research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

Crystal design by CH⋯N and N⋯N interactions: high-pressure structures of high-nitrogen-content azido-triazolopyridazines compounds

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
*Correspondence e-mail: aniao@amu.edu.pl, katran@amu.edu.pl

Edited by M. Dusek, Academy of Sciences of the Czech Republic, Czech Republic (Received 18 August 2020; accepted 30 October 2020; online 20 November 2020)

High-nitro­gen-content compounds 6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7) and its 3-methyl derivative (C6H5N7) have been in situ crystallized in a diamond-anvil cell and their structures determined by single-crystal X-ray diffraction. Under ambient and high-pressure conditions the crystallizations yield the same phases: the C5H3N7 anhydrate and C6H5N7 hydrated clathrate. In both the structures there are clearly distinguished regions of short CH⋯N and N⋯N intermolecular contacts, the latter involving exclusively the azide groups. High pressure initially increases the contents of water in the channel pores of the clathrate.

1. Introduction

Triazolopyridazine and azide groups are present in many high-nitro­gen content compounds, which are widely applied for various purposes, for example as energetic materials and active pharmaceutical ingredients (Katrusiak et al., 1996[Katrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279-1289.], 2005[Katrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65-73.]; Bałoniak & Katrusiak, 1994[Bałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683-691.]; Yang et al., 2015[Yang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503-9509.]; Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]). It is characteristic that such high-nitro­gen organic compounds have relatively high density, despite the absence of strong intermolecular contacts in their structures (Bernstein, 2002[Bernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press.]; Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Millar et al., 2010[Millar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 2, 115-132.]; Seryotkin et al., 2016[Seryotkin, Y. V., Dement'ev, S. N. & Ancharov, A. I. (2016). J. Struct. Chem. 57, 1386-1391.]; Zakharov et al., 2017[Zakharov, B. A., Gribov, P. A., Matvienko, A. A. & Boldyreva, E. V. (2017). Z. Kristallogr. 232, 751-757.]; Gatta et al., 2018[Gatta, G. D., Lotti, P. & Tabacchi, G. (2018). Phys. Chem. Miner. 45, 115-138.]; Gaydamaka et al., 2019[Gaydamaka, A. A., Arkhipov, S. G., Zakharov, B. A., Seryotkin, Y. V. & Boldyreva, E. V. (2019). CrystEngComm, 21, 4484-4492.]). The high density can be associated with a small content of H atoms, however, there is no systematic information about the aggregation types and intermolecular interactions. The CH groups are expected to engage in C—H⋯N hydrogen bonds, while the excess of other N atoms – potential H-atom acceptors – would either be redirected into separate regions of N⋯N contacts in the structure (Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]) or would find H-atom donors by favoring the crystallization in the form of solvates or host–guest compounds. Varied thermodynamic conditions can significantly change the crystal structure and conformations of compounds, as well as their composition and reactivity (Fabbiani & Pulham, 2006[Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932-942.]; Boldyreva, 2008[Boldyreva, E. V. (2008). Acta Cryst. A64, 218-231.], 2014[Boldyreva, E. V. (2014). Z. Kristallogr. 3, 236-245.]; Resnati et al., 2015[Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675-690.]). In order to provide new information about the aggregation of high-N-content molecules, we have investigated the structures of two azido-triazolopyridazine compounds: 6-azido-1,2,4-triazolo[4,3-b]pyridazine, C5H3N7 (m.p. 438 K) and its methyl derivative, C6H5N7 (m.p. 400 K). In the solid state both these compounds are present as the azide tautomers, although they can also transform into the tetrazole form (Fig. 1[link]). In order to check the stability of the structures obtained under ambient conditions, we have recrystallized these two compounds under high pressure. Additionally, low temperature has been employed for comparing the effects of thermal expansion and compressibility on intermolecular contacts in C6H5N7 clathrate.

[Figure 1]
Figure 1
Structural formula of 6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7) and its 3-methyl derivative (C6H5N7) (left-hand view) and their tetrazole tautomer (right-hand view).

2. Experimental

High-pressure recrystallizations of compounds C5H3N7 and C6H5N7 were performed from the saturated acetone or aqueous solution in the diamond anvil cell (DAC) (Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]). Several small sample crystals were loaded to the DAC chamber, then filled with the saturated solution, because its concentration at room temperature was too low to obtain single crystals sufficiently large for X-ray diffraction measurements. After increasing the pressure all crystals were dissolved by heating the sample, so the concentration was considerably increased and then a single crystal was grown by slowly cooling the DAC.

6-Azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7): several solvents were tried for the recrystallization and the best results were obtained from acetone or aqueous solutions. Three series of experiments were performed. In the first series the acetone solution was used for growing a single crystal at 0.1 GPa and its X-ray diffraction data were collected. Then the pressure was increased in small steps under isothermal conditions and after each step the diffraction data were measured [Fig. 2[link](a)]. At 1.38 GPa the acetone crystallized, which hampered the further hydro­static compression. In the second series also the acetone solution was used [Fig. 2[link](b)], but the isochoric recrystallization was performed after each pressure increase. Above 1.20 GPa acetone crystallized. The last analogous series of experiments was carried out for the aqueous solution [Figs. 2[link](c)–2[link](d)].

[Figure 2]
Figure 2
Single crystals of C5H3N7 obtained from different high-pressure recrystallizations: (a) at 0.20 GPa (viewed in polarized light) and (b) at 0.85 GPa, both from the acetone solution; (c) at 0.14 GPa and (d) at 1.02 GPa, both from aqueous solution and viewed in polarized light.

6-Azido-3-methyl-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7): single crystals, large enough for X-ray diffraction, could be recrystallized only from the aqueous solution and only in the pressure range up to 0.75 GPa (Fig. 3[link]). The methanol, acetone or ethanol solutions led to polycrystals or very small crystals. The main difficulty in obtaining a single crystal was due to persistent nucleation of other competing seeds. The crystals obtained at high pressure could be recovered after releasing the pressure (Fig. 3[link]) and their structure was determined at ambient pressure as a function of temperature, too. The water occupancy in C6H5N7·xH2O hydrates refined to 0.3 at 0.1 MPa; to 0.4 at 0.1 MPa and from 275 K to 100 K; to 0.5 at 0.10 GPa/296 K and 0.58 GPa/296 K; and to 0.6 at 0.23 GPa/296 K.

[Figure 3]
Figure 3
Single crystals of C6H5N7·xH2O: (a) in situ crystallized from the aqueous solution at 0.10 GPa/296 K viewed in polarized light; (b) the sample recovered from the chamber after the compression to 0.74 GPa; (c) the single crystal grown at 0.23 GPa/296 K (in polarized light) and (d) the recovered sample stuck in a nylon loop.

Pressure in the DAC chamber was calibrated by the ruby-fluorescence method (Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]; Mao et al., 1985[Mao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673-4676.]) with a Photon Control spectrometer affording an accuracy of 0.02 GPa; the calibration was performed before and after the diffraction measurements.

The crystal sample in the DAC was centered on the diffractometer by the gasket shadowing method (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak and P. F. McMillan, pp. 101-112. Dordrecht: Kluwer.]). For the low-temperature measurements, an Oxford Cryosystems 700 Series attachment and SuperNova diffractometer using Cu Kα radiation and CCD plate Atlas detector were used. The high-pressure diffraction data were measured with a KUMA KM4-CCD diffractometer using Mo Kα radiation and CCD plate Eos detector. CrysAlisPro (version 171.39.46; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPro Software System. Rigaku Oxford Diffraction, Yarnton, UK. https://www.rigaku.com.]) was used for recording reflections and preliminary data reduction. Reflection intensities were corrected for the DAC absorption, sample shadowing by the gasket, the sample absorption, and reflections overlapping with diamond reflections were eliminated (CrysAlisPro). OLEX2-1.2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were used to solve the structures by direct methods, and to refine the models by full matrix least-squares. Anisotropic displacement factors were applied for non-hydrogen atoms. The H atoms were located from the molecular geometry, with the C—H distance equal to 0.93 Å in pyridazine and 0.97 Å in the methyl groups, and their Uiso factors constrained to 1.2 and 1.5 times Ueq of the carriers, respectively. The site occupancy factor (SOF) of the oxygen atoms of water molecules in C6H5N7·xH2O was freely refined and then fixed in the final cycles, in order to avoid the correlation between the SOF and the atomic displacement parameters. The crystal data and refinement details are summarized in Tables 1[link] and Tables S1–S3; the experimental and structural details have been deposited in the Cambridge Structural Database with CCDC numbers 2021837–2021846 for C5H3N7 and 2021847–2021854 for C6H5N7. Structural drawings have been prepared using the X-Seed interface of POV-Ray (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]; Persistence of Vision Raytracer, 2004[Persistence of Vision (2004). Persistence of Vision Raytracer, Version 2.6. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Table 1
Selected data of C5H3N7 and C6H5N7·xH2O recrystallized from the aqueous solutions (see Tables S1–S3)

Compound C5H3N7 C5H3N7 C6H5N7·0.3H2O C6H5N7·0.5H2O
p (GPa) 0.14 (2) 1.40 (2) 0.0001 0.58 (2)
Space group P21/c P21/c I41/a I41/a
a (Å) 8.1016 (19) 7.7755 (16) 28.1674 (5) 27.972 (6)
b (Å) 18.473 (4) 18.017 (3) 28.1674 (5) 27.972 (6)
c (Å) 9.04 (2) 8.75 (3) 4.15209 (11) 3.9991 (8)
β (°) 95.91 (6) 93.53 (9)    
Volume (Å3) 1346 (3) 1224 (4) 3294.29 (14) 3129.1 (14)
Z, Z 8, 2 8, 2 16, 1 16, 1
Dcalc (g cm−3) 1.590 1.749 1.451 1.555
Final R1, wR2 (I > 2σ1) 0.0587, 0.0608 0.0775, 0.1640 0.0371, 0.1033 0.0843, 0.1658

3. Results and discussion

The crystal structures formed of molecules C5H3N7 and C6H5N7 are considerably different and they both are stable in all the temperature and pressure ranges investigated in this study. The C5H3N7 crystal is monoclinic, with two symmetry-independent molecules (A and B). Compound C6H5N7 crystallizes in the form of a tetragonal hydrated clathrate. Its structure consists of molecules CH⋯N bonded into the host framework with pores running down [z]. The pores contain strongly disordered water molecules. Different patterns of CH⋯N bonded molecules are present in the structures. It is also characteristic of the C5H3N7 and C6H5N7·xH2O structures that the azide substituents group together; their shortest N⋯N intermolecular distances are 3.131 (4) Å and 3.202 (3) Å, respectively, under ambient conditions (Figs. 4[link] and 5[link]).

[Figure 4]
Figure 4
The crystal structure of C5H3N7: (a) one hydrogen-bonded sheet extending along plane (10[{\overline 1}]); and (b) two neighboring sheets projected along the diagonal direction [101]. The pattern of CH⋯N bonds is highlighted yellow and contacts N⋯N between the azide groups are highlighted blue. Letters A and B label independent molecules (cf. Fig. S3).
[Figure 5]
Figure 5
Structure of C6H5N7·0.5H2O at 0.58 GPa/296 K: (a) projected down [z] with the regions of CH⋯N bonds highlighted yellow, contacts N⋯N blue, and short OH⋯O, OH⋯N and CH⋯O light red (cf. Fig. S4); and (b) the [x] projection with the solvent accessible volume of the pores shown in orange, as calculated with probe radius equal 1.2 Å and grid spacing 0.1 Å.

The topology of the CH⋯N patterns is considerably different in C5H3N7 and C6H5N7. In C5H3N7, the CH⋯N bonds link the molecules into wavy sheets with confined small regions of N⋯N contacts between azide groups, as illustrated in Fig. 4[link]. The sheets run along crystallographic plane (10[\bar 1]) and their `wavevector' points along [y]. Interestingly, the sheets display the crystallographic symmetry: translations [a+c] and [b], screw axis 21, parallel to [y]. Besides, there are pseudo-symmetries of inversion centers between molecules A and B, at the midpoints between the azide groups and at the center of the R22(8) ring (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) and a pseudo-glide plane n perpendicular to [y]. The most significant departure from the pseudo-inversion center is due to the inclination angle of 7.34 (9)° (at normal conditions) between molecules A located on the maxima/minima of corrugated sinusoidal sheets and molecules B located on their slopes (Fig. 4[link]). The neighboring sheets are related by genuine inversion centers, and pairs of the sheets are related through glide planes c (cf. Fig. S1).

In C6H5N7·xH2O there are three distinct types of interaction regions (Fig. 5[link]). The most prominent region consists of CH⋯N bonds linking the C6H5N7 molecules into a three-dimensional framework. Two other regions, one consisting of contacts N⋯N and the other one potentially capable of forming bonds OH⋯O, OH⋯N and CH⋯O (the short contacts present in the structure involve disordered water molecules, for which we could not locate the H atoms in this study) are both in the form of helical columns running down 41 screw axes parallel to [z] in the CH⋯N bonded framework. The disordered water molecules are contained in the channel pores parallel to [z] (Fig. 5[link] and Fig. S2). The pores are quite wide and the water molecules can move along [z] and the crystal can change their contents, consistent with the results of high-pressure experiments described below. The voids occupy 6.5% of the crystal volume (assessed for the probing sphere of 1.2 Å in diameter) and they can accommodate spheres of maximum radius 1.66 Å; the translational parameter along these pores is quite short (a/4, see Table 1[link]) and there are no narrow parts in the pores.

In both compounds the molecules are present in the form of azido-triazole tautomer. The shortest intermolecular contacts CH⋯N, N⋯N and CH⋯O (Fig. 6[link]) may be associated with the main cohesion forces under ambient conditions. The Hirshfeld fingerprint plots (Fig. 6[link] and Fig. S5) confirm that the shortest contacts are those of CH⋯N hydrogen bonds (the spikes in the plots), while the N⋯N distances are less exposed in the central part of the fingerprints. These features are common for both independent molecules in C5H3N7 and for the molecule of C6H5N7·xH2O. The N⋯N distances observed in C5H3N7 and C6H5N7·xH2O are similar to those observed in both polymorphs of analogs compound 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8) (Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]), however, the topologies of CH⋯N and N⋯N regions in C4H2N8 are different. In both polymorphs of C4H2N8 clearly defined sheets of CH⋯N and N⋯N regions are present.

[Figure 6]
Figure 6
Hirshfeld surfaces decorated with the color scale depending on the normalized contact distances: (a) in C5H3N7 at 0.85 GPa/296 K, (b) in C6H5N7·0.6H2O at 0.23 GPa/296 K; (c) the fingerprint plots of independent C5H3N7 molecules A and B at 0.85 GPa/296 K and (d) the fingerprint plot of C6H5N7·0.6H2O molecule at 0.23 GPa/296 K (cf. Fig. S5). The surface regions forming intermolecular contacts equal to the sum of their van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) are white, shorter - red and longer - blue. The drawings include the neighboring molecules involved in short contacts.

The conformation of the azide groups is characteristic of the 6-substituted pyridazine rings, with the torsion angle N5—C6—N10—N11 of about 3 (3)° (molecule A) and 5 (3)° (molecule B) in C5H3N7 and 4.5 (1.5)° in C6H5N7·xH2O. We have not noted any significant systematic changes in the N—N bond lengths in the azide groups, which in principle can transform between —N=N+=N and —N—N+≡N configuration. Bond angle N10—N11—N12 is of about 170 (2)°, bent in the direction opposite to angle C6—N10—N11.

The intermolecular distances in C5H3N7 are gradually compressed at a similar rate for CH⋯N and N⋯N contacts (Fig. S6). This result is consistent with the 2D pattern of CH⋯N bonds in the sheets, with `islands' of N⋯N interactions. The intermolecular distances CH⋯N in C6H5N7·xH2O initially increase at 0.1 GPa (Fig. S7), which is consistent with the increased volume due to the uptake of water molecules into pores.

The compression of C5H3N7 is typical for a molecular crystal, monotonically reduced in size in all directions (Fig. 7[link] and Fig. S8). This crystal compared to C4H2N8 (Olejniczak et al., 2019[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832-1838.]) is harder: compressibility β = −1/V·∂V/∂p at 0.40 GPa for phase α-C4H2N8 is 0.102 GPa−1 and at 0.49 GPa for phase β-C4H2N8 is 0.085 GPa−1 versus the compressibility of C5H3N8 at 0.54 GPa equal to 0.072 GPa−1. This difference can be attributed to a larger contribution of CH⋯N bonds to the cohesion forces in C5H3N7 than in C4H2N8.

[Figure 7]
Figure 7
Compression of the unit-cell dimensions (a) and molecular volume (b) of C5H3N7. Straight lines have been fitted to the lengths and polynomial function V = 170.20–14.31p+1.33p2 to the volume (cf. Fig. S8). Where not indicated, the estimated standard deviations are smaller than the plotted symbols.

The compression of C6H5N7·xH2O and thermal expansion of this crystal is shown in Fig. 8[link] (cf. Fig. S9). The thermal expansion in all 300–100 K range is nearly linear and the volume contracts to about 97%, as expected for an average molecular crystal. The linear expansion plots along [x] and [y] are weakly convex (∂2a/∂T2 is positive), while the expansion along [z] is weakly concave (∂2c/∂T2 < 0). This feature corresponds to the strongly anisotropic structure, with pores parallel to [z] and perpendicular to [x] and [y].

[Figure 8]
Figure 8
Unit-cell dimensions (a) and molecular volume (b) of C6H5N7·xH2O as a function of temperature (open symbols) and pressure (full symbols). The dotted lines indicate the pressure region involving the H2O transport into the pores (cf. Fig. S9). Where not indicated, the estimated standard deviations are smaller than the plotted symbols.

The volume compressibility of C6H5N7 is clearly anomalous in the 0.1 MPa to 0.1 GPa pressure region, the line fitted to the volume values measured between 0.1 and 0.58 GPa clearly points above the volume at 0.1 MPa, by about 2 Å3 per formula unit. This effect can be attributed to an intake of the molecules from the hydro­static medium into the pores. It is plausible that the pressure pushes additional molecules into the pores, which causes an initial increase of the crystal volume. This effect is also clearly seen in the linear compression along [x] and [y]. An average volume of one water molecule in hydrates is of about 22.8 Å3 (Glasser, 2019[Glasser, L. (2019). Acta Cryst. B75, 784-787.]), so it can be estimated that the contents of water in C6H5N7·xH2O crystal increases by about 0.1 H2O per formula unit. Hence the composition of the C6H5N7·xH2O crystal changes and therefore the measurements of the unit-cell dimensions as a function of pressure are not the one-compound crystal compression in the strictly physical sense. According to the X-ray diffraction data refinements in the 0.1 MPa–0.1 GPa range the x parameter in C6H5N7·xH2O changes from 0.3 to 0.6.

4. Conclusions

The increased number of H-atom donors in two high-nitro­gen-contents 6-azido-1,2,4-triazolo[4,3-b]pyridazine, (C5H3N7), and its methyl derivative (C6H5N7) drastically changed the topology of CH⋯N and N⋯N contacts, compared to the previously studied 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8) polymorphs. The CH groups in C5H3N7 and C6H5N7 are effectively involved in CH⋯N bonds, binding the molecules into frameworks. It is characteristic that none of these CH⋯N bonds involve the azide groups, which form short contacts between themselves. All of these N⋯N contacts are longer than double the van der Waals radius of the nitro­gen atom. It appears that the contribution of azide groups to the cohesion forces is very weak. The strong contribution of hydrogen bonds CH⋯N to cohesion forces is supported by the formation of the porous framework in C6H5N7 capable of the sorption of water under ambient and high-pressure conditions.

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; SHELXT (Sheldrick, 2015) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa; SHELXT(Sheldrick, 2015) for C5H3N7at0.65GPa. Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; SHELXL 2018/3 (Sheldrick, 2015) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa. Molecular graphics: Olex2 (Dolomanov et al., 2009) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; Olex2 1.3 (Dolomanov et al., 2009) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; Olex2 1.3 (Dolomanov et al., 2009) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K.

6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.14GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1016 (19) ÅCell parameters from 569 reflections
b = 18.473 (4) Åθ = 4.6–18.5°
c = 9.04 (2) ŵ = 0.12 mm1
β = 95.91 (6)°T = 296 K
V = 1346 (3) Å3Plate, colorless
Z = 80.39 × 0.36 × 0.30 mm
Data collection top
KM-4 CCD
diffractometer
845 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.285
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 4.6°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 1010
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2223
Tmin = 0.254, Tmax = 1.000l = 22
7791 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0116P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
845 reflectionsΔρmax = 0.08 e Å3
217 parametersΔρmin = 0.08 e Å3
18 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.14 (2) GPa (140000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6581 (7)0.5006 (3)0.3951 (18)0.063 (15)
N250.5663 (7)0.5557 (3)0.326 (2)0.052 (16)
C260.4604 (11)0.5323 (4)0.220 (3)0.07 (3)
C270.4368 (9)0.4588 (4)0.177 (4)0.11 (3)
H270.35490.44690.10090.131*
C280.5301 (10)0.4074 (4)0.243 (3)0.08 (3)
H280.52000.35950.21180.098*
C290.6458 (10)0.4279 (4)0.363 (3)0.05 (2)
N210.7558 (8)0.3914 (3)0.4515 (19)0.085 (17)
N220.8372 (7)0.4419 (4)0.553 (2)0.102 (19)
C230.7786 (9)0.5065 (3)0.506 (2)0.091 (18)
H230.81740.55040.54640.109*
N2100.3545 (7)0.5819 (3)0.138 (2)0.11 (3)
N2110.3722 (6)0.6462 (4)0.1818 (18)0.077 (16)
N2120.3721 (6)0.7059 (3)0.2096 (16)0.091 (16)
N40.7969 (8)0.7241 (3)0.630 (2)0.06 (2)
N50.8826 (8)0.6702 (3)0.707 (2)0.047 (17)
C60.9942 (10)0.6946 (4)0.806 (3)0.043 (14)
C71.0311 (7)0.7696 (4)0.838 (3)0.08 (2)
H71.11410.78230.91270.098*
C80.9450 (10)0.8200 (4)0.761 (3)0.10 (2)
H80.96450.86890.78030.115*
C90.8229 (11)0.7976 (4)0.648 (3)0.041 (14)
N10.7205 (8)0.8330 (3)0.5524 (19)0.089 (18)
N20.6263 (6)0.7811 (3)0.470 (3)0.054 (14)
C30.6752 (9)0.7173 (4)0.525 (3)0.08 (3)
H30.62890.67330.49200.093*
N101.0944 (7)0.6461 (4)0.8986 (18)0.068 (15)
N111.0684 (6)0.5809 (5)0.864 (2)0.110 (19)
N121.0629 (8)0.5206 (3)0.849 (2)0.09 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N240.040 (4)0.050 (4)0.10 (5)0.001 (3)0.002 (8)0.002 (7)
N250.051 (4)0.046 (4)0.05 (5)0.004 (3)0.011 (7)0.009 (7)
C260.049 (5)0.058 (6)0.09 (8)0.005 (4)0.004 (11)0.003 (10)
C270.068 (5)0.056 (6)0.20 (8)0.010 (4)0.004 (11)0.011 (11)
C280.068 (5)0.061 (5)0.11 (8)0.006 (5)0.011 (14)0.011 (12)
C290.059 (6)0.048 (5)0.03 (8)0.005 (4)0.019 (11)0.000 (8)
N210.067 (4)0.051 (3)0.14 (5)0.000 (3)0.004 (10)0.012 (8)
N220.064 (4)0.065 (4)0.17 (6)0.004 (4)0.001 (9)0.017 (9)
C230.053 (5)0.049 (5)0.17 (6)0.004 (4)0.019 (11)0.008 (9)
N2100.074 (5)0.049 (4)0.20 (8)0.002 (4)0.029 (11)0.010 (8)
N2110.053 (4)0.078 (5)0.09 (5)0.007 (4)0.017 (7)0.015 (9)
N2120.088 (4)0.073 (5)0.11 (5)0.007 (3)0.006 (8)0.005 (9)
N40.052 (4)0.045 (4)0.08 (6)0.006 (3)0.013 (9)0.001 (7)
N50.051 (4)0.059 (4)0.03 (5)0.002 (3)0.010 (9)0.003 (8)
C60.049 (5)0.064 (5)0.02 (4)0.002 (4)0.003 (11)0.015 (11)
C70.055 (5)0.069 (5)0.12 (7)0.010 (4)0.001 (11)0.002 (11)
C80.058 (5)0.064 (5)0.16 (7)0.005 (4)0.023 (12)0.007 (12)
C90.067 (6)0.041 (5)0.01 (4)0.001 (4)0.003 (12)0.002 (9)
N10.072 (4)0.054 (4)0.14 (6)0.002 (3)0.006 (9)0.004 (8)
N20.072 (4)0.067 (4)0.02 (4)0.012 (3)0.007 (9)0.002 (9)
C30.055 (5)0.053 (5)0.12 (8)0.001 (4)0.025 (13)0.013 (10)
N100.071 (4)0.067 (4)0.06 (5)0.006 (4)0.016 (8)0.003 (9)
N110.064 (4)0.083 (4)0.17 (6)0.008 (4)0.026 (8)0.023 (11)
N120.127 (6)0.081 (5)0.06 (7)0.009 (5)0.025 (12)0.019 (10)
Geometric parameters (Å, º) top
N24—N251.373 (12)N4—N51.360 (13)
N24—C291.375 (9)N4—C91.382 (8)
N24—C231.331 (18)N4—C31.31 (2)
N25—C261.29 (2)N5—C61.287 (17)
C26—C271.420 (14)C6—C71.443 (10)
C26—N2101.413 (17)C6—N101.424 (17)
C27—H270.9300C7—H70.9300
C27—C281.319 (17)C7—C81.320 (19)
C28—H280.9300C8—H80.9300
C28—C291.41 (2)C8—C91.41 (2)
C29—N211.320 (15)C9—N11.313 (17)
N21—N221.424 (16)N1—N21.395 (14)
N22—C231.336 (10)N2—C31.324 (10)
C23—H230.9300C3—H30.9300
N210—N2111.257 (10)N10—N111.256 (9)
N211—N2121.130 (9)N11—N121.123 (8)
N25—N24—C29127.2 (12)N5—N4—C9126.6 (10)
C23—N24—N25127.1 (8)C3—N4—N5127.4 (7)
C23—N24—C29105.7 (9)C3—N4—C9106.0 (8)
C26—N25—N24112.1 (8)C6—N5—N4112.5 (8)
N25—C26—C27125.8 (13)N5—C6—C7126.5 (10)
N25—C26—N210119.6 (8)N5—C6—N10120.5 (7)
N210—C26—C27114.6 (17)N10—C6—C7113.0 (12)
C26—C27—H27119.7C6—C7—H7120.6
C28—C27—C26120.6 (18)C8—C7—C6118.8 (15)
C28—C27—H27119.7C8—C7—H7120.6
C27—C28—H28121.3C7—C8—H8121.0
C27—C28—C29117.4 (11)C7—C8—C9118.0 (9)
C29—C28—H28121.3C9—C8—H8121.0
N24—C29—C28116.9 (10)N4—C9—C8117.5 (10)
N21—C29—N24109.9 (12)N1—C9—N4109.5 (10)
N21—C29—C28133.1 (9)N1—C9—C8132.9 (8)
C29—N21—N22107.2 (7)C9—N1—N2106.6 (8)
C23—N22—N21104.7 (11)C3—N2—N1106.6 (10)
N24—C23—N22112.1 (9)N4—C3—N2111.3 (8)
N24—C23—H23124.0N4—C3—H3124.4
N22—C23—H23124.0N2—C3—H3124.4
N211—N210—C26113.8 (12)N11—N10—C6112.6 (11)
N212—N211—N210171.8 (11)N12—N11—N10170.1 (14)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.15GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.089 (7) ÅCell parameters from 1039 reflections
b = 18.4614 (16) Åθ = 4.0–20.8°
c = 9.074 (9) ŵ = 0.12 mm1
β = 96.08 (11)°T = 296 K
V = 1347.5 (19) Å3Plate, colorless
Z = 80.39 × 0.30 × 0.19 mm
Data collection top
'KM-4 CCD
diffractometer
506 independent reflections
Radiation source: Enhance (Mo) X-ray Source306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
Detector resolution: 16.2413 pixels mm-1θmax = 26.8°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 67
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.663, Tmax = 1.000l = 77
4953 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.1573P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.234(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.15 e Å3
506 reflectionsΔρmin = 0.14 e Å3
98 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.019 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.15 (2) GPa (150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6589 (18)0.5008 (3)0.3976 (19)0.044 (2)*
N250.568 (2)0.5563 (3)0.326 (2)0.049 (2)*
C260.462 (3)0.5328 (4)0.217 (3)0.053 (3)*
C270.440 (3)0.4591 (4)0.173 (3)0.061 (3)*
H270.3630300.4473800.0928430.074*
C280.529 (3)0.4071 (4)0.244 (2)0.060 (3)*
H280.5187040.3589450.2140540.072*
C290.641 (4)0.4287 (4)0.369 (3)0.052 (3)*
N210.754 (2)0.3919 (3)0.455 (2)0.060 (2)*
N220.836 (2)0.4409 (3)0.545 (2)0.059 (2)*
C230.780 (3)0.5059 (4)0.508 (3)0.054 (2)*
H230.8187220.5489180.5525100.064*
N2100.358 (2)0.5830 (3)0.141 (2)0.057 (2)*
N2110.380 (3)0.6470 (4)0.177 (2)0.062 (2)*
N2120.382 (3)0.7062 (4)0.201 (3)0.069 (3)*
N40.797 (2)0.7237 (3)0.630 (2)0.047 (2)*
N50.885 (2)0.6700 (3)0.706 (2)0.049 (2)*
C60.991 (3)0.6946 (4)0.811 (3)0.052 (3)*
C71.033 (3)0.7692 (4)0.840 (3)0.058 (3)*
H71.1190460.7817130.9120410.070*
C80.945 (3)0.8208 (4)0.761 (3)0.054 (3)*
H80.9634000.8698370.7799300.064*
C90.824 (3)0.7970 (4)0.647 (3)0.050 (3)*
N10.720 (2)0.8327 (3)0.550 (2)0.060 (2)*
N20.631 (3)0.7812 (3)0.466 (3)0.064 (3)*
C30.677 (3)0.7176 (4)0.518 (3)0.050 (3)*
H30.6322230.6739020.4820120.061*
N101.094 (2)0.6449 (3)0.895 (2)0.054 (2)*
N111.072 (3)0.5808 (3)0.864 (3)0.057 (2)*
N121.056 (3)0.5211 (4)0.854 (3)0.072 (3)*
Geometric parameters (Å, º) top
N24—N251.384 (8)N4—N51.367 (8)
N24—C291.362 (10)N4—C91.378 (9)
N24—C231.328 (10)N4—C31.330 (10)
N25—C261.311 (10)N5—C61.295 (10)
C26—C271.424 (12)C6—C71.437 (11)
C26—N2101.386 (11)C6—N101.406 (9)
C27—H270.9300C7—H70.9300
C27—C281.325 (10)C7—C81.351 (10)
C28—H280.9300C8—H80.9300
C28—C291.432 (13)C8—C91.417 (10)
C29—N211.320 (11)C9—N11.329 (9)
N21—N221.351 (8)N1—N21.373 (10)
N22—C231.316 (10)N2—C31.306 (9)
C23—H230.9300C3—H30.9300
N210—N2111.235 (8)N10—N111.224 (8)
N211—N2121.115 (9)N11—N121.113 (8)
C29—N24—N25126.5 (6)N5—N4—C9125.9 (6)
C23—N24—N25128.0 (6)C3—N4—N5128.6 (6)
C23—N24—C29105.6 (5)C3—N4—C9105.3 (6)
C26—N25—N24112.4 (6)C6—N5—N4112.8 (6)
N25—C26—C27125.5 (8)N5—C6—C7126.6 (8)
N25—C26—N210117.9 (8)N5—C6—N10118.4 (7)
N210—C26—C27116.5 (7)N10—C6—C7114.3 (7)
C26—C27—H27119.7C6—C7—H7120.8
C28—C27—C26120.6 (9)C8—C7—C6118.5 (8)
C28—C27—H27119.7C8—C7—H7120.8
C27—C28—H28121.6C7—C8—H8121.5
C27—C28—C29116.7 (9)C7—C8—C9117.1 (7)
C29—C28—H28121.6C9—C8—H8121.5
N24—C29—C28118.0 (7)N4—C9—C8118.5 (7)
N21—C29—N24109.7 (6)N1—C9—N4109.2 (6)
N21—C29—C28131.6 (11)N1—C9—C8132.2 (7)
C29—N21—N22106.4 (6)C9—N1—N2106.5 (6)
C23—N22—N21108.5 (6)C3—N2—N1107.9 (7)
N24—C23—H23125.1N4—C3—H3124.5
N22—C23—N24109.7 (6)N2—C3—N4111.0 (6)
N22—C23—H23125.1N2—C3—H3124.5
N211—N210—C26116.2 (7)N11—N10—C6116.4 (6)
N212—N211—N210171.5 (11)N12—N11—N10171.6 (19)
N24—N25—C26—C271 (5)N4—N5—C6—C78 (5)
N24—N25—C26—N210177 (2)N4—N5—C6—N10178 (3)
N24—C29—N21—N224 (4)N4—C9—N1—N23 (3)
N25—N24—C29—C286 (5)N5—N4—C9—C86 (4)
N25—N24—C29—N21177 (3)N5—N4—C9—N1177 (3)
N25—N24—C23—N22179 (3)N5—N4—C3—N2175 (3)
N25—C26—C27—C281 (5)N5—C6—C7—C87 (6)
N25—C26—N210—N2113 (4)N5—C6—N10—N113 (4)
C26—C27—C28—C292 (5)C6—C7—C8—C94 (5)
C27—C26—N210—N211178 (3)C7—C6—N10—N11174 (3)
C27—C28—C29—N245 (5)C7—C8—C9—N44 (4)
C27—C28—C29—N21174 (4)C7—C8—C9—N1180 (3)
C28—C29—N21—N22174 (4)C8—C9—N1—N2180 (3)
C29—N24—N25—C263 (4)C9—N4—N5—C68 (4)
C29—N24—C23—N221 (4)C9—N4—C3—N20 (3)
C29—N21—N22—C233 (3)C9—N1—N2—C33 (4)
N21—N22—C23—N242 (3)N1—N2—C3—N42 (4)
C23—N24—N25—C26177 (3)C3—N4—N5—C6178 (3)
C23—N24—C29—C28174 (3)C3—N4—C9—C8179 (3)
C23—N24—C29—N213 (4)C3—N4—C9—N12 (3)
N210—C26—C27—C28177 (3)N10—C6—C7—C8177 (3)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.20GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.053 (16) ÅCell parameters from 484 reflections
b = 18.470 (3) Åθ = 4.0–26.3°
c = 9.044 (17) ŵ = 0.12 mm1
β = 95.4 (2)°T = 296 K
V = 1339 (4) Å3Plate, colorless
Z = 80.39 × 0.30 × 0.19 mm
Data collection top
KM-4 CCD
diffractometer
448 independent reflections
Radiation source: Enhance (Mo) X-ray Source249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 16.2413 pixels mm-1θmax = 26.5°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.693, Tmax = 1.000l = 77
2280 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.078 w = 1/[σ2(Fo2) + (0.155P)2 + 0.5011P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.250(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
448 reflectionsΔρmin = 0.12 e Å3
98 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.02 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.656 (3)0.5012 (4)0.400 (3)0.049 (3)*
N250.568 (3)0.5566 (4)0.329 (3)0.049 (3)*
C260.461 (4)0.5325 (5)0.220 (4)0.055 (4)*
C270.448 (4)0.4596 (5)0.167 (3)0.061 (4)*
H270.3803070.4491370.0809500.074*
C280.531 (4)0.4071 (5)0.240 (3)0.061 (4)*
H280.5149460.3588170.2133690.073*
C290.647 (6)0.4282 (5)0.363 (5)0.054 (4)*
N210.750 (3)0.3918 (4)0.455 (3)0.061 (3)*
N220.835 (3)0.4405 (5)0.547 (3)0.066 (3)*
C230.783 (4)0.5058 (5)0.508 (3)0.055 (3)*
H230.8272800.5487130.5482540.066*
N2100.358 (3)0.5828 (4)0.140 (3)0.061 (3)*
N2110.378 (3)0.6468 (5)0.177 (3)0.063 (3)*
N2120.387 (4)0.7061 (5)0.197 (4)0.069 (4)*
N40.794 (3)0.7243 (4)0.632 (3)0.049 (3)*
N50.885 (3)0.6698 (4)0.706 (3)0.052 (3)*
C60.990 (4)0.6951 (5)0.810 (4)0.058 (3)*
C71.034 (5)0.7691 (5)0.840 (4)0.064 (4)*
H71.1191600.7814260.9121240.077*
C80.948 (4)0.8203 (5)0.759 (4)0.059 (4)*
H80.9723890.8692490.7718120.071*
C90.817 (3)0.7967 (4)0.652 (3)0.047 (3)*
N10.719 (4)0.8331 (5)0.550 (3)0.067 (3)*
N20.632 (4)0.7808 (4)0.463 (4)0.066 (4)*
C30.679 (4)0.7172 (5)0.517 (4)0.053 (3)*
H30.6374310.6731720.4802990.064*
N101.087 (3)0.6451 (4)0.903 (3)0.064 (3)*
N111.064 (5)0.5800 (5)0.870 (4)0.068 (4)*
N121.058 (4)0.5203 (5)0.851 (4)0.077 (4)*
Geometric parameters (Å, º) top
N24—N251.373 (11)N4—N51.384 (11)
N24—C291.389 (16)N4—C91.361 (10)
N24—C231.347 (13)N4—C31.326 (14)
N25—C261.317 (13)N5—C61.295 (13)
C26—C271.430 (18)C6—C71.429 (15)
C26—N2101.404 (14)C6—N101.429 (13)
C27—H270.9300C7—H70.9300
C27—C281.318 (12)C7—C81.350 (14)
C28—H280.9300C8—H80.9300
C28—C291.441 (16)C8—C91.428 (13)
C29—N211.303 (12)C9—N11.338 (12)
N21—N221.364 (11)N1—N21.393 (14)
N22—C231.314 (13)N2—C31.315 (12)
C23—H230.9300C3—H30.9300
N210—N2111.235 (11)N10—N111.249 (11)
N211—N2121.111 (10)N11—N121.117 (13)
N25—N24—C29126.8 (9)C9—N4—N5126.0 (8)
C23—N24—N25128.2 (8)C3—N4—N5127.4 (8)
C23—N24—C29104.6 (9)C3—N4—C9106.3 (8)
C26—N25—N24111.8 (8)C6—N5—N4111.9 (8)
N25—C26—C27126.1 (11)N5—C6—C7127.9 (10)
N25—C26—N210118.4 (10)N5—C6—N10118.5 (8)
N210—C26—C27115.3 (10)C7—C6—N10113.4 (9)
C26—C27—H27119.7C6—C7—H7121.2
C28—C27—C26120.5 (13)C8—C7—C6117.6 (11)
C28—C27—H27119.7C8—C7—H7121.2
C27—C28—H28121.6C7—C8—H8121.2
C27—C28—C29116.7 (10)C7—C8—C9117.5 (9)
C29—C28—H28121.6C9—C8—H8121.2
N24—C29—C28117.5 (10)N4—C9—C8118.5 (8)
N21—C29—N24109.6 (10)N1—C9—N4109.6 (8)
N21—C29—C28132.9 (11)N1—C9—C8131.4 (10)
C29—N21—N22107.4 (8)C9—N1—N2105.9 (8)
C23—N22—N21108.3 (9)C3—N2—N1107.2 (9)
N24—C23—H23125.1N4—C3—H3124.5
N22—C23—N24109.7 (8)N2—C3—N4111.0 (8)
N22—C23—H23125.1N2—C3—H3124.5
N211—N210—C26115.9 (9)N11—N10—C6114.9 (9)
N212—N211—N210173.2 (13)N12—N11—N10172.5 (14)
N24—N25—C26—C277 (6)N4—N5—C6—C79 (6)
N24—N25—C26—N210178 (4)N4—N5—C6—N10176 (3)
N24—C29—N21—N224 (5)N4—C9—N1—N20 (4)
N25—N24—C29—C282 (7)N5—N4—C9—C80 (5)
N25—N24—C29—N21180 (4)N5—N4—C9—N1173 (3)
N25—N24—C23—N22180 (3)N5—N4—C3—N2172 (3)
N25—C26—C27—C2810 (7)N5—C6—C7—C86 (7)
N25—C26—N210—N2111 (5)N5—C6—N10—N112 (6)
C26—C27—C28—C297 (7)C6—C7—C8—C91 (6)
C27—C26—N210—N211174 (3)C7—C6—N10—N11173 (4)
C27—C28—C29—N243 (7)C7—C8—C9—N44 (5)
C27—C28—C29—N21178 (5)C7—C8—C9—N1175 (4)
C28—C29—N21—N22178 (6)C8—C9—N1—N2171 (4)
C29—N24—N25—C263 (5)C9—N4—N5—C66 (5)
C29—N24—C23—N227 (5)C9—N4—C3—N21 (5)
C29—N21—N22—C231 (5)C9—N1—N2—C31 (5)
N21—N22—C23—N245 (5)N1—N2—C3—N41 (5)
C23—N24—N25—C26175 (4)C3—N4—N5—C6178 (4)
C23—N24—C29—C28175 (5)C3—N4—C9—C8173 (4)
C23—N24—C29—N217 (5)C3—N4—C9—N11 (4)
N210—C26—C27—C28176 (3)N10—C6—C7—C8179 (4)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.54GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.982 (2) ÅCell parameters from 1140 reflections
b = 18.318 (3) Åθ = 4.0–21.2°
c = 8.964 (2) ŵ = 0.12 mm1
β = 95.08 (2)°T = 296 K
V = 1305.6 (5) Å3Plate, colorless
Z = 80.38 × 0.30 × 0.19 mm
Data collection top
KM-4 CCD
diffractometer
450 independent reflections
Radiation source: Enhance (Mo) X-ray Source286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 16.2413 pixels mm-1θmax = 26.8°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2322
Tmin = 0.753, Tmax = 1.000l = 77
4780 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.1599P)2 + 1.8268P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.257(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.19 e Å3
450 reflectionsΔρmin = 0.17 e Å3
98 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.006 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.54 (2) GPa (540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.663 (3)0.5007 (4)0.393 (3)0.039 (2)*
N250.562 (3)0.5576 (4)0.332 (3)0.044 (3)*
C260.461 (4)0.5331 (5)0.218 (4)0.051 (3)*
C270.441 (4)0.4598 (5)0.168 (4)0.053 (3)*
H270.3613720.4486780.0894730.064*
C280.536 (4)0.4071 (5)0.233 (4)0.055 (3)*
H280.5288230.3592760.1986910.066*
C290.651 (6)0.4279 (5)0.361 (5)0.041 (3)*
N210.753 (3)0.3908 (4)0.453 (3)0.058 (3)*
N220.837 (4)0.4409 (4)0.547 (3)0.052 (3)*
C230.785 (4)0.5060 (5)0.506 (3)0.048 (3)*
H230.8258520.5495460.5480030.057*
N2100.352 (3)0.5844 (4)0.144 (3)0.053 (3)*
N2110.373 (4)0.6490 (5)0.180 (3)0.053 (3)*
N2120.375 (4)0.7084 (5)0.204 (4)0.066 (4)*
N40.789 (3)0.7233 (4)0.635 (3)0.041 (2)*
N50.882 (3)0.6687 (4)0.710 (3)0.043 (3)*
C60.985 (4)0.6940 (5)0.815 (4)0.046 (3)*
C71.027 (4)0.7690 (5)0.846 (4)0.049 (3)*
H71.1097370.7814550.9210390.059*
C80.944 (4)0.8214 (5)0.761 (4)0.052 (3)*
H80.9675580.8707490.7752820.062*
C90.818 (4)0.7969 (4)0.649 (3)0.042 (3)*
N10.717 (4)0.8330 (4)0.551 (3)0.053 (3)*
N20.621 (4)0.7806 (4)0.469 (4)0.054 (3)*
C30.681 (4)0.7158 (5)0.512 (3)0.045 (3)*
H30.6527760.6717750.4642470.054*
N101.092 (3)0.6441 (4)0.899 (3)0.052 (3)*
N111.060 (5)0.5789 (5)0.874 (4)0.055 (3)*
N121.055 (5)0.5181 (5)0.857 (4)0.068 (4)*
Geometric parameters (Å, º) top
N24—N251.402 (12)N4—N51.381 (10)
N24—C291.366 (14)N4—C91.372 (11)
N24—C231.342 (12)N4—C31.346 (14)
N25—C261.318 (14)N5—C61.286 (12)
C26—C271.420 (17)C6—C71.434 (14)
C26—N2101.408 (15)C6—N101.417 (12)
C27—H270.9300C7—H70.9300
C27—C281.329 (14)C7—C81.361 (13)
C28—H280.9300C8—H80.9300
C28—C291.454 (16)C8—C91.428 (13)
C29—N211.302 (12)C9—N11.318 (11)
N21—N221.377 (11)N1—N21.398 (12)
N22—C231.307 (13)N2—C31.325 (12)
C23—H230.9300C3—H30.9300
N210—N2111.235 (11)N10—N111.236 (11)
N211—N2121.109 (12)N11—N121.124 (12)
C29—N24—N25128.1 (8)C9—N4—N5126.1 (8)
C23—N24—N25126.6 (10)C3—N4—N5126.9 (9)
C23—N24—C29105.2 (8)C3—N4—C9105.5 (9)
C26—N25—N24109.9 (11)C6—N5—N4112.1 (8)
N25—C26—C27127.6 (10)N5—C6—C7127.6 (10)
N25—C26—N210116.6 (12)N5—C6—N10118.1 (9)
N210—C26—C27115.7 (9)N10—C6—C7113.5 (9)
C26—C27—H27119.8C6—C7—H7120.8
C28—C27—C26120.3 (10)C8—C7—C6118.4 (9)
C28—C27—H27119.8C8—C7—H7120.8
C27—C28—H28121.6C7—C8—H8121.7
C27—C28—C29116.8 (12)C7—C8—C9116.6 (9)
C29—C28—H28121.6C9—C8—H8121.7
N24—C29—C28116.6 (8)N4—C9—C8118.5 (8)
N21—C29—N24110.3 (9)N1—C9—N4110.2 (8)
N21—C29—C28133.0 (11)N1—C9—C8131.4 (9)
C29—N21—N22106.5 (8)C9—N1—N2106.3 (7)
C23—N22—N21108.0 (8)C3—N2—N1107.2 (8)
N24—C23—H23125.1N4—C3—H3125.2
N22—C23—N24109.9 (8)N2—C3—N4109.6 (10)
N22—C23—H23125.1N2—C3—H3125.2
N211—N210—C26116.7 (8)N11—N10—C6115.2 (9)
N212—N211—N210172.2 (14)N12—N11—N10170 (3)
N24—N25—C26—C275 (6)N4—N5—C6—N10178 (3)
N24—N25—C26—N210179 (4)N4—C9—N1—N21 (4)
N24—C29—N21—N221 (5)N5—N4—C9—C86 (6)
N25—N24—C29—C2810 (7)N5—N4—C9—N1174 (3)
N25—N24—C29—N21172 (4)N5—N4—C3—N2178 (4)
N25—N24—C23—N22171 (4)N5—C6—C7—C85 (8)
N25—C26—C27—C283 (8)N5—C6—N10—N119 (6)
N25—C26—N210—N2117 (6)C6—C7—C8—C91 (6)
C26—C27—C28—C293 (7)C6—N10—N11—N12152 (24)
C27—C26—N210—N211176 (3)C7—C6—N10—N11179 (4)
C27—C28—C29—N246 (7)C7—C8—C9—N40 (5)
C27—C28—C29—N21176 (5)C7—C8—C9—N1180 (4)
C28—C29—N21—N22177 (6)C8—C9—N1—N2179 (4)
C29—N24—N25—C269 (6)C9—N4—N5—C611 (6)
C29—N24—C23—N224 (5)C9—N4—C3—N211 (5)
C29—N21—N22—C231 (4)C9—N1—N2—C36 (4)
N21—N22—C23—N243 (5)N1—N2—C3—N411 (5)
C23—N24—N25—C26177 (4)C3—N4—N5—C6174 (4)
C23—N24—C29—C28175 (5)C3—N4—C9—C8173 (4)
C23—N24—C29—N213 (6)C3—N4—C9—N17 (4)
N210—C26—C27—C28179 (3)N10—C6—C7—C8174 (3)
N4—N5—C6—C710 (6)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.65GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.965 (3) ÅCell parameters from 884 reflections
b = 18.251 (2) Åθ = 3.9–20.6°
c = 8.929 (7) ŵ = 0.12 mm1
β = 94.85 (6)°T = 296 K
V = 1293.3 (11) Å3Plate, colorless
Z = 80.29 × 0.12 × 0.10 mm
Data collection top
KM-4 CCD
diffractometer
1001 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 16.2413 pixels mm-1θmax = 27.3°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.248, Tmax = 1.000l = 77
6599 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0782P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.13 e Å3
1001 reflectionsΔρmin = 0.12 e Å3
218 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0021 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.65 (2) GPa (650000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6584 (17)0.5009 (5)0.399 (3)0.046 (13)
N250.5650 (16)0.5567 (4)0.3303 (19)0.048 (10)
C260.454 (3)0.5343 (7)0.213 (3)0.049 (12)
C270.4357 (15)0.4605 (3)0.1701 (18)0.059 (10)
H270.3580780.4475380.0909190.071*
C280.534 (3)0.4064 (7)0.246 (3)0.093 (14)
H280.5225120.3571080.2204720.111*
C290.645 (3)0.4294 (5)0.358 (4)0.088 (16)
N210.7567 (15)0.3909 (4)0.4519 (17)0.054 (8)
N220.8455 (16)0.4407 (3)0.551 (2)0.061 (9)
C230.775 (2)0.5074 (6)0.506 (3)0.071 (16)
H230.8083020.5519770.5496820.085*
N2100.3518 (11)0.5842 (3)0.1415 (13)0.065 (8)
N2110.3670 (9)0.6490 (3)0.1839 (12)0.060 (7)
N2120.3653 (10)0.7097 (3)0.2080 (12)0.079 (8)
N40.7899 (15)0.7229 (4)0.630 (2)0.043 (12)
N50.8785 (16)0.6690 (5)0.7084 (19)0.047 (10)
C60.995 (2)0.6936 (6)0.813 (3)0.041 (12)
C71.0250 (14)0.7683 (4)0.8437 (17)0.063 (10)
H71.1057350.7818740.9200270.076*
C80.939 (2)0.8200 (6)0.764 (3)0.053 (12)
H80.9602520.8695070.7821290.063*
C90.819 (3)0.7976 (6)0.655 (3)0.047 (15)
N10.7122 (15)0.8329 (3)0.5505 (17)0.067 (9)
N20.6224 (16)0.7811 (3)0.4697 (19)0.061 (9)
C30.6682 (18)0.7156 (6)0.521 (3)0.070 (15)
H30.6224680.6713740.4851350.084*
N101.0921 (12)0.6441 (3)0.9007 (15)0.082 (9)
N111.0677 (11)0.5784 (3)0.8674 (13)0.078 (7)
N121.0645 (11)0.5175 (3)0.8508 (14)0.099 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N240.054 (18)0.045 (5)0.04 (3)0.011 (7)0.02 (2)0.010 (7)
N250.052 (12)0.036 (5)0.06 (3)0.013 (4)0.000 (17)0.008 (5)
C260.071 (17)0.054 (7)0.02 (3)0.017 (7)0.01 (2)0.007 (7)
C270.082 (14)0.049 (5)0.05 (3)0.008 (4)0.001 (17)0.004 (5)
C280.14 (2)0.036 (6)0.12 (3)0.022 (7)0.07 (2)0.016 (7)
C290.10 (2)0.022 (6)0.15 (4)0.010 (7)0.06 (3)0.012 (8)
N210.060 (11)0.048 (4)0.05 (2)0.008 (5)0.017 (15)0.011 (5)
N220.062 (11)0.062 (5)0.06 (2)0.003 (4)0.013 (16)0.016 (5)
C230.087 (19)0.038 (5)0.09 (4)0.002 (7)0.03 (3)0.003 (7)
N2100.087 (11)0.044 (4)0.06 (2)0.001 (4)0.006 (14)0.005 (4)
N2110.051 (9)0.061 (4)0.07 (2)0.003 (3)0.001 (13)0.010 (4)
N2120.092 (10)0.060 (4)0.09 (2)0.002 (3)0.015 (13)0.003 (4)
N40.052 (16)0.040 (5)0.03 (3)0.002 (5)0.01 (2)0.003 (5)
N50.069 (14)0.043 (5)0.03 (2)0.008 (5)0.001 (17)0.011 (5)
C60.045 (17)0.055 (7)0.02 (3)0.000 (6)0.02 (2)0.010 (7)
C70.082 (13)0.056 (5)0.05 (3)0.005 (5)0.013 (17)0.009 (5)
C80.073 (16)0.052 (5)0.03 (3)0.017 (7)0.00 (2)0.018 (7)
C90.06 (2)0.035 (6)0.04 (4)0.005 (7)0.00 (3)0.004 (7)
N10.079 (13)0.042 (4)0.08 (2)0.001 (5)0.009 (16)0.000 (6)
N20.080 (12)0.048 (5)0.05 (2)0.017 (4)0.008 (15)0.013 (4)
C30.064 (17)0.049 (6)0.10 (4)0.006 (7)0.01 (2)0.006 (8)
N100.106 (12)0.045 (4)0.10 (2)0.003 (4)0.025 (16)0.007 (4)
N110.092 (9)0.058 (3)0.088 (18)0.009 (3)0.037 (12)0.012 (4)
N120.130 (10)0.054 (3)0.12 (2)0.003 (4)0.029 (14)0.015 (4)
Geometric parameters (Å, º) top
N24—N251.37 (3)N4—N51.37 (3)
N24—C291.356 (17)N4—C91.397 (15)
N24—C231.28 (4)N4—C31.33 (4)
N25—C261.38 (4)N5—C61.34 (3)
C26—C271.402 (14)C6—C71.408 (14)
C26—N2101.34 (3)C6—N101.39 (3)
C27—H270.9300C7—H70.9300
C27—C281.40 (3)C7—C81.33 (3)
C28—H280.9300C8—H80.9300
C28—C291.35 (5)C8—C91.37 (4)
C29—N211.36 (4)C9—N11.37 (3)
N21—N221.41 (2)N1—N21.36 (2)
N22—C231.38 (2)N2—C31.32 (2)
C23—H230.9300C3—H30.9300
N210—N2111.244 (8)N10—N111.245 (9)
N211—N2121.128 (6)N11—N121.121 (6)
C29—N24—N25125 (2)N5—N4—C9123 (2)
C23—N24—N25126.5 (13)C3—N4—N5128.2 (11)
C23—N24—C29109 (2)C3—N4—C9109 (2)
N24—N25—C26114.1 (10)C6—N5—N4114.4 (12)
N25—C26—C27122 (2)N5—C6—C7124 (2)
N210—C26—N25118.9 (11)N5—C6—N10119.8 (11)
N210—C26—C27119 (2)N10—C6—C7117 (2)
C26—C27—H27119.8C6—C7—H7119.6
C28—C27—C26120 (2)C8—C7—C6120.8 (19)
C28—C27—H27119.8C8—C7—H7119.6
C27—C28—H28121.8C7—C8—H8121.2
C29—C28—C27116.4 (12)C7—C8—C9117.6 (12)
C29—C28—H28121.8C9—C8—H8121.2
N24—C29—N21107 (3)C8—C9—N4120 (2)
C28—C29—N24122 (3)C8—C9—N1134.5 (15)
C28—C29—N21130.5 (13)N1—C9—N4105 (2)
C29—N21—N22108.5 (10)N2—N1—C9107.7 (9)
C23—N22—N21102.5 (18)C3—N2—N1109.3 (19)
N24—C23—N22112.6 (13)N4—C3—H3125.5
N24—C23—H23123.7N2—C3—N4109.1 (13)
N22—C23—H23123.7N2—C3—H3125.5
N211—N210—C26117.5 (12)N11—N10—C6115.1 (14)
N212—N211—N210171.1 (10)N12—N11—N10170.5 (11)
N24—N25—C26—C271.6 (16)N4—N5—C6—C70.4 (16)
N24—N25—C26—N210177.6 (8)N4—N5—C6—N10179.5 (7)
N24—C29—N21—N221.6 (11)N4—C9—N1—N21.0 (10)
N25—N24—C29—C281 (2)N5—N4—C9—C81.4 (18)
N25—N24—C29—N21179.8 (11)N5—N4—C9—N1176.9 (9)
N25—N24—C23—N22180.0 (7)N5—N4—C3—N2176.5 (7)
N25—C26—C27—C280.9 (14)N5—C6—C7—C81.7 (15)
N25—C26—N210—N2111.9 (13)N5—C6—N10—N113.6 (12)
C26—C27—C28—C290.8 (13)C6—C7—C8—C91.4 (13)
C27—C26—N210—N211178.1 (7)C7—C6—N10—N11177.2 (6)
C27—C28—C29—N241.8 (19)C7—C8—C9—N40.1 (16)
C27—C28—C29—N21179.9 (8)C7—C8—C9—N1177.6 (9)
C28—C29—N21—N22179.9 (12)C8—C9—N1—N2178.9 (12)
C29—N24—N25—C260.6 (18)C9—N4—N5—C61.1 (16)
C29—N24—C23—N222 (3)C9—N4—C3—N22 (2)
C29—N21—N22—C230.4 (11)C9—N1—N2—C30.5 (10)
N21—N22—C23—N241 (2)N1—N2—C3—N41.8 (17)
C23—N24—N25—C26177 (2)C3—N4—N5—C6179.8 (17)
C23—N24—C29—C28179.1 (16)C3—N4—C9—C8179.7 (13)
C23—N24—C29—N212 (2)C3—N4—C9—N12.0 (17)
N210—C26—C27—C28176.9 (8)N10—C6—C7—C8179.1 (7)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.77GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.673 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.918 (15) ÅCell parameters from 890 reflections
b = 18.223 (2) Åθ = 4.1–21.3°
c = 8.897 (14) ŵ = 0.12 mm1
β = 94.6 (2)°T = 296 K
V = 1280 (3) Å3Plate, colorless
Z = 80.36 × 0.29 × 0.18 mm
Data collection top
KM-4 CCD
diffractometer
438 independent reflections
Radiation source: Enhance (Mo) X-ray Source267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.160
Detector resolution: 16.2413 pixels mm-1θmax = 26.9°, θmin = 4.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2322
Tmin = 0.734, Tmax = 1.000l = 78
4666 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.071 w = 1/[σ2(Fo2) + (0.155P)2 + 0.2012P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.231(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.13 e Å3
438 reflectionsΔρmin = 0.14 e Å3
98 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.015 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data were collected at room temperature and pressure of 0.77 (2) GPa (770000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.657 (3)0.5011 (3)0.400 (3)0.040 (2)*
N250.563 (3)0.5576 (3)0.329 (3)0.040 (2)*
C260.459 (4)0.5350 (4)0.218 (3)0.046 (3)*
C270.442 (3)0.4598 (4)0.167 (3)0.057 (3)*
H270.36920.44860.08280.069*
C280.530 (3)0.4071 (4)0.239 (3)0.047 (3)*
H280.51700.35830.20950.057*
C290.645 (5)0.4275 (4)0.365 (4)0.041 (3)*
N210.751 (3)0.3901 (3)0.457 (2)0.049 (2)*
N220.840 (3)0.4409 (4)0.543 (3)0.053 (3)*
C230.782 (3)0.5059 (4)0.512 (3)0.044 (3)*
H230.81950.54900.55980.053*
N2100.348 (3)0.5851 (3)0.143 (2)0.048 (2)*
N2110.369 (3)0.6497 (4)0.180 (3)0.053 (3)*
N2120.372 (4)0.7103 (4)0.207 (3)0.057 (3)*
N40.788 (3)0.7228 (3)0.635 (3)0.039 (2)*
N50.881 (3)0.6676 (3)0.709 (2)0.041 (2)*
C60.990 (4)0.6930 (5)0.813 (3)0.045 (3)*
C71.027 (4)0.7688 (4)0.848 (3)0.053 (3)*
H71.10970.78150.92400.064*
C80.937 (4)0.8212 (5)0.767 (3)0.047 (3)*
H80.95870.87090.78360.057*
C90.810 (3)0.7972 (4)0.657 (3)0.036 (3)*
N10.716 (3)0.8322 (4)0.549 (3)0.048 (2)*
N20.623 (3)0.7801 (4)0.466 (3)0.056 (3)*
C30.672 (4)0.7155 (4)0.519 (3)0.045 (3)*
H30.63180.67080.48060.054*
N101.095 (3)0.6436 (4)0.897 (2)0.050 (2)*
N111.074 (5)0.5774 (4)0.862 (4)0.055 (3)*
N121.057 (4)0.5159 (4)0.854 (3)0.061 (3)*
Geometric parameters (Å, º) top
N24—N251.390 (9)N4—N51.381 (9)
N24—C291.378 (13)N4—C91.380 (9)
N24—C231.354 (11)N4—C31.331 (12)
N25—C261.300 (11)N5—C61.301 (11)
C26—C271.446 (16)C6—C71.441 (12)
C26—N2101.398 (13)C6—N101.400 (10)
C27—C281.322 (11)C7—C81.363 (11)
C28—C291.434 (13)C8—C91.417 (11)
C29—N211.314 (10)C9—N11.333 (11)
N21—N221.366 (9)N1—N21.375 (11)
N22—C231.294 (13)N2—C31.317 (10)
N210—N2111.231 (10)N10—N111.253 (11)
N211—N2121.131 (10)N11—N121.130 (9)
C29—N24—N25126.5 (7)C9—N4—N5126.3 (6)
C23—N24—N25128.3 (7)C3—N4—N5127.1 (7)
C23—N24—C29105.1 (7)C3—N4—C9106.1 (6)
C26—N25—N24113.0 (8)C6—N5—N4112.2 (6)
N25—C26—C27125.2 (9)N5—C6—C7127.4 (8)
N25—C26—N210119.4 (10)N5—C6—N10118.9 (8)
N210—C26—C27115.4 (7)N10—C6—C7113.6 (7)
C28—C27—C26120.3 (9)C8—C7—C6118.0 (9)
C27—C28—C29117.8 (9)C7—C8—C9117.5 (8)
N24—C29—C28117.1 (7)N4—C9—C8118.4 (7)
N21—C29—N24109.7 (8)N1—C9—N4108.2 (7)
N21—C29—C28133.2 (10)N1—C9—C8132.8 (8)
C29—N21—N22106.1 (6)C9—N1—N2107.5 (6)
C23—N22—N21109.7 (7)C3—N2—N1107.2 (7)
N22—C23—N24109.2 (8)N2—C3—N4110.8 (7)
N211—N210—C26115.5 (7)N11—N10—C6115.1 (7)
N212—N211—N210173.1 (14)N12—N11—N10169 (3)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at0.85GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.688 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.897 (2) ÅCell parameters from 843 reflections
b = 18.1579 (18) Åθ = 4.0–24.2°
c = 8.874 (5) ŵ = 0.12 mm1
β = 94.54 (5)°T = 296 K
V = 1268.5 (8) Å3Plate, colorless
Z = 80.27 × 0.20 × 0.10 mm
Data collection top
KM-4 CCD
diffractometer
848 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 16.2413 pixels mm-1θmax = 27.4°, θmin = 4.0°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 98
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.698, Tmax = 1.000l = 77
5632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0177P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
848 reflectionsΔρmax = 0.10 e Å3
217 parametersΔρmin = 0.11 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.85 (2) GPa (850000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6609 (14)0.5012 (4)0.404 (3)0.063 (13)
N250.5603 (17)0.5588 (4)0.325 (2)0.071 (10)
C260.465 (3)0.5338 (6)0.227 (3)0.070 (13)
C270.4330 (14)0.4604 (3)0.1679 (16)0.063 (10)
H270.35490.44950.08700.076*
C280.536 (2)0.4065 (6)0.249 (3)0.056 (11)
H280.52580.35680.22510.067*
C290.646 (3)0.4287 (5)0.358 (3)0.073 (14)
N210.7543 (13)0.3902 (3)0.4456 (15)0.077 (9)
N220.8440 (13)0.4403 (2)0.5499 (15)0.069 (8)
C230.7791 (17)0.5066 (7)0.503 (3)0.073 (15)
H230.81960.55140.54220.087*
N2100.3506 (10)0.5844 (2)0.1416 (12)0.050 (8)
N2110.3653 (8)0.6506 (2)0.1851 (10)0.045 (7)
N2120.3628 (8)0.71083 (19)0.2108 (9)0.053 (7)
N40.7880 (16)0.7217 (4)0.631 (2)0.052 (12)
N50.8802 (15)0.6678 (4)0.7136 (17)0.044 (9)
C60.991 (2)0.6934 (6)0.813 (3)0.059 (13)
C71.0229 (13)0.7687 (3)0.8436 (16)0.077 (10)
H71.10370.78230.92050.092*
C80.937 (2)0.8205 (6)0.762 (2)0.059 (11)
H80.96020.87040.77600.071*
C90.817 (2)0.7977 (5)0.659 (3)0.062 (14)
N10.7126 (15)0.8326 (3)0.5550 (17)0.077 (9)
N20.6153 (14)0.7807 (2)0.4664 (16)0.055 (8)
C30.6673 (17)0.7152 (6)0.524 (3)0.067 (15)
H30.62210.67030.49030.080*
N101.0898 (10)0.6431 (3)0.9007 (12)0.060 (9)
N111.0690 (8)0.5768 (2)0.8705 (10)0.064 (7)
N121.0644 (8)0.51574 (18)0.8519 (9)0.060 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N240.045 (17)0.035 (5)0.11 (3)0.002 (6)0.03 (2)0.012 (7)
N250.086 (13)0.024 (4)0.11 (2)0.004 (4)0.044 (17)0.010 (5)
C260.088 (18)0.026 (6)0.10 (3)0.010 (6)0.05 (2)0.007 (6)
C270.068 (13)0.047 (5)0.08 (2)0.000 (4)0.014 (17)0.012 (4)
C280.058 (15)0.032 (5)0.08 (3)0.012 (6)0.016 (18)0.004 (7)
C290.10 (2)0.013 (5)0.12 (3)0.009 (7)0.06 (3)0.012 (7)
N210.081 (11)0.035 (3)0.12 (2)0.001 (4)0.038 (15)0.012 (5)
N220.073 (10)0.047 (4)0.09 (2)0.000 (3)0.013 (14)0.003 (4)
C230.056 (16)0.043 (4)0.12 (4)0.000 (6)0.03 (2)0.007 (6)
N2100.054 (11)0.043 (4)0.048 (19)0.004 (3)0.022 (13)0.001 (3)
N2110.041 (8)0.058 (3)0.036 (18)0.007 (2)0.009 (12)0.015 (3)
N2120.053 (9)0.056 (3)0.045 (17)0.012 (2)0.022 (12)0.008 (3)
N40.050 (17)0.042 (5)0.07 (3)0.003 (6)0.02 (2)0.004 (7)
N50.051 (12)0.035 (4)0.04 (2)0.019 (4)0.002 (15)0.018 (5)
C60.057 (18)0.045 (6)0.08 (3)0.013 (6)0.02 (2)0.013 (7)
C70.089 (14)0.041 (4)0.11 (2)0.002 (4)0.052 (17)0.003 (5)
C80.049 (15)0.042 (5)0.09 (3)0.015 (5)0.016 (18)0.007 (6)
C90.06 (2)0.020 (5)0.11 (3)0.007 (6)0.04 (3)0.005 (6)
N10.072 (12)0.041 (3)0.12 (2)0.004 (5)0.034 (15)0.001 (6)
N20.052 (11)0.053 (5)0.06 (2)0.010 (3)0.006 (14)0.012 (4)
C30.053 (18)0.043 (5)0.11 (4)0.004 (6)0.01 (2)0.007 (7)
N100.073 (12)0.044 (3)0.06 (2)0.000 (3)0.003 (15)0.010 (4)
N110.079 (9)0.051 (3)0.063 (16)0.006 (3)0.023 (12)0.003 (3)
N120.080 (8)0.049 (2)0.049 (16)0.005 (2)0.019 (11)0.009 (3)
Geometric parameters (Å, º) top
N24—N251.46 (3)N4—N51.39 (3)
N24—C291.381 (15)N4—C91.417 (14)
N24—C231.24 (4)N4—C31.30 (4)
N25—C261.20 (4)N5—C61.28 (3)
C26—C271.445 (14)C6—C71.412 (12)
C26—N2101.46 (3)C6—N101.40 (3)
C27—H270.9300C7—H70.9300
C27—C281.43 (3)C7—C81.34 (2)
C28—H280.9300C8—H80.9300
C28—C291.31 (5)C8—C91.33 (4)
C29—N211.31 (4)C9—N11.35 (3)
N21—N221.44 (2)N1—N21.42 (2)
N22—C231.36 (2)N2—C31.34 (2)
C23—H230.9300C3—H30.9300
N210—N2111.265 (7)N10—N111.240 (6)
N211—N2121.117 (4)N11—N121.122 (4)
C29—N24—N25121 (2)N5—N4—C9122 (2)
C23—N24—N25129.6 (13)C3—N4—N5130.1 (12)
C23—N24—C29109.2 (19)C3—N4—C9108.4 (18)
C26—N25—N24111.5 (13)C6—N5—N4114.1 (11)
N25—C26—C27134 (3)N5—C6—C7126 (2)
N25—C26—N210117.9 (11)N5—C6—N10117.9 (11)
C27—C26—N210108 (2)N10—C6—C7116 (2)
C26—C27—H27124.0C6—C7—H7120.0
C28—C27—C26111.9 (19)C8—C7—C6120.1 (18)
C28—C27—H27124.0C8—C7—H7120.0
C27—C28—H28120.7C7—C8—H8121.4
C29—C28—C27118.6 (13)C9—C8—C7117.1 (11)
C29—C28—H28120.7C9—C8—H8121.4
C28—C29—N24123 (3)C8—C9—N4121 (2)
C28—C29—N21129.5 (12)C8—C9—N1133.4 (14)
N21—C29—N24107 (3)N1—C9—N4105 (2)
C29—N21—N22108.0 (9)C9—N1—N2110.1 (8)
C23—N22—N21102.0 (15)C3—N2—N1104.0 (16)
N24—C23—N22113.0 (13)N4—C3—N2112.5 (12)
N24—C23—H23123.5N4—C3—H3123.8
N22—C23—H23123.5N2—C3—H3123.8
N211—N210—C26113.8 (12)N11—N10—C6117.1 (12)
N212—N211—N210171.7 (9)N12—N11—N10173.2 (9)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at1.02GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.708 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8356 (16) ÅCell parameters from 384 reflections
b = 18.074 (3) Åθ = 4.3–18.9°
c = 8.88 (3) ŵ = 0.13 mm1
β = 94.24 (7)°T = 296 K
V = 1253 (4) Å3Plate, colorless
Z = 80.35 × 0.28 × 0.17 mm
Data collection top
KM-4 CCD
diffractometer
544 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.238
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.692, Tmax = 1.000l = 22
5110 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.0821P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
544 reflectionsΔρmax = 0.14 e Å3
97 parametersΔρmin = 0.13 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.02 (2) GPa (1020000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6583 (10)0.5011 (4)0.398 (3)0.040 (2)*
N250.5657 (10)0.5583 (4)0.326 (3)0.044 (2)*
C260.4579 (14)0.5347 (5)0.214 (5)0.051 (3)*
C270.4363 (14)0.4604 (5)0.169 (4)0.056 (3)*
H270.35510.44830.09130.067*
C280.5305 (13)0.4078 (5)0.237 (4)0.052 (3)*
H280.51940.35880.20580.062*
C290.6463 (12)0.4277 (5)0.356 (4)0.040 (3)*
N210.7555 (10)0.3899 (4)0.451 (3)0.047 (2)*
N220.8402 (10)0.4400 (4)0.553 (3)0.057 (3)*
C230.7814 (13)0.5062 (5)0.506 (4)0.048 (3)*
H230.82300.55090.54630.057*
N2100.3490 (10)0.5858 (4)0.144 (3)0.053 (3)*
N2110.3635 (10)0.6507 (5)0.187 (3)0.056 (3)*
N2120.3624 (10)0.7112 (5)0.213 (3)0.065 (3)*
N40.7879 (10)0.7215 (4)0.637 (3)0.045 (2)*
N50.8756 (10)0.6673 (4)0.723 (4)0.049 (3)*
C60.9919 (13)0.6926 (5)0.815 (5)0.046 (3)*
C71.0235 (12)0.7688 (5)0.847 (4)0.053 (3)*
H71.10820.78190.92150.064*
C80.9356 (13)0.8201 (5)0.775 (5)0.046 (3)*
H80.95230.86990.79770.055*
C90.8136 (12)0.7969 (4)0.659 (4)0.040 (3)*
N10.7108 (10)0.8315 (4)0.549 (3)0.055 (3)*
N20.6163 (10)0.7801 (4)0.473 (4)0.053 (3)*
C30.6634 (12)0.7138 (5)0.519 (5)0.047 (3)*
H30.62060.66930.47960.057*
N101.0910 (11)0.6431 (4)0.899 (4)0.057 (3)*
N111.0703 (11)0.5772 (5)0.867 (4)0.064 (3)*
N121.0658 (11)0.5155 (5)0.844 (4)0.075 (3)*
Geometric parameters (Å, º) top
N24—N251.393 (16)N4—N51.39 (2)
N24—C291.382 (14)N4—C91.390 (11)
N24—C231.31 (3)N4—C31.38 (4)
N25—C261.33 (3)N5—C61.26 (2)
C26—C271.406 (18)C6—C71.426 (14)
C26—N2101.37 (2)C6—N101.37 (3)
C27—C281.32 (2)C7—C81.30 (2)
C28—C291.39 (3)C8—C91.41 (4)
C29—N211.35 (2)C9—N11.37 (3)
N21—N221.41 (2)N1—N21.338 (18)
N22—C231.336 (15)N2—C31.310 (13)
N210—N2111.237 (15)N10—N111.231 (12)
N211—N2121.118 (12)N11—N121.135 (13)
C29—N24—N25124.2 (16)C9—N4—N5123.3 (15)
C23—N24—N25128.1 (9)C3—N4—N5129.5 (10)
C23—N24—C29107.4 (10)C3—N4—C9107.2 (10)
C26—N25—N24113.0 (10)C6—N5—N4113.9 (10)
N25—C26—C27125.1 (17)N5—C6—C7125.9 (13)
N25—C26—N210117.5 (13)N5—C6—N10117.9 (10)
N210—C26—C27117 (2)N10—C6—C7116.0 (18)
C28—C27—C26120 (2)C8—C7—C6121 (2)
C27—C28—C29118.2 (14)C7—C8—C9117.0 (13)
N24—C29—C28118.9 (12)N4—C9—C8118.6 (12)
N21—C29—N24106.7 (16)N1—C9—N4105.7 (14)
N21—C29—C28134.3 (10)N1—C9—C8135.6 (9)
C29—N21—N22108.9 (10)N2—N1—C9108.5 (11)
C23—N22—N21104.1 (17)C3—N2—N1110.2 (13)
N24—C23—N22112.4 (12)N2—C3—N4108.1 (10)
N211—N210—C26117.2 (18)N11—N10—C6116.7 (18)
N212—N211—N210171.9 (19)N12—N11—N10173.7 (13)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at1.11GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.840 (12) ÅCell parameters from 786 reflections
b = 18.094 (2) Åθ = 4.1–20.6°
c = 8.820 (11) ŵ = 0.13 mm1
β = 94.13 (16)°T = 296 K
V = 1248 (2) Å3Plate, colorless
Z = 80.35 × 0.27 × 0.16 mm
Data collection top
KM-4 CCD
diffractometer
433 independent reflections
Radiation source: Enhance (Mo) X-ray Source269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
Detector resolution: 16.2413 pixels mm-1θmax = 26.9°, θmin = 4.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 66
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.714, Tmax = 1.000l = 87
4613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.239 w = 1/[σ2(Fo2) + (0.1638P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
433 reflectionsΔρmax = 0.14 e Å3
97 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.11 (2) GPa (1110000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.657 (3)0.5019 (4)0.398 (3)0.035 (2)*
N250.563 (3)0.5581 (3)0.328 (3)0.034 (2)*
C260.451 (4)0.5358 (5)0.223 (3)0.040 (3)*
C270.439 (3)0.4604 (5)0.169 (3)0.046 (3)*
H270.36980.44940.08170.055*
C280.524 (4)0.4072 (5)0.243 (3)0.044 (3)*
H280.51330.35820.21170.053*
C290.635 (6)0.4277 (4)0.372 (5)0.039 (3)*
N210.751 (3)0.3902 (4)0.455 (2)0.048 (3)*
N220.843 (3)0.4399 (4)0.543 (3)0.049 (3)*
C230.785 (4)0.5064 (5)0.509 (3)0.039 (3)*
H230.82600.55000.55390.047*
N2100.349 (3)0.5859 (4)0.141 (2)0.044 (2)*
N2110.367 (3)0.6512 (4)0.182 (3)0.048 (3)*
N2120.369 (4)0.7114 (5)0.206 (3)0.059 (3)*
N40.785 (3)0.7216 (3)0.636 (3)0.037 (2)*
N50.880 (3)0.6670 (3)0.711 (2)0.036 (2)*
C60.990 (4)0.6921 (5)0.812 (3)0.041 (3)*
C71.026 (4)0.7687 (4)0.848 (3)0.051 (3)*
H71.11020.78160.92380.062*
C80.935 (4)0.8208 (5)0.769 (3)0.048 (3)*
H80.95590.87080.78670.058*
C90.806 (3)0.7976 (4)0.659 (3)0.035 (3)*
N10.708 (3)0.8321 (4)0.555 (3)0.047 (3)*
N20.613 (4)0.7797 (4)0.473 (3)0.045 (3)*
C30.667 (4)0.7149 (4)0.522 (3)0.039 (3)*
H30.62680.67010.48150.046*
N101.088 (3)0.6429 (4)0.905 (3)0.045 (2)*
N111.073 (5)0.5759 (4)0.864 (4)0.048 (3)*
N121.065 (4)0.5144 (5)0.849 (3)0.057 (3)*
Geometric parameters (Å, º) top
N24—N251.379 (9)N4—N51.376 (9)
N24—C291.371 (11)N4—C91.399 (10)
N24—C231.348 (10)N4—C31.328 (12)
N25—C261.295 (10)N5—C61.281 (11)
C26—C271.446 (17)C6—C71.446 (13)
C26—N2101.377 (12)C6—N101.401 (11)
C27—C281.318 (11)C7—C81.350 (12)
C28—C291.432 (13)C8—C91.410 (11)
C29—N211.313 (13)C9—N11.315 (11)
N21—N221.361 (10)N1—N21.379 (11)
N22—C231.313 (13)N2—C31.308 (10)
N210—N2111.242 (11)N10—N111.268 (13)
N211—N2121.110 (10)N11—N121.122 (10)
C29—N24—N25126.0 (7)N5—N4—C9125.5 (7)
C23—N24—N25128.8 (7)C3—N4—N5128.6 (7)
C23—N24—C29105.2 (6)C3—N4—C9105.7 (6)
C26—N25—N24114.0 (7)C6—N5—N4113.2 (7)
N25—C26—C27123.7 (10)N5—C6—C7127.3 (8)
N25—C26—N210120.6 (8)N5—C6—N10119.7 (7)
N210—C26—C27115.2 (8)N10—C6—C7112.9 (7)
C28—C27—C26120.6 (10)C8—C7—C6117.8 (9)
C27—C28—C29117.4 (9)C7—C8—C9118.3 (8)
N24—C29—C28116.9 (8)N4—C9—C8117.7 (7)
N21—C29—N24109.7 (8)N1—C9—N4107.8 (7)
N21—C29—C28131.5 (16)N1—C9—C8133.9 (9)
C29—N21—N22107.0 (7)C9—N1—N2108.0 (7)
C23—N22—N21108.4 (7)C3—N2—N1107.2 (7)
N22—C23—N24109.6 (7)N2—C3—N4111.0 (7)
N211—N210—C26114.9 (8)N11—N10—C6113.9 (8)
N212—N211—N210171.6 (9)N12—N11—N10170 (3)
6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7at1.40GPa) top
Crystal data top
C5H3N7F(000) = 656
Mr = 161.14Dx = 1.749 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.7755 (16) ÅCell parameters from 475 reflections
b = 18.017 (3) Åθ = 4.3–20.6°
c = 8.75 (3) ŵ = 0.13 mm1
β = 93.53 (9)°T = 296 K
V = 1224 (4) Å3Plate, colorless
Z = 80.35 × 0.28 × 0.17 mm
Data collection top
KM-4 CCD
diffractometer
526 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.182
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2222
Tmin = 0.745, Tmax = 1.000l = 22
4881 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.2618P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
526 reflectionsΔρmax = 0.13 e Å3
97 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 1.40 (2) GPa (1400000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N240.6603 (11)0.5015 (4)0.396 (3)0.037 (2)*
N250.5641 (11)0.5586 (4)0.327 (3)0.041 (2)*
C260.4549 (16)0.5352 (5)0.215 (5)0.045 (3)*
C270.4338 (16)0.4612 (5)0.168 (4)0.053 (3)*
H270.35390.44910.08900.064*
C280.5288 (15)0.4079 (5)0.239 (5)0.051 (3)*
H280.51850.35880.20660.061*
C290.6458 (14)0.4275 (5)0.364 (4)0.043 (3)*
N210.7563 (12)0.3891 (4)0.454 (4)0.048 (3)*
N220.8395 (12)0.4404 (4)0.558 (4)0.053 (3)*
C230.7848 (15)0.5066 (5)0.506 (4)0.046 (3)*
H230.82940.55140.54280.055*
N2100.3459 (13)0.5870 (4)0.140 (4)0.046 (2)*
N2110.3605 (11)0.6523 (5)0.184 (3)0.052 (3)*
N2120.3602 (11)0.7131 (5)0.209 (3)0.061 (3)*
N40.7858 (10)0.7216 (4)0.638 (3)0.040 (2)*
N50.8726 (12)0.6666 (4)0.722 (4)0.047 (3)*
C60.9905 (14)0.6920 (5)0.813 (5)0.043 (3)*
C71.0233 (13)0.7692 (5)0.847 (4)0.054 (3)*
H71.10810.78230.92200.064*
C80.9337 (15)0.8206 (5)0.773 (5)0.047 (3)*
H80.94920.87050.79740.056*
C90.8108 (15)0.7978 (5)0.654 (4)0.042 (3)*
N10.7068 (12)0.8324 (4)0.549 (3)0.055 (3)*
N20.6141 (10)0.7790 (4)0.474 (3)0.050 (3)*
C30.6621 (14)0.7136 (5)0.523 (4)0.046 (3)*
H30.61840.66870.48580.055*
N101.0923 (11)0.6422 (4)0.898 (3)0.051 (3)*
N111.0709 (12)0.5754 (4)0.863 (4)0.053 (3)*
N121.0659 (12)0.5136 (5)0.850 (4)0.071 (3)*
Geometric parameters (Å, º) top
N24—N251.389 (15)N4—N51.39 (2)
N24—C291.366 (13)N4—C91.392 (11)
N24—C231.33 (2)N4—C31.35 (3)
N25—C261.33 (3)N5—C61.26 (2)
C26—C271.400 (18)C6—C71.441 (15)
C26—N2101.40 (2)C6—N101.38 (2)
C27—C281.34 (2)C7—C81.31 (2)
C28—C291.43 (4)C8—C91.43 (3)
C29—N211.32 (2)C9—N11.34 (3)
N21—N221.42 (2)N1—N21.348 (17)
N22—C231.336 (16)N2—C31.301 (13)
N210—N2111.240 (16)N10—N111.251 (13)
N211—N2121.118 (12)N11—N121.120 (11)
C29—N24—N25126.9 (16)N5—N4—C9126.3 (15)
C23—N24—N25128.0 (10)C3—N4—N5128.2 (10)
C23—N24—C29105.1 (12)C3—N4—C9105.5 (12)
C26—N25—N24112.9 (10)C6—N5—N4112.7 (10)
N25—C26—C27125.1 (16)N5—C6—C7126.4 (13)
N25—C26—N210118.4 (12)N5—C6—N10118.2 (9)
N210—C26—C27116 (2)N10—C6—C7115.2 (17)
C28—C27—C26120 (2)C8—C7—C6119.9 (19)
C27—C28—C29119.0 (15)C7—C8—C9118.0 (12)
N24—C29—C28116.0 (14)N4—C9—C8116.0 (14)
N21—C29—N24110.4 (17)N1—C9—N4108.4 (15)
N21—C29—C28133.4 (12)N1—C9—C8135.6 (10)
C29—N21—N22107.0 (10)C9—N1—N2106.6 (11)
C23—N22—N21103.8 (17)C3—N2—N1110.5 (13)
N24—C23—N22112.9 (12)N2—C3—N4109.0 (10)
N211—N210—C26116.5 (18)N11—N10—C6115.3 (17)
N212—N211—N210172 (2)N12—N11—N10170 (3)
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat296K) top
Crystal data top
C6H5N7·0.3(O)Dx = 1.451 Mg m3
Mr = 179.97Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 5855 reflections
a = 28.1674 (5) Åθ = 3.1–76.1°
c = 4.15209 (11) ŵ = 0.90 mm1
V = 3294.29 (14) Å3T = 296 K
Z = 16Plate, colorless
F(000) = 14780.39 × 0.29 × 0.12 mm
Data collection top
SuperNova, Single source at offset, Atlas
diffractometer
1725 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1533 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.5357 pixels mm-1θmax = 76.6°, θmin = 6.3°
ω scansh = 3435
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3531
Tmin = 0.915, Tmax = 1.000l = 35
11092 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.060P)2 + 0.5562P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1725 reflectionsΔρmax = 0.10 e Å3
128 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57725 (3)0.61830 (3)0.8460 (2)0.0545 (3)
N40.58664 (3)0.58068 (3)1.0428 (2)0.0549 (3)
N100.60929 (5)0.67919 (4)0.5377 (3)0.0783 (4)
N110.56701 (5)0.68658 (4)0.4586 (3)0.0739 (3)
N20.57674 (5)0.51959 (4)1.3535 (3)0.0784 (4)
C30.55422 (5)0.55222 (4)1.1877 (3)0.0607 (3)
N120.53108 (7)0.69623 (6)0.3698 (4)0.0985 (5)
N10.62499 (5)0.52655 (4)1.3186 (4)0.0871 (4)
C60.61525 (4)0.63965 (4)0.7458 (3)0.0614 (3)
C80.67056 (5)0.58905 (6)1.0123 (5)0.0841 (5)
H80.7012500.5795201.0636720.101*
C90.63066 (5)0.56386 (5)1.1299 (4)0.0695 (4)
C130.50257 (5)0.55931 (5)1.1626 (4)0.0732 (4)
H13A0.4931460.5573810.9407900.110*
H13B0.4943970.5899961.2466140.110*
H13C0.4864730.5351851.2840520.110*
C70.66285 (5)0.62712 (6)0.8245 (4)0.0781 (4)
H70.6881640.6449820.7471080.094*
O10.7337 (12)0.4877 (15)0.324 (16)0.209 (9)0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0587 (5)0.0457 (4)0.0591 (5)0.0038 (4)0.0040 (4)0.0011 (4)
N40.0581 (5)0.0469 (5)0.0595 (5)0.0012 (4)0.0021 (4)0.0002 (4)
N100.0855 (8)0.0645 (6)0.0850 (8)0.0153 (6)0.0212 (6)0.0093 (6)
N110.0935 (9)0.0561 (6)0.0720 (7)0.0008 (6)0.0161 (6)0.0080 (5)
N20.0956 (9)0.0575 (6)0.0820 (8)0.0043 (5)0.0145 (7)0.0132 (5)
C30.0723 (7)0.0481 (5)0.0618 (7)0.0069 (5)0.0027 (5)0.0039 (5)
N120.1095 (12)0.0862 (9)0.0999 (11)0.0196 (8)0.0007 (9)0.0187 (8)
N10.0930 (9)0.0659 (7)0.1023 (10)0.0098 (6)0.0274 (8)0.0070 (6)
C60.0633 (7)0.0543 (6)0.0667 (7)0.0091 (5)0.0117 (5)0.0059 (5)
C80.0565 (7)0.0839 (10)0.1120 (12)0.0067 (6)0.0088 (8)0.0175 (9)
C90.0643 (7)0.0603 (7)0.0839 (9)0.0066 (5)0.0128 (6)0.0080 (6)
C130.0703 (8)0.0667 (7)0.0826 (9)0.0122 (6)0.0069 (7)0.0130 (6)
C70.0588 (7)0.0783 (9)0.0973 (11)0.0123 (6)0.0124 (7)0.0143 (8)
O10.157 (13)0.170 (12)0.30 (3)0.026 (6)0.061 (17)0.045 (12)
Geometric parameters (Å, º) top
N5—N41.3642 (13)C6—C71.424 (2)
N5—C61.2962 (15)C8—H80.9300
N4—C31.3561 (16)C8—C91.416 (2)
N4—C91.3757 (16)C8—C71.343 (2)
N10—N111.2530 (19)C13—H13A0.9600
N10—C61.4195 (18)C13—H13B0.9600
N11—N121.111 (2)C13—H13C0.9600
N2—C31.3118 (18)C7—H70.9300
N2—N11.381 (2)O1—O1i1.319 (8)
C3—C131.472 (2)O1—O1ii1.319 (8)
N1—C91.320 (2)
C6—N5—N4113.10 (10)C7—C8—H8120.9
N5—N4—C9126.86 (11)C7—C8—C9118.15 (13)
C3—N4—N5126.47 (10)N4—C9—C8116.87 (13)
C3—N4—C9106.67 (11)N1—C9—N4108.72 (13)
N11—N10—C6113.73 (11)N1—C9—C8134.39 (14)
N12—N11—N10173.56 (15)C3—C13—H13A109.5
C3—N2—N1108.74 (12)C3—C13—H13B109.5
N4—C3—C13123.64 (11)C3—C13—H13C109.5
N2—C3—N4108.74 (12)H13A—C13—H13B109.5
N2—C3—C13127.59 (12)H13A—C13—H13C109.5
C9—N1—N2107.13 (12)H13B—C13—H13C109.5
N5—C6—N10117.49 (12)C6—C7—H7120.6
N5—C6—C7126.07 (13)C8—C7—C6118.89 (13)
N10—C6—C7116.44 (12)C8—C7—H7120.6
C9—C8—H8120.9O1i—O1—O1ii128.3 (6)
N5—N4—C3—N2179.05 (11)C3—N4—C9—N10.32 (15)
N5—N4—C3—C132.6 (2)C3—N4—C9—C8178.43 (13)
N5—N4—C9—N1178.99 (11)C3—N2—N1—C90.09 (18)
N5—N4—C9—C82.3 (2)N1—N2—C3—N40.11 (16)
N5—C6—C7—C82.0 (2)N1—N2—C3—C13178.14 (14)
N4—N5—C6—N10179.64 (10)C6—N5—N4—C3178.87 (11)
N4—N5—C6—C70.22 (18)C6—N5—N4—C91.96 (17)
N10—C6—C7—C8177.90 (14)C9—N4—C3—N20.26 (15)
N11—N10—C6—N54.60 (19)C9—N4—C3—C13178.08 (13)
N11—N10—C6—C7175.28 (13)C9—C8—C7—C61.6 (2)
N2—N1—C9—N40.25 (17)C7—C8—C9—N40.3 (2)
N2—N1—C9—C8178.18 (17)C7—C8—C9—N1178.65 (16)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat250K) top
Crystal data top
C6H5N7·0.4(O)Dx = 1.475 Mg m3
Mr = 181.57Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 2623 reflections
a = 28.1659 (3) Åθ = 3.1–76.1°
c = 4.12335 (8) ŵ = 0.92 mm1
V = 3271.13 (10) Å3T = 250 K
Z = 16Plate, colorless
F(000) = 14910.39 × 0.29 × 0.12 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1693 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1533 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
Detector resolution: 10.5357 pixels mm-1θmax = 76.4°, θmin = 3.1°
ω scansh = 3333
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2935
Tmin = 0.933, Tmax = 1.000l = 25
3756 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.7353P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.14 e Å3
1693 reflectionsΔρmin = 0.16 e Å3
129 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00058 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57707 (3)0.61845 (3)0.8473 (2)0.0445 (2)
N40.58651 (3)0.58075 (3)1.0452 (2)0.0452 (2)
N100.60936 (4)0.67964 (4)0.5401 (3)0.0639 (3)
N110.56712 (5)0.68691 (4)0.4595 (3)0.0601 (3)
N20.57651 (5)0.51952 (4)1.3563 (3)0.0659 (3)
C30.55399 (4)0.55206 (4)1.1885 (3)0.0503 (3)
N120.53103 (6)0.69645 (5)0.3690 (4)0.0805 (4)
N10.62492 (5)0.52673 (4)1.3238 (4)0.0736 (4)
C60.61520 (4)0.63998 (4)0.7490 (3)0.0500 (3)
C80.67055 (5)0.58950 (5)1.0197 (4)0.0700 (4)
H80.7012120.5801311.0736650.084*
C90.63051 (4)0.56408 (4)1.1347 (3)0.0579 (3)
C130.50224 (5)0.55895 (5)1.1600 (4)0.0607 (3)
H13A0.4931360.5570210.9359870.091*
H13B0.4938220.5895861.2442800.091*
H13C0.4860870.5347301.2810150.091*
C70.66286 (5)0.62758 (5)0.8301 (4)0.0642 (4)
H70.6881810.6455260.7530870.077*
O10.7283 (2)0.4982 (9)0.420 (7)0.201 (5)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0488 (5)0.0388 (4)0.0459 (5)0.0029 (3)0.0026 (4)0.0011 (3)
N40.0491 (5)0.0386 (4)0.0477 (5)0.0004 (3)0.0031 (4)0.0005 (3)
N100.0683 (7)0.0537 (6)0.0697 (7)0.0122 (5)0.0167 (5)0.0077 (5)
N110.0770 (8)0.0460 (5)0.0575 (6)0.0002 (5)0.0131 (5)0.0067 (4)
N20.0844 (8)0.0478 (5)0.0657 (7)0.0037 (5)0.0139 (6)0.0103 (5)
C30.0627 (7)0.0403 (5)0.0480 (6)0.0064 (4)0.0022 (5)0.0028 (4)
N120.0917 (10)0.0704 (8)0.0794 (9)0.0166 (7)0.0010 (7)0.0155 (6)
N10.0816 (8)0.0548 (6)0.0843 (8)0.0091 (5)0.0260 (7)0.0054 (6)
C60.0522 (6)0.0446 (5)0.0533 (6)0.0069 (4)0.0090 (5)0.0061 (5)
C80.0481 (6)0.0711 (8)0.0908 (10)0.0061 (6)0.0095 (7)0.0162 (8)
C90.0554 (7)0.0504 (6)0.0679 (8)0.0066 (5)0.0131 (6)0.0079 (5)
C130.0604 (7)0.0559 (7)0.0660 (8)0.0102 (5)0.0062 (6)0.0103 (6)
C70.0475 (6)0.0657 (8)0.0793 (9)0.0093 (5)0.0095 (6)0.0139 (7)
O10.113 (4)0.178 (7)0.311 (19)0.004 (6)0.007 (9)0.046 (8)
Geometric parameters (Å, º) top
N5—N41.3651 (12)C6—C71.4269 (18)
N5—C61.2982 (14)C8—H80.9300
N4—C31.3570 (15)C8—C91.418 (2)
N4—C91.3757 (15)C8—C71.345 (2)
N10—N111.2521 (17)C13—H13A0.9600
N10—C61.4201 (16)C13—H13B0.9600
N11—N121.1157 (18)C13—H13C0.9600
N2—C31.3120 (17)C7—H70.9300
N2—N11.3852 (19)O1—O1i1.347 (5)
C3—C131.4750 (18)O1—O1ii1.347 (5)
N1—C91.3188 (19)
C6—N5—N4112.88 (9)C7—C8—H8121.0
N5—N4—C9126.96 (10)C7—C8—C9117.98 (12)
C3—N4—N5126.30 (9)N4—C9—C8117.03 (12)
C3—N4—C9106.74 (10)N1—C9—N4108.88 (12)
N11—N10—C6113.56 (10)N1—C9—C8134.07 (13)
N12—N11—N10173.65 (14)C3—C13—H13A109.5
C3—N2—N1108.81 (11)C3—C13—H13B109.5
N4—C3—C13123.64 (10)C3—C13—H13C109.5
N2—C3—N4108.62 (11)H13A—C13—H13B109.5
N2—C3—C13127.72 (11)H13A—C13—H13C109.5
C9—N1—N2106.95 (11)H13B—C13—H13C109.5
N5—C6—N10117.46 (11)C6—C7—H7120.6
N5—C6—C7126.21 (12)C8—C7—C6118.88 (12)
N10—C6—C7116.33 (11)C8—C7—H7120.6
C9—C8—H8121.0O1i—O1—O1ii125.8 (3)
N5—N4—C3—N2179.14 (10)C3—N4—C9—N10.19 (14)
N5—N4—C3—C132.55 (18)C3—N4—C9—C8178.38 (12)
N5—N4—C9—N1179.06 (11)C3—N2—N1—C90.11 (16)
N5—N4—C9—C82.37 (18)N1—N2—C3—N40.01 (15)
N5—C6—C7—C81.7 (2)N1—N2—C3—C13178.21 (13)
N4—N5—C6—N10179.69 (9)C6—N5—N4—C3178.93 (10)
N4—N5—C6—C70.15 (17)C6—N5—N4—C91.95 (15)
N10—C6—C7—C8178.15 (13)C9—N4—C3—N20.12 (13)
N11—N10—C6—N54.47 (17)C9—N4—C3—C13178.19 (12)
N11—N10—C6—C7175.39 (11)C9—C8—C7—C61.2 (2)
N2—N1—C9—N40.18 (15)C7—C8—C9—N40.6 (2)
N2—N1—C9—C8178.04 (15)C7—C8—C9—N1178.70 (15)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat200K) top
Crystal data top
C6H5N7·0.4(O)Dx = 1.489 Mg m3
Mr = 181.57Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 2678 reflections
a = 28.1314 (4) Åθ = 2.2–76.0°
c = 4.09378 (10) ŵ = 0.93 mm1
V = 3239.72 (12) Å3T = 200 K
Z = 16Plate, colorless
F(000) = 14910.39 × 0.29 × 0.12 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1677 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1534 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.010
Detector resolution: 10.5357 pixels mm-1θmax = 76.2°, θmin = 3.1°
ω scansh = 3529
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3333
Tmin = 0.909, Tmax = 1.000l = 25
3689 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0578P)2 + 1.0453P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1677 reflectionsΔρmax = 0.13 e Å3
128 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57699 (3)0.61861 (3)0.8484 (2)0.0375 (2)
N40.58650 (3)0.58080 (3)1.0469 (2)0.0381 (2)
N100.60946 (4)0.68017 (4)0.5426 (3)0.0532 (3)
N110.56711 (4)0.68727 (4)0.4604 (3)0.0499 (3)
N20.57657 (5)0.51935 (4)1.3587 (3)0.0546 (3)
C30.55394 (4)0.55188 (4)1.1894 (3)0.0423 (3)
N120.53092 (5)0.69662 (5)0.3684 (3)0.0659 (4)
N10.62503 (5)0.52681 (4)1.3285 (3)0.0615 (3)
C60.61520 (4)0.64040 (4)0.7514 (3)0.0420 (3)
C80.67070 (5)0.59002 (5)1.0263 (4)0.0583 (4)
H80.7013750.5808051.0825360.070*
C90.63055 (4)0.56431 (4)1.1391 (3)0.0484 (3)
C130.50207 (5)0.55860 (5)1.1580 (3)0.0500 (3)
H13A0.4932450.5569350.9317370.075*
H13B0.4934050.5891261.2443210.075*
H13C0.4858480.5341241.2774100.075*
C70.66295 (5)0.62818 (5)0.8353 (4)0.0535 (3)
H70.6882790.6463030.7592370.064*
O10.72780 (18)0.4990 (6)0.426 (5)0.180 (4)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0415 (5)0.0327 (4)0.0384 (5)0.0023 (3)0.0018 (4)0.0007 (4)
N40.0419 (5)0.0327 (4)0.0398 (5)0.0002 (3)0.0025 (4)0.0006 (3)
N100.0552 (6)0.0458 (6)0.0584 (7)0.0098 (5)0.0129 (5)0.0063 (5)
N110.0635 (7)0.0377 (5)0.0485 (6)0.0010 (5)0.0109 (5)0.0056 (4)
N20.0699 (7)0.0396 (5)0.0542 (6)0.0034 (5)0.0115 (5)0.0081 (5)
C30.0528 (6)0.0344 (5)0.0397 (6)0.0052 (4)0.0016 (5)0.0022 (4)
N120.0745 (9)0.0583 (7)0.0649 (8)0.0126 (6)0.0012 (7)0.0129 (6)
N10.0676 (7)0.0462 (6)0.0708 (8)0.0076 (5)0.0222 (6)0.0038 (5)
C60.0442 (6)0.0374 (5)0.0442 (6)0.0053 (4)0.0073 (5)0.0051 (5)
C80.0410 (6)0.0585 (8)0.0753 (9)0.0055 (5)0.0093 (6)0.0135 (7)
C90.0464 (6)0.0421 (6)0.0568 (7)0.0054 (5)0.0112 (5)0.0072 (5)
C130.0502 (7)0.0456 (6)0.0543 (7)0.0083 (5)0.0049 (6)0.0078 (5)
C70.0397 (6)0.0546 (7)0.0663 (8)0.0072 (5)0.0070 (6)0.0123 (6)
O10.097 (3)0.145 (5)0.297 (15)0.003 (5)0.002 (7)0.023 (6)
Geometric parameters (Å, º) top
N5—N41.3651 (13)C6—C71.4286 (18)
N5—C61.2995 (15)C8—H80.9300
N4—C31.3569 (15)C8—C91.418 (2)
N4—C91.3759 (15)C8—C71.346 (2)
N10—N111.2541 (17)C13—H13A0.9600
N10—C61.4171 (16)C13—H13B0.9600
N11—N121.1168 (18)C13—H13C0.9600
N2—C31.3124 (16)C7—H70.9300
N2—N11.3849 (18)O1—O1i1.352 (5)
C3—C131.4771 (18)O1—O1ii1.352 (5)
N1—C91.3184 (18)
C6—N5—N4112.79 (9)C7—C8—H8121.1
N5—N4—C9127.06 (10)C7—C8—C9117.83 (12)
C3—N4—N5126.23 (10)N4—C9—C8117.12 (12)
C3—N4—C9106.71 (10)N1—C9—N4108.97 (12)
N11—N10—C6113.32 (10)N1—C9—C8133.88 (12)
N12—N11—N10173.71 (13)C3—C13—H13A109.5
C3—N2—N1108.94 (11)C3—C13—H13B109.5
N4—C3—C13123.53 (10)C3—C13—H13C109.5
N2—C3—N4108.53 (11)H13A—C13—H13B109.5
N2—C3—C13127.91 (11)H13A—C13—H13C109.5
C9—N1—N2106.83 (11)H13B—C13—H13C109.5
N5—C6—N10117.55 (11)C6—C7—H7120.5
N5—C6—C7126.20 (11)C8—C7—C6118.96 (12)
N10—C6—C7116.25 (11)C8—C7—H7120.5
C9—C8—H8121.1O1i—O1—O1ii124.9 (3)
N5—N4—C3—N2179.27 (10)C3—N4—C9—N10.27 (14)
N5—N4—C3—C132.35 (18)C3—N4—C9—C8178.21 (11)
N5—N4—C9—N1179.21 (11)C3—N2—N1—C90.08 (16)
N5—N4—C9—C82.31 (18)N1—N2—C3—N40.09 (15)
N5—C6—C7—C81.7 (2)N1—N2—C3—C13178.20 (12)
N4—N5—C6—N10179.75 (10)C6—N5—N4—C3178.87 (11)
N4—N5—C6—C70.34 (17)C6—N5—N4—C91.74 (16)
N10—C6—C7—C8178.37 (12)C9—N4—C3—N20.22 (13)
N11—N10—C6—N54.49 (17)C9—N4—C3—C13178.16 (11)
N11—N10—C6—C7175.58 (11)C9—C8—C7—C61.1 (2)
N2—N1—C9—N40.22 (15)C7—C8—C9—N40.72 (19)
N2—N1—C9—C8177.91 (15)C7—C8—C9—N1178.72 (15)
Symmetry codes: (i) y+1/4, x+5/4, z+1/4; (ii) y+5/4, x1/4, z1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat150K) top
Crystal data top
C6H5N7·0.4(O)Dx = 1.501 Mg m3
Mr = 181.57Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 2415 reflections
a = 28.1081 (4) Åθ = 3.1–76.0°
c = 4.06918 (11) ŵ = 0.93 mm1
V = 3214.91 (13) Å3T = 150 K
Z = 16Plate, colorless
F(000) = 14910.39 × 0.29 × 0.12 mm
Data collection top
SuperNova, Single source at offset/far, Atlas
diffractometer
1661 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1542 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 10.5357 pixels mm-1θmax = 76.2°, θmin = 3.1°
ω scansh = 3333
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3529
Tmin = 0.895, Tmax = 1.000l = 25
3636 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.5784P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1661 reflectionsΔρmax = 0.16 e Å3
128 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57692 (3)0.61876 (3)0.8490 (2)0.0314 (2)
N40.58651 (3)0.58087 (3)1.0487 (2)0.0319 (2)
N100.60950 (4)0.68064 (4)0.5440 (3)0.0432 (3)
N110.56706 (4)0.68757 (4)0.4606 (3)0.0406 (3)
N20.57661 (4)0.51919 (4)1.3610 (3)0.0455 (3)
C30.55392 (4)0.55167 (4)1.1902 (3)0.0354 (3)
N120.53066 (5)0.69677 (4)0.3676 (3)0.0532 (3)
N10.62517 (5)0.52685 (4)1.3328 (3)0.0515 (3)
C60.61521 (4)0.64078 (4)0.7534 (3)0.0349 (3)
C80.67090 (5)0.59042 (5)1.0309 (4)0.0487 (4)
H80.7015930.5812651.0881760.058*
C90.63064 (4)0.56451 (4)1.1426 (3)0.0410 (3)
C130.50194 (5)0.55828 (4)1.1564 (3)0.0414 (3)
H13A0.4933100.5565950.9284680.062*
H13B0.4931180.5888021.2429960.062*
H13C0.4856650.5337341.2758820.062*
C70.66311 (4)0.62868 (5)0.8395 (4)0.0443 (3)
H70.6884310.6469800.7642620.053*
O10.72773 (16)0.4988 (4)0.434 (4)0.162 (4)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0346 (5)0.0273 (4)0.0324 (5)0.0019 (3)0.0010 (4)0.0006 (4)
N40.0355 (5)0.0271 (4)0.0332 (5)0.0003 (3)0.0022 (4)0.0003 (4)
N100.0438 (6)0.0374 (5)0.0486 (6)0.0079 (4)0.0097 (5)0.0046 (5)
N110.0520 (7)0.0307 (5)0.0390 (6)0.0014 (4)0.0088 (5)0.0044 (4)
N20.0586 (7)0.0327 (5)0.0452 (6)0.0030 (4)0.0101 (5)0.0057 (4)
C30.0447 (6)0.0284 (5)0.0332 (6)0.0046 (4)0.0016 (5)0.0010 (4)
N120.0604 (8)0.0466 (6)0.0525 (7)0.0097 (5)0.0015 (6)0.0094 (5)
N10.0561 (7)0.0383 (6)0.0600 (7)0.0061 (5)0.0195 (6)0.0027 (5)
C60.0369 (6)0.0311 (5)0.0367 (6)0.0041 (4)0.0052 (5)0.0049 (5)
C80.0344 (6)0.0481 (7)0.0636 (9)0.0043 (5)0.0081 (6)0.0120 (6)
C90.0396 (6)0.0349 (6)0.0486 (7)0.0045 (5)0.0109 (5)0.0064 (5)
C130.0428 (6)0.0375 (6)0.0439 (7)0.0070 (5)0.0043 (5)0.0062 (5)
C70.0332 (6)0.0442 (7)0.0556 (8)0.0057 (5)0.0049 (5)0.0104 (6)
O10.085 (3)0.121 (4)0.279 (13)0.006 (4)0.001 (7)0.016 (5)
Geometric parameters (Å, º) top
N5—N41.3664 (13)C6—C71.4319 (17)
N5—C61.3011 (15)C8—H80.9300
N4—C31.3581 (15)C8—C91.420 (2)
N4—C91.3771 (15)C8—C71.346 (2)
N10—N111.2555 (16)C13—H13A0.9600
N10—C61.4165 (16)C13—H13B0.9600
N11—N121.1210 (17)C13—H13C0.9600
N2—C31.3128 (16)C7—H70.9300
N2—N11.3866 (18)O1—O1i1.349 (4)
C3—C131.4792 (18)O1—O1ii1.349 (4)
N1—C91.3202 (18)
C6—N5—N4112.68 (10)C7—C8—H8121.1
N5—N4—C9127.07 (10)C7—C8—C9117.73 (12)
C3—N4—N5126.18 (10)N4—C9—C8117.24 (12)
C3—N4—C9106.74 (10)N1—C9—N4108.99 (12)
N11—N10—C6113.16 (10)N1—C9—C8133.75 (12)
N12—N11—N10173.84 (13)C3—C13—H13A109.5
C3—N2—N1109.04 (11)C3—C13—H13B109.5
N4—C3—C13123.42 (10)C3—C13—H13C109.5
N2—C3—N4108.49 (11)H13A—C13—H13B109.5
N2—C3—C13128.06 (11)H13A—C13—H13C109.5
C9—N1—N2106.73 (10)H13B—C13—H13C109.5
N5—C6—N10117.53 (11)C6—C7—H7120.5
N5—C6—C7126.27 (11)C8—C7—C6118.97 (12)
N10—C6—C7116.20 (11)C8—C7—H7120.5
C9—C8—H8121.1O1i—O1—O1ii124.6 (3)
N5—N4—C3—N2179.26 (10)C3—N4—C9—N10.14 (14)
N5—N4—C3—C132.51 (19)C3—N4—C9—C8178.33 (11)
N5—N4—C9—N1179.19 (11)C3—N2—N1—C90.11 (15)
N5—N4—C9—C82.34 (18)N1—N2—C3—N40.02 (15)
N5—C6—C7—C81.7 (2)N1—N2—C3—C13178.14 (12)
N4—N5—C6—N10179.81 (10)C6—N5—N4—C3178.94 (11)
N4—N5—C6—C70.24 (17)C6—N5—N4—C91.86 (16)
N10—C6—C7—C8178.32 (12)C9—N4—C3—N20.07 (14)
N11—N10—C6—N54.36 (16)C9—N4—C3—C13178.16 (11)
N11—N10—C6—C7175.68 (11)C9—C8—C7—C61.2 (2)
N2—N1—C9—N40.15 (15)C7—C8—C9—N40.63 (19)
N2—N1—C9—C8177.97 (15)C7—C8—C9—N1178.63 (15)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat100K) top
Crystal data top
C6H5N7·0.4(O)Dx = 1.512 Mg m3
Mr = 181.57Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I41/aCell parameters from 2268 reflections
a = 28.0757 (5) Åθ = 3.1–76.3°
c = 4.04859 (12) ŵ = 0.94 mm1
V = 3191.28 (14) Å3T = 100 K
Z = 16Plate, colorless
F(000) = 14910.39 × 0.29 × 0.12 mm
Data collection top
SuperNova, Single source at offset, Atlas
diffractometer
1644 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1545 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 10.5357 pixels mm-1θmax = 76.4°, θmin = 3.2°
ω scansh = 3529
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 3333
Tmin = 0.926, Tmax = 1.000l = 25
3568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.053P)2 + 1.9391P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1644 reflectionsΔρmax = 0.20 e Å3
128 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57692 (3)0.61884 (3)0.8496 (2)0.0267 (2)
N40.58653 (3)0.58087 (3)1.0502 (3)0.0274 (2)
N100.60949 (4)0.68100 (4)0.5448 (3)0.0354 (3)
N110.56694 (4)0.68777 (4)0.4605 (3)0.0330 (3)
N20.57660 (4)0.51904 (4)1.3632 (3)0.0383 (3)
C30.55390 (5)0.55156 (4)1.1909 (3)0.0302 (3)
N120.53040 (5)0.69687 (4)0.3670 (3)0.0421 (3)
N10.62529 (5)0.52685 (4)1.3358 (3)0.0438 (3)
C60.61520 (4)0.64105 (4)0.7546 (3)0.0293 (3)
C80.67106 (5)0.59068 (5)1.0346 (4)0.0414 (3)
H80.7017820.5815621.0926720.050*
C90.63073 (5)0.56466 (4)1.1454 (3)0.0349 (3)
C130.50179 (5)0.55802 (4)1.1552 (3)0.0343 (3)
H13A0.4933720.5567970.9255090.051*
H13B0.4927240.5883371.2450060.051*
H13C0.4854930.5331051.2718540.051*
C70.66320 (4)0.62911 (5)0.8419 (4)0.0371 (3)
H70.6885220.6475330.7669990.045*
O10.72788 (17)0.4980 (4)0.437 (4)0.151 (4)0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0305 (5)0.0230 (4)0.0267 (5)0.0015 (4)0.0004 (4)0.0004 (4)
N40.0314 (5)0.0229 (4)0.0278 (5)0.0001 (4)0.0027 (4)0.0002 (4)
N100.0352 (6)0.0318 (5)0.0392 (6)0.0057 (4)0.0071 (5)0.0030 (5)
N110.0424 (6)0.0251 (5)0.0314 (5)0.0015 (4)0.0072 (5)0.0031 (4)
N20.0502 (7)0.0275 (5)0.0373 (6)0.0031 (4)0.0092 (5)0.0041 (4)
C30.0390 (6)0.0247 (5)0.0269 (6)0.0043 (4)0.0015 (5)0.0001 (4)
N120.0481 (7)0.0369 (6)0.0414 (7)0.0072 (5)0.0019 (5)0.0069 (5)
N10.0490 (7)0.0326 (6)0.0496 (7)0.0048 (5)0.0174 (6)0.0015 (5)
C60.0318 (6)0.0262 (5)0.0300 (6)0.0032 (4)0.0036 (5)0.0044 (5)
C80.0305 (6)0.0402 (7)0.0534 (9)0.0040 (5)0.0083 (6)0.0105 (6)
C90.0349 (6)0.0295 (6)0.0402 (7)0.0039 (5)0.0103 (5)0.0058 (5)
C130.0372 (6)0.0309 (6)0.0347 (7)0.0061 (5)0.0031 (5)0.0040 (5)
C70.0284 (6)0.0368 (6)0.0462 (8)0.0045 (5)0.0029 (5)0.0091 (6)
O10.078 (3)0.104 (4)0.271 (13)0.003 (4)0.007 (7)0.015 (5)
Geometric parameters (Å, º) top
N5—N41.3670 (14)C6—C71.4331 (17)
N5—C61.3008 (15)C8—H80.9300
N4—C31.3571 (16)C8—C91.420 (2)
N4—C91.3769 (15)C8—C71.350 (2)
N10—N111.2568 (16)C13—H13A0.9600
N10—C61.4161 (16)C13—H13B0.9600
N11—N121.1230 (17)C13—H13C0.9600
N2—C31.3138 (17)C7—H70.9300
N2—N11.3887 (18)O1—O1i1.342 (4)
C3—C131.4814 (18)O1—O1ii1.343 (4)
N1—C91.3206 (18)
C6—N5—N4112.72 (10)C7—C8—H8121.2
N5—N4—C9127.03 (10)C7—C8—C9117.62 (12)
C3—N4—N5126.09 (10)N4—C9—C8117.38 (12)
C3—N4—C9106.88 (10)N1—C9—N4108.96 (12)
N11—N10—C6112.97 (10)N1—C9—C8133.65 (12)
N12—N11—N10173.88 (13)C3—C13—H13A109.5
C3—N2—N1108.99 (11)C3—C13—H13B109.5
N4—C3—C13123.47 (11)C3—C13—H13C109.5
N2—C3—N4108.47 (11)H13A—C13—H13B109.5
N2—C3—C13128.04 (11)H13A—C13—H13C109.5
C9—N1—N2106.71 (11)H13B—C13—H13C109.5
N5—C6—N10117.62 (11)C6—C7—H7120.5
N5—C6—C7126.29 (12)C8—C7—C6118.91 (12)
N10—C6—C7116.09 (11)C8—C7—H7120.5
C9—C8—H8121.2O1i—O1—O1ii124.6 (3)
N5—N4—C3—N2179.32 (11)C3—N4—C9—N10.21 (14)
N5—N4—C3—C132.43 (19)C3—N4—C9—C8178.39 (12)
N5—N4—C9—N1179.15 (11)C3—N2—N1—C90.26 (15)
N5—N4—C9—C82.25 (19)N1—N2—C3—N40.12 (15)
N5—C6—C7—C81.7 (2)N1—N2—C3—C13178.28 (12)
N4—N5—C6—N10179.85 (10)C6—N5—N4—C3178.94 (11)
N4—N5—C6—C70.21 (17)C6—N5—N4—C91.82 (16)
N10—C6—C7—C8178.36 (12)C9—N4—C3—N20.05 (14)
N11—N10—C6—N54.33 (16)C9—N4—C3—C13178.21 (11)
N11—N10—C6—C7175.72 (11)C9—C8—C7—C61.2 (2)
N2—N1—C9—N40.28 (15)C7—C8—C9—N40.55 (19)
N2—N1—C9—C8178.00 (15)C7—C8—C9—N1178.72 (15)
Symmetry codes: (i) y+1/4, x+5/4, z+1/4; (ii) y+5/4, x1/4, z1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat0_10GPa) top
Crystal data top
C6H5N7·0.5(O)Dx = 1.480 Mg m3
Mr = 183.17Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 660 reflections
a = 28.275 (3) Åθ = 4.1–17.9°
c = 4.1124 (12) ŵ = 0.11 mm1
V = 3287.8 (12) Å3T = 296 K
Z = 16Plate, colorless
F(000) = 15040.39 × 0.30 × 0.10 mm
Data collection top
KM-4 CCD
diffractometer
908 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.141
Detector resolution: 16.2413 pixels mm-1θmax = 26.7°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 3535
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2727
Tmin = 0.257, Tmax = 1.000l = 33
6357 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.5043P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
908 reflectionsΔρmax = 0.14 e Å3
128 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.10 (2) GPa (100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.57685 (17)0.61849 (17)0.8488 (15)0.0575 (18)
N40.5863 (2)0.58077 (19)1.0439 (15)0.0615 (18)
N100.6102 (2)0.6793 (2)0.5444 (17)0.077 (2)
N110.5681 (3)0.6874 (2)0.4619 (17)0.078 (2)
N20.5759 (3)0.51952 (19)1.3540 (16)0.080 (2)
C30.5536 (3)0.5525 (2)1.1838 (19)0.060 (2)
N120.5320 (3)0.6970 (2)0.371 (2)0.099 (3)
N10.6244 (3)0.5268 (2)1.3218 (18)0.091 (2)
C60.6149 (3)0.6400 (2)0.7522 (18)0.061 (2)
C80.6703 (3)0.5899 (3)1.025 (2)0.080 (3)
H80.70080.58071.08200.096*
C90.6302 (3)0.5651 (3)1.136 (2)0.070 (2)
C130.5024 (2)0.5595 (2)1.1568 (19)0.075 (2)
H13A0.49250.55290.93800.113*
H13B0.49470.59161.21110.113*
H13C0.48650.53841.30360.113*
C70.6623 (2)0.6278 (3)0.832 (2)0.076 (2)
H70.68740.64560.75240.092*
O10.7267 (7)0.500 (2)0.46 (2)0.180 (10)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.060 (4)0.048 (3)0.064 (6)0.004 (3)0.003 (3)0.003 (3)
N40.070 (4)0.050 (4)0.064 (7)0.006 (3)0.006 (3)0.000 (3)
N100.087 (5)0.076 (5)0.067 (7)0.011 (4)0.015 (4)0.010 (3)
N110.108 (6)0.057 (4)0.068 (8)0.006 (5)0.023 (5)0.007 (3)
N20.117 (6)0.066 (4)0.055 (7)0.009 (4)0.013 (4)0.012 (3)
C30.088 (6)0.050 (5)0.042 (7)0.005 (5)0.004 (4)0.004 (3)
N120.127 (6)0.102 (6)0.069 (8)0.021 (5)0.005 (5)0.012 (4)
N10.096 (6)0.081 (5)0.096 (8)0.019 (4)0.024 (4)0.001 (4)
C60.063 (5)0.062 (5)0.058 (8)0.007 (4)0.006 (4)0.004 (4)
C80.063 (5)0.100 (6)0.077 (9)0.002 (5)0.018 (4)0.011 (5)
C90.075 (6)0.075 (6)0.059 (9)0.001 (5)0.016 (5)0.013 (4)
C130.080 (5)0.078 (5)0.069 (9)0.010 (4)0.015 (4)0.008 (4)
C70.065 (5)0.080 (6)0.084 (9)0.008 (4)0.006 (4)0.011 (4)
O10.131 (14)0.156 (18)0.25 (5)0.01 (2)0.01 (3)0.042 (16)
Geometric parameters (Å, º) top
N5—N41.361 (6)C6—C71.423 (8)
N5—C61.299 (7)C8—H80.9300
N4—C31.351 (7)C8—C91.410 (10)
N4—C91.371 (7)C8—C71.352 (9)
N10—N111.258 (7)C13—H13A0.9600
N10—C61.408 (8)C13—H13B0.9600
N11—N121.122 (8)C13—H13C0.9600
N2—C31.325 (8)C7—H70.9300
N2—N11.392 (7)O1—O1i1.387 (18)
C3—C131.465 (8)O1—O1ii1.387 (18)
N1—C91.334 (9)
C6—N5—N4112.6 (5)C7—C8—H8121.6
N5—N4—C9126.5 (6)C7—C8—C9116.8 (7)
C3—N4—N5125.4 (6)N4—C9—C8118.5 (8)
C3—N4—C9108.1 (6)N1—C9—N4108.0 (7)
N11—N10—C6113.3 (6)N1—C9—C8133.5 (8)
N12—N11—N10174.6 (8)C3—C13—H13A109.5
C3—N2—N1108.3 (6)C3—C13—H13B109.5
N4—C3—C13124.4 (6)C3—C13—H13C109.5
N2—C3—N4108.4 (6)H13A—C13—H13B109.5
N2—C3—C13127.2 (7)H13A—C13—H13C109.5
C9—N1—N2107.2 (6)H13B—C13—H13C109.5
N5—C6—N10118.5 (6)C6—C7—H7120.5
N5—C6—C7126.6 (7)C8—C7—C6119.1 (7)
N10—C6—C7114.9 (7)C8—C7—H7120.5
C9—C8—H8121.6O1i—O1—O1ii123.3 (10)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat0_23GPa) top
Crystal data top
C6H5N7·0.6(O)Dx = 1.519 Mg m3
Mr = 184.77Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 419 reflections
a = 28.180 (6) Åθ = 4.3–23.5°
c = 4.0701 (17) ŵ = 0.11 mm1
V = 3232.2 (19) Å3T = 296 K
Z = 16Plate, colorless
F(000) = 15170.39 × 0.29 × 0.12 mm
Data collection top
KM-4 CCD
diffractometer
614 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.236
Detector resolution: 16.2413 pixels mm-1θmax = 27.0°, θmin = 4.3°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 3435
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.585, Tmax = 1.000l = 55
6161 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.234 w = 1/[σ2(Fo2) + (0.1072P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
614 reflectionsΔρmax = 0.13 e Å3
128 parametersΔρmin = 0.12 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.23 (2) GPa (230000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.5767 (4)0.6193 (3)0.8501 (16)0.053 (3)
N40.5859 (4)0.5810 (4)1.0440 (19)0.060 (3)
N100.6100 (4)0.6801 (6)0.548 (2)0.078 (4)
N110.5676 (5)0.6871 (6)0.462 (3)0.078 (4)
N20.5759 (5)0.5204 (6)1.359 (2)0.078 (3)
C30.5528 (5)0.5530 (6)1.188 (2)0.063 (4)
N120.5312 (5)0.6972 (6)0.366 (3)0.099 (5)
N10.6243 (6)0.5257 (6)1.334 (2)0.085 (4)
C60.6141 (5)0.6409 (4)0.748 (2)0.055 (3)
C80.6706 (6)0.5895 (5)1.030 (3)0.083 (4)
H80.7012250.5797331.0827160.099*
C90.6298 (5)0.5650 (6)1.141 (3)0.067 (5)
C130.5013 (4)0.5591 (6)1.159 (3)0.082 (4)
H13A0.4917180.5534260.9364330.124*
H13B0.4928830.5909051.2209550.124*
H13C0.4855750.5370131.3019900.124*
C70.6621 (4)0.6278 (6)0.842 (3)0.074 (4)
H70.6874510.6463720.7715150.089*
O10.7265 (10)0.5045 (15)0.501 (13)0.190 (10)0.6
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.060 (6)0.033 (5)0.066 (4)0.004 (11)0.007 (6)0.010 (4)
N40.059 (7)0.047 (7)0.073 (5)0.009 (13)0.003 (6)0.004 (5)
N100.066 (7)0.074 (10)0.095 (6)0.011 (15)0.021 (7)0.000 (7)
N110.090 (8)0.039 (8)0.105 (8)0.003 (17)0.016 (8)0.014 (8)
N20.088 (8)0.060 (8)0.085 (6)0.012 (17)0.012 (6)0.004 (6)
C30.085 (10)0.046 (9)0.057 (6)0.019 (18)0.003 (6)0.007 (6)
N120.104 (9)0.073 (10)0.119 (8)0.015 (15)0.003 (7)0.015 (7)
N10.095 (10)0.049 (8)0.110 (7)0.032 (18)0.023 (8)0.002 (7)
C60.072 (9)0.029 (7)0.065 (6)0.017 (16)0.015 (8)0.007 (6)
C80.056 (8)0.073 (11)0.119 (8)0.025 (17)0.038 (8)0.019 (9)
C90.041 (8)0.059 (13)0.099 (9)0.011 (17)0.011 (8)0.015 (9)
C130.061 (7)0.074 (11)0.112 (8)0.013 (16)0.018 (6)0.004 (8)
C70.036 (7)0.069 (10)0.117 (8)0.028 (15)0.002 (7)0.004 (8)
O10.15 (2)0.20 (3)0.22 (4)0.06 (3)0.02 (2)0.021 (18)
Geometric parameters (Å, º) top
N5—N41.362 (12)C6—C71.455 (18)
N5—C61.285 (15)C8—H80.9300
N4—C31.355 (15)C8—C91.416 (19)
N4—C91.374 (16)C8—C71.344 (17)
N10—N111.260 (15)C13—H13A0.9600
N10—C61.376 (17)C13—H13B0.9600
N11—N121.137 (15)C13—H13C0.9600
N2—C31.33 (2)C7—H70.9300
N2—N11.377 (16)O1—O1i1.40 (3)
C3—C131.466 (18)O1—O1ii1.40 (3)
N1—C91.37 (2)
C6—N5—N4114.0 (11)C7—C8—H8122.3
N5—N4—C9126.7 (13)C7—C8—C9115.3 (14)
C3—N4—N5125.5 (12)N4—C9—C8118.7 (13)
C3—N4—C9107.7 (11)N1—C9—N4109.3 (15)
N11—N10—C6111.6 (16)N1—C9—C8132.0 (16)
N12—N11—N10172.9 (17)C3—C13—H13A109.5
C3—N2—N1111.8 (17)C3—C13—H13B109.5
N4—C3—C13125.4 (15)C3—C13—H13C109.5
N2—C3—N4107.0 (11)H13A—C13—H13B109.5
N2—C3—C13127.5 (15)H13A—C13—H13C109.5
C9—N1—N2104.1 (18)H13B—C13—H13C109.5
N5—C6—N10120.2 (13)C6—C7—H7119.3
N5—C6—C7123.9 (10)C8—C7—C6121.3 (16)
N10—C6—C7115.9 (15)C8—C7—H7119.3
C9—C8—H8122.3O1i—O1—O1ii122.1 (13)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
3-methyl-6-azido-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7.H2Oat0_58GPa) top
Crystal data top
C6H5N7·0.5(O)Dx = 1.555 Mg m3
Mr = 183.17Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 601 reflections
a = 27.972 (6) Åθ = 4.1–14.2°
c = 3.9991 (8) ŵ = 0.12 mm1
V = 3129.1 (14) Å3T = 296 K
Z = 16Plate, colorless
F(000) = 15040.38 × 0.28 × 0.10 mm
Data collection top
KM-4 CCD
diffractometer
1185 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.346
Detector resolution: 16.2413 pixels mm-1θmax = 27.2°, θmin = 4.1°
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168h = 3332
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2525
Tmin = 0.082, Tmax = 1.000l = 44
8942 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.248 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1185 reflectionsΔρmax = 0.22 e Å3
128 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Experimental. Data were collected at room temperature and pressure of 0.58 (2) GPa (580000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N50.5760 (3)0.6186 (3)0.8505 (15)0.051 (2)
N40.5862 (3)0.5807 (3)1.0491 (15)0.055 (2)
N100.6093 (3)0.6825 (3)0.5467 (19)0.073 (2)
N110.5666 (4)0.6888 (3)0.4573 (17)0.069 (3)
N20.5774 (4)0.5183 (3)1.3655 (17)0.073 (2)
C30.5538 (4)0.5512 (4)1.189 (2)0.057 (3)
N120.5305 (4)0.6979 (4)0.360 (2)0.097 (3)
N10.6257 (3)0.5271 (3)1.3321 (18)0.078 (3)
C60.6145 (4)0.6418 (4)0.7554 (19)0.057 (3)
C80.6705 (4)0.5917 (4)1.032 (2)0.068 (3)
H80.70140.58291.09240.082*
C90.6304 (4)0.5647 (4)1.1405 (19)0.064 (3)
C130.5011 (3)0.5596 (3)1.1561 (18)0.073 (3)
H13A0.49270.56050.92350.110*
H13B0.49300.58951.25880.110*
H13C0.48400.53421.26450.110*
C70.6629 (4)0.6300 (4)0.843 (2)0.069 (3)
H70.68820.64860.76810.083*
O10.7252 (7)0.496 (2)0.44 (2)0.169 (12)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.054 (6)0.051 (6)0.048 (4)0.006 (4)0.003 (3)0.012 (3)
N40.068 (8)0.044 (6)0.055 (5)0.010 (5)0.007 (4)0.005 (4)
N100.084 (8)0.054 (7)0.081 (5)0.000 (5)0.008 (5)0.020 (4)
N110.094 (10)0.056 (7)0.056 (5)0.015 (7)0.010 (6)0.013 (4)
N20.104 (9)0.047 (7)0.068 (4)0.005 (5)0.006 (5)0.014 (4)
C30.059 (9)0.057 (8)0.055 (5)0.011 (6)0.001 (5)0.007 (5)
N120.101 (10)0.101 (9)0.090 (6)0.027 (6)0.003 (5)0.011 (5)
N10.079 (8)0.071 (8)0.083 (5)0.006 (5)0.017 (5)0.009 (4)
C60.051 (8)0.055 (8)0.065 (6)0.012 (6)0.012 (5)0.011 (5)
C80.046 (8)0.077 (9)0.082 (7)0.001 (6)0.004 (5)0.007 (6)
C90.088 (11)0.053 (9)0.053 (6)0.002 (7)0.016 (6)0.001 (5)
C130.060 (9)0.076 (8)0.085 (6)0.012 (5)0.016 (5)0.001 (5)
C70.068 (10)0.061 (9)0.078 (6)0.016 (6)0.003 (5)0.007 (5)
O10.15 (2)0.13 (2)0.23 (4)0.01 (3)0.04 (4)0.035 (18)
Geometric parameters (Å, º) top
N5—N41.354 (9)C6—C71.434 (11)
N5—C61.314 (10)C8—H80.9300
N4—C31.349 (10)C8—C91.419 (12)
N4—C91.366 (11)C8—C71.329 (11)
N10—N111.260 (10)C13—H13A0.9600
N10—C61.421 (10)C13—H13B0.9600
N11—N121.112 (10)C13—H13C0.9600
N2—C31.334 (10)C7—H70.9300
N2—N11.380 (8)O1—O1i1.408 (15)
C3—C131.498 (10)O1—O1ii1.408 (16)
N1—C91.310 (10)
C6—N5—N4112.5 (7)C7—C8—H8120.8
N5—N4—C9127.1 (9)C7—C8—C9118.4 (9)
C3—N4—N5125.6 (9)N4—C9—C8117.4 (10)
C3—N4—C9107.3 (9)N1—C9—N4109.2 (10)
N11—N10—C6112.1 (8)N1—C9—C8133.4 (12)
N12—N11—N10173.2 (12)C3—C13—H13A109.5
C3—N2—N1108.1 (7)C3—C13—H13B109.5
N4—C3—C13121.8 (10)C3—C13—H13C109.5
N2—C3—N4108.0 (9)H13A—C13—H13B109.5
N2—C3—C13130.0 (10)H13A—C13—H13C109.5
C9—N1—N2107.4 (8)H13B—C13—H13C109.5
N5—C6—N10118.8 (8)C6—C7—H7120.8
N5—C6—C7126.1 (9)C8—C7—C6118.4 (8)
N10—C6—C7115.1 (10)C8—C7—H7120.8
C9—C8—H8120.8O1i—O1—O1ii120.3 (7)
Symmetry codes: (i) y+5/4, x1/4, z1/4; (ii) y+1/4, x+5/4, z+1/4.
 

Funding information

The following funding is acknowledged: Narodowe Centrum Nauki (grant No. 2016/23/D/ST5/00283).

References

First citationBałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683–691.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press.  Google Scholar
First citationBoldyreva, E. V. (2008). Acta Cryst. A64, 218–231.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoldyreva, E. V. (2014). Z. Kristallogr. 3, 236–245.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak and P. F. McMillan, pp. 101–112. Dordrecht: Kluwer.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGatta, G. D., Lotti, P. & Tabacchi, G. (2018). Phys. Chem. Miner. 45, 115–138.  CrossRef CAS Google Scholar
First citationGaydamaka, A. A., Arkhipov, S. G., Zakharov, B. A., Seryotkin, Y. V. & Boldyreva, E. V. (2019). CrystEngComm, 21, 4484–4492.  CSD CrossRef CAS Google Scholar
First citationGlasser, L. (2019). Acta Cryst. B75, 784–787.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKatrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279–1289.  CAS Google Scholar
First citationKatrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65–73.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673–4676.  CrossRef Web of Science Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationMillar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 2, 115–132.  Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832–1838.  Web of Science CSD CrossRef CAS Google Scholar
First citationPersistence of Vision (2004). Persistence of Vision Raytracer, Version 2.6. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationResnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlisPro Software System. Rigaku Oxford Diffraction, Yarnton, UK. https://www.rigaku.comGoogle Scholar
First citationSeryotkin, Y. V., Dement'ev, S. N. & Ancharov, A. I. (2016). J. Struct. Chem. 57, 1386–1391.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503–9509.  CrossRef CAS Google Scholar
First citationZakharov, B. A., Gribov, P. A., Matvienko, A. A. & Boldyreva, E. V. (2017). Z. Kristallogr. 232, 751–757.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds