01245 (16) | 0.00528 (15) | 0.00510 (12) | 0 | 0.00450 (11) | 0 |
O2 | 0.00522 (10) | 0.00704 (11) | 0.00912 (11) | −0.00141 (7) | 0.00147 (7) | −0.00274 (8) |
O3 | 0.00687 (10) | 0.00537 (13) | 0.00879 (11) | −0.00077 (7) | 0.00408 (8) | −0.00228 (7) |
Sn—Sii | 3.3500 (4) | Ca—O2xii | 3.1813 (5) |
Sn—Siii | 3.4918 (3) | Ca—O2xiii | 3.1813 (5) |
Sn—Siiii | 3.3500 (4) | Ca—O3 | 2.4343 (4) |
Sn—Siiv | 3.4918 (3) | Ca—O3xiv | 2.4343 (4) |
Sn—Ca | 3.4921 (4) | Ca—O3xv | 2.7413 (5) |
Sn—Caii | 3.4180 (3) | Ca—O3vii | 2.7413 (5) |
Sn—Cav | 3.4921 (4) | O1—O2 | 2.8402 (5) |
Sn—Caiv | 3.4180 (3) | O1—O2xiv | 2.8402 (5) |
Sn—O1 | 1.9470 (3) | O1—O2v | 2.8717 (5) |
Sn—O1v | 1.9470 (3) | O1—O2xvi | 2.8717 (5) |
Sn—O2 | 2.0894 (4) | O1—O3 | 2.9900 (5) |
Sn—O2v | 2.0894 (4) | O1—O3xvii | 2.9763 (7) |
Sn—O3vi | 2.0968 (4) | O1—O3xiv | 2.9900 (5) |
Sn—O3vii | 2.0968 (4) | O1—O3vi | 2.9763 (7) |
Si—Ca | 3.0608 (6) | O1—O3xv | 2.7416 (5) |
Si—O1viii | 3.4383 (3) | O1—O3vii | 2.7416 (5) |
Si—O1ix | 3.4383 (3) | O2—O2xviii | 2.5677 (5) |
Si—O2viii | 1.6339 (5) | O2—O2xix | 3.2832 (7) |
Si—O2x | 1.6339 (5) | O2—O2xii | 3.4724 (6) |
Si—O2iii | 3.3663 (5) | O2—O3 | 2.7348 (6) |
Si—O2xi | 3.3663 (5) | O2—O3xviii | 2.6635 (6) |
Si—O3viii | 1.6437 (5) | O2—O3vi | 2.9430 (6) |
Si—O3x | 1.6437 (5) | O2—O3xii | 3.2792 (6) |
Ca—O1 | 2.2291 (7) | O2—O3vii | 2.9772 (5) |
Ca—O2viii | 2.4189 (5) | O3—O3xviii | 2.6862 (7) |
Ca—O2x | 2.4189 (5) | O3—O3xv | 3.1638 (7) |
Sii—Sn—Siii | 108.617 (7) | Snxiv—O1—O3 | 106.567 (10) |
Sii—Sn—Siiii | 180.0 (5) | Snxiv—O1—O3xvii | 44.596 (13) |
Sii—Sn—Siiv | 71.383 (7) | Snxiv—O1—O3xiv | 100.890 (10) |
Sii—Sn—Ca | 116.944 (6) | Snxiv—O1—O3vi | 90.33 (2) |
Sii—Sn—Caii | 64.460 (5) | Snxiv—O1—O3xv | 49.662 (10) |
Sii—Sn—Cav | 63.056 (6) | Snxiv—O1—O3vii | 165.744 (9) |
Sii—Sn—Caiv | 115.540 (5) | Sixvii—O1—Siii | 151.61 (2) |
Sii—Sn—O1 | 81.057 (16) | Sixvii—O1—Ca | 75.805 (12) |
Sii—Sn—O1v | 98.943 (16) | Sixvii—O1—O2 | 155.583 (12) |
Sii—Sn—O2 | 107.699 (12) | Sixvii—O1—O2xiv | 28.161 (9) |
Sii—Sn—O2v | 72.301 (12) | Sixvii—O1—O2v | 73.082 (10) |
Sii—Sn—O3vi | 23.148 (12) | Sixvii—O1—O2xvi | 121.708 (11) |
Sii—Sn—O3vii | 156.852 (12) | Sixvii—O1—O3 | 125.78 (2) |
Siii—Sn—Siiii | 71.383 (7) | Sixvii—O1—O3xvii | 82.412 (12) |
Siii—Sn—Siiv | 180.0 (5) | Sixvii—O1—O3xiv | 28.552 (11) |
Siii—Sn—Ca | 62.249 (6) | Sixvii—O1—O3vi | 124.730 (16) |
Siii—Sn—Caii | 52.573 (9) | Sixvii—O1—O3xv | 77.323 (11) |
Siii—Sn—Cav | 117.751 (6) | Sixvii—O1—O3vii | 91.146 (12) |
Siii—Sn—Caiv | 127.427 (9) | Siii—O1—Ca | 75.805 (12) |
Siii—Sn—O1 | 72.178 (7) | Siii—O1—O2 | 28.161 (9) |
Siii—Sn—O1v | 107.822 (7) | Siii—O1—O2xiv | 155.583 (12) |
Siii—Sn—O2 | 17.858 (13) | Siii—O1—O2v | 121.708 (11) |
Siii—Sn—O2v | 162.142 (13) | Siii—O1—O2xvi | 73.082 (10) |
Siii—Sn—O3vi | 95.441 (12) | Siii—O1—O3 | 28.552 (11) |
Siii—Sn—O3vii | 84.559 (12) | Siii—O1—O3xvii | 124.730 (16) |
Siiii—Sn—Siiv | 108.617 (7) | Siii—O1—O3xiv | 125.78 (2) |
Siiii—Sn—Ca | 63.056 (6) | Siii—O1—O3vi | 82.412 (12) |
Siiii—Sn—Caii | 115.540 (5) | Siii—O1—O3xv | 91.146 (12) |
Siiii—Sn—Cav | 116.944 (6) | Siii—O1—O3vii | 77.323 (11) |
Siiii—Sn—Caiv | 64.460 (5) | Ca—O1—O2 | 93.382 (15) |
Siiii—Sn—O1 | 98.943 (16) | Ca—O1—O2xiv | 93.382 (15) |
Siiii—Sn—O1v | 81.057 (16) | Ca—O1—O2v | 118.576 (13) |
Siiii—Sn—O2 | 72.301 (12) | Ca—O1—O2xvi | 118.576 (13) |
Siiii—Sn—O2v | 107.699 (12) | Ca—O1—O3 | 53.210 (11) |
Siiii—Sn—O3vi | 156.852 (12) | Ca—O1—O3xvii | 153.176 (10) |
Siiii—Sn—O3vii | 23.148 (12) | Ca—O1—O3xiv | 53.210 (11) |
Siiv—Sn—Ca | 117.751 (6) | Ca—O1—O3vi | 153.176 (10) |
Siiv—Sn—Caii | 127.427 (9) | Ca—O1—O3xv | 66.004 (14) |
Siiv—Sn—Cav | 62.249 (6) | Ca—O1—O3vii | 66.004 (14) |
Siiv—Sn—Caiv | 52.573 (9) | O2—O1—O2xiv | 173.24 (3) |
Siiv—Sn—O1 | 107.822 (7) | O2—O1—O2v | 94.043 (14) |
Siiv—Sn—O1v | 72.178 (7) | O2—O1—O2xvi | 82.707 (13) |
Siiv—Sn—O2 | 162.142 (13) | O2—O1—O3 | 55.877 (12) |
Siiv—Sn—O2v | 17.858 (13) | O2—O1—O3xvii | 112.55 (2) |
Siiv—Sn—O3vi | 84.559 (12) | O2—O1—O3xiv | 129.171 (17) |
Siiv—Sn—O3vii | 95.441 (12) | O2—O1—O3vi | 60.738 (14) |
Ca—Sn—Caii | 107.068 (6) | O2—O1—O3xv | 118.649 (13) |
Ca—Sn—Cav | 180.0 (5) | O2—O1—O3vii | 64.440 (12) |
Ca—Sn—Caiv | 72.932 (6) | O2xiv—O1—O2v | 82.707 (13) |
Ca—Sn—O1 | 35.887 (16) | O2xiv—O1—O2xvi | 94.043 (14) |
Ca—Sn—O1v | 144.113 (16) | O2xiv—O1—O3 | 129.171 (17) |
Ca—Sn—O2 | 79.025 (13) | O2xiv—O1—O3xvii | 60.738 (14) |
Ca—Sn—O2v | 100.975 (13) | O2xiv—O1—O3xiv | 55.877 (12) |
Ca—Sn—O3vi | 128.303 (11) | O2xiv—O1—O3vi | 112.55 (2) |
Ca—Sn—O3vii | 51.697 (11) | O2xiv—O1—O3xv | 64.440 (12) |
Caii—Sn—Cav | 72.932 (6) | O2xiv—O1—O3vii | 118.649 (13) |
Caii—Sn—Caiv | 180.0 (5) | O2v—O1—O2xvi | 122.85 (2) |
Caii—Sn—O1 | 92.393 (8) | O2v—O1—O3 | 144.193 (13) |
Caii—Sn—O1v | 87.607 (8) | O2v—O1—O3xvii | 68.186 (15) |
Caii—Sn—O2 | 44.444 (13) | O2v—O1—O3xiv | 76.228 (11) |
Caii—Sn—O2v | 135.556 (13) | O2v—O1—O3vi | 61.176 (14) |
Caii—Sn—O3vi | 44.898 (12) | O2v—O1—O3xv | 147.146 (13) |
Caii—Sn—O3vii | 135.102 (12) | O2v—O1—O3vii | 63.191 (12) |
Cav—Sn—Caiv | 107.068 (6) | O2xvi—O1—O3 | 76.228 (11) |
Cav—Sn—O1 | 144.113 (16) | O2xvi—O1—O3xvii | 61.176 (14) |
Cav—Sn—O1v | 35.887 (16) | O2xvi—O1—O3xiv | 144.193 (13) |
Cav—Sn—O2 | 100.975 (13) | O2xvi—O1—O3vi | 68.186 (15) |
Cav—Sn—O2v | 79.025 (13) | O2xvi—O1—O3xv | 63.191 (12) |
Cav—Sn—O3vi | 51.697 (11) | O2xvi—O1—O3vii | 147.146 (13) |
Cav—Sn—O3vii | 128.303 (11) | O3—O1—O3xvii | 137.327 (12) |
Caiv—Sn—O1 | 87.607 (8) | O3—O1—O3xiv | 106.42 (2) |
Caiv—Sn—O1v | 92.393 (8) | O3—O1—O3vi | 109.490 (12) |
Caiv—Sn—O2 | 135.556 (13) | O3—O1—O3xv | 66.846 (14) |
Caiv—Sn—O2v | 44.444 (13) | O3—O1—O3vii | 84.613 (15) |
Caiv—Sn—O3vi | 135.102 (12) | O3xvii—O1—O3xiv | 109.490 (12) |
Caiv—Sn—O3vii | 44.898 (12) | O3xvii—O1—O3vi | 53.648 (16) |
O1—Sn—O1v | 180.0 (5) | O3xvii—O1—O3xv | 94.258 (13) |
O1—Sn—O2 | 89.367 (13) | O3xvii—O1—O3vii | 130.660 (16) |
O1—Sn—O2v | 90.633 (13) | O3xiv—O1—O3vi | 137.327 (12) |
O1—Sn—O3vi | 94.716 (18) | O3xiv—O1—O3xv | 84.613 (15) |
O1—Sn—O3vii | 85.284 (18) | O3xiv—O1—O3vii | 66.846 (14) |
O1v—Sn—O2 | 90.633 (13) | O3vi—O1—O3xv | 130.660 (16) |
O1v—Sn—O2v | 89.367 (13) | O3vi—O1—O3vii | 94.258 (13) |
O1v—Sn—O3vi | 85.284 (18) | O3xv—O1—O3vii | 132.01 (2) |
O1v—Sn—O3vii | 94.716 (18) | Sn—O2—Siii | 139.05 (3) |
O2—Sn—O2v | 180.0 (5) | Sn—O2—Siiii | 71.449 (11) |
O2—Sn—O3vi | 89.338 (16) | Sn—O2—Caii | 98.339 (18) |
O2—Sn—O3vii | 90.662 (16) | Sn—O2—Caxii | 119.941 (15) |
O2v—Sn—O3vi | 90.662 (16) | Sn—O2—O1 | 43.273 (11) |
O2v—Sn—O3vii | 89.338 (16) | Sn—O2—O1v | 42.684 (7) |
O3vi—Sn—O3vii | 180.0 (5) | Sn—O2—O2xviii | 137.23 (2) |
Snxx—Si—Snviii | 108.617 (5) | Sn—O2—O2xix | 126.189 (18) |
Snxx—Si—Snxxi | 64.516 (9) | Sn—O2—O2xii | 92.694 (14) |
Snxx—Si—Snx | 117.542 (5) | Sn—O2—O3 | 105.66 (2) |
Snxx—Si—Ca | 147.742 (5) | Sn—O2—O3xviii | 148.74 (2) |
Snxx—Si—O1viii | 114.345 (11) | Sn—O2—O3vi | 45.433 (11) |
Snxx—Si—O1ix | 90.144 (9) | Sn—O2—O3xii | 79.898 (12) |
Snxx—Si—O2viii | 107.066 (17) | Sn—O2—O3vii | 44.769 (11) |
Snxx—Si—O2x | 138.828 (18) | Siii—O2—Siiii | 100.18 (2) |
Snxx—Si—O2iii | 36.250 (8) | Siii—O2—Caii | 96.16 (2) |
Snxx—Si—O2xi | 71.705 (12) | Siii—O2—Caxii | 90.139 (19) |
Snxx—Si—O3viii | 83.70 (2) | Siii—O2—O1 | 96.72 (2) |
Snxx—Si—O3x | 30.099 (16) | Siii—O2—O1v | 169.56 (3) |
Snviii—Si—Snxxi | 117.542 (5) | Siii—O2—O2xviii | 38.212 (18) |
Snviii—Si—Snx | 124.949 (14) | Siii—O2—O2xix | 94.666 (19) |
Snviii—Si—Ca | 62.474 (7) | Siii—O2—O2xii | 72.59 (2) |
Snviii—Si—O1viii | 32.621 (5) | Siii—O2—O3 | 33.560 (14) |
Snviii—Si—O1ix | 127.995 (14) | Siii—O2—O3xviii | 35.767 (14) |
Snviii—Si—O2viii | 23.088 (16) | Siii—O2—O3vi | 133.72 (2) |
Snviii—Si—O2x | 110.37 (2) | Siii—O2—O3xii | 112.22 (2) |
Snviii—Si—O2iii | 74.152 (7) | Siii—O2—O3vii | 112.15 (2) |
Snviii—Si—O2xi | 152.296 (10) | Siiii—O2—Caii | 163.259 (17) |
Snviii—Si—O3viii | 90.178 (13) | Siiii—O2—Caxii | 66.849 (10) |
Snviii—Si—O3x | 121.985 (11) | Siiii—O2—O1 | 82.917 (12) |
Snxxi—Si—Snx | 108.617 (5) | Siiii—O2—O1v | 70.061 (14) |
Snxxi—Si—Ca | 147.742 (5) | Siiii—O2—O2xviii | 138.29 (2) |
Snxxi—Si—O1viii | 90.144 (9) | Siiii—O2—O2xix | 108.939 (15) |
Snxxi—Si—O1ix | 114.345 (11) | Siiii—O2—O2xii | 27.590 (9) |
Snxxi—Si—O2viii | 138.828 (18) | Siiii—O2—O3 | 85.838 (15) |
Snxxi—Si—O2x | 107.066 (17) | Siiii—O2—O3xviii | 79.638 (14) |
Snxxi—Si—O2iii | 71.705 (12) | Siiii—O2—O3vi | 115.542 (13) |
Snxxi—Si—O2xi | 36.250 (8) | Siiii—O2—O3xii | 28.601 (9) |
Snxxi—Si—O3viii | 30.099 (16) | Siiii—O2—O3vii | 29.217 (10) |
Snxxi—Si—O3x | 83.70 (2) | Caii—O2—Caxii | 109.716 (16) |
Snx—Si—Ca | 62.474 (7) | Caii—O2—O1 | 98.840 (18) |
Snx—Si—O1viii | 127.995 (14) | Caii—O2—O1v | 93.385 (18) |
Snx—Si—O1ix | 32.621 (5) | Caii—O2—O2xviii | 57.944 (13) |
Snx—Si—O2viii | 110.37 (2) | Caii—O2—O2xix | 65.804 (13) |
Snx—Si—O2x | 23.088 (16) | Caii—O2—O2xii | 168.191 (15) |
Snx—Si—O2iii | 152.296 (10) | Caii—O2—O3 | 110.070 (16) |
Snx—Si—O2xi | 74.152 (7) | Caii—O2—O3xviii | 112.470 (15) |
Snx—Si—O3viii | 121.985 (11) | Caii—O2—O3vi | 52.909 (12) |
Snx—Si—O3x | 90.178 (13) | Caii—O2—O3xii | 138.618 (19) |
Ca—Si—O1viii | 75.805 (12) | Caii—O2—O3vii | 143.103 (19) |
Ca—Si—O1ix | 75.805 (12) | Caxii—O2—O1 | 149.738 (16) |
Ca—Si—O2viii | 51.788 (19) | Caxii—O2—O1v | 82.649 (12) |
Ca—Si—O2x | 51.788 (19) | Caxii—O2—O2xviii | 102.237 (17) |
Ca—Si—O2iii | 131.485 (9) | Caxii—O2—O2xix | 43.912 (11) |
Ca—Si—O2xi | 131.485 (9) | Caxii—O2—O2xii | 67.666 (13) |
Ca—Si—O3viii | 125.20 (2) | Caxii—O2—O3 | 112.120 (18) |
Ca—Si—O3x | 125.20 (2) | Caxii—O2—O3xviii | 55.082 (13) |
O1viii—Si—O1ix | 151.61 (2) | Caxii—O2—O3vi | 129.719 (18) |
O1viii—Si—O2viii | 55.121 (17) | Caxii—O2—O3xii | 44.239 (10) |
O1viii—Si—O2x | 105.57 (2) | Caxii—O2—O3vii | 93.949 (14) |
O1viii—Si—O2iii | 79.289 (11) | O1—O2—O1v | 85.957 (12) |
O1viii—Si—O2xi | 120.713 (12) | O1—O2—O2xviii | 101.264 (18) |
O1viii—Si—O3viii | 60.395 (16) | O1—O2—O2xix | 161.83 (2) |
O1viii—Si—O3x | 140.962 (17) | O1—O2—O2xii | 86.303 (17) |
O1ix—Si—O2viii | 105.57 (2) | O1—O2—O3 | 64.835 (16) |
O1ix—Si—O2x | 55.121 (17) | O1—O2—O3xviii | 122.56 (2) |
O1ix—Si—O2iii | 120.713 (12) | O1—O2—O3vi | 61.919 (17) |
O1ix—Si—O2xi | 79.289 (11) | O1—O2—O3xii | 106.639 (14) |
O1ix—Si—O3viii | 140.962 (17) | O1—O2—O3vii | 56.174 (13) |
O1ix—Si—O3x | 60.395 (16) | O1v—O2—O2xviii | 151.05 (2) |
O2viii—Si—O2x | 103.58 (3) | O1v—O2—O2xix | 85.384 (14) |
O2viii—Si—O2iii | 79.818 (17) | O1v—O2—O2xii | 97.595 (15) |
O2viii—Si—O2xi | 175.06 (2) | O1v—O2—O3 | 144.434 (18) |
O2viii—Si—O3viii | 113.10 (2) | O1v—O2—O3xviii | 135.37 (2) |
O2viii—Si—O3x | 108.71 (2) | O1v—O2—O3vi | 56.246 (13) |
O2x—Si—O2iii | 175.06 (2) | O1v—O2—O3xii | 57.422 (13) |
O2x—Si—O2xi | 79.818 (17) | O1v—O2—O3vii | 61.146 (13) |
O2x—Si—O3viii | 108.71 (2) | O2xviii—O2—O2xix | 79.301 (16) |
O2x—Si—O3x | 113.10 (2) | O2xviii—O2—O2xii | 110.730 (18) |
O2iii—Si—O2xi | 97.030 (16) | O2xviii—O2—O3 | 60.209 (15) |
O2iii—Si—O3viii | 72.753 (19) | O2xviii—O2—O3xviii | 63.007 (15) |
O2iii—Si—O3x | 62.147 (17) | O2xviii—O2—O3vi | 102.355 (18) |
O2xi—Si—O3viii | 62.147 (17) | O2xviii—O2—O3xii | 142.11 (2) |
O2xi—Si—O3x | 72.753 (19) | O2xviii—O2—O3vii | 144.97 (2) |
O3viii—Si—O3x | 109.60 (3) | O2xix—O2—O2xii | 110.667 (17) |
Sn—Ca—Snviii | 107.068 (5) | O2xix—O2—O3 | 128.147 (16) |
Sn—Ca—Snxiv | 61.596 (7) | O2xix—O2—O3xviii | 74.154 (16) |
Sn—Ca—Snx | 115.709 (5) | O2xix—O2—O3vi | 100.071 (17) |
Sn—Ca—Si | 149.202 (3) | O2xix—O2—O3xii | 81.871 (15) |
Sn—Ca—O1 | 30.798 (3) | O2xix—O2—O3vii | 130.990 (17) |
Sn—Ca—O2viii | 125.394 (10) | O2xii—O2—O3 | 62.453 (14) |
Sn—Ca—O2x | 151.260 (10) | O2xii—O2—O3xviii | 56.207 (13) |
Sn—Ca—O2xii | 76.438 (9) | O2xii—O2—O3vi | 138.009 (15) |
Sn—Ca—O2xiii | 133.653 (12) | O2xii—O2—O3xii | 47.684 (11) |
Sn—Ca—O3 | 79.184 (12) | O2xii—O2—O3vii | 48.030 (11) |
Sn—Ca—O3xiv | 83.006 (12) | O3—O2—O3xviii | 59.665 (16) |
Sn—Ca—O3xv | 95.829 (13) | O3—O2—O3vi | 118.16 (2) |
Sn—Ca—O3vii | 36.888 (9) | O3—O2—O3xii | 110.136 (17) |
Snviii—Ca—Snxiv | 115.709 (5) | O3—O2—O3vii | 84.977 (16) |
Snviii—Ca—Snx | 129.906 (12) | O3xviii—O2—O3vi | 164.802 (16) |
Snviii—Ca—Si | 64.953 (6) | O3xviii—O2—O3xii | 80.343 (15) |
Snviii—Ca—O1 | 115.047 (6) | O3xviii—O2—O3vii | 104.237 (18) |
Snviii—Ca—O2viii | 37.217 (9) | O3vi—O2—O3xii | 113.169 (14) |
Snviii—Ca—O2x | 94.515 (13) | O3vi—O2—O3vii | 90.202 (15) |
Snviii—Ca—O2xii | 93.805 (9) | O3xii—O2—O3vii | 50.571 (13) |
Snviii—Ca—O2xiii | 73.082 (8) | Snx—O3—Siii | 126.75 (3) |
Snviii—Ca—O3 | 161.164 (15) | Snx—O3—Ca | 97.658 (18) |
Snviii—Ca—O3xiv | 37.444 (10) | Snx—O3—Caxv | 91.414 (14) |
Snviii—Ca—O3xv | 120.802 (9) | Snx—O3—O1 | 141.16 (2) |
Snviii—Ca—O3vii | 80.333 (8) | Snx—O3—O1ix | 40.688 (8) |
Snxiv—Ca—Snx | 107.068 (5) | Snx—O3—O1xv | 45.054 (13) |
Snxiv—Ca—Si | 149.202 (3) | Snx—O3—O2 | 153.43 (2) |
Snxiv—Ca—O1 | 30.798 (3) | Snx—O3—O2xviii | 120.174 (17) |
Snxiv—Ca—O2viii | 151.260 (10) | Snx—O3—O2x | 45.229 (11) |
Snxiv—Ca—O2x | 125.394 (10) | Snx—O3—O2xii | 91.355 (15) |
Snxiv—Ca—O2xii | 133.653 (12) | Snx—O3—O2xxii | 44.569 (11) |
Snxiv—Ca—O2xiii | 76.438 (9) | Snx—O3—O3xviii | 95.619 (17) |
Snxiv—Ca—O3 | 83.006 (12) | Snx—O3—O3xv | 97.118 (17) |
Snxiv—Ca—O3xiv | 79.184 (12) | Siii—O3—Ca | 123.396 (18) |
Snxiv—Ca—O3xv | 36.888 (9) | Siii—O3—Caxv | 106.77 (2) |
Snxiv—Ca—O3vii | 95.829 (13) | Siii—O3—O1 | 91.053 (19) |
Snx—Ca—Si | 64.953 (6) | Siii—O3—O1ix | 98.38 (2) |
Snx—Ca—O1 | 115.047 (6) | Siii—O3—O1xv | 139.211 (17) |
Snx—Ca—O2viii | 94.515 (13) | Siii—O3—O2 | 33.336 (13) |
Snx—Ca—O2x | 37.217 (9) | Siii—O3—O2xviii | 35.524 (14) |
Snx—Ca—O2xii | 73.082 (8) | Siii—O3—O2x | 151.25 (3) |
Snx—Ca—O2xiii | 93.805 (9) | Siii—O3—O2xii | 78.646 (18) |
Snx—Ca—O3 | 37.444 (10) | Siii—O3—O2xxii | 88.636 (19) |
Snx—Ca—O3xiv | 161.164 (15) | Siii—O3—O3xviii | 35.201 (19) |
Snx—Ca—O3xv | 80.333 (8) | Siii—O3—O3xv | 132.33 (2) |
Snx—Ca—O3vii | 120.802 (9) | Ca—O3—Caxv | 104.895 (17) |
Si—Ca—O1 | 180.0 (5) | Ca—O3—O1 | 47.166 (14) |
Si—Ca—O2viii | 32.056 (10) | Ca—O3—O1ix | 94.928 (14) |
Si—Ca—O2x | 32.056 (10) | Ca—O3—O1xv | 96.349 (16) |
Si—Ca—O2xii | 74.614 (10) | Ca—O3—O2 | 91.625 (14) |
Si—Ca—O2xiii | 74.614 (10) | Ca—O3—O2xviii | 141.90 (2) |
Si—Ca—O3 | 100.376 (13) | Ca—O3—O2x | 52.432 (13) |
Si—Ca—O3xiv | 100.376 (13) | Ca—O3—O2xii | 65.746 (11) |
Si—Ca—O3xv | 113.982 (11) | Ca—O3—O2xxii | 142.22 (2) |
Si—Ca—O3vii | 113.982 (11) | Ca—O3—O3xviii | 123.130 (15) |
O1—Ca—O2viii | 147.944 (10) | Ca—O3—O3xv | 56.859 (12) |
O1—Ca—O2x | 147.944 (10) | Caxv—O3—O1 | 84.621 (13) |
O1—Ca—O2xii | 105.386 (10) | Caxv—O3—O1ix | 130.647 (14) |
O1—Ca—O2xiii | 105.386 (10) | Caxv—O3—O1xv | 47.977 (15) |
O1—Ca—O3 | 79.624 (13) | Caxv—O3—O2 | 110.222 (18) |
O1—Ca—O3xiv | 79.624 (13) | Caxv—O3—O2xviii | 72.100 (14) |
O1—Ca—O3xv | 66.018 (11) | Caxv—O3—O2x | 101.306 (17) |
O1—Ca—O3vii | 66.018 (11) | Caxv—O3—O2xii | 170.527 (17) |
O2viii—Ca—O2x | 64.113 (15) | Caxv—O3—O2xxii | 80.849 (13) |
O2viii—Ca—O2xii | 70.284 (14) | Caxv—O3—O3xviii | 129.773 (16) |
O2viii—Ca—O2xiii | 83.549 (15) | Caxv—O3—O3xv | 48.036 (10) |
O2viii—Ca—O3 | 124.740 (18) | O1—O3—O1ix | 137.327 (14) |
O2viii—Ca—O3xiv | 74.659 (14) | O1—O3—O1xv | 113.154 (16) |
O2viii—Ca—O3xv | 135.161 (16) | O1—O3—O2 | 59.288 (13) |
O2viii—Ca—O3vii | 88.845 (13) | O1—O3—O2xviii | 95.311 (17) |
O2x—Ca—O2xii | 83.549 (15) | O1—O3—O2x | 97.701 (16) |
O2x—Ca—O2xiii | 70.284 (14) | O1—O3—O2xii | 87.543 (12) |
O2x—Ca—O3 | 74.659 (14) | O1—O3—O2xxii | 164.719 (17) |
O2x—Ca—O3xiv | 124.740 (18) | O1—O3—O3xviii | 116.421 (15) |
O2x—Ca—O3xv | 88.845 (13) | O1—O3—O3xv | 52.820 (10) |
O2x—Ca—O3vii | 135.161 (16) | O1ix—O3—O1xv | 85.742 (15) |
O2xii—Ca—O2xiii | 149.229 (17) | O1ix—O3—O2 | 113.926 (18) |
O2xii—Ca—O3 | 70.015 (12) | O1ix—O3—O2xviii | 116.147 (18) |
O2xii—Ca—O3xiv | 115.934 (11) | O1ix—O3—O2x | 57.343 (13) |
O2xii—Ca—O3xv | 145.087 (11) | O1ix—O3—O2xii | 54.392 (10) |
O2xii—Ca—O3vii | 52.818 (11) | O1ix—O3—O2xxii | 57.678 (11) |
O2xiii—Ca—O3 | 115.934 (11) | O1ix—O3—O3xviii | 63.176 (13) |
O2xiii—Ca—O3xiv | 70.015 (12) | O1ix—O3—O3xv | 129.087 (17) |
O2xiii—Ca—O3xv | 52.818 (11) | O1xv—O3—O2 | 158.10 (2) |
O2xiii—Ca—O3vii | 145.087 (11) | O1xv—O3—O2xviii | 106.884 (16) |
O3—Ca—O3xiv | 159.25 (2) | O1xv—O3—O2x | 60.562 (14) |
O3—Ca—O3xv | 75.105 (14) | O1xv—O3—O2xii | 131.934 (19) |
O3—Ca—O3vii | 96.352 (14) | O1xv—O3—O2xxii | 59.386 (12) |
O3xiv—Ca—O3xv | 96.352 (14) | O1xv—O3—O3xviii | 129.768 (16) |
O3xiv—Ca—O3vii | 75.105 (14) | O1xv—O3—O3xv | 60.334 (12) |
O3xv—Ca—O3vii | 132.037 (18) | O2—O3—O2xviii | 56.784 (14) |
Sn—O1—Snxiv | 133.37 (3) | O2—O3—O2x | 137.645 (15) |
Sn—O1—Sixvii | 116.714 (5) | O2—O3—O2xii | 69.864 (14) |
Sn—O1—Siii | 75.201 (5) | O2—O3—O2xxii | 121.96 (2) |
Sn—O1—Ca | 113.315 (15) | O2—O3—O3xviii | 58.849 (15) |
Sn—O1—O2 | 47.360 (8) | O2—O3—O3xv | 108.743 (17) |
Sn—O1—O2xiv | 129.100 (15) | O2xviii—O3—O2x | 164.802 (16) |
Sn—O1—O2v | 46.682 (11) | O2xviii—O3—O2xii | 114.036 (19) |
Sn—O1—O2xvi | 107.90 (2) | O2xviii—O3—O2xxii | 75.763 (15) |
Sn—O1—O3 | 100.890 (10) | O2xviii—O3—O3xviii | 61.486 (16) |
Sn—O1—O3xvii | 90.33 (2) | O2xviii—O3—O3xv | 109.825 (18) |
Sn—O1—O3xiv | 106.567 (10) | O2x—O3—O2xii | 74.458 (14) |
Sn—O1—O3vi | 44.596 (13) | O2x—O3—O2xxii | 89.798 (15) |
Sn—O1—O3xv | 165.744 (9) | O2x—O3—O3xviii | 118.451 (19) |
Sn—O1—O3vii | 49.662 (10) | O2x—O3—O3xv | 72.588 (15) |
Snxiv—O1—Sixvii | 75.201 (5) | O2xii—O3—O2xxii | 107.349 (17) |
Snxiv—O1—Siii | 116.714 (5) | O2xii—O3—O3xviii | 58.881 (13) |
Snxiv—O1—Ca | 113.315 (15) | O2xii—O3—O3xv | 122.586 (15) |
Snxiv—O1—O2 | 129.100 (15) | O2xxii—O3—O3xviii | 70.549 (15) |
Snxiv—O1—O2xiv | 47.360 (8) | O2xxii—O3—O3xv | 118.057 (16) |
Snxiv—O1—O2v | 107.90 (2) | O3xviii—O3—O3xv | 167.116 (19) |
Snxiv—O1—O2xvi | 46.682 (11) |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, y−1/2, z; (iii) −x, −y+1, −z; (iv) −x−1/2, −y+1/2, −z; (v) −x, −y, −z; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x−1/2, −y+1/2, z−1/2; (viii) x−1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) −x+1/2, y+1/2, −z+1/2; (xi) x, −y+1, z+1/2; (xii) −x+1/2, −y+1/2, −z; (xiii) x−1/2, −y+1/2, z+1/2; (xiv) −x, y, −z+1/2; (xv) −x+1/2, −y+1/2, −z+1; (xvi) x, −y, z+1/2; (xvii) x−1/2, y−1/2, z; (xviii) −x+1, y, −z+1/2; (xix) −x+1, −y, −z; (xx) x, y+1, z; (xxi) −x, y+1, −z+1/2; (xxii) x+1/2, −y+1/2, z+1/2. |
Footnotes
1Similar to titanite, literature descriptions of the structure of malayaite often use International Tables for Crystallography Vol. A setting A2/a (Aroyo et al., 2006). Transformation to the default setting of 15 used in this work is achieved by a change of axis c, −b, a and an appropriate origin shift e.g. 0, ½, 0 in Inorganic Database entry No. 1042.
Acknowledgements
The authors would like to thank Ulrich Bismayer for providing the malayaite crystals used in this work. Sample preparation was done by Peter Stutz and electron microprobe analysis was carried out by Stefanie Heidrich. The DFPT calculations made use of resources provided by the North-German Supercomputing Alliance (HLRN).
Funding information
MF acknowledges funding by the Central Research Development Fund (CRDF) of the University of Bremen (Funding line 04 - Independent Projects for Post-Docs).
References
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madarlaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27. CAS Google Scholar
Bennett, J. W. (2012). Phys. Procedia, 34, 14–23. CrossRef Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Clark, S. J., Segall, M. S., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogr. 220, 567–570. CAS Google Scholar
Ghose, S., Ito, Y. & Hatch, D. M. (1991). Phys. Chem. Miner. 17, 591–603. CrossRef ICSD CAS Google Scholar
Gonze, X. (1997). Phys. Rev. B, 55, 10337–10354. CrossRef CAS Web of Science Google Scholar
Gonze, X. & Lee, C. (1997). Phys. Rev. B, 55, 10355–10368. CrossRef CAS Web of Science Google Scholar
Groat, L. A., Kek, S., Bismayer, U., Schmidt, C., Krane, H. G., Meyer, H., Nistor, L. & van Tendeloo, G. (1996). Am. Mineral. 81, 595–602. CrossRef CAS Google Scholar
Gutmann, M. J., Refson, K., Zimmermann, M. V., Swainson, I. P., Dabkowski, A. & Dabkowska, H. (2013). J. Phys. Condens. Matter, 25, 315402. Web of Science CrossRef PubMed Google Scholar
Hayward, S. A., Cerro, J. & Salje, E. K. H. (2000). Am. Mineral. 85, 557–562. Web of Science CrossRef CAS Google Scholar
Higgins, J. B. & Ribbe, P. H. (1976). Am. Mineral. 61, 878–888. CAS Google Scholar
Higgins, J. B. & Ribbe, P. H. (1977). Am. Mineral. 62, 801–806. CAS Google Scholar
Janssen, T., Janner, A., Looijenga-Vos, A. & de Wolff, P. M. (2004). International Tables for Crystallography, Vol. C, edited by E. Prince, pp. 907–945. Dordrecht: Kluwer Academic Publishers. Google Scholar
Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K. & Krane, H. (1997). Z. Kristallogr. 212, 9–19. CrossRef ICSD CAS Web of Science Google Scholar
Kunz, M. & Brown, I. D. (1995). J. Solid State Chem. 115, 395–406. CrossRef CAS Web of Science Google Scholar
Kunz, M., Xirouchakis, D., Wang, Y., Parise, J. & Lindsley, D. (1997). Schweiz. Mineral. Petrogr. Mitt. 77, 1–11. CAS Google Scholar
Lussier, A. J., Cooper, M. A., Hawthorne, F. C. & Kristiansen, R. (2009). Mineral. Mag. 73, 709–722. Web of Science CrossRef CAS Google Scholar
Malcherek, T. (2001). Mineral. Mag. 65, 709–715. Web of Science CrossRef CAS Google Scholar
Malcherek, T. (2007). Acta Cryst. B63, 545–550. Web of Science CrossRef IUCr Journals Google Scholar
Malcherek, T., Bosenick, A., Cemič, L., Fechtelkord, M. & Guttzeit, A. (2004). J. Solid State Chem. 177, 3254–3262. Web of Science CrossRef CAS Google Scholar
Malcherek, T. & Ellemann-Olesen, R. (2005). Z. Kristallogr. 220, 712–716. CAS Google Scholar
Malcherek, T. & Fischer, M. (2018). Phys. Rev. Mater. 2, 023602. Web of Science CrossRef Google Scholar
Malcherek, T., Paulmann, C., Domeneghetti, M. C. & Bismayer, U. (2001). J. Appl. Cryst. 34, 108–113. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meyer, H., Bismayer, U., Adiwidjaja, G., Zhang, M., Nistor, L. & Van Tendeloo, G. (1998). Phase Transit. 67, 27–49. Web of Science CrossRef ICSD CAS Google Scholar
Oberti, R., Smith, D., Rossi, G. & Caucia, F. (1991). Eur. J. Mineral. 3, 777–792. CrossRef ICSD CAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. & Burke, K. (2008). Phys. Rev. Lett. 100, 136406. Web of Science CrossRef PubMed Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. (1990). Phys. Rev. B, 41, 1227–1230. CrossRef CAS Web of Science Google Scholar
Rath, S., Kunz, M. & Miletich, R. (2003). Am. Mineral. 88, 293–300. CrossRef CAS Google Scholar
Refson, K., Tulip, P. R. & Clark, S. J. (2006). Phys. Rev. B, 73, 155114. Web of Science CrossRef Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlisPRO, version 171.38.46. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Salje, E., Schmidt, C. & Bismayer, U. (1993). Phys. Chem. Miner. 19, 502–506. CrossRef CAS Google Scholar
Sonnet, P. M. & Verkaeren, J. (1989). Econ. Geol. 84, 575–590. CrossRef CAS Web of Science Google Scholar
Speer, J. & Gibbs, G. (1976). Am. Mineral. 61, 238–247. CAS Google Scholar
Stokes, H. T., Hatch, D. M. & Campbell, B. J. (2019). Isodistort, isotropy software suite. https://iso.byu.edu/iso/isotropy.php. Google Scholar
Stokes, H. T., van Orden, S. & Campbell, B. J. (2016). J. Appl. Cryst. 49, 1849–1853. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takenouchi, S. (1976). Miner. Deposita, 61, 435–447. Google Scholar
Taylor, M. & Brown, G. E. (1976). Am. Mineral. 61, 435–447. CAS Google Scholar
Wolff, P. M. de, Janssen, T. & Janner, A. (1981). Acta Cryst. A37, 625–636. CrossRef IUCr Journals Web of Science Google Scholar
Zhang, M., Meyer, H., Groat, L. A., Bismayer, U., Salje, E. K. H. & Adiwidjaja, G. (1999). Phys. Chem. Miner. 26, 546–553. Web of Science CrossRef ICSD CAS Google Scholar
Zhang, M., Salje, E., Bismayer, U., Unruh, H., Wruck, B. & Schmidt, C. (1995). Phys. Chem. Miner. 22, 41–49. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.