research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

High-pressure preference for reduced water content in porous zinc aspartate hydrates

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
*Correspondence e-mail: katran@amu.edu.pl

Edited by J. Lipkowski, Polish Academy of Sciences, Poland (Received 8 January 2020; accepted 8 July 2020; online 28 August 2020)

The zinc aspartate (ZnAsp2) complex, a common dietary supplement, preferentially crystallizes as the dihydrate (ZnAsp2·2H2O) from aqueous solution. Under normal conditions the dihydrate easily transforms into the sesquihydrate (ZnAsp2·1.5H2O). The dihydrate crystal structure is triclinic, space group P1, and the sesquihydrate is monoclinic, space group C2/c. However, their structures are closely related and similarly consist of zinc aspartate ribbons parallel to pores accommodating water molecules. These porous structures can breathe water molecules in and out depending on the temperature and air humidity. High pressure above 50 MPa favours the sesquihydrate, as shown by recrystallizations under pressure and compressibility measured by single-crystal X-ray diffraction up to 4 GPa. This preference is explained by the reduced volume of the sesquihydrate and water compressed separately, compared with the dihydrate. The sesquihydrate undergoes an isostructural phase transition when the voids collapse at 0.8 GPa, whereas no phase transitions occur in the dihydrate, because its pores are supported by increased water content.

1. Introduction

Zinc plays a key role in the human body as a cofactor of numerous enzymes and it is therefore often included in dietary supplements and medicines for various illnesses (Shankar & Prasad, 1998[Shankar, A. H. & Prasad, A. S. (1998). Am. J. Clin. Nutr. 68, 447S-463S.]; Haase et al., 2008[Haase, H., Overbeck, S. & Rink, L. (2008). Exp. Gerontol. 43, 394-408.]; Roohani et al., 2013[Roohani, N., Hurrell, R., Kelishadi, R. & Schulin, R. (2013). J. Res. Med. Sci. 18, 144-157.]; Azeem et al., 2019[Azeem, M., Asif, M., Gui, D., Dong, L., Pei, C., Lu, P. & Li, W. (2019). RSC Adv. 9, 13153-13158.]). Zinc aspartate hydrate (ZnAsp2·nH2O, Asp denotes the aspartate anion; Fig. 1[link]) is often used as a source of zinc cations and aspartate amino acids. This racemic complex preferentially crystallizes in the form of hydrates but their structures have not been determined so far.

[Figure 1]
Figure 1
The structural formula of zinc aspartate hydrate, ZnAsp2·nH2O.

We have established that crystallization from an aqueous solution under normal conditions yields the dihydrate, ZnAsp2·2H2O, whereas high-pressure crystallization yields the sesquihydrate, ZnAsp2·1.5H2O. The structures of both these hydrates are determined here, and the mechanism favouring reduced water content at high pressure is described.

The effect of high pressure on the hydration of various organic compounds, such as methane (Kevenvolden, 1995[Kevenvolden, K. A. (1995). Org. Geochem. 23, 997-1008.]), thio­urea (Figuiere et al., 1975[Figuiere, P., Ghelfenstein, M. & Szwarc, H. (1975). Chem. Phys. Lett. 33, 99-103.]; Tomkowiak et al., 2013[Tomkowiak, H., Olejniczak, A. & Katrusiak, A. (2013). Cryst. Growth Des. 13, 121-125.]; Tomkowiak & Katrusiak, 2018[Tomkowiak, H. & Katrusiak, A. (2018). J. Phys. Chem. C, 122, 5064-5070.]), 1,4-di­aza­bicyclo[2.2.2]octane hydro­iodide (dabcoHI, Olejniczak & Katrusiak, 2010[Olejniczak, A. & Katrusiak, A. (2010). CrystEngComm, 12, 2528-2532.]), 1,4-di­aza­bicyclo[2.2.2]octane dibromide (dabco2HBr, Andrzejewski et al., 2011[Andrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 4892-4899.]), 5,6-di­methyl­benzimidazole (Zieliński & Katrusiak, 2015[Zieliński, W. & Katrusiak, A. (2015). CrystEngComm, 17, 5468-5473.]) and 4,4′-bipyrid­inium perchlorate (Anioła & Katrusiak, 2017[Anioła, M. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 3134-3141.]), and minerals (Van Valkenburg et al., 1971[Van Valkenburg, A., Mao, H. K. & Bell, P. M. (1971). Carnegie Institution Geophysical Laboratory, Annual Report of the Director, pp. 233-237.]), is well documented in the literature. However, in most cases high pressure increases the water content in a crystal structure, and exceptions are rare. For example, the hydrate Y2(C2O4)3·10H2O reduces its water content at 1 GPa to Y2(C2O4)3·6H2O (Zakharov et al., 2017[Zakharov, B. A., Gribov, P. A., Matvienko, A. A. & Boldyreva, E. V. (2017). Z. Kristallogr. 232, 751-757.]), the dehydration of phosphatidylinositol bilayers was postulated above 0.7 GPa based on IR spectroscopy (Carrier & Wong, 1996[Carrier, D. & Wong, P. T. T. (1996). Chem. Phys. Lipids, 83, 141-152.]), and the decomposition of orthoboric acid with the release of water at about 2 GPa was reported by Kuznetsov et al. (2006[Kuznetsov, A. Y., Pereira, Altair, S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., Pattison, P. & Guignot, N. (2006). J. Phys. Chem. B, 110, 13858-13865.]). We also noted that pressures above 1 GPa prevent the formation of hydrates of thio­urea (Figuiere et al., 1975[Figuiere, P., Ghelfenstein, M. & Szwarc, H. (1975). Chem. Phys. Lett. 33, 99-103.]; Tomkowiak et al., 2013[Tomkowiak, H., Olejniczak, A. & Katrusiak, A. (2013). Cryst. Growth Des. 13, 121-125.]; Tomkowiak & Katrusiak, 2018[Tomkowiak, H. & Katrusiak, A. (2018). J. Phys. Chem. C, 122, 5064-5070.]) and at pressures above 8 GPa no methane hydrates are formed (Kevenvolden, 1995[Kevenvolden, K. A. (1995). Org. Geochem. 23, 997-1008.]). Presently, we have established that the porous crystals of ZnAsp2·nH2O display structural features connected to their water content. These features can be conveniently studied and modelled for this compound. We show that sesquihydrate ZnAsp2·nH2O can be employed as an internal component (in tablets) to protect active pharmaceutical ingredients (APIs) from the effects of humidity.

High-pressure studies on APIs increased the number of efficient methods for obtaining new polymorphs (Zakharov et al., 2016a[Zakharov, B. A., Goryainov, S. V. & Boldyreva, E. V. (2016a). CrystEngComm, 18, 5423-5428.],b[Zakharov, B. A., Seryotkin, Y. V., Tumanov, N. A., Paliwoda, D., Hanfland, M., Kurnosov, A. V. & Boldyreva, E. V. (2016b). RSC Adv. 6, 92629-92637.]; Neumann et al., 2015[Neumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & Grassmann, O. (2015). Nat. Commun. 6, 7793-1-7.]; Boldyreva et al., 2002[Boldyreva, E. V., Shakhtshneider, T. P., Ahsbahs, H., Sowa, H. & Uchtmann, H. (2002). J. Therm. Anal. Calorim. 68, 437-452.]; Boldyreva, 2003[Boldyreva, E. V. (2003). J. Mol. Struct. 647, 159-179.]; Patyk-Kaźmierczak & Kaźmierczak, 2020[Patyk-Kaźmierczak, E. & Kaźmierczak, M. (2020). Acta Cryst. B76, 56-64.]; Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Oswald et al., 2010[Oswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). CrystEngComm, 12, 2533-2540.]) and solvates (Fabbiani et al., 2003[Fabbiani, F. P. A., Allan, D. R., Dawson, A., David, W. I. F., McGregor, P. A., Oswald, I. D. H., Parsons, S. & Pulham, C. R. (2003). Chem. Commun. 9, 3004-3005.]; 2014[Fabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817-1819.]). Solvated APIs can be sensitive to the pressure employed in the process of formulation, for example in pressing tablets. High-pressure studies also provide a broader perspective for understanding the thermodynamic transformations of APIs.

2. Experimental

We performed high-pressure experiments either by gradually compressing a single crystal in a diamond anvil cell (DAC), or by high-pressure recrystallization and growing single crystals in isothermal and isochoric conditions from aqueous solutions in situ in the DAC. Experimental parameters and crystal data are listed in Table 1, and in Tables S1 and S2 in the supporting information. High-pressure experiments were performed in a Merrill–Bassett DAC (Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]), modified by mounting the anvils directly on steel backing plates with conical windows (Katrusiak, 2008[Katrusiak, A. (2008). Acta Cryst. A. 64, 135-148.]). The form of the crystals grown was determined by single-crystal X-ray diffraction (Table 1, and Tables S1 and S2 in the supporting information). All isochoric high-pressure recrystallizations yielded the sesquihydrate, ZnAsp2·1.5H2O. Its growth process is illustrated in Fig. 2[link] (see also Fig. S1 in the supporting information).

[Figure 2]
Figure 2
The stages of ZnAsp2·1.5H2O single-crystal growth from aqueous solution under isochoric conditions in the DAC chamber. (a) Spontaneous powder precipitation at 433 K, and one seed at (b) 443 K, (c) 343 K and (d) 0.49 GPa/296 K. The ruby chip for pressure calibration lies near the middle of the chamber.

The sesquihydrate could be recovered from the DAC and no visible changes occurred to the samples exposed to air for weeks. On the other hand, the initially crystallized dihydrate powder kept in a thermally closed plastic bag for two months fully transformed into the sesquihydrate. This indicates that the dihydrate is stable only when submerged in water and in highly humid environments.

The compression of ZnAsp2·1.5H2O and ZnAsp2·2H2O crystals was determined for the samples mounted in the DAC. The gasket was made of 0.2 mm thick Inconel foil and the initial diameter of the spark-eroded hole was 0.45 mm. Glycerine was used as a hydro­static medium. The pressure in the DAC was calibrated before and after each diffraction measurement by the ruby fluorescence method (Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]; Mao et al., 1986[Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]) using a Photon Control Inc. spectrometer of enhanced resolution, affording an accuracy of 0.02 GPa.

Single-crystal high-pressure data were measured on a KUMA KM4 CCD diffractometer according to the procedure described previously (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallographic Experiments with a CCD Detector. High-Pressure Crystallography, NATO Science Series, Vol. 140, edited by A. Katrusiak & P. McMillan, pp. 101-112. Dordrecht: Springer.]). The CrysAlisPro software (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Oxford Diffraction, Abingdon, UK.]) was used for diffraction data collection and preliminary reduction. Reflections that overlapped with diamond reflections were eliminated, and corrections for the DAC and sample absorption and for beam shadowing by the gasket were applied. Using OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), the crystal structures were solved by intrinsic phasing with SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst A71, 3-8.]) and refined by least-squares with the program SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The ambient-pressure structures were used as the starting models for refinement of the high-pressure data. Anisotropic displacement factors were generally applied for non-hydrogen atoms. C- and N-bound H atoms were located from the molecular geometry (assuming distances of C—H = 0.97 Å for methyl­ene, C—H = 0.98 Å for methine and N—H = 0.89 Å for NH3). The water H atoms were located from difference Fourier maps and then the positions of H2O were refined as rigid units. The Uiso values of the H atoms were constrained to 1.2 times the Ueq of their carrier atoms. Structural drawings were prepared using the program Mercury CSD 3.3 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). A total of 26 different data sets were collected, at 15 different pressures for the sesquihydrate and 11 different pressures for the dihydrate. The crystal data have been deposited in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) as supplementary publications (CSD 1972145–1972170).

Powder X-ray diffraction (XRPD) patterns were recorded using a Bruker AXS D8 Advance diffractometer, equipped with a sealed X-ray tube, a Johansson monochromator selecting Cu Kα1 radiation (λ = 1.54060 Å) and a LynxEye detector. The samples were gently pressed into a flat round cuvette of about 0.4 cm3 in volume. The cuvette was rotated during the measurements, performed in θ steps of 0.02° and in the θ–2θ mode.

Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses were performed for 18.2 mg of ZnAsp2·2H2O in an N2 atmosphere on a Setsys 1200 Setaram instrument between 293 K and 573 K at a scan speed of 5 K min−1.

3. Results and discussion

The compressed crystals of ZnAsp2·1.5H2O and ZnAsp2·2H2O retain the ambient-pressure monoclinic symmetry of space group C2/c and triclinic symmetry of space group [P {\overline 1}], respectively, up to 4 GPa at least (Table 1[link], Fig. 3[link], Figs. S2 and S3).

Table 1
Selected crystal data for ZnAsp2·1.5H2O and ZnAsp2·2H2O, all at 296 K (see also Tables S1 and S2 in the supporting information)

  ZnAsp2·1.5H2O ZnAsp2·2H2O
Pressure (GPa) 0.0001 3.92 0.0001 4.02
Crystal system Monoclinic Monoclinic Triclinic Triclinic
Space group C2/c C2/c [P {\overline 1}] [P {\overline 1}]
a (Å) 16.2789 (3) 15.550 (3) 8.7873 (3) 8.343 (7)
b (Å) 10.7307 (2) 10.2262 (7) 9.5061 (3) 8.947 (6)
c (Å) 14.5393 (3) 13.966 (1) 9.8114 (3) 9.537 (3)
α (°) 90 90 111.784 (3) 110.02 (4)
β (°) 93.017 (2) 92.62 (3) 105.625 (3) 104.76 (4)
γ (°) 90 90 107.721 (3) 109.16 (7)
V3) 2536.26 (8) 2219 (4) 653.73 (4) 575.2 (7)
Z/Z 4/0.5 4/0.5 1/0.5 1/0.5
Dx (g cm−3) 1.868 2.135 1.857 2.111
[Figure 3]
Figure 3
Unit-cell dimensions of (a) ZnAsp2·1.5H2O (open symbols, dashed lines) and (b) ZnAsp2·2H2O (solid symbols and lines), relative to their values at 296 K/0.1 MPa, as a function of pressure. The magnitudes of the unit-cell parameters, including the angular dimensions, are plotted in Figs. S2 and S3. The vertical dashed line in panel (a) indicates the phase transition in ZnAsp2·1.5H2O (see also Fig. S6). The open black symbols in panel (b) show the volume compression in ZnAsp2·1.5H2O relative to the volume of ZnAsp2·2H2O at 0.1 MPa.

Although seemingly very different (Table 1[link]), the crystal structures of ZnAsp2 dihydrate and sesquihydrate are strikingly similar. Their Bravais lattices can be transformed into one another through the following matrix M:

[\left ( \matrix{ {\bf a}_{\rm m} \cr {\bf b}_{\rm m} \cr {\bf c}_{\rm m} } \right ) = \left ( \matrix{ 1 & 1 & 2 \cr 1 & 1 & 0 \cr {-1} & 1 & 0 \cr } \right ) \left ( \matrix{ {\bf a}_{\rm t} \cr {\bf b}_{\rm t} \cr {\bf c}_{\rm t} } \right ) , \eqno(1)]

where the subscripts m and t refer to the (pseudo)monoclinic C lattice of (ZnAsp2·1.5H2O) and the triclinic P lattice of (ZnAsp2·2H2O), respectively. The reverse matrix M−1 transforms the lattice Cm into Pt:

[\left ( \matrix{ {\bf a}_{\rm t} \cr {\bf b}_{\rm t} \cr {\bf c}_{\rm t} } \right ) = \left ( \matrix{ 0 & 0.5 & {-0.5} \cr 0 & 0.5 & 0.5 \cr 0.5 & {-0.5} & 0 } \right ) \left ( \matrix{ {\bf a}_{\rm m} \cr {\bf b}_{\rm m} \cr {\bf c}_{\rm m} } \right ) . \eqno(2)]

Thus the triclinic P unit cell of ZnAsp2·2H2O at 0.1 MPa can be represented as the pseudo-monoclinic unit cell C, having the following dimensions: a = 16.445 Å, b = 10.804 Å, c = 14.780 Å, α = 85.28°, β = 92.27°, γ = 89.66°, which are similar to the unit cell of ZnAsp2·1.5H2O (Table 1[link]). According to the unit-cell angles of the pseudo-monoclinic C lattice of ZnAsp2·2H2O (Fig. S3), with increasing pressure this triclinic structure only hardly, within about 0.5°, changes its distortions from the monoclinic symmetry.

Thus the sorption of water molecules into the ZnAsp2·nH2O framework results in its transformation, changing the symmetry of the crystal structure. It is characteristic that the monoclinic symmetry of space group C2/c of ZnAsp2·1.5H2O is reduced to the triclinic space group [P {\overline 1}] of ZnAsp2·2H2O after the water content increases. This inverse sorption–symmetry relation is surprising, as according to our survey an increased water content of the pores either increases or preserves the crystal symmetry. For example, the space-group symmetry R3 of anhydrate stepanovite polymorph ST1d increases to space group R3c for stepanovite [Mg(H2O)6][NaFe(C2O4)3]·3H2O; for the polymorph ST2d its anhydrate has space-group symmetry P3 and after hydration the symmetry increases to P3c (Huskić et al., 2019[Huskić, I., Novendra, N., Lim, D.-W., Topić, F., Titi, H. M., Pekov, I. V., Krivovichev, S. V., Navrotsky, A., Kitagawa, H. & Friščić, T. (2019). Chem. Sci. 10, 4923-4929.]); the space-group symmetries P21/n and [P {\overline 1}] of lithium acetate (LiC2H3O2) polymorphs increase to Cmmm for the dihydrate; and space group [P {\overline 1}] of lithium acetate monohydrate, 4(LiC2H3O2)·H2O, increases to P21/c for the tetrahydrate 4(LiC2H3O2)·4H2O (Martínez-Casado et al., 2011[Martínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021-1032.]).

We have established that ZnAsp2 preferentially crystallizes as the dihydrate when crystallized from water solution under normal conditions (298 K, 0.1 MPa). The dihydrate crystals are triclinic (Table 1[link]). In these crystal structures the water molecules are located in channel pores and do not participate in the Zn2+ coordination. In ZnAsp2·2H2O the Zn2+ cation is coordinated by four carboxyl­ate oxygens of four Asp anions, as illustrated in Fig. 4[link]. Each Asp participates in coordinating two Zn2+ cations, closing cyclamers of the form –Zn2+–Asp–Zn2+–Asp–, and these are combined into chains extending along the [010] crystal direction. In ZnAsp2·1.5H2O the Zn2+ cation is coordinated in the same way as in ZnAsp2·2H2O. The ZnAsp2 ribbons are very similar in the dihydrate and sesquihydrate, as shown in Fig. 4[link]. The conformation of the Asp units and their coordination of Zn2+ is consistent to within a few degrees for the corresponding torsion angles (Fig. S4).

[Figure 4]
Figure 4
(a) Autostereographic projections (Katrusiak, 2001[Katrusiak, A. (2001). J. Mol. Graphics Modell. 19, 363-367.]) of the ribbons formed by the Zn cations four-fold coordinated by Asp anions in ZnAsp2·1.5H2O and ZnAsp2·2H2O. Water molecules have been omitted for clarity. (b) The ZnAsp2·1.5H2O and ZnAsp2·2H2O structures projected down the ZnAsp2 ribbons. Water molecules are represented as red balls. H atoms have been omitted for clarity.

It is a common feature of both ZnAsp2·1.5H2O and ZnAsp2·2H2O that all water molecules interact through O—H⋯O and N—H⋯O hydrogen bonds, but no water mol­ecules participate in Zn coordination. There are very similar intramolecular N13—H13C⋯O11 and N3—H3A⋯O2 hydrogen bonds in both ZnAsp2·1.5H2O and ZnAsp2·2H2O. Almost all of the hydrogen bonds involve water molecules. The hydrogen bonds to H2O molecules are O1W—H1WB⋯O14, O1W—H1WA⋯O2, O2W—H2WB⋯O12 and N3—H3C⋯O1W. Two other hydrogen bonds are N13—H13B⋯O2 and N3—H3B⋯O13, both present in the ZnAsp2·1.5H2O and ZnAsp2·2H2O structures. The O2W—H2WA⋯O1W bond between two water molecules is formed only in ZnAsp2·2H2O (Figs. S5 and S9).

It is remarkable that although ZnAsp2·2H2O and ZnAsp2·1.5H2O can interconvert one into the other under ambient conditions, each of them can be compressed in glycerine to 4 GPa at least (Fig. 3[link]). However, while the compression of ZnAsp2·2H2O is monotonic, in ZnAsp2·1.5H2O we have noted an anomalous strain at about 0.8 GPa. This anomaly is clearly seen in the pressure dependence of the monoclinic angle β, which initially rises and at 0.8 GPa drops abruptly by 0.1°, and then it continues to drop in a monotonous way it at still higher pressure (Fig. 5[link]). A similar discontinuity is observed in the compression of unit-cell parameter a [Fig. 5[link](b)] and in the volume compression (Fig. 3[link]). It appears that the anomalous `compression' of the β angle in ZnAsp2·1.5H2O is a consequence of the directional interactions – Zn—O coordination and O—H⋯O hydrogen bonds – forming the framework in this structure. These directional bonds play a dominant role in the dimensions and elastic properties of the crystal. Owing to this relatively rigid framework, some small voids are present in the crystal under normal conditions. However, above 0.8 GPa the directional bonds yield under the external pressure and the small voids are suppressed. Thus the anomalous compression marks the pressure value at which central forces supported by the external pressure overcome the angular dimensions favoured by the directional interactions, triggering a collapse to a more densely packed structure [Fig. 6[link](a)]. These two phases of ZnAsp2·1.5H2O will be further referred to as phases α and β.

[Figure 5]
Figure 5
The pressure dependence of (a) angle β and (b) parameter a of the unit cell in ZnAsp2·1.5H2O. The changes in all the unit-cell dimensions are plotted in Fig. S2.
[Figure 6]
Figure 6
(a) The pressure dependence of the void volume (Vvoids) of ZnAsp2·1.5H2O (open symbols, dotted lines) and ZnAsp2·2H2O (solid symbols, continuous line) after removing the water molecules from these structures, per one formula unit (Vvoids/Z). The void volume was calculated using the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) with a probing-sphere radius of 1.2 Å and 0.1 Å steps. (b) The molecular volume of water (i.e. one H2O molecule in liquid; Bridgman, 1935[Bridgman, P. W. (1935). J. Chem. Phys. 3, 597-605.]) and ices VI (Kuhs et al., 1984[Kuhs, W. F., Finney, J. L., Vettier, C. & Bliss, D. V. (1984). J. Chem. Phys. 81, 3612-3623.]) and VII (Bezacier et al., 2014[Bezacier, L., Journaux, B., Perrillat, J.-P., Cardon, H., Hanfland, M. & Daniel, I. (2014). J. Chem. Phys. 141, 104505.]) as a function of pressure compared with the difference in molecular volume (Vm = V/Z) between ZnAsp2·2H2O and ZnAsp2·1.5H2O (ΔVm). Δ0 is this difference at 0.1 MPa (see also Fig. S6).

The ZnAsp2·1.5H2O structure determined at 0.9 GPa is an average of these phases, as the X-ray diffraction measurement was performed when the sample had partly transformed between phases α and β. The anomalous compression at 0.8 GPa, determined from the unit-cell dimensions, agrees well with the collapse of the pores. Their volume is plotted as a function of pressure in Fig. 6[link] (note the `intermediate' volume of the pores at 0.9 GPa, due to the averaged structures of phases α and β, as explained above). According to the X-ray diffraction data, the transition at 0.8 GPa does not change the crystal symmetry. Thus it can be classified as an isostructural phase transition, which is quite common for metal–organic frameworks under pressure. For example, at 0.40 GPa Cd(APP)2NO3·NO3 transforms between monoclinic phases, both of space-group symmetry P21/c (Półrolniczak et al., 2018[Półrolniczak, A., Sobczak, S. & Katrusiak, A. (2018). Inorg. Chem. 57, 8942-8950.]) and Co2(4,4′-bpy)3(NO3)4·xH2O preserves its orthorhombic space group Ccca at pc = 6 GPa (Zhou et al., 2014[Zhou, M., Wang, K., Men, Z., Sun, Ch., Li, Z., Liu, B., Zou, G. & Zou, B. (2014). CrystEngComm, 16, 4084-4087.]), plus other known examples (Moggach et al., 2009[Moggach, S. A., Bennett, T. D. & Cheetham, A. K. (2009). Angew. Chem. Int. Ed. 48, 7087-7089.]; McKellar & Moggach, 2015[McKellar, S. C. & Moggach, S. A. (2015). Acta Cryst. B71, 587-607.]; Sobczak et al., 2018[Sobczak, S., Chitnis, A., Andrzejewski, M., Mączka, M., Gohil, S., Garg, N. & Katrusiak, A. (2018). CrystEngComm, 20, 5348-5355.]; Bhattacharyya et al., 2019[Bhattacharyya, S., Sobczak, S., Półrolniczak, A., Roy, S., Samanta, D., Katrusiak, A. & Maji, T. K. (2019). Chem. Eur. J. 25, 6092-6097.]).

Interestingly, the subtraction of the molecular volume of ZnAsp2·1.5H2O from that of ZnAsp2·2H2O (denoted ΔVm) should give the volume difference corresponding to half of the molecular volume of water [Fig. 6[link](b)]. The comparison of ΔVm with the volume of one H2O molecule in water and ices shows that there is more space in the pores than required for the accommodated water molecules, which explains the reason for the collapse of the pores. The work contribution to the Gibbs free energy at the transition in ZnAsp2·1.5H2O is 3.1 kJ mol−1, compared with the work energy of 4.9 kJ mol−1 performed by the pressure to compress phase α from 0.1 MPa to 0.8 GPa. The volume difference between ZnAsp2·2H2O and ZnAsp2·1.5H2O at 0.1 MPa is consistent with the broad distribution of the volume of solvent water occurring in organic pharmaceuticals (Glasser, 2019[Glasser, L. (2019). Acta Cryst. B75, 784-787.]).

4. Practical implications

The subtle balance of water content in these two hydrates of zinc aspartate (ZnAsp2) has implications for its use as a pharmaceutical agent. The undesired release of water in tablets results in their degradation, as illustrated in the photograph in Fig. 7[link]. These undesired effects can be avoided by using zinc aspartate in the form of the sesquihydrate, ZnAsp2·1.5H2O, which is more stable and does not release or absorb water. The sesquihydrate can be obtained either by drying the dihydrate precipitate obtained from aqueous solution, or by performing the crystallization under high-pressure conditions. The high pressure of about 50 MPa required for this purpose is technologically attainable for larger amounts of the sample, although it would require some safety measures. High-pressure crystallization could be more advantageous in terms of the time needed to obtain the required product. Thus the high-pressure crystallization of zinc aspartate can be regarded as a potential candidate for pharmaceutical applications of high pressure (see also Fabbiani et al., 2014[Fabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817-1819.]).

[Figure 7]
Figure 7
Tablets containing ZnAsp2·2H2O, some of which show clear signs of the release of water on the spontaneous transformation to ZnAsp2·1.5H2O: in the eight tablets grouped on the right-hand side of the photograph the degradation is visible as a beige shade and swelling, which leads to their easy abrasion and crushing.

5. Conclusions

We have established that the sesquihydrate ZnAsp2·1.5H2O is a stable form of the zinc aspartate complex (ZnAsp2) under ambient conditions. We have shown that the precipitate obtained by crystallization from aqueous solution is the dihydrate, ZnAsp2·2H2O. The crystal structures of the sesquihydrate ZnAsp2·1.5H2O and the dihydrate ZnAsp2·2H2O are closely related, despite their different space-group symmetries.

The most eminent feature of these structures is that they form frameworks containing channel pores that are occupied by water molecules. The water molecules can enter the pores of the sesquihydrate ZnAsp2·1.5H2O when it is immersed in water, or leave the pores when the dihydrate ZnAsp2·2H2O is exposed to the air. This transformation of the dihydrate into the sesquihydrate is a slow process, taking days or weeks depending on the volume of the sample, its container, the size of the crystal grains, the humidity of the air, ventilation, temperature and other relevant parameters. Thus it is recommended to check whether the transformation into the sesquihydrate has been completed before further processing, for example granulating or tabletting.

The sesquihydrate can also be obtained directly by high-pressure crystallization. We found that an applied pressure as low as 50 MPa favours crystallization of the sesquihydrate from aqueous solution at 298 K.

The subtle isostructural phase transition in ZnAsp2·1.5H2O illustrates the role of directional interactions in stabilizing porous structures. It can be postulated that the sesquihydrate is favoured by high pressure because it increases the close packing of molecules in the structure and destabilizes the directional interactions, like hydrogen bonds, which bind the water molecules into the pores. However, it is apparent from other reverse effects on other hydrates that the pressure effects are quite complex and depend on specific structural features.

It should be noted that all our attempts to recrystallize racemic ZnAsp2 hydrates never resulted in the separation of enantiomers. This negative result is consistent with the effect of pressure on other racemic mixtures of enantiomers reported so far (e.g. Jacques et al., 1994[Jacques, J., Collet, A. & Wilen, S. H. (1994). Enantiomers, Racemates and Resolutions. Malabar, Florida, USA: Krieger Publishing Company.]; Rietveld et al., 2011[Rietveld, I. B., Barrio, M., Tamarit, J. L., Do, B. & Céolin, R. (2011). J. Phys. Chem. B, 115, 14698-14703.]; Cai et al., 2013[Cai, W., Marciniak, J., Andrzejewski, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 7279-7285.]; Marciniak et al., 2014[Marciniak, J., Andrzejewski, M., Cai, W. & Katrusiak, A. (2014). J. Phys. Chem. C, 118, 4309-4313.]; Ostrowska et al., 2015[Ostrowska, K., Kropidłowska, M. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 1512-1517.]; Wang et al., 2015[Wang, K., Wang, Q., Yan, T. & Lin, A. (2015). Chem. J. Chin. U. 36, 381-385.]; Ernst, 2018[Ernst, K. H. (2018). Chimia, 72, 399-403.]; Hochberg & Cintas, 2018[Hochberg, D. & Cintas, P. (2018). Phys. Chem. Chem. Phys. 20, 5305-5311.]; Roszak & Katrusiak, 2018[Roszak, K. & Katrusiak, A. (2018). Phys. Chem. Chem. Phys. 20, 5305-5311.]).

Supporting information


Computing details top

Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for Zn-aspartate_sesquihydrate_0_001GPa, Zn-aspartate_sesquihydrate_0_29GPa, Zn-aspartate_sesquihydrate_0_49GPa, Zn-aspartate_sesquihydrate_0_79GPa, Zn-aspartate_sesquihydrate_1_44GPa, Zn-aspartate_sesquihydrate_1_82GPa, Zn-aspartate_sesquihydrate_2_49GPa, Zn-aspartate_dihydrate_0_001GPa, Zn-aspartate_dihydrate_0_05GPa, Zn-aspartate_dihydrate_0_15GPa, Zn-aspartate_dihydrate_0_40GPa, Zn-aspartate_dihydrate_0_70GPa, Zn-aspartate_dihydrate_1_02GPa, Zn-aspartate_dihydrate_1_54GPa, Zn-aspartate_dihydrate_2_53GPa, Zn-aspartate_dihydrate_3_05GPa, Zn-aspartate_dihydrate_3_53GPa; SHELXS (Sheldrick, 2008) for Zn-aspartate_sesquihydrate_0_05GPa, Zn-aspartate_sesquihydrate_0_85GPa, Zn-aspartate_sesquihydrate_1_15GPa, Zn-aspartate_sesquihydrate_1_62GPa, Zn-aspartate_sesquihydrate_2_15GPa, Zn-aspartate_sesquihydrate_2_91GPa, Zn-aspartate_sesquihydrate_3_54GPa, Zn-aspartate_sesquihydrate_3_92GPa, Zn-aspartate_dihydrate_4_02GPa. For all structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(Zn-aspartate_sesquihydrate_0_001GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.868 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 16.2789 (3) ÅCell parameters from 2468 reflections
b = 10.7307 (2) Åθ = 5.4–76.2°
c = 14.5393 (3) ŵ = 3.23 mm1
β = 93.017 (2)°T = 296 K
V = 2536.26 (8) Å3Plate, colourless
Z = 40.15 × 0.10 × 0.02 mm
Data collection top
Multiwire proportional
diffractometer
2468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 76.2°, θmin = 5.4°
ω scanh = 1520
Absorption correction: integration
integration
k = 1312
Tmin = 0.712, Tmax = 0.937l = 1817
10199 measured reflections62 standard reflections every 24 reflections
2632 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0487P)2 + 2.529P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2632 reflectionsΔρmax = 0.60 e Å3
196 parametersΔρmin = 0.40 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00025 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.730510 (15)0.50404 (2)0.449948 (17)0.02585 (12)
O40.67955 (8)0.87379 (13)0.55387 (10)0.0342 (3)
O20.54889 (8)0.76159 (13)0.39793 (10)0.0321 (3)
O10.63918 (9)0.60880 (14)0.40487 (10)0.0334 (3)
O140.76009 (9)0.04837 (15)0.41962 (10)0.0363 (3)
O110.75421 (9)0.37497 (15)0.36264 (12)0.0414 (4)
O130.87616 (10)0.14571 (16)0.45899 (10)0.0412 (4)
O120.62930 (9)0.33025 (16)0.30225 (12)0.0432 (4)
O30.57758 (11)1.00639 (13)0.58153 (14)0.0420 (4)
N130.89140 (10)0.25231 (16)0.29576 (11)0.0311 (3)
H13A0.90320.26160.23710.037*
H13B0.93590.22610.32820.037*
H13C0.87520.32500.31800.037*
O1W0.60744 (13)0.98762 (17)0.33339 (14)0.0499 (4)
H1WA0.65620.99510.35670.075*
H1WB0.58710.92770.36290.075*
N30.46595 (11)0.82054 (17)0.56868 (13)0.0365 (4)
H3A0.46080.84490.51020.044*
H3B0.45050.88210.60500.044*
H3C0.43440.75410.57660.044*
O2W0.50000.5206 (3)0.25000.0659 (9)
H2W0.537 (2)0.466 (3)0.255 (3)0.075 (11)*
C10.59020 (10)0.68141 (16)0.44282 (13)0.0248 (4)
C40.60666 (11)0.90115 (17)0.57328 (12)0.0268 (4)
C110.70387 (11)0.31174 (17)0.31161 (13)0.0269 (4)
C140.82094 (11)0.11819 (17)0.40240 (13)0.0271 (4)
C120.74310 (11)0.20731 (18)0.25943 (13)0.0278 (4)
H12A0.75220.23630.19760.033*
H12B0.70460.13830.25410.033*
C130.82431 (11)0.15916 (17)0.30241 (13)0.0261 (4)
H130.83970.08600.26680.031*
C30.55298 (12)0.78806 (18)0.59243 (14)0.0297 (4)
H30.55780.77270.65890.036*
C20.57929 (13)0.66917 (17)0.54510 (14)0.0302 (4)
H2A0.63080.64110.57460.036*
H2B0.53850.60520.55460.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02411 (17)0.02488 (17)0.02838 (18)0.00207 (8)0.00019 (11)0.00047 (8)
O40.0268 (7)0.0330 (7)0.0429 (8)0.0037 (5)0.0048 (6)0.0018 (6)
O20.0290 (7)0.0285 (7)0.0380 (7)0.0052 (5)0.0052 (5)0.0012 (6)
O10.0320 (7)0.0375 (7)0.0305 (7)0.0123 (6)0.0013 (5)0.0009 (6)
O140.0317 (7)0.0413 (8)0.0357 (7)0.0074 (6)0.0002 (6)0.0096 (6)
O110.0280 (7)0.0428 (8)0.0530 (9)0.0014 (6)0.0015 (6)0.0227 (7)
O130.0426 (8)0.0467 (9)0.0334 (7)0.0116 (7)0.0084 (6)0.0068 (6)
O120.0260 (7)0.0471 (9)0.0557 (10)0.0070 (6)0.0042 (6)0.0084 (7)
O30.0344 (8)0.0262 (8)0.0649 (11)0.0005 (5)0.0023 (8)0.0007 (6)
N130.0239 (7)0.0366 (9)0.0328 (8)0.0002 (6)0.0021 (6)0.0082 (7)
O1W0.0480 (11)0.0479 (10)0.0543 (11)0.0098 (7)0.0060 (8)0.0051 (8)
N30.0288 (8)0.0345 (9)0.0466 (10)0.0020 (7)0.0048 (7)0.0059 (8)
O2W0.0407 (15)0.0475 (15)0.107 (3)0.0000.0200 (16)0.000
C10.0195 (8)0.0220 (8)0.0327 (9)0.0016 (6)0.0015 (7)0.0010 (7)
C40.0269 (8)0.0272 (9)0.0257 (8)0.0017 (7)0.0024 (7)0.0003 (7)
C110.0257 (8)0.0269 (9)0.0281 (8)0.0018 (7)0.0007 (7)0.0011 (7)
C140.0273 (9)0.0235 (8)0.0304 (9)0.0027 (7)0.0005 (7)0.0017 (7)
C120.0267 (9)0.0299 (9)0.0265 (8)0.0018 (7)0.0017 (7)0.0021 (7)
C130.0251 (8)0.0256 (8)0.0277 (9)0.0025 (7)0.0018 (7)0.0008 (7)
C30.0286 (9)0.0267 (9)0.0341 (9)0.0006 (7)0.0056 (7)0.0022 (7)
C20.0339 (10)0.0229 (8)0.0343 (10)0.0004 (7)0.0060 (7)0.0013 (7)
Geometric parameters (Å, º) top
Zn1—O111.9313 (15)O13—C141.223 (2)
Zn1—O11.9496 (14)O12—C111.231 (2)
Zn1—O4i1.9682 (14)O3—C41.233 (2)
Zn1—O14ii1.9762 (15)N13—C131.487 (2)
O4—C41.269 (2)N3—C31.482 (3)
O4—Zn1i1.9682 (14)C1—C21.513 (3)
O2—C11.254 (2)C4—C31.530 (3)
O1—C11.262 (2)C11—C121.513 (3)
O14—C141.277 (2)C14—C131.523 (3)
O14—Zn1ii1.9762 (15)C12—C131.522 (2)
O11—C111.272 (2)C3—C21.522 (3)
O11—Zn1—O1111.58 (6)O4—C4—C3114.01 (16)
O11—Zn1—O4i106.53 (6)O12—C11—O11125.44 (18)
O1—Zn1—O4i99.31 (6)O12—C11—C12120.26 (17)
O11—Zn1—O14ii114.74 (7)O11—C11—C12114.29 (16)
O1—Zn1—O14ii120.39 (6)O13—C14—O14124.07 (18)
O4i—Zn1—O14ii101.33 (6)O13—C14—C13120.72 (17)
C4—O4—Zn1i123.92 (13)O14—C14—C13115.08 (16)
C1—O1—Zn1134.19 (13)C11—C12—C13115.20 (15)
C14—O14—Zn1ii109.47 (12)N13—C13—C12111.71 (15)
C11—O11—Zn1128.38 (13)N13—C13—C14108.63 (15)
O2—C1—O1121.99 (18)C12—C13—C14114.57 (15)
O2—C1—C2118.94 (16)N3—C3—C2112.35 (16)
O1—C1—C2119.05 (16)N3—C3—C4108.62 (16)
O3—C4—O4127.02 (18)C2—C3—C4113.94 (16)
O3—C4—C3118.89 (17)C1—C2—C3114.97 (16)
C1—C2—C3—N372.7 (2)N13—C13—C14—O1311.5 (2)
C1—C2—C3—C451.4 (2)O12—C11—C12—C13156.33 (19)
N3—C3—C4—O330.6 (2)Zn1—O1—C1—C219.2 (3)
O2—C1—C2—C328.1 (2)Zn1—O11—C11—C12173.08 (14)
C11—C12—C13—N1369.7 (2)Zn1—O4i—C4i—C3i167.31 (12)
C11—C12—C13—C1454.4 (2)Zn1—O14ii—C14ii—C13ii176.44 (12)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_0_05GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.889 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.210 (4) ÅCell parameters from 351 reflections
b = 10.6863 (6) Åθ = 3.8–26.4°
c = 14.4936 (9) ŵ = 2.01 mm1
β = 92.95 (3)°T = 296 K
V = 2507.3 (7) Å3Plate, colourless
Z = 40.20 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.024
Radiation source: sealed x-ray tubeθmax = 26.4°, θmin = 3.8°
ω scanh = 32
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.675, Tmax = 0.904l = 1817
4042 measured reflections12 standard reflections every 84 reflections
378 independent reflections intensity decay: none
351 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0404P)2 + 5.4767P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
378 reflectionsΔρmax = 0.11 e Å3
199 parametersΔρmin = 0.11 e Å3
127 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.05 (2) GPa (50000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7318 (4)0.50459 (6)0.45038 (5)0.024 (2)
O40.681 (3)0.8726 (9)0.5540 (5)0.034 (3)
O20.5485 (13)0.7608 (3)0.3983 (3)0.030 (5)
O10.639 (2)0.6086 (4)0.4051 (3)0.030 (3)
O140.7580 (15)0.0475 (5)0.4184 (3)0.036 (3)
O110.7551 (15)0.3755 (4)0.3623 (3)0.044 (3)
O130.877 (2)0.1447 (5)0.4588 (3)0.035 (5)
O120.626 (2)0.3323 (8)0.3014 (6)0.049 (6)
O30.577 (2)1.0065 (4)0.5825 (5)0.039 (5)
N130.888 (2)0.2514 (5)0.2948 (4)0.030 (5)
H13A0.90320.26160.23710.037*
H13B0.93590.22610.32820.037*
H13C0.87520.32500.31800.037*
O1W0.6051 (17)0.9874 (9)0.3316 (8)0.052 (5)
H1WA0.657 (4)0.994 (13)0.338 (10)0.063*
H1WB0.593 (10)0.928 (6)0.367 (5)0.063*
N30.469 (4)0.8203 (10)0.5689 (6)0.037 (6)
H3A0.46080.84490.51020.044*
H3B0.45050.88210.60500.044*
H3C0.43440.75410.57660.044*
O2W0.5000000.5205 (9)0.2500000.072 (6)
H2W0.538 (7)0.472 (6)0.278 (5)0.06 (4)*
C10.590 (4)0.6807 (6)0.4423 (5)0.024 (3)
C40.607 (4)0.9019 (9)0.5728 (7)0.023 (4)
C110.706 (4)0.3138 (13)0.3099 (8)0.023 (4)
C140.820 (3)0.1175 (6)0.4020 (5)0.022 (3)
C120.743 (3)0.2076 (6)0.2584 (4)0.024 (3)
H12A0.7037560.1394430.2541290.029*
H12B0.7524790.2352190.1960030.029*
C130.823 (2)0.1588 (6)0.3011 (4)0.025 (3)
H130.8390660.0857220.2651710.030*
C30.554 (3)0.7880 (10)0.5930 (8)0.06 (6)
H30.5585670.7732910.6597590.075*
C20.5767 (19)0.6678 (5)0.5459 (4)0.024 (3)
H2A0.5331770.6070830.5538380.029*
H2B0.6268090.6351260.5763700.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.027 (7)0.0229 (5)0.0231 (6)0.0005 (14)0.0012 (19)0.0007 (3)
O40.034 (7)0.031 (3)0.038 (3)0.001 (6)0.005 (5)0.003 (3)
O20.031 (14)0.0264 (19)0.0316 (19)0.010 (7)0.007 (6)0.0045 (17)
O10.030 (7)0.035 (2)0.0256 (19)0.004 (5)0.001 (5)0.0013 (18)
O140.036 (7)0.039 (2)0.033 (2)0.001 (5)0.002 (5)0.010 (2)
O110.044 (7)0.042 (2)0.046 (2)0.001 (5)0.002 (5)0.021 (2)
O130.033 (14)0.043 (2)0.029 (2)0.005 (8)0.000 (8)0.005 (2)
O120.049 (15)0.045 (5)0.054 (5)0.004 (9)0.002 (9)0.011 (3)
O30.037 (14)0.027 (3)0.052 (3)0.007 (8)0.014 (9)0.0010 (19)
N130.031 (14)0.032 (3)0.028 (3)0.007 (9)0.007 (8)0.006 (2)
O1W0.053 (14)0.043 (3)0.061 (3)0.005 (8)0.010 (9)0.006 (2)
N30.038 (14)0.033 (5)0.039 (4)0.002 (10)0.000 (10)0.005 (3)
O2W0.072 (14)0.044 (4)0.099 (6)0.0000.001 (10)0.000
C10.024 (7)0.021 (3)0.027 (3)0.002 (6)0.000 (6)0.001 (3)
C40.023 (8)0.022 (5)0.024 (4)0.002 (6)0.002 (6)0.002 (3)
C110.023 (8)0.023 (4)0.024 (4)0.000 (6)0.001 (6)0.001 (3)
C140.022 (7)0.021 (3)0.024 (3)0.000 (5)0.003 (5)0.001 (3)
C120.024 (7)0.024 (2)0.024 (3)0.001 (5)0.003 (5)0.000 (2)
C130.024 (7)0.024 (3)0.026 (3)0.001 (5)0.002 (5)0.002 (2)
C30.13 (19)0.024 (5)0.035 (5)0.015 (17)0.010 (19)0.001 (3)
C20.024 (7)0.020 (2)0.029 (3)0.003 (5)0.003 (5)0.002 (2)
Geometric parameters (Å, º) top
Zn1—O4i1.94 (4)O12—C111.32 (8)
Zn1—O11.96 (3)O3—C41.23 (3)
Zn1—O14ii1.980 (4)N13—C131.45 (3)
Zn1—O111.930 (7)N3—C31.44 (10)
O4—C41.28 (8)C1—C21.535 (17)
O2—C11.25 (3)C4—C31.52 (5)
O1—C11.24 (5)C11—C121.50 (3)
O14—C141.29 (4)C14—C131.531 (10)
O11—C111.26 (4)C12—C131.50 (5)
O13—C141.23 (3)C3—C21.509 (19)
O4i—Zn1—O199.1 (12)O3—C4—C3119 (5)
O4i—Zn1—O14ii101.3 (7)O11—C11—O12125 (2)
O1—Zn1—O14ii120.4 (8)O11—C11—C12116 (4)
O11—Zn1—O4i107.1 (9)O12—C11—C12119 (3)
O11—Zn1—O1110.9 (5)O14—C14—C13114 (2)
O11—Zn1—O14ii115.1 (3)O13—C14—O14125.2 (11)
C4—O4—Zn1i122.5 (13)O13—C14—C13121 (3)
C1—O1—Zn1134.4 (13)C13—C12—C11114.7 (19)
C14—O14—Zn1ii108.2 (11)N13—C13—C14108.4 (16)
C11—O11—Zn1129 (2)N13—C13—C12110.5 (13)
O2—C1—C2117 (3)C12—C13—C14115 (2)
O1—C1—O2122.9 (10)N3—C3—C4107 (2)
O1—C1—C2120 (2)N3—C3—C2110 (2)
O4—C4—C3112.6 (19)C2—C3—C4116 (3)
O3—C4—O4129 (4)C3—C2—C1114.6 (9)
Zn1—O4i—C4i—C3i167.4 (8)N13—C13—C14—O1313 (3)
Zn1—O1—C1—C222 (6)N3—C3—C4—O332 (2)
Zn1—O14ii—C14ii—C13ii176.6 (14)C1—C2—C3—N375 (4)
Zn1—O11—C11—C12172.1 (9)C1—C2—C3—C447 (4)
O2—C1—C2—C332 (4)C11—C12—C13—N1368 (2)
O12—C11—C12—C13154.5 (19)C11—C12—C13—C1455 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_0_29GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.889 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.206 (3) ÅCell parameters from 712 reflections
b = 10.6965 (4) Åθ = 4.6–27.1°
c = 14.4922 (5) ŵ = 2.01 mm1
β = 93.185 (8)°T = 296 K
V = 2508.2 (5) Å3Plate, colourless
Z = 40.15 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.026
Radiation source: sealed x-ray tubeθmax = 27.1°, θmin = 4.6°
ω scanh = 1010
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1212
Tmin = 0.747, Tmax = 0.904l = 1817
5096 measured reflections12 standard reflections every 84 reflections
823 independent reflections intensity decay: none
712 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0408P)2 + 7.4628P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
823 reflectionsΔρmax = 0.32 e Å3
200 parametersΔρmin = 0.22 e Å3
32 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.29 (2) GPa (290000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73109 (7)0.50456 (5)0.45041 (4)0.0254 (7)
O40.6792 (5)0.8729 (3)0.5534 (3)0.040 (4)
O20.5483 (4)0.7615 (3)0.3981 (3)0.029 (3)
O10.6395 (4)0.6085 (3)0.4050 (3)0.036 (4)
O140.7582 (5)0.0480 (4)0.4182 (3)0.038 (4)
O110.7552 (5)0.3760 (4)0.3625 (3)0.044 (4)
O130.8751 (5)0.1447 (4)0.4585 (3)0.038 (4)
O120.6301 (6)0.3312 (4)0.3012 (4)0.0492 (16)
O30.5767 (5)1.0067 (3)0.5819 (3)0.042 (4)
N130.8919 (6)0.2518 (5)0.2953 (3)0.035 (5)
H13A0.90320.26160.23710.037*
H13B0.93590.22610.32820.037*
H13C0.87520.32500.31800.037*
O1W0.6063 (7)0.9871 (4)0.3309 (4)0.067 (5)
H1WA0.65201.01650.35270.090*
H1WB0.59850.92220.36310.090*
N30.4665 (9)0.8202 (6)0.5686 (5)0.046 (7)
H3A0.46080.84490.51020.044*
H3B0.45050.88210.60500.044*
H3C0.43440.75410.57660.044*
O2W0.50000.5199 (7)0.25000.071 (3)
H2W0.554 (5)0.475 (7)0.246 (7)0.14 (4)
C10.5882 (6)0.6810 (5)0.4419 (4)0.029 (5)
C40.6084 (8)0.9009 (5)0.5740 (4)0.029 (6)
C110.7038 (8)0.3126 (5)0.3108 (5)0.028 (2)
C140.8204 (7)0.1176 (5)0.4015 (4)0.0275 (14)
C120.7447 (11)0.2080 (7)0.2587 (5)0.033 (7)
H12A0.70570.13940.25140.040*
H12B0.75510.23830.19740.040*
C130.8230 (9)0.1581 (7)0.3008 (4)0.026 (7)
H130.83780.08460.26490.031*
C30.5521 (11)0.7874 (7)0.5924 (5)0.034 (8)
H30.55650.77190.65910.041*
C20.5782 (6)0.6686 (4)0.5459 (3)0.027 (5)
H2A0.53740.60430.55600.032*
H2B0.63030.64090.57520.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.023 (2)0.0277 (6)0.0251 (5)0.0025 (3)0.0002 (8)0.0003 (2)
O40.050 (14)0.034 (3)0.037 (3)0.006 (2)0.013 (5)0.0033 (17)
O20.026 (11)0.026 (3)0.034 (2)0.005 (2)0.011 (4)0.0025 (16)
O10.044 (13)0.038 (3)0.027 (2)0.016 (3)0.006 (5)0.0009 (15)
O140.031 (14)0.049 (3)0.035 (3)0.011 (3)0.002 (5)0.0082 (18)
O110.031 (14)0.048 (3)0.051 (3)0.000 (3)0.001 (6)0.025 (2)
O130.031 (15)0.053 (3)0.030 (3)0.010 (3)0.009 (5)0.0084 (19)
O120.048 (3)0.0484 (19)0.051 (2)0.0030 (19)0.002 (2)0.0053 (15)
O30.038 (14)0.024 (3)0.063 (3)0.003 (2)0.004 (5)0.0002 (17)
N130.034 (17)0.040 (4)0.031 (3)0.003 (3)0.008 (6)0.006 (2)
O1W0.093 (16)0.043 (4)0.071 (4)0.013 (3)0.039 (6)0.009 (2)
N30.05 (2)0.036 (4)0.047 (4)0.007 (4)0.005 (8)0.007 (2)
O2W0.070 (3)0.066 (3)0.077 (3)0.0000.001 (2)0.000
H2W0.14 (4)0.14 (4)0.14 (4)0.000 (2)0.008 (3)0.000 (2)
C10.031 (16)0.021 (4)0.034 (3)0.008 (3)0.004 (6)0.002 (2)
C40.04 (2)0.032 (5)0.019 (3)0.008 (4)0.002 (7)0.002 (2)
C110.028 (5)0.030 (3)0.027 (3)0.003 (3)0.001 (4)0.002 (2)
C140.0274 (19)0.0274 (16)0.0277 (16)0.0007 (11)0.0016 (11)0.0002 (10)
C120.05 (2)0.031 (5)0.024 (4)0.002 (4)0.007 (9)0.001 (2)
C130.02 (2)0.032 (5)0.025 (4)0.003 (4)0.000 (9)0.001 (2)
C30.04 (3)0.032 (5)0.033 (4)0.004 (4)0.006 (9)0.001 (3)
C20.029 (16)0.024 (4)0.027 (3)0.001 (3)0.001 (6)0.0011 (19)
Geometric parameters (Å, º) top
Zn1—O4i1.960 (7)N3—H3A0.8900
Zn1—O11.940 (6)N3—H3B0.8900
Zn1—O14ii1.984 (4)N3—H3C0.8900
Zn1—O111.930 (4)N3—C31.45 (2)
O4—C41.239 (13)O2W—H2W1.01 (5)
O2—C11.232 (9)C1—C21.530 (7)
O1—C11.276 (8)C4—C31.551 (16)
O14—C141.288 (10)C11—C121.522 (9)
O11—C111.282 (13)C14—C131.525 (8)
O13—C141.212 (12)C12—H12A0.9700
O12—C111.212 (15)C12—H12B0.9700
O3—C41.251 (8)C12—C131.48 (2)
N13—H13A0.8900C13—H130.9800
N13—H13B0.8900C3—H30.9800
N13—H13C0.8900C3—C21.510 (8)
N13—C131.507 (17)C2—H2A0.9700
O1W—H1WA0.8499C2—H2B0.9700
O1W—H1WB0.8501
O4i—Zn1—O14ii101.0 (2)O12—C11—O11125.7 (7)
O1—Zn1—O4i99.3 (2)O12—C11—C12121.2 (12)
O1—Zn1—O14ii120.8 (2)O14—C14—C13114.0 (10)
O11—Zn1—O4i106.3 (3)O13—C14—O14124.1 (5)
O11—Zn1—O1111.3 (3)O13—C14—C13121.8 (9)
O11—Zn1—O14ii115.0 (2)C11—C12—H12A108.1
C4—O4—Zn1i122.9 (4)C11—C12—H12B108.1
C1—O1—Zn1135.2 (4)H12A—C12—H12B107.3
C14—O14—Zn1ii108.4 (6)C13—C12—C11116.6 (11)
C11—O11—Zn1127.9 (7)C13—C12—H12A108.1
H13A—N13—H13B111.0C13—C12—H12B108.1
H13A—N13—H13C109.5N13—C13—C14107.4 (10)
H13B—N13—H13C109.5N13—C13—H13107.5
C13—N13—H13A109.5C14—C13—H13107.5
C13—N13—H13B109.5C12—C13—N13111.1 (7)
C13—N13—H13C109.5C12—C13—C14115.5 (10)
H1WA—O1W—H1WB104.5C12—C13—H13107.5
H3A—N3—H3B109.5N3—C3—C4109.5 (7)
H3A—N3—H3C109.5N3—C3—H3106.9
H3B—N3—H3C109.5N3—C3—C2112.6 (12)
C3—N3—H3A109.5C4—C3—H3106.9
C3—N3—H3B109.5C2—C3—C4113.6 (9)
C3—N3—H3C109.5C2—C3—H3106.9
O2—C1—O1122.9 (5)C1—C2—H2A108.6
O2—C1—C2119.2 (6)C1—C2—H2B108.6
O1—C1—C2117.9 (6)C3—C2—C1114.5 (5)
O4—C4—O3129.2 (8)C3—C2—H2A108.6
O4—C4—C3114.5 (7)C3—C2—H2B108.6
O3—C4—C3116.3 (10)H2A—C2—H2B107.6
O11—C11—C12113.1 (12)
Zn1—O1—C1—C217.2 (11)N3—C3—C4—O329.4 (9)
Zn1—O11—C11—C12172.9 (4)C1—C2—C3—N371.9 (11)
O2—C1—C2—C326.4 (13)C1—C2—C3—C453.3 (13)
O12—C11—C12—C13155.1 (11)C11—C12—C13—N1370.4 (9)
N13—C13—C14—O1310.9 (11)C11—C12—C13—C1452.2 (16)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_0_49GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.907 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.191 (4) ÅCell parameters from 692 reflections
b = 10.6521 (5) Åθ = 9.2–54.5°
c = 14.4247 (6) ŵ = 2.03 mm1
β = 93.183 (9)°T = 296 K
V = 2484.0 (6) Å3Plate, colourless
Z = 40.30 × 0.30 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.025
Radiation source: sealed x-ray tubeθmax = 27.3°, θmin = 4.6°
ω scanh = 1010
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1212
Tmin = 0.549, Tmax = 0.903l = 1817
5033 measured reflections12 standard reflections every 84 reflections
816 independent reflections intensity decay: none
692 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0407P)2 + 4.3878P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
816 reflectionsΔρmax = 0.30 e Å3
196 parametersΔρmin = 0.17 e Å3
14 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.49 (2) GPa (490000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73180 (7)0.50506 (5)0.45075 (4)0.0258 (7)
O40.6789 (5)0.8724 (3)0.5528 (3)0.037 (4)
O20.5477 (4)0.7609 (3)0.3982 (2)0.026 (3)
O10.6392 (4)0.6085 (3)0.4055 (2)0.039 (4)
O140.7566 (5)0.0476 (3)0.4173 (3)0.043 (4)
O110.7557 (5)0.3763 (4)0.3617 (3)0.039 (4)
O130.8743 (5)0.1439 (3)0.4586 (3)0.035 (4)
O120.6298 (6)0.3330 (4)0.3006 (4)0.038 (5)
O30.5761 (5)1.0068 (3)0.5830 (3)0.042 (4)
N130.8915 (6)0.2513 (4)0.2946 (3)0.036 (5)
H13A0.90790.25490.23680.043*
H13B0.93360.22720.33270.043*
H13C0.87410.32670.31160.043*
O1W0.6054 (6)0.9869 (4)0.3291 (4)0.069 (4)
H1WA0.64671.02530.35350.0803*
H1WB0.59790.92610.36520.0803*
N30.4652 (8)0.8197 (6)0.5691 (4)0.046 (6)
H3A0.45930.83510.50850.055*
H3B0.45140.88780.60050.055*
H3C0.43240.75620.58330.055*
O2W0.50000.5203 (6)0.25000.064 (6)
H2W0.555 (5)0.478 (7)0.249 (7)0.085 (5)*
C10.5885 (6)0.6811 (4)0.4427 (4)0.028 (4)
C40.6081 (7)0.9003 (5)0.5741 (4)0.030 (6)
C110.7031 (10)0.3133 (6)0.3102 (6)0.028 (2)
C140.8192 (7)0.1173 (4)0.4005 (4)0.0271 (19)
C120.7437 (10)0.2087 (6)0.2572 (5)0.034 (7)
H12A0.70440.14030.24910.040*
H12B0.75450.24000.19590.040*
C130.8214 (9)0.1575 (6)0.2993 (4)0.029 (7)
H130.83590.08360.26310.035*
C30.5506 (10)0.7870 (7)0.5938 (5)0.026 (7)
H30.55500.77190.66090.032*
C20.5775 (5)0.6670 (4)0.5467 (3)0.031 (5)
H2A0.53660.60230.55580.038*
H2B0.62940.63900.57660.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.026 (2)0.0263 (5)0.0255 (4)0.0022 (3)0.0005 (8)0.0005 (2)
O40.041 (13)0.034 (3)0.038 (3)0.005 (2)0.011 (4)0.0036 (16)
O20.016 (11)0.029 (3)0.033 (2)0.006 (2)0.010 (4)0.0031 (15)
O10.050 (12)0.036 (3)0.030 (2)0.016 (2)0.009 (5)0.0009 (15)
O140.045 (14)0.047 (3)0.036 (3)0.010 (3)0.000 (5)0.0087 (18)
O110.018 (14)0.045 (3)0.053 (3)0.002 (3)0.005 (5)0.0244 (19)
O130.021 (14)0.054 (3)0.029 (3)0.007 (3)0.015 (5)0.0095 (18)
O120.016 (17)0.049 (3)0.049 (3)0.008 (3)0.010 (6)0.0070 (19)
O30.042 (14)0.023 (3)0.062 (3)0.0031 (19)0.000 (5)0.0003 (15)
N130.045 (16)0.034 (3)0.030 (3)0.001 (3)0.014 (5)0.005 (2)
O1W0.102 (15)0.037 (3)0.073 (3)0.014 (2)0.043 (6)0.0114 (19)
N30.06 (2)0.032 (4)0.042 (3)0.004 (4)0.002 (7)0.007 (2)
O2W0.05 (2)0.043 (5)0.102 (6)0.0000.012 (9)0.000
C10.029 (15)0.020 (4)0.034 (3)0.010 (3)0.005 (6)0.003 (2)
C40.04 (2)0.033 (4)0.018 (3)0.010 (4)0.004 (6)0.001 (2)
C110.026 (5)0.029 (3)0.028 (3)0.006 (3)0.001 (4)0.003 (2)
C140.027 (5)0.025 (2)0.030 (3)0.002 (2)0.002 (3)0.002 (2)
C120.04 (2)0.031 (5)0.027 (4)0.004 (4)0.013 (8)0.000 (2)
C130.04 (2)0.022 (4)0.028 (4)0.000 (3)0.008 (8)0.000 (2)
C30.01 (3)0.034 (5)0.034 (4)0.005 (4)0.004 (8)0.002 (2)
C20.044 (16)0.021 (3)0.030 (3)0.000 (3)0.007 (6)0.0010 (18)
Geometric parameters (Å, º) top
Zn1—O4i1.950 (6)N3—H3A0.8900
Zn1—O11.944 (6)N3—H3B0.8900
Zn1—O14ii1.983 (4)N3—H3C0.8900
Zn1—O111.933 (4)N3—C31.45 (2)
O4—C41.240 (12)O2W—H2W1.00 (5)
O2—C11.234 (9)C1—C21.528 (6)
O1—C11.268 (8)C4—C31.559 (15)
O14—C141.291 (10)C11—C121.522 (8)
O11—C111.287 (17)C14—C131.523 (7)
O13—C141.223 (11)C12—H12A0.9700
O12—C111.206 (19)C12—H12B0.9700
O3—C41.257 (8)C12—C131.47 (2)
N13—H13A0.8900C13—H130.9800
N13—H13B0.8900C3—H30.9800
N13—H13C0.8900C3—C21.523 (7)
N13—C131.516 (16)C2—H2A0.9700
O1W—H1WA0.8444C2—H2B0.9700
O1W—H1WB0.8441
O4i—Zn1—O14ii100.6 (2)O12—C11—O11126.2 (7)
O1—Zn1—O4i99.8 (2)O12—C11—C12121.3 (14)
O1—Zn1—O14ii120.8 (2)O14—C14—C13113.7 (9)
O11—Zn1—O4i106.3 (2)O13—C14—O14123.6 (5)
O11—Zn1—O1111.0 (3)O13—C14—C13122.6 (8)
O11—Zn1—O14ii115.2 (2)C11—C12—H12A108.1
C4—O4—Zn1i122.9 (4)C11—C12—H12B108.1
C1—O1—Zn1135.2 (4)H12A—C12—H12B107.3
C14—O14—Zn1ii108.0 (5)C13—C12—C11116.6 (11)
C11—O11—Zn1127.1 (8)C13—C12—H12A108.1
H13A—N13—H13B109.5C13—C12—H12B108.1
H13A—N13—H13C109.5N13—C13—C14106.5 (9)
H13B—N13—H13C109.5N13—C13—H13107.6
C13—N13—H13A109.5C14—C13—H13107.6
C13—N13—H13B109.5C12—C13—N13111.3 (6)
C13—N13—H13C109.5C12—C13—C14115.8 (9)
H1WA—O1W—H1WB104.7C12—C13—H13107.6
H3A—N3—H3B109.5N3—C3—C4109.9 (7)
H3A—N3—H3C109.5N3—C3—H3107.2
H3B—N3—H3C109.5N3—C3—C2112.6 (11)
C3—N3—H3A109.5C4—C3—H3107.2
C3—N3—H3B109.5C2—C3—C4112.4 (8)
C3—N3—H3C109.5C2—C3—H3107.2
O2—C1—O1122.7 (4)C1—C2—H2A108.7
O2—C1—C2119.4 (5)C1—C2—H2B108.7
O1—C1—C2117.9 (6)C3—C2—C1114.0 (4)
O4—C4—O3129.3 (7)C3—C2—H2A108.7
O4—C4—C3115.4 (6)C3—C2—H2B108.7
O3—C4—C3115.3 (9)H2A—C2—H2B107.6
O11—C11—C12112.4 (14)
Zn1—O1—C1—C219.4 (10)N3—C3—C4—O331.0 (8)
Zn1—O11—C11—C12172.9 (4)C1—C2—C3—N372.1 (10)
O2—C1—C2—C327.9 (12)C1—C2—C3—C452.6 (12)
O12—C11—C12—C13155.2 (11)C11—C12—C13—N1370.6 (9)
N13—C13—C14—O1310.8 (10)C11—C12—C13—C1451.2 (16)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_0_79GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.929 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.098 (2) ÅCell parameters from 571 reflections
b = 10.605 (2) Åθ = 3.7–26.9°
c = 14.405 (2) ŵ = 2.06 mm1
β = 93.218 (16)°T = 296 K
V = 2455.3 (7) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.064
Radiation source: sealed x-ray tubeθmax = 26.9°, θmin = 3.7°
ω scanh = 1818
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1010
Tmin = 0.698, Tmax = 0.902l = 1515
4921 measured reflections12 standard reflections every 84 reflections
824 independent reflections intensity decay: none
571 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.1168P)2 + 15.7225P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
824 reflectionsΔρmax = 0.44 e Å3
196 parametersΔρmin = 0.44 e Å3
32 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.79 (2) GPa (790000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73234 (10)0.50539 (16)0.45125 (12)0.0332 (8)
O40.6772 (5)0.8718 (10)0.5519 (7)0.041 (3)
O20.5478 (6)0.7613 (11)0.3980 (7)0.032 (3)
O10.6400 (6)0.6080 (10)0.4060 (7)0.042 (3)
O140.7553 (7)0.0453 (11)0.4166 (7)0.053 (3)
O110.7553 (6)0.3770 (13)0.3601 (9)0.051 (4)
O130.8728 (8)0.1429 (13)0.4587 (9)0.053 (4)
O120.6285 (7)0.3329 (9)0.2995 (8)0.049 (3)
O30.5758 (6)1.0055 (10)0.5822 (8)0.045 (3)
N130.8913 (7)0.2536 (12)0.2936 (8)0.037 (3)
H13A0.90360.26350.23460.044*
H13B0.93640.22760.32690.044*
H13C0.87420.32670.31610.044*
O1W0.6014 (9)0.9870 (15)0.3282 (9)0.076 (5)
H1WA0.64351.02640.34940.114*
H1WB0.58900.93890.37180.114*
N30.46595 (11)0.82054 (17)0.56868 (13)0.056 (4)
H3A0.46080.84490.51020.044*
H3B0.45050.88210.60500.044*
H3C0.43440.75410.57660.044*
O2W0.50000.522 (3)0.25000.068 (6)
H2W0.532 (7)0.453 (12)0.281 (10)0.04 (5)*
C10.5893 (11)0.680 (2)0.4426 (13)0.040 (4)
C40.6031 (9)0.8995 (17)0.5728 (11)0.037 (4)
C110.7035 (12)0.3127 (17)0.3105 (12)0.032 (4)
C140.8185 (12)0.1178 (17)0.3993 (12)0.041 (5)
C120.7419 (9)0.2078 (14)0.2567 (11)0.036 (4)
H12A0.75110.23820.19450.043*
H12B0.70250.13870.25070.043*
C130.8236 (9)0.1573 (15)0.2992 (10)0.038 (4)
H130.83910.08330.26340.046*
C30.5487 (9)0.7862 (15)0.5913 (11)0.039 (4)
H30.55200.77250.65870.046*
C20.5752 (9)0.6650 (14)0.5470 (9)0.033 (4)
H2A0.53270.60140.55470.039*
H2B0.62620.63550.57890.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0339 (17)0.039 (3)0.0257 (19)0.0022 (8)0.0029 (15)0.0001 (7)
O40.037 (9)0.045 (15)0.042 (11)0.010 (4)0.012 (9)0.001 (4)
O20.032 (5)0.036 (7)0.029 (6)0.007 (4)0.003 (5)0.003 (4)
O10.035 (8)0.054 (14)0.037 (10)0.012 (5)0.003 (8)0.003 (4)
O140.055 (10)0.072 (15)0.031 (11)0.018 (6)0.005 (9)0.016 (5)
O110.030 (10)0.062 (17)0.060 (13)0.003 (5)0.002 (11)0.023 (6)
O130.075 (13)0.040 (19)0.046 (15)0.016 (7)0.019 (13)0.003 (5)
O120.040 (9)0.063 (15)0.041 (11)0.007 (5)0.012 (9)0.000 (5)
O30.036 (9)0.033 (17)0.067 (13)0.004 (5)0.008 (10)0.002 (5)
N130.025 (9)0.062 (16)0.023 (12)0.004 (5)0.001 (9)0.001 (6)
O1W0.106 (14)0.046 (19)0.081 (15)0.015 (7)0.049 (13)0.014 (6)
N30.043 (12)0.06 (2)0.072 (16)0.009 (7)0.022 (13)0.009 (7)
O2W0.061 (8)0.067 (9)0.073 (9)0.0000.004 (7)0.000
C10.038 (5)0.039 (6)0.042 (6)0.001 (4)0.002 (4)0.002 (4)
C40.040 (5)0.036 (6)0.035 (5)0.001 (4)0.003 (4)0.003 (4)
C110.035 (5)0.031 (6)0.030 (5)0.003 (4)0.000 (4)0.000 (4)
C140.051 (15)0.05 (2)0.026 (17)0.003 (9)0.005 (15)0.010 (8)
C120.034 (12)0.032 (19)0.041 (15)0.010 (7)0.001 (12)0.001 (6)
C130.050 (13)0.03 (2)0.031 (15)0.013 (7)0.001 (13)0.005 (6)
C30.034 (12)0.05 (2)0.034 (15)0.004 (7)0.004 (12)0.002 (7)
C20.043 (11)0.038 (19)0.017 (14)0.008 (7)0.001 (11)0.003 (6)
Geometric parameters (Å, º) top
Zn1—O4i1.956 (9)N3—H3A0.8900
Zn1—O11.926 (10)N3—H3B0.8900
Zn1—O14ii1.977 (10)N3—H3C0.8900
Zn1—O111.942 (10)N3—C31.402 (15)
O4—C41.282 (16)O2W—H2W0.99 (5)
O2—C11.25 (2)C1—C21.54 (2)
O1—C11.256 (19)C4—C31.52 (2)
O14—C141.310 (19)C11—C121.51 (2)
O11—C111.27 (2)C14—C131.51 (2)
O13—C141.218 (19)C12—H12A0.9700
O12—C111.23 (2)C12—H12B0.9700
O3—C41.217 (17)C12—C131.52 (2)
N13—H13A0.8900C13—H130.9800
N13—H13B0.8900C3—H30.9800
N13—H13C0.8900C3—C21.508 (19)
N13—C131.499 (18)C2—H2A0.9700
O1W—H1WA0.8396C2—H2B0.9700
O1W—H1WB0.8415
O4i—Zn1—O14ii99.7 (4)O12—C11—O11126.2 (17)
O1—Zn1—O4i100.2 (4)O12—C11—C12119.4 (15)
O1—Zn1—O14ii120.9 (4)O14—C14—C13115.4 (16)
O1—Zn1—O11109.9 (6)O13—C14—O14122.0 (16)
O11—Zn1—O4i106.3 (4)O13—C14—C13122.3 (16)
O11—Zn1—O14ii116.6 (6)C11—C12—H12A108.5
C4—O4—Zn1i123.9 (11)C11—C12—H12B108.5
C1—O1—Zn1135.1 (12)C11—C12—C13115.1 (16)
C14—O14—Zn1ii107.8 (11)H12A—C12—H12B107.5
C11—O11—Zn1127.9 (11)C13—C12—H12A108.5
H13A—N13—H13B109.5C13—C12—H12B108.5
H13A—N13—H13C109.5N13—C13—C14108.7 (13)
H13B—N13—H13C109.5N13—C13—C12110.8 (12)
C13—N13—H13A109.5N13—C13—H13108.1
C13—N13—H13B109.5C14—C13—C12113.1 (12)
C13—N13—H13C109.5C14—C13—H13108.1
H1WA—O1W—H1WB104.6C12—C13—H13108.1
H3A—N3—H3B109.5N3—C3—C4108.2 (13)
H3A—N3—H3C109.5N3—C3—H3105.0
H3B—N3—H3C109.5N3—C3—C2114.3 (12)
C3—N3—H3A109.5C4—C3—H3106.9
C3—N3—H3B111.00C2—C3—C4114.9 (11)
C3—N3—H3C108.00C2—C3—H3106.9
O2—C1—O1123.1 (17)C1—C2—H2A109.1
O2—C1—C2118.0 (16)C1—C2—H2B109.1
O1—C1—C2118.8 (15)C3—C2—C1112.6 (13)
O4—C4—C3114.5 (15)C3—C2—H2A109.1
O3—C4—O4125.7 (14)C3—C2—H2B109.1
O3—C4—C3119.7 (13)H2A—C2—H2B107.8
O11—C11—C12114.3 (17)
Zn1—O1—C1—C221 (3)N3—C3—C4—O333.0 (19)
Zn1—O11—C11—C12171.6 (10)C1—C2—C3—N374.0 (17)
O2—C1—C2—C330 (3)C1—C2—C3—C450.4 (19)
O12—C11—C12—C13157.6 (15)C11—C12—C13—N1369.0 (15)
N13—C13—C14—O1314 (2)C11—C12—C13—C1453.3 (18)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_0_85GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.950 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.027 (2) ÅCell parameters from 366 reflections
b = 10.5656 (8) Åθ = 4.8–27.1°
c = 14.3681 (11) ŵ = 2.08 mm1
β = 93.12 (2)°T = 296 K
V = 2429.5 (4) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
366 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 27.1°, θmin = 4.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1313
Tmin = 0.695, Tmax = 0.901l = 1818
5840 measured reflections12 standard reflections every 84 reflections
549 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.P)2 + 18.3211P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.19 e Å3
549 reflectionsΔρmin = 0.19 e Å3
196 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
114 restraintsExtinction coefficient: 0.0024 (5)
Primary atom site location: dual
Special details top

Experimental. Data were collected at room temperature and pressure of 0.85 (2) GPa (850000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7327 (3)0.50538 (10)0.45152 (7)0.036 (5)
O40.6821 (19)0.8699 (8)0.5530 (6)0.047 (3)
O20.5444 (13)0.7613 (5)0.3993 (4)0.04 (2)
O10.6397 (18)0.6085 (6)0.4065 (4)0.038 (3)
O140.7556 (16)0.0454 (8)0.4167 (5)0.049 (3)
O110.7568 (15)0.3774 (6)0.3617 (5)0.055 (3)
O130.8715 (16)0.1431 (7)0.4586 (5)0.045 (4)
O120.625 (2)0.3358 (10)0.2995 (7)0.056 (6)
O30.5716 (17)1.0069 (6)0.5838 (5)0.046 (4)
N130.894 (2)0.2494 (8)0.2930 (6)0.06 (3)
H13A0.90920.25500.23450.069*
H13B0.93680.22150.32930.069*
H13C0.87840.32540.31250.069*
O1W0.6011 (16)0.9878 (12)0.3254 (8)0.068 (3)
H1WA0.65150.99690.34270.103*
H1WB0.58210.93900.36500.103*
N30.464 (2)0.8206 (10)0.5688 (7)0.046 (5)
H3A0.45840.82740.50700.055*
H3B0.45260.89440.59470.055*
H3C0.42990.76140.58820.055*
O2W0.50000.5215 (14)0.25000.071 (6)
H2W0.541 (9)0.475 (11)0.269 (13)0.12 (8)*
C10.587 (2)0.6796 (9)0.4430 (6)0.025 (3)
C40.610 (2)0.8989 (12)0.5731 (8)0.027 (4)
C110.702 (2)0.3159 (16)0.3068 (10)0.037 (5)
C140.814 (2)0.1161 (10)0.4010 (8)0.06 (4)
C120.738 (3)0.2085 (10)0.2541 (7)0.041 (4)
H12A0.74580.23600.19090.049*
H12B0.69720.14000.25090.049*
C130.821 (2)0.1577 (9)0.2974 (6)0.031 (3)
H130.83550.08220.26210.037*
C30.549 (2)0.7858 (10)0.5952 (9)0.039 (4)
H30.55340.77100.66270.047*
C20.5734 (19)0.6651 (8)0.5472 (5)0.031 (3)
H2A0.52990.60270.55490.038*
H2B0.62440.63280.57790.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.040 (14)0.0317 (7)0.0346 (7)0.0015 (17)0.0026 (16)0.0010 (5)
O40.047 (6)0.045 (4)0.050 (4)0.001 (4)0.003 (4)0.006 (3)
O20.05 (7)0.033 (4)0.040 (4)0.008 (8)0.014 (9)0.003 (3)
O10.038 (6)0.038 (3)0.038 (3)0.003 (4)0.001 (4)0.000 (3)
O140.049 (6)0.049 (3)0.049 (4)0.000 (4)0.001 (4)0.007 (3)
O110.054 (6)0.054 (3)0.057 (3)0.000 (4)0.002 (4)0.009 (3)
O130.044 (11)0.054 (4)0.036 (4)0.000 (7)0.000 (7)0.005 (3)
O120.056 (12)0.053 (6)0.060 (6)0.000 (8)0.006 (8)0.008 (4)
O30.044 (11)0.036 (4)0.058 (4)0.003 (7)0.007 (7)0.002 (3)
N130.09 (9)0.042 (5)0.039 (5)0.011 (15)0.027 (12)0.011 (4)
O1W0.069 (4)0.066 (3)0.071 (3)0.000 (2)0.005 (2)0.001 (2)
N30.048 (11)0.046 (5)0.044 (5)0.002 (8)0.003 (8)0.006 (4)
O2W0.070 (12)0.057 (7)0.087 (8)0.0000.006 (8)0.000
C10.025 (6)0.022 (3)0.028 (4)0.000 (4)0.002 (4)0.006 (3)
C40.027 (4)0.027 (4)0.027 (4)0.0002 (11)0.0014 (11)0.0002 (11)
C110.036 (8)0.037 (6)0.036 (6)0.001 (4)0.001 (4)0.000 (4)
C140.12 (12)0.021 (6)0.034 (7)0.002 (14)0.010 (16)0.004 (5)
C120.041 (6)0.040 (4)0.042 (4)0.001 (4)0.002 (4)0.002 (4)
C130.031 (6)0.032 (4)0.030 (4)0.001 (4)0.003 (4)0.001 (3)
C30.039 (7)0.036 (5)0.042 (5)0.001 (4)0.001 (4)0.003 (3)
C20.031 (6)0.032 (4)0.031 (4)0.001 (4)0.002 (4)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.90 (2)O1W—H1WB0.8377
Zn1—O111.922 (9)N3—C31.44 (4)
Zn1—O11.93 (2)N3—H3A0.8900
Zn1—O14ii1.967 (8)N3—H3B0.8900
O4—C41.25 (4)N3—H3C0.8900
O4—Zn1i1.90 (2)O2W—H2W0.85 (5)
O2—C11.25 (2)C1—C21.533 (14)
O1—C11.27 (3)C4—C31.58 (4)
O14—C141.22 (3)C11—C121.49 (3)
O14—Zn1ii1.967 (8)C14—C131.563 (14)
O11—C111.32 (3)C12—C131.54 (5)
O13—C141.24 (3)C12—H12A0.9700
O12—C111.26 (4)C12—H12B0.9700
O3—C41.31 (2)C13—H130.9800
N13—C131.52 (4)C3—C21.509 (17)
N13—H13A0.8900C3—H30.9800
N13—H13B0.8900C2—H2A0.9700
N13—H13C0.8900C2—H2B0.9700
O1W—H1WA0.8366
O4i—Zn1—O11107.1 (8)O12—C11—C12119 (3)
O4i—Zn1—O198.1 (8)O11—C11—C12115 (3)
O11—Zn1—O1110.6 (6)O14—C14—O13124.4 (13)
O4i—Zn1—O14ii101.0 (7)O14—C14—C13117 (2)
O11—Zn1—O14ii116.3 (4)O13—C14—C13118 (3)
O1—Zn1—O14ii120.5 (7)C11—C12—C13113.8 (19)
C4—O4—Zn1i121.0 (11)C11—C12—H12A108.8
C1—O1—Zn1135.9 (9)C13—C12—H12A108.8
C14—O14—Zn1ii108.1 (13)C11—C12—H12B108.8
C11—O11—Zn1127 (2)C13—C12—H12B108.8
C13—N13—H13A109.5H12A—C12—H12B107.7
C13—N13—H13B109.5N13—C13—C12114.4 (13)
H13A—N13—H13B109.5N13—C13—C14108.6 (18)
C13—N13—H13C109.5C12—C13—C14112 (3)
H13A—N13—H13C109.5N13—C13—H13107.2
H13B—N13—H13C109.5C12—C13—H13107.2
H1WA—O1W—H1WB104.4C14—C13—H13107.2
C3—N3—H3A109.5N3—C3—C2110.8 (19)
C3—N3—H3B109.5N3—C3—C4109.5 (16)
H3A—N3—H3B109.5C2—C3—C4112 (2)
C3—N3—H3C109.5N3—C3—H3108.2
H3A—N3—H3C109.5C2—C3—H3108.2
H3B—N3—H3C109.5C4—C3—H3108.2
O2—C1—O1124.1 (11)C3—C2—C1114.6 (8)
O2—C1—C2117 (2)C3—C2—H2A108.6
O1—C1—C2118.6 (15)C1—C2—H2A108.6
O4—C4—O3133 (2)C3—C2—H2B108.6
O4—C4—C3116.6 (16)C1—C2—H2B108.6
O3—C4—C3110 (3)H2A—C2—H2B107.6
O12—C11—O11126 (2)
C1—C2—C3—N373 (3)C11—C12—C13—C1456 (2)
C1—C2—C3—C450 (3)N13—C13—C14—O1311 (2)
N3—C3—C4—O332.7 (15)O12—C11—C12—C13155 (2)
O2—C1—C2—C331 (3)Zn1—O1—C1—C218 (3)
C11—C12—C13—N1368 (2)Zn1—O11—C11—C12171.4 (9)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_1_15GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.985 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.005 (3) ÅCell parameters from 332 reflections
b = 10.4707 (8) Åθ = 0.7–0.9°
c = 14.2629 (10) ŵ = 2.12 mm1
β = 93.08 (3)°T = 296 K
V = 2386.8 (5) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.070
Radiation source: sealed x-ray tubeθmax = 27.0°, θmin = 3.7°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 3.74, Tmax = 27.015l = 1817
4732 measured reflections12 standard reflections every 84 reflections
436 independent reflections intensity decay: none
332 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0394P)2 + 10.5512P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
436 reflectionsΔρmax = 0.16 e Å3
196 parametersΔρmin = 0.14 e Å3
134 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.15 (2) GPa (1150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7342 (4)0.50578 (9)0.45238 (7)0.031 (2)
O40.681 (3)0.8672 (9)0.5518 (7)0.043 (4)
O20.5417 (16)0.7615 (6)0.3992 (4)0.034 (5)
O10.641 (3)0.6084 (7)0.4066 (5)0.036 (3)
O140.752 (2)0.0453 (8)0.4140 (5)0.050 (3)
O110.755 (2)0.3781 (7)0.3600 (5)0.051 (3)
O130.869 (2)0.1410 (7)0.4583 (5)0.044 (5)
O120.628 (3)0.3387 (12)0.2978 (9)0.055 (6)
O30.570 (2)1.0080 (6)0.5850 (5)0.044 (5)
N130.890 (2)0.2487 (7)0.2914 (5)0.035 (5)
H13A0.9020480.2606480.2316800.042*
H13B0.9354790.2183200.3232160.042*
H13C0.8756450.3227450.3162860.042*
O1W0.600 (2)0.9877 (11)0.3208 (6)0.065 (5)
H1WA0.6479460.9864750.3494580.097*
H1WB0.5714820.9324920.3492690.097*
N30.463 (3)0.8190 (11)0.5690 (7)0.044 (5)
H3A0.4580110.8297160.5070560.053*
H3B0.4500150.8912530.5974710.053*
H3C0.4292010.7568770.5858290.053*
O2W0.5000000.5222 (15)0.2500000.065 (6)
H2W0.5578460.4863940.2530830.16 (10)*
C10.583 (3)0.6792 (10)0.4439 (7)0.029 (3)
C40.607 (5)0.9000 (12)0.5722 (9)0.023 (4)
C110.697 (4)0.3184 (17)0.3063 (12)0.029 (5)
C140.814 (3)0.1144 (10)0.3988 (8)0.030 (4)
C120.739 (4)0.2082 (10)0.2522 (8)0.037 (4)
H12A0.6993870.1383670.2451080.044*
H12B0.7496270.2386990.1897130.044*
C130.820 (3)0.1557 (9)0.2963 (7)0.029 (3)
H130.8351050.0799550.2603900.035*
C30.548 (3)0.7853 (11)0.5958 (9)0.037 (5)
H30.5522120.7715230.6638080.045*
C20.573 (2)0.6632 (8)0.5485 (6)0.029 (3)
H2A0.5300700.5990400.5578090.035*
H2B0.6247610.6325690.5780070.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.034 (6)0.0293 (7)0.0294 (7)0.0005 (18)0.0040 (17)0.0008 (5)
O40.043 (7)0.038 (4)0.048 (4)0.003 (5)0.002 (5)0.005 (3)
O20.034 (13)0.033 (3)0.035 (3)0.001 (7)0.010 (7)0.005 (3)
O10.036 (7)0.038 (3)0.034 (3)0.001 (5)0.000 (5)0.001 (3)
O140.050 (7)0.053 (4)0.048 (4)0.000 (5)0.004 (5)0.007 (3)
O110.051 (7)0.048 (3)0.055 (4)0.000 (5)0.003 (5)0.020 (3)
O130.043 (13)0.053 (4)0.036 (4)0.003 (9)0.006 (9)0.002 (3)
O120.054 (14)0.056 (7)0.054 (6)0.003 (10)0.001 (10)0.004 (4)
O30.044 (13)0.036 (4)0.054 (4)0.005 (8)0.010 (9)0.001 (3)
N130.035 (13)0.038 (4)0.034 (4)0.001 (9)0.016 (9)0.007 (4)
O1W0.066 (13)0.050 (4)0.081 (6)0.001 (8)0.022 (9)0.010 (4)
N30.045 (13)0.043 (6)0.043 (5)0.000 (10)0.006 (9)0.004 (4)
O2W0.063 (14)0.049 (6)0.084 (8)0.0000.001 (10)0.000
C10.029 (7)0.031 (4)0.027 (4)0.001 (5)0.001 (5)0.001 (3)
C40.023 (7)0.023 (5)0.025 (4)0.001 (5)0.003 (5)0.001 (4)
C110.028 (8)0.028 (6)0.029 (6)0.001 (5)0.001 (5)0.002 (4)
C140.030 (7)0.027 (4)0.034 (4)0.000 (5)0.001 (5)0.000 (4)
C120.037 (7)0.039 (4)0.035 (4)0.001 (5)0.003 (5)0.000 (4)
C130.029 (7)0.030 (4)0.029 (4)0.002 (5)0.003 (5)0.001 (3)
C30.037 (8)0.038 (5)0.037 (5)0.001 (5)0.002 (5)0.001 (4)
C20.029 (7)0.028 (4)0.031 (4)0.002 (5)0.001 (5)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.90 (4)N3—H3A0.8900
Zn1—O11.92 (4)N3—H3B0.8900
Zn1—O14ii1.981 (8)N3—H3C0.8900
Zn1—O111.918 (9)N3—C31.43 (5)
O4—C41.28 (9)O2W—H2W0.9976
O2—C11.24 (3)C1—C21.518 (16)
O1—C11.32 (5)C4—C31.58 (6)
O14—C141.26 (5)C11—C121.56 (4)
O11—C111.33 (4)C14—C131.534 (15)
O13—C141.23 (5)C12—H12A0.9700
O12—C111.13 (9)C12—H12B0.9700
O3—C41.29 (4)C12—C131.52 (6)
N13—H13A0.8900C13—H130.9800
N13—H13B0.8900C3—H30.9800
N13—H13C0.8900C3—C21.51 (2)
N13—C131.49 (4)C2—H2A0.9700
O1W—H1WA0.8521C2—H2B0.9600
O1W—H1WB0.8511
O4i—Zn1—O198.0 (14)O12—C11—O11129 (2)
O4i—Zn1—O14ii100.0 (9)O12—C11—C12122 (3)
O4i—Zn1—O11108.5 (11)O14—C14—C13115 (3)
O1—Zn1—O14ii121.7 (9)O13—C14—O14124.2 (15)
O11—Zn1—O1108.4 (8)O13—C14—C13121 (4)
O11—Zn1—O14ii117.2 (4)C11—C12—H12A108.2
C4—O4—Zn1i119.2 (14)C11—C12—H12B108.2
C1—O1—Zn1136.4 (11)H12A—C12—H12B107.3
C14—O14—Zn1ii105.6 (17)C13—C12—C11116 (2)
C11—O11—Zn1126 (2)C13—C12—H12A108.2
H13A—N13—H13B109.5C13—C12—H12B108.2
H13A—N13—H13C109.5N13—C13—C14109 (2)
H13B—N13—H13C109.5N13—C13—C12112.0 (16)
C13—N13—H13A109.5N13—C13—H13107.5
C13—N13—H13B109.5C14—C13—H13107.5
C13—N13—H13C109.5C12—C13—C14113 (3)
H1WA—O1W—H1WB104.6C12—C13—H13107.5
H3A—N3—H3B109.5N3—C3—C4109 (3)
H3A—N3—H3C109.5N3—C3—H3108.2
H3B—N3—H3C109.5N3—C3—C2111 (2)
C3—N3—H3A109.5C4—C3—H3108.2
C3—N3—H3B109.5C2—C3—C4112 (3)
C3—N3—H3C109.5C2—C3—H3108.2
O2—C1—O1123.2 (14)C1—C2—H2A109.0
O2—C1—C2120 (3)C1—C2—H2B109.0
O1—C1—C2117 (2)C3—C2—C1113.0 (10)
O4—C4—O3135 (4)C3—C2—H2A109.0
O4—C4—C3115 (2)C3—C2—H2B109.0
O3—C4—C3111 (5)H2A—C2—H2B107.8
O11—C11—C12109 (4)
Zn1—O1—C1—C214 (5)N3—C3—C4—O335 (2)
Zn1—O11—C11—C12171.5 (10)C1—C2—C3—N371 (4)
O2—C1—C2—C329 (5)C1—C2—C3—C451 (4)
O12—C11—C12—C13156 (3)C11—C12—C13—N1370 (3)
N13—C13—C14—O1312 (3)C11—C12—C13—C1453 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_1_44GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 1.992 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.950 (3) ÅCell parameters from 333 reflections
b = 10.4707 (8) Åθ = 3.7–27.0°
c = 14.2629 (10) ŵ = 2.12 mm1
β = 93.08 (3)°T = 296 K
V = 2378.6 (5) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.063
Radiation source: sealed x-ray tubeθmax = 27.0°, θmin = 3.7°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.689, Tmax = 0.899l = 1817
4750 measured reflections12 standard reflections every 84 reflections
437 independent reflections intensity decay: none
333 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0398P)2 + 8.8556P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
437 reflectionsΔρmax = 0.16 e Å3
196 parametersΔρmin = 0.14 e Å3
110 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.44 (2) GPa (1440000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7344 (3)0.50578 (9)0.45237 (7)0.048 (7)
O40.680 (3)0.8673 (10)0.5517 (7)0.043 (4)
O20.5414 (16)0.7614 (6)0.3991 (4)0.035 (5)
O10.642 (3)0.6084 (7)0.4066 (5)0.036 (3)
O140.751 (2)0.0454 (8)0.4140 (5)0.051 (3)
O110.756 (2)0.3780 (6)0.3602 (5)0.053 (3)
O130.870 (3)0.1410 (7)0.4583 (5)0.043 (5)
O120.628 (3)0.3390 (14)0.2981 (9)0.058 (7)
O30.571 (2)1.0081 (6)0.5856 (5)0.044 (5)
N130.890 (2)0.2491 (8)0.2913 (5)0.036 (5)
H13A0.9020110.2612590.2315970.043*
H13B0.9358500.2192950.3231090.043*
H13C0.8752330.3229690.3162290.043*
O1W0.599 (2)0.9876 (13)0.3209 (8)0.066 (5)
H1WA0.6477660.9877090.3452640.090*
H1WB0.5735200.9350270.3525380.090*
N30.462 (3)0.8194 (12)0.5692 (7)0.044 (5)
H3A0.4558520.8322360.5075210.053*
H3B0.4478510.8902810.5991690.053*
H3C0.43440.75410.57660.044*
O2W0.5000000.5222 (15)0.2500000.066 (7)
H2W0.558 (6)0.487 (11)0.250 (14)0.09 (9)*
C10.584 (4)0.6789 (10)0.4439 (7)0.05 (7)
C40.607 (5)0.9002 (12)0.5722 (9)0.023 (4)
C110.695 (5)0.3182 (18)0.3057 (12)0.028 (5)
C140.816 (4)0.1146 (10)0.3990 (8)0.031 (4)
C120.738 (4)0.2086 (11)0.2521 (8)0.037 (4)
H12A0.6987540.1382680.2451500.045*
H12B0.7484730.2391420.1895660.045*
C130.821 (3)0.1561 (9)0.2963 (7)0.03 (4)
H130.8362650.0806630.2600800.039*
C30.550 (4)0.7854 (11)0.5956 (9)0.038 (5)
H30.5548250.7717070.6636700.046*
C20.573 (2)0.6631 (7)0.5486 (5)0.029 (3)
H2A0.5294030.6003070.5577100.035*
H2B0.6248380.6308230.5783020.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.08 (2)0.0293 (7)0.0292 (7)0.0005 (19)0.0037 (18)0.0008 (5)
O40.043 (7)0.038 (4)0.049 (5)0.003 (5)0.002 (5)0.006 (3)
O20.035 (13)0.034 (3)0.035 (3)0.000 (7)0.010 (7)0.006 (3)
O10.036 (7)0.038 (3)0.034 (3)0.002 (5)0.001 (5)0.002 (3)
O140.051 (7)0.054 (4)0.048 (4)0.000 (5)0.005 (5)0.007 (3)
O110.053 (7)0.050 (3)0.056 (4)0.001 (5)0.002 (5)0.020 (3)
O130.042 (13)0.052 (4)0.036 (4)0.001 (9)0.005 (9)0.001 (3)
O120.058 (14)0.059 (7)0.058 (7)0.003 (10)0.000 (10)0.004 (5)
O30.044 (13)0.039 (4)0.050 (4)0.007 (8)0.013 (9)0.001 (3)
N130.036 (13)0.036 (4)0.036 (4)0.001 (9)0.016 (9)0.008 (4)
O1W0.067 (13)0.050 (4)0.083 (6)0.002 (8)0.020 (9)0.010 (4)
N30.046 (13)0.043 (5)0.045 (5)0.000 (10)0.006 (9)0.005 (5)
O2W0.064 (14)0.048 (6)0.086 (8)0.0000.001 (10)0.000
C10.1 (2)0.034 (6)0.025 (5)0.02 (2)0.01 (2)0.003 (4)
C40.023 (7)0.022 (5)0.025 (4)0.002 (5)0.002 (5)0.001 (4)
C110.028 (8)0.028 (5)0.029 (6)0.001 (5)0.002 (5)0.002 (4)
C140.031 (7)0.027 (4)0.034 (4)0.000 (5)0.001 (5)0.000 (4)
C120.037 (7)0.038 (4)0.037 (4)0.000 (5)0.003 (5)0.000 (4)
C130.04 (12)0.032 (5)0.029 (5)0.021 (17)0.009 (16)0.001 (4)
C30.038 (8)0.038 (5)0.038 (5)0.001 (5)0.002 (5)0.000 (4)
C20.028 (7)0.027 (3)0.031 (4)0.003 (5)0.002 (5)0.002 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.91 (4)N3—H3A0.8900
Zn1—O11.91 (4)N3—H3B0.8900
Zn1—O14ii1.981 (8)N3—H3C0.8200
Zn1—O111.919 (9)N3—C31.48 (8)
O4—C41.26 (9)O2W—H2W0.99 (6)
O2—C11.25 (3)C1—C21.523 (16)
O1—C11.31 (5)C4—C31.55 (6)
O14—C141.29 (5)C11—C121.56 (5)
O11—C111.36 (5)C14—C131.535 (15)
O13—C141.21 (5)C12—H12A0.9700
O12—C111.09 (11)C12—H12B0.9700
O3—C41.29 (4)C12—C131.54 (6)
N13—H13A0.8900C13—H130.9800
N13—H13B0.8900C3—H30.9800
N13—H13C0.8900C3—C21.50 (2)
N13—C131.48 (4)C2—H2A0.9700
O1W—H1WA0.8323C2—H2B0.9700
O1W—H1WB0.8325
O4i—Zn1—O198.1 (14)O12—C11—O11129 (3)
O4i—Zn1—O14ii99.8 (9)O12—C11—C12124 (4)
O4i—Zn1—O11108.1 (11)O14—C14—C13114 (3)
O1—Zn1—O14ii121.9 (9)O13—C14—O14124.2 (16)
O1—Zn1—O11108.7 (8)O13—C14—C13122 (4)
O11—Zn1—O14ii117.0 (4)C11—C12—H12A108.0
C4—O4—Zn1i119.1 (16)C11—C12—H12B108.0
C1—O1—Zn1136.3 (11)H12A—C12—H12B107.3
C14—O14—Zn1ii105.0 (16)C13—C12—C11117 (3)
C11—O11—Zn1124 (3)C13—C12—H12A108.0
H13A—N13—H13B109.5C13—C12—H12B108.0
H13A—N13—H13C109.5N13—C13—C14108 (3)
H13B—N13—H13C109.5N13—C13—C12112.0 (16)
C13—N13—H13A109.5N13—C13—H13107.6
C13—N13—H13B109.5C14—C13—C12114 (3)
C13—N13—H13C109.5C14—C13—H13107.6
H1WA—O1W—H1WB104.4C12—C13—H13107.6
H3A—N3—H3B109.5N3—C3—C4109 (3)
H3A—N3—H3C103.0N3—C3—H3108.1
H3B—N3—H3C119.0N3—C3—C2110 (3)
C3—N3—H3A109.5C4—C3—H3108.1
C3—N3—H3B109.5C2—C3—C4114 (4)
C3—N3—H3C106.0C2—C3—H3108.1
O2—C1—O1123.6 (14)C1—C2—H2A109.0
O2—C1—C2119 (3)C1—C2—H2B109.0
O1—C1—C2117 (2)C3—C2—C1112.9 (10)
O4—C4—O3135 (5)C3—C2—H2A109.0
O4—C4—C3113 (2)C3—C2—H2B109.0
O3—C4—C3112 (5)H2A—C2—H2B107.8
O11—C11—C12108 (5)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_1_62GPa) top
Crystal data top
C16H30N4O19Zn2F(000) = 1464
Mr = 713.18Dx = 1.999 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.916 (5) ÅCell parameters from 316 reflections
b = 10.4593 (12) Åθ = 3.8–27.0°
c = 14.2566 (15) ŵ = 2.13 mm1
β = 93.09 (4)°T = 296 K
V = 2369.9 (8) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Radiation source: fine-focus sealed tubeRint = 0.101
Graphite monochromatorθmax = 27.0°, θmin = 3.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.688, Tmax = 0.969l = 1817
4699 measured reflections12 standard reflections every 84 reflections
433 independent reflections intensity decay: none
316 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.3086P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
433 reflectionsΔρmax = 0.15 e Å3
196 parametersΔρmin = 0.15 e Å3
138 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.62 (2) GPa (1620000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7346 (4)0.50574 (9)0.45275 (7)0.050 (8)
O40.685 (3)0.8658 (10)0.5525 (8)0.047 (6)
O20.5414 (15)0.7599 (6)0.3991 (4)0.040 (9)
O10.641 (3)0.6082 (7)0.4068 (5)0.042 (5)
O140.749 (2)0.0450 (9)0.4137 (5)0.052 (5)
O110.7560 (19)0.3781 (7)0.3604 (5)0.059 (5)
O130.867 (2)0.1406 (7)0.4584 (5)0.043 (9)
O120.625 (2)0.3381 (14)0.2979 (11)0.056 (10)
O30.568 (2)1.0089 (6)0.5857 (6)0.048 (9)
N130.890 (3)0.2486 (7)0.2908 (5)0.037 (4)
H13A0.89440.27350.23150.045*
H13B0.93810.21100.31100.045*
H13C0.88090.31630.32650.045*
O1W0.597 (3)0.9887 (11)0.3191 (7)0.071 (5)
H1WB0.55950.94110.34060.107*
H1WA0.64100.97320.35410.107*
N30.463 (2)0.8212 (11)0.5690 (7)0.042 (5)
H3A0.46040.83830.50780.051*
H3B0.45020.89100.60080.051*
H3C0.43440.75410.57660.044*
O2W0.50000.5233 (17)0.25000.067 (6)
C10.580 (3)0.6799 (11)0.4446 (7)0.034 (5)
C40.607 (3)0.9015 (12)0.5701 (10)0.028 (6)
C110.702 (2)0.321 (2)0.3052 (16)0.033 (7)
C140.810 (4)0.1150 (12)0.3972 (8)0.034 (5)
C130.819 (3)0.1562 (9)0.2963 (7)0.033 (5)
H130.83370.07990.26060.040*
C30.543 (2)0.7830 (11)0.5962 (9)0.040 (6)
H30.54670.77020.66440.048*
C120.740 (3)0.2090 (10)0.2512 (8)0.038 (5)
H12A0.69900.14090.24480.046*
H12B0.75170.23810.18860.046*
C20.573 (2)0.6610 (7)0.5488 (5)0.032 (5)
H2A0.62680.63560.57730.039*
H2B0.53290.59280.55890.039*
H2W0.549 (6)0.486 (10)0.251 (13)0.10 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.08 (2)0.0331 (8)0.0311 (8)0.0017 (19)0.005 (2)0.0008 (5)
O40.047 (14)0.034 (5)0.059 (6)0.011 (10)0.001 (10)0.005 (4)
O20.04 (3)0.038 (4)0.040 (3)0.000 (9)0.026 (9)0.005 (3)
O10.042 (14)0.044 (4)0.038 (4)0.000 (9)0.008 (9)0.004 (3)
O140.052 (14)0.057 (4)0.046 (4)0.009 (9)0.007 (9)0.014 (4)
O110.061 (14)0.052 (4)0.066 (4)0.002 (8)0.010 (9)0.023 (4)
O130.03 (3)0.054 (4)0.039 (4)0.016 (12)0.007 (12)0.005 (3)
O120.05 (3)0.070 (8)0.052 (7)0.007 (16)0.002 (16)0.015 (5)
O30.05 (3)0.039 (4)0.060 (4)0.015 (10)0.026 (14)0.006 (3)
N130.038 (10)0.036 (4)0.040 (4)0.000 (8)0.010 (7)0.006 (3)
O1W0.073 (11)0.057 (5)0.086 (5)0.003 (7)0.023 (8)0.009 (4)
N30.043 (11)0.040 (5)0.045 (5)0.008 (8)0.007 (8)0.002 (4)
O2W0.065 (12)0.050 (6)0.087 (8)0.0000.002 (9)0.000
C10.036 (14)0.036 (5)0.031 (5)0.001 (10)0.000 (10)0.001 (4)
C40.027 (14)0.022 (6)0.035 (6)0.001 (10)0.012 (10)0.003 (5)
C110.031 (15)0.030 (7)0.037 (8)0.003 (11)0.001 (11)0.007 (5)
C140.034 (14)0.034 (6)0.036 (5)0.001 (10)0.009 (10)0.005 (5)
C130.033 (14)0.036 (5)0.032 (5)0.003 (10)0.008 (9)0.004 (4)
C30.042 (14)0.040 (6)0.040 (6)0.012 (10)0.001 (10)0.001 (5)
C120.038 (14)0.037 (5)0.040 (5)0.001 (10)0.006 (10)0.004 (4)
C20.032 (14)0.033 (4)0.032 (4)0.004 (9)0.002 (9)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.85 (3)O1W—H1WA0.8502
Zn1—O111.919 (9)N3—C31.371 (11)
Zn1—O11.92 (3)N3—H3A0.8900
Zn1—O14ii1.980 (8)N3—H3B0.8900
O4—C41.340 (11)N3—H3C0.8500
O4—Zn1i1.85 (3)O2W—H2W0.87 (5)
O2—C11.21 (3)C1—C21.510 (14)
O1—C11.35 (4)C4—C31.66 (4)
O14—C141.25 (5)C11—C121.54 (4)
O14—Zn1ii1.980 (8)C14—C131.516 (16)
O11—C111.28 (3)C13—C121.48 (6)
O13—C141.25 (5)C13—H130.9800
O12—C111.238 (11)C3—C21.529 (19)
O3—C41.31 (3)C3—H30.9800
N13—C131.49 (5)C12—H12A0.9700
N13—H13A0.8900C12—H12B0.9700
N13—H13B0.8900C2—H2A0.9700
N13—H13C0.8900C2—H2B0.9700
O1W—H1WB0.8500
O4i—Zn1—O11109.2 (10)O12—C11—C12119 (3)
O4i—Zn1—O196.0 (10)O11—C11—C12113 (3)
O11—Zn1—O1108.5 (8)O13—C14—O14122.3 (14)
O4i—Zn1—O14ii100.3 (8)O13—C14—C13120 (4)
O11—Zn1—O14ii117.0 (5)O14—C14—C13117 (3)
O1—Zn1—O14ii122.4 (9)C12—C13—N13111.2 (16)
C4—O4—Zn1i117.0 (13)C12—C13—C14113 (3)
C1—O1—Zn1136.7 (11)N13—C13—C14110 (3)
C14—O14—Zn1ii105.9 (17)C12—C13—H13107.3
C11—O11—Zn1128 (2)N13—C13—H13107.3
C13—N13—H13A109.5C14—C13—H13107.3
C13—N13—H13B109.5N3—C3—C2114.8 (19)
H13A—N13—H13B109.5N3—C3—C4106.8 (18)
C13—N13—H13C109.5C2—C3—C4109 (2)
H13A—N13—H13C109.5N3—C3—H3108.8
H13B—N13—H13C109.5C2—C3—H3108.8
H1WB—O1W—H1WA104.5C4—C3—H3108.8
C3—N3—H3A109.5C13—C12—C11114.4 (18)
C3—N3—H3B109.5C13—C12—H12A108.7
H3A—N3—H3B109.5C11—C12—H12A108.7
C3—N3—H3C103.0C13—C12—H12B108.7
H3A—N3—H3C107.0C11—C12—H12B108.7
H3B—N3—H3C118.0H12A—C12—H12B107.6
O2—C1—O1121.6 (13)C1—C2—C3111.7 (10)
O2—C1—C2123 (2)C1—C2—H2A109.3
O1—C1—C2115 (2)C3—C2—H2A109.3
O3—C4—O4136 (2)C1—C2—H2B109.3
O3—C4—C3108 (3)C3—C2—H2B109.3
O4—C4—C3115.0 (19)H2A—C2—H2B107.9
O12—C11—O11128 (3)
C1—C2—C3—N366 (3)N13—C13—C14—O1312 (3)
C1—C2—C3—C454 (4)O12—C11—C12—C13152 (3)
N3—C3—C4—O336.8 (14)Zn1—O1—C1—C213 (5)
O2—C1—C2—C325 (5)Zn1—O11—C11—C12170.9 (9)
C11—C12—C13—N1370 (2)Zn1—O4i—C4i—C3i167.6 (10)
C11—C12—C13—C1455 (3)Zn1—O14ii—C14ii—C13ii173.5 (19)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_1_82GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.021 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.819 (4) ÅCell parameters from 332 reflections
b = 10.4316 (10) Åθ = 3.8–27.0°
c = 14.2229 (13) ŵ = 2.15 mm1
β = 93.03 (3)°T = 296 K
V = 2343.8 (6) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.068
Radiation source: sealed x-ray tubeθmax = 27.0°, θmin = 3.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.685, Tmax = 0.898l = 1717
4678 measured reflections12 standard reflections every 84 reflections
429 independent reflections intensity decay: none
332 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0472P)2 + 6.8691P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
429 reflectionsΔρmax = 0.14 e Å3
196 parametersΔρmin = 0.18 e Å3
130 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.82 (2) GPa (1820000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7344 (3)0.50599 (9)0.45303 (6)0.0301 (19)
O40.683 (3)0.8665 (8)0.5511 (6)0.037 (3)
O20.5420 (15)0.7604 (5)0.3999 (4)0.034 (4)
O10.640 (2)0.6081 (6)0.4072 (4)0.036 (3)
O140.7485 (18)0.0441 (7)0.4128 (5)0.048 (3)
O110.7563 (19)0.3787 (6)0.3593 (4)0.050 (3)
O130.870 (2)0.1402 (6)0.4581 (5)0.042 (4)
O120.629 (3)0.3409 (12)0.2980 (8)0.053 (6)
O30.5727 (19)1.0083 (5)0.5852 (5)0.043 (4)
N130.892 (2)0.2472 (7)0.2906 (5)0.032 (4)
H13A0.90630.25450.23120.039*
H13B0.93590.21870.32610.039*
H13C0.87610.32340.31170.039*
O1W0.593 (2)0.9883 (10)0.3171 (9)0.066 (5)
H1WA0.65230.97470.34050.099*
H1WB0.57710.94190.36590.099*
N30.459 (2)0.8194 (10)0.5680 (6)0.044 (5)
H3A0.45460.83420.50630.053*
H3B0.44440.88970.59870.053*
H3C0.42450.75540.58190.053*
O2W0.50000.5238 (12)0.25000.054 (5)
