research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Hydrogen bonding in the crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O: single-crystal X-ray study and TORQUE calculations

CROSSMARK_Color_square_no_text.svg

aInstitute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 18221, Czech Republic, bDepartment of Physics, New Mexico State University, Las Cruces, New Mexico NM 88003, USA, and cSection Minéralogie, Musée d'Histoire Naturelle, Rue Münster 25, Luxembourg, 2160, Luxembourg
*Correspondence e-mail: plasil@fzu.cz

Edited by O. V. Yakubovich, Moscow State University, Russian Federation (Received 8 March 2020; accepted 25 April 2020; online 27 May 2020)

The crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O, orthorhombic, a = 17.3785 (9) Å, b = 15.9864 (8) Å, c = 13.5477 (10) Å, V = 3763.8 (4) Å3, space group Pbca, Z = 8 has been refined from single-crystal XRD data to R = 0.042 for 3182 unique [I > 3σ(I)] reflections and the hydrogen-bonding scheme has been refined by theoretical calculations based on the TORQUE method. The phurcalite structure is layered, with uranyl phosphate sheets of the phosphuranylite topology which are linked by extensive hydrogen bonds across the interlayer occupied by Ca2+ cations and H2O groups. In contrast to previous studies the approach here reveals five transformer H2O groups (compared to three expected by a previous study) and two non-transformer H2O groups. One of the transformer H2O groups is, nevertheless, not linked to any metal cation, which is a less frequent type of H2O bonding in solid state compounds and minerals. The structural formula of phurcalite has been therefore redefined as {Ca2(H2[3]O)5(H2[4]O)2}[(UO2)3O2(PO4)2], Z = 8.

1. Introduction

Uranyl phosphates and arsenates represent a group of environmentally important minerals formed during a hydration–oxidation weathering of primary U minerals, mostly uraninite (Finch & Murakami, 1999[Finch, R. J. & Murakami, T. (1999). Rev. Mineral. Geochem. 38, 91-179.]; Krivovichev & Plášil, 2013[Krivovichev, S. V. & Plášil, J. (2013). Mineralogy and crystallography of uranium. In Uranium, from cradle to grave. MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15-199. Mineralogical Association of Canada.]; Plášil, 2014[Plášil, J. (2014). J. Geosci. 59, 99-114.]). Generally, due to their low solubility products (see e.g. Ilton et al., 2010[Ilton, E. S., Zachara, J. M., Moore, D. A., McKinley, J. P., Eckberg, A. D., Cahill, C. L. & Felmy, A. R. (2010). Environ. Sci. Technol. 44, 7521-7526.]; Astilleros et al., 2013[Astilleros, J. M., Pinto, A. J., Gonçalves, M. A., Sánchez-Pastor, N. & Fernández-Díaz, L. (2013). Environ. Sci. Technol. 47, 2636-2644.]; Göb et al., 2013[Göb, S., Guhring, J. E., Bau, M. & Markl, G. (2013). Am. Mineral. 98, 530-548.]), they can occur both in the vadose zone of the uranium deposits (Murakami et al., 1997[Murakami, T., Ohnuki, T., Isobe, H. & Sato, T. (1997). Am. Mineral. 82, 888-889.]; Finch & Murakami, 1999[Finch, R. J. & Murakami, T. (1999). Rev. Mineral. Geochem. 38, 91-179.]; Plášil et al., 2006[Plášil, J., Sejkora, J., Ondruš, P., Veselovský, F., Beran, P. & Goliáš, V. (2006). J. Czech. Geol. Soc. 51, 149-158.], 2009[Plášil, J., Sejkora, J., Čejka, J., Škoda, R. & Goliáš, V. (2009). J. Geosci. 54, 15-56.]; Göb et al., 2013[Göb, S., Guhring, J. E., Bau, M. & Markl, G. (2013). Am. Mineral. 98, 530-548.]) and in mine dumps, wastes and tailings (Buck et al., 1996[Buck, E. C., Brown, N. R. & Dietz, N. L. (1996). Environ. Sci. Technol. 30, 81-88.]; Roh et al., 2000[Roh, Y., Lee, S. R., Choi, S. K., Elless, M. P. & Lee, S. Y. (2000). Soil Sediment. Contam. 9, 463-486.]; Fuller et al., 2002[Fuller, C. C., Bargar, J. R., Davis, J. A. & Piana, M. J. (2002). Environ. Sci. Technol. 36, 158-165.]; Catalano et al., 2006[Catalano, J. G., McKinley, J. P., Zachara, J. M., Heald, S. M., Smith, S. C. & Brown, G. E. Jr (2006). Environ. Sci. Technol. 40, 2517-2524.]; Cantrell et al., 2011[Cantrell, K. J., Deutsch, W. J. & Lindberg, M. J. (2011). Environ. Sci. Technol. 45, 1473-1480.]; Maher et al., 2013[Maher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510-3532.]). This makes uranyl phosphate and arsenate minerals essential for controlling U mobility in the environment. Nowadays, more than 50 uranyl phosphates and arsenates are known to occur in nature, some of them being discovered in the past decade (Mills et al., 2008[Mills, S. J., Birch, W. D., Kolitsch, U., Mumme, W. G. & Grey, I. E. (2008). Am. Mineral. 93, 691-697.]; Plášil et al., 2010[Plášil, J., Sejkora, J., Čejka, J., Novák, M., Vinals, J., Ondruš, P., Veselovský, F., Kacha, P., Jehlička, J., Golia, V. & Hloušek, J. (2010). Can. Mineral. 48, 335-350.], 2018[Plášil, J., Kampf, A. R., Sejkora, J., Čejka, J., Škoda, R. & Tvrdý, J. (2018). J. Geosci. 63, 265-276.]; Pekov et al., 2012[Pekov, I. V., Levitskiy, V. V., Krivovichev, S. V., Zolotarev, A. A., Bryzgalov, I. A., Zadov, A. E. & Chukanov, N. V. (2012). Eur. J. Mineral. 24, 913-922.]).

The vast majority of uranyl phosphate structures are based on sheets of vertex- and edge-sharing uranyl polyhedra and phosphate tetrahedra. Uranyl phosphate minerals (and arsenates as well) have historically been classified/divided in two major groups, autunite and phosphuranylite groups (Krivovichev & Plášil, 2013[Krivovichev, S. V. & Plášil, J. (2013). Mineralogy and crystallography of uranium. In Uranium, from cradle to grave. MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15-199. Mineralogical Association of Canada.]). They essentially differ in details of their topological arrangement of structural units, i.e. uranyl-anion topologies. The autunite topology comprises equatorial vertex-sharing between uranyl square bipyramids and phosphate tetrahedra. The phosphuranylite type of structures contains both uranyl pentagonal and hexagonal bipyramids within the sheets that share edges, forming chains that are cross-linked by sharing vertices and edges with phosphate tetrahedra (Burns, 2005[Burns, P. C. (2005). Can. Mineral. 43, 1839-1894.]; Lussier et al., 2016[Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177-283.]). Mineral phosphuranylite (s.s.) contains additionally one extra uranyl square bipyramid located between the sheets making it the 3D framework structure (Demartin et al., 1991[Demartin, F., Diella, V., Donzelli, S., Gramaccioli, C. M. & Pilati, T. (1991). Acta Cryst. B47, 439-446.]).

Hydrogen bonds are of particular importance for stabilizing the largely hydrated structures of uranyl phosphates and arsenates, thus controlling their thermodynamic stabilities. Consequently, it is important to determine the details of hydrogen bonding in such minerals in order to understand their stability and the mechanisms by which they break down. Nevertheless, the direct determination of the H-atom positions in uranyl-based compounds is challenging, largely due to high absorption of X-rays and small or poorly developed crystals available for the structure analysis. Therefore, the combination of methods, usually comprised of XRD structure determination and density functional theory (DFT) optimization is often adopted (Colmenero et al., 2017[Colmenero, F., Bonales, L., Cobos, J. & Timón, V. (2017). J. Phys. Chem. C, 121, 5994-6001.], 2018a[Colmenero, F., Bonales, L. J., Cobos, J. & Timón, V. (2018a). J. Solid State Chem. 253, 249-257.],b[Colmenero, F., Cobos, J. & Timón, V. (2018b). Inorg. Chem. 57, 4470-4481.],c[Colmenero, F., Fernández, A. M., Timón, V. & Cobos, J. (2018c). RSC Adv. 8, 24599-24616.], 2019a[Colmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J. & Bonales, L. J. (2019a). RSC Adv. 9, 15323-15334.],b[Colmenero, F., Plášil, J. & Sejkora, J. (2019b). Dalton Trans. 48, 16722-16736.],c[Colmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J., Fernández, A. M. & Petříček, V. (2019c). RSC Adv. 9, 40708-40726.]).

Here, we present a complete structure determination, including hydrogen bonding, in a complex structure of uranyl phosphate mineral phurcalite, as determined by combination of X-rays and a recently developed robust, fast real space optimization method (Ghazisaeed et al., 2018[Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116-1124.], 2019[Rigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.]).

2. Methodology

2.1. Sample

The natural specimen used for extraction of phurcalite crystals suitable for X-ray diffraction originates from the Shinkolobwe mine, Shaba province, Democratic Republic of Congo (Africa). Phurcalite forms long-prismatic, needle-like orthorhombic crystals of intense yellow color (Fig. 1[link]), growing in cavities of quartz with disseminated small crystals of metatorbernite–metazeunerite series of minerals. The specimen has been deposited in the mineral collection of the Musée National d'Histoire Naturelle in Luxembourg (specimen registration number PV025).

[Figure 1]
Figure 1
Phurcalite in long-prismatic crystals in quartz-dominant gangue. FOV ∼6 mm across (photo by S. Wolfsried).

2.2. Single-crystal X-ray diffraction

A long-prismatic fragment (0.091 mm × 0.012 mm × 0.009 mm) of phurcalite crystal was selected under a polarized-light microscope and mounted on a glass fiber. The X-ray data collection was done at room temperature with a Rigaku SuperNova single-crystal diffractometer (Mo Kα radiation from a micro-focus X-ray tube collimated and monochromated by mirror-optics and detected by an Atlas S2 CCD detector). In line with previous structure determinations, phurcalite is found to be orthorhombic, a = 17.3785 (9) Å, b = 15.9864 (8) Å, c = 13.5477 (10) Å, V = 3763.8 (4) Å3 and Z = 8. Integration of the diffraction data, including corrections for background, polarization and Lorentz effects were carried out with the CrysAlis RED program (Rigaku, 2019[Rigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.]). An empirical absorption correction was applied to the data in the Jana2006 software, using spherical harmonics (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Crystallographic data and experimental details are given in Table 1[link]. The structure of phurcalite was solved by the charge-flipping algorithm using the SHELXT program (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]). Structure refinement was done using the software Jana2006 with the full-matrix least-squares refinement based on F2. The structure solution revealed positions for all atoms except of hydrogens; those were ascertained from the difference Fourier maps. The H atoms were refined using a mix of soft constraints on O—H distances and with the Ueq of each H set to 1.2 times that of the donor O atom. The bond-valence sums were calculated following the procedure of Brown (2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.]), and using bond-valence parameters taken from Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]).

Table 1
Experimental details

Crystal data
Chemical formula Ca2(H2O)6[(UO2)3O2(PO4)2]·(H2O)
Mr 1238.3
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 17.3785 (9), 15.9864 (8), 13.5477 (10)
V3) 3763.8 (4)
Z 8
No. of reflections for cell measurement 3639
Radiation type, wavelength (Å) Mo Kα, 0.71073
θ range (°) for cell measurement 4.0–29
μ (mm−1) 26.58
Crystal size (mm) 0.09 × 0.01 × 0.01
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Empirical (using intensity measurements) (JANA2006)
Tmin, Tmax 0.982, 1
No. of measured, independent and observed [I > 3σ(I)] reflections 20 436, 4721, 3182
Rint 0.067
(sin θ/λ)max−1) 0.698
 
Refinement on F2 by Jana2006
R (obs), R (all) 0.042, 0.0647
wR (obs), wR (all) 0.080, 0.074
S (all) 1.22
No. of reflections 4721
No. of parameters 198
No. of restraints 21
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 3.58, −3.41
Computer programs: CrysAlis PRO 1.171.38.43 (Rigaku, 2015[Rigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.]), Jana2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]).

2.3. TORQUE method calculations

The orientations of the H2O molecules were optimized with the TORQUE method, a robust and fast real-space method for determining H2O orientations from rotational equilibrium (Ghazisaeed et al., 2018[Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116-1124.], 2019[Rigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.]). In all test-cases (haidingerite, Ca[AsO3(OH)]·H2O, barium chloride monohydrate, BaCl2 ˙H2O, apophyllite, KCa4(Si4O10)2F1–x(HF)x·[(H2O)8–x(OH)x], grimselite, K3Na(UO2)(CO3)3·(H2O), and kernite, Na2B4O6(OH)2·3(H2O), the TORQUE-predicted equilibrium H2O orientations agreed with available neutron diffraction observations (Ghazisaeed et al., 2018[Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116-1124.]). In the TORQUE method, the H2O molecules are placed such that its oxygen matches the location known from the experiment. In contrast, no prior knowledge of the location of the two hydrogens atoms (per water molecule) is needed. Their locations are obtained from the molecular H2O geometry, as described in the TIP3P model [H—O—H angle = 104.52°, and d(O—H) = 0.9572 Å; Jorgensen et al., 1983[Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. (1983). J. Chem. Phys. 79, 926-935.]].

We performed two sets of TORQUE computations to investigate the extent of hydrogen bonding in phurcalite. In the first set, we orient the H2O molecules such that they match our X-ray observations as closely as possible. Slight adjustments are needed to account for deviations of d(O—H) and H—O—H angle between experiment and water model. More specifically, we place each water molecule in the corresponding experimental H2O plane, and adjust the bond geometry, such that the bis­ectors of the H—O—H angle coincide and place the two hydrogen atoms at ±52.26o, from the bis­ector at the prescribed molecular O—H distance. With this placement of the H2O molecules the complete initial crystal structure of phurcalite is completely specified. Charges for ions in the structural unit are taken from bond-valence analysis (see below), and for H2O from the TIP3P model (Jorgensen et al., 1983[Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. (1983). J. Chem. Phys. 79, 926-935.]). With this information, the torque on the H2O molecules is computed and the H2O molecules are rigidly rotated about their oxygen ions by a small increment. This torque compution/rigid rotation cycle is continued until the torque is vanishingly small and rotational equilibrium is reached (Ghazisaeed et al., 2018[Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116-1124.]).

The results address stable and unstable water orientations in the X-ray derived hydrogen bond network. In the second set the H2O molecules are oriented randomly while preserving the molecular H2O geometry and addresses the (non)uniqueness of the identified rotational equilibria. We optimized 1000 random initial H2O orientations and statistically analyzed the similarities and differences of the obtained rotational equilibrium configurations, similar to our previous work (Ghazisaeed et al., 2018[Ghazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116-1124.], 2019[Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 10058-10063.], 2020[Ghazisaeed, S., Minuddin, M., Nakotte, H. & Kiefer, B. (2020). J. Appl. Cryst. 53, 117-126.]; Steciuk et al., 2019[Steciuk, G., Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 19657-19661.]). Moreover, we performed an additional TORQUE optimization where the H2O initial orientations are chosen as closely as possible to our X-ray refinements.

3. Results

3.1. Crystal structure obtained from X-ray diffraction

The structure of phurcalite as obtained from the current structure determination by X-ray diffraction is in line with previous study done by Atencio et al. (1991[Atencio, D., Neumann, R., Silva, A. J. G. C. & Mascarenhas, Y. P. (1991). Am. Mineral. 29, 95-105.]). During the current study it was possible to reveal partially some of the positions of the H atoms in the structure and refine them to obtain a reasonable bonding geometry. The structure of phurcalite is based upon uranyl phosphate sheets [Fig. 2[link](a)] of phosphuranylite topology (Burns, 2005[Burns, P. C. (2005). Can. Mineral. 43, 1839-1894.]; Lussier et al., 2016[Lussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177-283.]), with a ring symbol 61524232 (Krivovichev & Burns, 2007[Krivovichev, S. V. & Burns, P. C. (2007). In Structural Chemistry of Inorganic Actinide Compounds, edited by S. V. Krivovichev, P. C. Burns and I. G. Tananaev, pp. 95-182. Amsterdam: Elsevier.]); with hexagons of the topology occupied by U6+. Unlike sheets of other members of the phosphuranylite group (Piret & Declercq, 1983[Piret, P. & Declercq, J.-P. (1983). Bull. Minéral. 106, 383-389.]; Piret et al., 1988[Piret, P., Deliens, M. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 443-449.]; Demartin et al., 1991[Demartin, F., Diella, V., Donzelli, S., Gramaccioli, C. M. & Pilati, T. (1991). Acta Cryst. B47, 439-446.]; Dal Bo et al., 2017[Dal Bo, F., Hatert, F. & Philippo, S. (2017). J. Geosci. pp. 87-95.]), the sheet in phurcalite does not contain H atoms either as OH or as molecular H2O. The composition of the sheets are hydrogen free, [(UO2)3O2(PO4)2]4–, and stacked perpendicular to the [010] direction in phurcalite [Fig. 2[link](b)]. Between adjacent sheets two independent Ca sites are located. The Ca1 is linked to seven ligands, including four O of the H2O groups, two uranyl O atoms (of the U3 and U2) and one O atom of the P2 tetrahedron. The Ca2 site is surrounded by eight ligands including five O atoms from H2O groups, two uranyl O atoms (one to the U1 and one to the U2 polyhedra) and one bond to to P2 tetrahedron. Two of the H2O (with Wyckoff 8c = two H2O pfu) are shared between Ca1 and Ca2 (O13 and O20) that form dimers of the composition {Ca2(H2O)7O6}. The detailed analysis of the hydrogen bonding is given below.

[Figure 2]
Figure 2
Crystal structure of phurcalite. (a) Uranyl phosphate sheet of the phosphuranylite topology containing UO22+ coordinated both as UO7 (U1 and U2) and UO8 bipyramids. (b) Stacking of the sheets perpendicular to b. Adjacent sheets are linked by an extensive hydrogen bonding network (bonds are omitted for clarity). Color scheme: U is yellow, P is pink, Ca is violet, O is red, H is gray; unit-cell edges are outlined as black solid lines.

3.2. Hydrogen bonding as revealed from both X-rays and TORQUE

The stereochemical details of the hydrogen bonding as revealed from X-rays and TORQUE calculations are given in Table 2[link]. There are seven independent O atoms corresponding to H2O groups in the structure of phurcalite: following the XRD structure determination, H2O is expected to belong to sites O16, O17, O19, O20, O21, O22, O23. However, the detailed orientation of O17 could not be resolved due to insufficiently resolved difference Fourier maxima from the X-ray data.

Table 2
Hydrogen-bond geometry as obtained from XRD data and TORQUE calculations

Left: XRD; Right: TORQUE. For TORQUE, we list we list the highest probability joint seven-site model (17.5%). For details, see text.

XRD Torque
D—H⋯A D—H (Å) H⋯A (Å) DA (Å) D—H⋯A (°) D—H⋯A D—H (Å) H⋯A (Å) DA (Å) D—H⋯A (°)
O16—H1O16⋯O19 0.95 (8) 1.98 (9) 2.762 (14) 139 (7) O16—H1O16⋯O12 0.957 2.286 3.126 146.1
O16—H2O16⋯O20iii 0.94 (9) 2.39 (8) 3.248 (14) 151 (7) O16—H1O16⋯O10 0.955 1.884 2.801 160.0
O17—H1O17⋯O23xii 0.95 (5) 1.89 (7) 2.763 (13) 153 (7) O17—H1O17⋯O7 0.957 2.160 2.821 125.1
O17—H2O17⋯O19x 0.94 (7) 2.36 (9) 2.944 (13) 120 (9) O17—H2O17⋯O10 0.956 1.846 2.782 165.3
O19—H1O19⋯O17x 0.95 (8) 2.02 (9) 2.944 (13) 162 (8) O19—H2O19⋯O12 0.959 2.251 3.179 162.4
O19—H2O19⋯O11v 0.95 (7) 1.92 (8) 2.809 (10) 155 (8) O19—H1O19⋯O11 0.957 2.043 2.809 135.7
O20—H1O20⋯O8xi 0.94 (8) 2.34 (8) 3.123 (11) 141 (7) O20—H1O20⋯O18 0.959 2.009 2.966 175.3
O20—H2O20⋯O22xi 0.94 (6) 2.18 (4) 3.074 (14) 159 (8) O20—H2O20⋯O14 0.956 1.969 2.870 156.4
O21—H1O21⋯O12xv 0.95 (9) 2.37 (10) 3.241 (12) 153 (7) O21—H2O21⋯O7 0.959 2.185 3.090 156.8
O21—H2O21⋯O5ii 0.95 (9) 2.41 (11) 2.892 (12) 111 (8) O21—H2O21⋯O4 0.959 1.981 2.921 165.8
O22—H1O22⋯O23 0.94 (5) 1.90 (8) 2.700 (13) 141 (9) O22—H1O22⋯O23 0.952 1.769 2.698 164.5
O22—H2O22⋯O5vii 0.95 (8) 2.11 (8) 3.033 (12) 162 (8) O22—H1O22⋯O5 0.961 2.076 3.033 174.4
O23—H1O23⋯O17xiv 0.95 (6) 2.13 (9) 2.763 (13) 123 (8) O23—H1O23⋯O16 0.957 1.806 2.751 168.9
O23—H2O23⋯O7 0.94 (9) 2.38 (9) 3.268 (12) 157 (8) O23—H2O23⋯O17 0.959 1.911 2.764 146.7
Symmetry codes: (ii) x − ½, −y + ½, −z + 1; (iii) x − ½, y, −z + ½; (v) x, −y + ½, z + ½; (vi) x + ½, y, −z + ½; (vii) −x + [3\over 2], y + ½, z; (x) –x + 1, −y + 1, −z + 1; (xi) −x + 2, −y + 1, −z + 1; (xii) −x + [3\over 2], −y + 1, z − ½; (xiv) –x + [3\over 2], −y + 1, z + ½; (xv) −x + 1, y + ½, −z + ½.

3.3. Discussion – hydrogen bonding

X-ray structure refinements and results from TORQUE provide strong evidence for extensive hydrogen bonding in phurcalite. In contrast to the results of our X-ray diffraction refinements, TORQUE successfully identified reasonable H2O hydrogen bond arrays for all seven water sites, including O17 (Table 2[link]).

Bond-valence analysis shows that calculated sums of bond-valence at the sites are within a few percent of expected oxidation states of all elements in phurcalite (Table 3[link]). Therefore, we chose the corresponding formal charges for all non-H2O toms for the TORQUE simulations. We obtained rotational equilibria for 1000 randomly initialized configurations. In order to compare more directly to X-ray data, we identified structures as equivalent, if the closest acceptor for all seven H2O sites for two configurations is the same. We TORQUE-optimized 1000 randomly chosen initial H2O orientations and found 53 geometrically distinct O—H⋯A environments (H2O rotational equilibrium orientations), with occurrences that range from 0.1% to 17.5% (see Fig. 3[link]). However, only six of the seven-site H2O environments are predicted to have an occurrence probability of 6% or higher (with a joint probability of 52.3%, Fig. 3[link]). This observation suggests that a comparatively small number of O—H⋯A environments likely capture a significant fraction of the stereochemical variability, at least in phurcalite. The stereochemical results for the average seven-site model for the highest probability O—H⋯A environment (17.5%) are shown in Table 2[link], the TORQUE predicted hydrogen acceptor sites are listed in Table 4[link], and the corresponding hydrogen positions are listed in Table 5[link]. The reported standard deviations were obtained from the analysis of the TORQUE-predicted equilibrium orientations that belong to an equivalent set. For example, for the highest probability configuration, 175 equilibrium orientations were averaged, and the corresponding standard deviations were computed. If we analyze the probability of orientations for each site, we find that all seven water orientations appear either with the highest or second highest probability (Table 4[link]). This observation that not every site belongs to the highest probability orientations demonstrates that local and global rotational equilibrium do not necessarily coincide, and correlated changes in the water array must be taken into account during data analysis. A comparison of the stereochemistry of the water positions determined by X-ray diffraction and the 53 equilibrium H2O orientations shows no simultaneous match for all seven sites. Complete O20 and O22 stereochemistry matches occur in our library with probabilities of 4.2% and 38.5%, respectively (Table 4[link]). Partial matches exist for O17, O19, O21 and O23, and no match is found for O16. This result suggests that the X-ray derived water stereochemistry does not correspond to a rotational equilibrium state. In order to explore whether this conclusion is due to sampling, we initialized TORQUE close to our X-ray-derived H2O positions (while preserving the predefined H2O geometry of the TIP3P water model, see method section for details on hydrogen placement); we find again significant re-bonding of hydrogen, partial matches can be found for O19, O21, O22 and O23, while complete re-bonding is predicted for O16, O17 and O20 (Table 4[link], optimized hydrogen positions are listed in Table 6[link]. However, in contrast to the X-ray derived H2O array we find a simultaneous match for all seven water sites among the 53 equilibrium orientations with a probability of 3.8%, ranked #6 among the 53 distinct rotational equilibrium orientations (Fig. 3[link]). Therefore, it is unlikely that the X-ray hydrogen positions correspond to an accidentally unsampled rotational equilibrium state, and uncertainties can be more likely attributed to simultaneous rotations of several H2O molecules.

Table 3
Bond-valence analysis (all values given in valence units, vu) for phurcalite

  U1 U2 U3 Ca1 Ca2 P1 P2 ΣBV                
O1 0.61 0.65 0.66         1.93                
O2   0.53 0.26     1.19   1.98                
O3 0.61 0.58 0.70         1.89                
O4     1.65 0.24       1.88                
O5   1.65     0.16     1.81                
O6   0.55 0.33     1.23   2.11                
O7   1.66   0.18       1.84                
O8 0.44   0.21       1.21 1.87                
O9   0.44     0.28   1.19 1.92                
O10     1.71         1.71                
O11 0.53         1.33   1.85                
O12 1.78             1.78                
O13       0.31 0.33 1.30   1.93                
O14 1.69       0.13     1.81                
O15 0.37   0.42       1.19 1.97                
O16         0.28     0.28                
O17       0.34       0.34                
O18       0.42     1.39 1.80                
O19         0.29     0.29                
O20       0.25 0.20     0.45                
O21         0.31     0.31                
O22       0.34       0.34                
O23               0.00                
ΣBV 6.02 6.07 5.94 2.07 1.97 5.05 4.98                  
+H-bonds H1O16 H2O16 H1O17 H2O17 H1O19 H2O19 H1O20 H2O20 H1O21 H2O21 H1O22 H2O22 H1O23 H2O23 ΣBV
O1                             1.93
O2                             1.98
O3                             1.89
O4                   0.08         +1.88 = 1.96
O5                       0.07     +1.81 = 1.88
O6                             2.11
O7     0.05           0.05           +1.84 = 1.94
O8                             1.87
O9                             1.92
O10   0.10   0.11                     +1.71 = 1.92
O11         0.04                   +1.85 = 1.89
O12 0.04         0.07                 +1.78 = 1.89
O13                             1.93
O14               0.09             +1.81 = 1.90
O15                             1.97
O16 0.91 0.92                     0.12   +0.28 = 2.23
O17     0.91 0.91                   0.10 +0.34 = 2.26
O18             0.08               +1.80 = 1.88
O19         0.91 0.91                 +0.29 = 2.11
O20             0.91 0.91             +0.45 = 2.27
O21                 0.91 0.91         +0.31 = 2.13
O22                     0.91 0.90     +0.34 = 2.15
O23                     0.14   0.91 0.91 1.96
ΣBV 0.95 1.02 0.97 1.03 0.95 0.98 0.99 1.00 0.96 0.99 1.06 0.97 1.04 1.01  
The bond-valence parameters taken from Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]).

Table 4
Summary of all site occurrences among the 1000 configurations

Nearest oxygen acceptor sites for the two hydrogens are shown in parenthesis. Bold and underlined are TORQUE-predicted sites that agree with our X-ray diffraction experiment. Detailed hydrogen positions for the random TORQUE seven-site model (probability 17.5%), and EXP + TORQUE model are given in Table 5[link] and Table 6[link], respectively.

N = 1000 EXP EXP + TORQUE seven-site model Random TORQUE seven-site model (P = 17.5%) Probability of occurrence
O16 (19+20) (10+23) (10+12) 91.2% (10+12) 8.8% (10+23)        
O17 (19+23) (7+10) (7+10) 66.4% (7+10) 33.6% (10+23)        
O19 (11+17) (11+12) (11+12) 90.3% (11+12) 9.7% (12+17)        
O20 (8+22) (14+18) (14+18) 82.2 (14+18) 11.2% (4+18) 4.2% (8+22) 2.4% (4+13)    
O21 (5+12) (5+7) (4+7) 49.3% (5+7) 46.7% (4+7) 4.0% (4+5)      
O22 (5+23) (5+14) (5+23) 55.2% (5+14) 38.5% (5+23) 4.1% (4+5) 2.0% (14+23) 0.2% (5+20)  
O23 (7+17) (17+22) (16+17) 39.0% (16+22) 33.8% (16+17) 26.8% (17+22) 0.2% (16+16) 0.1% (11+16) 0.1% (16+21)

Table 5
TORQUE-predicted average fractional positions and standard deviations for the TORQUE-optimized X-ray hydrogen bond scheme for the highest probability seven-site model (17.5%)

A standard deviation of (0) signifies that is smaller than the last displayed digit.

TORQUE Site x y z
O16 H1O16 0.53179 (2) 0.44109 (2) 0.43288 (1)
H2O16 0.57752 (1) 0.40415 (1) 0.35006 (3)
O17 H1O17 0.71263 (1) 0.46332 (2) 0.50366 (0)
H2O17 0.69911 (0) 0.42675 (0) 0.40202 (1)
O19 H1O19 0.39835 (1) 0.48544 (0) 0.45829 (1)
H2O19 0.40868 (2) 0.41112 (0) 0.52627 (1)
O20 H1O20 0.99421 (2) 0.52502 (1) 0.37683 (2)
H2O20 0.99646 (2) 0.43307 (1) 0.35018 (2)
O21 H1O21 0.28743 (1) 0.52979 (2) 0.31847 (1)
H2O21 0.32157 (0) 0.53923 (0) 0.21624 (0)
O22 H1O22 0.86960 (19) 0.5092 (3) 0.66145 (4)
H2O22 0.82376 (6) 0.58223 (11) 0.62206 (1)
O23 H1O23 0.90269 (2) 0.49392 (1) 0.80610 (5)
H2O23 0.81637 (2) 0.48353 (6) 0.81419 (11)

Table 6
TORQUE-predicted fractional positions for hydrogen, if the method is initialized close to the corresponding refined X-ray positions

TORQUE Site x y z
O16 H1O16 0.54435 0.48978 0.37795
H2O16 0.57984 0.40381 0.36667
O17 H1O17 0.70755 0.46820 0.50272
H2O17 0.69837 0.42671 0.40297
O19 H1O19 0.40669 0.48376 0.45977
H2O19 0.41338 0.40528 0.52172
O20 H1O20 0.99650 0.52464 0.37201
H2O20 0.99494 0.43179 0.35014
O21 H1O21 0.31019 0.55300 0.31527
H2O21 0.28558 0.46597 0.28448
O22 H1O22 0.90000 0.57427 0.64744
H2O22 0.81632 0.57138 0.61656
O23 H1O23 0.84478 0.48224 0.71565
H2O23 0.82143 0.48288 0.82330
[Figure 3]
Figure 3
Probabilities for the 53 non-equivalent TORQUE identified H2O equilibrium orientations in phurcalite.

The X-ray O16 water site has no match among the TORQUE determined 53 equilibrium H2O orientations, while all other sites at least show a partial match. For O16, the X-ray observations suggest (Table 2[link]) hydrogen bonding to O19 (water) and O20 (water). In contrast, TORQUE predicts bonding to O10 (U3) and O23 (water). The driving force for re-bonding is H32 which is only 1.87 Å from Ca2 in the refined X-ray data, closer than any of its oxygen ligands. The corresponding Ca—H electrostatic repulsion provides a driving torque for water re-orientation, and in rotational equilibrium we find d(H32–Ca2) = 3.02 Å, an increase of ∼60%. Therefore, the X-ray O16 stereochemistry is predicted to be unstable, and we note that the TORQUE-optimized O16 water orientation appears in our library with a probability of 8.8% (Table 4[link]).

X-ray diffraction was unable to identify reasonable hydrogen bonding for O17. The origin of this inability may be explained by TORQUE-predicted re-bonding, the X-ray observations suggest hydrogen bonding (Table 2[link]) with O19 (water) and O23 (water). However, we find hydrogen atoms only ∼1.5 Å from O17H1 and O17H2, distances comparable to the intramolecular H–H distance. Therefore, H–H repulsion induces water rotation and a new stereochemistry to O7(U2) and O10(U3), which we find for the TORQUE-optimized X-ray orientations, as well as for the highest probability model in our library and corresponds to the highest probability O17 orientation (66.3%, Tables 2[link] and 4[link]). Therefore, TORQUE successfully describes a rotational equilibrium state for O17, that could not be resolved from our X-ray diffraction results. The discussion of possible hydrogen-bonding arrangements in phurcalite has been used in the theoretical bond-valence studies (Schindler & Hawthorne, 2008[Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467-501.]) focused on interactions between anionic (i.e. Lewis bases) and cationic (i.e. Lewis acids) parts of the structures of hydrated oxysalts. Their conclusions, which they found on the basis of the bond-valence theory (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.], 2009[Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.]; Hawthorne, 2012[Hawthorne, F. C. (2012). Phys. Chem. Miner. 39, 841-874.], 2015[Hawthorne, F. C. (2015). Am. Mineral. 100, 696-713.]), were that phurcalite contains three transformer H2O groups (having a corresponding O atom as three-coordinated; for details check Fig. 5 in Schindler & Hawthorne, 2008[Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467-501.]), three non-transformer H2O groups (having a corresponding O atom as four-coordinated) and one non-transformer H2O group not bonded to any cations; the composition of the interstitial complex was expressed as {Ca2(H2[3]O)3(H2[4]O)3(H2O)1} (Schindler & Hawthorne, 2008[Schindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467-501.]). Our study advances the understanding of H2O complexes and their interactions with the surrounding crystal framework in phurcalite. From the scheme given in Fig. 4[link] it is possible to simply read off that there are five transformer H2O groups (with corresponding O atom being three-coordinated); one bonded to Ca1 atom (O22) three others bonded to Ca2 atom (O16, O19, O21) and an additional one, O23, which is not linked to the metal cation (see below). Furthermore, there are two non-transformer H2O groups (with corresponding O atom being four-coordinated). First one, O17, is linked to Ca1 site, nevertheless accepts also one weak hydrogen bond from H1O19. Second one, O20, is shared between Ca1 and Ca2 atoms. Finally, the O23 atom belongs to the transformer H2O group, with no linkage to any metal cation; O23 receives one hydrogen bond from H1O22 and transform it into two hydrogen bonds, via H1O23 and H2O23, therefore the O23 is three-coordinated. The magnitude of strength of two corresponding hydrogen-bonds (H1O23 + H2O23 = 0.13 vu) match the initial strength of the hydrogen-bond accepted by O23 (0.14 vu). To summarize, the interstitial complex in phurcalite can be expressed as {Ca2(H2[3]O)5(H2[4]O)2}. Therefore, the structural formula of phurcalite is {Ca2(H2[3]O)5(H2[4]O)2}[(UO2)3O2(PO4)2], Z = 8.

[Figure 4]
Figure 4
Bonding scheme concerning interstitial H2O groups in phurcalite. (Ur) – uranyl apical O atom, (Ueq) – uranyl equatorial O atom, (Wa) – H2O molecule, (P) – O atom of the PO4 group, bond-strengths given in valence-units (vu).

4. Conclusions

The structure of the mineral phurcalite (calcium uranyl phosphate heptahydrate) is stabilized by an extensive network of hydrogen bonds. Phurcalite is unique among uranyl phosphates in that it shows a high Ca:U ratio (2:3) (for instance mineral autunite has 1:2) and its structure displays an unusual hydrogen bonding scheme. Structure data obtained from a XRD experiment and theoretical calculations (TORQUE) indicate that the structure of phurcalite contains a rare functional type of H2O group in the interlayer which is not linked to any metal cation directly, as it accepts one hydrogen bond from an adjacent H2O group. This H2O group thus splits the incident bond-strength (represented by one incoming hydrogen bond) into two weaker hydrogen bonds. Therefore it is a transformer H2O group with a three-coordinated O atom. Our study advances our understanding of hydrogen bonding in complex uranyl minerals and shows the synergy of experiment and theory provides new insights into the complex hydrogen bonding in uranyl phosphates and the role of H2O groups in complex oxysalt minerals. In summary, it is likely that the rare hydrogen bonding topology in phurcalite is responsible for its low abundance in nature.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.38.43 (Rigaku OD, 2015); cell refinement: CrysAlis PRO 1.171.38.43 (Rigaku OD, 2015); data reduction: CrysAlis PRO 1.171.38.43 (Rigaku OD, 2015).

(I) top
Crystal data top
U3P2O23Ca2H14F(000) = 4352
Mr = 1238.3Dx = 4.371 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P -2xab;-2ybc;-2zacCell parameters from 3639 reflections
a = 17.3785 (9) Åθ = 4.0–29°
b = 15.9864 (8) ŵ = 26.58 mm1
c = 13.5477 (10) ÅT = 293 K
V = 3763.8 (4) Å3Prismatic, yellow
Z = 80.09 × 0.01 × 0.01 mm
Data collection top
SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
4721 independent reflections
Radiation source: X-ray tube3182 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.067
Detector resolution: 5.2027 pixels mm-1θmax = 29.7°, θmin = 3.2°
ω scansh = 2023
Absorption correction: empirical (using intensity measurements)
Jana2006
k = 1821
Tmin = 0.982, Tmax = 1l = 1417
20436 measured reflections
Refinement top
Refinement on F214 constraints
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.22Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0000345744I2)
4721 reflections(Δ/σ)max = 0.041
198 parametersΔρmax = 3.58 e Å3
21 restraintsΔρmin = 3.41 e Å3
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.54881 (2)0.21707 (2)0.13101 (3)0.00998 (12)
U20.76270 (2)0.26502 (2)0.63371 (3)0.00977 (12)
U30.65666 (3)0.21341 (2)0.38744 (3)0.01061 (12)
Ca10.85458 (15)0.45478 (13)0.46853 (17)0.0148 (8)
Ca20.41064 (17)0.39027 (14)0.28930 (18)0.0203 (8)
P10.34272 (17)0.24595 (16)0.1203 (2)0.0103 (8)
P20.96925 (17)0.30765 (16)0.6127 (2)0.0099 (9)
O10.6546 (5)0.2324 (4)0.5513 (5)0.0157 (17)*
O20.2945 (5)0.2029 (4)0.2024 (5)0.0138 (17)*
O30.6563 (5)0.1982 (4)0.2251 (5)0.0133 (16)*
O40.6589 (5)0.1015 (4)0.4077 (5)0.0149 (17)*
O50.7665 (5)0.1565 (4)0.6709 (5)0.0129 (17)*
O60.2887 (5)0.2340 (5)0.0312 (5)0.0167 (18)*
O70.7706 (5)0.3730 (4)0.5960 (5)0.0164 (18)*
O81.0188 (5)0.3314 (5)0.7034 (6)0.0202 (19)*
O90.9016 (4)0.2492 (4)0.6419 (5)0.0124 (16)*
O100.6582 (5)0.3242 (4)0.3677 (6)0.0196 (18)*
O110.4163 (5)0.1970 (4)0.1061 (5)0.0158 (18)*
O120.5616 (5)0.1146 (4)0.0835 (6)0.0188 (19)*
O130.3570 (5)0.3380 (4)0.1413 (5)0.0142 (17)*
O140.5283 (5)0.3182 (4)0.1827 (5)0.0148 (17)*
O151.0273 (5)0.2600 (5)0.5459 (6)0.0199 (19)*
O160.5318 (6)0.4328 (6)0.3629 (8)0.036 (2)*
O170.7232 (5)0.4726 (5)0.4352 (7)0.025 (2)*
O180.9414 (5)0.3847 (5)0.5614 (6)0.023 (2)*
O190.3926 (6)0.4258 (5)0.4610 (6)0.026 (2)*
O200.9627 (5)0.4802 (5)0.3527 (6)0.0219 (19)*
O210.3255 (6)0.5064 (6)0.2753 (6)0.033 (2)*
O220.8650 (6)0.5448 (5)0.6054 (7)0.033 (2)*
O230.8605 (6)0.4628 (5)0.7794 (7)0.037 (3)*
H1o160.502 (5)0.427 (7)0.421 (5)0.0432*
H2o160.498 (5)0.455 (7)0.315 (6)0.0432*
H1o190.349 (4)0.457 (6)0.482 (7)0.0308*
H2o190.410 (6)0.397 (6)0.518 (4)0.0308*
H1o210.350 (6)0.553 (5)0.305 (7)0.0394*
H2o210.284 (5)0.493 (7)0.318 (7)0.0394*
H1o220.881 (6)0.535 (7)0.671 (3)0.0396*
H2o220.823 (4)0.583 (6)0.611 (7)0.0396*
H1o170.703 (5)0.481 (6)0.371 (3)0.0304*
H2o170.680 (3)0.462 (7)0.475 (6)0.0304*
H1o200.973 (5)0.523 (5)0.307 (6)0.0263*
H2o201.011 (2)0.459 (6)0.372 (8)0.0263*
H1o230.843 (7)0.447 (6)0.843 (3)0.0442*
H2o230.839 (7)0.423 (6)0.736 (5)0.0442*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0060 (2)0.0132 (2)0.0108 (2)0.00071 (16)0.00070 (18)0.00021 (15)
U20.0067 (2)0.0138 (2)0.0088 (2)0.00025 (16)0.00027 (19)0.00010 (15)
U30.0100 (2)0.0121 (2)0.0097 (2)0.00039 (18)0.00019 (19)0.00007 (14)
Ca10.0154 (15)0.0118 (11)0.0172 (13)0.0016 (10)0.0017 (11)0.0023 (8)
Ca20.0248 (17)0.0169 (12)0.0193 (14)0.0038 (11)0.0057 (12)0.0027 (9)
P10.0076 (15)0.0124 (13)0.0110 (14)0.0022 (13)0.0026 (14)0.0021 (9)
P20.0026 (14)0.0151 (14)0.0119 (16)0.0012 (11)0.0000 (12)0.0005 (10)
Geometric parameters (Å, º) top
U1—O1i2.280 (8)O9—O152.548 (11)
U1—O32.282 (8)O9—O182.522 (10)
U1—O8ii2.430 (8)O10—O15ii2.891 (12)
U1—O112.349 (9)O10—O162.801 (13)
U1—O121.774 (7)O10—O172.782 (11)
U1—O141.798 (7)O10—H1o172.63 (10)
U1—O15iii2.521 (8)O10—H2o172.67 (10)
U2—O12.247 (8)O11—O122.864 (12)
U2—O2iv2.345 (7)O11—O132.524 (10)
U2—O3v2.302 (8)O11—O142.936 (11)
U2—O51.808 (6)O11—O15iii2.996 (11)
U2—O6vi2.333 (7)O11—O19i2.809 (10)
U2—O71.805 (6)O11—H2o19i1.92 (8)
U2—O92.430 (7)O11—H1o23ii2.72 (10)
U3—O12.241 (7)O12—O15iii2.972 (11)
U3—O2vi2.692 (8)O12—H1o16i2.52 (8)
U3—O32.213 (7)O12—H2o19i2.79 (10)
U3—O41.810 (6)O12—H1o21ix2.37 (10)
U3—O6vi2.567 (8)O12—H2o17i2.81 (8)
U3—O8ii2.787 (9)O13—O20iii2.924 (11)
U3—O101.791 (6)O14—O20iii2.870 (11)
U3—O15ii2.460 (9)O14—H2o162.88 (10)
Ca1—O4vii2.497 (7)O14—H1o22xii2.83 (11)
Ca1—O72.612 (8)O14—H2o20iii2.39 (10)
Ca1—O13vi2.388 (7)O15—O182.499 (12)
Ca1—O172.345 (9)O16—O192.762 (14)
Ca1—O182.262 (9)O16—O23xii2.750 (14)
Ca1—O202.481 (9)O16—H1o160.95 (8)
Ca1—O222.354 (9)O16—H2o160.94 (9)
Ca1—H2o222.87 (9)O16—H1o20iii2.90 (8)
Ca1—H1o172.98 (8)O16—H1o23xii2.92 (11)
Ca2—O5ii2.669 (9)O17—O19x2.944 (13)
Ca2—O9ii2.422 (7)O17—O23xii2.763 (13)
Ca2—O132.364 (8)O17—H1o19x2.02 (9)
Ca2—O142.756 (8)O17—H1o170.95 (5)
Ca2—O162.427 (11)O17—H2o170.94 (7)
Ca2—O192.415 (9)O17—H1o23xii2.13 (9)
Ca2—O20iii2.566 (9)O18—O20xi2.966 (12)
Ca2—O212.381 (10)O18—O222.944 (12)
Ca2—H1o162.46 (8)O18—H1o20xi2.75 (8)
Ca2—H2o161.87 (10)O18—H2o20xi2.78 (9)
Ca2—H1o212.81 (8)O19—H1o161.98 (9)
Ca2—H2o212.77 (10)O19—H2o162.74 (9)
Ca2—H1o20iii2.72 (8)O19—H1o190.95 (8)
P1—O21.553 (8)O19—H2o190.95 (7)
P1—O61.541 (8)O19—H2o212.91 (9)
P1—O111.511 (9)O19—H2o17x2.36 (9)
P1—O131.520 (7)O19—H1o23xiii2.81 (6)
P1—H2o19i2.92 (9)O20—O21vi2.978 (13)
P2—O81.547 (9)O20—H2o16vi2.39 (8)
P2—O91.554 (8)O20—H1o22xi2.75 (10)
P2—O151.554 (9)O20—H1o200.94 (8)
P2—O181.494 (9)O20—H2o200.94 (6)
O1—O3v2.603 (9)O21—H1o192.94 (9)
O1—O42.858 (9)O21—H1o210.95 (9)
O1—O52.807 (11)O21—H2o210.95 (9)
O1—O6vi2.585 (12)O21—H1o17iii2.94 (7)
O1—O102.889 (10)O21—H1o20iii2.81 (9)
O1—O12v2.964 (10)O22—O232.700 (13)
O1—O14v2.940 (11)O22—H2o21x2.85 (9)
O1—O15ii2.577 (12)O22—H1o220.94 (5)
O1—H2o22viii2.55 (10)O22—H2o220.95 (8)
O2—O3iii2.596 (12)O22—H2o20xi2.18 (4)
O2—O5ii2.870 (9)O22—H2o232.67 (9)
O2—O62.374 (10)O23—H2o16xiv2.83 (9)
O2—O9ii2.915 (10)O23—H2o21x2.92 (9)
O2—O112.488 (12)O23—H1o221.90 (8)
O2—O132.555 (10)O23—H1o17xiv1.89 (7)
O2—O23ii2.897 (11)O23—H2o17xiv2.99 (9)
O2—H1o23ii2.61 (10)O23—H1o230.95 (6)
O2—H2o23ii2.31 (10)O23—H2o230.94 (9)
O3—O42.917 (9)H1o16—H2o161.51 (11)
O3—O7i2.881 (11)H1o16—H1o192.83 (11)
O3—O8ii2.621 (12)H1o16—H2o192.12 (12)
O3—O102.791 (10)H2o16—H1o22xii2.87 (12)
O3—O122.859 (11)H2o16—H1o20iii2.03 (12)
O3—O142.993 (11)H2o16—H2o20iii2.54 (14)
O3—H1o21ix2.36 (8)H1o19—H2o191.51 (13)
O4—O17viii2.930 (11)H1o19—H1o212.85 (13)
O4—O20viii2.963 (11)H1o19—H2o212.56 (13)
O4—O21ix2.921 (11)H1o19—H1o17x2.40 (11)
O4—O22viii2.858 (12)H1o19—H2o17x1.51 (14)
O4—H1o21ix2.99 (9)H1o19—H1o23xiii2.38 (10)
O4—H2o22viii2.79 (9)H2o19—H2o17x2.75 (14)
O4—H1o20viii2.95 (8)H2o19—H1o23xiii2.35 (11)
O5—O92.804 (11)H1o21—H2o211.51 (14)
O5—O13iv2.992 (10)H1o21—H1o20iii2.66 (13)
O5—O21iv2.892 (12)H2o21—H1o22x2.91 (14)
O5—H2o21iv2.41 (11)H2o21—H2o22x2.42 (12)
O5—H2o22viii2.11 (8)H2o21—H1o17iii2.93 (11)
O6—O7iii2.830 (10)H2o21—H2o17x2.96 (13)
O6—O112.509 (12)H2o21—H2o23x2.63 (15)
O6—O132.529 (11)H1o22—H2o221.51 (13)
O6—H2o19i2.98 (10)H1o22—H1o20xi2.72 (14)
O7—O172.821 (11)H1o22—H2o20xi1.97 (11)
O7—H1o21x2.76 (10)H1o22—H1o232.80 (10)
O7—H2o21x2.62 (11)H1o22—H2o232.12 (14)
O7—H2o172.68 (8)H2o22—H2o20xi2.97 (8)
O7—H2o232.38 (9)H1o17—H2o171.50 (9)
O8—O92.563 (11)H1o17—H1o23xii1.45 (14)
O8—O14iv2.851 (10)H1o17—H2o23xii2.50 (11)
O8—O152.424 (11)H2o17—H1o23xii2.34 (12)
O8—O182.497 (12)H1o20—H2o201.50 (12)
O8—H1o20xi2.34 (8)H1o23—H2o231.50 (8)
O1i—U1—O369.6 (3)O19x—O17—H1o19x6 (2)
O1i—U1—O8ii136.3 (3)O19x—O17—H1o1796 (5)
O1i—U1—O11140.4 (2)O19x—O17—H2o1744 (7)
O1i—U1—O1293.1 (3)O19x—O17—H1o23xii65 (2)
O1i—U1—O1491.5 (3)O23xii—O17—H1o19x84 (3)
O1i—U1—O15iii64.7 (3)O23xii—O17—H1o1718 (5)
O3—U1—O8ii67.5 (3)O23xii—O17—H2o1795 (5)
O3—U1—O11149.8 (2)O23xii—O17—H1o23xii17 (2)
O3—U1—O1288.7 (3)H1o19x—O17—H1o17102 (6)
O3—U1—O1493.6 (3)H1o19x—O17—H2o1745 (7)
O3—U1—O15iii133.5 (3)H1o19x—O17—H1o23xii70 (3)
O8ii—U1—O1183.0 (3)H1o17—O17—H2o17105 (7)
O8ii—U1—O1293.9 (3)H1o17—O17—H1o23xii35 (6)
O8ii—U1—O1483.4 (3)H2o17—O17—H1o23xii91 (6)
O8ii—U1—O15iii158.9 (3)Ca1—O18—P2152.0 (5)
O11—U1—O1286.8 (3)Ca1—O18—O8163.1 (4)
O11—U1—O1489.1 (3)Ca1—O18—O9118.9 (4)
O11—U1—O15iii75.8 (3)Ca1—O18—O15138.3 (4)
O12—U1—O14175.3 (4)Ca1—O18—O20xi103.4 (3)
O12—U1—O15iii85.7 (3)Ca1—O18—O2251.8 (3)
O14—U1—O15iii95.5 (3)Ca1—O18—H1o20xi117.1 (17)
O1—U2—O2iv135.9 (3)Ca1—O18—H2o20xi86.2 (17)
O1—U2—O3v69.8 (3)P2—O18—O835.5 (3)
O1—U2—O586.9 (3)P2—O18—O935.0 (3)
O1—U2—O6vi68.7 (3)P2—O18—O1535.7 (3)
O1—U2—O798.3 (3)P2—O18—O20xi103.6 (4)
O1—U2—O9146.0 (2)P2—O18—O22140.2 (5)
O2iv—U2—O3v67.9 (3)P2—O18—H1o20xi88.0 (17)
O2iv—U2—O586.4 (3)P2—O18—H2o20xi119.5 (19)
O2iv—U2—O6vi155.2 (3)O8—O18—O961.4 (3)
O2iv—U2—O792.3 (3)O8—O18—O1558.1 (3)
O2iv—U2—O975.2 (3)O8—O18—O20xi69.1 (3)
O3v—U2—O597.2 (3)O8—O18—O22112.6 (4)
O3v—U2—O6vi136.5 (3)O8—O18—H1o20xi52.6 (17)
O3v—U2—O788.2 (3)O8—O18—H2o20xi84.1 (19)
O3v—U2—O9143.1 (2)O9—O18—O1561.0 (3)
O5—U2—O6vi93.2 (3)O9—O18—O20xi127.6 (4)
O5—U2—O7173.5 (4)O9—O18—O22122.4 (4)
O5—U2—O981.4 (3)O9—O18—H1o20xi109.2 (17)
O6vi—U2—O785.3 (3)O9—O18—H2o20xi135 (2)
O6vi—U2—O980.2 (3)O15—O18—O20xi106.2 (4)
O7—U2—O992.1 (3)O15—O18—O22168.4 (4)
O1—U3—O2vi118.1 (3)O15—O18—H1o20xi99.2 (18)
O1—U3—O3178.2 (3)O15—O18—H2o20xi124.5 (11)
O1—U3—O489.1 (3)O20xi—O18—O2262.7 (3)
O1—U3—O6vi64.6 (3)O20xi—O18—H1o20xi18.4 (17)
O1—U3—O8ii117.3 (3)O20xi—O18—H2o20xi18.5 (12)
O1—U3—O1090.8 (3)O22—O18—H1o20xi69.3 (18)
O1—U3—O15ii66.3 (3)O22—O18—H2o20xi44.6 (10)
O2vi—U3—O363.0 (3)H1o20xi—O18—H2o20xi32 (3)
O2vi—U3—O489.3 (3)Ca2—O19—O11v119.4 (3)
O2vi—U3—O6vi53.6 (2)Ca2—O19—O1655.4 (3)
O2vi—U3—O8ii123.3 (2)Ca2—O19—O17x132.7 (4)
O2vi—U3—O1088.9 (3)Ca2—O19—H1o1667 (2)
O2vi—U3—O15ii171.9 (2)Ca2—O19—H2o1642 (2)
O3—U3—O492.4 (3)Ca2—O19—H1o19121 (6)
O3—U3—O6vi116.3 (3)Ca2—O19—H2o19129 (5)
O3—U3—O8ii62.0 (3)Ca2—O19—H2o2161.9 (19)
O3—U3—O1087.7 (3)Ca2—O19—H2o17x127 (2)
O3—U3—O15ii112.4 (3)Ca2—O19—H1o23xiii168 (2)
O4—U3—O6vi92.4 (3)O11v—O19—O16103.7 (4)
O4—U3—O8ii80.3 (3)O11v—O19—O17x98.7 (3)
O4—U3—O10177.9 (4)O11v—O19—H1o1693 (3)
O4—U3—O15ii97.7 (3)O11v—O19—H2o16122 (2)
O6vi—U3—O8ii172.3 (2)O11v—O19—H1o19106 (6)
O6vi—U3—O1085.6 (3)O11v—O19—H2o1917 (6)
O6vi—U3—O15ii129.6 (3)O11v—O19—H2o21145 (2)
O8ii—U3—O10101.6 (3)O11v—O19—H2o17x111 (2)
O8ii—U3—O15ii54.6 (3)O11v—O19—H1o23xiii58 (2)
O10—U3—O15ii84.1 (3)O16—O19—O17x143.7 (4)
O4vii—Ca1—O7129.5 (3)O16—O19—H1o1613 (2)
O4vii—Ca1—O13vi122.1 (2)O16—O19—H2o1619.8 (19)
O4vii—Ca1—O1774.4 (3)O16—O19—H1o19145 (6)
O4vii—Ca1—O18135.4 (3)O16—O19—H2o1998 (6)
O4vii—Ca1—O2073.1 (3)O16—O19—H2o21103.5 (18)
O4vii—Ca1—O2272.1 (3)O16—O19—H2o17x128 (2)
O4vii—Ca1—H2o2262.2 (19)O16—O19—H1o23xiii136 (2)
O4vii—Ca1—H1o1768.8 (18)O17x—O19—H1o16142 (3)
O7—Ca1—O13vi91.7 (2)O17x—O19—H2o16135 (2)
O7—Ca1—O1769.1 (3)O17x—O19—H1o1912 (5)
O7—Ca1—O1875.9 (3)O17x—O19—H2o1996 (5)
O7—Ca1—O20157.4 (3)O17x—O19—H2o2170.8 (19)
O7—Ca1—O2280.1 (3)O17x—O19—H2o17x16 (2)
O7—Ca1—H2o2278.8 (18)O17x—O19—H1o23xiii43 (2)
O7—Ca1—H1o1782.5 (14)H1o16—O19—H2o1632 (3)
O13vi—Ca1—O1789.5 (3)H1o16—O19—H1o19147 (6)
O13vi—Ca1—O1887.0 (3)H1o16—O19—H2o1985 (7)
O13vi—Ca1—O2073.8 (3)H1o16—O19—H2o21116 (3)
O13vi—Ca1—O22165.3 (3)H1o16—O19—H2o17x127 (4)
O13vi—Ca1—H2o22168.9 (15)H1o16—O19—H1o23xiii124 (3)
O13vi—Ca1—H1o1781.3 (16)H2o16—O19—H1o19131 (6)
O17—Ca1—O18144.8 (3)H2o16—O19—H2o19117 (6)
O17—Ca1—O20126.6 (3)H2o16—O19—H2o2184 (3)
O17—Ca1—O2298.8 (3)H2o16—O19—H2o17x120 (3)
O17—Ca1—H2o2281.7 (15)H2o16—O19—H1o23xiii150 (3)
O17—Ca1—H1o1715.4 (11)H1o19—O19—H2o19105 (8)
O18—Ca1—O2085.9 (3)H1o19—O19—H2o2159 (6)
O18—Ca1—O2279.2 (3)H1o19—O19—H2o17x21 (6)
O18—Ca1—H2o2296.2 (17)H1o19—O19—H1o23xiii54 (6)
O18—Ca1—H1o17155.1 (17)H2o19—O19—H2o21158 (6)
O20—Ca1—O22109.9 (3)H2o19—O19—H2o17x104 (6)
O20—Ca1—H2o22117.0 (16)H2o19—O19—H1o23xiii52 (6)
O20—Ca1—H1o17111.5 (11)H2o21—O19—H2o17x67 (3)
O22—Ca1—H2o2217.8 (16)H2o21—O19—H1o23xiii113 (3)
O22—Ca1—H1o17109.4 (15)H2o17x—O19—H1o23xiii53 (3)
H2o22—Ca1—H1o1792 (2)Ca1—O20—Ca2vi96.6 (3)
O5ii—Ca2—O9ii66.6 (2)Ca1—O20—O4vii53.7 (2)
O5ii—Ca2—O1372.7 (3)Ca1—O20—O13vi51.6 (2)
O5ii—Ca2—O14133.2 (2)Ca1—O20—O14vi105.0 (3)
O5ii—Ca2—O16144.1 (3)Ca1—O20—O18xi107.3 (3)
O5ii—Ca2—O1975.5 (3)Ca1—O20—O21vi77.6 (3)
O5ii—Ca2—O20iii129.8 (3)Ca1—O20—H2o16vi140 (2)
O5ii—Ca2—O2169.6 (3)Ca1—O20—H1o22xi143.9 (13)
O5ii—Ca2—H1o16121.8 (19)Ca1—O20—H1o20133 (5)
O5ii—Ca2—H2o16152 (3)Ca1—O20—H2o20116 (6)
O5ii—Ca2—H1o2184 (2)Ca2vi—O20—O4vii107.7 (3)
O5ii—Ca2—H2o2153 (2)Ca2vi—O20—O13vi50.5 (2)
O5ii—Ca2—H1o20iii133.7 (18)Ca2vi—O20—O14vi60.6 (2)
O9ii—Ca2—O1388.6 (2)Ca2vi—O20—O18xi154.2 (4)
O9ii—Ca2—O1482.2 (2)Ca2vi—O20—O21vi50.2 (2)
O9ii—Ca2—O1699.0 (3)Ca2vi—O20—H2o16vi44 (2)
O9ii—Ca2—O1980.6 (3)Ca2vi—O20—H1o22xi102.2 (16)
O9ii—Ca2—O20iii145.8 (3)Ca2vi—O20—H1o2089 (5)
O9ii—Ca2—O21135.1 (3)Ca2vi—O20—H2o20109 (6)
O9ii—Ca2—H1o1689 (2)O4vii—O20—O13vi93.1 (3)
O9ii—Ca2—H2o16119 (3)O4vii—O20—O14vi156.3 (4)
O9ii—Ca2—H1o21143 (2)O4vii—O20—O18xi80.0 (3)
O9ii—Ca2—H2o21116 (2)O4vii—O20—O21vi58.9 (3)
O9ii—Ca2—H1o20iii158.4 (18)O4vii—O20—H2o16vi122 (2)
O13—Ca2—O1472.5 (3)O4vii—O20—H1o22xi142 (2)
O13—Ca2—O16142.1 (4)O4vii—O20—H1o2080 (5)
O13—Ca2—O19148.1 (4)O4vii—O20—H2o20143 (6)
O13—Ca2—O20iii72.6 (3)O13vi—O20—O14vi63.4 (3)
O13—Ca2—O2187.9 (3)O13vi—O20—O18xi155.3 (4)
O13—Ca2—H1o16163 (2)O13vi—O20—O21vi67.8 (3)
O13—Ca2—H2o16132 (3)O13vi—O20—H2o16vi93 (2)
O13—Ca2—H1o21104 (2)O13vi—O20—H1o22xi124 (2)
O13—Ca2—H2o2191 (2)O13vi—O20—H1o20135 (5)
O13—Ca2—H1o20iii91.5 (17)O13vi—O20—H2o20106 (5)
O14—Ca2—O1671.8 (3)O14vi—O20—O18xi120.0 (4)
O14—Ca2—O19134.4 (3)O14vi—O20—O21vi110.3 (4)
O14—Ca2—O20iii65.1 (2)O14vi—O20—H2o16vi66 (3)
O14—Ca2—O21138.2 (3)O14vi—O20—H1o22xi61 (2)
O14—Ca2—H1o1690 (2)O14vi—O20—H1o20118 (5)
O14—Ca2—H2o1674 (3)O14vi—O20—H2o2051 (6)
O14—Ca2—H1o21135 (2)O18xi—O20—O21vi125.2 (4)
O14—Ca2—H2o21155 (2)O18xi—O20—H2o16vi111 (2)
O14—Ca2—H1o20iii77.2 (18)O18xi—O20—H1o22xi64 (2)
O16—Ca2—O1969.6 (4)O18xi—O20—H1o2068 (5)
O16—Ca2—O20iii81.1 (3)O18xi—O20—H2o2070 (6)
O16—Ca2—O21110.7 (3)O21vi—O20—H2o16vi71 (2)
O16—Ca2—H1o1622.3 (19)O21vi—O20—H1o22xi137.4 (10)
O16—Ca2—H2o1621 (3)O21vi—O20—H1o2071 (5)
O16—Ca2—H1o2192 (2)O21vi—O20—H2o20158 (6)
O16—Ca2—H2o21118 (2)H2o16vi—O20—H1o22xi68 (2)
O16—Ca2—H1o20iii68.4 (18)H2o16vi—O20—H1o2056 (6)
O19—Ca2—O20iii129.5 (3)H2o16vi—O20—H2o2089 (7)
O19—Ca2—O2179.2 (3)H1o22xi—O20—H1o2078 (6)
O19—Ca2—H1o1647.8 (19)H1o22xi—O20—H2o2028 (6)
O19—Ca2—H2o1678 (3)H1o20—O20—H2o20106 (8)
O19—Ca2—H1o2170.2 (19)Ca2—O21—O4xv114.6 (4)
O19—Ca2—H2o2168 (2)Ca2—O21—O5ii59.9 (3)
O19—Ca2—H1o20iii109.3 (17)Ca2—O21—O20iii55.9 (3)
O20iii—Ca2—O2173.9 (3)Ca2—O21—H1o1968.2 (17)
O20iii—Ca2—H1o16101 (2)Ca2—O21—H1o21107 (6)
O20iii—Ca2—H2o1663 (3)Ca2—O21—H2o21104 (6)
O20iii—Ca2—H1o2171 (2)Ca2—O21—H1o17iii113.3 (18)
O20iii—Ca2—H2o2193 (2)Ca2—O21—H1o20iii62.5 (17)
O20iii—Ca2—H1o20iii20.2 (17)O4xv—O21—O5ii135.7 (4)
O21—Ca2—H1o16106 (2)O4xv—O21—O20iii60.3 (3)
O21—Ca2—H2o1695 (3)O4xv—O21—H1o19159.4 (17)
O21—Ca2—H1o2119 (2)O4xv—O21—H1o2185 (6)
O21—Ca2—H2o2119 (2)O4xv—O21—H2o21135 (6)
O21—Ca2—H1o20iii66.5 (18)O4xv—O21—H1o17iii64.3 (15)
H1o16—Ca2—H2o1638 (3)O4xv—O21—H1o20iii61.9 (17)
H1o16—Ca2—H1o2188 (3)O5ii—O21—O20iii107.7 (4)
H1o16—Ca2—H2o21106 (3)O5ii—O21—H1o1964.3 (18)
H1o16—Ca2—H1o20iii85 (3)O5ii—O21—H1o21139 (6)
H2o16—Ca2—H1o2177 (4)O5ii—O21—H2o2151 (7)
H2o16—Ca2—H2o21107 (4)O5ii—O21—H1o17iii77.8 (18)
H2o16—Ca2—H1o20iii48 (3)O5ii—O21—H1o20iii120.6 (17)
H1o21—Ca2—H2o2131 (3)O20iii—O21—H1o19113.9 (15)
H1o21—Ca2—H1o20iii58 (3)O20iii—O21—H1o2190 (6)
H2o21—Ca2—H1o20iii86 (3)O20iii—O21—H2o21159 (7)
O2—P1—O6100.3 (5)O20iii—O21—H1o17iii99.7 (14)
O2—P1—O11108.6 (4)O20iii—O21—H1o20iii18.4 (17)
O2—P1—O13112.5 (4)H1o19—O21—H1o2175 (6)
O2—P1—H2o19i102.1 (17)H1o19—O21—H2o2158 (6)
O6—P1—O11110.6 (4)H1o19—O21—H1o17iii135 (2)
O6—P1—O13111.5 (5)H1o19—O21—H1o20iii106 (2)
O6—P1—H2o19i77.0 (17)H1o21—O21—H2o21105 (9)
O11—P1—O13112.7 (5)H1o21—O21—H1o17iii136 (6)
O11—P1—H2o19i36.4 (19)H1o21—O21—H1o20iii72 (6)
O13—P1—H2o19i141 (2)H2o21—O21—H1o17iii80 (6)
O8—P2—O9111.5 (4)H2o21—O21—H1o20iii163 (6)
O8—P2—O15102.8 (5)H1o17iii—O21—H1o20iii114 (2)
O8—P2—O18110.4 (5)Ca1—O22—O4vii56.2 (2)
O9—P2—O15110.1 (4)Ca1—O22—O1849.0 (2)
O9—P2—O18111.6 (5)Ca1—O22—O23112.9 (4)
O15—P2—O18110.1 (5)Ca1—O22—H2o21x95 (2)
U1v—O1—U2110.9 (3)Ca1—O22—H1o22132 (7)
U1v—O1—U3122.0 (4)Ca1—O22—H2o22113 (6)
U1v—O1—O3v55.2 (2)Ca1—O22—H2o20xi100 (3)
U1v—O1—O4127.1 (4)Ca1—O22—H2o2393.6 (18)
U1v—O1—O5116.0 (3)O4vii—O22—O1898.7 (3)
U1v—O1—O6vi158.2 (4)O4vii—O22—O23165.6 (5)
U1v—O1—O10104.2 (3)O4vii—O22—H2o21x106.0 (19)
U1v—O1—O12v36.70 (19)O4vii—O22—H1o22168 (7)
U1v—O1—O14v37.68 (18)O4vii—O22—H2o2276 (6)
U1v—O1—O15ii62.2 (3)O4vii—O22—H2o20xi107 (3)
U1v—O1—H2o22viii107.7 (18)O4vii—O22—H2o23146 (2)
U2—O1—U3120.7 (4)O18—O22—O2376.6 (3)
U2—O1—O3v56.1 (2)O18—O22—H2o21x107 (2)
U2—O1—O4119.1 (4)O18—O22—H1o2285 (6)
U2—O1—O540.02 (19)O18—O22—H2o22156 (5)
U2—O1—O6vi57.2 (3)O18—O22—H2o20xi64 (3)
U2—O1—O10107.0 (3)O18—O22—H2o2365 (2)
U2—O1—O12v101.0 (3)O23—O22—H2o21x63 (2)
U2—O1—O14v112.8 (3)O23—O22—H1o2227 (7)
U2—O1—O15ii163.9 (4)O23—O22—H2o22103 (6)
U2—O1—H2o22viii86.1 (18)O23—O22—H2o20xi84 (3)
U3—O1—O3v162.5 (3)O23—O22—H2o2320.2 (19)
U3—O1—O439.30 (17)H2o21x—O22—H1o2284 (6)
U3—O1—O5120.1 (3)H2o21x—O22—H2o2254 (6)
U3—O1—O6vi63.8 (3)H2o21x—O22—H2o20xi147 (3)
U3—O1—O1038.32 (17)H2o21x—O22—H2o2357 (3)
U3—O1—O12v105.4 (3)H1o22—O22—H2o22105 (8)
U3—O1—O14v125.1 (4)H1o22—O22—H2o20xi65 (7)
U3—O1—O15ii60.9 (3)H1o22—O22—H2o2346 (7)
U3—O1—H2o22viii101 (2)H2o22—O22—H2o20xi140 (6)
O3v—O1—O4158.0 (3)H2o22—O22—H2o23107 (6)
O3v—O1—O569.8 (3)H2o20xi—O22—H2o2393 (4)
O3v—O1—O6vi112.1 (4)O2iv—O23—O16xiv142.1 (4)
O3v—O1—O10124.2 (3)O2iv—O23—O17xiv93.9 (4)
O3v—O1—O12v61.4 (3)O2iv—O23—O22122.0 (4)
O3v—O1—O14v65.0 (3)O2iv—O23—H2o16xiv139 (2)
O3v—O1—O15ii116.9 (4)O2iv—O23—H2o21x85 (2)
O3v—O1—H2o22viii96 (2)O2iv—O23—H1o22134 (3)
O4—O1—O593.3 (3)O2iv—O23—H1o17xiv99 (3)
O4—O1—O6vi71.9 (3)O2iv—O23—H2o17xiv101 (2)
O4—O1—O1077.6 (3)O2iv—O23—H1o2363 (6)
O4—O1—O12v135.9 (4)O2iv—O23—H2o2344 (5)
O4—O1—O14v103.3 (3)O16xiv—O23—O17xiv79.5 (4)
O4—O1—O15ii73.1 (3)O16xiv—O23—O2292.6 (4)
O4—O1—H2o22viii62 (2)O16xiv—O23—H2o16xiv19.4 (19)
O5—O1—O6vi68.2 (3)O16xiv—O23—H2o21x129 (2)
O5—O1—O10134.6 (4)O16xiv—O23—H1o2280 (3)
O5—O1—O12v130.5 (3)O16xiv—O23—H1o17xiv81 (3)
O5—O1—O14v92.8 (3)O16xiv—O23—H2o17xiv63.4 (14)
O5—O1—O15ii155.5 (4)O16xiv—O23—H1o2390 (6)
O5—O1—H2o22viii46.1 (18)O16xiv—O23—H2o23159 (7)
O6vi—O1—O1066.6 (3)O17xiv—O23—O22120.1 (4)
O6vi—O1—O12v123.2 (3)O17xiv—O23—H2o16xiv98.9 (18)
O6vi—O1—O14v159.7 (4)O17xiv—O23—H2o21x78.6 (19)
O6vi—O1—O15ii123.5 (4)O17xiv—O23—H1o22117 (3)
O6vi—O1—H2o22viii90.5 (17)O17xiv—O23—H1o17xiv9 (2)
O10—O1—O12v73.7 (3)O17xiv—O23—H2o17xiv18.2 (11)
O10—O1—O14v132.6 (4)O17xiv—O23—H1o2340 (6)
O10—O1—O15ii63.6 (3)O17xiv—O23—H2o23121 (7)
O10—O1—H2o22viii138 (2)O22—O23—H2o16xiv84.1 (18)
O12v—O1—O14v74.4 (3)O22—O23—H2o21x60.8 (19)
O12v—O1—O15ii64.4 (3)O22—O23—H1o2213 (3)
O12v—O1—H2o22viii144.0 (19)O22—O23—H1o17xiv111 (2)
O14v—O1—O15ii71.4 (3)O22—O23—H2o17xiv126 (2)
O14v—O1—H2o22viii70.4 (18)O22—O23—H1o23159 (7)
O15ii—O1—H2o22viii109.7 (18)O22—O23—H2o2378 (5)
U2ii—O2—U3iii101.8 (3)H2o16xiv—O23—H2o21x135 (3)
U2ii—O2—P1135.1 (4)H2o16xiv—O23—H1o2272 (3)
U2ii—O2—O3iii55.2 (2)H2o16xiv—O23—H1o17xiv100 (3)
U2ii—O2—O5ii38.95 (17)H2o16xiv—O23—H2o17xiv82 (2)
U2ii—O2—O6150.4 (4)H2o16xiv—O23—H1o23104 (7)
U2ii—O2—O9ii53.7 (2)H2o16xiv—O23—H2o23140 (7)
U2ii—O2—O11134.9 (4)H2o21x—O23—H1o2270 (4)
U2ii—O2—O13102.8 (3)H2o21x—O23—H1o17xiv71 (3)
U2ii—O2—O23ii102.3 (3)H2o21x—O23—H2o17xiv96 (2)
U2ii—O2—H1o23ii120.0 (11)H2o21x—O23—H1o23101 (7)
U2ii—O2—H2o23ii85.8 (19)H2o21x—O23—H2o2363 (7)
U3iii—O2—P197.4 (3)H1o22—O23—H1o17xiv109 (4)
U3iii—O2—O3iii49.4 (2)H1o22—O23—H2o17xiv119 (4)
U3iii—O2—O5ii94.1 (3)H1o22—O23—H1o23158 (7)
U3iii—O2—O660.5 (3)H1o22—O23—H2o2390 (6)
U3iii—O2—O9ii151.5 (3)H1o17xiv—O23—H2o17xiv24 (2)
U3iii—O2—O11121.5 (3)H1o17xiv—O23—H1o2349 (7)
U3iii—O2—O13100.3 (3)H1o17xiv—O23—H2o23120 (7)
U3iii—O2—O23ii116.6 (3)H2o17xiv—O23—H1o2339 (6)
U3iii—O2—H1o23ii104 (2)H2o17xiv—O23—H2o23137 (6)
U3iii—O2—H2o23ii121 (3)H1o23—O23—H2o23105 (8)
P1—O2—O3iii141.5 (5)Ca2—H1o16—O12v147 (5)
P1—O2—O5ii100.0 (3)Ca2—H1o16—O1677 (5)
P1—O2—O639.7 (3)Ca2—H1o16—O1965 (2)
P1—O2—O9ii93.3 (4)Ca2—H1o16—H2o1649 (4)
P1—O2—O1135.1 (3)Ca2—H1o16—H1o1969 (3)
P1—O2—O1333.3 (2)Ca2—H1o16—H2o1985 (4)
P1—O2—O23ii104.6 (4)O12v—H1o16—O16122 (7)
P1—O2—H1o23ii93.6 (19)O12v—H1o16—O1999 (3)
P1—O2—H2o23ii118 (3)O12v—H1o16—H2o16158 (6)
O3iii—O2—O5ii68.9 (3)O12v—H1o16—H1o19100 (3)
O3iii—O2—O6109.7 (4)O12v—H1o16—H2o1973 (3)
O3iii—O2—O9ii108.9 (3)O16—H1o16—O19139 (7)
O3iii—O2—O11169.8 (4)O16—H1o16—H2o1637 (4)
O3iii—O2—O13122.7 (4)O16—H1o16—H1o19138 (7)
O3iii—O2—O23ii107.9 (3)O16—H1o16—H2o19161 (8)
O3iii—O2—H1o23ii111 (2)O19—H1o16—H2o16103 (6)
O3iii—O2—H2o23ii98 (3)O19—H1o16—H1o1910 (2)
O5ii—O2—O6114.4 (3)O19—H1o16—H2o1926 (3)
O5ii—O2—O9ii58.0 (2)H2o16—H1o16—H1o19101 (6)
O5ii—O2—O11119.2 (4)H2o16—H1o16—H2o19128 (6)
O5ii—O2—O1366.7 (3)H1o19—H1o16—H2o1932 (3)
O5ii—O2—O23ii137.1 (3)Ca2—H2o16—O1467 (3)
O5ii—O2—H1o23ii156.0 (12)Ca2—H2o16—O16115 (8)
O5ii—O2—H2o23ii121.5 (18)Ca2—H2o16—O1960 (2)
O6—O2—O9ii132.8 (4)Ca2—H2o16—O20iii73 (3)
O6—O2—O1162.1 (3)Ca2—H2o16—O23xii159 (4)
O6—O2—O1361.6 (3)Ca2—H2o16—H1o1693 (6)
O6—O2—O23ii106.9 (4)Ca2—H2o16—H1o22xii120 (4)
O6—O2—H1o23ii88.6 (10)Ca2—H2o16—H1o20iii88 (4)
O6—O2—H2o23ii123.3 (18)Ca2—H2o16—H2o20iii84 (3)
O9ii—O2—O1181.2 (3)O14—H2o16—O1692 (7)
O9ii—O2—O1375.0 (3)O14—H2o16—O19116 (4)
O9ii—O2—O23ii85.8 (3)O14—H2o16—O20iii65 (2)
O9ii—O2—H1o23ii102 (2)O14—H2o16—O23xii95 (3)
O9ii—O2—H2o23ii76 (2)O14—H2o16—H1o16111 (7)
O11—O2—O1360.0 (3)O14—H2o16—H1o22xii59 (3)
O11—O2—O23ii70.9 (3)O14—H2o16—H1o20iii86 (4)
O11—O2—H1o23ii64 (2)O14—H2o16—H2o20iii52 (3)
O11—O2—H2o23ii83 (3)O16—H2o16—O1982 (5)
O13—O2—O23ii129.2 (4)O16—H2o16—O20iii151 (7)
O13—O2—H1o23ii124 (2)O16—H2o16—O23xii76 (5)
O13—O2—H2o23ii135 (3)O16—H2o16—H1o1637 (5)
O23ii—O2—H1o23ii18.9 (12)O16—H2o16—H1o22xii92 (6)
O23ii—O2—H2o23ii16.5 (19)O16—H2o16—H1o20iii154 (8)
H1o23ii—O2—H2o23ii35 (2)O16—H2o16—H2o20iii130 (7)
U1—O3—U2i108.9 (3)O19—H2o16—O20iii123 (3)
U1—O3—U3122.9 (4)O19—H2o16—O23xii142 (3)
U1—O3—O1i55.2 (2)O19—H2o16—H1o1645 (4)
U1—O3—O2vi164.8 (4)O19—H2o16—H1o22xii172 (5)
U1—O3—O4123.8 (4)O19—H2o16—H1o20iii123 (5)
U1—O3—O7i106.1 (3)O19—H2o16—H2o20iii142 (4)
U1—O3—O8ii58.9 (3)O20iii—H2o16—O23xii89 (3)
U1—O3—O10107.5 (3)O20iii—H2o16—H1o16166 (7)
U1—O3—O1238.34 (19)O20iii—H2o16—H1o22xii62 (2)
U1—O3—O1436.82 (18)O20iii—H2o16—H1o20iii23 (2)
U1—O3—H1o21ix90 (2)O20iii—H2o16—H2o20iii21.7 (14)
U2i—O3—U3120.3 (4)O23xii—H2o16—H1o16105 (5)
U2i—O3—O1i54.1 (2)O23xii—H2o16—H1o22xii39 (2)
U2i—O3—O2vi56.8 (2)O23xii—H2o16—H1o20iii78 (4)
U2i—O3—O4125.4 (4)O23xii—H2o16—H2o20iii75 (3)
U2i—O3—O7i38.78 (18)H1o16—H2o16—H1o22xii129 (6)
U2i—O3—O8ii167.7 (4)H1o16—H2o16—H1o20iii161 (8)
U2i—O3—O10100.3 (3)H1o16—H2o16—H2o20iii162 (8)
U2i—O3—O12102.8 (3)H1o22xii—H2o16—H1o20iii65 (4)
U2i—O3—O14109.3 (3)H1o22xii—H2o16—H2o20iii42 (2)
U2i—O3—H1o21ix101 (2)H1o20iii—H2o16—H2o20iii36 (3)
U3—O3—O1i148.5 (3)O17x—H1o19—O19162 (8)
U3—O3—O2vi67.6 (3)O17x—H1o19—O21107 (3)
U3—O3—O438.32 (17)O17x—H1o19—H1o16147 (5)
U3—O3—O7i130.2 (4)O17x—H1o19—H2o19128 (6)
U3—O3—O8ii69.8 (3)O17x—H1o19—H1o21100 (4)
U3—O3—O1039.89 (19)O17x—H1o19—H2o2195 (4)
U3—O3—O12136.0 (4)O17x—H1o19—H1o17x23 (2)
U3—O3—O1497.0 (3)O17x—H1o19—H2o17x26 (3)
U3—O3—H1o21ix106 (2)O17x—H1o19—H1o23xiii57 (4)
O1i—O3—O2vi109.9 (4)O19—H1o19—O2188 (6)
O1i—O3—O4173.2 (3)O19—H1o19—H1o1622 (4)
O1i—O3—O7i68.1 (3)O19—H1o19—H2o1937 (4)
O1i—O3—O8ii113.6 (4)O19—H1o19—H1o2191 (6)
O1i—O3—O10108.6 (3)O19—H1o19—H2o21102 (7)
O1i—O3—O1265.5 (3)O19—H1o19—H1o17x140 (7)
O1i—O3—O1462.9 (3)O19—H1o19—H2o17x146 (8)
O1i—O3—H1o21ix105 (2)O19—H1o19—H1o23xiii107 (7)
O2vi—O3—O471.3 (3)O21—H1o19—H1o1684 (3)
O2vi—O3—O7i66.6 (3)O21—H1o19—H2o19125 (5)
O2vi—O3—O8ii135.1 (4)O21—H1o19—H1o2118.8 (19)
O2vi—O3—O1072.9 (3)O21—H1o19—H2o2118 (2)
O2vi—O3—O12143.1 (4)O21—H1o19—H1o17x129 (4)
O2vi—O3—O14137.9 (3)O21—H1o19—H2o17x95 (5)
O2vi—O3—H1o21ix98 (3)O21—H1o19—H1o23xiii164 (5)
O4—O3—O7i107.1 (3)H1o16—H1o19—H2o1948 (4)
O4—O3—O8ii66.7 (3)H1o16—H1o19—H1o2181 (4)
O4—O3—O1078.2 (3)H1o16—H1o19—H2o21102 (4)
O4—O3—O12109.3 (3)H1o16—H1o19—H1o17x132 (4)
O4—O3—O14120.9 (3)H1o16—H1o19—H2o17x125 (5)
O4—O3—H1o21ix68 (2)H1o16—H1o19—H1o23xiii109 (4)
O7i—O3—O8ii141.4 (3)H2o19—H1o19—H1o21128 (6)
O7i—O3—O10134.2 (4)H2o19—H1o19—H2o21137 (6)
O7i—O3—O1278.7 (3)H2o19—H1o19—H1o17x105 (6)
O7i—O3—O14130.5 (3)H2o19—H1o19—H2o17x131 (7)
O7i—O3—H1o21ix63 (2)H2o19—H1o19—H1o23xiii71 (5)
O8ii—O3—O1083.4 (3)H1o21—H1o19—H2o2132 (3)
O8ii—O3—O1268.8 (3)H1o21—H1o19—H1o17x119 (4)
O8ii—O3—O1460.6 (3)H1o21—H1o19—H2o17x82 (5)
O8ii—O3—H1o21ix81 (3)H1o21—H1o19—H1o23xiii151 (5)
O10—O3—O12144.0 (4)H2o21—H1o19—H1o17x117 (4)
O10—O3—O1471.3 (3)H2o21—H1o19—H2o17x90 (5)
O10—O3—H1o21ix146 (2)H2o21—H1o19—H1o23xiii149 (5)
O12—O3—O1475.1 (3)H1o17x—H1o19—H2o17x37 (5)
O12—O3—H1o21ix53 (2)H1o17x—H1o19—H1o23xiii35 (3)
O14—O3—H1o21ix124 (3)H2o17x—H1o19—H1o23xiii70 (5)
U3—O4—Ca1viii167.5 (4)P1v—H2o19—O6v30.3 (10)
U3—O4—O151.6 (2)P1v—H2o19—O11v27.8 (15)
U3—O4—O349.3 (2)P1v—H2o19—O12v100 (3)
U3—O4—O17viii136.8 (4)P1v—H2o19—O19130 (7)
U3—O4—O20viii126.4 (4)P1v—H2o19—H1o16141 (5)
U3—O4—O21ix112.8 (3)P1v—H2o19—H1o19112 (6)
U3—O4—O22viii116.9 (3)P1v—H2o19—H2o17x113 (4)
U3—O4—H1o21ix96.3 (16)P1v—H2o19—H1o23xiii72 (3)
U3—O4—H2o22viii105 (2)O6v—H2o19—O11v57 (2)
U3—O4—H1o20viii109.5 (16)O6v—H2o19—O12v127 (3)
Ca1viii—O4—O1117.4 (3)O6v—H2o19—O1999 (7)
Ca1viii—O4—O3140.9 (3)O6v—H2o19—H1o16137 (4)
Ca1viii—O4—O17viii50.4 (2)O6v—H2o19—H1o1988 (5)
Ca1viii—O4—O20viii53.2 (2)O6v—H2o19—H2o17x100 (4)
Ca1viii—O4—O21ix78.5 (3)O6v—H2o19—H1o23xiii81 (4)
Ca1viii—O4—O22viii51.6 (2)O11v—H2o19—O12v72 (3)
Ca1viii—O4—H1o21ix94.0 (16)O11v—H2o19—O19155 (8)
Ca1viii—O4—H2o22viii65 (2)O11v—H2o19—H1o16121 (6)
Ca1viii—O4—H1o20viii71.3 (16)O11v—H2o19—H1o19137 (7)
O1—O4—O3100.9 (3)O11v—H2o19—H2o17x131 (4)
O1—O4—O17viii116.5 (4)O11v—H2o19—H1o23xiii78 (3)
O1—O4—O20viii129.2 (4)O12v—H2o19—O19126 (7)
O1—O4—O21ix164.0 (3)O12v—H2o19—H1o1660 (3)
O1—O4—O22viii65.8 (3)O12v—H2o19—H1o19144 (6)
O1—O4—H1o21ix147.7 (16)O12v—H2o19—H2o17x126 (4)
O1—O4—H2o22viii54 (2)O12v—H2o19—H1o23xiii104 (4)
O1—O4—H1o20viii127.3 (17)O19—H2o19—H1o1668 (5)
O3—O4—O17viii119.4 (4)O19—H2o19—H1o1937 (5)
O3—O4—O20viii97.0 (3)O19—H2o19—H2o17x56 (5)
O3—O4—O21ix63.7 (3)O19—H2o19—H1o23xiii109 (7)
O3—O4—O22viii163.8 (4)H1o16—H2o19—H1o19101 (6)
O3—O4—H1o21ix47.1 (16)H1o16—H2o19—H2o17x105 (5)
O3—O4—H2o22viii154 (2)H1o16—H2o19—H1o23xiii142 (6)
O3—O4—H1o20viii79.7 (16)H1o19—H2o19—H2o17x24 (4)
O17viii—O4—O20viii94.0 (3)H1o19—H2o19—H1o23xiii72 (5)
O17viii—O4—O21ix71.2 (3)H2o17x—H2o19—H1o23xiii54 (3)
O17viii—O4—O22viii76.1 (3)Ca2—H1o21—O3xv156 (4)
O17viii—O4—H1o21ix88.6 (18)Ca2—H1o21—O4xv101 (3)
O17viii—O4—H2o22viii73.8 (17)Ca2—H1o21—O7x136 (3)
O17viii—O4—H1o20viii107.7 (16)Ca2—H1o21—O12xv101 (3)
O20viii—O4—O21ix60.8 (3)Ca2—H1o21—O2154 (5)
O20viii—O4—O22viii85.7 (3)Ca2—H1o21—H1o1964 (3)
O20viii—O4—H1o21ix63.3 (18)Ca2—H1o21—H2o2173 (5)
O20viii—O4—H2o22viii105.0 (17)Ca2—H1o21—H1o20iii59 (3)
O20viii—O4—H1o20viii18.3 (16)O3xv—H1o21—O4xv65 (2)
O21ix—O4—O22viii130.1 (3)O3xv—H1o21—O7x68 (2)
O21ix—O4—H1o21ix18.4 (17)O3xv—H1o21—O12xv74 (3)
O21ix—O4—H2o22viii141 (2)O3xv—H1o21—O21133 (8)
O21ix—O4—H1o20viii57.2 (16)O3xv—H1o21—H1o19133 (4)
O22viii—O4—H1o21ix144.5 (16)O3xv—H1o21—H2o21128 (7)
O22viii—O4—H2o22viii19.4 (17)O3xv—H1o21—H1o20iii97 (4)
O22viii—O4—H1o20viii100.7 (16)O4xv—H1o21—O7x109 (3)
H1o21ix—O4—H2o22viii159 (3)O4xv—H1o21—O12xv123 (4)
H1o21ix—O4—H1o20viii53 (3)O4xv—H1o21—O2177 (6)
H2o22viii—O4—H1o20viii120 (2)O4xv—H1o21—H1o19162 (4)
U2—O5—Ca2iv111.1 (4)O4xv—H1o21—H2o21104 (6)
U2—O5—O153.1 (2)O4xv—H1o21—H1o20iii63 (3)
U2—O5—O2iv54.6 (2)O7x—H1o21—O12xv90 (3)
U2—O5—O959.0 (3)O7x—H1o21—O21102 (7)
U2—O5—O13iv103.2 (3)O7x—H1o21—H1o1979 (3)
U2—O5—O21iv161.3 (5)O7x—H1o21—H2o2169 (5)
U2—O5—H2o21iv166 (2)O7x—H1o21—H1o20iii165 (4)
U2—O5—H2o22viii114 (3)O12xv—H1o21—O21153 (7)
Ca2iv—O5—O1152.6 (3)O12xv—H1o21—H1o1972 (3)
Ca2iv—O5—O2iv86.5 (3)O12xv—H1o21—H2o21133 (6)
Ca2iv—O5—O952.5 (2)O12xv—H1o21—H1o20iii85 (4)
Ca2iv—O5—O13iv48.9 (2)O21—H1o21—H1o1986 (6)
Ca2iv—O5—O21iv50.5 (2)O21—H1o21—H2o2137 (5)
Ca2iv—O5—H2o21iv66 (2)O21—H1o21—H1o20iii89 (6)
Ca2iv—O5—H2o22viii128 (2)H1o19—H1o21—H2o2163 (5)
O1—O5—O2iv97.1 (3)H1o19—H1o21—H1o20iii113 (4)
O1—O5—O9105.7 (3)H2o21—H1o21—H1o20iii124 (6)
O1—O5—O13iv147.4 (3)Ca2—H2o21—O5ii61 (2)
O1—O5—O21iv141.3 (4)Ca2—H2o21—O7x147 (4)
O1—O5—H2o21iv123 (2)Ca2—H2o21—O1950.2 (16)
O1—O5—H2o22viii61 (3)Ca2—H2o21—O2156 (5)
O2iv—O5—O961.8 (3)Ca2—H2o21—O22x130 (4)
O2iv—O5—O13iv51.6 (2)Ca2—H2o21—O23x140 (4)
O2iv—O5—O21iv119.6 (3)Ca2—H2o21—H1o1969 (3)
O2iv—O5—H2o21iv136 (2)Ca2—H2o21—H1o2176 (5)
O2iv—O5—H2o22viii142 (2)Ca2—H2o21—H1o22x134 (5)
O9—O5—O13iv70.3 (3)Ca2—H2o21—H2o22x112 (5)
O9—O5—O21iv102.4 (4)Ca2—H2o21—H1o17iii103 (4)
O9—O5—H2o21iv115 (2)Ca2—H2o21—H2o17x96 (3)
O9—O5—H2o22viii149 (3)Ca2—H2o21—H2o23x155 (4)
O13iv—O5—O21iv68.0 (3)O5ii—H2o21—O7x137 (4)
O13iv—O5—H2o21iv85 (2)O5ii—H2o21—O1971 (3)
O13iv—O5—H2o22viii137 (3)O5ii—H2o21—O21111 (8)
O21iv—O5—H2o21iv18 (2)O5ii—H2o21—O22x70 (3)
O21iv—O5—H2o22viii82 (2)O5ii—H2o21—O23x99 (3)
H2o21iv—O5—H2o22viii64 (3)O5ii—H2o21—H1o1977 (4)
U2iii—O6—U3iii105.4 (3)O5ii—H2o21—H1o21137 (7)
U2iii—O6—P1147.4 (5)O5ii—H2o21—H1o22x74 (3)
U2iii—O6—O1iii54.1 (2)O5ii—H2o21—H2o22x52 (3)
U2iii—O6—O2171.3 (5)O5ii—H2o21—H1o17iii86 (4)
U2iii—O6—O7iii39.49 (18)O5ii—H2o21—H2o17x102 (4)
U2iii—O6—O11127.5 (4)O5ii—H2o21—H2o23x115 (4)
U2iii—O6—O13121.1 (4)O7x—H2o21—O19104 (3)
U2iii—O6—H2o19i103.2 (11)O7x—H2o21—O21111 (8)
U3iii—O6—P1102.9 (4)O7x—H2o21—O22x71 (2)
U3iii—O6—O1iii51.6 (2)O7x—H2o21—O23x72 (2)
U3iii—O6—O265.9 (3)O7x—H2o21—H1o1988 (4)
U3iii—O6—O7iii105.2 (3)O7x—H2o21—H1o2179 (6)
U3iii—O6—O11125.9 (3)O7x—H2o21—H1o22x75 (3)
U3iii—O6—O13104.5 (3)O7x—H2o21—H2o22x87 (4)
U3iii—O6—H2o19i124.7 (18)O7x—H2o21—H1o17iii106 (4)
P1—O6—O1iii152.8 (5)O7x—H2o21—H2o17x57 (3)
P1—O6—O240.1 (3)O7x—H2o21—H2o23x54 (3)
P1—O6—O7iii116.6 (4)O19—H2o21—O2190 (6)
P1—O6—O1134.3 (3)O19—H2o21—O22x106 (3)
P1—O6—O1334.0 (3)O19—H2o21—O23x161 (4)
P1—O6—H2o19i72.7 (14)O19—H2o21—H1o1919 (2)
O1iii—O6—O2117.3 (4)O19—H2o21—H1o2180 (5)
O1iii—O6—O7iii69.2 (3)O19—H2o21—H1o22x123 (4)
O1iii—O6—O11165.8 (4)O19—H2o21—H2o22x93 (4)
O1iii—O6—O13133.2 (4)O19—H2o21—H1o17iii150 (4)
O1iii—O6—H2o19i127.3 (17)O19—H2o21—H2o17x47 (2)
O2—O6—O7iii139.8 (4)O19—H2o21—H2o23x154 (4)
O2—O6—O1161.2 (3)O21—H2o21—O22x163 (7)
O2—O6—O1362.7 (3)O21—H2o21—O23x109 (7)
O2—O6—H2o19i83.2 (11)O21—H2o21—H1o19104 (6)
O7iii—O6—O11122.0 (4)O21—H2o21—H1o2137 (5)
O7iii—O6—O1384.0 (3)O21—H2o21—H1o22x145 (7)
O7iii—O6—H2o19i126.5 (15)O21—H2o21—H2o22x160 (9)
O11—O6—O1360.1 (3)O21—H2o21—H1o17iii81 (6)
O11—O6—H2o19i39.9 (16)O21—H2o21—H2o17x111 (7)
O13—O6—H2o19i99.5 (17)O21—H2o21—H2o23x109 (7)
U2—O7—Ca1135.1 (4)O22x—H2o21—O23x55.7 (16)
U2—O7—O3v53.0 (2)O22x—H2o21—H1o1992 (3)
U2—O7—O6vi55.2 (2)O22x—H2o21—H1o21150 (7)
U2—O7—O17137.4 (4)O22x—H2o21—H1o22x18.8 (11)
U2—O7—H1o21x102.4 (18)O22x—H2o21—H2o22x19 (2)
U2—O7—H2o21x129 (2)O22x—H2o21—H1o17iii82 (3)
U2—O7—H2o17129 (2)O22x—H2o21—H2o17x84 (3)
U2—O7—H2o2398 (2)O22x—H2o21—H2o23x58 (3)
Ca1—O7—O3v169.9 (4)O23x—H2o21—H1o19146 (4)
Ca1—O7—O6vi85.9 (3)O23x—H2o21—H1o21117 (6)
Ca1—O7—O1751.0 (2)O23x—H2o21—H1o22x38.1 (19)
Ca1—O7—H1o21x122.1 (18)O23x—H2o21—H2o22x69 (3)
Ca1—O7—H2o21x95 (2)O23x—H2o21—H1o17iii38 (2)
Ca1—O7—H2o1770.0 (15)O23x—H2o21—H2o17x123 (4)
Ca1—O7—H2o2395 (2)O23x—H2o21—H2o23x19 (2)
O3v—O7—O6vi97.8 (3)H1o19—H2o21—H1o2185 (6)
O3v—O7—O17119.4 (4)H1o19—H2o21—H1o22x111 (4)
O3v—O7—H1o21x49.4 (18)H1o19—H2o21—H2o22x83 (4)
O3v—O7—H2o21x79 (2)H1o19—H2o21—H1o17iii163 (5)
O3v—O7—H2o17100.1 (15)H1o19—H2o21—H2o17x31 (3)
O3v—O7—H2o2390 (2)H1o19—H2o21—H2o23x136 (5)
O6vi—O7—O1790.3 (3)H1o21—H2o21—H1o22x149 (7)
O6vi—O7—H1o21x136 (2)H1o21—H2o21—H2o22x162 (7)
O6vi—O7—H2o21x163 (2)H1o21—H2o21—H1o17iii108 (6)
O6vi—O7—H2o1796 (2)H1o21—H2o21—H2o17x78 (5)
O6vi—O7—H2o23134 (3)H1o21—H2o21—H2o23x105 (7)
O17—O7—H1o21x84.9 (19)H1o22x—H2o21—H2o22x31 (3)
O17—O7—H2o21x77 (2)H1o22x—H2o21—H1o17iii64 (3)
O17—O7—H2o1719.5 (14)H1o22x—H2o21—H2o17x101 (3)
O17—O7—H2o23125 (2)H1o22x—H2o21—H2o23x45 (3)
H1o21x—O7—H2o21x32 (3)H2o22x—H2o21—H1o17iii87 (4)
H1o21x—O7—H2o1768 (3)H2o22x—H2o21—H2o17x85 (4)
H1o21x—O7—H2o2381 (3)H2o22x—H2o21—H2o23x75 (4)
H2o21x—O7—H2o1768 (3)H1o17iii—H2o21—H2o17x161 (4)
H2o21x—O7—H2o2363 (3)H1o17iii—H2o21—H2o23x53 (3)
H2o17—O7—H2o23127 (3)H2o17x—H2o21—H2o23x108 (4)
U1iv—O8—U3iv98.1 (3)O14xiv—H1o22—O20xi62 (2)
U1iv—O8—P2140.8 (5)O14xiv—H1o22—O2295 (7)
U1iv—O8—O3iv53.5 (2)O14xiv—H1o22—O23124 (3)
U1iv—O8—O9107.9 (3)O14xiv—H1o22—H2o16xiv61 (3)
U1iv—O8—O14iv38.78 (18)O14xiv—H1o22—H2o21x132 (5)
U1iv—O8—O15130.5 (4)O14xiv—H1o22—H2o2289 (6)
U1iv—O8—O18159.3 (4)O14xiv—H1o22—H1o20xi76 (3)
U1iv—O8—H1o20xi111 (2)O14xiv—H1o22—H2o20xi56 (4)
U3iv—O8—P293.7 (4)O14xiv—H1o22—H1o23120 (3)
U3iv—O8—O3iv48.2 (2)O14xiv—H1o22—H2o23150 (4)
U3iv—O8—O9114.1 (3)O20xi—H1o22—O22101 (6)
U3iv—O8—O14iv88.5 (3)O20xi—H1o22—O23103 (4)
U3iv—O8—O1555.8 (3)O20xi—H1o22—H2o16xiv50 (2)
U3iv—O8—O18102.2 (3)O20xi—H1o22—H2o21x166 (5)
U3iv—O8—H1o20xi100 (2)O20xi—H1o22—H2o22130 (5)
P2—O8—O3iv139.1 (5)O20xi—H1o22—H1o20xi19.8 (19)
P2—O8—O934.3 (3)O20xi—H1o22—H2o20xi13 (3)
P2—O8—O14iv104.9 (4)O20xi—H1o22—H1o23107 (4)
P2—O8—O1538.7 (3)O20xi—H1o22—H2o23108 (5)
P2—O8—O1834.1 (3)O22—H1o22—O23141 (9)
P2—O8—H1o20xi103 (2)O22—H1o22—H2o16xiv148 (8)
O3iv—O8—O9138.8 (4)O22—H1o22—H2o21x77 (7)
O3iv—O8—O14iv66.2 (3)O22—H1o22—H2o2238 (5)
O3iv—O8—O15100.6 (4)O22—H1o22—H1o20xi116 (7)
O3iv—O8—O18146.8 (4)O22—H1o22—H2o20xi90 (6)
O3iv—O8—H1o20xi98 (2)O22—H1o22—H1o23143 (9)
O9—O8—O14iv78.0 (3)O22—H1o22—H2o23115 (8)
O9—O8—O1561.4 (3)O23—H1o22—H2o16xiv69 (3)
O9—O8—O1859.8 (3)O23—H1o22—H2o21x71 (4)
O9—O8—H1o20xi123 (2)O23—H1o22—H2o22127 (7)
O14iv—O8—O1594.5 (3)O23—H1o22—H1o20xi83 (4)
O14iv—O8—O18137.3 (4)O23—H1o22—H2o20xi116 (6)
O14iv—O8—H1o20xi150 (2)O23—H1o22—H1o237 (2)
O15—O8—O1861.0 (3)O23—H1o22—H2o2326 (2)
O15—O8—H1o20xi114 (2)H2o16xiv—H1o22—H2o21x134 (3)
O18—O8—H1o20xi69 (2)H2o16xiv—H1o22—H2o22146 (7)
U2—O9—Ca2iv100.2 (3)H2o16xiv—H1o22—H1o20xi42 (3)
U2—O9—P2132.7 (4)H2o16xiv—H1o22—H2o20xi60 (4)
U2—O9—O2iv51.1 (2)H2o16xiv—H1o22—H1o2369 (3)
U2—O9—O539.61 (18)H2o16xiv—H1o22—H2o2391 (4)
U2—O9—O8138.7 (3)H2o21x—H1o22—H2o2256 (5)
U2—O9—O15145.2 (4)H2o21x—H1o22—H1o20xi150 (5)
U2—O9—O1899.4 (3)H2o21x—H1o22—H2o20xi165 (5)
Ca2iv—O9—P2127.1 (4)H2o21x—H1o22—H1o2369 (4)
Ca2iv—O9—O2iv90.3 (3)H2o21x—H1o22—H2o2361 (5)
Ca2iv—O9—O560.9 (2)H2o22—H1o22—H1o20xi149 (6)
Ca2iv—O9—O8107.2 (3)H2o22—H1o22—H2o20xi117 (6)
Ca2iv—O9—O15101.7 (3)H2o22—H1o22—H1o23123 (6)
Ca2iv—O9—O18160.0 (4)H2o22—H1o22—H2o23115 (7)
P2—O9—O2iv120.6 (4)H1o20xi—H1o22—H2o20xi33 (4)
P2—O9—O5170.9 (4)H1o20xi—H1o22—H1o2388 (4)
P2—O9—O834.2 (3)H1o20xi—H1o22—H2o2389 (5)
P2—O9—O1534.9 (3)H2o20xi—H1o22—H1o23120 (5)
P2—O9—O1833.4 (3)H2o20xi—H1o22—H2o23119 (7)
O2iv—O9—O560.2 (2)H1o23—H1o22—H2o2332 (3)
O2iv—O9—O897.9 (3)Ca1—H2o22—O1vii115 (3)
O2iv—O9—O15154.0 (4)Ca1—H2o22—O4vii52.4 (17)
O2iv—O9—O18105.2 (3)Ca1—H2o22—O5vii143 (4)
O5—O9—O8153.0 (4)Ca1—H2o22—O2249 (5)
O5—O9—O15145.6 (4)Ca1—H2o22—H2o21x93 (4)
O5—O9—O18138.1 (4)Ca1—H2o22—H1o2283 (5)
O8—O9—O1556.6 (3)Ca1—H2o22—H2o20xi73 (3)
O8—O9—O1858.8 (3)O1vii—H2o22—O4vii65 (2)
O15—O9—O1859.1 (3)O1vii—H2o22—O5vii73 (3)
U3—O10—O150.9 (2)O1vii—H2o22—O22117 (6)
U3—O10—O352.4 (2)O1vii—H2o22—H2o21x135 (4)
U3—O10—O15ii57.8 (3)O1vii—H2o22—H1o22123 (6)
U3—O10—O16127.2 (4)O1vii—H2o22—H2o20xi95 (3)
U3—O10—O17143.1 (5)O4vii—H2o22—O5vii114 (4)
U3—O10—H1o17161.1 (18)O4vii—H2o22—O2284 (6)
U3—O10—H2o17138 (2)O4vii—H2o22—H2o21x122 (4)
O1—O10—O3103.2 (3)O4vii—H2o22—H1o22121 (5)
O1—O10—O15ii53.0 (3)O4vii—H2o22—H2o20xi89 (3)
O1—O10—O16108.5 (4)O5vii—H2o22—O22162 (8)
O1—O10—O1799.1 (3)O5vii—H2o22—H2o21x64 (3)
O1—O10—H1o17118.5 (10)O5vii—H2o22—H1o22125 (6)
O1—O10—H2o1787 (2)O5vii—H2o22—H2o20xi144 (4)
O3—O10—O15ii86.3 (3)O22—H2o22—H2o21x107 (7)
O3—O10—O16115.0 (4)O22—H2o22—H1o2237 (4)
O3—O10—O17148.0 (4)O22—H2o22—H2o20xi28 (4)
O3—O10—H1o17134.8 (11)H2o21x—H2o22—H1o2293 (6)
O3—O10—H2o17167.2 (17)H2o21x—H2o22—H2o20xi127 (5)
O15ii—O10—O1671.4 (3)H1o22—H2o22—H2o20xi36 (4)
O15ii—O10—O17125.7 (4)Ca1—H1o17—O1098 (3)
O15ii—O10—H1o17132.2 (17)Ca1—H1o17—O1741 (4)
O15ii—O10—H2o17106.0 (15)Ca1—H1o17—O21vi71 (2)
O16—O10—O1778.3 (3)Ca1—H1o17—O23xii151 (4)
O16—O10—H1o1769.0 (19)Ca1—H1o17—H1o19x91 (2)
O16—O10—H2o1767.2 (14)Ca1—H1o17—H2o21vi88 (3)
O17—O10—H1o1719.9 (11)Ca1—H1o17—H2o1778 (3)
O17—O10—H2o1719.7 (14)Ca1—H1o17—H1o23xii136 (6)
H1o17—O10—H2o1733 (2)Ca1—H1o17—H2o23xii132 (4)
U1—O11—P1137.8 (4)O10—H1o17—O1789 (6)
U1—O11—O2138.9 (3)O10—H1o17—O21vi110 (3)
U1—O11—O6153.1 (4)O10—H1o17—O23xii106 (3)
U1—O11—O1238.20 (19)O10—H1o17—H1o19x107 (3)
U1—O11—O13104.5 (3)O10—H1o17—H2o21vi101 (3)
U1—O11—O1437.75 (19)O10—H1o17—H2o1775 (5)
U1—O11—O15iii54.7 (2)O10—H1o17—H1o23xii126 (6)
U1—O11—O19i109.9 (4)O10—H1o17—H2o23xii119 (3)
U1—O11—H2o19i105 (3)O17—H1o17—O21vi112 (6)
U1—O11—H1o23ii123 (2)O17—H1o17—O23xii153 (7)
P1—O11—O236.3 (3)O17—H1o17—H1o19x56 (4)
P1—O11—O635.1 (3)O17—H1o17—H2o21vi129 (7)
P1—O11—O12176.0 (5)O17—H1o17—H2o1737 (3)
P1—O11—O1333.7 (3)O17—H1o17—H1o23xii124 (7)
P1—O11—O14100.1 (4)O17—H1o17—H2o23xii150 (8)
P1—O11—O15iii117.3 (4)O21vi—H1o17—O23xii85 (2)
P1—O11—O19i109.1 (5)O21vi—H1o17—H1o19x141 (4)
P1—O11—H2o19i116 (3)O21vi—H1o17—H2o21vi18.6 (18)
P1—O11—H1o23ii91 (2)O21vi—H1o17—H2o17149 (5)
O2—O11—O656.7 (3)O21vi—H1o17—H1o23xii96 (5)
O2—O11—O12145.4 (3)O21vi—H1o17—H2o23xii68 (3)
O2—O11—O1361.3 (3)O23xii—H1o17—H1o19x97 (4)
O2—O11—O14110.7 (3)O23xii—H1o17—H2o21vi71 (2)
O2—O11—O15iii153.6 (4)O23xii—H1o17—H2o17124 (6)
O2—O11—O19i105.6 (4)O23xii—H1o17—H1o23xii29 (3)
O2—O11—H2o19i108 (3)O23xii—H1o17—H2o23xii19 (3)
O2—O11—H1o23ii60 (2)H1o19x—H1o17—H2o21vi152 (5)
O6—O11—O12147.6 (4)H1o19x—H1o17—H2o1737 (5)
O6—O11—O1360.3 (3)H1o19x—H1o17—H1o23xii71 (4)
O6—O11—O14125.0 (3)H1o19x—H1o17—H2o23xii104 (5)
O6—O11—O15iii102.2 (3)H2o21vi—H1o17—H2o17165 (6)
O6—O11—O19i75.6 (3)H2o21vi—H1o17—H1o23xii89 (4)
O6—O11—H2o19i83 (3)H2o21vi—H1o17—H2o23xii57 (3)
O6—O11—H1o23ii84 (2)H2o17—H1o17—H1o23xii105 (6)
O12—O11—O13142.3 (4)H2o17—H1o17—H2o23xii137 (7)
O12—O11—O1475.9 (3)H1o23xii—H1o17—H2o23xii33 (3)
O12—O11—O15iii60.9 (3)O7—H2o17—O1089 (3)
O12—O11—O19i74.5 (3)O7—H2o17—O12v83 (3)
O12—O11—H2o19i68 (3)O7—H2o17—O1789 (5)
O12—O11—H1o23ii93 (2)O7—H2o17—O19x120 (3)
O13—O11—O1467.3 (3)O7—H2o17—O23xii153 (3)
O13—O11—O15iii95.3 (3)O7—H2o17—H1o19x115 (5)
O13—O11—O19i134.2 (4)O7—H2o17—H2o19x139 (4)
O13—O11—H2o19i142 (3)O7—H2o17—H2o21x55 (2)
O13—O11—H1o23ii121 (2)O7—H2o17—H1o17122 (5)
O14—O11—O15iii66.1 (3)O7—H2o17—H1o23xii154 (4)
O14—O11—O19i143.7 (4)O10—H2o17—O12v80 (3)
O14—O11—H2o19i141 (3)O10—H2o17—O1787 (6)
O14—O11—H1o23ii141.2 (15)O10—H2o17—O19x139 (2)
O15iii—O11—O19i81.3 (3)O10—H2o17—O23xii79 (2)
O15iii—O11—H2o19i83 (3)O10—H2o17—H1o19x151 (4)
O15iii—O11—H1o23ii139.5 (16)O10—H2o17—H2o19x128 (3)
O19i—O11—H2o19i8 (3)O10—H2o17—H2o21x138 (4)
O19i—O11—H1o23ii61.1 (11)O10—H2o17—H1o1772 (5)
H2o19i—O11—H1o23ii58 (3)O10—H2o17—H1o23xii94 (3)
U1—O12—O1i50.2 (2)O12v—H2o17—O17165 (9)
U1—O12—O352.9 (3)O12v—H2o17—O19x75.4 (18)
U1—O12—O1155.0 (3)O12v—H2o17—O23xii117.8 (19)
U1—O12—O15iii57.8 (2)O12v—H2o17—H1o19x86 (4)
U1—O12—H1o16i121 (2)O12v—H2o17—H2o19x86 (3)
U1—O12—H2o19i93.4 (19)O12v—H2o17—H2o21x76 (3)
U1—O12—H1o21ix104 (2)O12v—H2o17—H1o17141 (5)
U1—O12—H2o17i133 (2)O12v—H2o17—H1o23xii123 (4)
O1i—O12—O353.1 (2)O17—H2o17—O19x120 (9)
O1i—O12—O1196.7 (3)O17—H2o17—O23xii67 (5)
O1i—O12—O15iii51.5 (2)O17—H2o17—H1o19x110 (9)
O1i—O12—H1o16i108 (2)O17—H2o17—H2o19x109 (8)
O1i—O12—H2o19i121.6 (19)O17—H2o17—H2o21x109 (5)
O1i—O12—H1o21ix95 (2)O17—H2o17—H1o1738 (5)
O1i—O12—H2o17i83 (2)O17—H2o17—H1o23xii66 (6)
O3—O12—O11102.8 (3)O19x—H2o17—O23xii84 (3)
O3—O12—O15iii98.4 (3)O19x—H2o17—H1o19x13 (3)
O3—O12—H1o16i161 (2)O19x—H2o17—H2o19x19.6 (14)
O3—O12—H2o19i142.1 (17)O19x—H2o17—H2o21x65 (3)
O3—O12—H1o21ix53 (2)O19x—H2o17—H1o17110 (6)
O3—O12—H2o17i97.7 (16)O19x—H2o17—H1o23xii74 (4)
O11—O12—O15iii61.7 (3)O23xii—H2o17—H1o19x85 (5)
O11—O12—H1o16i82 (2)O23xii—H2o17—H2o19x64 (2)
O11—O12—H2o19i39.7 (18)O23xii—H2o17—H2o21x142 (5)
O11—O12—H1o21ix134 (2)O23xii—H2o17—H1o1732 (4)
O11—O12—H2o17i154.4 (16)O23xii—H2o17—H1o23xii15 (2)
O15iii—O12—H1o16i67 (2)H1o19x—H2o17—H2o19x25 (4)
O15iii—O12—H2o19i71.0 (18)H1o19x—H2o17—H2o21x60 (5)
O15iii—O12—H1o21ix146 (2)H1o19x—H2o17—H1o17106 (8)
O15iii—O12—H2o17i100 (2)H1o19x—H2o17—H1o23xii73 (6)
H1o16i—O12—H2o19i47 (2)H2o19x—H2o17—H2o21x84 (4)
H1o16i—O12—H1o21ix136 (3)H2o19x—H2o17—H1o1791 (6)
H1o16i—O12—H2o17i74 (3)H2o19x—H2o17—H1o23xii54 (3)
H2o19i—O12—H1o21ix142 (3)H2o21x—H2o17—H1o17142 (6)
H2o19i—O12—H2o17i120 (2)H2o21x—H2o17—H1o23xii127 (5)
H1o21ix—O12—H2o17i71 (3)H1o17—H2o17—H1o23xii37 (5)
Ca1iii—O13—Ca2105.0 (3)Ca2vi—H1o20—O4vii104 (3)
Ca1iii—O13—P1129.6 (4)Ca2vi—H1o20—O8xi141 (4)
Ca1iii—O13—O2148.8 (4)Ca2vi—H1o20—O16vi51.1 (14)
Ca1iii—O13—O5ii119.8 (3)Ca2vi—H1o20—O18xi161 (3)
Ca1iii—O13—O698.0 (3)Ca2vi—H1o20—O2071 (5)
Ca1iii—O13—O11126.0 (3)Ca2vi—H1o20—O21vi51.0 (15)
Ca1iii—O13—O20iii54.6 (2)Ca2vi—H1o20—H2o16vi43 (3)
Ca2—O13—P1124.5 (4)Ca2vi—H1o20—H1o21vi63 (3)
Ca2—O13—O2101.1 (3)Ca2vi—H1o20—H1o22xi99 (3)
Ca2—O13—O5ii58.4 (2)Ca2vi—H1o20—H2o2086 (5)
Ca2—O13—O6156.6 (4)O4vii—H1o20—O8xi70 (2)
Ca2—O13—O11108.4 (3)O4vii—H1o20—O16vi148 (3)
Ca2—O13—O20iii56.9 (2)O4vii—H1o20—O18xi84 (2)
P1—O13—O234.2 (3)O4vii—H1o20—O2082 (5)
P1—O13—O5ii95.8 (4)O4vii—H1o20—O21vi60.9 (18)
P1—O13—O634.5 (3)O4vii—H1o20—H2o16vi141 (5)
P1—O13—O1133.5 (3)O4vii—H1o20—H1o21vi64 (3)
P1—O13—O20iii149.4 (5)O4vii—H1o20—H1o22xi145 (3)
O2—O13—O5ii61.7 (3)O4vii—H1o20—H2o20111 (5)
O2—O13—O655.7 (3)O8xi—H1o20—O16vi115 (3)
O2—O13—O1158.7 (3)O8xi—H1o20—O18xi58.1 (18)
O2—O13—O20iii156.2 (4)O8xi—H1o20—O20141 (7)
O5ii—O13—O6105.9 (4)O8xi—H1o20—O21vi97 (3)
O5ii—O13—O11113.7 (3)O8xi—H1o20—H2o16vi118 (5)
O5ii—O13—O20iii106.5 (3)O8xi—H1o20—H1o21vi81 (3)
O6—O13—O1159.5 (3)O8xi—H1o20—H1o22xi107 (4)
O6—O13—O20iii145.3 (4)O8xi—H1o20—H2o20133 (6)
O11—O13—O20iii116.3 (4)O16vi—H1o20—O18xi126 (3)
U1—O14—Ca2136.7 (4)O16vi—H1o20—O20103 (6)
U1—O14—O1i50.8 (2)O16vi—H1o20—O21vi88 (2)
U1—O14—O349.5 (2)O16vi—H1o20—H2o16vi8 (3)
U1—O14—O8ii57.9 (2)O16vi—H1o20—H1o21vi85 (3)
U1—O14—O1153.1 (2)O16vi—H1o20—H1o22xi66 (2)
U1—O14—O20iii145.6 (4)O16vi—H1o20—H2o2088 (5)
U1—O14—H2o16164.4 (19)O18xi—H1o20—O2094 (5)
U1—O14—H1o22xii127.8 (19)O18xi—H1o20—O21vi143 (3)
U1—O14—H2o20iii139 (3)O18xi—H1o20—H2o16vi134 (5)
Ca2—O14—O1i170.6 (3)O18xi—H1o20—H1o21vi135 (4)
Ca2—O14—O3136.0 (3)O18xi—H1o20—H1o22xi67 (3)
Ca2—O14—O8ii91.4 (3)O18xi—H1o20—H2o2075 (5)
Ca2—O14—O1188.2 (3)O20—H1o20—O21vi91 (6)
Ca2—O14—O20iii54.2 (2)O20—H1o20—H2o16vi101 (6)
Ca2—O14—H2o1638.7 (18)O20—H1o20—H1o21vi111 (6)
Ca2—O14—H1o22xii95.5 (19)O20—H1o20—H1o22xi82 (6)
Ca2—O14—H2o20iii71.0 (19)O20—H1o20—H2o2037 (4)
O1i—O14—O352.0 (2)O21vi—H1o20—H2o16vi80 (4)
O1i—O14—O8ii98.1 (3)O21vi—H1o20—H1o21vi20 (2)
O1i—O14—O1195.7 (3)O21vi—H1o20—H1o22xi150 (4)
O1i—O14—O20iii116.3 (3)O21vi—H1o20—H2o20125 (5)
O1i—O14—H2o16136.3 (18)H2o16vi—H1o20—H1o21vi79 (4)
O1i—O14—H1o22xii77.2 (18)H2o16vi—H1o20—H1o22xi73 (4)
O1i—O14—H2o20iii99.5 (19)H2o16vi—H1o20—H2o2091 (6)
O3—O14—O8ii53.2 (3)H1o21vi—H1o20—H1o22xi151 (4)
O3—O14—O1197.9 (3)H1o21vi—H1o20—H2o20144 (6)
O3—O14—O20iii154.9 (4)H1o22xi—H1o20—H2o2045 (4)
O3—O14—H2o16120.3 (18)O14vi—H2o20—O18xi155.4 (16)
O3—O14—H1o22xii97 (2)O14vi—H2o20—O20111 (7)
O3—O14—H2o20iii139.2 (10)O14vi—H2o20—O22xi84 (2)
O8ii—O14—O1166.4 (3)O14vi—H2o20—H2o16vi71 (4)
O8ii—O14—O20iii145.5 (4)O14vi—H2o20—H1o22xi80 (4)
O8ii—O14—H2o16106.9 (19)O14vi—H2o20—H2o22xi72 (3)
O8ii—O14—H1o22xii139.3 (16)O14vi—H2o20—H1o20121 (6)
O8ii—O14—H2o20iii162 (2)O18xi—H2o20—O2092 (6)
O11—O14—O20iii105.8 (3)O18xi—H2o20—O22xi72 (2)
O11—O14—H2o16126.9 (18)O18xi—H2o20—H2o16vi112 (4)
O11—O14—H1o22xii153.7 (12)O18xi—H2o20—H1o22xi77 (4)
O11—O14—H2o20iii115.4 (17)O18xi—H2o20—H2o22xi84 (2)
O20iii—O14—H2o1649.1 (18)O18xi—H2o20—H1o2073 (5)
O20iii—O14—H1o22xii58 (2)O20—H2o20—O22xi159 (8)
O20iii—O14—H2o20iii17.8 (13)O20—H2o20—H2o16vi70 (7)
H2o16—O14—H1o22xii60 (2)O20—H2o20—H1o22xi139 (9)
H2o16—O14—H2o20iii57 (3)O20—H2o20—H2o22xi165 (8)
H1o22xii—O14—H2o20iii43 (2)O20—H2o20—H1o2037 (5)
U1vi—O15—U3iv105.1 (3)O22xi—H2o20—H2o16vi103 (4)
U1vi—O15—P2141.6 (5)O22xi—H2o20—H1o22xi25.7 (16)
U1vi—O15—O1iv53.1 (2)O22xi—H2o20—H2o22xi12 (2)
U1vi—O15—O8166.9 (4)O22xi—H2o20—H1o20122 (6)
U1vi—O15—O9126.4 (4)H2o16vi—H2o20—H1o22xi78 (4)
U1vi—O15—O10iv98.1 (3)H2o16vi—H2o20—H2o22xi99 (4)
U1vi—O15—O11vi49.5 (2)H2o16vi—H2o20—H1o2053 (5)
U1vi—O15—O12vi36.53 (18)H1o22xi—H2o20—H2o22xi27 (3)
U1vi—O15—O18112.7 (4)H1o22xi—H2o20—H1o20102 (6)
U3iv—O15—P2107.1 (4)H2o22xi—H2o20—H1o20129 (5)
U3iv—O15—O1iv52.8 (2)O2iv—H1o23—O11iv55.6 (19)
U3iv—O15—O869.6 (3)O2iv—H1o23—O16xiv150 (4)
U3iv—O15—O9127.4 (4)O2iv—H1o23—O17xiv121 (5)
U3iv—O15—O10iv38.06 (19)O2iv—H1o23—O19xvi102 (3)
U3iv—O15—O11vi154.0 (4)O2iv—H1o23—O2398 (5)
U3iv—O15—O12vi99.7 (3)O2iv—H1o23—H1o19xvi108 (4)
U3iv—O15—O18112.2 (4)O2iv—H1o23—H2o19xvi92 (4)
P2—O15—O1iv146.2 (5)O2iv—H1o23—H1o22110 (3)
P2—O15—O838.5 (3)O2iv—H1o23—H1o17xiv128 (8)
P2—O15—O934.9 (3)O2iv—H1o23—H2o17xiv134 (4)
P2—O15—O10iv120.2 (5)O2iv—H1o23—H2o2362 (5)
P2—O15—O11vi98.5 (4)O11iv—H1o23—O16xiv101 (4)
P2—O15—O12vi149.0 (5)O11iv—H1o23—O17xiv128 (2)
P2—O15—O1834.2 (3)O11iv—H1o23—O19xvi61.0 (17)
O1iv—O15—O8118.7 (4)O11iv—H1o23—O23108 (7)
O1iv—O15—O9178.8 (4)O11iv—H1o23—H1o19xvi78 (3)
O1iv—O15—O10iv63.5 (3)O11iv—H1o23—H2o19xvi44 (3)
O1iv—O15—O11vi102.6 (3)O11iv—H1o23—H1o22122 (4)
O1iv—O15—O12vi64.1 (3)O11iv—H1o23—H1o17xiv150 (3)
O1iv—O15—O18121.2 (4)O11iv—H1o23—H2o17xiv114 (3)
O8—O15—O962.0 (3)O11iv—H1o23—H2o2393 (6)
O8—O15—O10iv84.9 (4)O16xiv—H1o23—O17xiv87 (3)
O8—O15—O11vi136.4 (4)O16xiv—H1o23—O19xvi76 (2)
O8—O15—O12vi154.1 (4)O16xiv—H1o23—O2371 (6)
O8—O15—O1860.9 (3)O16xiv—H1o23—H1o19xvi80 (3)
O9—O15—O10iv115.9 (4)O16xiv—H1o23—H2o19xvi77 (4)
O9—O15—O11vi77.1 (3)O16xiv—H1o23—H1o2265 (3)
O9—O15—O12vi114.8 (4)O16xiv—H1o23—H1o17xiv82 (6)
O9—O15—O1859.9 (3)O16xiv—H1o23—H2o17xiv69 (3)
O10iv—O15—O11vi128.9 (3)O16xiv—H1o23—H2o23107 (6)
O10iv—O15—O12vi73.5 (3)O17xiv—H1o23—O19xvi71.6 (13)
O10iv—O15—O18143.8 (4)O17xiv—H1o23—O23123 (8)
O11vi—O15—O12vi57.4 (3)O17xiv—H1o23—H1o19xvi53 (2)
O11vi—O15—O1886.6 (3)O17xiv—H1o23—H2o19xvi90 (3)
O12vi—O15—O18142.5 (4)O17xiv—H1o23—H1o22108 (4)
Ca2—O16—O10121.1 (4)O17xiv—H1o23—H1o17xiv22 (2)
Ca2—O16—O1955.0 (3)O17xiv—H1o23—H2o17xiv23.7 (16)
Ca2—O16—O23xii126.3 (5)O17xiv—H1o23—H2o23134 (8)
Ca2—O16—H1o1681 (5)O19xvi—H1o23—O23142 (9)
Ca2—O16—H2o1644 (6)O19xvi—H1o23—H1o19xvi19 (2)
Ca2—O16—H1o20iii60.5 (17)O19xvi—H1o23—H2o19xvi19 (2)
Ca2—O16—H1o23xii142.6 (15)O19xvi—H1o23—H1o22141 (5)
O10—O16—O19130.6 (4)O19xvi—H1o23—H1o17xiv91 (3)
O10—O16—O23xii81.5 (4)O19xvi—H1o23—H2o17xiv54 (2)
O10—O16—H1o16110 (6)O19xvi—H1o23—H2o23154 (7)
O10—O16—H2o16137 (6)O23—H1o23—H1o19xvi151 (9)
O10—O16—H1o20iii127.1 (17)O23—H1o23—H2o19xvi131 (10)
O10—O16—H1o23xii80 (2)O23—H1o23—H1o2215 (5)
O19—O16—O23xii144.9 (5)O23—H1o23—H1o17xiv102 (8)
O19—O16—H1o1628 (5)O23—H1o23—H2o17xiv126 (8)
O19—O16—H2o1679 (5)O23—H1o23—H2o2337 (5)
O19—O16—H1o20iii95.4 (17)H1o19xvi—H1o23—H2o19xvi37 (3)
O19—O16—H1o23xii136.4 (18)H1o19xvi—H1o23—H1o22142 (5)
O23xii—O16—H1o16141 (6)H1o19xvi—H1o23—H1o17xiv73 (3)
O23xii—O16—H2o1685 (6)H1o19xvi—H1o23—H2o17xiv37 (3)
O23xii—O16—H1o20iii67.2 (17)H1o19xvi—H1o23—H2o23169 (7)
O23xii—O16—H1o23xii19.0 (8)H2o19xvi—H1o23—H1o22136 (6)
H1o16—O16—H2o16106 (7)H2o19xvi—H1o23—H1o17xiv109 (4)
H1o16—O16—H1o20iii121 (6)H2o19xvi—H1o23—H2o17xiv72 (3)
H1o16—O16—H1o23xii123 (6)H2o19xvi—H1o23—H2o23135 (8)
H2o16—O16—H1o20iii18 (6)H1o22—H1o23—H1o17xiv87 (5)
H2o16—O16—H1o23xii99 (6)H1o22—H1o23—H2o17xiv111 (5)
H1o20iii—O16—H1o23xii82 (2)H1o22—H1o23—H2o2348 (5)
Ca1—O17—O4vii55.2 (2)H1o17xiv—H1o23—H2o17xiv38 (3)
Ca1—O17—O759.9 (3)H1o17xiv—H1o23—H2o23115 (7)
Ca1—O17—O10110.8 (4)H2o17xiv—H1o23—H2o23153 (7)
Ca1—O17—O19x129.8 (4)O2iv—H2o23—O780 (3)
Ca1—O17—O23xii134.8 (4)O2iv—H2o23—O22159 (4)
Ca1—O17—H1o19x124 (2)O2iv—H2o23—O23120 (6)
Ca1—O17—H1o17124 (5)O2iv—H2o23—H2o21x106 (5)
Ca1—O17—H2o17130 (5)O2iv—H2o23—H1o22177 (4)
Ca1—O17—H1o23xii135 (3)O2iv—H2o23—H1o17xiv100 (4)
O4vii—O17—O7106.9 (4)O2iv—H2o23—H1o2384 (5)
O4vii—O17—O10147.3 (4)O7—H2o23—O2279 (2)
O4vii—O17—O19x98.7 (3)O7—H2o23—O23157 (8)
O4vii—O17—O23xii90.5 (3)O7—H2o23—H2o21x63 (3)
O4vii—O17—H1o19x96 (2)O7—H2o23—H1o2297 (3)
O4vii—O17—H1o1792 (6)O7—H2o23—H1o17xiv130 (5)
O4vii—O17—H2o17139 (6)O7—H2o23—H1o23152 (8)
O4vii—O17—H1o23xii83 (3)O22—H2o23—O2382 (6)
O7—O17—O1083.7 (3)O22—H2o23—H2o21x65 (3)
O7—O17—O19x98.2 (4)O22—H2o23—H1o2218.6 (19)
O7—O17—O23xii162.6 (4)O22—H2o23—H1o17xiv95 (4)
O7—O17—H1o19x94 (3)O22—H2o23—H1o23116 (6)
O7—O17—H1o17154 (6)O23—H2o23—H2o21x99 (8)
O7—O17—H2o1772 (5)O23—H2o23—H1o2264 (5)
O7—O17—H1o23xii162 (3)O23—H2o23—H1o17xiv41 (5)
O10—O17—O19x110.5 (4)O23—H2o23—H1o2338 (5)
O10—O17—O23xii81.6 (3)H2o21x—H2o23—H1o2275 (5)
O10—O17—H1o19x114 (2)H2o21x—H2o23—H1o17xiv70 (4)
O10—O17—H1o1771 (6)H2o21x—H2o23—H1o23100 (7)
O10—O17—H2o1773 (6)H1o22—H2o23—H1o17xiv83 (4)
O10—O17—H1o23xii96 (3)H1o22—H2o23—H1o23100 (6)
O19x—O17—O23xii78.4 (3)H1o17xiv—H2o23—H1o2332 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+3/2, y+1/2, z; (viii) x+3/2, y1/2, z; (ix) x+1, y1/2, z+1/2; (x) x+1, y+1, z+1; (xi) x+2, y+1, z+1; (xii) x+3/2, y+1, z1/2; (xiii) x1/2, y, z+3/2; (xiv) x+3/2, y+1, z+1/2; (xv) x+1, y+1/2, z+1/2; (xvi) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H1o16···O190.95 (8)1.98 (9)2.762 (14)139 (7)
O16—H2o16···O20iii0.94 (9)2.39 (8)3.248 (14)151 (7)
O19—H1o19···O17x0.95 (8)2.02 (9)2.944 (13)162 (8)
O19—H2o19···O11v0.95 (7)1.92 (8)2.809 (10)155 (8)
O21—H1o21···O12xv0.95 (9)2.37 (10)3.241 (12)153 (7)
O21—H2o21···O5ii0.95 (9)2.41 (11)2.892 (12)111 (8)
O22—H1o22···O230.94 (5)1.90 (8)2.700 (13)141 (9)
O22—H2o22···O5vii0.95 (8)2.11 (8)3.033 (12)162 (8)
O17—H1o17···O23xii0.95 (5)1.89 (7)2.763 (13)153 (7)
O17—H2o17···O19x0.94 (7)2.36 (9)2.944 (13)120 (9)
O20—H1o20···O8xi0.94 (8)2.34 (8)3.123 (11)141 (7)
O20—H2o20···O14vi0.94 (6)2.39 (10)2.870 (11)111 (7)
O20—H2o20···O22xi0.94 (6)2.18 (4)3.074 (14)159 (8)
O23—H1o23···O17xiv0.95 (6)2.13 (9)2.763 (13)123 (8)
O23—H2o23···O70.94 (9)2.38 (9)3.268 (12)157 (8)
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+3/2, y+1/2, z; (x) x+1, y+1, z+1; (xi) x+2, y+1, z+1; (xii) x+3/2, y+1, z1/2; (xiv) x+3/2, y+1, z+1/2; (xv) x+1, y+1/2, z+1/2.
 

Acknowledgements

Stephan Wolfsried (Waiblingen, Germany) is acknowledged for providing us with the microphotography of phurcalite specimen.

Funding information

The following funding is acknowledged: this research was supported by the Czech Science Foundation (GACR 20-11949S) (grant No. 20-11949S) to Institute of Physics ASCR, v.v.i.).

References

First citationAstilleros, J. M., Pinto, A. J., Gonçalves, M. A., Sánchez-Pastor, N. & Fernández-Díaz, L. (2013). Environ. Sci. Technol. 47, 2636–2644.  CrossRef CAS PubMed Google Scholar
First citationAtencio, D., Neumann, R., Silva, A. J. G. C. & Mascarenhas, Y. P. (1991). Am. Mineral. 29, 95–105.  CAS Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 278. Oxford University Press.  Google Scholar
First citationBrown, I. D. (2009). Chem. Rev. 109, 6858–6919.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBuck, E. C., Brown, N. R. & Dietz, N. L. (1996). Environ. Sci. Technol. 30, 81–88.  CrossRef CAS Google Scholar
First citationBurns, P. C. (2005). Can. Mineral. 43, 1839–1894.  Web of Science CrossRef CAS Google Scholar
First citationCantrell, K. J., Deutsch, W. J. & Lindberg, M. J. (2011). Environ. Sci. Technol. 45, 1473–1480.  CrossRef CAS PubMed Google Scholar
First citationCatalano, J. G., McKinley, J. P., Zachara, J. M., Heald, S. M., Smith, S. C. & Brown, G. E. Jr (2006). Environ. Sci. Technol. 40, 2517–2524.  CrossRef PubMed CAS Google Scholar
First citationColmenero, F., Bonales, L., Cobos, J. & Timón, V. (2017). J. Phys. Chem. C, 121, 5994–6001.  CrossRef CAS Google Scholar
First citationColmenero, F., Bonales, L. J., Cobos, J. & Timón, V. (2018a). J. Solid State Chem. 253, 249–257.  CrossRef Google Scholar
First citationColmenero, F., Cobos, J. & Timón, V. (2018b). Inorg. Chem. 57, 4470–4481.  CrossRef ICSD CAS PubMed Google Scholar
First citationColmenero, F., Fernández, A. M., Timón, V. & Cobos, J. (2018c). RSC Adv. 8, 24599–24616.  CrossRef CAS Google Scholar
First citationColmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J. & Bonales, L. J. (2019a). RSC Adv. 9, 15323–15334.  CrossRef ICSD CAS Google Scholar
First citationColmenero, F., Plášil, J., Cobos, J., Sejkora, J., Timón, V., Čejka, J., Fernández, A. M. & Petříček, V. (2019c). RSC Adv. 9, 40708–40726.  CrossRef ICSD CAS Google Scholar
First citationColmenero, F., Plášil, J. & Sejkora, J. (2019b). Dalton Trans. 48, 16722–16736.  CrossRef ICSD CAS PubMed Google Scholar
First citationDal Bo, F., Hatert, F. & Philippo, S. (2017). J. Geosci. pp. 87–95.  CrossRef Google Scholar
First citationDemartin, F., Diella, V., Donzelli, S., Gramaccioli, C. M. & Pilati, T. (1991). Acta Cryst. B47, 439–446.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationFinch, R. J. & Murakami, T. (1999). Rev. Mineral. Geochem. 38, 91–179.  CAS Google Scholar
First citationFuller, C. C., Bargar, J. R., Davis, J. A. & Piana, M. J. (2002). Environ. Sci. Technol. 36, 158–165.  CrossRef PubMed CAS Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGhazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 10058–10063.  Web of Science CrossRef ICSD CAS Google Scholar
First citationGhazisaeed, S., Majzlan, J., Plášil, J. & Kiefer, B. (2018). J. Appl. Cryst. 51, 1116–1124.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhazisaeed, S., Minuddin, M., Nakotte, H. & Kiefer, B. (2020). J. Appl. Cryst. 53, 117–126.  CrossRef CAS IUCr Journals Google Scholar
First citationGöb, S., Guhring, J. E., Bau, M. & Markl, G. (2013). Am. Mineral. 98, 530–548.  Google Scholar
First citationHawthorne, F. C. (2012). Phys. Chem. Miner. 39, 841–874.  Web of Science CrossRef CAS Google Scholar
First citationHawthorne, F. C. (2015). Am. Mineral. 100, 696–713.  Web of Science CrossRef Google Scholar
First citationIlton, E. S., Zachara, J. M., Moore, D. A., McKinley, J. P., Eckberg, A. D., Cahill, C. L. & Felmy, A. R. (2010). Environ. Sci. Technol. 44, 7521–7526.  CrossRef CAS PubMed Google Scholar
First citationJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. (1983). J. Chem. Phys. 79, 926–935.  CrossRef CAS Web of Science Google Scholar
First citationKrivovichev, S. V. & Burns, P. C. (2007). In Structural Chemistry of Inorganic Actinide Compounds, edited by S. V. Krivovichev, P. C. Burns and I. G. Tananaev, pp. 95–182. Amsterdam: Elsevier.  Google Scholar
First citationKrivovichev, S. V. & Plášil, J. (2013). Mineralogy and crystallography of uranium. In Uranium, from cradle to grave. MAC Short Course series, Vol. 43, edited by P. C. Burns & G. E. Sigmon, pp. 15–199. Mineralogical Association of Canada.  Google Scholar
First citationLussier, A. J., Lopez, R. A. K. & Burns, P. C. (2016). Can. Mineral. 54, 177–283.  Web of Science CrossRef CAS Google Scholar
First citationMaher, K., Bargar, J. R. & Brown, G. E. Jr (2013). Inorg. Chem. 52, 3510–3532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMills, S. J., Birch, W. D., Kolitsch, U., Mumme, W. G. & Grey, I. E. (2008). Am. Mineral. 93, 691–697.  CrossRef ICSD CAS Google Scholar
First citationMurakami, T., Ohnuki, T., Isobe, H. & Sato, T. (1997). Am. Mineral. 82, 888–889.  CrossRef CAS Google Scholar
First citationPekov, I. V., Levitskiy, V. V., Krivovichev, S. V., Zolotarev, A. A., Bryzgalov, I. A., Zadov, A. E. & Chukanov, N. V. (2012). Eur. J. Mineral. 24, 913–922.  CrossRef ICSD CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPiret, P. & Declercq, J.-P. (1983). Bull. Minéral. 106, 383–389.  CAS Google Scholar
First citationPiret, P., Deliens, M. & Piret-Meunier, J. (1988). Bull. Minéral. 111, 443–449.  CAS Google Scholar
First citationPlášil, J., Sejkora, J., Čejka, J., Novák, M., Vinals, J., Ondruš, P., Veselovský, F., Kacha, P., Jehlička, J., Golia, V. & Hloušek, J. (2010). Can. Mineral. 48, 335–350.  Google Scholar
First citationPlášil, J. (2014). J. Geosci. 59, 99–114.  Google Scholar
First citationPlášil, J., Kampf, A. R., Sejkora, J., Čejka, J., Škoda, R. & Tvrdý, J. (2018). J. Geosci. 63, 265–276.  Google Scholar
First citationPlášil, J., Sejkora, J., Čejka, J., Škoda, R. & Goliáš, V. (2009). J. Geosci. 54, 15–56.  Google Scholar
First citationPlášil, J., Sejkora, J., Ondruš, P., Veselovský, F., Beran, P. & Goliáš, V. (2006). J. Czech. Geol. Soc. 51, 149–158.  Google Scholar
First citationRigaku (2019). CrysAlis CCD and CrysAlis RED. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.  Google Scholar
First citationRoh, Y., Lee, S. R., Choi, S. K., Elless, M. P. & Lee, S. Y. (2000). Soil Sediment. Contam. 9, 463–486.  CrossRef CAS Google Scholar
First citationSchindler, M. & Hawthorne, F. C. (2008). Can. Mineral. 46, 467–501.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteciuk, G., Ghazisaeed, S., Kiefer, B. & Plášil, J. (2019). RSC Adv. 9, 19657–19661.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds