research papers
Crystal design by CH⋯N and N⋯N interactions: high-pressure structures of high-nitrogen-content azido-triazolopyridazines compounds
aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, Poznań, 60-780, Poland
*Correspondence e-mail: aniao@amu.edu.pl, katran@amu.edu.pl
High-nitrogen-content compounds 6-azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7) and its 3-methyl derivative (C6H5N7) have been in situ crystallized in a diamond-anvil cell and their structures determined by single-crystal X-ray diffraction. Under ambient and high-pressure conditions the crystallizations yield the same phases: the C5H3N7 anhydrate and C6H5N7 hydrated clathrate. In both the structures there are clearly distinguished regions of short CH⋯N and N⋯N intermolecular contacts, the latter involving exclusively the azide groups. High pressure initially increases the contents of water in the channel pores of the clathrate.
Keywords: high-nitrogen-content; high-pressure recrystallization; single-crystal X-ray diffraction.
1. Introduction
Triazolopyridazine and azide groups are present in many high-nitrogen content compounds, which are widely applied for various purposes, for example as energetic materials and active pharmaceutical ingredients (Katrusiak et al., 1996, 2005; Bałoniak & Katrusiak, 1994; Yang et al., 2015; Olejniczak et al., 2019). It is characteristic that such high-nitrogen organic compounds have relatively high density, despite the absence of strong intermolecular contacts in their structures (Bernstein, 2002; Fabbiani & Pulham, 2006; Millar et al., 2010; Seryotkin et al., 2016; Zakharov et al., 2017; Gatta et al., 2018; Gaydamaka et al., 2019). The high density can be associated with a small content of H atoms, however, there is no systematic information about the aggregation types and intermolecular interactions. The CH groups are expected to engage in C—H⋯N hydrogen bonds, while the excess of other N atoms – potential H-atom acceptors – would either be redirected into separate regions of N⋯N contacts in the structure (Olejniczak et al., 2019) or would find H-atom donors by favoring the crystallization in the form of solvates or host–guest compounds. Varied thermodynamic conditions can significantly change the and conformations of compounds, as well as their composition and reactivity (Fabbiani & Pulham, 2006; Boldyreva, 2008, 2014; Resnati et al., 2015). In order to provide new information about the aggregation of high-N-content molecules, we have investigated the structures of two azido-triazolopyridazine compounds: 6-azido-1,2,4-triazolo[4,3-b]pyridazine, C5H3N7 (m.p. 438 K) and its methyl derivative, C6H5N7 (m.p. 400 K). In the solid state both these compounds are present as the azide tautomers, although they can also transform into the tetrazole form (Fig. 1). In order to check the stability of the structures obtained under ambient conditions, we have recrystallized these two compounds under high pressure. Additionally, low temperature has been employed for comparing the effects of and compressibility on intermolecular contacts in C6H5N7 clathrate.
2. Experimental
High-pressure recrystallizations of compounds C5H3N7 and C6H5N7 were performed from the saturated acetone or aqueous solution in the diamond anvil cell (DAC) (Merrill & Bassett, 1974). Several small sample crystals were loaded to the DAC chamber, then filled with the because its concentration at room temperature was too low to obtain single crystals sufficiently large for X-ray diffraction measurements. After increasing the pressure all crystals were dissolved by heating the sample, so the concentration was considerably increased and then a single crystal was grown by slowly cooling the DAC.
6-Azido-1,2,4-triazolo[4,3-b]pyridazine (C5H3N7): several solvents were tried for the recrystallization and the best results were obtained from acetone or aqueous solutions. Three series of experiments were performed. In the first series the acetone solution was used for growing a single crystal at 0.1 GPa and its X-ray diffraction data were collected. Then the pressure was increased in small steps under isothermal conditions and after each step the diffraction data were measured [Fig. 2(a)]. At 1.38 GPa the acetone crystallized, which hampered the further hydrostatic compression. In the second series also the acetone solution was used [Fig. 2(b)], but the isochoric recrystallization was performed after each pressure increase. Above 1.20 GPa acetone crystallized. The last analogous series of experiments was carried out for the aqueous solution [Figs. 2(c)–2(d)].
6-Azido-3-methyl-1,2,4-triazolo[4,3-b]pyridazine (C6H5N7): single crystals, large enough for X-ray diffraction, could be recrystallized only from the aqueous solution and only in the pressure range up to 0.75 GPa (Fig. 3). The methanol, acetone or ethanol solutions led to polycrystals or very small crystals. The main difficulty in obtaining a single crystal was due to persistent nucleation of other competing seeds. The crystals obtained at high pressure could be recovered after releasing the pressure (Fig. 3) and their structure was determined at ambient pressure as a function of temperature, too. The water occupancy in C6H5N7·xH2O hydrates refined to 0.3 at 0.1 MPa; to 0.4 at 0.1 MPa and from 275 K to 100 K; to 0.5 at 0.10 GPa/296 K and 0.58 GPa/296 K; and to 0.6 at 0.23 GPa/296 K.
Pressure in the DAC chamber was calibrated by the ruby-fluorescence method (Piermarini et al., 1975; Mao et al., 1985) with a Photon Control spectrometer affording an accuracy of 0.02 GPa; the calibration was performed before and after the diffraction measurements.
The crystal sample in the DAC was centered on the diffractometer by the gasket shadowing method (Budzianowski & Katrusiak, 2004). For the low-temperature measurements, an Oxford Cryosystems 700 Series attachment and SuperNova diffractometer using Cu Kα radiation and CCD plate Atlas detector were used. The high-pressure diffraction data were measured with a KUMA KM4-CCD diffractometer using Mo Kα radiation and CCD plate Eos detector. CrysAlisPro (version 171.39.46; Rigaku Oxford Diffraction, 2015) was used for recording reflections and preliminary data reduction. Reflection intensities were corrected for the DAC absorption, sample shadowing by the gasket, the sample absorption, and reflections overlapping with diamond reflections were eliminated (CrysAlisPro). OLEX2-1.2 (Dolomanov et al., 2009), SHELXL (Sheldrick, 2015a) and SHELXT (Sheldrick, 2015b) were used to solve the structures by and to refine the models by full matrix least-squares. Anisotropic displacement factors were applied for non-hydrogen atoms. The H atoms were located from the molecular geometry, with the C—H distance equal to 0.93 Å in pyridazine and 0.97 Å in the methyl groups, and their Uiso factors constrained to 1.2 and 1.5 times Ueq of the carriers, respectively. The site occupancy factor (SOF) of the oxygen atoms of water molecules in C6H5N7·xH2O was freely refined and then fixed in the final cycles, in order to avoid the correlation between the SOF and the atomic displacement parameters. The crystal data and details are summarized in Tables 1 and Tables S1–S3; the experimental and structural details have been deposited in the Cambridge Structural Database with CCDC numbers 2021837–2021846 for C5H3N7 and 2021847–2021854 for C6H5N7. Structural drawings have been prepared using the X-Seed interface of POV-Ray (Barbour, 2001; Persistence of Vision Raytracer, 2004) and Mercury (Macrae et al., 2020).
|
3. Results and discussion
The crystal structures formed of molecules C5H3N7 and C6H5N7 are considerably different and they both are stable in all the temperature and pressure ranges investigated in this study. The C5H3N7 crystal is monoclinic, with two symmetry-independent molecules (A and B). Compound C6H5N7 crystallizes in the form of a tetragonal hydrated clathrate. Its structure consists of molecules CH⋯N bonded into the host framework with pores running down [z]. The pores contain strongly disordered water molecules. Different patterns of CH⋯N bonded molecules are present in the structures. It is also characteristic of the C5H3N7 and C6H5N7·xH2O structures that the azide substituents group together; their shortest N⋯N intermolecular distances are 3.131 (4) Å and 3.202 (3) Å, respectively, under ambient conditions (Figs. 4 and 5).
The topology of the CH⋯N patterns is considerably different in C5H3N7 and C6H5N7. In C5H3N7, the CH⋯N bonds link the molecules into wavy sheets with confined small regions of N⋯N contacts between azide groups, as illustrated in Fig. 4. The sheets run along crystallographic plane (10) and their `wavevector' points along [y]. Interestingly, the sheets display the translations [a+c] and [b], screw axis 21, parallel to [y]. Besides, there are pseudo-symmetries of inversion centers between molecules A and B, at the midpoints between the azide groups and at the center of the R22(8) ring (Etter et al., 1990) and a pseudo-glide plane n perpendicular to [y]. The most significant departure from the pseudo-inversion center is due to the inclination angle of 7.34 (9)° (at normal conditions) between molecules A located on the maxima/minima of corrugated sinusoidal sheets and molecules B located on their slopes (Fig. 4). The neighboring sheets are related by genuine inversion centers, and pairs of the sheets are related through glide planes c (cf. Fig. S1).
In C6H5N7·xH2O there are three distinct types of interaction regions (Fig. 5). The most prominent region consists of CH⋯N bonds linking the C6H5N7 molecules into a three-dimensional framework. Two other regions, one consisting of contacts N⋯N and the other one potentially capable of forming bonds OH⋯O, OH⋯N and CH⋯O (the short contacts present in the structure involve disordered water molecules, for which we could not locate the H atoms in this study) are both in the form of helical columns running down 41 screw axes parallel to [z] in the CH⋯N bonded framework. The disordered water molecules are contained in the channel pores parallel to [z] (Fig. 5 and Fig. S2). The pores are quite wide and the water molecules can move along [z] and the crystal can change their contents, consistent with the results of high-pressure experiments described below. The voids occupy 6.5% of the crystal volume (assessed for the probing sphere of 1.2 Å in diameter) and they can accommodate spheres of maximum radius 1.66 Å; the translational parameter along these pores is quite short (a/4, see Table 1) and there are no narrow parts in the pores.
In both compounds the molecules are present in the form of azido-triazole tautomer. The shortest intermolecular contacts CH⋯N, N⋯N and CH⋯O (Fig. 6) may be associated with the main cohesion forces under ambient conditions. The Hirshfeld fingerprint plots (Fig. 6 and Fig. S5) confirm that the shortest contacts are those of CH⋯N hydrogen bonds (the spikes in the plots), while the N⋯N distances are less exposed in the central part of the fingerprints. These features are common for both independent molecules in C5H3N7 and for the molecule of C6H5N7·xH2O. The N⋯N distances observed in C5H3N7 and C6H5N7·xH2O are similar to those observed in both polymorphs of analogs compound 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8) (Olejniczak et al., 2019), however, the topologies of CH⋯N and N⋯N regions in C4H2N8 are different. In both polymorphs of C4H2N8 clearly defined sheets of CH⋯N and N⋯N regions are present.
The conformation of the azide groups is characteristic of the 6-substituted pyridazine rings, with the torsion angle N5—C6—N10—N11 of about 3 (3)° (molecule A) and 5 (3)° (molecule B) in C5H3N7 and 4.5 (1.5)° in C6H5N7·xH2O. We have not noted any significant systematic changes in the N—N bond lengths in the azide groups, which in principle can transform between —N=N+=N− and —N−—N+≡N configuration. Bond angle N10—N11—N12 is of about 170 (2)°, bent in the direction opposite to angle C6—N10—N11.
The intermolecular distances in C5H3N7 are gradually compressed at a similar rate for CH⋯N and N⋯N contacts (Fig. S6). This result is consistent with the 2D pattern of CH⋯N bonds in the sheets, with `islands' of N⋯N interactions. The intermolecular distances CH⋯N in C6H5N7·xH2O initially increase at 0.1 GPa (Fig. S7), which is consistent with the increased volume due to the uptake of water molecules into pores.
The compression of C5H3N7 is typical for a molecular crystal, monotonically reduced in size in all directions (Fig. 7 and Fig. S8). This crystal compared to C4H2N8 (Olejniczak et al., 2019) is harder: compressibility β = −1/V·∂V/∂p at 0.40 GPa for phase α-C4H2N8 is 0.102 GPa−1 and at 0.49 GPa for phase β-C4H2N8 is 0.085 GPa−1 versus the compressibility of C5H3N8 at 0.54 GPa equal to 0.072 GPa−1. This difference can be attributed to a larger contribution of CH⋯N bonds to the cohesion forces in C5H3N7 than in C4H2N8.
The compression of C6H5N7·xH2O and of this crystal is shown in Fig. 8 (cf. Fig. S9). The in all 300–100 K range is nearly linear and the volume contracts to about 97%, as expected for an average molecular crystal. The linear expansion plots along [x] and [y] are weakly convex (∂2a/∂T2 is positive), while the expansion along [z] is weakly concave (∂2c/∂T2 < 0). This feature corresponds to the strongly anisotropic structure, with pores parallel to [z] and perpendicular to [x] and [y].
The volume compressibility of C6H5N7 is clearly anomalous in the 0.1 MPa to 0.1 GPa pressure region, the line fitted to the volume values measured between 0.1 and 0.58 GPa clearly points above the volume at 0.1 MPa, by about 2 Å3 per formula unit. This effect can be attributed to an intake of the molecules from the hydrostatic medium into the pores. It is plausible that the pressure pushes additional molecules into the pores, which causes an initial increase of the crystal volume. This effect is also clearly seen in the linear compression along [x] and [y]. An average volume of one water molecule in hydrates is of about 22.8 Å3 (Glasser, 2019), so it can be estimated that the contents of water in C6H5N7·xH2O crystal increases by about 0.1 H2O per formula unit. Hence the composition of the C6H5N7·xH2O crystal changes and therefore the measurements of the unit-cell dimensions as a function of pressure are not the one-compound crystal compression in the strictly physical sense. According to the X-ray diffraction data refinements in the 0.1 MPa–0.1 GPa range the x parameter in C6H5N7·xH2O changes from 0.3 to 0.6.
4. Conclusions
The increased number of H-atom donors in two high-nitrogen-contents 6-azido-1,2,4-triazolo[4,3-b]pyridazine, (C5H3N7), and its methyl derivative (C6H5N7) drastically changed the topology of CH⋯N and N⋯N contacts, compared to the previously studied 6-azido-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N8) polymorphs. The CH groups in C5H3N7 and C6H5N7 are effectively involved in CH⋯N bonds, binding the molecules into frameworks. It is characteristic that none of these CH⋯N bonds involve the azide groups, which form short contacts between themselves. All of these N⋯N contacts are longer than double the van der Waals radius of the nitrogen atom. It appears that the contribution of azide groups to the cohesion forces is very weak. The strong contribution of hydrogen bonds CH⋯N to cohesion forces is supported by the formation of the porous framework in C6H5N7 capable of the sorption of water under ambient and high-pressure conditions.
Supporting information
All datablocks. DOI: https://doi.org/10.1107/S2052520620014493/dk5103sup1.cif
Structure factors: contains datablock C5H3N7at0.15GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.15GPasup2.hkl
Structure factors: contains datablock C5H3N7at0.20GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.20GPasup3.hkl
Structure factors: contains datablock C5H3N7at0.54GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.54GPasup4.hkl
Structure factors: contains datablock C5H3N7at0.65GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.65GPasup5.hkl
Structure factors: contains datablock C6H5N7.H2Oat296K. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C6H5N7.H2Oat296Ksup6.hkl
Structure factors: contains datablock C6H5N7_H2O@250K. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C6H5N7.H2Oat250Ksup7.hkl
Structure factors: contains datablock C6H5N7.H2Oat200K. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C6H5N7.H2Oat200Ksup8.hkl
Structure factors: contains datablock C6H5N7.H2Oat150K. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C6H5N7.H2Oat150Ksup9.hkl
Structure factors: contains datablock C6H5N7.H2Oat100K. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C6H5N7.H2Oat100Ksup10.hkl
Structure factors: contains datablock C5H3N7at0.14GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.14GPasup11.hkl
Structure factors: contains datablock C5H3N7at0.77GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.77GPasup12.hkl
Structure factors: contains datablock C5H3N7at0.85GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at0.85GPasup13.hkl
Structure factors: contains datablock C5H3N7at1.40GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at1.40GPasup14.hkl
Structure factors: contains datablock C5H3N7at1.02GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at1.02GPasup15.hkl
Structure factors: contains datablock C5H3N7at1.11GPa. DOI: https://doi.org/10.1107/S2052520620014493/dk5103C5H3N7at1.11GPasup16.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2052520620014493/dk5103sup17.pdf
Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Cell
CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018) for C5H3N7at0.14GPa, C5H3N7at0.65GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.77GPa, C5H3N7at1.11GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat100K. Program(s) used to solve structure: ShelXT (Sheldrick, 2015) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; SHELXT (Sheldrick, 2015) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa; SHELXT(Sheldrick, 2015) for C5H3N7at0.65GPa. Program(s) used to refine structure: SHELXL (Sheldrick, 2015) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; SHELXL 2018/3 (Sheldrick, 2015) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa. Molecular graphics: Olex2 (Dolomanov et al., 2009) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; Olex2 1.3 (Dolomanov et al., 2009) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K. Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) for C5H3N7at0.14GPa, C5H3N7at0.77GPa, C5H3N7at0.85GPa, C5H3N7at1.02GPa, C5H3N7at1.11GPa, C5H3N7at1.40GPa, C6H5N7.H2Oat0_10GPa, C6H5N7.H2Oat0_23GPa, C6H5N7.H2Oat0_58GPa; Olex2 1.3 (Dolomanov et al., 2009) for C5H3N7at0.15GPa, C5H3N7at0.20GPa, C5H3N7at0.54GPa, C5H3N7at0.65GPa, C6H5N7.H2Oat296K, C6H5N7.H2Oat250K, C6H5N7.H2Oat200K, C6H5N7.H2Oat150K, C6H5N7.H2Oat100K.C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.590 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1016 (19) Å | Cell parameters from 569 reflections |
b = 18.473 (4) Å | θ = 4.6–18.5° |
c = 9.04 (2) Å | µ = 0.12 mm−1 |
β = 95.91 (6)° | T = 296 K |
V = 1346 (3) Å3 | Plate, colorless |
Z = 8 | 0.39 × 0.36 × 0.30 mm |
KM-4 CCD diffractometer | 845 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 360 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.285 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 4.6° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −10→10 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→23 |
Tmin = 0.254, Tmax = 1.000 | l = −2→2 |
7791 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0116P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
845 reflections | Δρmax = 0.08 e Å−3 |
217 parameters | Δρmin = −0.08 e Å−3 |
18 restraints |
Experimental. Data were collected at room temperature and pressure of 0.14 (2) GPa (140000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6581 (7) | 0.5006 (3) | 0.3951 (18) | 0.063 (15) | |
N25 | 0.5663 (7) | 0.5557 (3) | 0.326 (2) | 0.052 (16) | |
C26 | 0.4604 (11) | 0.5323 (4) | 0.220 (3) | 0.07 (3) | |
C27 | 0.4368 (9) | 0.4588 (4) | 0.177 (4) | 0.11 (3) | |
H27 | 0.3549 | 0.4469 | 0.1009 | 0.131* | |
C28 | 0.5301 (10) | 0.4074 (4) | 0.243 (3) | 0.08 (3) | |
H28 | 0.5200 | 0.3595 | 0.2118 | 0.098* | |
C29 | 0.6458 (10) | 0.4279 (4) | 0.363 (3) | 0.05 (2) | |
N21 | 0.7558 (8) | 0.3914 (3) | 0.4515 (19) | 0.085 (17) | |
N22 | 0.8372 (7) | 0.4419 (4) | 0.553 (2) | 0.102 (19) | |
C23 | 0.7786 (9) | 0.5065 (3) | 0.506 (2) | 0.091 (18) | |
H23 | 0.8174 | 0.5504 | 0.5464 | 0.109* | |
N210 | 0.3545 (7) | 0.5819 (3) | 0.138 (2) | 0.11 (3) | |
N211 | 0.3722 (6) | 0.6462 (4) | 0.1818 (18) | 0.077 (16) | |
N212 | 0.3721 (6) | 0.7059 (3) | 0.2096 (16) | 0.091 (16) | |
N4 | 0.7969 (8) | 0.7241 (3) | 0.630 (2) | 0.06 (2) | |
N5 | 0.8826 (8) | 0.6702 (3) | 0.707 (2) | 0.047 (17) | |
C6 | 0.9942 (10) | 0.6946 (4) | 0.806 (3) | 0.043 (14) | |
C7 | 1.0311 (7) | 0.7696 (4) | 0.838 (3) | 0.08 (2) | |
H7 | 1.1141 | 0.7823 | 0.9127 | 0.098* | |
C8 | 0.9450 (10) | 0.8200 (4) | 0.761 (3) | 0.10 (2) | |
H8 | 0.9645 | 0.8689 | 0.7803 | 0.115* | |
C9 | 0.8229 (11) | 0.7976 (4) | 0.648 (3) | 0.041 (14) | |
N1 | 0.7205 (8) | 0.8330 (3) | 0.5524 (19) | 0.089 (18) | |
N2 | 0.6263 (6) | 0.7811 (3) | 0.470 (3) | 0.054 (14) | |
C3 | 0.6752 (9) | 0.7173 (4) | 0.525 (3) | 0.08 (3) | |
H3 | 0.6289 | 0.6733 | 0.4920 | 0.093* | |
N10 | 1.0944 (7) | 0.6461 (4) | 0.8986 (18) | 0.068 (15) | |
N11 | 1.0684 (6) | 0.5809 (5) | 0.864 (2) | 0.110 (19) | |
N12 | 1.0629 (8) | 0.5206 (3) | 0.849 (2) | 0.09 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N24 | 0.040 (4) | 0.050 (4) | 0.10 (5) | 0.001 (3) | 0.002 (8) | 0.002 (7) |
N25 | 0.051 (4) | 0.046 (4) | 0.05 (5) | 0.004 (3) | −0.011 (7) | 0.009 (7) |
C26 | 0.049 (5) | 0.058 (6) | 0.09 (8) | −0.005 (4) | −0.004 (11) | 0.003 (10) |
C27 | 0.068 (5) | 0.056 (6) | 0.20 (8) | −0.010 (4) | −0.004 (11) | −0.011 (11) |
C28 | 0.068 (5) | 0.061 (5) | 0.11 (8) | −0.006 (5) | −0.011 (14) | −0.011 (12) |
C29 | 0.059 (6) | 0.048 (5) | 0.03 (8) | 0.005 (4) | −0.019 (11) | 0.000 (8) |
N21 | 0.067 (4) | 0.051 (3) | 0.14 (5) | 0.000 (3) | 0.004 (10) | 0.012 (8) |
N22 | 0.064 (4) | 0.065 (4) | 0.17 (6) | 0.004 (4) | 0.001 (9) | 0.017 (9) |
C23 | 0.053 (5) | 0.049 (5) | 0.17 (6) | 0.004 (4) | 0.019 (11) | 0.008 (9) |
N210 | 0.074 (5) | 0.049 (4) | 0.20 (8) | −0.002 (4) | −0.029 (11) | 0.010 (8) |
N211 | 0.053 (4) | 0.078 (5) | 0.09 (5) | 0.007 (4) | −0.017 (7) | 0.015 (9) |
N212 | 0.088 (4) | 0.073 (5) | 0.11 (5) | 0.007 (3) | −0.006 (8) | 0.005 (9) |
N4 | 0.052 (4) | 0.045 (4) | 0.08 (6) | 0.006 (3) | −0.013 (9) | −0.001 (7) |
N5 | 0.051 (4) | 0.059 (4) | 0.03 (5) | 0.002 (3) | −0.010 (9) | 0.003 (8) |
C6 | 0.049 (5) | 0.064 (5) | 0.02 (4) | 0.002 (4) | −0.003 (11) | −0.015 (11) |
C7 | 0.055 (5) | 0.069 (5) | 0.12 (7) | −0.010 (4) | 0.001 (11) | −0.002 (11) |
C8 | 0.058 (5) | 0.064 (5) | 0.16 (7) | −0.005 (4) | −0.023 (12) | −0.007 (12) |
C9 | 0.067 (6) | 0.041 (5) | 0.01 (4) | 0.001 (4) | −0.003 (12) | −0.002 (9) |
N1 | 0.072 (4) | 0.054 (4) | 0.14 (6) | 0.002 (3) | −0.006 (9) | 0.004 (8) |
N2 | 0.072 (4) | 0.067 (4) | 0.02 (4) | 0.012 (3) | −0.007 (9) | −0.002 (9) |
C3 | 0.055 (5) | 0.053 (5) | 0.12 (8) | 0.001 (4) | −0.025 (13) | 0.013 (10) |
N10 | 0.071 (4) | 0.067 (4) | 0.06 (5) | 0.006 (4) | −0.016 (8) | 0.003 (9) |
N11 | 0.064 (4) | 0.083 (4) | 0.17 (6) | 0.008 (4) | −0.026 (8) | 0.023 (11) |
N12 | 0.127 (6) | 0.081 (5) | 0.06 (7) | 0.009 (5) | −0.025 (12) | 0.019 (10) |
N24—N25 | 1.373 (12) | N4—N5 | 1.360 (13) |
N24—C29 | 1.375 (9) | N4—C9 | 1.382 (8) |
N24—C23 | 1.331 (18) | N4—C3 | 1.31 (2) |
N25—C26 | 1.29 (2) | N5—C6 | 1.287 (17) |
C26—C27 | 1.420 (14) | C6—C7 | 1.443 (10) |
C26—N210 | 1.413 (17) | C6—N10 | 1.424 (17) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.319 (17) | C7—C8 | 1.320 (19) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.41 (2) | C8—C9 | 1.41 (2) |
C29—N21 | 1.320 (15) | C9—N1 | 1.313 (17) |
N21—N22 | 1.424 (16) | N1—N2 | 1.395 (14) |
N22—C23 | 1.336 (10) | N2—C3 | 1.324 (10) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.257 (10) | N10—N11 | 1.256 (9) |
N211—N212 | 1.130 (9) | N11—N12 | 1.123 (8) |
N25—N24—C29 | 127.2 (12) | N5—N4—C9 | 126.6 (10) |
C23—N24—N25 | 127.1 (8) | C3—N4—N5 | 127.4 (7) |
C23—N24—C29 | 105.7 (9) | C3—N4—C9 | 106.0 (8) |
C26—N25—N24 | 112.1 (8) | C6—N5—N4 | 112.5 (8) |
N25—C26—C27 | 125.8 (13) | N5—C6—C7 | 126.5 (10) |
N25—C26—N210 | 119.6 (8) | N5—C6—N10 | 120.5 (7) |
N210—C26—C27 | 114.6 (17) | N10—C6—C7 | 113.0 (12) |
C26—C27—H27 | 119.7 | C6—C7—H7 | 120.6 |
C28—C27—C26 | 120.6 (18) | C8—C7—C6 | 118.8 (15) |
C28—C27—H27 | 119.7 | C8—C7—H7 | 120.6 |
C27—C28—H28 | 121.3 | C7—C8—H8 | 121.0 |
C27—C28—C29 | 117.4 (11) | C7—C8—C9 | 118.0 (9) |
C29—C28—H28 | 121.3 | C9—C8—H8 | 121.0 |
N24—C29—C28 | 116.9 (10) | N4—C9—C8 | 117.5 (10) |
N21—C29—N24 | 109.9 (12) | N1—C9—N4 | 109.5 (10) |
N21—C29—C28 | 133.1 (9) | N1—C9—C8 | 132.9 (8) |
C29—N21—N22 | 107.2 (7) | C9—N1—N2 | 106.6 (8) |
C23—N22—N21 | 104.7 (11) | C3—N2—N1 | 106.6 (10) |
N24—C23—N22 | 112.1 (9) | N4—C3—N2 | 111.3 (8) |
N24—C23—H23 | 124.0 | N4—C3—H3 | 124.4 |
N22—C23—H23 | 124.0 | N2—C3—H3 | 124.4 |
N211—N210—C26 | 113.8 (12) | N11—N10—C6 | 112.6 (11) |
N212—N211—N210 | 171.8 (11) | N12—N11—N10 | 170.1 (14) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.589 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.089 (7) Å | Cell parameters from 1039 reflections |
b = 18.4614 (16) Å | θ = 4.0–20.8° |
c = 9.074 (9) Å | µ = 0.12 mm−1 |
β = 96.08 (11)° | T = 296 K |
V = 1347.5 (19) Å3 | Plate, colorless |
Z = 8 | 0.39 × 0.30 × 0.19 mm |
'KM-4 CCD diffractometer | 506 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.108 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.8°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→7 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.663, Tmax = 1.000 | l = −7→7 |
4953 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.073 | w = 1/[σ2(Fo2) + (0.1573P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.234 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.15 e Å−3 |
506 reflections | Δρmin = −0.14 e Å−3 |
98 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.019 (12) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.15 (2) GPa (150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6589 (18) | 0.5008 (3) | 0.3976 (19) | 0.044 (2)* | |
N25 | 0.568 (2) | 0.5563 (3) | 0.326 (2) | 0.049 (2)* | |
C26 | 0.462 (3) | 0.5328 (4) | 0.217 (3) | 0.053 (3)* | |
C27 | 0.440 (3) | 0.4591 (4) | 0.173 (3) | 0.061 (3)* | |
H27 | 0.363030 | 0.447380 | 0.092843 | 0.074* | |
C28 | 0.529 (3) | 0.4071 (4) | 0.244 (2) | 0.060 (3)* | |
H28 | 0.518704 | 0.358945 | 0.214054 | 0.072* | |
C29 | 0.641 (4) | 0.4287 (4) | 0.369 (3) | 0.052 (3)* | |
N21 | 0.754 (2) | 0.3919 (3) | 0.455 (2) | 0.060 (2)* | |
N22 | 0.836 (2) | 0.4409 (3) | 0.545 (2) | 0.059 (2)* | |
C23 | 0.780 (3) | 0.5059 (4) | 0.508 (3) | 0.054 (2)* | |
H23 | 0.818722 | 0.548918 | 0.552510 | 0.064* | |
N210 | 0.358 (2) | 0.5830 (3) | 0.141 (2) | 0.057 (2)* | |
N211 | 0.380 (3) | 0.6470 (4) | 0.177 (2) | 0.062 (2)* | |
N212 | 0.382 (3) | 0.7062 (4) | 0.201 (3) | 0.069 (3)* | |
N4 | 0.797 (2) | 0.7237 (3) | 0.630 (2) | 0.047 (2)* | |
N5 | 0.885 (2) | 0.6700 (3) | 0.706 (2) | 0.049 (2)* | |
C6 | 0.991 (3) | 0.6946 (4) | 0.811 (3) | 0.052 (3)* | |
C7 | 1.033 (3) | 0.7692 (4) | 0.840 (3) | 0.058 (3)* | |
H7 | 1.119046 | 0.781713 | 0.912041 | 0.070* | |
C8 | 0.945 (3) | 0.8208 (4) | 0.761 (3) | 0.054 (3)* | |
H8 | 0.963400 | 0.869837 | 0.779930 | 0.064* | |
C9 | 0.824 (3) | 0.7970 (4) | 0.647 (3) | 0.050 (3)* | |
N1 | 0.720 (2) | 0.8327 (3) | 0.550 (2) | 0.060 (2)* | |
N2 | 0.631 (3) | 0.7812 (3) | 0.466 (3) | 0.064 (3)* | |
C3 | 0.677 (3) | 0.7176 (4) | 0.518 (3) | 0.050 (3)* | |
H3 | 0.632223 | 0.673902 | 0.482012 | 0.061* | |
N10 | 1.094 (2) | 0.6449 (3) | 0.895 (2) | 0.054 (2)* | |
N11 | 1.072 (3) | 0.5808 (3) | 0.864 (3) | 0.057 (2)* | |
N12 | 1.056 (3) | 0.5211 (4) | 0.854 (3) | 0.072 (3)* |
N24—N25 | 1.384 (8) | N4—N5 | 1.367 (8) |
N24—C29 | 1.362 (10) | N4—C9 | 1.378 (9) |
N24—C23 | 1.328 (10) | N4—C3 | 1.330 (10) |
N25—C26 | 1.311 (10) | N5—C6 | 1.295 (10) |
C26—C27 | 1.424 (12) | C6—C7 | 1.437 (11) |
C26—N210 | 1.386 (11) | C6—N10 | 1.406 (9) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.325 (10) | C7—C8 | 1.351 (10) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.432 (13) | C8—C9 | 1.417 (10) |
C29—N21 | 1.320 (11) | C9—N1 | 1.329 (9) |
N21—N22 | 1.351 (8) | N1—N2 | 1.373 (10) |
N22—C23 | 1.316 (10) | N2—C3 | 1.306 (9) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.235 (8) | N10—N11 | 1.224 (8) |
N211—N212 | 1.115 (9) | N11—N12 | 1.113 (8) |
C29—N24—N25 | 126.5 (6) | N5—N4—C9 | 125.9 (6) |
C23—N24—N25 | 128.0 (6) | C3—N4—N5 | 128.6 (6) |
C23—N24—C29 | 105.6 (5) | C3—N4—C9 | 105.3 (6) |
C26—N25—N24 | 112.4 (6) | C6—N5—N4 | 112.8 (6) |
N25—C26—C27 | 125.5 (8) | N5—C6—C7 | 126.6 (8) |
N25—C26—N210 | 117.9 (8) | N5—C6—N10 | 118.4 (7) |
N210—C26—C27 | 116.5 (7) | N10—C6—C7 | 114.3 (7) |
C26—C27—H27 | 119.7 | C6—C7—H7 | 120.8 |
C28—C27—C26 | 120.6 (9) | C8—C7—C6 | 118.5 (8) |
C28—C27—H27 | 119.7 | C8—C7—H7 | 120.8 |
C27—C28—H28 | 121.6 | C7—C8—H8 | 121.5 |
C27—C28—C29 | 116.7 (9) | C7—C8—C9 | 117.1 (7) |
C29—C28—H28 | 121.6 | C9—C8—H8 | 121.5 |
N24—C29—C28 | 118.0 (7) | N4—C9—C8 | 118.5 (7) |
N21—C29—N24 | 109.7 (6) | N1—C9—N4 | 109.2 (6) |
N21—C29—C28 | 131.6 (11) | N1—C9—C8 | 132.2 (7) |
C29—N21—N22 | 106.4 (6) | C9—N1—N2 | 106.5 (6) |
C23—N22—N21 | 108.5 (6) | C3—N2—N1 | 107.9 (7) |
N24—C23—H23 | 125.1 | N4—C3—H3 | 124.5 |
N22—C23—N24 | 109.7 (6) | N2—C3—N4 | 111.0 (6) |
N22—C23—H23 | 125.1 | N2—C3—H3 | 124.5 |
N211—N210—C26 | 116.2 (7) | N11—N10—C6 | 116.4 (6) |
N212—N211—N210 | 171.5 (11) | N12—N11—N10 | 171.6 (19) |
N24—N25—C26—C27 | −1 (5) | N4—N5—C6—C7 | −8 (5) |
N24—N25—C26—N210 | 177 (2) | N4—N5—C6—N10 | −178 (3) |
N24—C29—N21—N22 | 4 (4) | N4—C9—N1—N2 | −3 (3) |
N25—N24—C29—C28 | 6 (5) | N5—N4—C9—C8 | −6 (4) |
N25—N24—C29—N21 | 177 (3) | N5—N4—C9—N1 | 177 (3) |
N25—N24—C23—N22 | −179 (3) | N5—N4—C3—N2 | −175 (3) |
N25—C26—C27—C28 | 1 (5) | N5—C6—C7—C8 | 7 (6) |
N25—C26—N210—N211 | 3 (4) | N5—C6—N10—N11 | −3 (4) |
C26—C27—C28—C29 | 2 (5) | C6—C7—C8—C9 | −4 (5) |
C27—C26—N210—N211 | −178 (3) | C7—C6—N10—N11 | −174 (3) |
C27—C28—C29—N24 | −5 (5) | C7—C8—C9—N4 | 4 (4) |
C27—C28—C29—N21 | −174 (4) | C7—C8—C9—N1 | −180 (3) |
C28—C29—N21—N22 | 174 (4) | C8—C9—N1—N2 | −180 (3) |
C29—N24—N25—C26 | −3 (4) | C9—N4—N5—C6 | 8 (4) |
C29—N24—C23—N22 | 1 (4) | C9—N4—C3—N2 | 0 (3) |
C29—N21—N22—C23 | −3 (3) | C9—N1—N2—C3 | 3 (4) |
N21—N22—C23—N24 | 2 (3) | N1—N2—C3—N4 | −2 (4) |
C23—N24—N25—C26 | 177 (3) | C3—N4—N5—C6 | −178 (3) |
C23—N24—C29—C28 | −174 (3) | C3—N4—C9—C8 | 179 (3) |
C23—N24—C29—N21 | −3 (4) | C3—N4—C9—N1 | 2 (3) |
N210—C26—C27—C28 | −177 (3) | N10—C6—C7—C8 | 177 (3) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.598 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.053 (16) Å | Cell parameters from 484 reflections |
b = 18.470 (3) Å | θ = 4.0–26.3° |
c = 9.044 (17) Å | µ = 0.12 mm−1 |
β = 95.4 (2)° | T = 296 K |
V = 1339 (4) Å3 | Plate, colorless |
Z = 8 | 0.39 × 0.30 × 0.19 mm |
KM-4 CCD diffractometer | 448 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 249 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.5°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.693, Tmax = 1.000 | l = −7→7 |
2280 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.078 | w = 1/[σ2(Fo2) + (0.155P)2 + 0.5011P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.250 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.15 e Å−3 |
448 reflections | Δρmin = −0.12 e Å−3 |
98 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.02 (2) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.20 (2) GPa (200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.656 (3) | 0.5012 (4) | 0.400 (3) | 0.049 (3)* | |
N25 | 0.568 (3) | 0.5566 (4) | 0.329 (3) | 0.049 (3)* | |
C26 | 0.461 (4) | 0.5325 (5) | 0.220 (4) | 0.055 (4)* | |
C27 | 0.448 (4) | 0.4596 (5) | 0.167 (3) | 0.061 (4)* | |
H27 | 0.380307 | 0.449137 | 0.080950 | 0.074* | |
C28 | 0.531 (4) | 0.4071 (5) | 0.240 (3) | 0.061 (4)* | |
H28 | 0.514946 | 0.358817 | 0.213369 | 0.073* | |
C29 | 0.647 (6) | 0.4282 (5) | 0.363 (5) | 0.054 (4)* | |
N21 | 0.750 (3) | 0.3918 (4) | 0.455 (3) | 0.061 (3)* | |
N22 | 0.835 (3) | 0.4405 (5) | 0.547 (3) | 0.066 (3)* | |
C23 | 0.783 (4) | 0.5058 (5) | 0.508 (3) | 0.055 (3)* | |
H23 | 0.827280 | 0.548713 | 0.548254 | 0.066* | |
N210 | 0.358 (3) | 0.5828 (4) | 0.140 (3) | 0.061 (3)* | |
N211 | 0.378 (3) | 0.6468 (5) | 0.177 (3) | 0.063 (3)* | |
N212 | 0.387 (4) | 0.7061 (5) | 0.197 (4) | 0.069 (4)* | |
N4 | 0.794 (3) | 0.7243 (4) | 0.632 (3) | 0.049 (3)* | |
N5 | 0.885 (3) | 0.6698 (4) | 0.706 (3) | 0.052 (3)* | |
C6 | 0.990 (4) | 0.6951 (5) | 0.810 (4) | 0.058 (3)* | |
C7 | 1.034 (5) | 0.7691 (5) | 0.840 (4) | 0.064 (4)* | |
H7 | 1.119160 | 0.781426 | 0.912124 | 0.077* | |
C8 | 0.948 (4) | 0.8203 (5) | 0.759 (4) | 0.059 (4)* | |
H8 | 0.972389 | 0.869249 | 0.771812 | 0.071* | |
C9 | 0.817 (3) | 0.7967 (4) | 0.652 (3) | 0.047 (3)* | |
N1 | 0.719 (4) | 0.8331 (5) | 0.550 (3) | 0.067 (3)* | |
N2 | 0.632 (4) | 0.7808 (4) | 0.463 (4) | 0.066 (4)* | |
C3 | 0.679 (4) | 0.7172 (5) | 0.517 (4) | 0.053 (3)* | |
H3 | 0.637431 | 0.673172 | 0.480299 | 0.064* | |
N10 | 1.087 (3) | 0.6451 (4) | 0.903 (3) | 0.064 (3)* | |
N11 | 1.064 (5) | 0.5800 (5) | 0.870 (4) | 0.068 (4)* | |
N12 | 1.058 (4) | 0.5203 (5) | 0.851 (4) | 0.077 (4)* |
N24—N25 | 1.373 (11) | N4—N5 | 1.384 (11) |
N24—C29 | 1.389 (16) | N4—C9 | 1.361 (10) |
N24—C23 | 1.347 (13) | N4—C3 | 1.326 (14) |
N25—C26 | 1.317 (13) | N5—C6 | 1.295 (13) |
C26—C27 | 1.430 (18) | C6—C7 | 1.429 (15) |
C26—N210 | 1.404 (14) | C6—N10 | 1.429 (13) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.318 (12) | C7—C8 | 1.350 (14) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.441 (16) | C8—C9 | 1.428 (13) |
C29—N21 | 1.303 (12) | C9—N1 | 1.338 (12) |
N21—N22 | 1.364 (11) | N1—N2 | 1.393 (14) |
N22—C23 | 1.314 (13) | N2—C3 | 1.315 (12) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.235 (11) | N10—N11 | 1.249 (11) |
N211—N212 | 1.111 (10) | N11—N12 | 1.117 (13) |
N25—N24—C29 | 126.8 (9) | C9—N4—N5 | 126.0 (8) |
C23—N24—N25 | 128.2 (8) | C3—N4—N5 | 127.4 (8) |
C23—N24—C29 | 104.6 (9) | C3—N4—C9 | 106.3 (8) |
C26—N25—N24 | 111.8 (8) | C6—N5—N4 | 111.9 (8) |
N25—C26—C27 | 126.1 (11) | N5—C6—C7 | 127.9 (10) |
N25—C26—N210 | 118.4 (10) | N5—C6—N10 | 118.5 (8) |
N210—C26—C27 | 115.3 (10) | C7—C6—N10 | 113.4 (9) |
C26—C27—H27 | 119.7 | C6—C7—H7 | 121.2 |
C28—C27—C26 | 120.5 (13) | C8—C7—C6 | 117.6 (11) |
C28—C27—H27 | 119.7 | C8—C7—H7 | 121.2 |
C27—C28—H28 | 121.6 | C7—C8—H8 | 121.2 |
C27—C28—C29 | 116.7 (10) | C7—C8—C9 | 117.5 (9) |
C29—C28—H28 | 121.6 | C9—C8—H8 | 121.2 |
N24—C29—C28 | 117.5 (10) | N4—C9—C8 | 118.5 (8) |
N21—C29—N24 | 109.6 (10) | N1—C9—N4 | 109.6 (8) |
N21—C29—C28 | 132.9 (11) | N1—C9—C8 | 131.4 (10) |
C29—N21—N22 | 107.4 (8) | C9—N1—N2 | 105.9 (8) |
C23—N22—N21 | 108.3 (9) | C3—N2—N1 | 107.2 (9) |
N24—C23—H23 | 125.1 | N4—C3—H3 | 124.5 |
N22—C23—N24 | 109.7 (8) | N2—C3—N4 | 111.0 (8) |
N22—C23—H23 | 125.1 | N2—C3—H3 | 124.5 |
N211—N210—C26 | 115.9 (9) | N11—N10—C6 | 114.9 (9) |
N212—N211—N210 | 173.2 (13) | N12—N11—N10 | 172.5 (14) |
N24—N25—C26—C27 | −7 (6) | N4—N5—C6—C7 | −9 (6) |
N24—N25—C26—N210 | 178 (4) | N4—N5—C6—N10 | 176 (3) |
N24—C29—N21—N22 | −4 (5) | N4—C9—N1—N2 | 0 (4) |
N25—N24—C29—C28 | −2 (7) | N5—N4—C9—C8 | 0 (5) |
N25—N24—C29—N21 | 180 (4) | N5—N4—C9—N1 | 173 (3) |
N25—N24—C23—N22 | −180 (3) | N5—N4—C3—N2 | −172 (3) |
N25—C26—C27—C28 | 10 (7) | N5—C6—C7—C8 | 6 (7) |
N25—C26—N210—N211 | 1 (5) | N5—C6—N10—N11 | 2 (6) |
C26—C27—C28—C29 | −7 (7) | C6—C7—C8—C9 | 1 (6) |
C27—C26—N210—N211 | −174 (3) | C7—C6—N10—N11 | −173 (4) |
C27—C28—C29—N24 | 3 (7) | C7—C8—C9—N4 | −4 (5) |
C27—C28—C29—N21 | −178 (5) | C7—C8—C9—N1 | −175 (4) |
C28—C29—N21—N22 | 178 (6) | C8—C9—N1—N2 | 171 (4) |
C29—N24—N25—C26 | 3 (5) | C9—N4—N5—C6 | 6 (5) |
C29—N24—C23—N22 | −7 (5) | C9—N4—C3—N2 | 1 (5) |
C29—N21—N22—C23 | −1 (5) | C9—N1—N2—C3 | 1 (5) |
N21—N22—C23—N24 | 5 (5) | N1—N2—C3—N4 | −1 (5) |
C23—N24—N25—C26 | 175 (4) | C3—N4—N5—C6 | 178 (4) |
C23—N24—C29—C28 | −175 (5) | C3—N4—C9—C8 | −173 (4) |
C23—N24—C29—N21 | 7 (5) | C3—N4—C9—N1 | −1 (4) |
N210—C26—C27—C28 | −176 (3) | N10—C6—C7—C8 | −179 (4) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.640 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.982 (2) Å | Cell parameters from 1140 reflections |
b = 18.318 (3) Å | θ = 4.0–21.2° |
c = 8.964 (2) Å | µ = 0.12 mm−1 |
β = 95.08 (2)° | T = 296 K |
V = 1305.6 (5) Å3 | Plate, colorless |
Z = 8 | 0.38 × 0.30 × 0.19 mm |
KM-4 CCD diffractometer | 450 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 286 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.100 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.8°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −23→22 |
Tmin = 0.753, Tmax = 1.000 | l = −7→7 |
4780 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.079 | w = 1/[σ2(Fo2) + (0.1599P)2 + 1.8268P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.257 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.19 e Å−3 |
450 reflections | Δρmin = −0.17 e Å−3 |
98 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.006 (10) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.54 (2) GPa (540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.663 (3) | 0.5007 (4) | 0.393 (3) | 0.039 (2)* | |
N25 | 0.562 (3) | 0.5576 (4) | 0.332 (3) | 0.044 (3)* | |
C26 | 0.461 (4) | 0.5331 (5) | 0.218 (4) | 0.051 (3)* | |
C27 | 0.441 (4) | 0.4598 (5) | 0.168 (4) | 0.053 (3)* | |
H27 | 0.361372 | 0.448678 | 0.089473 | 0.064* | |
C28 | 0.536 (4) | 0.4071 (5) | 0.233 (4) | 0.055 (3)* | |
H28 | 0.528823 | 0.359276 | 0.198691 | 0.066* | |
C29 | 0.651 (6) | 0.4279 (5) | 0.361 (5) | 0.041 (3)* | |
N21 | 0.753 (3) | 0.3908 (4) | 0.453 (3) | 0.058 (3)* | |
N22 | 0.837 (4) | 0.4409 (4) | 0.547 (3) | 0.052 (3)* | |
C23 | 0.785 (4) | 0.5060 (5) | 0.506 (3) | 0.048 (3)* | |
H23 | 0.825852 | 0.549546 | 0.548003 | 0.057* | |
N210 | 0.352 (3) | 0.5844 (4) | 0.144 (3) | 0.053 (3)* | |
N211 | 0.373 (4) | 0.6490 (5) | 0.180 (3) | 0.053 (3)* | |
N212 | 0.375 (4) | 0.7084 (5) | 0.204 (4) | 0.066 (4)* | |
N4 | 0.789 (3) | 0.7233 (4) | 0.635 (3) | 0.041 (2)* | |
N5 | 0.882 (3) | 0.6687 (4) | 0.710 (3) | 0.043 (3)* | |
C6 | 0.985 (4) | 0.6940 (5) | 0.815 (4) | 0.046 (3)* | |
C7 | 1.027 (4) | 0.7690 (5) | 0.846 (4) | 0.049 (3)* | |
H7 | 1.109737 | 0.781455 | 0.921039 | 0.059* | |
C8 | 0.944 (4) | 0.8214 (5) | 0.761 (4) | 0.052 (3)* | |
H8 | 0.967558 | 0.870749 | 0.775282 | 0.062* | |
C9 | 0.818 (4) | 0.7969 (4) | 0.649 (3) | 0.042 (3)* | |
N1 | 0.717 (4) | 0.8330 (4) | 0.551 (3) | 0.053 (3)* | |
N2 | 0.621 (4) | 0.7806 (4) | 0.469 (4) | 0.054 (3)* | |
C3 | 0.681 (4) | 0.7158 (5) | 0.512 (3) | 0.045 (3)* | |
H3 | 0.652776 | 0.671775 | 0.464247 | 0.054* | |
N10 | 1.092 (3) | 0.6441 (4) | 0.899 (3) | 0.052 (3)* | |
N11 | 1.060 (5) | 0.5789 (5) | 0.874 (4) | 0.055 (3)* | |
N12 | 1.055 (5) | 0.5181 (5) | 0.857 (4) | 0.068 (4)* |
N24—N25 | 1.402 (12) | N4—N5 | 1.381 (10) |
N24—C29 | 1.366 (14) | N4—C9 | 1.372 (11) |
N24—C23 | 1.342 (12) | N4—C3 | 1.346 (14) |
N25—C26 | 1.318 (14) | N5—C6 | 1.286 (12) |
C26—C27 | 1.420 (17) | C6—C7 | 1.434 (14) |
C26—N210 | 1.408 (15) | C6—N10 | 1.417 (12) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.329 (14) | C7—C8 | 1.361 (13) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.454 (16) | C8—C9 | 1.428 (13) |
C29—N21 | 1.302 (12) | C9—N1 | 1.318 (11) |
N21—N22 | 1.377 (11) | N1—N2 | 1.398 (12) |
N22—C23 | 1.307 (13) | N2—C3 | 1.325 (12) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.235 (11) | N10—N11 | 1.236 (11) |
N211—N212 | 1.109 (12) | N11—N12 | 1.124 (12) |
C29—N24—N25 | 128.1 (8) | C9—N4—N5 | 126.1 (8) |
C23—N24—N25 | 126.6 (10) | C3—N4—N5 | 126.9 (9) |
C23—N24—C29 | 105.2 (8) | C3—N4—C9 | 105.5 (9) |
C26—N25—N24 | 109.9 (11) | C6—N5—N4 | 112.1 (8) |
N25—C26—C27 | 127.6 (10) | N5—C6—C7 | 127.6 (10) |
N25—C26—N210 | 116.6 (12) | N5—C6—N10 | 118.1 (9) |
N210—C26—C27 | 115.7 (9) | N10—C6—C7 | 113.5 (9) |
C26—C27—H27 | 119.8 | C6—C7—H7 | 120.8 |
C28—C27—C26 | 120.3 (10) | C8—C7—C6 | 118.4 (9) |
C28—C27—H27 | 119.8 | C8—C7—H7 | 120.8 |
C27—C28—H28 | 121.6 | C7—C8—H8 | 121.7 |
C27—C28—C29 | 116.8 (12) | C7—C8—C9 | 116.6 (9) |
C29—C28—H28 | 121.6 | C9—C8—H8 | 121.7 |
N24—C29—C28 | 116.6 (8) | N4—C9—C8 | 118.5 (8) |
N21—C29—N24 | 110.3 (9) | N1—C9—N4 | 110.2 (8) |
N21—C29—C28 | 133.0 (11) | N1—C9—C8 | 131.4 (9) |
C29—N21—N22 | 106.5 (8) | C9—N1—N2 | 106.3 (7) |
C23—N22—N21 | 108.0 (8) | C3—N2—N1 | 107.2 (8) |
N24—C23—H23 | 125.1 | N4—C3—H3 | 125.2 |
N22—C23—N24 | 109.9 (8) | N2—C3—N4 | 109.6 (10) |
N22—C23—H23 | 125.1 | N2—C3—H3 | 125.2 |
N211—N210—C26 | 116.7 (8) | N11—N10—C6 | 115.2 (9) |
N212—N211—N210 | 172.2 (14) | N12—N11—N10 | 170 (3) |
N24—N25—C26—C27 | 5 (6) | N4—N5—C6—N10 | −178 (3) |
N24—N25—C26—N210 | −179 (4) | N4—C9—N1—N2 | −1 (4) |
N24—C29—N21—N22 | −1 (5) | N5—N4—C9—C8 | −6 (6) |
N25—N24—C29—C28 | 10 (7) | N5—N4—C9—N1 | 174 (3) |
N25—N24—C29—N21 | −172 (4) | N5—N4—C3—N2 | −178 (4) |
N25—N24—C23—N22 | 171 (4) | N5—C6—C7—C8 | 5 (8) |
N25—C26—C27—C28 | −3 (8) | N5—C6—N10—N11 | −9 (6) |
N25—C26—N210—N211 | 7 (6) | C6—C7—C8—C9 | 1 (6) |
C26—C27—C28—C29 | 3 (7) | C6—N10—N11—N12 | 152 (24) |
C27—C26—N210—N211 | −176 (3) | C7—C6—N10—N11 | −179 (4) |
C27—C28—C29—N24 | −6 (7) | C7—C8—C9—N4 | 0 (5) |
C27—C28—C29—N21 | 176 (5) | C7—C8—C9—N1 | −180 (4) |
C28—C29—N21—N22 | 177 (6) | C8—C9—N1—N2 | 179 (4) |
C29—N24—N25—C26 | −9 (6) | C9—N4—N5—C6 | 11 (6) |
C29—N24—C23—N22 | −4 (5) | C9—N4—C3—N2 | −11 (5) |
C29—N21—N22—C23 | −1 (4) | C9—N1—N2—C3 | −6 (4) |
N21—N22—C23—N24 | 3 (5) | N1—N2—C3—N4 | 11 (5) |
C23—N24—N25—C26 | 177 (4) | C3—N4—N5—C6 | 174 (4) |
C23—N24—C29—C28 | −175 (5) | C3—N4—C9—C8 | −173 (4) |
C23—N24—C29—N21 | 3 (6) | C3—N4—C9—N1 | 7 (4) |
N210—C26—C27—C28 | −179 (3) | N10—C6—C7—C8 | 174 (3) |
N4—N5—C6—C7 | −10 (6) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.655 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.965 (3) Å | Cell parameters from 884 reflections |
b = 18.251 (2) Å | θ = 3.9–20.6° |
c = 8.929 (7) Å | µ = 0.12 mm−1 |
β = 94.85 (6)° | T = 296 K |
V = 1293.3 (11) Å3 | Plate, colorless |
Z = 8 | 0.29 × 0.12 × 0.10 mm |
KM-4 CCD diffractometer | 1001 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 485 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.080 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.3°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −9→9 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.248, Tmax = 1.000 | l = −7→7 |
6599 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.056 | w = 1/[σ2(Fo2) + (0.0782P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.166 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.13 e Å−3 |
1001 reflections | Δρmin = −0.12 e Å−3 |
218 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
6 restraints | Extinction coefficient: 0.0021 (14) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.65 (2) GPa (650000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6584 (17) | 0.5009 (5) | 0.399 (3) | 0.046 (13) | |
N25 | 0.5650 (16) | 0.5567 (4) | 0.3303 (19) | 0.048 (10) | |
C26 | 0.454 (3) | 0.5343 (7) | 0.213 (3) | 0.049 (12) | |
C27 | 0.4357 (15) | 0.4605 (3) | 0.1701 (18) | 0.059 (10) | |
H27 | 0.358078 | 0.447538 | 0.090919 | 0.071* | |
C28 | 0.534 (3) | 0.4064 (7) | 0.246 (3) | 0.093 (14) | |
H28 | 0.522512 | 0.357108 | 0.220472 | 0.111* | |
C29 | 0.645 (3) | 0.4294 (5) | 0.358 (4) | 0.088 (16) | |
N21 | 0.7567 (15) | 0.3909 (4) | 0.4519 (17) | 0.054 (8) | |
N22 | 0.8455 (16) | 0.4407 (3) | 0.551 (2) | 0.061 (9) | |
C23 | 0.775 (2) | 0.5074 (6) | 0.506 (3) | 0.071 (16) | |
H23 | 0.808302 | 0.551977 | 0.549682 | 0.085* | |
N210 | 0.3518 (11) | 0.5842 (3) | 0.1415 (13) | 0.065 (8) | |
N211 | 0.3670 (9) | 0.6490 (3) | 0.1839 (12) | 0.060 (7) | |
N212 | 0.3653 (10) | 0.7097 (3) | 0.2080 (12) | 0.079 (8) | |
N4 | 0.7899 (15) | 0.7229 (4) | 0.630 (2) | 0.043 (12) | |
N5 | 0.8785 (16) | 0.6690 (5) | 0.7084 (19) | 0.047 (10) | |
C6 | 0.995 (2) | 0.6936 (6) | 0.813 (3) | 0.041 (12) | |
C7 | 1.0250 (14) | 0.7683 (4) | 0.8437 (17) | 0.063 (10) | |
H7 | 1.105735 | 0.781874 | 0.920027 | 0.076* | |
C8 | 0.939 (2) | 0.8200 (6) | 0.764 (3) | 0.053 (12) | |
H8 | 0.960252 | 0.869507 | 0.782129 | 0.063* | |
C9 | 0.819 (3) | 0.7976 (6) | 0.655 (3) | 0.047 (15) | |
N1 | 0.7122 (15) | 0.8329 (3) | 0.5505 (17) | 0.067 (9) | |
N2 | 0.6224 (16) | 0.7811 (3) | 0.4697 (19) | 0.061 (9) | |
C3 | 0.6682 (18) | 0.7156 (6) | 0.521 (3) | 0.070 (15) | |
H3 | 0.622468 | 0.671374 | 0.485135 | 0.084* | |
N10 | 1.0921 (12) | 0.6441 (3) | 0.9007 (15) | 0.082 (9) | |
N11 | 1.0677 (11) | 0.5784 (3) | 0.8674 (13) | 0.078 (7) | |
N12 | 1.0645 (11) | 0.5175 (3) | 0.8508 (14) | 0.099 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N24 | 0.054 (18) | 0.045 (5) | 0.04 (3) | −0.011 (7) | −0.02 (2) | −0.010 (7) |
N25 | 0.052 (12) | 0.036 (5) | 0.06 (3) | 0.013 (4) | 0.000 (17) | 0.008 (5) |
C26 | 0.071 (17) | 0.054 (7) | 0.02 (3) | −0.017 (7) | −0.01 (2) | −0.007 (7) |
C27 | 0.082 (14) | 0.049 (5) | 0.05 (3) | −0.008 (4) | −0.001 (17) | −0.004 (5) |
C28 | 0.14 (2) | 0.036 (6) | 0.12 (3) | −0.022 (7) | 0.07 (2) | −0.016 (7) |
C29 | 0.10 (2) | 0.022 (6) | 0.15 (4) | 0.010 (7) | 0.06 (3) | 0.012 (8) |
N21 | 0.060 (11) | 0.048 (4) | 0.05 (2) | −0.008 (5) | −0.017 (15) | −0.011 (5) |
N22 | 0.062 (11) | 0.062 (5) | 0.06 (2) | 0.003 (4) | −0.013 (16) | 0.016 (5) |
C23 | 0.087 (19) | 0.038 (5) | 0.09 (4) | 0.002 (7) | 0.03 (3) | 0.003 (7) |
N210 | 0.087 (11) | 0.044 (4) | 0.06 (2) | −0.001 (4) | −0.006 (14) | 0.005 (4) |
N211 | 0.051 (9) | 0.061 (4) | 0.07 (2) | 0.003 (3) | 0.001 (13) | 0.010 (4) |
N212 | 0.092 (10) | 0.060 (4) | 0.09 (2) | 0.002 (3) | 0.015 (13) | 0.003 (4) |
N4 | 0.052 (16) | 0.040 (5) | 0.03 (3) | −0.002 (5) | −0.01 (2) | −0.003 (5) |
N5 | 0.069 (14) | 0.043 (5) | 0.03 (2) | 0.008 (5) | −0.001 (17) | 0.011 (5) |
C6 | 0.045 (17) | 0.055 (7) | 0.02 (3) | 0.000 (6) | −0.02 (2) | −0.010 (7) |
C7 | 0.082 (13) | 0.056 (5) | 0.05 (3) | 0.005 (5) | 0.013 (17) | 0.009 (5) |
C8 | 0.073 (16) | 0.052 (5) | 0.03 (3) | −0.017 (7) | 0.00 (2) | −0.018 (7) |
C9 | 0.06 (2) | 0.035 (6) | 0.04 (4) | 0.005 (7) | 0.00 (3) | 0.004 (7) |
N1 | 0.079 (13) | 0.042 (4) | 0.08 (2) | 0.001 (5) | 0.009 (16) | 0.000 (6) |
N2 | 0.080 (12) | 0.048 (5) | 0.05 (2) | 0.017 (4) | −0.008 (15) | 0.013 (4) |
C3 | 0.064 (17) | 0.049 (6) | 0.10 (4) | −0.006 (7) | 0.01 (2) | −0.006 (8) |
N10 | 0.106 (12) | 0.045 (4) | 0.10 (2) | 0.003 (4) | 0.025 (16) | −0.007 (4) |
N11 | 0.092 (9) | 0.058 (3) | 0.088 (18) | 0.009 (3) | 0.037 (12) | 0.012 (4) |
N12 | 0.130 (10) | 0.054 (3) | 0.12 (2) | 0.003 (4) | 0.029 (14) | 0.015 (4) |
N24—N25 | 1.37 (3) | N4—N5 | 1.37 (3) |
N24—C29 | 1.356 (17) | N4—C9 | 1.397 (15) |
N24—C23 | 1.28 (4) | N4—C3 | 1.33 (4) |
N25—C26 | 1.38 (4) | N5—C6 | 1.34 (3) |
C26—C27 | 1.402 (14) | C6—C7 | 1.408 (14) |
C26—N210 | 1.34 (3) | C6—N10 | 1.39 (3) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.40 (3) | C7—C8 | 1.33 (3) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.35 (5) | C8—C9 | 1.37 (4) |
C29—N21 | 1.36 (4) | C9—N1 | 1.37 (3) |
N21—N22 | 1.41 (2) | N1—N2 | 1.36 (2) |
N22—C23 | 1.38 (2) | N2—C3 | 1.32 (2) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.244 (8) | N10—N11 | 1.245 (9) |
N211—N212 | 1.128 (6) | N11—N12 | 1.121 (6) |
C29—N24—N25 | 125 (2) | N5—N4—C9 | 123 (2) |
C23—N24—N25 | 126.5 (13) | C3—N4—N5 | 128.2 (11) |
C23—N24—C29 | 109 (2) | C3—N4—C9 | 109 (2) |
N24—N25—C26 | 114.1 (10) | C6—N5—N4 | 114.4 (12) |
N25—C26—C27 | 122 (2) | N5—C6—C7 | 124 (2) |
N210—C26—N25 | 118.9 (11) | N5—C6—N10 | 119.8 (11) |
N210—C26—C27 | 119 (2) | N10—C6—C7 | 117 (2) |
C26—C27—H27 | 119.8 | C6—C7—H7 | 119.6 |
C28—C27—C26 | 120 (2) | C8—C7—C6 | 120.8 (19) |
C28—C27—H27 | 119.8 | C8—C7—H7 | 119.6 |
C27—C28—H28 | 121.8 | C7—C8—H8 | 121.2 |
C29—C28—C27 | 116.4 (12) | C7—C8—C9 | 117.6 (12) |
C29—C28—H28 | 121.8 | C9—C8—H8 | 121.2 |
N24—C29—N21 | 107 (3) | C8—C9—N4 | 120 (2) |
C28—C29—N24 | 122 (3) | C8—C9—N1 | 134.5 (15) |
C28—C29—N21 | 130.5 (13) | N1—C9—N4 | 105 (2) |
C29—N21—N22 | 108.5 (10) | N2—N1—C9 | 107.7 (9) |
C23—N22—N21 | 102.5 (18) | C3—N2—N1 | 109.3 (19) |
N24—C23—N22 | 112.6 (13) | N4—C3—H3 | 125.5 |
N24—C23—H23 | 123.7 | N2—C3—N4 | 109.1 (13) |
N22—C23—H23 | 123.7 | N2—C3—H3 | 125.5 |
N211—N210—C26 | 117.5 (12) | N11—N10—C6 | 115.1 (14) |
N212—N211—N210 | 171.1 (10) | N12—N11—N10 | 170.5 (11) |
N24—N25—C26—C27 | 1.6 (16) | N4—N5—C6—C7 | 0.4 (16) |
N24—N25—C26—N210 | 177.6 (8) | N4—N5—C6—N10 | 179.5 (7) |
N24—C29—N21—N22 | −1.6 (11) | N4—C9—N1—N2 | 1.0 (10) |
N25—N24—C29—C28 | −1 (2) | N5—N4—C9—C8 | −1.4 (18) |
N25—N24—C29—N21 | −179.8 (11) | N5—N4—C9—N1 | 176.9 (9) |
N25—N24—C23—N22 | 180.0 (7) | N5—N4—C3—N2 | −176.5 (7) |
N25—C26—C27—C28 | −0.9 (14) | N5—C6—C7—C8 | −1.7 (15) |
N25—C26—N210—N211 | 1.9 (13) | N5—C6—N10—N11 | 3.6 (12) |
C26—C27—C28—C29 | −0.8 (13) | C6—C7—C8—C9 | 1.4 (13) |
C27—C26—N210—N211 | 178.1 (7) | C7—C6—N10—N11 | −177.2 (6) |
C27—C28—C29—N24 | 1.8 (19) | C7—C8—C9—N4 | 0.1 (16) |
C27—C28—C29—N21 | −179.9 (8) | C7—C8—C9—N1 | −177.6 (9) |
C28—C29—N21—N22 | 179.9 (12) | C8—C9—N1—N2 | 178.9 (12) |
C29—N24—N25—C26 | −0.6 (18) | C9—N4—N5—C6 | 1.1 (16) |
C29—N24—C23—N22 | −2 (3) | C9—N4—C3—N2 | 2 (2) |
C29—N21—N22—C23 | 0.4 (11) | C9—N1—N2—C3 | 0.5 (10) |
N21—N22—C23—N24 | 1 (2) | N1—N2—C3—N4 | −1.8 (17) |
C23—N24—N25—C26 | 177 (2) | C3—N4—N5—C6 | 179.8 (17) |
C23—N24—C29—C28 | −179.1 (16) | C3—N4—C9—C8 | 179.7 (13) |
C23—N24—C29—N21 | 2 (2) | C3—N4—C9—N1 | −2.0 (17) |
N210—C26—C27—C28 | −176.9 (8) | N10—C6—C7—C8 | 179.1 (7) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.673 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.918 (15) Å | Cell parameters from 890 reflections |
b = 18.223 (2) Å | θ = 4.1–21.3° |
c = 8.897 (14) Å | µ = 0.12 mm−1 |
β = 94.6 (2)° | T = 296 K |
V = 1280 (3) Å3 | Plate, colorless |
Z = 8 | 0.36 × 0.29 × 0.18 mm |
KM-4 CCD diffractometer | 438 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 267 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.160 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.9°, θmin = 4.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −23→22 |
Tmin = 0.734, Tmax = 1.000 | l = −7→8 |
4666 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.071 | w = 1/[σ2(Fo2) + (0.155P)2 + 0.2012P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.231 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.13 e Å−3 |
438 reflections | Δρmin = −0.14 e Å−3 |
98 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.015 (11) |
Primary atom site location: structure-invariant direct methods |
Experimental. Data were collected at room temperature and pressure of 0.77 (2) GPa (770000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.657 (3) | 0.5011 (3) | 0.400 (3) | 0.040 (2)* | |
N25 | 0.563 (3) | 0.5576 (3) | 0.329 (3) | 0.040 (2)* | |
C26 | 0.459 (4) | 0.5350 (4) | 0.218 (3) | 0.046 (3)* | |
C27 | 0.442 (3) | 0.4598 (4) | 0.167 (3) | 0.057 (3)* | |
H27 | 0.3692 | 0.4486 | 0.0828 | 0.069* | |
C28 | 0.530 (3) | 0.4071 (4) | 0.239 (3) | 0.047 (3)* | |
H28 | 0.5170 | 0.3583 | 0.2095 | 0.057* | |
C29 | 0.645 (5) | 0.4275 (4) | 0.365 (4) | 0.041 (3)* | |
N21 | 0.751 (3) | 0.3901 (3) | 0.457 (2) | 0.049 (2)* | |
N22 | 0.840 (3) | 0.4409 (4) | 0.543 (3) | 0.053 (3)* | |
C23 | 0.782 (3) | 0.5059 (4) | 0.512 (3) | 0.044 (3)* | |
H23 | 0.8195 | 0.5490 | 0.5598 | 0.053* | |
N210 | 0.348 (3) | 0.5851 (3) | 0.143 (2) | 0.048 (2)* | |
N211 | 0.369 (3) | 0.6497 (4) | 0.180 (3) | 0.053 (3)* | |
N212 | 0.372 (4) | 0.7103 (4) | 0.207 (3) | 0.057 (3)* | |
N4 | 0.788 (3) | 0.7228 (3) | 0.635 (3) | 0.039 (2)* | |
N5 | 0.881 (3) | 0.6676 (3) | 0.709 (2) | 0.041 (2)* | |
C6 | 0.990 (4) | 0.6930 (5) | 0.813 (3) | 0.045 (3)* | |
C7 | 1.027 (4) | 0.7688 (4) | 0.848 (3) | 0.053 (3)* | |
H7 | 1.1097 | 0.7815 | 0.9240 | 0.064* | |
C8 | 0.937 (4) | 0.8212 (5) | 0.767 (3) | 0.047 (3)* | |
H8 | 0.9587 | 0.8709 | 0.7836 | 0.057* | |
C9 | 0.810 (3) | 0.7972 (4) | 0.657 (3) | 0.036 (3)* | |
N1 | 0.716 (3) | 0.8322 (4) | 0.549 (3) | 0.048 (2)* | |
N2 | 0.623 (3) | 0.7801 (4) | 0.466 (3) | 0.056 (3)* | |
C3 | 0.672 (4) | 0.7155 (4) | 0.519 (3) | 0.045 (3)* | |
H3 | 0.6318 | 0.6708 | 0.4806 | 0.054* | |
N10 | 1.095 (3) | 0.6436 (4) | 0.897 (2) | 0.050 (2)* | |
N11 | 1.074 (5) | 0.5774 (4) | 0.862 (4) | 0.055 (3)* | |
N12 | 1.057 (4) | 0.5159 (4) | 0.854 (3) | 0.061 (3)* |
N24—N25 | 1.390 (9) | N4—N5 | 1.381 (9) |
N24—C29 | 1.378 (13) | N4—C9 | 1.380 (9) |
N24—C23 | 1.354 (11) | N4—C3 | 1.331 (12) |
N25—C26 | 1.300 (11) | N5—C6 | 1.301 (11) |
C26—C27 | 1.446 (16) | C6—C7 | 1.441 (12) |
C26—N210 | 1.398 (13) | C6—N10 | 1.400 (10) |
C27—C28 | 1.322 (11) | C7—C8 | 1.363 (11) |
C28—C29 | 1.434 (13) | C8—C9 | 1.417 (11) |
C29—N21 | 1.314 (10) | C9—N1 | 1.333 (11) |
N21—N22 | 1.366 (9) | N1—N2 | 1.375 (11) |
N22—C23 | 1.294 (13) | N2—C3 | 1.317 (10) |
N210—N211 | 1.231 (10) | N10—N11 | 1.253 (11) |
N211—N212 | 1.131 (10) | N11—N12 | 1.130 (9) |
C29—N24—N25 | 126.5 (7) | C9—N4—N5 | 126.3 (6) |
C23—N24—N25 | 128.3 (7) | C3—N4—N5 | 127.1 (7) |
C23—N24—C29 | 105.1 (7) | C3—N4—C9 | 106.1 (6) |
C26—N25—N24 | 113.0 (8) | C6—N5—N4 | 112.2 (6) |
N25—C26—C27 | 125.2 (9) | N5—C6—C7 | 127.4 (8) |
N25—C26—N210 | 119.4 (10) | N5—C6—N10 | 118.9 (8) |
N210—C26—C27 | 115.4 (7) | N10—C6—C7 | 113.6 (7) |
C28—C27—C26 | 120.3 (9) | C8—C7—C6 | 118.0 (9) |
C27—C28—C29 | 117.8 (9) | C7—C8—C9 | 117.5 (8) |
N24—C29—C28 | 117.1 (7) | N4—C9—C8 | 118.4 (7) |
N21—C29—N24 | 109.7 (8) | N1—C9—N4 | 108.2 (7) |
N21—C29—C28 | 133.2 (10) | N1—C9—C8 | 132.8 (8) |
C29—N21—N22 | 106.1 (6) | C9—N1—N2 | 107.5 (6) |
C23—N22—N21 | 109.7 (7) | C3—N2—N1 | 107.2 (7) |
N22—C23—N24 | 109.2 (8) | N2—C3—N4 | 110.8 (7) |
N211—N210—C26 | 115.5 (7) | N11—N10—C6 | 115.1 (7) |
N212—N211—N210 | 173.1 (14) | N12—N11—N10 | 169 (3) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.688 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.897 (2) Å | Cell parameters from 843 reflections |
b = 18.1579 (18) Å | θ = 4.0–24.2° |
c = 8.874 (5) Å | µ = 0.12 mm−1 |
β = 94.54 (5)° | T = 296 K |
V = 1268.5 (8) Å3 | Plate, colorless |
Z = 8 | 0.27 × 0.20 × 0.10 mm |
KM-4 CCD diffractometer | 848 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 461 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.4°, θmin = 4.0° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −9→8 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.698, Tmax = 1.000 | l = −7→7 |
5632 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0177P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
848 reflections | Δρmax = 0.10 e Å−3 |
217 parameters | Δρmin = −0.11 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.85 (2) GPa (850000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6609 (14) | 0.5012 (4) | 0.404 (3) | 0.063 (13) | |
N25 | 0.5603 (17) | 0.5588 (4) | 0.325 (2) | 0.071 (10) | |
C26 | 0.465 (3) | 0.5338 (6) | 0.227 (3) | 0.070 (13) | |
C27 | 0.4330 (14) | 0.4604 (3) | 0.1679 (16) | 0.063 (10) | |
H27 | 0.3549 | 0.4495 | 0.0870 | 0.076* | |
C28 | 0.536 (2) | 0.4065 (6) | 0.249 (3) | 0.056 (11) | |
H28 | 0.5258 | 0.3568 | 0.2251 | 0.067* | |
C29 | 0.646 (3) | 0.4287 (5) | 0.358 (3) | 0.073 (14) | |
N21 | 0.7543 (13) | 0.3902 (3) | 0.4456 (15) | 0.077 (9) | |
N22 | 0.8440 (13) | 0.4403 (2) | 0.5499 (15) | 0.069 (8) | |
C23 | 0.7791 (17) | 0.5066 (7) | 0.503 (3) | 0.073 (15) | |
H23 | 0.8196 | 0.5514 | 0.5422 | 0.087* | |
N210 | 0.3506 (10) | 0.5844 (2) | 0.1416 (12) | 0.050 (8) | |
N211 | 0.3653 (8) | 0.6506 (2) | 0.1851 (10) | 0.045 (7) | |
N212 | 0.3628 (8) | 0.71083 (19) | 0.2108 (9) | 0.053 (7) | |
N4 | 0.7880 (16) | 0.7217 (4) | 0.631 (2) | 0.052 (12) | |
N5 | 0.8802 (15) | 0.6678 (4) | 0.7136 (17) | 0.044 (9) | |
C6 | 0.991 (2) | 0.6934 (6) | 0.813 (3) | 0.059 (13) | |
C7 | 1.0229 (13) | 0.7687 (3) | 0.8436 (16) | 0.077 (10) | |
H7 | 1.1037 | 0.7823 | 0.9205 | 0.092* | |
C8 | 0.937 (2) | 0.8205 (6) | 0.762 (2) | 0.059 (11) | |
H8 | 0.9602 | 0.8704 | 0.7760 | 0.071* | |
C9 | 0.817 (2) | 0.7977 (5) | 0.659 (3) | 0.062 (14) | |
N1 | 0.7126 (15) | 0.8326 (3) | 0.5550 (17) | 0.077 (9) | |
N2 | 0.6153 (14) | 0.7807 (2) | 0.4664 (16) | 0.055 (8) | |
C3 | 0.6673 (17) | 0.7152 (6) | 0.524 (3) | 0.067 (15) | |
H3 | 0.6221 | 0.6703 | 0.4903 | 0.080* | |
N10 | 1.0898 (10) | 0.6431 (3) | 0.9007 (12) | 0.060 (9) | |
N11 | 1.0690 (8) | 0.5768 (2) | 0.8705 (10) | 0.064 (7) | |
N12 | 1.0644 (8) | 0.51574 (18) | 0.8519 (9) | 0.060 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N24 | 0.045 (17) | 0.035 (5) | 0.11 (3) | 0.002 (6) | 0.03 (2) | 0.012 (7) |
N25 | 0.086 (13) | 0.024 (4) | 0.11 (2) | 0.004 (4) | 0.044 (17) | 0.010 (5) |
C26 | 0.088 (18) | 0.026 (6) | 0.10 (3) | −0.010 (6) | 0.05 (2) | −0.007 (6) |
C27 | 0.068 (13) | 0.047 (5) | 0.08 (2) | 0.000 (4) | 0.014 (17) | 0.012 (4) |
C28 | 0.058 (15) | 0.032 (5) | 0.08 (3) | −0.012 (6) | 0.016 (18) | −0.004 (7) |
C29 | 0.10 (2) | 0.013 (5) | 0.12 (3) | −0.009 (7) | 0.06 (3) | −0.012 (7) |
N21 | 0.081 (11) | 0.035 (3) | 0.12 (2) | −0.001 (4) | 0.038 (15) | −0.012 (5) |
N22 | 0.073 (10) | 0.047 (4) | 0.09 (2) | 0.000 (3) | 0.013 (14) | −0.003 (4) |
C23 | 0.056 (16) | 0.043 (4) | 0.12 (4) | 0.000 (6) | 0.03 (2) | 0.007 (6) |
N210 | 0.054 (11) | 0.043 (4) | 0.048 (19) | −0.004 (3) | −0.022 (13) | 0.001 (3) |
N211 | 0.041 (8) | 0.058 (3) | 0.036 (18) | 0.007 (2) | −0.009 (12) | 0.015 (3) |
N212 | 0.053 (9) | 0.056 (3) | 0.045 (17) | 0.012 (2) | −0.022 (12) | 0.008 (3) |
N4 | 0.050 (17) | 0.042 (5) | 0.07 (3) | 0.003 (6) | 0.02 (2) | 0.004 (7) |
N5 | 0.051 (12) | 0.035 (4) | 0.04 (2) | 0.019 (4) | −0.002 (15) | 0.018 (5) |
C6 | 0.057 (18) | 0.045 (6) | 0.08 (3) | −0.013 (6) | 0.02 (2) | −0.013 (7) |
C7 | 0.089 (14) | 0.041 (4) | 0.11 (2) | 0.002 (4) | 0.052 (17) | 0.003 (5) |
C8 | 0.049 (15) | 0.042 (5) | 0.09 (3) | −0.015 (5) | 0.016 (18) | −0.007 (6) |
C9 | 0.06 (2) | 0.020 (5) | 0.11 (3) | 0.007 (6) | 0.04 (3) | 0.005 (6) |
N1 | 0.072 (12) | 0.041 (3) | 0.12 (2) | −0.004 (5) | 0.034 (15) | −0.001 (6) |
N2 | 0.052 (11) | 0.053 (5) | 0.06 (2) | 0.010 (3) | −0.006 (14) | 0.012 (4) |
C3 | 0.053 (18) | 0.043 (5) | 0.11 (4) | 0.004 (6) | 0.01 (2) | 0.007 (7) |
N10 | 0.073 (12) | 0.044 (3) | 0.06 (2) | 0.000 (3) | 0.003 (15) | −0.010 (4) |
N11 | 0.079 (9) | 0.051 (3) | 0.063 (16) | 0.006 (3) | 0.023 (12) | 0.003 (3) |
N12 | 0.080 (8) | 0.049 (2) | 0.049 (16) | 0.005 (2) | −0.019 (11) | 0.009 (3) |
N24—N25 | 1.46 (3) | N4—N5 | 1.39 (3) |
N24—C29 | 1.381 (15) | N4—C9 | 1.417 (14) |
N24—C23 | 1.24 (4) | N4—C3 | 1.30 (4) |
N25—C26 | 1.20 (4) | N5—C6 | 1.28 (3) |
C26—C27 | 1.445 (14) | C6—C7 | 1.412 (12) |
C26—N210 | 1.46 (3) | C6—N10 | 1.40 (3) |
C27—H27 | 0.9300 | C7—H7 | 0.9300 |
C27—C28 | 1.43 (3) | C7—C8 | 1.34 (2) |
C28—H28 | 0.9300 | C8—H8 | 0.9300 |
C28—C29 | 1.31 (5) | C8—C9 | 1.33 (4) |
C29—N21 | 1.31 (4) | C9—N1 | 1.35 (3) |
N21—N22 | 1.44 (2) | N1—N2 | 1.42 (2) |
N22—C23 | 1.36 (2) | N2—C3 | 1.34 (2) |
C23—H23 | 0.9300 | C3—H3 | 0.9300 |
N210—N211 | 1.265 (7) | N10—N11 | 1.240 (6) |
N211—N212 | 1.117 (4) | N11—N12 | 1.122 (4) |
C29—N24—N25 | 121 (2) | N5—N4—C9 | 122 (2) |
C23—N24—N25 | 129.6 (13) | C3—N4—N5 | 130.1 (12) |
C23—N24—C29 | 109.2 (19) | C3—N4—C9 | 108.4 (18) |
C26—N25—N24 | 111.5 (13) | C6—N5—N4 | 114.1 (11) |
N25—C26—C27 | 134 (3) | N5—C6—C7 | 126 (2) |
N25—C26—N210 | 117.9 (11) | N5—C6—N10 | 117.9 (11) |
C27—C26—N210 | 108 (2) | N10—C6—C7 | 116 (2) |
C26—C27—H27 | 124.0 | C6—C7—H7 | 120.0 |
C28—C27—C26 | 111.9 (19) | C8—C7—C6 | 120.1 (18) |
C28—C27—H27 | 124.0 | C8—C7—H7 | 120.0 |
C27—C28—H28 | 120.7 | C7—C8—H8 | 121.4 |
C29—C28—C27 | 118.6 (13) | C9—C8—C7 | 117.1 (11) |
C29—C28—H28 | 120.7 | C9—C8—H8 | 121.4 |
C28—C29—N24 | 123 (3) | C8—C9—N4 | 121 (2) |
C28—C29—N21 | 129.5 (12) | C8—C9—N1 | 133.4 (14) |
N21—C29—N24 | 107 (3) | N1—C9—N4 | 105 (2) |
C29—N21—N22 | 108.0 (9) | C9—N1—N2 | 110.1 (8) |
C23—N22—N21 | 102.0 (15) | C3—N2—N1 | 104.0 (16) |
N24—C23—N22 | 113.0 (13) | N4—C3—N2 | 112.5 (12) |
N24—C23—H23 | 123.5 | N4—C3—H3 | 123.8 |
N22—C23—H23 | 123.5 | N2—C3—H3 | 123.8 |
N211—N210—C26 | 113.8 (12) | N11—N10—C6 | 117.1 (12) |
N212—N211—N210 | 171.7 (9) | N12—N11—N10 | 173.2 (9) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.708 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8356 (16) Å | Cell parameters from 384 reflections |
b = 18.074 (3) Å | θ = 4.3–18.9° |
c = 8.88 (3) Å | µ = 0.13 mm−1 |
β = 94.24 (7)° | T = 296 K |
V = 1253 (4) Å3 | Plate, colorless |
Z = 8 | 0.35 × 0.28 × 0.17 mm |
KM-4 CCD diffractometer | 544 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.238 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −9→9 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.692, Tmax = 1.000 | l = −2→2 |
5110 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.076 | H-atom parameters constrained |
wR(F2) = 0.198 | w = 1/[σ2(Fo2) + (0.0821P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
544 reflections | Δρmax = 0.14 e Å−3 |
97 parameters | Δρmin = −0.13 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 1.02 (2) GPa (1020000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6583 (10) | 0.5011 (4) | 0.398 (3) | 0.040 (2)* | |
N25 | 0.5657 (10) | 0.5583 (4) | 0.326 (3) | 0.044 (2)* | |
C26 | 0.4579 (14) | 0.5347 (5) | 0.214 (5) | 0.051 (3)* | |
C27 | 0.4363 (14) | 0.4604 (5) | 0.169 (4) | 0.056 (3)* | |
H27 | 0.3551 | 0.4483 | 0.0913 | 0.067* | |
C28 | 0.5305 (13) | 0.4078 (5) | 0.237 (4) | 0.052 (3)* | |
H28 | 0.5194 | 0.3588 | 0.2058 | 0.062* | |
C29 | 0.6463 (12) | 0.4277 (5) | 0.356 (4) | 0.040 (3)* | |
N21 | 0.7555 (10) | 0.3899 (4) | 0.451 (3) | 0.047 (2)* | |
N22 | 0.8402 (10) | 0.4400 (4) | 0.553 (3) | 0.057 (3)* | |
C23 | 0.7814 (13) | 0.5062 (5) | 0.506 (4) | 0.048 (3)* | |
H23 | 0.8230 | 0.5509 | 0.5463 | 0.057* | |
N210 | 0.3490 (10) | 0.5858 (4) | 0.144 (3) | 0.053 (3)* | |
N211 | 0.3635 (10) | 0.6507 (5) | 0.187 (3) | 0.056 (3)* | |
N212 | 0.3624 (10) | 0.7112 (5) | 0.213 (3) | 0.065 (3)* | |
N4 | 0.7879 (10) | 0.7215 (4) | 0.637 (3) | 0.045 (2)* | |
N5 | 0.8756 (10) | 0.6673 (4) | 0.723 (4) | 0.049 (3)* | |
C6 | 0.9919 (13) | 0.6926 (5) | 0.815 (5) | 0.046 (3)* | |
C7 | 1.0235 (12) | 0.7688 (5) | 0.847 (4) | 0.053 (3)* | |
H7 | 1.1082 | 0.7819 | 0.9215 | 0.064* | |
C8 | 0.9356 (13) | 0.8201 (5) | 0.775 (5) | 0.046 (3)* | |
H8 | 0.9523 | 0.8699 | 0.7977 | 0.055* | |
C9 | 0.8136 (12) | 0.7969 (4) | 0.659 (4) | 0.040 (3)* | |
N1 | 0.7108 (10) | 0.8315 (4) | 0.549 (3) | 0.055 (3)* | |
N2 | 0.6163 (10) | 0.7801 (4) | 0.473 (4) | 0.053 (3)* | |
C3 | 0.6634 (12) | 0.7138 (5) | 0.519 (5) | 0.047 (3)* | |
H3 | 0.6206 | 0.6693 | 0.4796 | 0.057* | |
N10 | 1.0910 (11) | 0.6431 (4) | 0.899 (4) | 0.057 (3)* | |
N11 | 1.0703 (11) | 0.5772 (5) | 0.867 (4) | 0.064 (3)* | |
N12 | 1.0658 (11) | 0.5155 (5) | 0.844 (4) | 0.075 (3)* |
N24—N25 | 1.393 (16) | N4—N5 | 1.39 (2) |
N24—C29 | 1.382 (14) | N4—C9 | 1.390 (11) |
N24—C23 | 1.31 (3) | N4—C3 | 1.38 (4) |
N25—C26 | 1.33 (3) | N5—C6 | 1.26 (2) |
C26—C27 | 1.406 (18) | C6—C7 | 1.426 (14) |
C26—N210 | 1.37 (2) | C6—N10 | 1.37 (3) |
C27—C28 | 1.32 (2) | C7—C8 | 1.30 (2) |
C28—C29 | 1.39 (3) | C8—C9 | 1.41 (4) |
C29—N21 | 1.35 (2) | C9—N1 | 1.37 (3) |
N21—N22 | 1.41 (2) | N1—N2 | 1.338 (18) |
N22—C23 | 1.336 (15) | N2—C3 | 1.310 (13) |
N210—N211 | 1.237 (15) | N10—N11 | 1.231 (12) |
N211—N212 | 1.118 (12) | N11—N12 | 1.135 (13) |
C29—N24—N25 | 124.2 (16) | C9—N4—N5 | 123.3 (15) |
C23—N24—N25 | 128.1 (9) | C3—N4—N5 | 129.5 (10) |
C23—N24—C29 | 107.4 (10) | C3—N4—C9 | 107.2 (10) |
C26—N25—N24 | 113.0 (10) | C6—N5—N4 | 113.9 (10) |
N25—C26—C27 | 125.1 (17) | N5—C6—C7 | 125.9 (13) |
N25—C26—N210 | 117.5 (13) | N5—C6—N10 | 117.9 (10) |
N210—C26—C27 | 117 (2) | N10—C6—C7 | 116.0 (18) |
C28—C27—C26 | 120 (2) | C8—C7—C6 | 121 (2) |
C27—C28—C29 | 118.2 (14) | C7—C8—C9 | 117.0 (13) |
N24—C29—C28 | 118.9 (12) | N4—C9—C8 | 118.6 (12) |
N21—C29—N24 | 106.7 (16) | N1—C9—N4 | 105.7 (14) |
N21—C29—C28 | 134.3 (10) | N1—C9—C8 | 135.6 (9) |
C29—N21—N22 | 108.9 (10) | N2—N1—C9 | 108.5 (11) |
C23—N22—N21 | 104.1 (17) | C3—N2—N1 | 110.2 (13) |
N24—C23—N22 | 112.4 (12) | N2—C3—N4 | 108.1 (10) |
N211—N210—C26 | 117.2 (18) | N11—N10—C6 | 116.7 (18) |
N212—N211—N210 | 171.9 (19) | N12—N11—N10 | 173.7 (13) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.715 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.840 (12) Å | Cell parameters from 786 reflections |
b = 18.094 (2) Å | θ = 4.1–20.6° |
c = 8.820 (11) Å | µ = 0.13 mm−1 |
β = 94.13 (16)° | T = 296 K |
V = 1248 (2) Å3 | Plate, colorless |
Z = 8 | 0.35 × 0.27 × 0.16 mm |
KM-4 CCD diffractometer | 433 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.139 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.9°, θmin = 4.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −6→6 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.714, Tmax = 1.000 | l = −8→7 |
4613 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.079 | H-atom parameters constrained |
wR(F2) = 0.239 | w = 1/[σ2(Fo2) + (0.1638P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
433 reflections | Δρmax = 0.14 e Å−3 |
97 parameters | Δρmin = −0.16 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 1.11 (2) GPa (1110000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.657 (3) | 0.5019 (4) | 0.398 (3) | 0.035 (2)* | |
N25 | 0.563 (3) | 0.5581 (3) | 0.328 (3) | 0.034 (2)* | |
C26 | 0.451 (4) | 0.5358 (5) | 0.223 (3) | 0.040 (3)* | |
C27 | 0.439 (3) | 0.4604 (5) | 0.169 (3) | 0.046 (3)* | |
H27 | 0.3698 | 0.4494 | 0.0817 | 0.055* | |
C28 | 0.524 (4) | 0.4072 (5) | 0.243 (3) | 0.044 (3)* | |
H28 | 0.5133 | 0.3582 | 0.2117 | 0.053* | |
C29 | 0.635 (6) | 0.4277 (4) | 0.372 (5) | 0.039 (3)* | |
N21 | 0.751 (3) | 0.3902 (4) | 0.455 (2) | 0.048 (3)* | |
N22 | 0.843 (3) | 0.4399 (4) | 0.543 (3) | 0.049 (3)* | |
C23 | 0.785 (4) | 0.5064 (5) | 0.509 (3) | 0.039 (3)* | |
H23 | 0.8260 | 0.5500 | 0.5539 | 0.047* | |
N210 | 0.349 (3) | 0.5859 (4) | 0.141 (2) | 0.044 (2)* | |
N211 | 0.367 (3) | 0.6512 (4) | 0.182 (3) | 0.048 (3)* | |
N212 | 0.369 (4) | 0.7114 (5) | 0.206 (3) | 0.059 (3)* | |
N4 | 0.785 (3) | 0.7216 (3) | 0.636 (3) | 0.037 (2)* | |
N5 | 0.880 (3) | 0.6670 (3) | 0.711 (2) | 0.036 (2)* | |
C6 | 0.990 (4) | 0.6921 (5) | 0.812 (3) | 0.041 (3)* | |
C7 | 1.026 (4) | 0.7687 (4) | 0.848 (3) | 0.051 (3)* | |
H7 | 1.1102 | 0.7816 | 0.9238 | 0.062* | |
C8 | 0.935 (4) | 0.8208 (5) | 0.769 (3) | 0.048 (3)* | |
H8 | 0.9559 | 0.8708 | 0.7867 | 0.058* | |
C9 | 0.806 (3) | 0.7976 (4) | 0.659 (3) | 0.035 (3)* | |
N1 | 0.708 (3) | 0.8321 (4) | 0.555 (3) | 0.047 (3)* | |
N2 | 0.613 (4) | 0.7797 (4) | 0.473 (3) | 0.045 (3)* | |
C3 | 0.667 (4) | 0.7149 (4) | 0.522 (3) | 0.039 (3)* | |
H3 | 0.6268 | 0.6701 | 0.4815 | 0.046* | |
N10 | 1.088 (3) | 0.6429 (4) | 0.905 (3) | 0.045 (2)* | |
N11 | 1.073 (5) | 0.5759 (4) | 0.864 (4) | 0.048 (3)* | |
N12 | 1.065 (4) | 0.5144 (5) | 0.849 (3) | 0.057 (3)* |
N24—N25 | 1.379 (9) | N4—N5 | 1.376 (9) |
N24—C29 | 1.371 (11) | N4—C9 | 1.399 (10) |
N24—C23 | 1.348 (10) | N4—C3 | 1.328 (12) |
N25—C26 | 1.295 (10) | N5—C6 | 1.281 (11) |
C26—C27 | 1.446 (17) | C6—C7 | 1.446 (13) |
C26—N210 | 1.377 (12) | C6—N10 | 1.401 (11) |
C27—C28 | 1.318 (11) | C7—C8 | 1.350 (12) |
C28—C29 | 1.432 (13) | C8—C9 | 1.410 (11) |
C29—N21 | 1.313 (13) | C9—N1 | 1.315 (11) |
N21—N22 | 1.361 (10) | N1—N2 | 1.379 (11) |
N22—C23 | 1.313 (13) | N2—C3 | 1.308 (10) |
N210—N211 | 1.242 (11) | N10—N11 | 1.268 (13) |
N211—N212 | 1.110 (10) | N11—N12 | 1.122 (10) |
C29—N24—N25 | 126.0 (7) | N5—N4—C9 | 125.5 (7) |
C23—N24—N25 | 128.8 (7) | C3—N4—N5 | 128.6 (7) |
C23—N24—C29 | 105.2 (6) | C3—N4—C9 | 105.7 (6) |
C26—N25—N24 | 114.0 (7) | C6—N5—N4 | 113.2 (7) |
N25—C26—C27 | 123.7 (10) | N5—C6—C7 | 127.3 (8) |
N25—C26—N210 | 120.6 (8) | N5—C6—N10 | 119.7 (7) |
N210—C26—C27 | 115.2 (8) | N10—C6—C7 | 112.9 (7) |
C28—C27—C26 | 120.6 (10) | C8—C7—C6 | 117.8 (9) |
C27—C28—C29 | 117.4 (9) | C7—C8—C9 | 118.3 (8) |
N24—C29—C28 | 116.9 (8) | N4—C9—C8 | 117.7 (7) |
N21—C29—N24 | 109.7 (8) | N1—C9—N4 | 107.8 (7) |
N21—C29—C28 | 131.5 (16) | N1—C9—C8 | 133.9 (9) |
C29—N21—N22 | 107.0 (7) | C9—N1—N2 | 108.0 (7) |
C23—N22—N21 | 108.4 (7) | C3—N2—N1 | 107.2 (7) |
N22—C23—N24 | 109.6 (7) | N2—C3—N4 | 111.0 (7) |
N211—N210—C26 | 114.9 (8) | N11—N10—C6 | 113.9 (8) |
N212—N211—N210 | 171.6 (9) | N12—N11—N10 | 170 (3) |
C5H3N7 | F(000) = 656 |
Mr = 161.14 | Dx = 1.749 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7755 (16) Å | Cell parameters from 475 reflections |
b = 18.017 (3) Å | θ = 4.3–20.6° |
c = 8.75 (3) Å | µ = 0.13 mm−1 |
β = 93.53 (9)° | T = 296 K |
V = 1224 (4) Å3 | Plate, colorless |
Z = 8 | 0.35 × 0.28 × 0.17 mm |
KM-4 CCD diffractometer | 526 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 274 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.182 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −9→9 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −22→22 |
Tmin = 0.745, Tmax = 1.000 | l = −2→2 |
4881 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.078 | H-atom parameters constrained |
wR(F2) = 0.206 | w = 1/[σ2(Fo2) + (0.0844P)2 + 0.2618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
526 reflections | Δρmax = 0.13 e Å−3 |
97 parameters | Δρmin = −0.17 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 1.40 (2) GPa (1400000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N24 | 0.6603 (11) | 0.5015 (4) | 0.396 (3) | 0.037 (2)* | |
N25 | 0.5641 (11) | 0.5586 (4) | 0.327 (3) | 0.041 (2)* | |
C26 | 0.4549 (16) | 0.5352 (5) | 0.215 (5) | 0.045 (3)* | |
C27 | 0.4338 (16) | 0.4612 (5) | 0.168 (4) | 0.053 (3)* | |
H27 | 0.3539 | 0.4491 | 0.0890 | 0.064* | |
C28 | 0.5288 (15) | 0.4079 (5) | 0.239 (5) | 0.051 (3)* | |
H28 | 0.5185 | 0.3588 | 0.2066 | 0.061* | |
C29 | 0.6458 (14) | 0.4275 (5) | 0.364 (4) | 0.043 (3)* | |
N21 | 0.7563 (12) | 0.3891 (4) | 0.454 (4) | 0.048 (3)* | |
N22 | 0.8395 (12) | 0.4404 (4) | 0.558 (4) | 0.053 (3)* | |
C23 | 0.7848 (15) | 0.5066 (5) | 0.506 (4) | 0.046 (3)* | |
H23 | 0.8294 | 0.5514 | 0.5428 | 0.055* | |
N210 | 0.3459 (13) | 0.5870 (4) | 0.140 (4) | 0.046 (2)* | |
N211 | 0.3605 (11) | 0.6523 (5) | 0.184 (3) | 0.052 (3)* | |
N212 | 0.3602 (11) | 0.7131 (5) | 0.209 (3) | 0.061 (3)* | |
N4 | 0.7858 (10) | 0.7216 (4) | 0.638 (3) | 0.040 (2)* | |
N5 | 0.8726 (12) | 0.6666 (4) | 0.722 (4) | 0.047 (3)* | |
C6 | 0.9905 (14) | 0.6920 (5) | 0.813 (5) | 0.043 (3)* | |
C7 | 1.0233 (13) | 0.7692 (5) | 0.847 (4) | 0.054 (3)* | |
H7 | 1.1081 | 0.7823 | 0.9220 | 0.064* | |
C8 | 0.9337 (15) | 0.8206 (5) | 0.773 (5) | 0.047 (3)* | |
H8 | 0.9492 | 0.8705 | 0.7974 | 0.056* | |
C9 | 0.8108 (15) | 0.7978 (5) | 0.654 (4) | 0.042 (3)* | |
N1 | 0.7068 (12) | 0.8324 (4) | 0.549 (3) | 0.055 (3)* | |
N2 | 0.6141 (10) | 0.7790 (4) | 0.474 (3) | 0.050 (3)* | |
C3 | 0.6621 (14) | 0.7136 (5) | 0.523 (4) | 0.046 (3)* | |
H3 | 0.6184 | 0.6687 | 0.4858 | 0.055* | |
N10 | 1.0923 (11) | 0.6422 (4) | 0.898 (3) | 0.051 (3)* | |
N11 | 1.0709 (12) | 0.5754 (4) | 0.863 (4) | 0.053 (3)* | |
N12 | 1.0659 (12) | 0.5136 (5) | 0.850 (4) | 0.071 (3)* |
N24—N25 | 1.389 (15) | N4—N5 | 1.39 (2) |
N24—C29 | 1.366 (13) | N4—C9 | 1.392 (11) |
N24—C23 | 1.33 (2) | N4—C3 | 1.35 (3) |
N25—C26 | 1.33 (3) | N5—C6 | 1.26 (2) |
C26—C27 | 1.400 (18) | C6—C7 | 1.441 (15) |
C26—N210 | 1.40 (2) | C6—N10 | 1.38 (2) |
C27—C28 | 1.34 (2) | C7—C8 | 1.31 (2) |
C28—C29 | 1.43 (4) | C8—C9 | 1.43 (3) |
C29—N21 | 1.32 (2) | C9—N1 | 1.34 (3) |
N21—N22 | 1.42 (2) | N1—N2 | 1.348 (17) |
N22—C23 | 1.336 (16) | N2—C3 | 1.301 (13) |
N210—N211 | 1.240 (16) | N10—N11 | 1.251 (13) |
N211—N212 | 1.118 (12) | N11—N12 | 1.120 (11) |
C29—N24—N25 | 126.9 (16) | N5—N4—C9 | 126.3 (15) |
C23—N24—N25 | 128.0 (10) | C3—N4—N5 | 128.2 (10) |
C23—N24—C29 | 105.1 (12) | C3—N4—C9 | 105.5 (12) |
C26—N25—N24 | 112.9 (10) | C6—N5—N4 | 112.7 (10) |
N25—C26—C27 | 125.1 (16) | N5—C6—C7 | 126.4 (13) |
N25—C26—N210 | 118.4 (12) | N5—C6—N10 | 118.2 (9) |
N210—C26—C27 | 116 (2) | N10—C6—C7 | 115.2 (17) |
C28—C27—C26 | 120 (2) | C8—C7—C6 | 119.9 (19) |
C27—C28—C29 | 119.0 (15) | C7—C8—C9 | 118.0 (12) |
N24—C29—C28 | 116.0 (14) | N4—C9—C8 | 116.0 (14) |
N21—C29—N24 | 110.4 (17) | N1—C9—N4 | 108.4 (15) |
N21—C29—C28 | 133.4 (12) | N1—C9—C8 | 135.6 (10) |
C29—N21—N22 | 107.0 (10) | C9—N1—N2 | 106.6 (11) |
C23—N22—N21 | 103.8 (17) | C3—N2—N1 | 110.5 (13) |
N24—C23—N22 | 112.9 (12) | N2—C3—N4 | 109.0 (10) |
N211—N210—C26 | 116.5 (18) | N11—N10—C6 | 115.3 (17) |
N212—N211—N210 | 172 (2) | N12—N11—N10 | 170 (3) |
C6H5N7·0.3(O) | Dx = 1.451 Mg m−3 |
Mr = 179.97 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, I41/a | Cell parameters from 5855 reflections |
a = 28.1674 (5) Å | θ = 3.1–76.1° |
c = 4.15209 (11) Å | µ = 0.90 mm−1 |
V = 3294.29 (14) Å3 | T = 296 K |
Z = 16 | Plate, colorless |
F(000) = 1478 | 0.39 × 0.29 × 0.12 mm |
SuperNova, Single source at offset, Atlas diffractometer | 1725 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 1533 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.019 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 76.6°, θmin = 6.3° |
ω scans | h = −34→35 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −35→31 |
Tmin = 0.915, Tmax = 1.000 | l = −3→5 |
11092 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.5562P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1725 reflections | Δρmax = 0.10 e Å−3 |
128 parameters | Δρmin = −0.14 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57725 (3) | 0.61830 (3) | 0.8460 (2) | 0.0545 (3) | |
N4 | 0.58664 (3) | 0.58068 (3) | 1.0428 (2) | 0.0549 (3) | |
N10 | 0.60929 (5) | 0.67919 (4) | 0.5377 (3) | 0.0783 (4) | |
N11 | 0.56701 (5) | 0.68658 (4) | 0.4586 (3) | 0.0739 (3) | |
N2 | 0.57674 (5) | 0.51959 (4) | 1.3535 (3) | 0.0784 (4) | |
C3 | 0.55422 (5) | 0.55222 (4) | 1.1877 (3) | 0.0607 (3) | |
N12 | 0.53108 (7) | 0.69623 (6) | 0.3698 (4) | 0.0985 (5) | |
N1 | 0.62499 (5) | 0.52655 (4) | 1.3186 (4) | 0.0871 (4) | |
C6 | 0.61525 (4) | 0.63965 (4) | 0.7458 (3) | 0.0614 (3) | |
C8 | 0.67056 (5) | 0.58905 (6) | 1.0123 (5) | 0.0841 (5) | |
H8 | 0.701250 | 0.579520 | 1.063672 | 0.101* | |
C9 | 0.63066 (5) | 0.56386 (5) | 1.1299 (4) | 0.0695 (4) | |
C13 | 0.50257 (5) | 0.55931 (5) | 1.1626 (4) | 0.0732 (4) | |
H13A | 0.493146 | 0.557381 | 0.940790 | 0.110* | |
H13B | 0.494397 | 0.589996 | 1.246614 | 0.110* | |
H13C | 0.486473 | 0.535185 | 1.284052 | 0.110* | |
C7 | 0.66285 (5) | 0.62712 (6) | 0.8245 (4) | 0.0781 (4) | |
H7 | 0.688164 | 0.644982 | 0.747108 | 0.094* | |
O1 | 0.7337 (12) | 0.4877 (15) | 0.324 (16) | 0.209 (9) | 0.3 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0587 (5) | 0.0457 (4) | 0.0591 (5) | −0.0038 (4) | 0.0040 (4) | 0.0011 (4) |
N4 | 0.0581 (5) | 0.0469 (5) | 0.0595 (5) | −0.0012 (4) | −0.0021 (4) | −0.0002 (4) |
N10 | 0.0855 (8) | 0.0645 (6) | 0.0850 (8) | −0.0153 (6) | 0.0212 (6) | 0.0093 (6) |
N11 | 0.0935 (9) | 0.0561 (6) | 0.0720 (7) | −0.0008 (6) | 0.0161 (6) | 0.0080 (5) |
N2 | 0.0956 (9) | 0.0575 (6) | 0.0820 (8) | −0.0043 (5) | −0.0145 (7) | 0.0132 (5) |
C3 | 0.0723 (7) | 0.0481 (5) | 0.0618 (7) | −0.0069 (5) | −0.0027 (5) | 0.0039 (5) |
N12 | 0.1095 (12) | 0.0862 (9) | 0.0999 (11) | 0.0196 (8) | 0.0007 (9) | 0.0187 (8) |
N1 | 0.0930 (9) | 0.0659 (7) | 0.1023 (10) | 0.0098 (6) | −0.0274 (8) | 0.0070 (6) |
C6 | 0.0633 (7) | 0.0543 (6) | 0.0667 (7) | −0.0091 (5) | 0.0117 (5) | −0.0059 (5) |
C8 | 0.0565 (7) | 0.0839 (10) | 0.1120 (12) | 0.0067 (6) | −0.0088 (8) | −0.0175 (9) |
C9 | 0.0643 (7) | 0.0603 (7) | 0.0839 (9) | 0.0066 (5) | −0.0128 (6) | −0.0080 (6) |
C13 | 0.0703 (8) | 0.0667 (7) | 0.0826 (9) | −0.0122 (6) | 0.0069 (7) | 0.0130 (6) |
C7 | 0.0588 (7) | 0.0783 (9) | 0.0973 (11) | −0.0123 (6) | 0.0124 (7) | −0.0143 (8) |
O1 | 0.157 (13) | 0.170 (12) | 0.30 (3) | −0.026 (6) | −0.061 (17) | 0.045 (12) |
N5—N4 | 1.3642 (13) | C6—C7 | 1.424 (2) |
N5—C6 | 1.2962 (15) | C8—H8 | 0.9300 |
N4—C3 | 1.3561 (16) | C8—C9 | 1.416 (2) |
N4—C9 | 1.3757 (16) | C8—C7 | 1.343 (2) |
N10—N11 | 1.2530 (19) | C13—H13A | 0.9600 |
N10—C6 | 1.4195 (18) | C13—H13B | 0.9600 |
N11—N12 | 1.111 (2) | C13—H13C | 0.9600 |
N2—C3 | 1.3118 (18) | C7—H7 | 0.9300 |
N2—N1 | 1.381 (2) | O1—O1i | 1.319 (8) |
C3—C13 | 1.472 (2) | O1—O1ii | 1.319 (8) |
N1—C9 | 1.320 (2) | ||
C6—N5—N4 | 113.10 (10) | C7—C8—H8 | 120.9 |
N5—N4—C9 | 126.86 (11) | C7—C8—C9 | 118.15 (13) |
C3—N4—N5 | 126.47 (10) | N4—C9—C8 | 116.87 (13) |
C3—N4—C9 | 106.67 (11) | N1—C9—N4 | 108.72 (13) |
N11—N10—C6 | 113.73 (11) | N1—C9—C8 | 134.39 (14) |
N12—N11—N10 | 173.56 (15) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.74 (12) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 123.64 (11) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.74 (12) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 127.59 (12) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 107.13 (12) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 117.49 (12) | C6—C7—H7 | 120.6 |
N5—C6—C7 | 126.07 (13) | C8—C7—C6 | 118.89 (13) |
N10—C6—C7 | 116.44 (12) | C8—C7—H7 | 120.6 |
C9—C8—H8 | 120.9 | O1i—O1—O1ii | 128.3 (6) |
N5—N4—C3—N2 | 179.05 (11) | C3—N4—C9—N1 | 0.32 (15) |
N5—N4—C3—C13 | −2.6 (2) | C3—N4—C9—C8 | −178.43 (13) |
N5—N4—C9—N1 | −178.99 (11) | C3—N2—N1—C9 | 0.09 (18) |
N5—N4—C9—C8 | 2.3 (2) | N1—N2—C3—N4 | 0.11 (16) |
N5—C6—C7—C8 | 2.0 (2) | N1—N2—C3—C13 | −178.14 (14) |
N4—N5—C6—N10 | 179.64 (10) | C6—N5—N4—C3 | 178.87 (11) |
N4—N5—C6—C7 | −0.22 (18) | C6—N5—N4—C9 | −1.96 (17) |
N10—C6—C7—C8 | −177.90 (14) | C9—N4—C3—N2 | −0.26 (15) |
N11—N10—C6—N5 | −4.60 (19) | C9—N4—C3—C13 | 178.08 (13) |
N11—N10—C6—C7 | 175.28 (13) | C9—C8—C7—C6 | −1.6 (2) |
N2—N1—C9—N4 | −0.25 (17) | C7—C8—C9—N4 | −0.3 (2) |
N2—N1—C9—C8 | 178.18 (17) | C7—C8—C9—N1 | −178.65 (16) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
C6H5N7·0.4(O) | Dx = 1.475 Mg m−3 |
Mr = 181.57 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, I41/a | Cell parameters from 2623 reflections |
a = 28.1659 (3) Å | θ = 3.1–76.1° |
c = 4.12335 (8) Å | µ = 0.92 mm−1 |
V = 3271.13 (10) Å3 | T = 250 K |
Z = 16 | Plate, colorless |
F(000) = 1491 | 0.39 × 0.29 × 0.12 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1693 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1533 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.011 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 76.4°, θmin = 3.1° |
ω scans | h = −33→33 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −29→35 |
Tmin = 0.933, Tmax = 1.000 | l = −2→5 |
3756 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0572P)2 + 0.7353P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.101 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.14 e Å−3 |
1693 reflections | Δρmin = −0.16 e Å−3 |
129 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00058 (11) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57707 (3) | 0.61845 (3) | 0.8473 (2) | 0.0445 (2) | |
N4 | 0.58651 (3) | 0.58075 (3) | 1.0452 (2) | 0.0452 (2) | |
N10 | 0.60936 (4) | 0.67964 (4) | 0.5401 (3) | 0.0639 (3) | |
N11 | 0.56712 (5) | 0.68691 (4) | 0.4595 (3) | 0.0601 (3) | |
N2 | 0.57651 (5) | 0.51952 (4) | 1.3563 (3) | 0.0659 (3) | |
C3 | 0.55399 (4) | 0.55206 (4) | 1.1885 (3) | 0.0503 (3) | |
N12 | 0.53103 (6) | 0.69645 (5) | 0.3690 (4) | 0.0805 (4) | |
N1 | 0.62492 (5) | 0.52673 (4) | 1.3238 (4) | 0.0736 (4) | |
C6 | 0.61520 (4) | 0.63998 (4) | 0.7490 (3) | 0.0500 (3) | |
C8 | 0.67055 (5) | 0.58950 (5) | 1.0197 (4) | 0.0700 (4) | |
H8 | 0.701212 | 0.580131 | 1.073665 | 0.084* | |
C9 | 0.63051 (4) | 0.56408 (4) | 1.1347 (3) | 0.0579 (3) | |
C13 | 0.50224 (5) | 0.55895 (5) | 1.1600 (4) | 0.0607 (3) | |
H13A | 0.493136 | 0.557021 | 0.935987 | 0.091* | |
H13B | 0.493822 | 0.589586 | 1.244280 | 0.091* | |
H13C | 0.486087 | 0.534730 | 1.281015 | 0.091* | |
C7 | 0.66286 (5) | 0.62758 (5) | 0.8301 (4) | 0.0642 (4) | |
H7 | 0.688181 | 0.645526 | 0.753087 | 0.077* | |
O1 | 0.7283 (2) | 0.4982 (9) | 0.420 (7) | 0.201 (5) | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0488 (5) | 0.0388 (4) | 0.0459 (5) | −0.0029 (3) | 0.0026 (4) | 0.0011 (3) |
N4 | 0.0491 (5) | 0.0386 (4) | 0.0477 (5) | −0.0004 (3) | −0.0031 (4) | −0.0005 (3) |
N10 | 0.0683 (7) | 0.0537 (6) | 0.0697 (7) | −0.0122 (5) | 0.0167 (5) | 0.0077 (5) |
N11 | 0.0770 (8) | 0.0460 (5) | 0.0575 (6) | −0.0002 (5) | 0.0131 (5) | 0.0067 (4) |
N2 | 0.0844 (8) | 0.0478 (5) | 0.0657 (7) | −0.0037 (5) | −0.0139 (6) | 0.0103 (5) |
C3 | 0.0627 (7) | 0.0403 (5) | 0.0480 (6) | −0.0064 (4) | −0.0022 (5) | 0.0028 (4) |
N12 | 0.0917 (10) | 0.0704 (8) | 0.0794 (9) | 0.0166 (7) | 0.0010 (7) | 0.0155 (6) |
N1 | 0.0816 (8) | 0.0548 (6) | 0.0843 (8) | 0.0091 (5) | −0.0260 (7) | 0.0054 (6) |
C6 | 0.0522 (6) | 0.0446 (5) | 0.0533 (6) | −0.0069 (4) | 0.0090 (5) | −0.0061 (5) |
C8 | 0.0481 (6) | 0.0711 (8) | 0.0908 (10) | 0.0061 (6) | −0.0095 (7) | −0.0162 (8) |
C9 | 0.0554 (7) | 0.0504 (6) | 0.0679 (8) | 0.0066 (5) | −0.0131 (6) | −0.0079 (5) |
C13 | 0.0604 (7) | 0.0559 (7) | 0.0660 (8) | −0.0102 (5) | 0.0062 (6) | 0.0103 (6) |
C7 | 0.0475 (6) | 0.0657 (8) | 0.0793 (9) | −0.0093 (5) | 0.0095 (6) | −0.0139 (7) |
O1 | 0.113 (4) | 0.178 (7) | 0.311 (19) | 0.004 (6) | −0.007 (9) | 0.046 (8) |
N5—N4 | 1.3651 (12) | C6—C7 | 1.4269 (18) |
N5—C6 | 1.2982 (14) | C8—H8 | 0.9300 |
N4—C3 | 1.3570 (15) | C8—C9 | 1.418 (2) |
N4—C9 | 1.3757 (15) | C8—C7 | 1.345 (2) |
N10—N11 | 1.2521 (17) | C13—H13A | 0.9600 |
N10—C6 | 1.4201 (16) | C13—H13B | 0.9600 |
N11—N12 | 1.1157 (18) | C13—H13C | 0.9600 |
N2—C3 | 1.3120 (17) | C7—H7 | 0.9300 |
N2—N1 | 1.3852 (19) | O1—O1i | 1.347 (5) |
C3—C13 | 1.4750 (18) | O1—O1ii | 1.347 (5) |
N1—C9 | 1.3188 (19) | ||
C6—N5—N4 | 112.88 (9) | C7—C8—H8 | 121.0 |
N5—N4—C9 | 126.96 (10) | C7—C8—C9 | 117.98 (12) |
C3—N4—N5 | 126.30 (9) | N4—C9—C8 | 117.03 (12) |
C3—N4—C9 | 106.74 (10) | N1—C9—N4 | 108.88 (12) |
N11—N10—C6 | 113.56 (10) | N1—C9—C8 | 134.07 (13) |
N12—N11—N10 | 173.65 (14) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.81 (11) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 123.64 (10) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.62 (11) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 127.72 (11) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 106.95 (11) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 117.46 (11) | C6—C7—H7 | 120.6 |
N5—C6—C7 | 126.21 (12) | C8—C7—C6 | 118.88 (12) |
N10—C6—C7 | 116.33 (11) | C8—C7—H7 | 120.6 |
C9—C8—H8 | 121.0 | O1i—O1—O1ii | 125.8 (3) |
N5—N4—C3—N2 | 179.14 (10) | C3—N4—C9—N1 | 0.19 (14) |
N5—N4—C3—C13 | −2.55 (18) | C3—N4—C9—C8 | −178.38 (12) |
N5—N4—C9—N1 | −179.06 (11) | C3—N2—N1—C9 | 0.11 (16) |
N5—N4—C9—C8 | 2.37 (18) | N1—N2—C3—N4 | 0.01 (15) |
N5—C6—C7—C8 | 1.7 (2) | N1—N2—C3—C13 | −178.21 (13) |
N4—N5—C6—N10 | 179.69 (9) | C6—N5—N4—C3 | 178.93 (10) |
N4—N5—C6—C7 | −0.15 (17) | C6—N5—N4—C9 | −1.95 (15) |
N10—C6—C7—C8 | −178.15 (13) | C9—N4—C3—N2 | −0.12 (13) |
N11—N10—C6—N5 | −4.47 (17) | C9—N4—C3—C13 | 178.19 (12) |
N11—N10—C6—C7 | 175.39 (11) | C9—C8—C7—C6 | −1.2 (2) |
N2—N1—C9—N4 | −0.18 (15) | C7—C8—C9—N4 | −0.6 (2) |
N2—N1—C9—C8 | 178.04 (15) | C7—C8—C9—N1 | −178.70 (15) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
C6H5N7·0.4(O) | Dx = 1.489 Mg m−3 |
Mr = 181.57 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, I41/a | Cell parameters from 2678 reflections |
a = 28.1314 (4) Å | θ = 2.2–76.0° |
c = 4.09378 (10) Å | µ = 0.93 mm−1 |
V = 3239.72 (12) Å3 | T = 200 K |
Z = 16 | Plate, colorless |
F(000) = 1491 | 0.39 × 0.29 × 0.12 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1677 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1534 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.010 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 76.2°, θmin = 3.1° |
ω scans | h = −35→29 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −33→33 |
Tmin = 0.909, Tmax = 1.000 | l = −2→5 |
3689 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.101 | w = 1/[σ2(Fo2) + (0.0578P)2 + 1.0453P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
1677 reflections | Δρmax = 0.13 e Å−3 |
128 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57699 (3) | 0.61861 (3) | 0.8484 (2) | 0.0375 (2) | |
N4 | 0.58650 (3) | 0.58080 (3) | 1.0469 (2) | 0.0381 (2) | |
N10 | 0.60946 (4) | 0.68017 (4) | 0.5426 (3) | 0.0532 (3) | |
N11 | 0.56711 (4) | 0.68727 (4) | 0.4604 (3) | 0.0499 (3) | |
N2 | 0.57657 (5) | 0.51935 (4) | 1.3587 (3) | 0.0546 (3) | |
C3 | 0.55394 (4) | 0.55188 (4) | 1.1894 (3) | 0.0423 (3) | |
N12 | 0.53092 (5) | 0.69662 (5) | 0.3684 (3) | 0.0659 (4) | |
N1 | 0.62503 (5) | 0.52681 (4) | 1.3285 (3) | 0.0615 (3) | |
C6 | 0.61520 (4) | 0.64040 (4) | 0.7514 (3) | 0.0420 (3) | |
C8 | 0.67070 (5) | 0.59002 (5) | 1.0263 (4) | 0.0583 (4) | |
H8 | 0.701375 | 0.580805 | 1.082536 | 0.070* | |
C9 | 0.63055 (4) | 0.56431 (4) | 1.1391 (3) | 0.0484 (3) | |
C13 | 0.50207 (5) | 0.55860 (5) | 1.1580 (3) | 0.0500 (3) | |
H13A | 0.493245 | 0.556935 | 0.931737 | 0.075* | |
H13B | 0.493405 | 0.589126 | 1.244321 | 0.075* | |
H13C | 0.485848 | 0.534124 | 1.277410 | 0.075* | |
C7 | 0.66295 (5) | 0.62818 (5) | 0.8353 (4) | 0.0535 (3) | |
H7 | 0.688279 | 0.646303 | 0.759237 | 0.064* | |
O1 | 0.72780 (18) | 0.4990 (6) | 0.426 (5) | 0.180 (4) | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0415 (5) | 0.0327 (4) | 0.0384 (5) | −0.0023 (3) | 0.0018 (4) | 0.0007 (4) |
N4 | 0.0419 (5) | 0.0327 (4) | 0.0398 (5) | −0.0002 (3) | −0.0025 (4) | −0.0006 (3) |
N10 | 0.0552 (6) | 0.0458 (6) | 0.0584 (7) | −0.0098 (5) | 0.0129 (5) | 0.0063 (5) |
N11 | 0.0635 (7) | 0.0377 (5) | 0.0485 (6) | −0.0010 (5) | 0.0109 (5) | 0.0056 (4) |
N2 | 0.0699 (7) | 0.0396 (5) | 0.0542 (6) | −0.0034 (5) | −0.0115 (5) | 0.0081 (5) |
C3 | 0.0528 (6) | 0.0344 (5) | 0.0397 (6) | −0.0052 (4) | −0.0016 (5) | 0.0022 (4) |
N12 | 0.0745 (9) | 0.0583 (7) | 0.0649 (8) | 0.0126 (6) | 0.0012 (7) | 0.0129 (6) |
N1 | 0.0676 (7) | 0.0462 (6) | 0.0708 (8) | 0.0076 (5) | −0.0222 (6) | 0.0038 (5) |
C6 | 0.0442 (6) | 0.0374 (5) | 0.0442 (6) | −0.0053 (4) | 0.0073 (5) | −0.0051 (5) |
C8 | 0.0410 (6) | 0.0585 (8) | 0.0753 (9) | 0.0055 (5) | −0.0093 (6) | −0.0135 (7) |
C9 | 0.0464 (6) | 0.0421 (6) | 0.0568 (7) | 0.0054 (5) | −0.0112 (5) | −0.0072 (5) |
C13 | 0.0502 (7) | 0.0456 (6) | 0.0543 (7) | −0.0083 (5) | 0.0049 (6) | 0.0078 (5) |
C7 | 0.0397 (6) | 0.0546 (7) | 0.0663 (8) | −0.0072 (5) | 0.0070 (6) | −0.0123 (6) |
O1 | 0.097 (3) | 0.145 (5) | 0.297 (15) | 0.003 (5) | 0.002 (7) | 0.023 (6) |
N5—N4 | 1.3651 (13) | C6—C7 | 1.4286 (18) |
N5—C6 | 1.2995 (15) | C8—H8 | 0.9300 |
N4—C3 | 1.3569 (15) | C8—C9 | 1.418 (2) |
N4—C9 | 1.3759 (15) | C8—C7 | 1.346 (2) |
N10—N11 | 1.2541 (17) | C13—H13A | 0.9600 |
N10—C6 | 1.4171 (16) | C13—H13B | 0.9600 |
N11—N12 | 1.1168 (18) | C13—H13C | 0.9600 |
N2—C3 | 1.3124 (16) | C7—H7 | 0.9300 |
N2—N1 | 1.3849 (18) | O1—O1i | 1.352 (5) |
C3—C13 | 1.4771 (18) | O1—O1ii | 1.352 (5) |
N1—C9 | 1.3184 (18) | ||
C6—N5—N4 | 112.79 (9) | C7—C8—H8 | 121.1 |
N5—N4—C9 | 127.06 (10) | C7—C8—C9 | 117.83 (12) |
C3—N4—N5 | 126.23 (10) | N4—C9—C8 | 117.12 (12) |
C3—N4—C9 | 106.71 (10) | N1—C9—N4 | 108.97 (12) |
N11—N10—C6 | 113.32 (10) | N1—C9—C8 | 133.88 (12) |
N12—N11—N10 | 173.71 (13) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.94 (11) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 123.53 (10) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.53 (11) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 127.91 (11) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 106.83 (11) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 117.55 (11) | C6—C7—H7 | 120.5 |
N5—C6—C7 | 126.20 (11) | C8—C7—C6 | 118.96 (12) |
N10—C6—C7 | 116.25 (11) | C8—C7—H7 | 120.5 |
C9—C8—H8 | 121.1 | O1i—O1—O1ii | 124.9 (3) |
N5—N4—C3—N2 | 179.27 (10) | C3—N4—C9—N1 | 0.27 (14) |
N5—N4—C3—C13 | −2.35 (18) | C3—N4—C9—C8 | −178.21 (11) |
N5—N4—C9—N1 | −179.21 (11) | C3—N2—N1—C9 | 0.08 (16) |
N5—N4—C9—C8 | 2.31 (18) | N1—N2—C3—N4 | 0.09 (15) |
N5—C6—C7—C8 | 1.7 (2) | N1—N2—C3—C13 | −178.20 (12) |
N4—N5—C6—N10 | 179.75 (10) | C6—N5—N4—C3 | 178.87 (11) |
N4—N5—C6—C7 | −0.34 (17) | C6—N5—N4—C9 | −1.74 (16) |
N10—C6—C7—C8 | −178.37 (12) | C9—N4—C3—N2 | −0.22 (13) |
N11—N10—C6—N5 | −4.49 (17) | C9—N4—C3—C13 | 178.16 (11) |
N11—N10—C6—C7 | 175.58 (11) | C9—C8—C7—C6 | −1.1 (2) |
N2—N1—C9—N4 | −0.22 (15) | C7—C8—C9—N4 | −0.72 (19) |
N2—N1—C9—C8 | 177.91 (15) | C7—C8—C9—N1 | −178.72 (15) |
Symmetry codes: (i) y+1/4, −x+5/4, z+1/4; (ii) −y+5/4, x−1/4, z−1/4. |
C6H5N7·0.4(O) | Dx = 1.501 Mg m−3 |
Mr = 181.57 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, I41/a | Cell parameters from 2415 reflections |
a = 28.1081 (4) Å | θ = 3.1–76.0° |
c = 4.06918 (11) Å | µ = 0.93 mm−1 |
V = 3214.91 (13) Å3 | T = 150 K |
Z = 16 | Plate, colorless |
F(000) = 1491 | 0.39 × 0.29 × 0.12 mm |
SuperNova, Single source at offset/far, Atlas diffractometer | 1661 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1542 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.012 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 76.2°, θmin = 3.1° |
ω scans | h = −33→33 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −35→29 |
Tmin = 0.895, Tmax = 1.000 | l = −2→5 |
3636 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0528P)2 + 1.5784P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
1661 reflections | Δρmax = 0.16 e Å−3 |
128 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57692 (3) | 0.61876 (3) | 0.8490 (2) | 0.0314 (2) | |
N4 | 0.58651 (3) | 0.58087 (3) | 1.0487 (2) | 0.0319 (2) | |
N10 | 0.60950 (4) | 0.68064 (4) | 0.5440 (3) | 0.0432 (3) | |
N11 | 0.56706 (4) | 0.68757 (4) | 0.4606 (3) | 0.0406 (3) | |
N2 | 0.57661 (4) | 0.51919 (4) | 1.3610 (3) | 0.0455 (3) | |
C3 | 0.55392 (4) | 0.55167 (4) | 1.1902 (3) | 0.0354 (3) | |
N12 | 0.53066 (5) | 0.69677 (4) | 0.3676 (3) | 0.0532 (3) | |
N1 | 0.62517 (5) | 0.52685 (4) | 1.3328 (3) | 0.0515 (3) | |
C6 | 0.61521 (4) | 0.64078 (4) | 0.7534 (3) | 0.0349 (3) | |
C8 | 0.67090 (5) | 0.59042 (5) | 1.0309 (4) | 0.0487 (4) | |
H8 | 0.701593 | 0.581265 | 1.088176 | 0.058* | |
C9 | 0.63064 (4) | 0.56451 (4) | 1.1426 (3) | 0.0410 (3) | |
C13 | 0.50194 (5) | 0.55828 (4) | 1.1564 (3) | 0.0414 (3) | |
H13A | 0.493310 | 0.556595 | 0.928468 | 0.062* | |
H13B | 0.493118 | 0.588802 | 1.242996 | 0.062* | |
H13C | 0.485665 | 0.533734 | 1.275882 | 0.062* | |
C7 | 0.66311 (4) | 0.62868 (5) | 0.8395 (4) | 0.0443 (3) | |
H7 | 0.688431 | 0.646980 | 0.764262 | 0.053* | |
O1 | 0.72773 (16) | 0.4988 (4) | 0.434 (4) | 0.162 (4) | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0346 (5) | 0.0273 (4) | 0.0324 (5) | −0.0019 (3) | 0.0010 (4) | 0.0006 (4) |
N4 | 0.0355 (5) | 0.0271 (4) | 0.0332 (5) | −0.0003 (3) | −0.0022 (4) | −0.0003 (4) |
N10 | 0.0438 (6) | 0.0374 (5) | 0.0486 (6) | −0.0079 (4) | 0.0097 (5) | 0.0046 (5) |
N11 | 0.0520 (7) | 0.0307 (5) | 0.0390 (6) | −0.0014 (4) | 0.0088 (5) | 0.0044 (4) |
N2 | 0.0586 (7) | 0.0327 (5) | 0.0452 (6) | −0.0030 (4) | −0.0101 (5) | 0.0057 (4) |
C3 | 0.0447 (6) | 0.0284 (5) | 0.0332 (6) | −0.0046 (4) | −0.0016 (5) | 0.0010 (4) |
N12 | 0.0604 (8) | 0.0466 (6) | 0.0525 (7) | 0.0097 (5) | 0.0015 (6) | 0.0094 (5) |
N1 | 0.0561 (7) | 0.0383 (6) | 0.0600 (7) | 0.0061 (5) | −0.0195 (6) | 0.0027 (5) |
C6 | 0.0369 (6) | 0.0311 (5) | 0.0367 (6) | −0.0041 (4) | 0.0052 (5) | −0.0049 (5) |
C8 | 0.0344 (6) | 0.0481 (7) | 0.0636 (9) | 0.0043 (5) | −0.0081 (6) | −0.0120 (6) |
C9 | 0.0396 (6) | 0.0349 (6) | 0.0486 (7) | 0.0045 (5) | −0.0109 (5) | −0.0064 (5) |
C13 | 0.0428 (6) | 0.0375 (6) | 0.0439 (7) | −0.0070 (5) | 0.0043 (5) | 0.0062 (5) |
C7 | 0.0332 (6) | 0.0442 (7) | 0.0556 (8) | −0.0057 (5) | 0.0049 (5) | −0.0104 (6) |
O1 | 0.085 (3) | 0.121 (4) | 0.279 (13) | 0.006 (4) | 0.001 (7) | 0.016 (5) |
N5—N4 | 1.3664 (13) | C6—C7 | 1.4319 (17) |
N5—C6 | 1.3011 (15) | C8—H8 | 0.9300 |
N4—C3 | 1.3581 (15) | C8—C9 | 1.420 (2) |
N4—C9 | 1.3771 (15) | C8—C7 | 1.346 (2) |
N10—N11 | 1.2555 (16) | C13—H13A | 0.9600 |
N10—C6 | 1.4165 (16) | C13—H13B | 0.9600 |
N11—N12 | 1.1210 (17) | C13—H13C | 0.9600 |
N2—C3 | 1.3128 (16) | C7—H7 | 0.9300 |
N2—N1 | 1.3866 (18) | O1—O1i | 1.349 (4) |
C3—C13 | 1.4792 (18) | O1—O1ii | 1.349 (4) |
N1—C9 | 1.3202 (18) | ||
C6—N5—N4 | 112.68 (10) | C7—C8—H8 | 121.1 |
N5—N4—C9 | 127.07 (10) | C7—C8—C9 | 117.73 (12) |
C3—N4—N5 | 126.18 (10) | N4—C9—C8 | 117.24 (12) |
C3—N4—C9 | 106.74 (10) | N1—C9—N4 | 108.99 (12) |
N11—N10—C6 | 113.16 (10) | N1—C9—C8 | 133.75 (12) |
N12—N11—N10 | 173.84 (13) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 109.04 (11) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 123.42 (10) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.49 (11) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 128.06 (11) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 106.73 (10) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 117.53 (11) | C6—C7—H7 | 120.5 |
N5—C6—C7 | 126.27 (11) | C8—C7—C6 | 118.97 (12) |
N10—C6—C7 | 116.20 (11) | C8—C7—H7 | 120.5 |
C9—C8—H8 | 121.1 | O1i—O1—O1ii | 124.6 (3) |
N5—N4—C3—N2 | 179.26 (10) | C3—N4—C9—N1 | 0.14 (14) |
N5—N4—C3—C13 | −2.51 (19) | C3—N4—C9—C8 | −178.33 (11) |
N5—N4—C9—N1 | −179.19 (11) | C3—N2—N1—C9 | 0.11 (15) |
N5—N4—C9—C8 | 2.34 (18) | N1—N2—C3—N4 | −0.02 (15) |
N5—C6—C7—C8 | 1.7 (2) | N1—N2—C3—C13 | −178.14 (12) |
N4—N5—C6—N10 | 179.81 (10) | C6—N5—N4—C3 | 178.94 (11) |
N4—N5—C6—C7 | −0.24 (17) | C6—N5—N4—C9 | −1.86 (16) |
N10—C6—C7—C8 | −178.32 (12) | C9—N4—C3—N2 | −0.07 (14) |
N11—N10—C6—N5 | −4.36 (16) | C9—N4—C3—C13 | 178.16 (11) |
N11—N10—C6—C7 | 175.68 (11) | C9—C8—C7—C6 | −1.2 (2) |
N2—N1—C9—N4 | −0.15 (15) | C7—C8—C9—N4 | −0.63 (19) |
N2—N1—C9—C8 | 177.97 (15) | C7—C8—C9—N1 | −178.63 (15) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
C6H5N7·0.4(O) | Dx = 1.512 Mg m−3 |
Mr = 181.57 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, I41/a | Cell parameters from 2268 reflections |
a = 28.0757 (5) Å | θ = 3.1–76.3° |
c = 4.04859 (12) Å | µ = 0.94 mm−1 |
V = 3191.28 (14) Å3 | T = 100 K |
Z = 16 | Plate, colorless |
F(000) = 1491 | 0.39 × 0.29 × 0.12 mm |
SuperNova, Single source at offset, Atlas diffractometer | 1644 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 1545 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.013 |
Detector resolution: 10.5357 pixels mm-1 | θmax = 76.4°, θmin = 3.2° |
ω scans | h = −35→29 |
Absorption correction: multi-scan CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −33→33 |
Tmin = 0.926, Tmax = 1.000 | l = −2→5 |
3568 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.053P)2 + 1.9391P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1644 reflections | Δρmax = 0.20 e Å−3 |
128 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57692 (3) | 0.61884 (3) | 0.8496 (2) | 0.0267 (2) | |
N4 | 0.58653 (3) | 0.58087 (3) | 1.0502 (3) | 0.0274 (2) | |
N10 | 0.60949 (4) | 0.68100 (4) | 0.5448 (3) | 0.0354 (3) | |
N11 | 0.56694 (4) | 0.68777 (4) | 0.4605 (3) | 0.0330 (3) | |
N2 | 0.57660 (4) | 0.51904 (4) | 1.3632 (3) | 0.0383 (3) | |
C3 | 0.55390 (5) | 0.55156 (4) | 1.1909 (3) | 0.0302 (3) | |
N12 | 0.53040 (5) | 0.69687 (4) | 0.3670 (3) | 0.0421 (3) | |
N1 | 0.62529 (5) | 0.52685 (4) | 1.3358 (3) | 0.0438 (3) | |
C6 | 0.61520 (4) | 0.64105 (4) | 0.7546 (3) | 0.0293 (3) | |
C8 | 0.67106 (5) | 0.59068 (5) | 1.0346 (4) | 0.0414 (3) | |
H8 | 0.701782 | 0.581562 | 1.092672 | 0.050* | |
C9 | 0.63073 (5) | 0.56466 (4) | 1.1454 (3) | 0.0349 (3) | |
C13 | 0.50179 (5) | 0.55802 (4) | 1.1552 (3) | 0.0343 (3) | |
H13A | 0.493372 | 0.556797 | 0.925509 | 0.051* | |
H13B | 0.492724 | 0.588337 | 1.245006 | 0.051* | |
H13C | 0.485493 | 0.533105 | 1.271854 | 0.051* | |
C7 | 0.66320 (4) | 0.62911 (5) | 0.8419 (4) | 0.0371 (3) | |
H7 | 0.688522 | 0.647533 | 0.766999 | 0.045* | |
O1 | 0.72788 (17) | 0.4980 (4) | 0.437 (4) | 0.151 (4) | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.0305 (5) | 0.0230 (4) | 0.0267 (5) | −0.0015 (4) | 0.0004 (4) | 0.0004 (4) |
N4 | 0.0314 (5) | 0.0229 (4) | 0.0278 (5) | −0.0001 (4) | −0.0027 (4) | −0.0002 (4) |
N10 | 0.0352 (6) | 0.0318 (5) | 0.0392 (6) | −0.0057 (4) | 0.0071 (5) | 0.0030 (5) |
N11 | 0.0424 (6) | 0.0251 (5) | 0.0314 (5) | −0.0015 (4) | 0.0072 (5) | 0.0031 (4) |
N2 | 0.0502 (7) | 0.0275 (5) | 0.0373 (6) | −0.0031 (4) | −0.0092 (5) | 0.0041 (4) |
C3 | 0.0390 (6) | 0.0247 (5) | 0.0269 (6) | −0.0043 (4) | −0.0015 (5) | 0.0001 (4) |
N12 | 0.0481 (7) | 0.0369 (6) | 0.0414 (7) | 0.0072 (5) | 0.0019 (5) | 0.0069 (5) |
N1 | 0.0490 (7) | 0.0326 (6) | 0.0496 (7) | 0.0048 (5) | −0.0174 (6) | 0.0015 (5) |
C6 | 0.0318 (6) | 0.0262 (5) | 0.0300 (6) | −0.0032 (4) | 0.0036 (5) | −0.0044 (5) |
C8 | 0.0305 (6) | 0.0402 (7) | 0.0534 (9) | 0.0040 (5) | −0.0083 (6) | −0.0105 (6) |
C9 | 0.0349 (6) | 0.0295 (6) | 0.0402 (7) | 0.0039 (5) | −0.0103 (5) | −0.0058 (5) |
C13 | 0.0372 (6) | 0.0309 (6) | 0.0347 (7) | −0.0061 (5) | 0.0031 (5) | 0.0040 (5) |
C7 | 0.0284 (6) | 0.0368 (6) | 0.0462 (8) | −0.0045 (5) | 0.0029 (5) | −0.0091 (6) |
O1 | 0.078 (3) | 0.104 (4) | 0.271 (13) | 0.003 (4) | −0.007 (7) | 0.015 (5) |
N5—N4 | 1.3670 (14) | C6—C7 | 1.4331 (17) |
N5—C6 | 1.3008 (15) | C8—H8 | 0.9300 |
N4—C3 | 1.3571 (16) | C8—C9 | 1.420 (2) |
N4—C9 | 1.3769 (15) | C8—C7 | 1.350 (2) |
N10—N11 | 1.2568 (16) | C13—H13A | 0.9600 |
N10—C6 | 1.4161 (16) | C13—H13B | 0.9600 |
N11—N12 | 1.1230 (17) | C13—H13C | 0.9600 |
N2—C3 | 1.3138 (17) | C7—H7 | 0.9300 |
N2—N1 | 1.3887 (18) | O1—O1i | 1.342 (4) |
C3—C13 | 1.4814 (18) | O1—O1ii | 1.343 (4) |
N1—C9 | 1.3206 (18) | ||
C6—N5—N4 | 112.72 (10) | C7—C8—H8 | 121.2 |
N5—N4—C9 | 127.03 (10) | C7—C8—C9 | 117.62 (12) |
C3—N4—N5 | 126.09 (10) | N4—C9—C8 | 117.38 (12) |
C3—N4—C9 | 106.88 (10) | N1—C9—N4 | 108.96 (12) |
N11—N10—C6 | 112.97 (10) | N1—C9—C8 | 133.65 (12) |
N12—N11—N10 | 173.88 (13) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.99 (11) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 123.47 (11) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.47 (11) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 128.04 (11) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 106.71 (11) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 117.62 (11) | C6—C7—H7 | 120.5 |
N5—C6—C7 | 126.29 (12) | C8—C7—C6 | 118.91 (12) |
N10—C6—C7 | 116.09 (11) | C8—C7—H7 | 120.5 |
C9—C8—H8 | 121.2 | O1i—O1—O1ii | 124.6 (3) |
N5—N4—C3—N2 | 179.32 (11) | C3—N4—C9—N1 | 0.21 (14) |
N5—N4—C3—C13 | −2.43 (19) | C3—N4—C9—C8 | −178.39 (12) |
N5—N4—C9—N1 | −179.15 (11) | C3—N2—N1—C9 | 0.26 (15) |
N5—N4—C9—C8 | 2.25 (19) | N1—N2—C3—N4 | −0.12 (15) |
N5—C6—C7—C8 | 1.7 (2) | N1—N2—C3—C13 | −178.28 (12) |
N4—N5—C6—N10 | 179.85 (10) | C6—N5—N4—C3 | 178.94 (11) |
N4—N5—C6—C7 | −0.21 (17) | C6—N5—N4—C9 | −1.82 (16) |
N10—C6—C7—C8 | −178.36 (12) | C9—N4—C3—N2 | −0.05 (14) |
N11—N10—C6—N5 | −4.33 (16) | C9—N4—C3—C13 | 178.21 (11) |
N11—N10—C6—C7 | 175.72 (11) | C9—C8—C7—C6 | −1.2 (2) |
N2—N1—C9—N4 | −0.28 (15) | C7—C8—C9—N4 | −0.55 (19) |
N2—N1—C9—C8 | 178.00 (15) | C7—C8—C9—N1 | −178.72 (15) |
Symmetry codes: (i) y+1/4, −x+5/4, z+1/4; (ii) −y+5/4, x−1/4, z−1/4. |
C6H5N7·0.5(O) | Dx = 1.480 Mg m−3 |
Mr = 183.17 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 660 reflections |
a = 28.275 (3) Å | θ = 4.1–17.9° |
c = 4.1124 (12) Å | µ = 0.11 mm−1 |
V = 3287.8 (12) Å3 | T = 296 K |
Z = 16 | Plate, colorless |
F(000) = 1504 | 0.39 × 0.30 × 0.10 mm |
KM-4 CCD diffractometer | 908 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.141 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 26.7°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −35→35 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −27→27 |
Tmin = 0.257, Tmax = 1.000 | l = −3→3 |
6357 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.0674P)2 + 0.5043P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
908 reflections | Δρmax = 0.14 e Å−3 |
128 parameters | Δρmin = −0.14 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.10 (2) GPa (100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.57685 (17) | 0.61849 (17) | 0.8488 (15) | 0.0575 (18) | |
N4 | 0.5863 (2) | 0.58077 (19) | 1.0439 (15) | 0.0615 (18) | |
N10 | 0.6102 (2) | 0.6793 (2) | 0.5444 (17) | 0.077 (2) | |
N11 | 0.5681 (3) | 0.6874 (2) | 0.4619 (17) | 0.078 (2) | |
N2 | 0.5759 (3) | 0.51952 (19) | 1.3540 (16) | 0.080 (2) | |
C3 | 0.5536 (3) | 0.5525 (2) | 1.1838 (19) | 0.060 (2) | |
N12 | 0.5320 (3) | 0.6970 (2) | 0.371 (2) | 0.099 (3) | |
N1 | 0.6244 (3) | 0.5268 (2) | 1.3218 (18) | 0.091 (2) | |
C6 | 0.6149 (3) | 0.6400 (2) | 0.7522 (18) | 0.061 (2) | |
C8 | 0.6703 (3) | 0.5899 (3) | 1.025 (2) | 0.080 (3) | |
H8 | 0.7008 | 0.5807 | 1.0820 | 0.096* | |
C9 | 0.6302 (3) | 0.5651 (3) | 1.136 (2) | 0.070 (2) | |
C13 | 0.5024 (2) | 0.5595 (2) | 1.1568 (19) | 0.075 (2) | |
H13A | 0.4925 | 0.5529 | 0.9380 | 0.113* | |
H13B | 0.4947 | 0.5916 | 1.2111 | 0.113* | |
H13C | 0.4865 | 0.5384 | 1.3036 | 0.113* | |
C7 | 0.6623 (2) | 0.6278 (3) | 0.832 (2) | 0.076 (2) | |
H7 | 0.6874 | 0.6456 | 0.7524 | 0.092* | |
O1 | 0.7267 (7) | 0.500 (2) | 0.46 (2) | 0.180 (10) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.060 (4) | 0.048 (3) | 0.064 (6) | −0.004 (3) | 0.003 (3) | −0.003 (3) |
N4 | 0.070 (4) | 0.050 (4) | 0.064 (7) | −0.006 (3) | −0.006 (3) | 0.000 (3) |
N10 | 0.087 (5) | 0.076 (5) | 0.067 (7) | −0.011 (4) | 0.015 (4) | 0.010 (3) |
N11 | 0.108 (6) | 0.057 (4) | 0.068 (8) | 0.006 (5) | 0.023 (5) | 0.007 (3) |
N2 | 0.117 (6) | 0.066 (4) | 0.055 (7) | 0.009 (4) | −0.013 (4) | 0.012 (3) |
C3 | 0.088 (6) | 0.050 (5) | 0.042 (7) | −0.005 (5) | −0.004 (4) | −0.004 (3) |
N12 | 0.127 (6) | 0.102 (6) | 0.069 (8) | 0.021 (5) | 0.005 (5) | 0.012 (4) |
N1 | 0.096 (6) | 0.081 (5) | 0.096 (8) | 0.019 (4) | −0.024 (4) | −0.001 (4) |
C6 | 0.063 (5) | 0.062 (5) | 0.058 (8) | −0.007 (4) | 0.006 (4) | −0.004 (4) |
C8 | 0.063 (5) | 0.100 (6) | 0.077 (9) | 0.002 (5) | −0.018 (4) | −0.011 (5) |
C9 | 0.075 (6) | 0.075 (6) | 0.059 (9) | 0.001 (5) | −0.016 (5) | −0.013 (4) |
C13 | 0.080 (5) | 0.078 (5) | 0.069 (9) | −0.010 (4) | 0.015 (4) | 0.008 (4) |
C7 | 0.065 (5) | 0.080 (6) | 0.084 (9) | −0.008 (4) | 0.006 (4) | −0.011 (4) |
O1 | 0.131 (14) | 0.156 (18) | 0.25 (5) | 0.01 (2) | −0.01 (3) | 0.042 (16) |
N5—N4 | 1.361 (6) | C6—C7 | 1.423 (8) |
N5—C6 | 1.299 (7) | C8—H8 | 0.9300 |
N4—C3 | 1.351 (7) | C8—C9 | 1.410 (10) |
N4—C9 | 1.371 (7) | C8—C7 | 1.352 (9) |
N10—N11 | 1.258 (7) | C13—H13A | 0.9600 |
N10—C6 | 1.408 (8) | C13—H13B | 0.9600 |
N11—N12 | 1.122 (8) | C13—H13C | 0.9600 |
N2—C3 | 1.325 (8) | C7—H7 | 0.9300 |
N2—N1 | 1.392 (7) | O1—O1i | 1.387 (18) |
C3—C13 | 1.465 (8) | O1—O1ii | 1.387 (18) |
N1—C9 | 1.334 (9) | ||
C6—N5—N4 | 112.6 (5) | C7—C8—H8 | 121.6 |
N5—N4—C9 | 126.5 (6) | C7—C8—C9 | 116.8 (7) |
C3—N4—N5 | 125.4 (6) | N4—C9—C8 | 118.5 (8) |
C3—N4—C9 | 108.1 (6) | N1—C9—N4 | 108.0 (7) |
N11—N10—C6 | 113.3 (6) | N1—C9—C8 | 133.5 (8) |
N12—N11—N10 | 174.6 (8) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.3 (6) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 124.4 (6) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.4 (6) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 127.2 (7) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 107.2 (6) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 118.5 (6) | C6—C7—H7 | 120.5 |
N5—C6—C7 | 126.6 (7) | C8—C7—C6 | 119.1 (7) |
N10—C6—C7 | 114.9 (7) | C8—C7—H7 | 120.5 |
C9—C8—H8 | 121.6 | O1i—O1—O1ii | 123.3 (10) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
C6H5N7·0.6(O) | Dx = 1.519 Mg m−3 |
Mr = 184.77 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 419 reflections |
a = 28.180 (6) Å | θ = 4.3–23.5° |
c = 4.0701 (17) Å | µ = 0.11 mm−1 |
V = 3232.2 (19) Å3 | T = 296 K |
Z = 16 | Plate, colorless |
F(000) = 1517 | 0.39 × 0.29 × 0.12 mm |
KM-4 CCD diffractometer | 614 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 296 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.236 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.0°, θmin = 4.3° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −34→35 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −6→6 |
Tmin = 0.585, Tmax = 1.000 | l = −5→5 |
6161 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.083 | H-atom parameters constrained |
wR(F2) = 0.234 | w = 1/[σ2(Fo2) + (0.1072P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
614 reflections | Δρmax = 0.13 e Å−3 |
128 parameters | Δρmin = −0.12 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.23 (2) GPa (230000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.5767 (4) | 0.6193 (3) | 0.8501 (16) | 0.053 (3) | |
N4 | 0.5859 (4) | 0.5810 (4) | 1.0440 (19) | 0.060 (3) | |
N10 | 0.6100 (4) | 0.6801 (6) | 0.548 (2) | 0.078 (4) | |
N11 | 0.5676 (5) | 0.6871 (6) | 0.462 (3) | 0.078 (4) | |
N2 | 0.5759 (5) | 0.5204 (6) | 1.359 (2) | 0.078 (3) | |
C3 | 0.5528 (5) | 0.5530 (6) | 1.188 (2) | 0.063 (4) | |
N12 | 0.5312 (5) | 0.6972 (6) | 0.366 (3) | 0.099 (5) | |
N1 | 0.6243 (6) | 0.5257 (6) | 1.334 (2) | 0.085 (4) | |
C6 | 0.6141 (5) | 0.6409 (4) | 0.748 (2) | 0.055 (3) | |
C8 | 0.6706 (6) | 0.5895 (5) | 1.030 (3) | 0.083 (4) | |
H8 | 0.701225 | 0.579733 | 1.082716 | 0.099* | |
C9 | 0.6298 (5) | 0.5650 (6) | 1.141 (3) | 0.067 (5) | |
C13 | 0.5013 (4) | 0.5591 (6) | 1.159 (3) | 0.082 (4) | |
H13A | 0.491718 | 0.553426 | 0.936433 | 0.124* | |
H13B | 0.492883 | 0.590905 | 1.220955 | 0.124* | |
H13C | 0.485575 | 0.537013 | 1.301990 | 0.124* | |
C7 | 0.6621 (4) | 0.6278 (6) | 0.842 (3) | 0.074 (4) | |
H7 | 0.687451 | 0.646372 | 0.771515 | 0.089* | |
O1 | 0.7265 (10) | 0.5045 (15) | 0.501 (13) | 0.190 (10) | 0.6 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.060 (6) | 0.033 (5) | 0.066 (4) | 0.004 (11) | 0.007 (6) | 0.010 (4) |
N4 | 0.059 (7) | 0.047 (7) | 0.073 (5) | −0.009 (13) | 0.003 (6) | −0.004 (5) |
N10 | 0.066 (7) | 0.074 (10) | 0.095 (6) | −0.011 (15) | 0.021 (7) | 0.000 (7) |
N11 | 0.090 (8) | 0.039 (8) | 0.105 (8) | −0.003 (17) | 0.016 (8) | 0.014 (8) |
N2 | 0.088 (8) | 0.060 (8) | 0.085 (6) | −0.012 (17) | −0.012 (6) | 0.004 (6) |
C3 | 0.085 (10) | 0.046 (9) | 0.057 (6) | −0.019 (18) | −0.003 (6) | 0.007 (6) |
N12 | 0.104 (9) | 0.073 (10) | 0.119 (8) | 0.015 (15) | −0.003 (7) | 0.015 (7) |
N1 | 0.095 (10) | 0.049 (8) | 0.110 (7) | 0.032 (18) | −0.023 (8) | 0.002 (7) |
C6 | 0.072 (9) | 0.029 (7) | 0.065 (6) | −0.017 (16) | 0.015 (8) | 0.007 (6) |
C8 | 0.056 (8) | 0.073 (11) | 0.119 (8) | 0.025 (17) | −0.038 (8) | −0.019 (9) |
C9 | 0.041 (8) | 0.059 (13) | 0.099 (9) | −0.011 (17) | −0.011 (8) | −0.015 (9) |
C13 | 0.061 (7) | 0.074 (11) | 0.112 (8) | −0.013 (16) | 0.018 (6) | 0.004 (8) |
C7 | 0.036 (7) | 0.069 (10) | 0.117 (8) | 0.028 (15) | 0.002 (7) | −0.004 (8) |
O1 | 0.15 (2) | 0.20 (3) | 0.22 (4) | 0.06 (3) | 0.02 (2) | −0.021 (18) |
N5—N4 | 1.362 (12) | C6—C7 | 1.455 (18) |
N5—C6 | 1.285 (15) | C8—H8 | 0.9300 |
N4—C3 | 1.355 (15) | C8—C9 | 1.416 (19) |
N4—C9 | 1.374 (16) | C8—C7 | 1.344 (17) |
N10—N11 | 1.260 (15) | C13—H13A | 0.9600 |
N10—C6 | 1.376 (17) | C13—H13B | 0.9600 |
N11—N12 | 1.137 (15) | C13—H13C | 0.9600 |
N2—C3 | 1.33 (2) | C7—H7 | 0.9300 |
N2—N1 | 1.377 (16) | O1—O1i | 1.40 (3) |
C3—C13 | 1.466 (18) | O1—O1ii | 1.40 (3) |
N1—C9 | 1.37 (2) | ||
C6—N5—N4 | 114.0 (11) | C7—C8—H8 | 122.3 |
N5—N4—C9 | 126.7 (13) | C7—C8—C9 | 115.3 (14) |
C3—N4—N5 | 125.5 (12) | N4—C9—C8 | 118.7 (13) |
C3—N4—C9 | 107.7 (11) | N1—C9—N4 | 109.3 (15) |
N11—N10—C6 | 111.6 (16) | N1—C9—C8 | 132.0 (16) |
N12—N11—N10 | 172.9 (17) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 111.8 (17) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 125.4 (15) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 107.0 (11) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 127.5 (15) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 104.1 (18) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 120.2 (13) | C6—C7—H7 | 119.3 |
N5—C6—C7 | 123.9 (10) | C8—C7—C6 | 121.3 (16) |
N10—C6—C7 | 115.9 (15) | C8—C7—H7 | 119.3 |
C9—C8—H8 | 122.3 | O1i—O1—O1ii | 122.1 (13) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
C6H5N7·0.5(O) | Dx = 1.555 Mg m−3 |
Mr = 183.17 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 601 reflections |
a = 27.972 (6) Å | θ = 4.1–14.2° |
c = 3.9991 (8) Å | µ = 0.12 mm−1 |
V = 3129.1 (14) Å3 | T = 296 K |
Z = 16 | Plate, colorless |
F(000) = 1504 | 0.38 × 0.28 × 0.10 mm |
KM-4 CCD diffractometer | 1185 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 349 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.346 |
Detector resolution: 16.2413 pixels mm-1 | θmax = 27.2°, θmin = 4.1° |
HP ω scans – for more details see: A. Budzianowski, A. Katrusiak in High–Pressure Crystallography (Eds.: A. Katrusiak, P. F. McMillan), Dordrecht: Kluwer Acad. Publ., 2004 pp.157–168 | h = −33→32 |
Absorption correction: multi-scan CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. | k = −25→25 |
Tmin = 0.082, Tmax = 1.000 | l = −4→4 |
8942 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.084 | H-atom parameters constrained |
wR(F2) = 0.248 | w = 1/[σ2(Fo2) + (0.0754P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
1185 reflections | Δρmax = 0.22 e Å−3 |
128 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Experimental. Data were collected at room temperature and pressure of 0.58 (2) GPa (580000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N5 | 0.5760 (3) | 0.6186 (3) | 0.8505 (15) | 0.051 (2) | |
N4 | 0.5862 (3) | 0.5807 (3) | 1.0491 (15) | 0.055 (2) | |
N10 | 0.6093 (3) | 0.6825 (3) | 0.5467 (19) | 0.073 (2) | |
N11 | 0.5666 (4) | 0.6888 (3) | 0.4573 (17) | 0.069 (3) | |
N2 | 0.5774 (4) | 0.5183 (3) | 1.3655 (17) | 0.073 (2) | |
C3 | 0.5538 (4) | 0.5512 (4) | 1.189 (2) | 0.057 (3) | |
N12 | 0.5305 (4) | 0.6979 (4) | 0.360 (2) | 0.097 (3) | |
N1 | 0.6257 (3) | 0.5271 (3) | 1.3321 (18) | 0.078 (3) | |
C6 | 0.6145 (4) | 0.6418 (4) | 0.7554 (19) | 0.057 (3) | |
C8 | 0.6705 (4) | 0.5917 (4) | 1.032 (2) | 0.068 (3) | |
H8 | 0.7014 | 0.5829 | 1.0924 | 0.082* | |
C9 | 0.6304 (4) | 0.5647 (4) | 1.1405 (19) | 0.064 (3) | |
C13 | 0.5011 (3) | 0.5596 (3) | 1.1561 (18) | 0.073 (3) | |
H13A | 0.4927 | 0.5605 | 0.9235 | 0.110* | |
H13B | 0.4930 | 0.5895 | 1.2588 | 0.110* | |
H13C | 0.4840 | 0.5342 | 1.2645 | 0.110* | |
C7 | 0.6629 (4) | 0.6300 (4) | 0.843 (2) | 0.069 (3) | |
H7 | 0.6882 | 0.6486 | 0.7681 | 0.083* | |
O1 | 0.7252 (7) | 0.496 (2) | 0.44 (2) | 0.169 (12) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N5 | 0.054 (6) | 0.051 (6) | 0.048 (4) | −0.006 (4) | −0.003 (3) | −0.012 (3) |
N4 | 0.068 (8) | 0.044 (6) | 0.055 (5) | 0.010 (5) | −0.007 (4) | 0.005 (4) |
N10 | 0.084 (8) | 0.054 (7) | 0.081 (5) | 0.000 (5) | 0.008 (5) | 0.020 (4) |
N11 | 0.094 (10) | 0.056 (7) | 0.056 (5) | 0.015 (7) | 0.010 (6) | 0.013 (4) |
N2 | 0.104 (9) | 0.047 (7) | 0.068 (4) | 0.005 (5) | −0.006 (5) | 0.014 (4) |
C3 | 0.059 (9) | 0.057 (8) | 0.055 (5) | −0.011 (6) | −0.001 (5) | −0.007 (5) |
N12 | 0.101 (10) | 0.101 (9) | 0.090 (6) | 0.027 (6) | 0.003 (5) | 0.011 (5) |
N1 | 0.079 (8) | 0.071 (8) | 0.083 (5) | 0.006 (5) | −0.017 (5) | 0.009 (4) |
C6 | 0.051 (8) | 0.055 (8) | 0.065 (6) | 0.012 (6) | −0.012 (5) | −0.011 (5) |
C8 | 0.046 (8) | 0.077 (9) | 0.082 (7) | −0.001 (6) | −0.004 (5) | −0.007 (6) |
C9 | 0.088 (11) | 0.053 (9) | 0.053 (6) | −0.002 (7) | −0.016 (6) | 0.001 (5) |
C13 | 0.060 (9) | 0.076 (8) | 0.085 (6) | −0.012 (5) | 0.016 (5) | −0.001 (5) |
C7 | 0.068 (10) | 0.061 (9) | 0.078 (6) | −0.016 (6) | 0.003 (5) | −0.007 (5) |
O1 | 0.15 (2) | 0.13 (2) | 0.23 (4) | −0.01 (3) | −0.04 (4) | 0.035 (18) |
N5—N4 | 1.354 (9) | C6—C7 | 1.434 (11) |
N5—C6 | 1.314 (10) | C8—H8 | 0.9300 |
N4—C3 | 1.349 (10) | C8—C9 | 1.419 (12) |
N4—C9 | 1.366 (11) | C8—C7 | 1.329 (11) |
N10—N11 | 1.260 (10) | C13—H13A | 0.9600 |
N10—C6 | 1.421 (10) | C13—H13B | 0.9600 |
N11—N12 | 1.112 (10) | C13—H13C | 0.9600 |
N2—C3 | 1.334 (10) | C7—H7 | 0.9300 |
N2—N1 | 1.380 (8) | O1—O1i | 1.408 (15) |
C3—C13 | 1.498 (10) | O1—O1ii | 1.408 (16) |
N1—C9 | 1.310 (10) | ||
C6—N5—N4 | 112.5 (7) | C7—C8—H8 | 120.8 |
N5—N4—C9 | 127.1 (9) | C7—C8—C9 | 118.4 (9) |
C3—N4—N5 | 125.6 (9) | N4—C9—C8 | 117.4 (10) |
C3—N4—C9 | 107.3 (9) | N1—C9—N4 | 109.2 (10) |
N11—N10—C6 | 112.1 (8) | N1—C9—C8 | 133.4 (12) |
N12—N11—N10 | 173.2 (12) | C3—C13—H13A | 109.5 |
C3—N2—N1 | 108.1 (7) | C3—C13—H13B | 109.5 |
N4—C3—C13 | 121.8 (10) | C3—C13—H13C | 109.5 |
N2—C3—N4 | 108.0 (9) | H13A—C13—H13B | 109.5 |
N2—C3—C13 | 130.0 (10) | H13A—C13—H13C | 109.5 |
C9—N1—N2 | 107.4 (8) | H13B—C13—H13C | 109.5 |
N5—C6—N10 | 118.8 (8) | C6—C7—H7 | 120.8 |
N5—C6—C7 | 126.1 (9) | C8—C7—C6 | 118.4 (8) |
N10—C6—C7 | 115.1 (10) | C8—C7—H7 | 120.8 |
C9—C8—H8 | 120.8 | O1i—O1—O1ii | 120.3 (7) |
Symmetry codes: (i) −y+5/4, x−1/4, z−1/4; (ii) y+1/4, −x+5/4, z+1/4. |
Funding information
The following funding is acknowledged: Narodowe Centrum Nauki (grant No. 2016/23/D/ST5/00283).
References
Bałoniak, S. & Katrusiak, A. (1994). Pol. J. Chem. 68, 683–691. Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bernstein, J. (2002). IUCr Monographs on Crystallography. Oxford: Clarendon Press. Google Scholar
Boldyreva, E. V. (2008). Acta Cryst. A64, 218–231. Web of Science CrossRef CAS IUCr Journals Google Scholar
Boldyreva, E. V. (2014). Z. Kristallogr. 3, 236–245. Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak and P. F. McMillan, pp. 101–112. Dordrecht: Kluwer. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fabbiani, F. P. A. & Pulham, C. R. (2006). Chem. Soc. Rev. 35, 932–942. Web of Science CrossRef PubMed CAS Google Scholar
Gatta, G. D., Lotti, P. & Tabacchi, G. (2018). Phys. Chem. Miner. 45, 115–138. CrossRef CAS Google Scholar
Gaydamaka, A. A., Arkhipov, S. G., Zakharov, B. A., Seryotkin, Y. V. & Boldyreva, E. V. (2019). CrystEngComm, 21, 4484–4492. CSD CrossRef CAS Google Scholar
Glasser, L. (2019). Acta Cryst. B75, 784–787. Web of Science CrossRef IUCr Journals Google Scholar
Katrusiak, A. A., Bałoniak, S. & Katrusiak, A. S. (1996). Pol. J. Chem. 70, 1279–1289. CAS Google Scholar
Katrusiak, A., Skierska, U. & Katrusiak, A. (2005). J. Mol. Struct. 751, 65–73. CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mao, H. K., Xu, J. & Bell, P. M. (1985). J. Geophys. Res. 91, 4673–4676. CrossRef Web of Science Google Scholar
Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294. CrossRef Web of Science Google Scholar
Millar, D. I. A., Marshall, W. G., Oswald, I. D. H. & Pulham, C. R. (2010). Cryst. Rev. 16, 2, 115–132. Google Scholar
Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2019). Cryst. Growth Des. 19, 1832–1838. Web of Science CSD CrossRef CAS Google Scholar
Persistence of Vision (2004). Persistence of Vision Raytracer, Version 2.6. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia. Google Scholar
Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780. CrossRef CAS Web of Science Google Scholar
Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlisPro Software System. Rigaku Oxford Diffraction, Yarnton, UK. https://www.rigaku.com. Google Scholar
Seryotkin, Y. V., Dement'ev, S. N. & Ancharov, A. I. (2016). J. Struct. Chem. 57, 1386–1391. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yang, J., Gong, X. & Wang, G. (2015). RSC Adv. 5, 9503–9509. CrossRef CAS Google Scholar
Zakharov, B. A., Gribov, P. A., Matvienko, A. A. & Boldyreva, E. V. (2017). Z. Kristallogr. 232, 751–757. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.