C10.580 (3)0.6788 (9)0.4444 (6)0.031 (3)
C40.605 (4)0.8995 (11)0.5730 (8)0.023 (4)
C110.698 (4)0.3174 (15)0.3046 (10)0.024 (4)
C140.810 (3)0.1132 (9)0.3981 (7)0.027 (3)
C130.820 (3)0.1544 (8)0.2955 (6)0.029 (3)
H130.83400.07790.25960.034*
C30.547 (2)0.7844 (10)0.5962 (8)0.030 (4)
H30.55060.77090.66440.036*
C120.740 (3)0.2093 (8)0.2512 (6)0.029 (3)
H12A0.69880.14030.24260.034*
H12B0.75150.24080.18910.034*
C20.570 (2)0.6619 (7)0.5493 (5)0.028 (3)
H2A0.52660.59830.55910.034*
H2B0.62280.63020.57820.034*
H2W0.547 (6)0.483 (10)0.257 (17)0.16 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.033 (6)0.0294 (7)0.0274 (6)0.0010 (16)0.0029 (15)0.0006 (4)
O40.037 (6)0.035 (3)0.040 (4)0.003 (5)0.002 (5)0.004 (3)
O20.032 (12)0.033 (3)0.035 (3)0.002 (7)0.008 (6)0.003 (3)
O10.036 (6)0.038 (3)0.034 (3)0.001 (4)0.001 (4)0.000 (3)
O140.048 (6)0.049 (3)0.046 (3)0.002 (4)0.003 (4)0.011 (3)
O110.050 (6)0.047 (3)0.053 (3)0.000 (4)0.002 (4)0.019 (3)
O130.040 (12)0.049 (4)0.037 (3)0.003 (8)0.000 (8)0.003 (3)
O120.052 (12)0.049 (6)0.056 (6)0.001 (8)0.001 (8)0.008 (4)
O30.043 (12)0.032 (3)0.055 (3)0.002 (7)0.005 (8)0.000 (3)
N130.032 (12)0.036 (4)0.029 (4)0.000 (8)0.008 (7)0.007 (3)
O1W0.067 (12)0.052 (4)0.082 (6)0.002 (8)0.029 (8)0.013 (4)
N30.045 (12)0.043 (5)0.045 (5)0.004 (8)0.003 (8)0.010 (4)
O2W0.053 (12)0.038 (5)0.071 (6)0.0000.005 (9)0.000
C10.032 (6)0.031 (4)0.031 (4)0.002 (5)0.001 (5)0.000 (3)
C40.023 (7)0.024 (4)0.022 (4)0.001 (5)0.001 (5)0.002 (3)
C110.024 (7)0.025 (5)0.023 (5)0.001 (5)0.002 (5)0.002 (3)
C140.027 (6)0.023 (4)0.032 (4)0.001 (5)0.003 (5)0.002 (3)
C130.029 (6)0.031 (4)0.027 (3)0.001 (5)0.002 (4)0.003 (3)
C30.030 (7)0.031 (4)0.029 (4)0.000 (5)0.002 (5)0.002 (3)
C120.029 (6)0.030 (3)0.027 (3)0.000 (5)0.001 (5)0.001 (3)
C20.028 (6)0.026 (3)0.030 (3)0.000 (4)0.001 (5)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.87 (4)N3—H3A0.8900
Zn1—O11.92 (4)N3—H3B0.8900
Zn1—O14ii1.983 (8)N3—H3C0.8900
Zn1—O111.926 (9)N3—C31.47 (5)
Zn1—C14ii2.584 (19)O2W—H2W0.86 (6)
O4—C41.33 (8)O2W—H2Wiii0.86 (6)
O2—C11.20 (3)C1—C21.518 (16)
O1—C11.34 (5)C4—C31.56 (4)
O14—C141.24 (5)C11—C121.53 (5)
O11—C111.34 (5)C14—C131.536 (16)
O13—C141.27 (5)C13—H130.9800
O12—C111.12 (10)C13—C121.50 (6)
O3—C41.26 (3)C3—H30.9800
N13—H13A0.8900C3—C21.497 (19)
N13—H13B0.8900C12—H12A0.9700
N13—H13C0.8900C12—H12B0.9700
N13—C131.50 (5)C2—H2A0.9700
O1W—H1WA0.9959C2—H2B0.9700
O1W—H1WB0.8901
O4i—Zn1—O197.4 (14)O11—C11—C12110 (5)
O4i—Zn1—O14ii99.0 (9)O12—C11—O11126 (2)
O4i—Zn1—O11108.4 (11)O12—C11—C12124 (4)
O4i—Zn1—C14ii126.1 (9)O14—C14—Zn1ii48.1 (8)
O1—Zn1—O14ii122.5 (9)O14—C14—O13125.4 (14)
O1—Zn1—O11108.2 (8)O14—C14—C13116 (3)
O1—Zn1—C14ii107.8 (10)O13—C14—Zn1ii77.4 (10)
O14ii—Zn1—C14ii27.6 (13)O13—C14—C13118 (4)
O11—Zn1—O14ii117.7 (5)C13—C14—Zn1ii163 (2)
O11—Zn1—C14ii107.6 (4)N13—C13—C14110 (3)
C4—O4—Zn1i118.8 (12)N13—C13—H13107.7
C1—O1—Zn1136.9 (11)N13—C13—C12111.3 (17)
C14—O14—Zn1ii104.3 (17)C14—C13—H13107.7
C11—O11—Zn1126 (3)C12—C13—C14112 (3)
H13A—N13—H13B109.5C12—C13—H13107.7
H13A—N13—H13C109.5N3—C3—C4108 (2)
H13B—N13—H13C109.5N3—C3—H3108.3
C13—N13—H13A109.5N3—C3—C2110 (2)
C13—N13—H13B109.5C4—C3—H3108.3
C13—N13—H13C109.5C2—C3—C4114 (3)
H1WA—O1W—H1WB87.5C2—C3—H3108.3
H3A—N3—H3B109.5C11—C12—H12A108.1
H3A—N3—H3C109.5C11—C12—H12B108.1
H3B—N3—H3C109.5C13—C12—C11117 (3)
C3—N3—H3A109.5C13—C12—H12A108.1
C3—N3—H3B109.5C13—C12—H12B108.1
C3—N3—H3C109.5H12A—C12—H12B107.3
H2W—O2W—H2Wiii120 (10)C1—C2—H2A109.2
O2—C1—O1121.8 (16)C1—C2—H2B109.2
O2—C1—C2122 (3)C3—C2—C1112.2 (10)
O1—C1—C2116 (3)C3—C2—H2A109.2
O4—C4—C3114.5 (19)C3—C2—H2B109.2
O3—C4—O4131 (4)H2A—C2—H2B107.9
O3—C4—C3115 (4)
Zn1—O1—C1—C213 (5)N3—C3—C4—O336 (2)
Zn1—O11—C11—C12170.9 (11)C1—C2—C3—N371 (4)
O2—C1—C2—C327 (5)C1—C2—C3—C450 (4)
O12—C11—C12—C13154 (3)C11—C12—C13—N1371 (3)
N13—C13—C14—O1313 (3)C11—C12—C13—C1452 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1, y, z+1/2.
(Zn-aspartate_sesquihydrate_2_15GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.044 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.782 (4) ÅCell parameters from 316 reflections
b = 10.3838 (9) Åθ = 3.8–26.7°
c = 14.1615 (13) ŵ = 2.18 mm1
β = 92.99 (3)°T = 296 K
V = 2317.5 (6) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.04 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.069
Radiation source: sealed x-ray tubeθmax = 26.7°, θmin = 3.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.682, Tmax = 0.917l = 1717
4622 measured reflections12 standard reflections every 84 reflections
427 independent reflections intensity decay: none
316 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + 27.4439P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
427 reflectionsΔρmax = 0.17 e Å3
199 parametersΔρmin = 0.16 e Å3
134 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 2.15 (2) GPa (2150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7355 (4)0.50599 (11)0.45344 (7)0.039 (6)
O40.683 (2)0.8657 (8)0.5513 (6)0.040 (3)
O20.5414 (17)0.7599 (6)0.4006 (4)0.033 (4)
O10.642 (3)0.6066 (7)0.4073 (5)0.038 (3)
O140.745 (2)0.0442 (8)0.4122 (5)0.049 (3)
O110.757 (2)0.3785 (7)0.3585 (5)0.054 (3)
O130.868 (2)0.1383 (7)0.4579 (5)0.040 (4)
O120.623 (2)0.3410 (11)0.2964 (8)0.049 (6)
O30.571 (2)1.0081 (6)0.5866 (5)0.041 (4)
N130.888 (2)0.2458 (8)0.2892 (5)0.034 (4)
H13A0.90080.25690.22920.040*
H13B0.93590.22610.32820.037*
H13C0.87310.32090.31350.040*
O1W0.592 (2)0.9889 (11)0.3148 (7)0.071 (9)
H1WA0.640 (6)0.982 (17)0.343 (15)0.106*
H1WB0.560 (8)0.936 (9)0.341 (12)0.106*
N30.459 (3)0.8188 (11)0.5693 (7)0.040 (5)
H3A0.45690.85140.51110.048*
H3B0.44040.87720.60930.048*
H3C0.42620.74900.57040.048*
O2W0.50000.5236 (15)0.25000.060 (6)
C10.580 (3)0.6767 (9)0.4444 (6)0.029 (3)
C40.600 (2)0.8992 (11)0.5728 (8)0.027 (4)
C110.703 (3)0.3181 (16)0.3042 (11)0.027 (5)
C140.815 (3)0.1144 (12)0.3972 (8)0.034 (4)
C130.819 (2)0.1542 (9)0.2942 (6)0.026 (3)
H130.83380.07770.25810.031*
C30.546 (2)0.7837 (11)0.5973 (9)0.036 (4)
H30.55100.77060.66590.043*
C120.739 (3)0.2086 (9)0.2490 (7)0.030 (3)
H12A0.69710.14050.24220.036*
H12B0.75050.23900.18620.036*
C20.568 (2)0.6613 (8)0.5498 (5)0.023 (3)
H2A0.52310.59930.55860.028*
H2B0.61980.62690.57990.028*
H2W0.546 (8)0.482 (14)0.241 (12)0.10 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.058 (19)0.0298 (7)0.0269 (7)0.001 (2)0.0031 (17)0.0003 (5)
O40.040 (6)0.034 (3)0.045 (4)0.003 (4)0.000 (4)0.001 (3)
O20.033 (11)0.035 (3)0.031 (3)0.000 (7)0.004 (7)0.002 (3)
O10.038 (6)0.043 (3)0.033 (3)0.002 (4)0.000 (4)0.001 (3)
O140.049 (6)0.054 (4)0.045 (3)0.001 (4)0.003 (4)0.006 (3)
O110.054 (6)0.054 (4)0.054 (4)0.001 (4)0.004 (4)0.014 (3)
O130.039 (11)0.050 (4)0.032 (3)0.006 (8)0.002 (8)0.004 (3)
O120.049 (12)0.047 (6)0.051 (6)0.004 (8)0.002 (8)0.004 (4)
O30.042 (11)0.035 (4)0.047 (4)0.003 (7)0.010 (8)0.001 (3)
N130.033 (11)0.034 (4)0.034 (4)0.001 (8)0.009 (8)0.003 (4)
O1W0.07 (3)0.048 (5)0.096 (7)0.024 (12)0.056 (13)0.018 (5)
N30.040 (12)0.040 (5)0.038 (5)0.004 (8)0.003 (8)0.008 (4)
O2W0.058 (12)0.048 (6)0.072 (7)0.0000.001 (8)0.000
C10.029 (6)0.030 (4)0.029 (4)0.002 (5)0.002 (5)0.001 (3)
C40.027 (7)0.026 (5)0.027 (4)0.001 (5)0.003 (5)0.000 (3)
C110.027 (7)0.027 (5)0.027 (5)0.001 (5)0.002 (5)0.002 (3)
C140.034 (6)0.034 (4)0.035 (4)0.001 (5)0.002 (4)0.001 (4)
C130.025 (6)0.028 (4)0.024 (4)0.000 (4)0.002 (4)0.002 (3)
C30.036 (7)0.038 (5)0.033 (5)0.001 (5)0.001 (5)0.003 (3)
C120.030 (6)0.032 (4)0.029 (4)0.000 (5)0.001 (4)0.003 (3)
C20.023 (6)0.022 (3)0.024 (4)0.000 (4)0.001 (4)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.85 (3)O12—C111.28 (6)
Zn1—O11.90 (4)O3—C41.24 (2)
Zn1—O14ii1.981 (10)N13—C131.456 (13)
Zn1—O111.930 (11)N3—C31.46 (5)
O4—C41.400 (14)C1—C21.522 (16)
O2—C11.20 (3)C4—C31.52 (4)
O1—C11.35 (5)C11—C121.51 (4)
O14—C141.34 (6)C14—C131.521 (17)
O11—C111.29 (4)C13—C121.49 (6)
O13—C141.20 (5)C3—C21.49 (2)
O4i—Zn1—O196.9 (11)O3—C4—C3118 (3)
O4i—Zn1—O14ii98.5 (9)O11—C11—C12115 (4)
O4i—Zn1—O11108.7 (12)O12—C11—O11126 (3)
O1—Zn1—O14ii123.8 (11)O12—C11—C12120 (3)
O1—Zn1—O11107.5 (9)O14—C14—C13112 (3)
O11—Zn1—O14ii117.7 (6)O13—C14—O14123.5 (18)
C4—O4—Zn1i118.9 (12)O13—C14—C13124 (4)
C1—O1—Zn1136.9 (11)N13—C13—C14107 (2)
C14—O14—Zn1ii101.8 (19)N13—C13—C12110.6 (17)
C11—O11—Zn1128 (3)C12—C13—C14116 (3)
O2—C1—O1122.6 (16)N3—C3—C4106 (2)
O2—C1—C2120 (3)N3—C3—C2109 (2)
O1—C1—C2117 (2)C2—C3—C4115 (3)
O4—C4—C3113 (2)C13—C12—C11113 (2)
O3—C4—O4128 (2)C3—C2—C1113.2 (10)
Zn1—O1—C1—C212 (5)N3—C3—C4—O338.7 (19)
Zn1—O11—C11—C12170.3 (11)C1—C2—C3—N373 (4)
O2—C1—C2—C329 (5)C1—C2—C3—C446 (5)
O12—C11—C12—C13154 (3)C11—C12—C13—N1370 (3)
N13—C13—C14—O1311 (3)C11—C12—C13—C1453 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_2_49GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.063 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.731 (3) ÅCell parameters from 320 reflections
b = 10.3513 (6) Åθ = 3.8–26.7°
c = 14.1190 (9) ŵ = 2.20 mm1
β = 92.92 (2)°T = 296 K
V = 2296.1 (4) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.069
Radiation source: sealed x-ray tubeθmax = 26.7°, θmin = 3.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1213
Tmin = 0.680, Tmax = 0.896l = 1717
4599 measured reflections12 standard reflections every 84 reflections
424 independent reflections intensity decay: none
320 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0339P)2 + 6.1011P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
424 reflectionsΔρmax = 0.14 e Å3
199 parametersΔρmin = 0.13 e Å3
129 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 2.49 (2) GPa (2490000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7360 (3)0.50630 (9)0.45372 (6)0.040 (6)
O40.685 (2)0.8655 (8)0.5507 (6)0.040 (3)
O20.5401 (14)0.7607 (5)0.4008 (3)0.033 (4)
O10.642 (2)0.6070 (6)0.4075 (4)0.036 (3)
O140.7471 (19)0.0438 (8)0.4116 (5)0.053 (3)
O110.7581 (18)0.3799 (6)0.3580 (4)0.052 (3)
O130.8679 (19)0.1397 (6)0.4576 (4)0.041 (4)
O120.6234 (19)0.3416 (10)0.2969 (7)0.053 (6)
O30.5710 (18)1.0083 (5)0.5867 (4)0.041 (4)
N130.891 (2)0.2463 (6)0.2890 (5)0.035 (4)
H13A0.90360.25700.22880.042*
H13B0.93590.22610.32820.037*
H13C0.87640.32210.31330.042*
O1W0.588 (2)0.9893 (8)0.3129 (6)0.072 (5)
H1WA0.636 (6)0.978 (14)0.347 (13)0.098*
H1WB0.555 (6)0.936 (8)0.338 (10)0.098*
N30.461 (3)0.8194 (9)0.5691 (6)0.034 (5)
H3A0.46080.84490.51020.044*
H3B0.44270.87870.60870.041*
H3C0.43440.75410.57660.044*
O2W0.50000.5261 (11)0.25000.055 (5)
C10.583 (3)0.6778 (9)0.4455 (6)0.027 (3)
C40.598 (3)0.8988 (11)0.5724 (8)0.028 (4)
C110.702 (2)0.3200 (14)0.3029 (10)0.025 (4)
C140.811 (3)0.1132 (9)0.3974 (7)0.029 (3)
C130.818 (3)0.1541 (8)0.2939 (6)0.027 (3)
H130.83200.07690.25780.032*
C30.542 (3)0.7827 (10)0.5982 (8)0.035 (4)
H30.54450.77080.66710.042*
C120.736 (3)0.2091 (8)0.2491 (6)0.031 (3)
H12A0.74660.23740.18520.037*
H12B0.69370.14110.24440.037*
C20.569 (2)0.6591 (7)0.5511 (5)0.029 (3)
H2A0.52550.59360.55850.034*
H2B0.62120.62850.58250.034*
H2W0.542 (6)0.475 (8)0.238 (8)0.09 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.065 (17)0.0282 (6)0.0267 (6)0.0024 (17)0.0024 (15)0.0006 (4)
O40.040 (6)0.034 (3)0.045 (4)0.006 (5)0.001 (5)0.004 (3)
O20.031 (12)0.037 (3)0.030 (3)0.002 (7)0.013 (6)0.003 (2)
O10.036 (6)0.041 (3)0.029 (3)0.001 (5)0.003 (4)0.002 (2)
O140.053 (6)0.058 (3)0.047 (3)0.001 (5)0.003 (4)0.011 (3)
O110.052 (6)0.050 (3)0.055 (3)0.000 (4)0.003 (5)0.016 (3)
O130.039 (12)0.045 (3)0.038 (3)0.003 (8)0.001 (8)0.000 (3)
O120.053 (12)0.051 (6)0.056 (5)0.001 (9)0.007 (9)0.001 (4)
O30.040 (12)0.034 (3)0.048 (3)0.009 (7)0.008 (8)0.003 (3)
N130.035 (12)0.036 (4)0.034 (4)0.001 (8)0.008 (8)0.007 (3)
O1W0.074 (12)0.051 (4)0.092 (5)0.008 (7)0.028 (8)0.017 (4)
N30.034 (12)0.035 (4)0.032 (4)0.006 (8)0.002 (8)0.006 (4)
O2W0.053 (12)0.036 (5)0.076 (6)0.0000.008 (8)0.000
C10.027 (6)0.029 (4)0.026 (4)0.002 (5)0.003 (5)0.001 (3)
C40.028 (7)0.026 (4)0.031 (4)0.002 (5)0.004 (5)0.001 (3)
C110.024 (7)0.024 (5)0.025 (5)0.001 (5)0.001 (5)0.002 (3)
C140.029 (6)0.025 (4)0.033 (4)0.001 (5)0.002 (5)0.002 (3)
C130.027 (6)0.029 (3)0.025 (3)0.000 (5)0.002 (5)0.001 (3)
C30.035 (7)0.036 (5)0.034 (4)0.001 (5)0.002 (5)0.001 (3)
C120.031 (6)0.032 (3)0.030 (4)0.001 (5)0.003 (5)0.001 (3)
C20.028 (6)0.028 (3)0.030 (3)0.000 (5)0.000 (5)0.000 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.83 (3)N3—H3A0.8700
Zn1—O11.90 (3)N3—H3B0.8900
Zn1—O14ii1.977 (8)N3—H3C0.8000
Zn1—O111.923 (9)N3—C31.38 (7)
Zn1—C14ii2.574 (18)O2W—H2W0.86 (6)
O4—C41.45 (6)O2W—H2Wiii0.86 (6)
O2—C11.24 (3)C1—C21.530 (17)
O1—C11.32 (5)C4—C31.54 (5)
O14—C141.26 (5)C11—C121.49 (3)
O11—C111.31 (3)C14—C131.532 (14)
O13—C141.25 (4)C13—H130.9800
O12—C111.25 (3)C13—C121.53 (5)
O3—C41.23 (2)C3—H30.9800
N13—H13A0.8900C3—C21.51 (2)
N13—H13B0.8900C12—H12A0.9700
N13—H13C0.8900C12—H12B0.9700
N13—C131.48 (4)C2—H2A0.9700
O1W—H1WA0.87 (7)C2—H2B0.9700
O1W—H1WB0.83 (6)
O4i—Zn1—O196.4 (11)O11—C11—C12115 (3)
O4i—Zn1—O14ii99.1 (8)O12—C11—O11126 (2)
O4i—Zn1—O11108.7 (10)O12—C11—C12118 (2)
O4i—Zn1—C14ii126.6 (8)O14—C14—Zn1ii48.4 (7)
O1—Zn1—O14ii122.9 (9)O14—C14—C13115 (3)
O1—Zn1—O11107.3 (8)O13—C14—Zn1ii77.0 (10)
O1—Zn1—C14ii107.4 (9)O13—C14—O14125.4 (14)
O14ii—Zn1—C14ii28.4 (12)O13—C14—C13120 (3)
O11—Zn1—O14ii118.5 (4)C13—C14—Zn1ii162 (2)
O11—Zn1—C14ii108.4 (4)N13—C13—C14109 (2)
C4—O4—Zn1i119.0 (11)N13—C13—H13107.5
C1—O1—Zn1135.9 (11)N13—C13—C12112.2 (15)
C14—O14—Zn1ii103.2 (16)C14—C13—H13107.5
C11—O11—Zn1127 (2)C12—C13—C14113 (3)
H13A—N13—H13B114.0C12—C13—H13107.5
H13A—N13—H13C109.5N3—C3—C4104 (2)
H13B—N13—H13C100.0N3—C3—H3109.4
C13—N13—H13A109.5N3—C3—C2112 (2)
C13—N13—H13B114.0C4—C3—H3109.4
C13—N13—H13C109.5C2—C3—C4113 (3)
H1WA—O1W—H1WB103 (10)C2—C3—H3109.4
H3A—N3—H3B114.0C11—C12—C13113.0 (18)
H3A—N3—H3C114.0C11—C12—H12A109.0
H3B—N3—H3C108.0C11—C12—H12B109.0
C3—N3—H3A109.5C13—C12—H12A109.0
C3—N3—H3B109.5C13—C12—H12B109.0
C3—N3—H3C102.0H12A—C12—H12B107.8
H2W—O2W—H2Wiii106 (10)C1—C2—H2A109.2
O2—C1—O1123.3 (13)C1—C2—H2B109.2
O2—C1—C2119 (3)C3—C2—C1112.2 (10)
O1—C1—C2118 (2)C3—C2—H2A109.2
O4—C4—C3114 (2)C3—C2—H2B109.2
O3—C4—O4126 (3)H2A—C2—H2B107.9
O3—C4—C3118 (4)
Zn1—O1—C1—C216 (5)N3—C3—C4—O341 (2)
Zn1—O11—C11—C12168.6 (9)C1—C2—C3—N370 (4)
O2—C1—C2—C331 (5)C1—C2—C3—C447 (4)
O12—C11—C12—C13153 (2)C11—C12—C13—N1367 (2)
N13—C13—C14—O1312 (3)C11—C12—C13—C1456 (2)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1, y, z+1/2.
(Zn-aspartate_sesquihydrate_2_91GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.086 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.680 (3) ÅCell parameters from 312 reflections
b = 10.3060 (8) Åθ = 3.8–26.8°
c = 14.0720 (12) ŵ = 2.22 mm1
β = 92.80 (3)°T = 296 K
V = 2271.3 (6) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.071
Radiation source: sealed x-ray tubeθmax = 26.8°, θmin = 3.8°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1212
Tmin = 0.677, Tmax = 0.895l = 1717
4527 measured reflections12 standard reflections every 84 reflections
413 independent reflections intensity decay: none
312 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + 21.7186P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
413 reflectionsΔρmax = 0.13 e Å3
199 parametersΔρmin = 0.12 e Å3
130 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 2.91 (2) GPa (2910000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7366 (3)0.50612 (10)0.45405 (7)0.048 (6)
O40.679 (2)0.8643 (8)0.5506 (6)0.038 (3)
O20.5389 (16)0.7599 (6)0.4017 (4)0.034 (4)
O10.640 (2)0.6060 (7)0.4081 (5)0.035 (3)
O140.742 (2)0.0430 (8)0.4107 (5)0.054 (3)
O110.757 (2)0.3808 (7)0.3574 (5)0.054 (3)
O130.867 (2)0.1395 (7)0.4578 (5)0.040 (4)
O120.622 (2)0.3419 (11)0.2958 (8)0.051 (6)
O30.5720 (19)1.0086 (6)0.5868 (5)0.040 (4)
N130.892 (2)0.2459 (7)0.2884 (5)0.035 (4)
H13A0.90610.25440.22830.042*
H13B0.93570.21480.32350.042*
H13C0.87680.32300.31090.042*
O1W0.587 (2)0.9892 (10)0.3112 (6)0.071 (5)
H1WA0.634 (7)0.980 (16)0.347 (14)0.106*
H1WB0.554 (8)0.938 (8)0.342 (12)0.106*
N30.457 (3)0.8189 (11)0.5683 (7)0.037 (5)
H3A0.45700.85000.50920.044*
H3B0.43840.87960.60710.044*
H3C0.42330.74970.56960.044*
O2W0.50000.5250 (11)0.25000.054 (5)
C10.581 (4)0.6760 (10)0.4459 (6)0.029 (3)
C40.600 (2)0.8984 (13)0.5727 (8)0.028 (4)
C110.701 (3)0.3204 (16)0.3037 (11)0.028 (5)
C140.815 (3)0.1122 (11)0.3974 (8)0.030 (3)
C130.817 (3)0.1535 (9)0.2926 (6)0.028 (3)
H130.83100.07620.25600.034*
C30.541 (4)0.7829 (11)0.5982 (9)0.032 (4)
H30.54430.77100.66740.038*
C120.739 (3)0.2089 (10)0.2475 (7)0.035 (3)
H12A0.69670.14080.23920.042*
H12B0.75180.24050.18480.042*
C20.566 (2)0.6581 (8)0.5517 (5)0.029 (3)
H2A0.52190.59410.55930.035*
H2B0.61850.62550.58330.035*
H2W0.545 (9)0.477 (14)0.238 (10)0.10 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.086 (18)0.0289 (7)0.0276 (6)0.001 (2)0.0031 (16)0.0001 (5)
O40.038 (6)0.033 (4)0.043 (4)0.005 (5)0.000 (5)0.001 (3)
O20.034 (12)0.038 (3)0.030 (3)0.001 (7)0.008 (7)0.002 (3)
O10.036 (6)0.040 (3)0.030 (3)0.000 (5)0.002 (4)0.003 (3)
O140.054 (6)0.058 (4)0.050 (3)0.003 (5)0.002 (5)0.011 (3)
O110.054 (6)0.052 (3)0.056 (4)0.002 (4)0.003 (5)0.016 (3)
O130.039 (12)0.049 (4)0.032 (3)0.003 (8)0.001 (8)0.003 (3)
O120.051 (12)0.048 (6)0.054 (6)0.001 (9)0.001 (9)0.001 (4)
O30.041 (12)0.034 (4)0.045 (4)0.001 (8)0.002 (8)0.001 (3)
N130.036 (12)0.033 (4)0.037 (4)0.002 (8)0.010 (8)0.001 (4)
O1W0.071 (12)0.053 (4)0.089 (6)0.005 (8)0.021 (8)0.021 (4)
N30.037 (12)0.037 (5)0.037 (5)0.002 (9)0.001 (8)0.005 (4)
O2W0.053 (12)0.036 (5)0.072 (6)0.0000.009 (8)0.000
C10.029 (6)0.030 (4)0.029 (4)0.002 (5)0.001 (5)0.001 (3)
C40.028 (7)0.028 (5)0.029 (4)0.000 (5)0.003 (5)0.001 (4)
C110.027 (7)0.028 (5)0.027 (5)0.001 (5)0.001 (5)0.002 (3)
C140.030 (7)0.028 (4)0.033 (4)0.000 (5)0.001 (5)0.002 (3)
C130.029 (6)0.029 (4)0.028 (4)0.002 (5)0.001 (5)0.001 (3)
C30.032 (7)0.033 (5)0.031 (5)0.001 (5)0.002 (5)0.001 (3)
C120.035 (6)0.034 (4)0.035 (4)0.001 (5)0.001 (5)0.003 (3)
C20.029 (6)0.027 (3)0.032 (4)0.001 (5)0.002 (5)0.001 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.88 (3)O12—C111.26 (6)
Zn1—O11.91 (3)O3—C41.24 (3)
Zn1—O14ii1.983 (10)N13—C131.51 (5)
Zn1—O111.914 (11)N3—C31.42 (8)
Zn1—C14ii2.583 (18)C1—C21.53 (2)
O4—C41.34 (3)C4—C31.55 (5)
O2—C11.24 (4)C11—C121.53 (4)
O1—C11.31 (6)C14—C131.537 (15)
O14—C141.37 (5)C13—C121.46 (6)
O11—C111.30 (4)C3—C21.50 (2)
O13—C141.18 (4)
O4i—Zn1—O198.7 (11)O3—C4—C3117 (4)
O4i—Zn1—O14ii97.3 (10)O11—C11—C12113 (4)
O4i—Zn1—O11108.0 (11)O12—C11—O11128 (3)
O4i—Zn1—C14ii127.6 (8)O12—C11—C12120 (3)
O1—Zn1—O14ii123.8 (11)O14—C14—Zn1ii49.3 (8)
O1—Zn1—O11106.3 (9)O14—C14—C13109 (3)
O1—Zn1—C14ii104.8 (10)O13—C14—Zn1ii76.2 (12)
O14ii—Zn1—C14ii31.5 (14)O13—C14—O14125.2 (17)
O11—Zn1—O14ii118.9 (6)O13—C14—C13125 (3)
O11—Zn1—C14ii109.1 (5)C13—C14—Zn1ii158 (3)
C4—O4—Zn1i118.8 (12)N13—C13—C14105 (2)
C1—O1—Zn1136.4 (13)C12—C13—N13111.6 (18)
C14—O14—Zn1ii99.2 (19)C12—C13—C14118 (3)
C11—O11—Zn1127 (3)N3—C3—C4106 (2)
O2—C1—O1123.5 (17)N3—C3—C2111 (3)
O2—C1—C2118 (3)C2—C3—C4113 (4)
O1—C1—C2118 (3)C13—C12—C11114 (2)
O4—C4—C3114 (2)C3—C2—C1112.0 (12)
O3—C4—O4128 (3)
Zn1—O1—C1—C217 (6)N3—C3—C4—O341 (2)
Zn1—O11—C11—C12169.2 (11)C1—C2—C3—N371 (4)
O2—C1—C2—C331 (6)C1—C2—C3—C448 (5)
O12—C11—C12—C13152 (3)C11—C12—C13—N1371 (3)
N13—C13—C14—O136 (4)C11—C12—C13—C1451 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_3_54GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.124 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.612 (4) ÅCell parameters from 305 reflections
b = 10.2330 (9) Åθ = 3.7–27.0°
c = 13.9799 (14) ŵ = 2.26 mm1
β = 92.78 (3)°T = 296 K
V = 2230.7 (7) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.073
Radiation source: sealed x-ray tubeθmax = 27.0°, θmin = 3.7°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1212
Tmin = 0.672, Tmax = 0.893l = 1717
4443 measured reflections12 standard reflections every 84 reflections
413 independent reflections intensity decay: none
305 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + 16.5695P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
413 reflectionsΔρmax = 0.12 e Å3
199 parametersΔρmin = 0.18 e Å3
129 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 3.54 (2) GPa (3540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7373 (3)0.50605 (11)0.45450 (7)0.042 (6)
O40.679 (2)0.8628 (8)0.5499 (6)0.036 (3)
O20.5378 (16)0.7596 (6)0.4021 (4)0.030 (4)
O10.638 (3)0.6046 (7)0.4088 (4)0.035 (3)
O140.741 (2)0.0421 (8)0.4093 (5)0.053 (3)
O110.758 (2)0.3814 (6)0.3559 (5)0.049 (3)
O130.866 (2)0.1387 (7)0.4579 (5)0.037 (4)
O120.621 (2)0.3439 (11)0.2953 (8)0.053 (6)
O30.5719 (18)1.0088 (6)0.5874 (4)0.039 (4)
N130.891 (2)0.2459 (7)0.2872 (5)0.032 (4)
H13A0.90430.25560.22640.039*
H13B0.93590.21300.32080.039*
H13C0.87740.32320.31130.039*
O1W0.583 (2)0.9898 (10)0.3089 (5)0.066 (5)
H1WA0.632 (7)0.977 (15)0.343 (15)0.100*
H1WB0.551 (8)0.939 (8)0.344 (12)0.100*
N30.453 (3)0.8198 (11)0.5684 (6)0.035 (5)
H3A0.46080.84490.51020.044*
H3B0.43180.87210.61230.042*
H3C0.42000.74910.56150.042*
O2W0.50000.5261 (12)0.25000.051 (6)
C10.577 (4)0.6765 (10)0.4464 (6)0.029 (3)
C40.603 (3)0.8971 (13)0.5727 (9)0.027 (4)
C110.696 (2)0.3207 (15)0.3014 (11)0.023 (4)
C140.809 (4)0.1126 (11)0.3969 (8)0.030 (4)
C120.736 (3)0.2089 (10)0.2469 (7)0.034 (4)
H12A0.69430.13950.23860.041*
H12B0.74920.24000.18360.041*
C130.815 (3)0.1533 (8)0.2925 (6)0.024 (3)
H130.82900.07470.25630.029*
C30.537 (3)0.7818 (10)0.5982 (8)0.026 (4)
H30.53980.76970.66780.031*
C20.561 (2)0.6565 (8)0.5528 (5)0.029 (3)
H2A0.51510.59360.55900.034*
H2B0.61230.62150.58540.034*
H2W0.547 (8)0.480 (12)0.235 (9)0.10 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.070 (19)0.0278 (7)0.0267 (6)0.003 (2)0.0055 (16)0.0008 (5)
O40.036 (6)0.031 (4)0.039 (4)0.004 (5)0.001 (5)0.003 (3)
O20.028 (12)0.033 (3)0.029 (3)0.001 (7)0.005 (7)0.001 (3)
O10.034 (6)0.041 (3)0.028 (3)0.002 (5)0.003 (4)0.003 (3)
O140.053 (6)0.059 (4)0.048 (3)0.002 (5)0.003 (5)0.011 (3)
O110.049 (6)0.044 (3)0.054 (3)0.002 (4)0.002 (5)0.013 (3)
O130.037 (12)0.044 (4)0.032 (3)0.004 (8)0.004 (8)0.002 (3)
O120.053 (12)0.049 (6)0.057 (6)0.001 (9)0.005 (9)0.000 (4)
O30.038 (12)0.034 (4)0.044 (3)0.003 (8)0.003 (8)0.004 (3)
N130.033 (12)0.029 (4)0.035 (4)0.001 (8)0.004 (8)0.005 (3)
O1W0.068 (12)0.049 (4)0.085 (5)0.005 (8)0.028 (8)0.016 (4)
N30.036 (12)0.037 (5)0.033 (5)0.000 (9)0.008 (8)0.004 (4)
O2W0.050 (12)0.037 (6)0.066 (6)0.0000.009 (9)0.000
C10.029 (7)0.029 (4)0.029 (4)0.002 (5)0.003 (5)0.002 (3)
C40.027 (7)0.026 (5)0.028 (4)0.000 (5)0.004 (5)0.002 (4)
C110.022 (7)0.024 (5)0.022 (5)0.001 (5)0.001 (5)0.002 (3)
C140.031 (7)0.027 (4)0.034 (4)0.001 (5)0.000 (5)0.001 (4)
C120.034 (7)0.037 (4)0.032 (4)0.000 (5)0.001 (5)0.002 (3)
C130.024 (6)0.023 (4)0.025 (3)0.001 (5)0.002 (5)0.003 (3)
C30.026 (7)0.028 (4)0.023 (4)0.000 (5)0.000 (5)0.000 (3)
C20.028 (6)0.028 (3)0.028 (4)0.000 (5)0.002 (5)0.004 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.88 (3)O12—C111.20 (4)
Zn1—O11.93 (4)O3—C41.26 (3)
Zn1—O14ii1.983 (10)N13—C131.51 (5)
Zn1—O111.920 (11)N3—C31.44 (8)
Zn1—C14ii2.54 (2)C1—C21.53 (2)
O4—C41.30 (4)C4—C31.60 (6)
O2—C11.20 (3)C11—C121.53 (4)
O1—C11.33 (6)C14—C131.526 (16)
O14—C141.31 (6)C12—C131.48 (6)
O11—C111.36 (4)C3—C21.49 (2)
O13—C141.24 (5)
O4i—Zn1—O199.3 (11)O3—C4—C3112 (4)
O4i—Zn1—O14ii96.6 (9)O11—C11—C12109 (4)
O4i—Zn1—O11107.9 (11)O12—C11—O11129 (2)
O4i—Zn1—C14ii126.2 (10)O12—C11—C12123 (3)
O1—Zn1—O14ii123.4 (10)O14—C14—Zn1ii50.6 (8)
O1—Zn1—C14ii105.5 (11)O14—C14—C13112 (3)
O14ii—Zn1—C14ii30.6 (15)O13—C14—Zn1ii76.4 (11)
O11—Zn1—O1105.9 (9)O13—C14—O14126.9 (17)
O11—Zn1—O14ii119.9 (6)O13—C14—C13121 (4)
O11—Zn1—C14ii109.7 (4)C13—C14—Zn1ii162 (3)
C4—O4—Zn1i117.6 (13)C13—C12—C11115.3 (19)
C1—O1—Zn1137.4 (14)N13—C13—C14108 (3)
C14—O14—Zn1ii98.8 (18)C12—C13—N13112.0 (17)
C11—O11—Zn1124 (3)C12—C13—C14115 (4)
O2—C1—O1122.8 (18)N3—C3—C4109.0 (19)
O2—C1—C2120 (3)N3—C3—C2110 (3)
O1—C1—C2117 (3)C2—C3—C4112 (3)
O4—C4—C3117 (2)C3—C2—C1110.6 (11)
O3—C4—O4130 (3)
Zn1—O1—C1—C220 (6)N3—C3—C4—O339.1 (18)
Zn1—O11—C11—C12168.0 (10)C1—C2—C3—N373 (4)
O2—C1—C2—C332 (5)C1—C2—C3—C448 (4)
O12—C11—C12—C13152 (3)C11—C12—C13—N1371 (3)
N13—C13—C14—O1310 (4)C11—C12—C13—C1453 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_sesquihydrate_3_92GPa) top
Crystal data top
C16H24N4O16Zn2·3(H2O)F(000) = 1464
Mr = 713.18Dx = 2.135 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.550 (3) ÅCell parameters from 292 reflections
b = 10.2262 (7) Åθ = 3.7–27.1°
c = 13.9663 (11) ŵ = 2.28 mm1
β = 92.62 (3)°T = 296 K
V = 2218.6 (4) Å3Plate, colourless
Z = 40.20 × 0.15 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.077
Radiation source: sealed x-ray tubeθmax = 27.1°, θmin = 3.7°
ω scanh = 33
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1212
Tmin = 0.671, Tmax = 0.892l = 1717
4400 measured reflections12 standard reflections every 84 reflections
407 independent reflections intensity decay: none
292 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0239P)2 + 19.0079P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
407 reflectionsΔρmax = 0.15 e Å3
196 parametersΔρmin = 0.18 e Å3
125 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 3.92 (2) GPa (3920000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7371 (5)0.50611 (13)0.45476 (9)0.039 (8)
O40.683 (3)0.8608 (11)0.5494 (7)0.039 (4)
O20.538 (2)0.7597 (7)0.4025 (5)0.031 (5)
O10.639 (3)0.6032 (9)0.4084 (6)0.038 (3)
O140.740 (3)0.0421 (11)0.4091 (7)0.057 (4)
O110.759 (3)0.3822 (9)0.3549 (6)0.053 (4)
O130.866 (3)0.1399 (9)0.4579 (6)0.043 (5)
O120.621 (3)0.3436 (14)0.2953 (10)0.056 (7)
O30.571 (3)1.0085 (8)0.5868 (6)0.041 (5)
N130.887 (3)0.2452 (9)0.2869 (7)0.036 (5)
H13A0.90320.26160.23710.037*
H13B0.93590.22610.32820.037*
H13C0.87520.32500.31800.037*
O1W0.581 (3)0.9885 (13)0.3074 (7)0.067 (6)
H1WA0.6352870.9753140.3455080.101*
H1WB0.5550920.9513240.3539990.101*
N30.46595 (11)0.82054 (17)0.56868 (13)0.033 (6)
H3A0.46080.84490.51020.044*
H3B0.45050.88210.60500.044*
H3C0.43440.75410.57660.044*
O2W0.5000000.5268 (14)0.2500000.052 (7)
C10.578 (5)0.6751 (13)0.4467 (8)0.028 (4)
C40.604 (4)0.8968 (15)0.5729 (10)0.024 (5)
C110.698 (3)0.3226 (18)0.3009 (13)0.022 (5)
C140.810 (5)0.1117 (13)0.3958 (9)0.030 (4)
C120.736 (4)0.2090 (11)0.2459 (8)0.032 (4)
H12A0.7467210.2381710.1814800.038*
H12B0.6936840.1393480.2407800.038*
C130.820 (3)0.1530 (11)0.2914 (8)0.024 (4)
H130.8358800.0755610.2548300.029*
C30.534 (4)0.7805 (13)0.5988 (10)0.030 (5)
H30.5357880.7683940.6684540.036*
C20.560 (3)0.6555 (10)0.5532 (7)0.030 (4)
H2A0.5149660.5913740.5588420.036*
H2B0.6117840.6220020.5866900.036*
H2W0.546 (10)0.474 (14)0.239 (12)0.10 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.06 (2)0.0299 (9)0.0276 (8)0.001 (3)0.004 (2)0.0006 (6)
O40.039 (7)0.033 (4)0.044 (5)0.004 (5)0.000 (5)0.003 (4)
O20.030 (14)0.037 (4)0.026 (3)0.005 (9)0.002 (8)0.002 (3)
O10.038 (7)0.043 (4)0.033 (4)0.001 (5)0.000 (5)0.001 (3)
O140.056 (8)0.062 (5)0.052 (4)0.003 (5)0.003 (5)0.011 (4)
O110.053 (7)0.050 (4)0.056 (4)0.001 (5)0.002 (5)0.016 (4)
O130.042 (14)0.056 (5)0.031 (4)0.004 (10)0.002 (9)0.001 (4)
O120.056 (15)0.054 (8)0.058 (7)0.000 (10)0.003 (10)0.001 (5)
O30.041 (14)0.036 (5)0.046 (4)0.001 (9)0.002 (10)0.004 (4)
N130.037 (14)0.033 (5)0.037 (5)0.003 (10)0.005 (9)0.008 (4)
O1W0.068 (14)0.054 (5)0.080 (7)0.003 (10)0.018 (10)0.018 (5)
N30.033 (14)0.033 (6)0.033 (6)0.001 (10)0.009 (10)0.002 (5)
O2W0.050 (14)0.036 (7)0.067 (7)0.0000.011 (10)0.000
C10.028 (8)0.030 (5)0.026 (5)0.001 (5)0.002 (5)0.000 (4)
C40.025 (8)0.024 (6)0.025 (5)0.000 (5)0.003 (5)0.002 (4)
C110.022 (8)0.021 (6)0.023 (6)0.000 (5)0.001 (5)0.002 (4)
C140.030 (8)0.029 (5)0.032 (5)0.001 (5)0.000 (5)0.001 (4)
C120.032 (8)0.032 (5)0.031 (5)0.001 (5)0.001 (5)0.002 (4)
C130.024 (7)0.025 (4)0.023 (4)0.001 (5)0.002 (5)0.000 (4)
C30.030 (8)0.032 (6)0.027 (5)0.000 (5)0.001 (5)0.003 (4)
C20.030 (7)0.031 (4)0.029 (4)0.001 (5)0.001 (5)0.000 (4)
Geometric parameters (Å, º) top
Zn1—O4i1.85 (3)O12—C111.21 (6)
Zn1—O11.91 (4)O3—C41.27 (3)
Zn1—O14ii1.981 (12)N13—C131.410 (13)
Zn1—O111.925 (12)N3—C31.19 (5)
Zn1—C14ii2.54 (3)C1—C21.54 (2)
O4—C41.34 (6)C4—C31.66 (6)
O2—C11.22 (4)C11—C121.53 (4)
O1—C11.33 (7)C14—C131.533 (19)
O14—C141.32 (7)C12—C131.54 (6)
O11—C111.33 (5)C3—C21.49 (3)
O13—C141.23 (6)
O4i—Zn1—O197.8 (14)O3—C4—C3110 (4)
O4i—Zn1—O14ii96.9 (11)O11—C11—C12111 (4)
O4i—Zn1—O11108.8 (13)O12—C11—O11129 (3)
O4i—Zn1—C14ii126.3 (11)O12—C11—C12120 (3)
O1—Zn1—O14ii124.3 (13)O14—C14—Zn1ii50.3 (10)
O1—Zn1—O11105.0 (10)O14—C14—C13114 (3)
O1—Zn1—C14ii105.7 (13)O13—C14—Zn1ii75.6 (13)
O14ii—Zn1—C14ii30.8 (17)O13—C14—O14126 (2)
O11—Zn1—O14ii120.1 (7)O13—C14—C13120 (5)
O11—Zn1—C14ii110.4 (5)C13—C14—Zn1ii163 (3)
C4—O4—Zn1i115.7 (14)C11—C12—C13115 (2)
C1—O1—Zn1136.3 (16)N13—C13—C14110 (2)
C14—O14—Zn1ii99 (2)N13—C13—C12110.5 (17)
C11—O11—Zn1125 (3)C14—C13—C12112 (4)
O2—C1—O1123.1 (19)N3—C3—C4104.9 (18)
O2—C1—C2118 (4)N3—C3—C2112 (3)
O1—C1—C2119 (3)C2—C3—C4109 (4)
O4—C4—C3118 (2)C3—C2—C1111.5 (13)
O3—C4—O4132 (4)
O2—C1—C2—C331 (6)C1—C2—C3—N372 (5)
O12—C11—C12—C13153 (3)C1—C2—C3—C449 (5)
N13—C13—C14—O1313 (4)C11—C12—C13—N1367 (3)
N3—C3—C4—O338 (2)C11—C12—C13—C1455 (3)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
(Zn-aspartate_dihydrate_0_001GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.857 Mg m3
a = 8.7873 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5061 (3) ÅCell parameters from 2677 reflections
c = 9.8114 (3) Åθ = 5.4–76.3°
α = 111.784 (3)°µ = 3.18 mm1
β = 105.625 (3)°T = 296 K
γ = 107.721 (3)°Plate, colourless
V = 653.73 (4) Å30.25 × 0.10 × 0.02 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.020
Radiation source: sealed x-ray tubeθmax = 76.3°, θmin = 5.4°
ω scanh = 119
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1111
Tmin = 0.717, Tmax = 0.938l = 1212
13265 measured reflections150 standard reflections every 26 reflections
2706 independent reflections intensity decay: none
2677 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.3903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.36 e Å3
2706 reflectionsΔρmin = 0.38 e Å3
199 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2017), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0057 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71338 (3)0.32287 (3)0.54502 (2)0.02403 (10)
O10.64345 (16)0.34223 (15)0.72174 (14)0.0283 (3)
O20.57225 (16)0.27339 (15)0.89453 (14)0.0298 (3)
O141.10055 (15)0.75024 (16)0.46798 (14)0.0310 (3)
O40.50319 (16)0.11786 (15)0.63065 (14)0.0324 (3)
O110.72596 (19)0.50154 (16)0.49431 (15)0.0378 (3)
O1W0.23254 (17)0.02884 (16)0.77486 (16)0.0345 (3)
H1WA0.3402380.0922620.8033310.052*
H1WB0.1967090.0480380.6777500.052*
O130.92845 (17)0.50309 (17)0.24279 (17)0.0388 (3)
O30.50923 (18)0.16090 (16)0.84088 (15)0.0374 (3)
O120.84265 (19)0.73004 (18)0.73867 (15)0.0392 (3)
O2W0.2269 (2)0.3194 (2)1.0024 (2)0.0511 (4)
H2WA0.2187380.2204660.9545670.077*
H2WB0.2186240.3291271.0895150.077*
N130.62832 (18)0.52692 (19)0.21564 (17)0.0290 (3)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.7820 (2)0.15150 (18)1.05345 (17)0.0315 (3)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C10.6580 (2)0.27527 (19)0.81203 (18)0.0221 (3)
C40.5710 (2)0.08268 (19)0.77797 (19)0.0241 (3)
C140.9503 (2)0.6363 (2)0.34881 (19)0.0242 (3)
C110.7887 (2)0.6605 (2)0.5899 (2)0.0258 (3)
C120.7913 (2)0.7641 (2)0.5036 (2)0.0254 (3)
H12A0.8937760.8745220.5738570.030*
H12B0.6864120.7821280.4863450.030*
C130.7974 (2)0.6821 (2)0.34022 (19)0.0246 (3)
H130.8127320.7644120.3014120.030*
C20.7876 (2)0.2006 (2)0.8223 (2)0.0269 (3)
H2A0.9060710.2928260.8948310.032*
H2B0.7839720.1460340.7153000.032*
C30.7547 (2)0.0723 (2)0.88178 (19)0.0255 (3)
H30.8426870.0296470.8771070.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02528 (14)0.02665 (14)0.02281 (13)0.01219 (10)0.01190 (9)0.01326 (10)
O10.0353 (6)0.0368 (6)0.0263 (6)0.0222 (5)0.0178 (5)0.0202 (5)
O20.0316 (6)0.0341 (6)0.0289 (6)0.0148 (5)0.0188 (5)0.0165 (5)
O140.0223 (6)0.0341 (6)0.0282 (6)0.0119 (5)0.0094 (5)0.0092 (5)
O40.0299 (6)0.0323 (6)0.0234 (6)0.0074 (5)0.0057 (5)0.0122 (5)
O110.0543 (8)0.0268 (6)0.0269 (6)0.0146 (6)0.0125 (6)0.0146 (5)
O1W0.0346 (7)0.0313 (6)0.0325 (6)0.0120 (5)0.0140 (5)0.0135 (5)
O130.0314 (7)0.0322 (6)0.0400 (7)0.0165 (5)0.0125 (6)0.0063 (6)
O30.0388 (7)0.0317 (6)0.0315 (6)0.0039 (5)0.0167 (6)0.0146 (5)
O120.0483 (8)0.0427 (7)0.0243 (6)0.0203 (6)0.0155 (6)0.0147 (6)
O2W0.0637 (10)0.0519 (9)0.0422 (8)0.0319 (8)0.0263 (8)0.0206 (7)
N130.0249 (7)0.0367 (8)0.0236 (7)0.0167 (6)0.0075 (5)0.0132 (6)
N30.0357 (8)0.0251 (7)0.0240 (7)0.0089 (6)0.0059 (6)0.0119 (6)
C10.0213 (7)0.0206 (7)0.0189 (7)0.0062 (6)0.0073 (6)0.0083 (6)
C40.0239 (7)0.0233 (7)0.0237 (7)0.0109 (6)0.0110 (6)0.0098 (6)
C140.0239 (8)0.0283 (8)0.0249 (7)0.0123 (6)0.0125 (6)0.0155 (6)
C110.0237 (7)0.0298 (8)0.0256 (8)0.0129 (6)0.0116 (6)0.0139 (7)
C120.0263 (8)0.0247 (7)0.0270 (8)0.0140 (6)0.0122 (6)0.0121 (6)
C130.0265 (8)0.0265 (7)0.0251 (7)0.0136 (6)0.0113 (6)0.0153 (6)
C20.0237 (8)0.0300 (8)0.0333 (8)0.0126 (7)0.0140 (7)0.0199 (7)
C30.0245 (8)0.0257 (8)0.0249 (8)0.0102 (6)0.0087 (6)0.0136 (6)
Geometric parameters (Å, º) top
Zn1—O11.9555 (11)N13—H13C0.8900
Zn1—O14i1.9776 (12)N13—C131.492 (2)
Zn1—O4ii1.9679 (12)N3—H3A0.8900
Zn1—O111.9203 (13)N3—H3B0.8900
O1—C11.2701 (19)N3—H3C0.8900
O2—C11.2465 (19)N3—C31.481 (2)
O14—C141.281 (2)C1—C21.515 (2)
O4—C41.270 (2)C4—C31.538 (2)
O11—C111.276 (2)C14—C131.524 (2)
O1W—H1WA0.8499C11—C121.518 (2)
O1W—H1WB0.8500C12—H12A0.9700
O13—C141.220 (2)C12—H12B0.9700
O3—C41.226 (2)C12—C131.525 (2)
O12—C111.230 (2)C13—H130.9800
O2W—H2WA0.8500C2—H2A0.9700
O2W—H2WB0.8504C2—H2B0.9700
N13—H13A0.8900C2—C31.522 (2)
N13—H13B0.8900C3—H30.9800
O1—Zn1—O14i119.50 (5)O14—C14—C13115.30 (14)
O1—Zn1—O4ii96.87 (5)O13—C14—O14123.85 (15)
O4ii—Zn1—O14i102.06 (5)O13—C14—C13120.73 (15)
O11—Zn1—O1113.53 (5)O11—C11—C12113.83 (14)
O11—Zn1—O14i114.64 (6)O12—C11—O11125.68 (16)
O11—Zn1—O4ii106.77 (5)O12—C11—C12120.49 (15)
C1—O1—Zn1131.64 (11)C11—C12—H12A108.7
C14—O14—Zn1i110.34 (10)C11—C12—H12B108.7
C4—O4—Zn1ii125.56 (11)C11—C12—C13114.04 (13)
C11—O11—Zn1129.48 (11)H12A—C12—H12B107.6
H1WA—O1W—H1WB104.5C13—C12—H12A108.7
H2WA—O2W—H2WB104.4C13—C12—H12B108.7
H13A—N13—H13B109.5N13—C13—C14108.61 (13)
H13A—N13—H13C109.5N13—C13—C12111.84 (13)
H13B—N13—H13C109.5N13—C13—H13107.4
C13—N13—H13A109.5C14—C13—C12114.03 (13)
C13—N13—H13B109.5C14—C13—H13107.3
C13—N13—H13C109.5C12—C13—H13107.4
H3A—N3—H3B109.5C1—C2—H2A108.5
H3A—N3—H3C109.5C1—C2—H2B108.5
H3B—N3—H3C109.5C1—C2—C3115.28 (13)
C3—N3—H3A109.5H2A—C2—H2B107.5
C3—N3—H3B109.5C3—C2—H2A108.5
C3—N3—H3C109.5C3—C2—H2B108.5
O1—C1—C2118.45 (14)N3—C3—C4108.71 (13)
O2—C1—O1121.88 (15)N3—C3—C2111.96 (13)
O2—C1—C2119.64 (14)N3—C3—H3107.1
O4—C4—C3113.75 (14)C4—C3—H3107.1
O3—C4—O4127.36 (16)C2—C3—C4114.55 (13)
O3—C4—C3118.84 (14)C2—C3—H3107.1
Zn1—O1—C1—C217.6 (2)N13—C13—C14—O1314.0 (2)
Zn1—O14i—C14i—C13i176.84 (10)N3—C3—C4—O329.7 (2)
Zn1—O4ii—C4ii—C3ii171.30 (10)C1—C2—C3—N365.97 (18)
Zn1—O11—C11—C12174.20 (12)C1—C2—C3—C458.40 (19)
O2—C1—C2—C322.0 (2)C11—C12—C13—N1369.02 (17)
O12—C11—C12—C13155.34 (16)C11—C12—C13—C1454.71 (18)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_0_05GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.862 Mg m3
a = 8.7874 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4894 (15) ÅCell parameters from 393 reflections
c = 9.812 (3) Åθ = 3.8–27.3°
α = 111.913 (19)°µ = 1.94 mm1
β = 105.549 (16)°T = 296 K
γ = 107.728 (13)°Plate, colourless
V = 652.1 (2) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.052
Radiation source: sealed x-ray tubeθmax = 27.3°, θmin = 3.8°
ω scanh = 1110
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1112
Tmin = 0.634, Tmax = 0.925l = 77
2655 measured reflections12 standard reflections every 84 reflections
479 independent reflections intensity decay: none
393 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.1035P)2 + 1.095P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
479 reflectionsΔρmax = 0.28 e Å3
198 parametersΔρmin = 0.32 e Å3
132 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.05 (2) GPa (50000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7142 (3)0.3234 (5)0.5464 (8)0.028 (2)
O10.646 (2)0.346 (4)0.725 (5)0.028 (3)
O20.5698 (18)0.270 (3)0.890 (5)0.033 (5)
O141.1008 (19)0.753 (3)0.473 (5)0.033 (3)
O40.501 (2)0.120 (3)0.621 (5)0.044 (4)
O110.7272 (19)0.502 (3)0.498 (5)0.050 (4)
O1W0.229 (3)0.028 (3)0.773 (5)0.039 (5)
H1WA0.3397060.0909040.8236550.058*
H1WB0.2141000.0476810.6826400.058*
O130.9263 (17)0.500 (3)0.238 (4)0.043 (5)
O30.5090 (18)0.161 (3)0.842 (4)0.043 (5)
O120.841 (2)0.727 (4)0.733 (5)0.043 (7)
O2W0.225 (2)0.318 (4)1.003 (6)0.066 (6)
H2WA0.2479070.2351710.9630350.098*
H2WB0.1765320.2964311.0618450.098*
N130.626 (2)0.523 (4)0.211 (6)0.030 (5)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.778 (2)0.146 (3)1.042 (5)0.031 (6)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C10.655 (3)0.273 (4)0.807 (7)0.027 (4)
C40.564 (2)0.085 (3)0.770 (5)0.026 (4)
C140.949 (2)0.638 (4)0.351 (5)0.027 (4)
C110.786 (3)0.659 (3)0.586 (5)0.039 (7)
C120.787 (2)0.759 (4)0.494 (6)0.018 (4)
H12A0.6795090.7725110.4730340.022*
H12B0.8862330.8713610.5646840.022*
C130.799 (2)0.681 (4)0.337 (6)0.022 (4)
H130.8151940.7631330.2983920.026*
C20.786 (3)0.195 (5)0.815 (7)0.025 (4)
H2A0.7796280.1385280.7074460.030*
H2B0.9050450.2871910.8860780.030*
C30.754 (2)0.071 (3)0.876 (5)0.036 (6)
H30.8406500.0267230.8699720.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0274 (14)0.032 (3)0.025 (6)0.0136 (16)0.012 (2)0.015 (4)
O10.028 (3)0.031 (5)0.028 (7)0.015 (3)0.013 (4)0.013 (5)
O20.036 (5)0.039 (8)0.030 (13)0.017 (5)0.018 (7)0.018 (9)
O140.030 (4)0.033 (5)0.034 (7)0.015 (3)0.015 (4)0.013 (5)
O40.047 (5)0.041 (6)0.044 (7)0.016 (3)0.018 (4)0.024 (5)
O110.057 (5)0.047 (5)0.049 (7)0.021 (3)0.018 (4)0.032 (5)
O1W0.039 (5)0.035 (9)0.040 (13)0.015 (5)0.019 (7)0.016 (9)
O130.033 (5)0.049 (9)0.043 (13)0.021 (5)0.015 (7)0.017 (9)
O30.045 (5)0.043 (8)0.040 (13)0.012 (5)0.021 (7)0.023 (9)
O120.043 (7)0.047 (9)0.041 (14)0.020 (6)0.019 (8)0.023 (9)
O2W0.066 (7)0.063 (9)0.066 (13)0.033 (6)0.025 (8)0.030 (9)
N130.031 (5)0.031 (9)0.029 (13)0.017 (5)0.013 (7)0.013 (9)
N30.037 (6)0.025 (9)0.033 (13)0.015 (5)0.016 (8)0.016 (9)
C10.026 (5)0.025 (5)0.028 (7)0.009 (3)0.012 (4)0.013 (5)
C40.026 (5)0.023 (6)0.026 (7)0.009 (4)0.007 (5)0.015 (5)
C140.026 (5)0.027 (6)0.027 (7)0.012 (4)0.011 (4)0.012 (5)
C110.040 (8)0.038 (8)0.040 (10)0.020 (5)0.015 (5)0.019 (6)
C120.019 (5)0.019 (5)0.018 (7)0.010 (4)0.007 (4)0.010 (5)
C130.022 (5)0.024 (6)0.021 (7)0.009 (4)0.011 (4)0.012 (5)
C20.026 (4)0.024 (5)0.025 (7)0.011 (3)0.010 (4)0.013 (5)
C30.036 (6)0.036 (7)0.035 (8)0.016 (4)0.016 (5)0.018 (6)
Geometric parameters (Å, º) top
Zn1—O11.96 (4)N13—H13C0.8900
Zn1—O14i1.993 (14)N13—C131.52 (4)
Zn1—O4ii1.93 (3)N3—H3A0.9100
Zn1—O111.909 (9)N3—H3B0.9400
O1—C11.25 (3)N3—H3C0.9100
O2—C11.25 (4)N3—C31.44 (3)
O14—C141.29 (4)C1—C21.54 (2)
O4—C41.28 (4)C4—C31.58 (3)
O11—C111.25 (3)C14—C131.49 (2)
O1W—H1WA0.8498C11—C121.53 (4)
O1W—H1WB0.8484C12—H12A0.9700
O13—C141.27 (2)C12—H12B0.9700
O3—C41.27 (3)C12—C131.49 (3)
O12—C111.21 (4)C13—H130.9800
O2W—H2WA0.8476C2—H2A0.9700
O2W—H2WB0.8501C2—H2B0.9700
N13—H13A0.8600C2—C31.49 (3)
N13—H13B0.8900C3—H30.9800
O1—Zn1—O14i120.9 (9)O14—C14—C13116 (3)
O4ii—Zn1—O195.6 (10)O13—C14—O14124.4 (18)
O4ii—Zn1—O14i101.7 (11)O13—C14—C13119 (2)
O11—Zn1—O1112.7 (11)O11—C11—C12114 (3)
O11—Zn1—O14i114.2 (6)O12—C11—O11123 (3)
O11—Zn1—O4ii108.3 (11)O12—C11—C12123 (3)
C1—O1—Zn1130 (2)C11—C12—H12A108.3
C14—O14—Zn1i109 (2)C11—C12—H12B108.3
C4—O4—Zn1ii122.7 (11)H12A—C12—H12B107.4
C11—O11—Zn1132 (3)C13—C12—C11116 (2)
H1WA—O1W—H1WB104.4C13—C12—H12A108.3
H2WA—O2W—H2WB104.4C13—C12—H12B108.3
H13A—N13—H13B112.0N13—C13—H13107.8
H13A—N13—H13C113.0C14—C13—N13110 (2)
H13B—N13—H13C109.5C14—C13—C12114 (2)
C13—N13—H13A107.0C14—C13—H13107.8
C13—N13—H13B108.0C12—C13—N13110 (2)
C13—N13—H13C107.0C12—C13—H13107.8
H3A—N3—H3B104.0C1—C2—H2A108.6
H3A—N3—H3C105.0C1—C2—H2B108.6
H3B—N3—H3C102.0H2A—C2—H2B107.5
C3—N3—H3A115.0C3—C2—C1115 (2)
C3—N3—H3B114.0C3—C2—H2A108.6
C3—N3—H3C116.0C3—C2—H2B108.6
O1—C1—C2119 (3)N3—C3—C4107 (2)
O2—C1—O1121.5 (17)N3—C3—C2114 (3)
O2—C1—C2120 (2)N3—C3—H3107.4
O4—C4—C3113 (2)C4—C3—H3107.4
O3—C4—O4132 (2)C2—C3—C4113 (3)
O3—C4—C3115 (3)C2—C3—H3107.4
Zn1—O1—C1—C221 (6)N13—C13—C14—O1317 (3)
Zn1—O14i—C14i—C13i174.3 (16)N3—C3—C4—O331 (2)
Zn1—O4ii—C4ii—C3ii171.0 (15)C1—C2—C3—N364 (4)
Zn1—O11—C11—C12173.9 (10)C1—C2—C3—C459 (6)
O2—C1—C2—C320 (7)C11—C12—C13—N1370.8 (16)
O12—C11—C12—C13152 (2)C11—C12—C13—C1452.7 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_0_15GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.871 Mg m3
a = 8.7725 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4694 (14) ÅCell parameters from 389 reflections
c = 9.803 (3) Åθ = 3.8–27.2°
α = 111.906 (19)°µ = 1.95 mm1
β = 105.503 (16)°T = 296 K
γ = 107.777 (12)°Plate, colourless
V = 649.0 (2) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.068
Radiation source: sealed x-ray tubeθmax = 27.2°, θmin = 3.8°
ω scanh = 1010
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1112
Tmin = 0.633, Tmax = 0.907l = 77
2630 measured reflections12 standard reflections every 84 reflections
474 independent reflections intensity decay: none
389 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0808P)2 + 2.3162P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
474 reflectionsΔρmax = 0.28 e Å3
198 parametersΔρmin = 0.27 e Å3
132 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.15 (2) GPa (150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7133 (3)0.3224 (4)0.5446 (7)0.0281 (19)
O10.642 (2)0.339 (3)0.713 (5)0.028 (3)
O20.5696 (16)0.270 (3)0.886 (4)0.031 (4)
O141.1038 (18)0.759 (3)0.481 (4)0.029 (3)
O40.503 (2)0.120 (3)0.620 (4)0.043 (4)
O110.7231 (16)0.496 (2)0.485 (3)0.047 (3)
O1W0.228 (2)0.024 (3)0.767 (4)0.030 (4)
H1WA0.33620.09490.82930.045*
H1WB0.23020.05450.69010.045*
O130.9257 (16)0.500 (3)0.236 (4)0.036 (4)
O30.5115 (16)0.161 (3)0.844 (4)0.043 (4)
O120.841 (2)0.735 (3)0.738 (4)0.047 (6)
O2W0.2233 (19)0.315 (3)0.999 (5)0.063 (5)
H2WA0.25470.24340.96160.095*
H2WB0.17570.28841.05850.095*
N130.629 (2)0.525 (4)0.216 (5)0.032 (4)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.7811 (19)0.155 (3)1.054 (5)0.032 (5)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C10.656 (2)0.274 (4)0.808 (6)0.026 (3)
C40.564 (2)0.083 (3)0.777 (4)0.026 (4)
C140.956 (2)0.646 (3)0.365 (5)0.020 (4)
C110.790 (3)0.659 (3)0.594 (4)0.038 (7)
C120.7920 (19)0.768 (3)0.510 (5)0.025 (4)
H12A0.89470.87860.58140.031*
H12B0.68680.78530.49420.031*
C130.7979 (18)0.686 (3)0.344 (5)0.022 (4)
H130.81460.76910.30540.026*
C20.789 (2)0.202 (4)0.827 (7)0.026 (3)
H2A0.79470.15360.72310.031*
H2B0.90480.29690.90540.031*
C30.756 (2)0.070 (3)0.878 (5)0.036 (5)
H30.84290.02510.87230.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0273 (12)0.029 (2)0.030 (5)0.0132 (14)0.015 (2)0.015 (3)
O10.029 (3)0.031 (4)0.027 (6)0.014 (3)0.015 (4)0.015 (4)
O20.035 (4)0.033 (7)0.029 (11)0.014 (4)0.022 (6)0.015 (8)
O140.028 (3)0.033 (4)0.027 (6)0.011 (3)0.014 (4)0.015 (4)
O40.044 (4)0.039 (5)0.043 (6)0.012 (3)0.019 (4)0.023 (5)
O110.055 (4)0.043 (4)0.046 (6)0.020 (3)0.015 (4)0.031 (4)
O1W0.034 (5)0.039 (7)0.022 (11)0.012 (4)0.018 (6)0.020 (8)
O130.037 (5)0.046 (8)0.032 (11)0.021 (5)0.017 (6)0.022 (8)
O30.043 (5)0.041 (7)0.045 (11)0.012 (4)0.024 (6)0.022 (8)
O120.046 (7)0.048 (8)0.046 (12)0.021 (5)0.026 (7)0.019 (8)
O2W0.063 (6)0.065 (8)0.063 (11)0.032 (5)0.028 (7)0.031 (8)
N130.029 (5)0.031 (8)0.035 (11)0.017 (5)0.016 (7)0.011 (8)
N30.035 (6)0.034 (8)0.030 (12)0.015 (5)0.016 (7)0.019 (8)
C10.025 (4)0.025 (5)0.026 (6)0.010 (3)0.010 (4)0.013 (4)
C40.030 (5)0.024 (5)0.025 (7)0.006 (3)0.011 (4)0.017 (5)
C140.023 (4)0.020 (5)0.018 (6)0.005 (3)0.010 (4)0.013 (5)
C110.037 (8)0.037 (8)0.038 (9)0.019 (5)0.014 (5)0.018 (6)
C120.026 (5)0.026 (5)0.025 (7)0.012 (4)0.010 (4)0.014 (5)
C130.023 (4)0.023 (5)0.021 (6)0.008 (3)0.012 (4)0.012 (5)
C20.024 (4)0.025 (5)0.027 (6)0.011 (3)0.012 (4)0.011 (4)
C30.035 (6)0.036 (6)0.037 (7)0.015 (4)0.018 (4)0.017 (5)
Geometric parameters (Å, º) top
Zn1—O11.89 (4)N13—H13C0.8700
Zn1—O14i2.013 (15)N13—C131.51 (5)
Zn1—O4ii1.92 (3)N3—H3A0.8600
Zn1—O111.924 (10)N3—H3B0.8900
O1—C11.29 (4)N3—H3C0.9100
O2—C11.22 (4)N3—C31.52 (3)
O14—C141.25 (4)C1—C21.520 (19)
O4—C41.344 (13)C4—C31.57 (3)
O11—C111.321 (13)C14—C131.53 (2)
O1W—H1WA0.8501C11—C121.54 (4)
O1W—H1WB0.8501C12—H12A0.9700
O13—C141.37 (3)C12—H12B0.9700
O3—C41.24 (3)C12—C131.55 (3)
O12—C111.20 (3)C13—H130.9800
O2W—H2WA0.8101C2—H2A0.9700
O2W—H2WB0.8726C2—H2B0.9700
N13—H13A0.8900C2—C31.50 (3)
N13—H13B0.9100C3—H30.9800
O1—Zn1—O14i122.1 (10)O14—C14—O13126.3 (19)
O1—Zn1—O4ii93.3 (11)O14—C14—C13119 (3)
O1—Zn1—O11115.6 (10)O13—C14—C13114 (3)
O4ii—Zn1—O14i101.2 (11)O11—C11—C12111 (3)
O11—Zn1—O14i113.1 (6)O12—C11—O11134 (3)
O11—Zn1—O4ii106.5 (10)O12—C11—C12116 (3)
C1—O1—Zn1133 (2)C11—C12—H12A108.9
C14—O14—Zn1i108 (2)C11—C12—H12B108.9
C4—O4—Zn1ii121.2 (12)C11—C12—C13113 (2)
C11—O11—Zn1122.9 (19)H12A—C12—H12B107.7
H1WA—O1W—H1WB104.5C13—C12—H12A108.9
H2WA—O2W—H2WB105.4C13—C12—H12B108.9
H13A—N13—H13B108.0N13—C13—C14110 (3)
H13A—N13—H13C112.0N13—C13—C12113 (2)
H13B—N13—H13C110.0N13—C13—H13108.2
C13—N13—H13A109.5C14—C13—C12110 (3)
C13—N13—H13B107.0C14—C13—H13108.2
C13—N13—H13C109.5C12—C13—H13108.2
H3A—N3—H3B113.0C1—C2—H2A107.8
H3A—N3—H3C109.5C1—C2—H2B107.8
H3B—N3—H3C107.0H2A—C2—H2B107.1
C3—N3—H3A111.0C3—C2—C1118.1 (18)
C3—N3—H3B108.0C3—C2—H2A107.8
C3—N3—H3C107.0C3—C2—H2B107.8
O1—C1—C2119 (3)N3—C3—C4106 (2)
O2—C1—O1122.9 (15)N3—C3—H3109.2
O2—C1—C2118 (3)C4—C3—H3109.2
O4—C4—C3111 (2)C2—C3—N3108 (3)
O3—C4—O4132 (2)C2—C3—C4114 (3)
O3—C4—C3116 (3)C2—C3—H3109.2
Zn1—O1—C1—C217 (6)N13—C13—C14—O1320 (3)
Zn1—O14i—C14i—C13i172.6 (18)N3—C3—C4—O337 (3)
Zn1—O4ii—C4ii—C3ii170.4 (15)C1—C2—C3—N368 (5)
Zn1—O11—C11—C12175.8 (11)C1—C2—C3—C450 (6)
O2—C1—C2—C325 (7)C11—C12—C13—N1367.7 (17)
O12—C11—C12—C13157 (2)C11—C12—C13—C1454.9 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_0_40GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.893 Mg m3
a = 8.7385 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.419 (3) ÅCell parameters from 380 reflections
c = 9.773 (6) Åθ = 3.8–27.3°
α = 111.86 (4)°µ = 1.97 mm1
β = 105.42 (3)°T = 296 K
γ = 107.88 (2)°Plate, colourless
V = 641.4 (5) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.065
Radiation source: sealed x-ray tubeθmax = 27.3°, θmin = 3.8°
ω scanh = 1110
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1112
Tmin = 0.629, Tmax = 0.906l = 77
2596 measured reflections12 standard reflections every 84 reflections
475 independent reflections intensity decay: none
380 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
475 reflectionsΔρmax = 0.20 e Å3
198 parametersΔρmin = 0.17 e Å3
131 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.40 (2) GPa (400000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7121 (2)0.3223 (4)0.5440 (6)0.030 (2)
O10.6420 (18)0.341 (3)0.719 (5)0.030 (3)
O20.5713 (15)0.270 (2)0.887 (4)0.035 (5)
O141.1015 (16)0.753 (3)0.468 (4)0.034 (3)
O40.5021 (19)0.119 (2)0.622 (4)0.040 (4)
O110.7235 (15)0.499 (2)0.488 (4)0.051 (3)
O1W0.2286 (16)0.025 (3)0.768 (4)0.035 (5)
H1WA0.3397240.0799330.8200610.053*
H1WB0.2106660.0813870.7191580.053*
O130.9266 (17)0.497 (3)0.234 (4)0.041 (5)
O30.5108 (14)0.162 (2)0.844 (3)0.040 (5)
O120.843 (2)0.736 (3)0.744 (4)0.055 (7)
O2W0.2232 (17)0.316 (3)0.999 (4)0.061 (5)
H2WA0.2416240.2316460.9541980.092*
H2WB0.1782280.2942491.0604550.092*
N130.6287 (19)0.527 (3)0.215 (5)0.031 (5)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.782 (2)0.150 (3)1.049 (4)0.037 (6)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C10.657 (2)0.272 (4)0.804 (6)0.027 (3)
C40.5680 (18)0.082 (2)0.776 (4)0.020 (4)
C140.954 (2)0.641 (4)0.356 (6)0.024 (4)
C110.791 (2)0.668 (3)0.601 (4)0.026 (5)
C120.7926 (19)0.769 (3)0.507 (5)0.021 (4)
H12A0.6869100.7862210.4894670.026*
H12B0.8948850.8809180.5770710.026*
C130.7993 (19)0.688 (3)0.343 (5)0.024 (4)
H130.8165130.7721710.3048410.028*
C20.788 (2)0.197 (4)0.813 (6)0.029 (4)
H2A0.9075990.2901140.8808550.034*
H2B0.7791900.1358750.7042330.034*
C30.758 (2)0.074 (3)0.882 (5)0.031 (5)
H30.8448600.0280190.8767200.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0277 (12)0.029 (2)0.034 (6)0.0130 (14)0.014 (2)0.015 (3)
O10.029 (3)0.032 (5)0.030 (7)0.016 (3)0.016 (4)0.013 (5)
O20.041 (5)0.033 (8)0.035 (13)0.018 (5)0.023 (7)0.016 (9)
O140.030 (4)0.037 (5)0.035 (7)0.017 (3)0.016 (4)0.014 (5)
O40.043 (4)0.037 (5)0.039 (7)0.014 (3)0.014 (4)0.024 (5)
O110.059 (4)0.047 (5)0.050 (7)0.023 (3)0.018 (4)0.032 (5)
O1W0.037 (5)0.034 (8)0.035 (13)0.016 (5)0.018 (7)0.016 (8)
O130.036 (5)0.048 (8)0.042 (13)0.023 (5)0.019 (7)0.019 (9)
O30.043 (5)0.043 (8)0.038 (13)0.013 (5)0.022 (7)0.024 (9)
O120.053 (7)0.058 (9)0.053 (14)0.026 (6)0.024 (8)0.026 (9)
O2W0.063 (6)0.058 (8)0.063 (13)0.031 (5)0.023 (7)0.030 (9)
N130.030 (5)0.038 (8)0.028 (13)0.017 (5)0.016 (7)0.016 (9)
N30.042 (6)0.036 (9)0.036 (13)0.014 (5)0.020 (8)0.021 (9)
C10.027 (4)0.024 (5)0.028 (7)0.009 (3)0.013 (4)0.012 (5)
C40.021 (4)0.019 (5)0.019 (7)0.006 (3)0.006 (4)0.012 (5)
C140.022 (4)0.023 (5)0.024 (7)0.009 (3)0.010 (4)0.010 (5)
C110.027 (6)0.026 (7)0.026 (8)0.013 (4)0.009 (5)0.013 (6)
C120.021 (5)0.023 (5)0.020 (7)0.011 (4)0.007 (4)0.012 (5)
C130.024 (5)0.025 (5)0.023 (7)0.009 (3)0.012 (4)0.012 (5)
C20.027 (4)0.028 (5)0.029 (7)0.014 (3)0.010 (4)0.013 (5)
C30.031 (5)0.031 (6)0.032 (8)0.017 (4)0.013 (5)0.015 (5)
Geometric parameters (Å, º) top
Zn1—O11.93 (3)N13—H13C0.8900
Zn1—O14i1.978 (11)N13—C131.52 (4)
Zn1—O4ii1.92 (2)N3—H3A0.8900
Zn1—O111.922 (8)N3—H3B0.8900
O1—C11.24 (3)N3—H3C0.8900
O2—C11.24 (3)N3—C31.45 (4)
O14—C141.24 (4)C1—C21.520 (17)
O4—C41.32 (2)C4—C31.56 (3)
O11—C111.36 (2)C14—C131.535 (18)
O1W—H1WA0.8387C11—C121.55 (3)
O1W—H1WB0.8734C12—H12A0.9700
O13—C141.32 (5)C12—H12B0.9700
O3—C41.251 (19)C12—C131.53 (3)
O12—C111.18 (3)C13—H130.9800
O2W—H2WA0.8413C2—H2A0.9700
O2W—H2WB0.8471C2—H2B0.9700
N13—H13A0.8900C2—C31.53 (2)
N13—H13B0.8900C3—H30.9800
O1—Zn1—O14i119.1 (9)O14—C14—O13124.4 (15)
O4ii—Zn1—O194.9 (9)O14—C14—C13117 (3)
O4ii—Zn1—O14i102.6 (9)O13—C14—C13118 (3)
O4ii—Zn1—O11107.0 (8)O11—C11—C12107 (2)
O11—Zn1—O1114.7 (8)O12—C11—O11131 (2)
O11—Zn1—O14i114.6 (5)O12—C11—C12122 (2)
C1—O1—Zn1129.8 (19)C11—C12—H12A108.0
C14—O14—Zn1i111.2 (19)C11—C12—H12B108.0
C4—O4—Zn1ii122.8 (9)H12A—C12—H12B107.3
C11—O11—Zn1123.3 (17)C13—C12—C11117.1 (19)
H1WA—O1W—H1WB102.9C13—C12—H12A108.0
H2WA—O2W—H2WB104.6C13—C12—H12B108.0
H13A—N13—H13B109.5N13—C13—C14108 (2)
H13A—N13—H13C109.5N13—C13—C12112.2 (17)
H13B—N13—H13C109.5N13—C13—H13108.3
C13—N13—H13A109.5C14—C13—H13108.3
C13—N13—H13B108.0C12—C13—C14112 (3)
C13—N13—H13C109.5C12—C13—H13108.3
H3A—N3—H3B108.0C1—C2—H2A108.7
H3A—N3—H3C106.0C1—C2—H2B108.7
H3B—N3—H3C107.0C1—C2—C3114.2 (17)
C3—N3—H3A112.0H2A—C2—H2B107.6
C3—N3—H3B111.0C3—C2—H2A108.7
C3—N3—H3C112.0C3—C2—H2B108.7
O1—C1—O2120.5 (14)N3—C3—C4107.3 (19)
O1—C1—C2120 (2)N3—C3—C2115 (3)
O2—C1—C2120 (2)N3—C3—H3107.5
O4—C4—C3112.9 (17)C4—C3—H3107.5
O3—C4—O4130.2 (18)C2—C3—C4111 (2)
O3—C4—C3116 (2)C2—C3—H3107.5
Zn1—O1—C1—C219 (5)N13—C13—C14—O1318 (3)
Zn1—O14i—C14i—C13i175.3 (18)N3—C3—C4—O333 (2)
Zn1—O4ii—C4ii—C3ii170.8 (12)C1—C2—C3—N363 (4)
Zn1—O11—C11—C12174.5 (8)C1—C2—C3—C459 (4)
O2—C1—C2—C319 (5)C11—C12—C13—N1368.2 (15)
O12—C11—C12—C13155 (2)C11—C12—C13—C1452.9 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_0_70GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.915 Mg m3
a = 8.687 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.359 (3) ÅCell parameters from 380 reflections
c = 9.7666 (19) Åθ = 3.9–27.5°
α = 111.78 (3)°µ = 2.00 mm1
β = 105.20 (3)°T = 296 K
γ = 108.04 (4)°Plate, colourless
V = 633.9 (4) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.062
Radiation source: sealed x-ray tubeθmax = 27.5°, θmin = 3.9°
ω scanh = 1110
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 1112
Tmin = 0.626, Tmax = 0.923l = 77
2494 measured reflections12 standard reflections every 84 reflections
470 independent reflections intensity decay: none
380 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0703P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
470 reflectionsΔρmax = 0.20 e Å3
198 parametersΔρmin = 0.17 e Å3
131 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.70 (2) GPa (700000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7121 (2)0.3223 (4)0.5440 (6)0.029 (2)
O10.6421 (18)0.341 (3)0.719 (5)0.029 (3)
O20.5714 (15)0.270 (2)0.887 (4)0.034 (5)
O141.1015 (16)0.753 (3)0.469 (4)0.034 (3)
O40.5021 (18)0.120 (2)0.622 (4)0.039 (4)
O110.7234 (15)0.499 (2)0.488 (4)0.050 (3)
O1W0.2287 (16)0.025 (3)0.768 (4)0.034 (5)
H1WA0.3398860.0799360.8199280.052*
H1WB0.2106150.0809550.7171810.052*
O130.9266 (17)0.497 (3)0.235 (4)0.040 (5)
O30.5108 (14)0.162 (2)0.844 (3)0.040 (5)
O120.843 (2)0.736 (3)0.744 (4)0.053 (7)
O2W0.2233 (17)0.316 (3)0.999 (4)0.060 (5)
H2WA0.2403660.2291980.9532320.090*
H2WB0.1780220.2945651.0611320.090*
N130.6285 (19)0.527 (3)0.214 (5)0.030 (5)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.782 (2)0.150 (3)1.050 (4)0.036 (6)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C10.657 (2)0.272 (4)0.804 (6)0.026 (3)
C40.5678 (18)0.083 (2)0.776 (4)0.020 (4)
C140.954 (2)0.641 (4)0.355 (6)0.023 (4)
C110.791 (2)0.668 (3)0.601 (4)0.026 (5)
C120.7927 (19)0.769 (3)0.508 (5)0.021 (4)
H12A0.6865220.7866850.4904100.025*
H12B0.8955390.8819550.5772420.025*
C130.7995 (19)0.689 (3)0.344 (5)0.023 (4)
H130.8176340.7737780.3060410.028*
C20.788 (2)0.197 (4)0.813 (6)0.028 (3)
H2A0.9081900.2908350.8801020.034*
H2B0.7791270.1351540.7042230.034*
C30.758 (2)0.074 (3)0.882 (5)0.030 (5)
H30.8454450.0281270.8770400.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0273 (12)0.028 (2)0.033 (6)0.0126 (14)0.014 (2)0.014 (3)
O10.028 (3)0.031 (5)0.029 (7)0.015 (3)0.016 (4)0.012 (5)
O20.040 (5)0.032 (8)0.034 (13)0.018 (5)0.023 (7)0.015 (9)
O140.030 (4)0.036 (5)0.034 (7)0.017 (3)0.016 (4)0.013 (5)
O40.042 (4)0.036 (5)0.038 (7)0.014 (3)0.014 (4)0.023 (5)
O110.057 (4)0.046 (5)0.049 (7)0.022 (3)0.017 (4)0.031 (5)
O1W0.037 (5)0.033 (8)0.034 (13)0.015 (5)0.017 (7)0.016 (8)
O130.035 (5)0.047 (8)0.041 (13)0.022 (5)0.018 (7)0.019 (9)
O30.042 (5)0.042 (8)0.037 (13)0.012 (4)0.021 (7)0.024 (8)
O120.052 (7)0.057 (9)0.051 (14)0.026 (5)0.023 (8)0.025 (9)
O2W0.062 (6)0.056 (8)0.062 (13)0.030 (5)0.022 (7)0.030 (9)
N130.029 (5)0.037 (8)0.027 (13)0.016 (5)0.015 (7)0.016 (9)
N30.041 (6)0.035 (9)0.035 (13)0.014 (5)0.020 (8)0.021 (9)
C10.026 (4)0.023 (5)0.027 (7)0.009 (3)0.012 (4)0.012 (5)
C40.020 (4)0.018 (5)0.019 (7)0.005 (3)0.006 (4)0.012 (5)
C140.021 (4)0.023 (5)0.023 (7)0.009 (3)0.010 (4)0.010 (5)
C110.026 (6)0.025 (7)0.026 (8)0.013 (4)0.009 (5)0.013 (6)
C120.021 (5)0.023 (5)0.020 (7)0.011 (4)0.007 (4)0.012 (5)
C130.023 (5)0.025 (5)0.022 (7)0.009 (3)0.012 (4)0.012 (5)
C20.027 (4)0.027 (5)0.028 (7)0.014 (3)0.010 (4)0.012 (5)
C30.030 (5)0.030 (6)0.031 (8)0.017 (4)0.012 (5)0.014 (5)
Geometric parameters (Å, º) top
Zn1—O11.93 (3)N13—H13C0.8900
Zn1—O14i1.968 (11)N13—C131.52 (4)
Zn1—O4ii1.91 (2)N3—H3A0.8900
Zn1—O111.911 (8)N3—H3B0.8900
O1—C11.23 (3)N3—H3C0.8900
O2—C11.24 (3)N3—C31.45 (4)
O14—C141.24 (4)C1—C21.512 (2)
O4—C41.32 (2)C4—C31.56 (3)
O11—C111.36 (2)C14—C131.529 (2)
O1W—H1WA0.8347C11—C121.54 (3)
O1W—H1WB0.8685C12—H12A0.9700
O13—C141.32 (5)C12—H12B0.9700
O3—C41.244 (19)C12—C131.520 (3)
O12—C111.18 (3)C13—H130.9800
O2W—H2WA0.8502C2—H2A0.9700
O2W—H2WB0.8499C2—H2B0.9700
N13—H13A0.8700C2—C31.530 (2)
N13—H13B0.8900C3—H30.9800
O1—Zn1—O14i119.0 (9)O14—C14—O13124.6 (15)
O4ii—Zn1—O195.4 (8)O14—C14—C13116 (3)
O4ii—Zn1—O14i102.5 (9)O13—C14—C13118 (3)
O4ii—Zn1—O11106.5 (8)O11—C11—C12106 (2)
O11—Zn1—O1114.8 (8)O12—C11—O11131 (2)
O11—Zn1—O14i114.7 (5)O12—C11—C12122 (2)
C1—O1—Zn1129.8 (19)C11—C12—H12A108.0
C14—O14—Zn1i111.0 (19)C11—C12—H12B108.0
C4—O4—Zn1ii123.1 (9)H12A—C12—H12B107.2
C11—O11—Zn1122.7 (17)C13—C12—C11117.3 (19)
H1WA—O1W—H1WB102.9C13—C12—H12A108.0
H2WA—O2W—H2WB104.4C13—C12—H12B108.0
H13A—N13—H13B109.5N13—C13—C14107 (2)
H13A—N13—H13C109.5N13—C13—C12112.8 (17)
H13B—N13—H13C109.5N13—C13—H13108.2
C13—N13—H13A111.0C14—C13—H13108.2
C13—N13—H13B108.0C12—C13—C14112 (3)
C13—N13—H13C108.0C12—C13—H13108.2
H3A—N3—H3B108.0C1—C2—H2A108.7
H3A—N3—H3C107.0C1—C2—H2B108.7
H3B—N3—H3C107.0C1—C2—C3114.2 (17)
C3—N3—H3A111.0H2A—C2—H2B107.6
C3—N3—H3B111.0C3—C2—H2A108.7
C3—N3—H3C112.0C3—C2—H2B108.7
O1—C1—O2120.6 (14)N3—C3—C4107.9 (19)
O1—C1—C2120 (2)N3—C3—C2116 (3)
O2—C1—C2120 (2)N3—C3—H3107.4
O4—C4—C3113.4 (17)C4—C3—H3107.4
O3—C4—O4130.5 (18)C2—C3—C4111 (2)
O3—C4—C3116 (2)C2—C3—H3107.4
O2—C1—C2—C319 (5)C1—C2—C3—N363 (4)
O12—C11—C12—C13155 (2)C1—C2—C3—C460 (4)
N13—C13—C14—O1318 (3)C11—C12—C13—N1368.5 (15)
N3—C3—C4—O333 (2)C11—C12—C13—C1452.8 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_1_02GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.932 Mg m3
a = 8.668 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.308 (4) ÅCell parameters from 325 reflections
c = 9.738 (3) Åθ = 3.9–27.1°
α = 111.52 (3)°µ = 2.01 mm1
β = 105.23 (3)°T = 296 K
γ = 108.10 (4)°Plate, colourless
V = 628.5 (5) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.107
Radiation source: sealed x-ray tubeθmax = 27.1°, θmin = 3.9°
ω scanh = 44
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 99
Tmin = 0.623, Tmax = 0.904l = 1212
2540 measured reflections12 standard reflections every 84 reflections
461 independent reflections intensity decay: none
325 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0402P)2 + 6.9565P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
461 reflectionsΔρmax = 0.26 e Å3
199 parametersΔρmin = 0.39 e Å3
139 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.02 (2) GPa (1020000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7053 (17)0.3217 (6)0.5392 (3)0.041 (3)
O10.638 (6)0.342 (2)0.7190 (16)0.048 (5)
O20.581 (4)0.276 (2)0.9004 (15)0.046 (7)
O141.095 (7)0.757 (3)0.466 (2)0.037 (7)
O40.504 (5)0.114 (2)0.6331 (14)0.039 (5)
O110.711 (7)0.508 (3)0.4925 (14)0.032 (5)
O1W0.244 (6)0.027 (2)0.7768 (16)0.040 (7)
H1WA0.3492930.1195180.8328470.060*
H1WB0.2434680.0254430.6837680.060*
O130.949 (6)0.501 (2)0.2512 (17)0.052 (8)
O30.510 (5)0.164 (2)0.8426 (14)0.038 (7)
O120.838 (6)0.732 (2)0.7369 (15)0.043 (7)
O2W0.226 (6)0.320 (3)1.0042 (19)0.053 (8)
H2WA0.2323980.2243080.9729010.080*
H2WB0.2290060.3463461.0984660.080*
N130.634 (9)0.539 (4)0.213 (2)0.045 (8)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.780 (7)0.155 (3)1.0551 (19)0.041 (8)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C40.588 (7)0.084 (2)0.780 (2)0.034 (6)
C130.797 (6)0.690 (3)0.337 (2)0.032 (9)
H130.8182940.7744330.2987430.038*
C110.775 (9)0.668 (3)0.590 (2)0.040 (7)
C120.792 (5)0.777 (2)0.5024 (18)0.031 (6)
H12A0.6916990.8041070.4863580.038*
H12B0.9009490.8853590.5731980.038*
C140.951 (5)0.644 (3)0.355 (3)0.040 (10)
C30.767 (5)0.073 (2)0.8880 (18)0.035 (6)
H30.8604090.0349590.8911690.042*
C20.802 (7)0.208 (3)0.827 (3)0.041 (9)
H2A0.9200530.3051390.9013990.049*
H2B0.8007670.1554440.7204830.049*
C10.661 (5)0.275 (3)0.817 (3)0.026 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.048 (6)0.039 (3)0.0386 (16)0.022 (3)0.013 (3)0.0245 (15)
O10.050 (8)0.049 (6)0.047 (5)0.022 (4)0.019 (5)0.026 (5)
O20.050 (13)0.048 (8)0.045 (6)0.019 (6)0.021 (9)0.029 (6)
O140.036 (9)0.035 (8)0.042 (8)0.012 (4)0.018 (6)0.021 (6)
O40.041 (8)0.042 (6)0.035 (5)0.019 (4)0.017 (5)0.020 (5)
O110.031 (7)0.032 (5)0.034 (5)0.012 (4)0.015 (5)0.017 (4)
O1W0.040 (13)0.039 (8)0.039 (6)0.020 (7)0.017 (9)0.016 (6)
O130.051 (13)0.054 (9)0.050 (7)0.024 (7)0.025 (10)0.022 (6)
O30.042 (12)0.034 (7)0.039 (6)0.021 (6)0.013 (9)0.017 (5)
O120.044 (13)0.049 (8)0.035 (6)0.023 (7)0.016 (9)0.018 (6)
O2W0.056 (14)0.057 (9)0.049 (7)0.027 (7)0.025 (9)0.025 (7)
N130.047 (14)0.046 (10)0.045 (8)0.022 (7)0.017 (10)0.023 (7)
N30.041 (13)0.038 (9)0.043 (7)0.020 (7)0.010 (9)0.022 (7)
C40.034 (9)0.033 (7)0.035 (7)0.015 (4)0.013 (6)0.018 (6)
C130.032 (10)0.031 (9)0.033 (9)0.013 (5)0.013 (6)0.017 (6)
C110.040 (9)0.041 (8)0.039 (7)0.019 (4)0.016 (6)0.019 (6)
C120.032 (8)0.031 (7)0.032 (6)0.014 (4)0.013 (6)0.017 (5)
C140.040 (12)0.039 (11)0.040 (10)0.017 (5)0.016 (7)0.022 (7)
C30.035 (9)0.036 (7)0.034 (6)0.017 (4)0.013 (6)0.018 (5)
C20.041 (11)0.040 (10)0.042 (10)0.018 (5)0.017 (7)0.021 (7)
C10.026 (10)0.024 (8)0.029 (8)0.012 (5)0.010 (6)0.013 (6)
Geometric parameters (Å, º) top
Zn1—O11.95 (3)N13—H13C0.9900
Zn1—O14i2.08 (6)N13—C131.43 (4)
Zn1—O4ii1.920 (19)N3—H3A0.8400
Zn1—O111.93 (4)N3—H3B0.8900
O1—C11.33 (4)N3—H3C0.8900
O2—C11.20 (3)N3—C31.48 (3)
O14—C141.21 (3)C4—C31.50 (3)
O4—C41.30 (4)C13—H130.9800
O11—C111.26 (4)C13—C121.53 (2)
O1W—H1WA0.8798C13—C141.51 (3)
O1W—H1WB0.8543C11—C121.54 (3)
O13—C141.34 (3)C12—H12A0.9700
O3—C41.27 (2)C12—H12B0.9700
O12—C111.21 (2)C3—H30.9800
O2W—H2WA0.8500C3—C21.56 (3)
O2W—H2WB0.8499C2—H2A0.9700
N13—H13A0.8600C2—H2B0.9700
N13—H13B0.8600C2—C11.53 (6)
O1—Zn1—O14i116.3 (18)C12—C13—H13107.2
O4ii—Zn1—O198.5 (10)C14—C13—H13107.2
O4ii—Zn1—O14i100.9 (16)C14—C13—C12110.8 (17)
O4ii—Zn1—O11107.7 (16)O11—C11—C12112.5 (13)
O11—Zn1—O1111 (2)O12—C11—O11124 (3)
O11—Zn1—O14i119 (2)O12—C11—C12122 (2)
C1—O1—Zn1131 (4)C13—C12—C11115 (2)
C14—O14—Zn1i111 (3)C13—C12—H12A108.6
C4—O4—Zn1ii126.2 (10)C13—C12—H12B108.6
C11—O11—Zn1129 (2)C11—C12—H12A108.6
H1WA—O1W—H1WB103.9C11—C12—H12B108.6
H2WA—O2W—H2WB104.5H12A—C12—H12B107.6
H13A—N13—H13B113.0O14—C14—O13117 (4)
H13A—N13—H13C102.0O14—C14—C13116 (4)
H13B—N13—H13C101.0O13—C14—C13126 (3)
C13—N13—H13A116.0N3—C3—C4109 (2)
C13—N13—H13B114.0N3—C3—H3108.0
C13—N13—H13C109.5N3—C3—C2110 (2)
H3A—N3—H3B113.0C4—C3—H3108.0
H3A—N3—H3C111.0C4—C3—C2113.7 (19)
H3B—N3—H3C107.0C2—C3—H3108.0
C3—N3—H3A114.0C3—C2—H2A109.3
C3—N3—H3B105.0C3—C2—H2B109.3
C3—N3—H3C106.0H2A—C2—H2B107.9
O4—C4—C3117.8 (13)C1—C2—C3112 (3)
O3—C4—O4122 (3)C1—C2—H2A109.3
O3—C4—C3119.4 (18)C1—C2—H2B109.3
N13—C13—H13107.2O1—C1—C2117 (3)
N13—C13—C12115 (3)O2—C1—O1121 (4)
N13—C13—C14109 (4)O2—C1—C2122 (3)
Zn1—O1—C1—C218 (3)N13—C13—C14—O1314 (3)
Zn1—O14i—C14i—C13i175.6 (15)N3—C3—C4—O327 (5)
Zn1—O4ii—C4ii—C3ii169 (3)C11—C12—C13—N1366 (5)
Zn1—O11—C11—C12167 (4)C11—C12—C13—C1458 (4)
O2—C1—C2—C326 (3)C1—C2—C3—N363 (4)
O12—C11—C12—C13150 (6)C1—C2—C3—C460 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_1_54GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 1.971 Mg m3
a = 8.594 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.235 (3) ÅCell parameters from 314 reflections
c = 9.6951 (16) Åθ = 3.9–26.7°
α = 111.39 (2)°µ = 2.05 mm1
β = 104.94 (2)°T = 296 K
γ = 108.42 (3)°Plate, colourless
V = 616.2 (4) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.115
Radiation source: sealed x-ray tubeθmax = 26.7°, θmin = 3.9°
ω scanh = 44
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 99
Tmin = 0.617, Tmax = 0.902l = 1212
2559 measured reflections12 standard reflections every 84 reflections
458 independent reflections intensity decay: none
314 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0615P)2 + 3.7775P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
458 reflectionsΔρmax = 0.25 e Å3
198 parametersΔρmin = 0.26 e Å3
136 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.54 (2) GPa (1540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.7017 (16)0.3212 (6)0.5364 (3)0.036 (3)
O10.636 (5)0.342 (2)0.7185 (14)0.040 (5)
O20.580 (4)0.2784 (18)0.9021 (13)0.036 (7)
O141.087 (6)0.760 (3)0.4713 (18)0.038 (7)
O40.504 (5)0.1102 (19)0.6355 (13)0.036 (5)
O110.711 (6)0.508 (2)0.4911 (13)0.032 (5)
O1W0.245 (6)0.029 (2)0.7768 (14)0.040 (7)
H1WA0.3457850.1217390.8128820.060*
H1WB0.2511700.0510450.7021440.060*
O130.945 (5)0.506 (3)0.2532 (18)0.055 (8)
O30.514 (5)0.1650 (18)0.8437 (13)0.038 (7)
O120.834 (5)0.734 (2)0.7368 (14)0.040 (7)
O2W0.224 (6)0.321 (2)1.0072 (15)0.043 (8)
H2WA0.2422810.2360810.9637540.065*
H2WB0.2186240.3291271.0895150.065*
N130.641 (8)0.537 (3)0.2115 (19)0.033 (7)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.790 (6)0.156 (3)1.0600 (14)0.038 (7)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C20.805 (5)0.213 (3)0.833 (3)0.040 (9)
H2A0.9221780.3126030.9101820.048*
H2B0.8107410.1622960.7285180.048*
C40.601 (11)0.085 (4)0.7873 (18)0.034 (6)
C140.945 (4)0.646 (3)0.353 (2)0.030 (9)
C110.765 (8)0.675 (3)0.590 (2)0.035 (6)
C120.787 (5)0.780 (2)0.5025 (17)0.027 (6)
H12A0.8976220.8886090.5742460.033*
H12B0.6876630.8105720.4867620.033*
C130.793 (6)0.697 (3)0.337 (2)0.035 (9)
H130.8138200.7819700.2978770.042*
C10.662 (4)0.277 (3)0.815 (2)0.022 (7)
C30.772 (5)0.078 (2)0.8915 (18)0.039 (6)
H30.8689100.0439490.8939360.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.044 (6)0.035 (2)0.0338 (14)0.020 (3)0.015 (3)0.0204 (13)
O10.043 (7)0.042 (6)0.037 (5)0.022 (4)0.016 (5)0.019 (4)
O20.037 (12)0.039 (7)0.032 (5)0.017 (6)0.015 (8)0.018 (5)
O140.037 (9)0.038 (8)0.039 (7)0.015 (4)0.020 (6)0.018 (5)
O40.037 (7)0.036 (6)0.036 (5)0.018 (4)0.015 (5)0.017 (4)
O110.031 (7)0.031 (5)0.033 (4)0.015 (4)0.011 (5)0.017 (4)
O1W0.037 (13)0.041 (8)0.040 (6)0.015 (7)0.013 (9)0.021 (6)
O130.052 (13)0.053 (8)0.058 (7)0.020 (7)0.031 (9)0.025 (6)
O30.040 (12)0.036 (7)0.037 (5)0.014 (6)0.017 (8)0.020 (5)
O120.042 (13)0.048 (8)0.031 (5)0.024 (7)0.017 (8)0.014 (6)
O2W0.040 (13)0.046 (9)0.041 (7)0.023 (7)0.019 (9)0.014 (6)
N130.031 (13)0.032 (8)0.033 (7)0.019 (7)0.009 (10)0.012 (6)
N30.041 (13)0.037 (8)0.036 (7)0.020 (7)0.007 (9)0.021 (6)
C20.041 (11)0.040 (10)0.041 (9)0.016 (5)0.017 (7)0.023 (6)
C40.035 (9)0.034 (7)0.036 (6)0.014 (4)0.016 (6)0.019 (5)
C140.031 (11)0.030 (10)0.030 (9)0.012 (5)0.013 (6)0.019 (7)
C110.034 (8)0.034 (7)0.034 (6)0.017 (4)0.013 (6)0.014 (5)
C120.027 (8)0.026 (6)0.030 (6)0.010 (4)0.015 (6)0.015 (5)
C130.035 (11)0.033 (10)0.036 (9)0.017 (5)0.013 (6)0.017 (6)
C10.023 (9)0.021 (8)0.024 (7)0.010 (5)0.009 (6)0.012 (6)
C30.039 (9)0.038 (7)0.041 (7)0.017 (4)0.017 (6)0.020 (6)
Geometric parameters (Å, º) top
Zn1—O11.95 (2)N13—H13C0.9800
Zn1—O14i2.18 (6)N13—C131.42 (3)
Zn1—O4ii1.907 (16)N3—H3A0.8900
Zn1—O111.91 (4)N3—H3B0.8100
O1—C11.29 (4)N3—H3C0.8600
O2—C11.23 (2)N3—C31.47 (3)
O14—C141.22 (2)C2—H2A0.9700
O4—C41.38 (5)C2—H2B0.9700
O11—C111.33 (4)C2—C11.52 (3)
O1W—H1WA0.8702C2—C31.53 (2)
O1W—H1WB0.8516C4—C31.47 (4)
O13—C141.30 (3)C14—C131.52 (4)
O3—C41.25 (3)C11—C121.50 (3)
O12—C111.22 (2)C12—H12A0.9700
O2W—H2WA0.8293C12—H12B0.9700
O2W—H2WB0.7900C12—C131.53 (2)
N13—H13A0.8100C13—H130.9800
N13—H13B0.9200C3—H30.9800
O1—Zn1—O14i116.4 (16)O4—C4—C3115.9 (15)
O4ii—Zn1—O199.6 (10)O3—C4—O4117 (5)
O4ii—Zn1—O14i99.6 (15)O3—C4—C3122.8 (15)
O4ii—Zn1—O11109.1 (15)O14—C14—O13119 (4)
O11—Zn1—O1111.7 (19)O14—C14—C13113 (4)
O11—Zn1—O14i117.7 (19)O13—C14—C13128 (3)
C1—O1—Zn1131 (4)O11—C11—C12111.8 (13)
C14—O14—Zn1i108 (3)O12—C11—O11119 (3)
C4—O4—Zn1ii125.2 (10)O12—C11—C12125.5 (15)
C11—O11—Zn1131.3 (14)C11—C12—H12A107.9
H1WA—O1W—H1WB104.0C11—C12—H12B107.9
H2WA—O2W—H2WB109.0C11—C12—C13118 (2)
H13A—N13—H13B109.5H12A—C12—H12B107.2
H13A—N13—H13C105.0C13—C12—H12A107.9
H13B—N13—H13C96.0C13—C12—H12B107.9
C13—N13—H13A123.0N13—C13—C14102 (4)
C13—N13—H13B107.0N13—C13—C12118 (3)
C13—N13—H13C112.0N13—C13—H13108.8
H3A—N3—H3B113.0C14—C13—C12110.6 (18)
H3A—N3—H3C107.0C14—C13—H13108.8
H3B—N3—H3C114.0C12—C13—H13108.8
C3—N3—H3A108.0O1—C1—C2121 (3)
C3—N3—H3B107.0O2—C1—O1120 (4)
C3—N3—H3C107.0O2—C1—C2119 (3)
H2A—C2—H2B107.7N3—C3—C2111.0 (18)
C1—C2—H2A108.8N3—C3—C4110 (2)
C1—C2—H2B108.8N3—C3—H3106.3
C1—C2—C3113.9 (17)C2—C3—H3106.3
C3—C2—H2A108.8C4—C3—C2116 (2)
C3—C2—H2B108.8C4—C3—H3106.3
Zn1—O1—C1—C220 (3)N13—C13—C14—O1314 (3)
Zn1—O14i—C14i—C13i174.2 (14)N3—C3—C4—O318 (10)
Zn1—O4ii—C4ii—C3ii170 (4)C11—C12—C13—N1359 (5)
Zn1—O11—C11—C12167 (4)C11—C12—C13—C1458 (4)
O2—C1—C2—C329 (3)C1—C2—C3—N367 (4)
O12—C11—C12—C13145 (5)C1—C2—C3—C459 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_2_53GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 2.032 Mg m3
a = 8.484 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.110 (3) ÅCell parameters from 319 reflections
c = 9.6213 (14) Åθ = 4.0–27.1°
α = 110.91 (2)°µ = 2.12 mm1
β = 104.75 (2)°T = 296 K
γ = 108.76 (3)°Plate, colourless
V = 597.6 (3) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.106
Radiation source: sealed x-ray tubeθmax = 27.1°, θmin = 4.0°
ω scanh = 44
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 98
Tmin = 0.608, Tmax = 0.900l = 1212
2469 measured reflections12 standard reflections every 84 reflections
444 independent reflections intensity decay: none
319 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.074P)2 + 4.5648P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
444 reflectionsΔρmax = 0.29 e Å3
198 parametersΔρmin = 0.27 e Å3
134 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 2.53 (2) GPa (2530000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.6989 (18)0.3200 (8)0.5311 (3)0.030 (3)
O10.644 (5)0.338 (2)0.7171 (14)0.034 (5)
O20.586 (4)0.281 (2)0.9072 (13)0.032 (7)
O141.108 (7)0.761 (4)0.480 (2)0.043 (9)
O40.525 (5)0.109 (2)0.6398 (14)0.029 (5)
O110.699 (7)0.511 (3)0.4876 (14)0.032 (5)
O1W0.237 (6)0.033 (2)0.7766 (14)0.029 (7)
H1WA0.3487490.1081030.8111880.044*
H1WB0.2051790.0312240.6753900.044*
O130.953 (5)0.505 (3)0.2591 (18)0.048 (8)
O30.519 (5)0.167 (2)0.8465 (13)0.033 (7)
O120.834 (5)0.736 (2)0.7340 (13)0.031 (7)
O2W0.237 (5)0.319 (3)1.0099 (15)0.039 (7)
H2WA0.1818690.2109740.9563120.058*
H2WB0.2088580.3463071.0890510.058*
N130.628 (2)0.526 (2)0.215 (17)0.030 (7)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.790 (6)0.156 (3)1.0600 (14)0.032 (8)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C20.815 (5)0.216 (3)0.831 (3)0.033 (9)
H2A0.9356000.3151710.9038520.040*
H2B0.8138460.1624940.7231520.040*
C40.599 (7)0.083 (3)0.787 (2)0.029 (6)
C140.954 (6)0.647 (3)0.359 (3)0.024 (9)
C110.775 (8)0.672 (4)0.586 (2)0.029 (6)
C120.805 (7)0.778 (3)0.4998 (18)0.028 (6)
H12A0.7126060.8197910.4915300.033*
H12B0.9225650.8817430.5703800.033*
C130.802 (6)0.703 (4)0.342 (3)0.026 (9)
H130.8293380.7937240.3071410.031*
C10.672 (5)0.283 (3)0.821 (3)0.026 (8)
C30.781 (5)0.078 (3)0.8938 (18)0.031 (6)
H30.8743350.0371450.8888350.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.028 (5)0.034 (2)0.0264 (13)0.013 (3)0.002 (3)0.0206 (14)
O10.036 (7)0.040 (6)0.028 (5)0.018 (4)0.013 (5)0.018 (4)
O20.030 (12)0.036 (8)0.030 (6)0.014 (6)0.008 (8)0.020 (6)
O140.042 (10)0.044 (9)0.041 (9)0.023 (5)0.019 (6)0.016 (6)
O40.031 (7)0.028 (5)0.029 (5)0.015 (4)0.010 (5)0.014 (4)
O110.034 (7)0.033 (6)0.030 (5)0.016 (4)0.011 (5)0.017 (4)
O1W0.032 (12)0.033 (8)0.025 (6)0.018 (6)0.013 (8)0.012 (6)
O130.043 (13)0.045 (9)0.052 (7)0.018 (7)0.018 (9)0.022 (7)
O30.031 (12)0.031 (7)0.035 (6)0.011 (6)0.006 (8)0.021 (5)
O120.035 (12)0.038 (8)0.021 (5)0.025 (7)0.006 (8)0.013 (6)
O2W0.041 (13)0.045 (8)0.032 (6)0.021 (6)0.014 (9)0.020 (6)
N130.031 (13)0.032 (9)0.026 (7)0.018 (7)0.006 (10)0.015 (6)
N30.031 (13)0.029 (9)0.033 (7)0.015 (7)0.003 (9)0.018 (7)
C20.034 (10)0.034 (9)0.034 (9)0.014 (5)0.014 (6)0.019 (6)
C40.030 (8)0.029 (7)0.029 (6)0.012 (4)0.012 (6)0.017 (5)
C140.024 (11)0.024 (10)0.025 (9)0.010 (5)0.010 (7)0.013 (7)
C110.030 (8)0.028 (7)0.031 (6)0.013 (4)0.013 (6)0.014 (5)
C120.027 (8)0.028 (7)0.028 (6)0.014 (4)0.011 (6)0.012 (5)
C130.026 (11)0.028 (10)0.024 (9)0.012 (5)0.011 (6)0.013 (6)
C10.027 (10)0.026 (9)0.027 (8)0.012 (5)0.011 (6)0.013 (6)
C30.032 (8)0.033 (7)0.031 (6)0.012 (4)0.012 (6)0.020 (5)
Geometric parameters (Å, º) top
Zn1—O11.929 (19)N13—H13C0.8500
Zn1—O14i2.01 (7)N13—C131.46 (4)
Zn1—O4ii1.953 (18)N3—H3A0.8900
Zn1—O111.93 (5)N3—H3B0.8000
O1—C11.28 (4)N3—H3C0.8500
O2—C11.24 (2)N3—C31.44 (2)
O14—C141.27 (2)C2—H2A0.9700
O4—C41.29 (3)C2—H2B0.9700
O11—C111.25 (3)C2—C11.52 (3)
O1W—H1WA0.8567C2—C31.56 (2)
O1W—H1WB0.8493C4—C31.50 (3)
O13—C141.30 (3)C14—C131.53 (4)
O3—C41.25 (2)C11—C121.48 (3)
O12—C111.22 (2)C12—H12A0.9700
O2W—H2WA0.8221C12—H12B0.9700
O2W—H2WB0.8340C12—C131.42 (4)
N13—H13A0.8700C13—H130.9800
N13—H13B0.8700C3—H30.9800
O1—Zn1—O14i113.7 (18)O4—C4—C3114.8 (13)
O1—Zn1—O4ii98.6 (9)O3—C4—O4124 (3)
O1—Zn1—O11111 (2)O3—C4—C3120.3 (17)
O4ii—Zn1—O14i102.1 (16)O14—C14—O13115 (4)
O11—Zn1—O14i121 (2)O14—C14—C13116 (4)
O11—Zn1—O4ii106.4 (18)O13—C14—C13129 (3)
C1—O1—Zn1136 (4)O11—C11—C12111.0 (14)
C14—O14—Zn1i111 (3)O12—C11—O11125 (3)
C4—O4—Zn1ii123.2 (10)O12—C11—C12123.9 (18)
C11—O11—Zn1129 (3)C11—C12—H12A107.2
H1WA—O1W—H1WB104.2C11—C12—H12B107.2
H2WA—O2W—H2WB106.0H12A—C12—H12B106.8
H13A—N13—H13B109.5C13—C12—C11121 (3)
H13A—N13—H13C111.0C13—C12—H12A107.2
H13B—N13—H13C109.5C13—C12—H12B107.2
C13—N13—H13A109.5N13—C13—C14106 (4)
C13—N13—H13B105.0N13—C13—H13115.0
C13—N13—H13C112.0C14—C13—H13108.9
H3A—N3—H3B113.0C12—C13—N13117 (3)
H3A—N3—H3C107.0C12—C13—C14107 (4)
H3B—N3—H3C114.0C12—C13—H13108.9
C3—N3—H3A111.0O1—C1—C2116 (3)
C3—N3—H3B105.0O2—C1—O1122 (4)
C3—N3—H3C107.0O2—C1—C2122 (3)
H2A—C2—H2B107.9N3—C3—C2112.6 (19)
C1—C2—H2A109.2N3—C3—C4108 (3)
C1—C2—H2B109.2N3—C3—H3112.0
C1—C2—C3112.2 (16)C2—C3—H3106.2
C3—C2—H2A109.2C4—C3—C2113.3 (16)
C3—C2—H2B109.2C4—C3—H3106.2
Zn1—O1—C1—C215 (3)N13—C13—C14—O1314 (4)
Zn1—O14i—C14i—C13i173.0 (18)N3—C3—C4—O322 (5)
Zn1—O4ii—C4ii—C3ii174 (3)C11—C12—C13—N1358 (8)
Zn1—O11—C11—C12157 (5)C11—C12—C13—C1460 (5)
O2—C1—C2—C325 (3)C1—C2—C3—N361 (4)
O12—C11—C12—C13154 (6)C1—C2—C3—C460 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_3_05GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 2.069 Mg m3
a = 8.415 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.033 (4) ÅCell parameters from 327 reflections
c = 9.5778 (17) Åθ = 4.0–27.4°
α = 110.49 (3)°µ = 2.16 mm1
β = 104.77 (3)°T = 296 K
γ = 108.92 (5)°Plate, colourless
V = 586.8 (5) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.065
Radiation source: sealed x-ray tubeθmax = 27.4°, θmin = 4.0°
ω scanh = 44
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 88
Tmin = 0.608, Tmax = 0.900l = 1212
2377 measured reflections12 standard reflections every 84 reflections
440 independent reflections intensity decay: none
327 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3153P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
440 reflectionsΔρmax = 0.21 e Å3
198 parametersΔρmin = 0.15 e Å3
126 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 3.05 (2) GPa (3050000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.6965 (14)0.3198 (7)0.5275 (2)0.043 (13)
O10.634 (3)0.3435 (17)0.7156 (9)0.039 (4)
O20.584 (3)0.2830 (17)0.9065 (9)0.036 (6)
O141.109 (8)0.759 (4)0.4868 (19)0.053 (8)
O40.527 (3)0.1049 (16)0.6418 (8)0.033 (4)
O110.701 (5)0.509 (3)0.4835 (9)0.031 (5)
O1W0.241 (4)0.0350 (18)0.7780 (9)0.032 (6)
H1WA0.3524550.1071090.8087280.047*
H1WB0.2130220.0470920.6844780.047*
O130.942 (4)0.508 (2)0.2613 (12)0.043 (7)
O30.513 (3)0.1641 (15)0.8470 (8)0.037 (6)
O120.825 (4)0.737 (2)0.7302 (9)0.038 (6)
O2W0.232 (3)0.3211 (17)1.0127 (9)0.038 (6)
H2WA0.2047700.2231930.9333530.057*
H2WB0.2544750.3040541.0958370.057*
N130.628 (2)0.526 (2)0.215 (17)0.0290 (3)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.802 (5)0.1559 (19)1.0631 (10)0.038 (7)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C40.603 (5)0.083 (2)0.7892 (12)0.029 (5)
C130.811 (6)0.701 (3)0.3404 (19)0.026 (8)
H130.8422740.7907010.3032820.031*
C110.768 (5)0.676 (3)0.5814 (13)0.030 (5)
C120.800 (5)0.783 (2)0.4960 (12)0.029 (5)
H12A0.7022360.8171630.4774370.035*
H12B0.9149310.8908910.5687850.035*
C140.967 (6)0.643 (3)0.361 (2)0.025 (8)
C30.783 (4)0.081 (2)0.8977 (12)0.032 (5)
H30.8799720.0435060.8979010.038*
C20.820 (5)0.221 (2)0.838 (2)0.034 (7)
H2A0.9377430.3228250.9153560.041*
H2B0.8279630.1713890.7335320.041*
C10.670 (4)0.282 (2)0.817 (2)0.022 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.05 (2)0.038 (4)0.0299 (9)0.003 (9)0.007 (3)0.0193 (14)
O10.042 (7)0.043 (5)0.036 (4)0.018 (3)0.017 (5)0.022 (4)
O20.037 (11)0.041 (7)0.035 (4)0.015 (6)0.019 (7)0.023 (4)
O140.052 (10)0.052 (9)0.053 (8)0.029 (5)0.018 (6)0.019 (5)
O40.035 (6)0.034 (5)0.031 (3)0.015 (3)0.014 (5)0.018 (4)
O110.033 (7)0.032 (5)0.028 (4)0.018 (4)0.011 (5)0.014 (4)
O1W0.029 (11)0.027 (6)0.035 (4)0.016 (6)0.009 (7)0.011 (5)
O130.035 (12)0.040 (7)0.045 (5)0.020 (6)0.013 (8)0.011 (5)
O30.038 (11)0.034 (6)0.038 (4)0.013 (6)0.014 (7)0.021 (4)
O120.041 (11)0.048 (7)0.029 (4)0.023 (6)0.016 (7)0.018 (5)
O2W0.042 (11)0.043 (7)0.032 (4)0.022 (6)0.011 (7)0.022 (4)
N130.034 (12)0.033 (7)0.028 (5)0.018 (6)0.009 (9)0.016 (5)
N30.034 (12)0.027 (7)0.045 (5)0.015 (6)0.002 (8)0.022 (6)
C40.031 (7)0.030 (6)0.028 (5)0.015 (4)0.010 (5)0.015 (5)
C130.025 (10)0.025 (9)0.027 (8)0.011 (5)0.010 (6)0.013 (6)
C110.032 (7)0.032 (6)0.030 (5)0.012 (4)0.014 (5)0.017 (5)
C120.031 (7)0.027 (6)0.031 (5)0.014 (4)0.010 (5)0.017 (4)
C140.025 (10)0.024 (9)0.026 (8)0.012 (5)0.010 (6)0.010 (6)
C30.031 (7)0.032 (6)0.032 (5)0.013 (4)0.014 (5)0.016 (5)
C20.035 (9)0.033 (8)0.035 (7)0.015 (4)0.013 (6)0.019 (6)
C10.022 (8)0.020 (7)0.024 (7)0.009 (4)0.008 (6)0.012 (5)
Geometric parameters (Å, º) top
Zn1—O11.962 (15)N13—H13C0.8400
Zn1—O14i2.01 (7)N13—C131.48 (3)
Zn1—O4ii1.954 (11)N3—H3A0.9700
Zn1—O111.89 (4)N3—H3B0.7300
O1—C11.30 (3)N3—H3C0.8400
O2—C11.26 (3)N3—C31.431 (19)
O14—C141.25 (3)C4—C31.493 (18)
O4—C41.31 (2)C13—H130.9800
O11—C111.29 (3)C13—C121.45 (3)
O1W—H1WA0.8502C13—C141.56 (4)
O1W—H1WB0.8504C11—C121.476 (19)
O13—C141.17 (4)C12—H12A0.9700
O3—C41.249 (18)C12—H12B0.9700
O12—C111.224 (13)C3—H30.9800
O2W—H2WA0.8492C3—C21.54 (2)
O2W—H2WB0.8499C2—H2A0.9700
N13—H13A0.8700C2—H2B0.9700
N13—H13B0.8600C2—C11.53 (4)
O1—Zn1—O14i117.2 (12)C12—C13—H13107.7
O4ii—Zn1—O198.4 (7)C12—C13—C14111 (3)
O4ii—Zn1—O14i101.3 (13)C14—C13—H13107.7
O11—Zn1—O1109.6 (17)O11—C11—C12111.7 (10)
O11—Zn1—O14i119.3 (18)O12—C11—O11123 (2)
O11—Zn1—O4ii108.0 (13)O12—C11—C12124.5 (13)
C1—O1—Zn1130 (2)C13—C12—C11117 (3)
C14—O14—Zn1i105 (4)C13—C12—H12A108.0
C4—O4—Zn1ii122.0 (6)C13—C12—H12B108.0
C11—O11—Zn1130.6 (13)C11—C12—H12A108.0
H1WA—O1W—H1WB104.4C11—C12—H12B108.0
H2WA—O2W—H2WB104.6H12A—C12—H12B107.2
H13A—N13—H13B109.5O14—C14—C13111 (4)
H13A—N13—H13C109.5O13—C14—O14129 (6)
H13B—N13—H13C109.5O13—C14—C13120 (3)
C13—N13—H13A109.5N3—C3—C4111.0 (14)
C13—N13—H13B107.0N3—C3—H3106.5
C13—N13—H13C111.0N3—C3—C2111.5 (16)
H3A—N3—H3B109.5C4—C3—H3106.5
H3A—N3—H3C100.0C4—C3—C2114.4 (12)
H3B—N3—H3C122.0C2—C3—H3106.5
C3—N3—H3A106.0C3—C2—H2A109.0
C3—N3—H3B109.5C3—C2—H2B109.0
C3—N3—H3C108.0H2A—C2—H2B107.8
O4—C4—C3114.8 (9)C1—C2—C3113.0 (18)
O3—C4—O4122 (2)C1—C2—H2A109.0
O3—C4—C3121.2 (9)C1—C2—H2B109.0
N13—C13—H13114.0O1—C1—C2123 (2)
N13—C13—C14107 (3)O2—C1—O1117 (4)
C12—C13—N13115 (3)O2—C1—C2120 (3)
Zn1—O1—C1—C218.1 (19)N13—C13—C14—O1320 (6)
Zn1—O14i—C14i—C13i170.9 (12)N3—C3—C4—O318 (4)
Zn1—O4ii—C4ii—C3ii174 (2)C11—C12—C13—N1364 (5)
Zn1—O11—C11—C12160 (4)C11—C12—C13—C1458 (3)
O2—C1—C2—C330 (2)C1—C2—C3—N369 (3)
O12—C11—C12—C13150 (4)C1—C2—C3—C458 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_3_53GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 2.092 Mg m3
a = 8.386 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.983 (3) ÅCell parameters from 284 reflections
c = 9.5498 (19) Åθ = 4.1–27.4°
α = 110.18 (2)°µ = 2.18 mm1
β = 104.73 (3)°T = 296 K
γ = 109.15 (4)°Plate, colourless
V = 580.5 (5) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.084
Radiation source: sealed x-ray tubeθmax = 27.4°, θmin = 4.1°
ω scanh = 54
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 88
Tmin = 0.599, Tmax = 0.897l = 1211
2344 measured reflections12 standard reflections every 84 reflections
421 independent reflections intensity decay: none
284 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.1189P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
421 reflectionsΔρmax = 0.43 e Å3
198 parametersΔρmin = 0.29 e Å3
126 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 3.53 (2) GPa (3530000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.6859 (17)0.3227 (10)0.5251 (4)0.066 (17)
O10.636 (5)0.345 (3)0.7162 (15)0.042 (5)
O20.598 (5)0.282 (3)0.9093 (14)0.039 (8)
O141.125 (9)0.746 (5)0.486 (2)0.021 (7)
O40.536 (6)0.104 (3)0.6453 (14)0.031 (5)
O110.710 (8)0.507 (4)0.4821 (15)0.041 (6)
O1W0.239 (6)0.036 (3)0.7777 (16)0.043 (8)
H1WA0.3541540.1033690.8178400.065*
H1WB0.2139550.0377610.6812400.065*
O130.944 (7)0.506 (4)0.2630 (19)0.045 (8)
O30.523 (5)0.166 (3)0.8474 (13)0.042 (8)
O120.836 (6)0.732 (4)0.7292 (15)0.042 (8)
O2W0.226 (5)0.324 (3)1.0150 (15)0.040 (8)
H2WA0.2400720.2366540.9693670.061*
H2WB0.2338590.3332041.1063210.061*
N130.6283 (2)0.526 (2)0.216 (2)0.035 (7)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.7820 (2)0.15150 (18)1.05345 (17)0.041 (7)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C40.600 (6)0.082 (3)0.7879 (18)0.031 (6)
C130.820 (10)0.703 (5)0.341 (3)0.025 (10)
H130.8583740.7927010.3043450.030*
C110.762 (8)0.680 (5)0.581 (2)0.031 (6)
C120.802 (8)0.788 (4)0.4936 (19)0.031 (6)
H12A0.7024120.8208920.4686080.037*
H12B0.9153260.8978870.5681660.037*
C140.970 (10)0.638 (6)0.364 (4)0.043 (14)
C30.785 (6)0.083 (4)0.8984 (19)0.034 (6)
H30.8780020.0409060.8898840.041*
C20.822 (7)0.223 (4)0.836 (3)0.036 (11)
H2A0.9423060.3247160.9111520.043*
H2B0.8266250.1711810.7298210.043*
C10.671 (7)0.286 (3)0.818 (3)0.031 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.06 (2)0.063 (8)0.0384 (16)0.011 (13)0.010 (4)0.027 (2)
O10.046 (8)0.043 (7)0.039 (5)0.021 (4)0.018 (5)0.021 (5)
O20.046 (12)0.041 (9)0.036 (6)0.016 (6)0.016 (8)0.028 (6)
O140.019 (9)0.020 (8)0.022 (7)0.011 (5)0.008 (6)0.006 (5)
O40.031 (7)0.029 (6)0.031 (5)0.016 (4)0.010 (5)0.013 (5)
O110.042 (8)0.041 (7)0.039 (6)0.020 (4)0.015 (6)0.020 (5)
O1W0.049 (12)0.044 (9)0.038 (6)0.026 (7)0.012 (9)0.020 (7)
O130.036 (13)0.039 (10)0.054 (7)0.019 (7)0.017 (9)0.015 (7)
O30.051 (12)0.044 (9)0.038 (6)0.018 (6)0.019 (8)0.028 (7)
O120.046 (12)0.048 (9)0.034 (6)0.023 (7)0.017 (9)0.020 (7)
O2W0.042 (13)0.041 (10)0.037 (7)0.023 (7)0.017 (9)0.014 (7)
N130.036 (13)0.036 (10)0.033 (7)0.018 (7)0.018 (10)0.012 (8)
N30.045 (13)0.029 (10)0.048 (8)0.021 (7)0.006 (10)0.020 (8)
C40.031 (8)0.030 (8)0.030 (6)0.014 (4)0.012 (6)0.015 (6)
C130.026 (12)0.024 (11)0.027 (10)0.008 (5)0.012 (7)0.016 (7)
C110.029 (9)0.030 (8)0.032 (6)0.013 (4)0.014 (6)0.014 (6)
C120.032 (8)0.030 (8)0.030 (6)0.014 (4)0.013 (6)0.015 (5)
C140.044 (15)0.044 (14)0.043 (13)0.019 (7)0.018 (8)0.022 (8)
C30.034 (9)0.033 (8)0.037 (7)0.014 (4)0.016 (6)0.018 (6)
C20.036 (12)0.031 (12)0.040 (11)0.013 (6)0.014 (7)0.021 (7)
C10.031 (12)0.028 (11)0.035 (11)0.011 (6)0.013 (7)0.019 (7)
Geometric parameters (Å, º) top
Zn1—O11.93 (2)N13—H13C0.8300
Zn1—O14i1.89 (10)N13—C131.61 (6)
Zn1—O4ii1.955 (15)N3—H3A0.8500
Zn1—O111.80 (5)N3—H3B0.8500
O1—C11.28 (5)N3—H3C0.8400
O2—C11.18 (4)N3—C31.37 (3)
O14—C141.27 (6)C4—C31.52 (3)
O4—C41.25 (3)C13—H130.9800
O11—C111.35 (6)C13—C121.47 (6)
O1W—H1WA0.8444C13—C141.55 (4)
O1W—H1WB0.8495C11—C121.50 (4)
O13—C141.15 (7)C12—H12A0.9700
O3—C41.21 (2)C12—H12B0.9700
O12—C111.22 (3)C3—H30.9800
O2W—H2WA0.8165C3—C21.55 (3)
O2W—H2WB0.8293C2—H2A0.9700
N13—H13A0.8900C2—H2B0.9700
N13—H13B0.8600C2—C11.55 (4)
O1—Zn1—O4ii100.6 (9)C12—C13—H13107.3
O14i—Zn1—O1114 (2)C12—C13—C14113 (5)
O14i—Zn1—O4ii101.6 (19)C14—C13—H13107.3
O11—Zn1—O1114 (2)O11—C11—C12110 (2)
O11—Zn1—O14i113 (3)O12—C11—O11117 (5)
O11—Zn1—O4ii111.2 (18)O12—C11—C12126.3 (17)
C1—O1—Zn1133 (4)C13—C12—C11116 (5)
C14—O14—Zn1i113 (5)C13—C12—H12A108.2
C4—O4—Zn1ii120.6 (10)C13—C12—H12B108.2
C11—O11—Zn1131.2 (15)C11—C12—H12A108.2
H1WA—O1W—H1WB104.4C11—C12—H12B108.2
H2WA—O2W—H2WB106.9H12A—C12—H12B107.3
H13A—N13—H13B108.0O14—C14—C13117 (6)
H13A—N13—H13C109.5O13—C14—O14123 (9)
H13B—N13—H13C111.0O13—C14—C13119 (6)
C13—N13—H13A107.0N3—C3—C4106 (3)
C13—N13—H13B109.5N3—C3—H3117.0
C13—N13—H13C112.0N3—C3—C2115 (3)
H3A—N3—H3B109.5C4—C3—H3104.6
H3A—N3—H3C109.5C4—C3—C2113.3 (16)
H3B—N3—H3C107.0C2—C3—H3104.6
C3—N3—H3A117.0C3—C2—H2A109.3
C3—N3—H3B104.0C3—C2—H2B109.3
C3—N3—H3C109.5H2A—C2—H2B107.9
O4—C4—C3113.5 (14)C1—C2—C3112 (2)
O3—C4—O4127 (3)C1—C2—H2A109.3
O3—C4—C3119.0 (15)C1—C2—H2B109.3
N13—C13—H13116.0O1—C1—C2120 (4)
N13—C13—C14105 (3)O2—C1—O1124 (6)
C12—C13—N13111 (5)O2—C1—C2116 (4)
Zn1—O1—C1—C219 (3)N13—C13—C14—O1325 (6)
Zn1—O14i—C14i—C13i166 (2)N3—C3—C4—O329 (5)
Zn1—O4ii—C4ii—C3ii173 (3)C11—C12—C13—N1360 (6)
Zn1—O11—C11—C12167 (6)C11—C12—C13—C1456 (5)
O2—C1—C2—C329 (3)C1—C2—C3—N361 (4)
O12—C11—C12—C13136 (8)C1—C2—C3—C459 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
(Zn-aspartate_dihydrate_4_02GPa) top
Crystal data top
C16H24N4O16Zn2·4(H2O)Z = 1
Mr = 731.19F(000) = 376
Triclinic, P1Dx = 2.111 Mg m3
a = 8.343 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.947 (6) ÅCell parameters from 253 reflections
c = 9.537 (3) Åθ = 4.1–27.3°
α = 110.02 (4)°µ = 2.20 mm1
β = 104.76 (4)°T = 296 K
γ = 109.16 (7)°Plate, colourless
V = 575.2 (7) Å30.25 × 0.20 × 0.05 mm
Data collection top
Multiwire proportional
diffractometer
Rint = 0.124
Radiation source: sealed x-ray tubeθmax = 27.3°, θmin = 4.1°
ω scanh = 55
Absorption correction: integration
Correction for absorption was made using XEMP (SHELXTL, Sheldrick (2015).
k = 77
Tmin = 0.596, Tmax = 0.896l = 1211
2352 measured reflections12 standard reflections every 84 reflections
430 independent reflections intensity decay: none
253 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0827P)2 + 0.5519P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
430 reflectionsΔρmax = 0.22 e Å3
204 parametersΔρmin = 0.20 e Å3
134 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 4.02 (2) GPa (4020000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.6860 (14)0.3227 (9)0.5241 (4)0.107 (18)
O10.646 (5)0.339 (4)0.7158 (17)0.057 (6)
O20.593 (6)0.284 (4)0.9096 (16)0.049 (8)
O141.144 (9)0.748 (7)0.492 (2)0.046 (10)
O40.530 (5)0.103 (4)0.6444 (16)0.041 (6)
O110.723 (7)0.491 (4)0.4783 (18)0.060 (7)
O1W0.239 (5)0.035 (4)0.7770 (18)0.049 (8)
H1WA0.356 (8)0.10 (2)0.81 (2)0.073*
H1WB0.20 (3)0.054 (18)0.682 (13)0.073*
O130.934 (7)0.511 (5)0.265 (2)0.054 (9)
O30.521 (5)0.166 (3)0.8511 (15)0.042 (8)
O120.815 (6)0.741 (5)0.7274 (18)0.052 (8)
O2W0.235 (4)0.320 (3)1.0140 (15)0.043 (8)
H2WA0.21 (4)0.211 (14)0.96 (2)0.064*
H2WB0.24 (7)0.35 (4)1.114 (11)0.064*
N130.628 (18)0.526 (19)0.215 (17)0.047 (9)
H13A0.6361670.4827990.1218910.035*
H13B0.5393550.5544560.2014080.035*
H13C0.6086020.4509770.2493100.035*
N30.7820 (2)0.15150 (18)1.05345 (17)0.051 (9)
H3A0.7116870.2012261.0640780.038*
H3B0.8945150.2288421.1170930.038*
H3C0.7562270.0720261.0823740.038*
C40.598 (7)0.079 (4)0.793 (2)0.046 (8)
C130.826 (7)0.702 (4)0.344 (3)0.018 (8)
H130.8634610.7883000.3034680.022*
C110.770 (9)0.677 (6)0.584 (3)0.047 (8)
C120.797 (7)0.797 (5)0.494 (2)0.038 (7)
H12A0.6884260.8158580.4609990.046*
H12B0.9048420.9131510.5671160.046*
C140.980 (8)0.641 (6)0.368 (5)0.068 (15)
C30.786 (7)0.087 (5)0.899 (2)0.041 (8)
H30.8793750.0453570.8900370.049*
C20.822 (7)0.227 (4)0.841 (3)0.041 (11)
H2A0.8344140.1802270.7390430.050*
H2B0.9390810.3309510.9212150.050*
C10.670 (8)0.288 (4)0.814 (3)0.026 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.15 (2)0.056 (10)0.0462 (18)0.021 (15)0.025 (5)0.025 (3)
O10.059 (8)0.058 (7)0.054 (6)0.028 (4)0.024 (6)0.024 (6)
O20.052 (12)0.052 (10)0.048 (7)0.020 (6)0.024 (9)0.028 (8)
O140.047 (12)0.048 (11)0.044 (11)0.024 (6)0.018 (7)0.020 (7)
O40.044 (8)0.045 (7)0.037 (5)0.021 (4)0.018 (5)0.019 (5)
O110.061 (8)0.058 (8)0.063 (7)0.025 (4)0.027 (6)0.030 (6)
O1W0.050 (12)0.044 (10)0.049 (7)0.025 (7)0.017 (9)0.018 (8)
O130.049 (13)0.053 (11)0.055 (8)0.025 (7)0.024 (10)0.016 (8)
O30.048 (12)0.042 (10)0.041 (7)0.018 (6)0.019 (9)0.028 (7)
O120.056 (12)0.055 (10)0.047 (7)0.026 (6)0.019 (9)0.027 (8)
O2W0.039 (12)0.044 (10)0.045 (7)0.015 (6)0.023 (9)0.019 (7)
N130.050 (14)0.052 (12)0.039 (8)0.028 (7)0.019 (10)0.017 (9)
N30.049 (13)0.046 (11)0.057 (9)0.019 (7)0.018 (10)0.026 (9)
C40.047 (9)0.046 (9)0.046 (8)0.021 (5)0.019 (6)0.022 (6)
C130.015 (10)0.013 (9)0.025 (9)0.004 (4)0.008 (6)0.009 (6)
C110.047 (9)0.047 (9)0.047 (8)0.022 (5)0.018 (6)0.021 (6)
C120.040 (9)0.037 (8)0.037 (7)0.021 (4)0.013 (6)0.016 (6)
C140.068 (16)0.065 (15)0.070 (15)0.031 (7)0.026 (8)0.032 (9)
C30.042 (9)0.042 (9)0.040 (8)0.020 (5)0.017 (6)0.019 (6)
C20.043 (12)0.040 (12)0.043 (11)0.017 (6)0.017 (7)0.022 (7)
C10.026 (10)0.026 (10)0.026 (9)0.010 (5)0.011 (7)0.014 (6)
Geometric parameters (Å, º) top
Zn1—O11.908 (18)N13—H13C0.8300
Zn1—O14i1.75 (10)N13—C131.50 (4)
Zn1—O4ii1.932 (14)N3—H3A0.8500
Zn1—O111.66 (4)N3—H3B0.8500
Zn1—C14i2.57 (7)N3—H3C0.8300
O1—C11.18 (5)N3—C31.40 (3)
O2—C11.24 (4)C4—C31.52 (3)
O14—C141.31 (6)C13—H130.9800
O4—C41.29 (3)C13—C121.51 (6)
O11—C111.47 (7)C13—C141.55 (4)
O1W—H1WA0.851 (14)C11—C121.59 (5)
O1W—H1WB0.86 (2)C12—H12A0.9700
O13—C141.09 (6)C12—H12B0.9700
O3—C41.22 (2)C3—H30.9800
O12—C111.18 (3)C3—C21.51 (3)
O2W—H2WA0.87 (6)C2—H2A0.9700
O2W—H2WB0.88 (12)C2—H2B0.9700
N13—H13A0.8700C2—C11.53 (4)
N13—H13B0.8500
O1—Zn1—O4ii101.5 (7)C12—C13—H13105.4
O1—Zn1—C14i96.5 (17)C12—C13—C14118 (4)
O14i—Zn1—O1112 (2)C14—C13—H13105.4
O14i—Zn1—O4ii98 (2)O11—C11—C12113 (3)
O14i—Zn1—C14i27.8 (11)O12—C11—O11125 (6)
O4ii—Zn1—C14i125 (2)O12—C11—C12121 (4)
O11—Zn1—O1121 (2)C13—C12—C11108 (5)
O11—Zn1—O14i108 (3)C13—C12—H12A110.1
O11—Zn1—O4ii113.2 (16)C13—C12—H12B110.0
O11—Zn1—C14i100 (2)C11—C12—H12A110.1
C1—O1—Zn1141 (5)C11—C12—H12B110.1
C14—O14—Zn1i114 (5)H12A—C12—H12B108.4
C4—O4—Zn1ii120.6 (13)O14—C14—Zn1i39 (4)
C11—O11—Zn1128.4 (16)O14—C14—C13120 (6)
H1WA—O1W—H1WB109 (10)O13—C14—Zn1i91 (6)
H2WA—O2W—H2WB114O13—C14—O14130 (9)
H13A—N13—H13B109.5O13—C14—C13110 (6)
H13A—N13—H13C109.5C13—C14—Zn1i157 (3)
H13B—N13—H13C109.5N3—C3—C4103 (4)
C13—N13—H13A107.0N3—C3—H3116.0
C13—N13—H13B111.0N3—C3—C2114 (3)
C13—N13—H13C109.5C4—C3—H3105.4
H3A—N3—H3B109.5C2—C3—C4114.9 (16)
H3A—N3—H3C109.5C2—C3—H3105.4
H3B—N3—H3C107.0C3—C2—H2A108.6
C3—N3—H3A116.0C3—C2—H2B108.6
C3—N3—H3B103.0C3—C2—C1115 (2)
C3—N3—H3C111.0H2A—C2—H2B107.5
O4—C4—C3112.4 (16)C1—C2—H2A108.5
O3—C4—O4126 (3)C1—C2—H2B108.6
O3—C4—C3121.0 (17)O1—C1—O2128 (7)
N13—C13—H13113.0O1—C1—C2119 (5)
N13—C13—C12114 (4)O2—C1—C2113 (4)
N13—C13—C14107 (5)
O2—C1—C2—C332 (3)C11—C12—C13—N1374 (6)
O12—C11—C12—C13150 (8)C11—C12—C13—C1453 (4)
N13—C13—C14—O1321 (8)C1—C2—C3—N364 (4)
N3—C3—C4—O330 (6)C1—C2—C3—C454 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
 

Funding information

The following funding is acknowledged: Narodowe Centrum Nauki (award No. UMO-2015/19/B/ST5/00262).

References

First citationAndrzejewski, M., Olejniczak, A. & Katrusiak, A. (2011). Cryst. Growth Des. 11, 4892–4899.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnioła, M. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 3134–3141.  Google Scholar
First citationAzeem, M., Asif, M., Gui, D., Dong, L., Pei, C., Lu, P. & Li, W. (2019). RSC Adv. 9, 13153–13158.  Web of Science CrossRef CAS Google Scholar
First citationBezacier, L., Journaux, B., Perrillat, J.-P., Cardon, H., Hanfland, M. & Daniel, I. (2014). J. Chem. Phys. 141, 104505.  Web of Science CrossRef PubMed Google Scholar
First citationBhattacharyya, S., Sobczak, S., Półrolniczak, A., Roy, S., Samanta, D., Katrusiak, A. & Maji, T. K. (2019). Chem. Eur. J. 25, 6092–6097.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoldyreva, E. V. (2003). J. Mol. Struct. 647, 159–179.  Web of Science CrossRef CAS Google Scholar
First citationBoldyreva, E. V., Shakhtshneider, T. P., Ahsbahs, H., Sowa, H. & Uchtmann, H. (2002). J. Therm. Anal. Calorim. 68, 437–452.  CrossRef CAS Google Scholar
First citationBridgman, P. W. (1935). J. Chem. Phys. 3, 597–605.  CrossRef CAS Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallographic Experiments with a CCD Detector. High-Pressure Crystallography, NATO Science Series, Vol. 140, edited by A. Katrusiak & P. McMillan, pp. 101–112. Dordrecht: Springer.  Google Scholar
First citationCai, W., Marciniak, J., Andrzejewski, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 7279–7285.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarrier, D. & Wong, P. T. T. (1996). Chem. Phys. Lipids, 83, 141–152.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErnst, K. H. (2018). Chimia, 72, 399–403.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFabbiani, F. P. A., Allan, D. R., Dawson, A., David, W. I. F., McGregor, P. A., Oswald, I. D. H., Parsons, S. & Pulham, C. R. (2003). Chem. Commun. 9, 3004–3005.  Web of Science CSD CrossRef Google Scholar
First citationFabbiani, F. P. A., Buth, G., Levendis, D. C. & Cruz-Cabeza, A. J. (2014). Chem. Commun. 50, 1817–1819.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFiguiere, P., Ghelfenstein, M. & Szwarc, H. (1975). Chem. Phys. Lett. 33, 99–103.  CrossRef CAS Web of Science Google Scholar
First citationGlasser, L. (2019). Acta Cryst. B75, 784–787.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaase, H., Overbeck, S. & Rink, L. (2008). Exp. Gerontol. 43, 394–408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHochberg, D. & Cintas, P. (2018). Phys. Chem. Chem. Phys. 20, 5305–5311.  Web of Science CrossRef PubMed Google Scholar
First citationHuskić, I., Novendra, N., Lim, D.-W., Topić, F., Titi, H. M., Pekov, I. V., Krivovichev, S. V., Navrotsky, A., Kitagawa, H. & Friščić, T. (2019). Chem. Sci. 10, 4923–4929.  Web of Science PubMed Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. H. (1994). Enantiomers, Racemates and Resolutions. Malabar, Florida, USA: Krieger Publishing Company.  Google Scholar
First citationKatrusiak, A. (2001). J. Mol. Graphics Modell. 19, 363–367.  Web of Science CrossRef CAS Google Scholar
First citationKatrusiak, A. (2008). Acta Cryst. A. 64, 135–148.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKevenvolden, K. A. (1995). Org. Geochem. 23, 997–1008.  Google Scholar
First citationKuhs, W. F., Finney, J. L., Vettier, C. & Bliss, D. V. (1984). J. Chem. Phys. 81, 3612–3623.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKuznetsov, A. Y., Pereira, Altair, S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., Pattison, P. & Guignot, N. (2006). J. Phys. Chem. B, 110, 13858–13865.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationMarciniak, J., Andrzejewski, M., Cai, W. & Katrusiak, A. (2014). J. Phys. Chem. C, 118, 4309–4313.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021–1032.  Google Scholar
First citationMcKellar, S. C. & Moggach, S. A. (2015). Acta Cryst. B71, 587–607.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationMoggach, S. A., Bennett, T. D. & Cheetham, A. K. (2009). Angew. Chem. Int. Ed. 48, 7087–7089.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & Grassmann, O. (2015). Nat. Commun. 6, 7793–1–7.  Google Scholar
First citationOlejniczak, A. & Katrusiak, A. (2010). CrystEngComm, 12, 2528–2532.  Web of Science CSD CrossRef CAS Google Scholar
First citationOstrowska, K., Kropidłowska, M. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 1512–1517.  Web of Science CSD CrossRef CAS Google Scholar
First citationOswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). CrystEngComm, 12, 2533–2540.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatyk-Kaźmierczak, E. & Kaźmierczak, M. (2020). Acta Cryst. B76, 56–64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationPółrolniczak, A., Sobczak, S. & Katrusiak, A. (2018). Inorg. Chem. 57, 8942–8950.  Web of Science PubMed Google Scholar
First citationRietveld, I. B., Barrio, M., Tamarit, J. L., Do, B. & Céolin, R. (2011). J. Phys. Chem. B, 115, 14698–14703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Oxford Diffraction, Abingdon, UK.  Google Scholar
First citationRoohani, N., Hurrell, R., Kelishadi, R. & Schulin, R. (2013). J. Res. Med. Sci. 18, 144–157.  Web of Science PubMed Google Scholar
First citationRoszak, K. & Katrusiak, A. (2018). Phys. Chem. Chem. Phys. 20, 5305–5311.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShankar, A. H. & Prasad, A. S. (1998). Am. J. Clin. Nutr. 68, 447S–463S.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobczak, S., Chitnis, A., Andrzejewski, M., Mączka, M., Gohil, S., Garg, N. & Katrusiak, A. (2018). CrystEngComm, 20, 5348–5355.  Web of Science CSD CrossRef CAS Google Scholar
First citationTomkowiak, H. & Katrusiak, A. (2018). J. Phys. Chem. C, 122, 5064–5070.  Web of Science CSD CrossRef CAS Google Scholar
First citationTomkowiak, H., Olejniczak, A. & Katrusiak, A. (2013). Cryst. Growth Des. 13, 121–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationVan Valkenburg, A., Mao, H. K. & Bell, P. M. (1971). Carnegie Institution Geophysical Laboratory, Annual Report of the Director, pp. 233–237.  Google Scholar
First citationWang, K., Wang, Q., Yan, T. & Lin, A. (2015). Chem. J. Chin. U. 36, 381–385.  Web of Science CrossRef Google Scholar
First citationZakharov, B. A., Goryainov, S. V. & Boldyreva, E. V. (2016a). CrystEngComm, 18, 5423–5428.  Web of Science CSD CrossRef CAS Google Scholar
First citationZakharov, B. A., Gribov, P. A., Matvienko, A. A. & Boldyreva, E. V. (2017). Z. Kristallogr. 232, 751–757.  CAS Google Scholar
First citationZakharov, B. A., Seryotkin, Y. V., Tumanov, N. A., Paliwoda, D., Hanfland, M., Kurnosov, A. V. & Boldyreva, E. V. (2016b). RSC Adv. 6, 92629–92637.  Web of Science CrossRef CAS Google Scholar
First citationZhou, M., Wang, K., Men, Z., Sun, Ch., Li, Z., Liu, B., Zou, G. & Zou, B. (2014). CrystEngComm, 16, 4084–4087.  Web of Science CrossRef CAS Google Scholar
First citationZieliński, W. & Katrusiak, A. (2015). CrystEngComm, 17, 5468–5473.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds