research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206

One-dimensional composite host–guest structure in BaVS3

aSB IPHYS LPMC, EPFL, Bâtiment PH Station 3, Lausanne, CH-1015, Switzerland, bPhase Solutions Ltd, Ch. des Mésanges 7, Lausanne, CH-1015, Switzerland, cSNBL, ESRF, 71 Avenue des Martyrs, Cedex 9, Grenoble, 38043, France, dSB IPHYS LQM, EPFL, Bâtiment PH Station 3, Lausanne, CH-1015, Switzerland, eSB IPHYS BSP/Cubotron, EPFL, Lausanne, CH-1015, Switzerland, fDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, HR-100000, Croatia, and gInstitute of Solid State Physics, TU Wien, Vienna, 1040, Austria
*Correspondence e-mail: alla.arakcheeva@epfl.ch

Edited by M. Dusek, Academy of Sciences of the Czech Republic, Czech Republic (Received 7 September 2020; accepted 10 December 2020; online 22 January 2021)

A detailed synchrotron X-ray diffraction (XRD) study performed with a single crystal of BaVS3 (barium vanadium trisulfide) in the temperature range between 10 and 295 K is reported. Aside from the known tetragonal–orthorhombic (240 K) and orthorhombic–monoclinic (69 K) phase transitions, in the 130 < T ≤ 295 K range the overall structure can be viewed as a host–guest (H–G) composite. The BaS3 matrix is the host, while the V-chains form the guest. The two subsystems lock in at TLOCK = 130 ± 20 K. This temperature is marked by a symmetry change from orthorhombic to monoclinic. This results in the formation of twins, implying a structural phase transition identified here for the first time. From the refined structural data, it is possible to follow, starting already at 295 K downwards, the stepwise transformation of VS6 octahedra into VS5 tetragonal pyramids as the origin of the structure evolution. The new findings will yield a better understanding of the complex electronic phase diagram of BaVS3.

1. Introduction

The crystal structure of BaVS3 can be described as consisting of hexagonal close packed (hcp) Ba and S atoms with V-chains located in the hexagonal channels formed by S atoms (Fig. 1[link]). The short V–V distances of 2.8 Å along the V-chains, compared to the distance of more than 6 Å between them, was the reason to consider BaVS3 as an electronically quasi-one-dimensional (quasi-1D) system, expected to exhibit strong on-chain correlations. Indeed, BaVS3 undergoes a metal–insulator (MI) transition at TMI = 69 K (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781-787.]; Takano et al., 1977[Takano, M., Kosugi, H., Nakanishi, N., Shimada, M., Wada, T. & Koizumi, M. (1977). J. Phys. Soc. Jpn, 43, 1101-1102.]; Massenet et al., 1978[Massenet, O., Buder, R., Since, J. J., Schlenker, C., Mercier, J., Kelber, J. & Stucky, D. G. (1978). Mater. Res. Bull. 13, I87-195.]; Graf et al., 1995[Graf, T., Mandrus, D., Lawrence, J. M., Thompson, J. D., Canfield, P. C., Cheong, S.-W. & Rupp, L. W. (1995). Phys. Rev. B, 51, 2037-2044.]; Kuriyaki et al., 1995[Kuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049-2050.]; Imada et al., 1998[Imada, M., Fujimori, A. & Tokura, Y. (1998). Rev. Mod. Phys. 70, 1039-1263.]; Forró et al., 2000[Forró, L., Gaál, R., Berger, H., Fazekas, P., Penc, K., Kézsmárki, I. & Mihály, G. (2000). Phys. Rev. Lett. 85, 1938-1941.]; Mihály et al., 2000[Mihály, G. T., Kézsmárki, I., Zámborszky, F., Miljak, M., Penc, K., Fazekas, P., Berger, H. & Forró, L. (2000). Phys. Rev. B, 61, R7831-R7834.]; Inami et al., 2002[Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.]; Fagot et al., 2005[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718-725.]; Sanna et al., 2004[Sanna, A., Franchini, C., Massidda, S. & Gauzzi, A. (2004). Phys. Rev. B, 70, 235102.]; Choi et al., 2009[Choi, K.-Y., Wulferding, D., Berger, H. & Lemmens, P. (2009). Phys. Rev. B, 80, 245108.]), followed by magnetic ordering below TN = 31 K (Heidemann & Takano, 1980[Heidemann, A. & Takano, M. (1980). Phys. Status Solidi B, 100, 343-346.]; Leininger et al., 2011[Leininger, Ph., Ilakovac, V., Joly, Y., Schierle, E., Weschke, E., Bunau, O., Berger, H., Pouget, J.-P. & Foury-Leylekian, P. (2011). Phys. Rev. Lett. 106, 167203.]; Sugiyama et al., 2020[Sugiyama, J., Andreica, D., Forslund, O. K., Nocerino, E., Matsubara, N., Sassa, Y., Guguchia, Z., Khasanov, R., Pratt, F. L., Nakamura, H. & Månsson, M. (2020). Phys. Rev. B, 101, 174403.]). However, the anisotropy of the conductivity for T > TMI of σc/σa = 3–4 is surprisingly low (Mihály et al., 2000[Mihály, G. T., Kézsmárki, I., Zámborszky, F., Miljak, M., Penc, K., Fazekas, P., Berger, H. & Forró, L. (2000). Phys. Rev. B, 61, R7831-R7834.]; Barišić, 2004[Barišić, N. (2004). Thesis. Ecole polytechnique fédérale de Lausanne, Switzerland.]; Kézsmárki et al., 2006[Kézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402.]). Therefore, its remarkable and intriguing electrical and magnetic properties have been extensively studied starting from 1969 (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781-787.]) to very recently (Sugiyama et al., 2020[Sugiyama, J., Andreica, D., Forslund, O. K., Nocerino, E., Matsubara, N., Sassa, Y., Guguchia, Z., Khasanov, R., Pratt, F. L., Nakamura, H. & Månsson, M. (2020). Phys. Rev. B, 101, 174403.]). Besides the MI transition and magnetic ordering, numerous measurements of other physical properties are reported in the literature, such as: (i) electrical resistivity (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781-787.]; Kuriyaki et al., 1995[Kuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049-2050.]; Graf et al., 1995[Graf, T., Mandrus, D., Lawrence, J. M., Thompson, J. D., Canfield, P. C., Cheong, S.-W. & Rupp, L. W. (1995). Phys. Rev. B, 51, 2037-2044.]; Booth et al., 1999[Booth, C. H., Figueroa, E., Lawrence, J. M., Hundley, M. F. & Thompson, J. D. (1999). Phys. Rev. B, 60, 14852-14856.]; Mihály et al., 2000[Mihály, G. T., Kézsmárki, I., Zámborszky, F., Miljak, M., Penc, K., Fazekas, P., Berger, H. & Forró, L. (2000). Phys. Rev. B, 61, R7831-R7834.]; Kézsmárki et al., 2006[Kézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402.]), (ii) Hall coefficient (Booth et al., 1999[Booth, C. H., Figueroa, E., Lawrence, J. M., Hundley, M. F. & Thompson, J. D. (1999). Phys. Rev. B, 60, 14852-14856.]), (iii) Raman response with in-chain polarization (Choi et al., 2009[Choi, K.-Y., Wulferding, D., Berger, H. & Lemmens, P. (2009). Phys. Rev. B, 80, 245108.]), (iv) V L-edge X-ray absorption spectroscopy (Ilakovac et al., 2012[Ilakovac, V., Brookes, N. B., Cezar, J. C., Thakur, P., Bisogni, V., Dallera, C., Ghiringhelli, G., Braicovich, L., Bernu, S., Berger, H., Forró, L., Akrap, A. & Hague, C. F. (2012). J. Phys. Condens. Matter, 24, 045503.]), (v) specific heat (Imai et al., 1996[Imai, H., Wada, H. & Shiga, M. (1996). J. Phys. Soc. Jpn, 65, 3460-3463.]), (vi) thermopower (Barišić, 2004[Barišić, N. (2004). Thesis. Ecole polytechnique fédérale de Lausanne, Switzerland.]). These studies show anomalies at 130 ± 20 K, as do some theoretical models (Jiang & Guo, 2004[Jiang, X. & Guo, G. Y. (2004). Phys. Rev. B, 70, 035110.]). This temperature can be associated with an increase of the 1D electronic fluctuations towards the Peierls transition at 69 K (Foury-Leylekian et al., 2012[Foury-Leylekian, P., Leininger, P., Ilakovac, V., Joly, Y., Bernu, S., Fagot, S. & Pouget, J.-P. (2012). Physica B, 407, 1692-1695.]). From the observation of diffuse scattering lines, it appears that the onset of these fluctuations (Fagot et al., 2003[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P. & Berger, H. (2003). Phys. Rev. Lett. 90, 196401.]) already occurs at 170 K.

[Figure 1]
Figure 1
Schematic representation of the BaVS3 crystal structure. The ab projection (top) and perspective view (bottom) are shown. Ba and S together form a hexagonal close packing (hcp). V-chains are located in the hexagonal channels formed by S atoms. Relationships between the unit-cell parameters are indicated for the hexagonal, orthorhombic and monoclinic settings: ahex = bhex ≃ 6.7 Å, chex ≃ corth ≃ cmono ≃ 5.6 Å; aorth = amono ≃ [\sqrt 3] × ahex ≃ 11.6 Å, borth ≃ ahex ≃ bmono ≃ 6.7Å. V-chains acquire a zigzag configuration (dashed green line) in the orthorhombic and monoclinic phases. The crosses on one of the c axes show the different origins for the BaS3-hcp (black) and V-chain (green), which are considered in the present study.

Two structural transitions have been well documented in the 5–300 K temperature range (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781-787.]; Imada et al., 1998[Imada, M., Fujimori, A. & Tokura, Y. (1998). Rev. Mod. Phys. 70, 1039-1263.]; Inami et al., 2002[Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.]; Fagot et al., 2005[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718-725.]; Foury-Leylekian et al., 2012[Foury-Leylekian, P., Leininger, P., Ilakovac, V., Joly, Y., Bernu, S., Fagot, S. & Pouget, J.-P. (2012). Physica B, 407, 1692-1695.]). In the first at TS = 240 K, the higher-temperature hexagonal metallic phase transforms to orthorhombic. The second transition is associated with TMI = 69 K, where the orthorhombic phase converts to monoclinic with a doubling of the translation along the c axis. No noticeable structural changes have been detected for the magnetic transitions at TN = 31 K (Fagot et al., 2005[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718-725.]). Although the hexagonal and orthorhombic symmetries have commonly been described by the space groups P63/mmc and Ccm21, respectively, observations of a series of extra X-ray diffraction reflections violate both of them (Inami et al., 2002[Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.]; Girard et al., 2019[Girard, A., Ilakovac, V., Stekiel, M., Morgenroth, W., Berger, H., Yoshikazu, T., Hasegawa, T., Bosak, A. & Winkler, B. (2019). Phys. Rev. B, 99, 144104.]). Some doubts with regard to these space-group attributions also arose from neutron diffraction studies (Ghedira et al., 1981[Ghedira, M., Chenavas, J., Sayetat, F., Marezio, M., Massenet, O. & Mercier, J. (1981). Acta Cryst. B37, 1491-1496.]). Finally, the interplay between the structural and electronic phase transformations is still not entirely clear, in particular since the symmetry determination raises some questions for both the hexagonal and orthorhombic phases.

Here we report synchrotron XRD experiments performed on a single crystal of BaVS3 at ten different temperatures in the range 10–295 K. We show that the mismatch between the space groups P63/mmc and Ccm21, and the presence of extra reflections that violate them, can be resolved by a host–guest (H–G) composite model. Accordingly, we consider the BaVS3 structure as a 1D commensurate composite, which consists of a host (H) BaS3 matrix and guest (G) V-chains for T > 130 K. H and G change their symmetry individually up to 295 K. The space groups mentioned above are correct, but they relate only to H, while the symmetry of G is systematically lower, which leads to the appearance of the extra reflections. Unlike in the classical approach, this host–guest concept allows us to identify a structural phase transition at TLOCK = 130 ± 20 K. At this temperature, the H and G subsystems lock together, ceasing to behave independently. The low-temperature step-by-step transformation of the VS6 octahedra into VS5 pyramids is an essential consequence of the whole set of structural transformations that starts at T < 295 K. Finally, our findings related to structural properties should have a counterpart in the electronic and spin sector, and will thus help the interpretation of the intriguing electronic properties and states observed in BaVS3.

2. Experimental

2.1. Synthesis and crystallization

All details of the synthesis and crystallization of high-quality single crystals have been described by Kuriyaki et al. (1995[Kuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049-2050.]).

2.2. Single-crystal synchrotron XRD experiments

Single-crystal XRD data were collected at the Swiss–Norwegian Beamline BM01A (ESRF, Grenoble) at the following temperatures: 10, 40, 70, 100, 110, 150, 200, 220, 250 and 295 K (before and after cooling). The wavelength of λ = 0.7 Å was selected for the measurements. The CrysAlis PRO software (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) was used for the systematic investigation of the reciprocal space. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]). An empirical absorption correction using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm. Crystal structure studies were performed using the JANA2006 program package (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Experimental details are shown in Table 1[link] for five structures selected from different representative temperature ranges and in Table S1 (see supporting information) for the remaining temperatures.

Table 1
Experimental details for the representative structures of BaVS3

For all structures: Mr = 284.5. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Agilent, 2014). A new multipurpose diffractometer PILATUS@SNBL (Dyadkin et al., 2016[Dyadkin, V., Pattison, P., Dmitriev, V. & Chernyshov, D. (2016). J. Synchrotron Rad. 23, 825-829.]) was used for the data collections.

  250 K 220 K 100 K 70 K 150 K
Crystal data
Crystal system, space group Hexagonal, P63/mmc (for BaS3) Orthorhombic, Ccm21 (for BaS3) Monoclinic, Cm Monoclinic, Cm Monoclinic, Im
  Trigonal, P[\overline 3]m1 (for V)* Monoclinic, Cm (for V)*      
a, b, c (Å) 6.7164 (2), 6.7164 (2), 5.6088 (2) 11.593 (7), 6.708 (5), 5.604 (3) 11.485 (7), 6.751 (5), 5.597 (3) 11.496 (9), 6.742 (7), 5.597 (5) 11.456 (1), 6.764 (1), 11.188 (1)
α, β, γ (°) 90, 90, 120 90, 90.00 (1), 90 90, 90.011 (5), 90 90, 90.012 (6), 90 90, 90.048 (9), 90
V3) 219.12 (1) 435.8 (5) 434.0 (5) 433.8 (7) 866.94 (9)
Z 2 4 4 4 8
Radiation type, λ (Å) Synchrotron, 0.70814 Synchrotron, 0.70814 Synchrotron, 0.70000 Synchrotron, 0.70814 Synchrotron, 0.70814
μ (mm−1) 12.05 12.12 11.79 12.17 12.18
Crystal size (mm) 0.05 × 0.03 × 0.02 0.05 × 0.03 × 0.02 0.05 × 0.03 × 0.02 0.05 × 0.03 × 0.02 0.05 × 0.03 × 0.02
 
Data collection
Tmin, Tmax 0.649, 1.000 0.606, 1.000 0.628, 1.000 0.529, 1.000 0.671, 1.000
No. of measured, independent and observed [I > 3σ(I)] reflections 2069, 196, 196 3944, 1464, 1464 3199, 1935, 1934 1782, 770, 769 4005, 1187, 1186
Rint 0.034 0.014 0.031 0.025 0.030
(sin θ/λ)max−1) 0.675 0.676 0.752 0.674 0.673
 
Refinement
R[F > 3σ(F)], wR(F), S 0.034, 0.146, 1.67 0.019, 0.040, 2.83 0.032, 0.045, 3.27 0.048, 0.065, 5.44 0.016, 0.027, 1.16
No. of reflections 196 1464 1935 770 1187
No. of parameters 13 32 59 53 110
Δρmax, Δρmin (e Å−3) 1.67, −1.94 0.96, −0.72 1.39, −1.76 2.26, −1.77 0.37, −0.42
Absolute structure   668 of Friedel pairs used in the refinement 806 of Friedel pairs used in the refinement 367 of Friedel pairs used in the refinement 587 of Friedel pairs used in the refinement
Absolute structure parameter   0.28 (2) 0.05 (4) 0.05 (5) 0.097 (19)
Computer programs: CrysAlis PRO (Agilent, 2014) and JANA2006 (Petříček et al., 2014[Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Note: (*) the structure is considered as a 1D commensurate composite consisting of the BaS3 matrix and V-chains located in its hexagonal channels (Fig. 1[link]).
2.2.1. Reciprocal space observations at different tem­per­atures

Our observations of systematic extra reflections shown in Fig. 2[link] contradict the generally accepted space group P63/mmc for the hexagonal phase and Ccm21 for the orthorhombic phase, and, in this respect, confirm the observations reported earlier by Imani et al. (2002[Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.]) and Girard et al. (2019[Girard, A., Ilakovac, V., Stekiel, M., Morgenroth, W., Berger, H., Yoshikazu, T., Hasegawa, T., Bosak, A. & Winkler, B. (2019). Phys. Rev. B, 99, 144104.]). The clearly observed hhl reflections with l = 2n+1 are incompatible with the c-glide plane of the P63/mmc space group, which was expected at T > TS = 240 K. Reflections of this type are also clearly visible in the 0kl section with l = 2n+1 in the 70–220 K temperature range, where the orthorhombic phase is expected. These reflections are not compatible with the c-glide plane of the orthorhombic space group Ccm21.

[Figure 2]
Figure 2
Selected sections of the experimental reciprocal space for BaVS3 in the 70–295 K temperature range. (a) In the hk3 and 0kl sections taken for the hexagonal phase at 295 K, the red circles highlight 00l and hhl reflections with l = 2n+1, which violate the hexagonal space group P63/mmc. The symmetry of the patterns indicates the 6/mmm Laue class. (b) In the 0kl section taken at different temperatures between 70 and 220 K, the red arrows point to rows of 0kl reflections with l = 2n+1, which violate the orthorhombic space group Ccm21.

New and surprising observations occur in the temperature range between TS = 240 K and TMI = 69 K. The splitting of reflections, which is expected below TS = 240 K due to the hex­ag­onal–orthorhombic symmetry reduction, changes sharply between 150 and 110 K (Fig. 3[link]). The predicted maxi­mum reflection splitting is determined by the order relationship between the hexagonal and orthorhombic Laue classes, i.e. 24/8 = 3. This is what is indeed observed in the temperature range from 150 to 220 K. However, the observed splitting is of a much higher order at 110 K and below (Fig. 3[link]), and it is similar to the monoclinic splitting that is typical for temperatures below TMI = 69 K. The observed splitting evol­ution is completely reversible with respect to temperature. This new observation is corroborated by observations of anomalies in the above-mentioned physical properties, which indicate a remarkable electronic transition at about 130 K. It should be emphasized that in parallel, starting around 170 K, diffuse scattering lines were observed by Fagot et al. (2003[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P. & Berger, H. (2003). Phys. Rev. Lett. 90, 196401.]). Their intensity and sharpness increase upon cooling, being a signature of 1D structural fluctuations. They are accompanied by a change in electrical resistivity which increases strongly from about 130 K down to TMI (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781-787.]; Kuriyaki et al., 1995[Kuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049-2050.]; Kézsmárki et al., 2006[Kézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402.]; Barišić, 2004[Barišić, N. (2004). Thesis. Ecole polytechnique fédérale de Lausanne, Switzerland.]; see also Fig. S2 in the supporting information).

[Figure 3]
Figure 3
The hk0 sections of the reciprocal space showing a correlation between the splitting of reflections and the published electrical properties of BaVS3. In the insets, framed with red squares, one of the reflections is enlarged for each temperature.

It is worth mentioning one more observation related to the structure below TS = 69 K. Some systematic reflections could possibly but mistakenly be indexed with the new modulation vector q′ = 0.5a + 0.5b + 0.5chex. However, these reflections originate from three twin components related by the threefold axis, as illustrated in Fig. S1 (see supporting information).

Summarizing the analysis of the reciprocal space at different temperatures, we establish with certainty that the symmetry of BaVS3 needs to be revised in the temperature range 69–295 K.

2.2.2. Revising the BaVS3 space-group symmetry down to TMI = 69 K

The 6/mmm Laue class of the hexagonal phase (Fig. 2[link]a) and the presence of the extra reflections in the hexagonal and orthorhombic phases leads to the space group P[\overline 6]m2 (instead of P63/mmc) for the hexagonal phase and its subgroup Cmm2 (instead of Ccm21) for the orthorhombic phase, in agreement with the reported symmetries by Inami et al. (2002[Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.]). However, down to 130 K, structure refinements based on about 3000 experimental single-crystal reflections (which includes about 200 extra reflections) show that Ba and S atoms can only be correctly fitted within the commonly used space groups: P63/mmc for the hexagonal phase and Ccm21 for the orthorhombic phase. This implies that the BaS3 substructure does not contribute to the intensity of the extra reflections. These weak reflections arise from a small difference in two V–V distances along the c axis. The difference can only be achieved with lower V-chain symmetry: the space group P[\overline 3]m1 (instead of P63/mmc for BaS3) and its monoclinic subgroup C2/m (instead of the orthorhombic Ccm21 for BaS3), with a shift of about (but not identical to) 0.25c between origins (inversion centers in the hexagonal phase) characterizing the BaS3 hcp matrix and the V-chain (Fig. 1[link]). Here we face a discrepancy in the description of the symmetry of the two parts of the same structure.

This controversy could be resolved by applying an approach called the host–guest commensurate composite structure (Arakcheeva et al., 2002[Arakcheeva, A., Chapuis, G. & Grinevitch, V. (2002). Acta Cryst. B58, 1-7.]; Höhn et al., 2006[Höhn, P., Auffermann, G., Ramlau, R., Rosner, H., Schnelle, W. & Kniep, R. (2006). Angew. Chem. Int. Ed. 45, 6681-6685.]; McMahon & Nelmes, 2006[McMahon, M. I. & Nelmes, R. J. (2006). Chem. Soc. Rev. 35, 943-963.]). This type of crystal structure assumes different symmetries for the host (usually a 3D matrix) and the guest (usually a chain inside a 3D matrix) with the same lattice parameters. Similarly, we consider the BaS3 hcp matrix as the host (H) and V-chains as the guest (G). Consequently, to refine the hexagonal phase (at 295 and 250 K), we use the space group P3m1, which is common for H and G, and additional pairwise restrictions for Ba, S and V sites according to their true symmetry. For the orthorhombic phase (at 220, 200 and 150 K), the C1m1 space group, which is common for H and G, was used with the corresponding pairwise restrictions for Ba, V and two S sites. Examples of atomic sites and the applied restrictions are available in the supporting information. The host–guest approach perfectly fits our diffraction experiments down to 150 K. It should be mentioned that the contribution of quasi-elastic scattering to the intensities of the extra reflections (Girard et al., 2019[Girard, A., Ilakovac, V., Stekiel, M., Morgenroth, W., Berger, H., Yoshikazu, T., Hasegawa, T., Bosak, A. & Winkler, B. (2019). Phys. Rev. B, 99, 144104.]) cannot be excluded since their calculated intensities are systematically somewhat lower than those observed.

Starting from 110 K and down to TMI = 69 K, both H and G adopt the common monoclinic symmetry C1m1 in agreement with the above-described observations of the monoclinic splitting for diffraction reflections below 130 K (Fig. 3[link]).

Our study confirms the space group I1m1 with a double unit-cell c parameter, which has been reported numerous times for the structure below TMI after the initial publication by Fagot et al. (2005[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718-725.]).

The summary of the structure symmetry reconsideration is presented in Fig. 4[link], which shows a scheme of the group–subgroup relationships found for BaVS3 in the 10–295 K temperature range.

[Figure 4]
Figure 4
The group–subgroup relationships for BaVS3 between 10 and 295 K. The bold black arrows indicate the relationships within the host (H) and the guest (G) components of the structure. Below TLOCK, both components acquire the same (equilibrium) monoclinic symmetry. The lowering to monoclinic symmetry at TMI is due to a doubling of the unit-cell c parameter.

3. Results and discussion

3.1. Structural phase transition at TLOC at 130 ± 20 K

The first important result of the present study follows directly from the symmetry revision of BaVS3 at different temperatures above TMI (Figs. 3[link] and 4[link]). It appears that the structural phase transition observed at 130 ± 20 K correlates remarkably well with the change in the slope of the electrical resistivity from negative to positive at about 130 K (Kézsmárki et al., 2006[Kézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402.]; see also Fig. S2 in the supporting information). As already mentioned in the Introduction, other properties also show changes/anomalies in the behaviour at this temperature. This structural transition consists of a monoclinic transformation of the entire BaVS3 structure and the loss of the inversion centre in the V-chains. This leads to a locking of the two structural subsystems, H and G, so that we denote the transition temperature as TLOCK = 130 ± 20 K. It is important to emphasize that, at this temperature, instead of one V site, two independent crystallographic V sites appear with monoclinic (m) local symmetry. This novel insight should be carefully considered theoretically with respect to the 1D electronic instability which is clearly visible below TLOCK.

3.2. Analysis of the temperature-dependent geometric characteristics

Another set of important information is obtained from the analysis of the T-dependent geometric characteristics of the BaVS3 structure (Fig. 5[link]). Namely, we analyze here the evolution of: (i) intra-chain V–V–V angles; (ii) V–V and V–S interatomic distances, which are then related to (iii) the bond valence sum (BVS) of V4+. BVS is calculated for each V site in its octahedral (VS6) and pyramidal (VS5) environment and compared to the nominal BVS = 4 for V4+.

[Figure 5]
Figure 5
Structural characteristics of BaVS3 between 10 and 295 K. (a) The VS6 chain represents ranges separated by the transformation temperatures. VS5 tetragonal pyramids (green) and VS6 octahedra (blue), highlighted according to (b) V–S distances and (c) the bond valence sum of V. For each V polyhedron, the equatorial (orange) and apical (brown) V–S contacts are shown; dashed brown lines specify the longest apical contacts. (b) Geometry characteristics: V–V–V angles and V–V and V–S distances. The markers indicate experimental values; the lines are guides for the eyes. (c) Bond valence sums (BVSs) calculated for each V atom in its octahedral (V4+S6, blue rhombuses) and pyramidal (V4+S5, green triangles) environment. The choice of polyhedron (dashed blue and green lines) is confirmed by the calculations, which are very close to the nominal BVS = 4. The colour coding is identical in all panels.

In agreement with the previously published studies, the essential change of the V–V–V angle (from 180 to 165.4°) is observed at TS, and the difference in the V–V distances varies within the range of about 0.2 Å below TMI.

The new experimental data characterize the host–guest structure at temperatures above TLOCK and the monoclinic structure between TMI and TLOCK. Unlike in all previously published studies, the difference between the intra-chain V–V distances is observed even in the hexagonal phase, i.e. above the temperature of the structural transition at TS. This difference, of about 0.1 Å at 295 K, increases to about 0.2 Å at 250 K. The zigzag deformation of the V-chain arising at TS reduces the difference to 0.07 Å at 220 K and then to 0.04 Å at 150 K. This small difference is maintained almost down to TMI. The small increase of this value up to 0.07 Å is observed at 70 K, i.e. immediately before the MI transition.

The analysis of the V–S distances points to a remarkable difference between the equatorial (yellow dots/lines in Fig. 5[link]) and apical (brown dots/lines in Fig. 5[link]) interatomic contacts in the temperature-dependent VS6 octahedra. The equatorial V–S distances are more of less stable within 2.35 ± 0.05 Å at any temperature, while the apical contacts are strongly temperature dependent. At temperatures above TS (295 and 250 K), there are no differences between them. However, below TS, the difference appears and increases systematically to about 0.6 Å at 10 K. This is the main tendency of the BaVS3 structure evolution between 295 and 10 K (Fig. 5[link]). This observation leads us to consider an optimal number of S2− ions, i.e. six in a V4+S6 octahedron or five in a V4+S5 pyramid, which can exactly fit the expecting oxidation state of V4+. The BVS presented in Fig. 5[link](c) indicates that the V4+S6 octahedron is preferable down to TLOCK. Two different polyhedra, i.e. a V4+S6 octahedron and a V4+S5 pyramid, can be recognized between TLOCK and TMI, and only the V4+S5 pyramid has the exact characteristics of the structure below TMI.

This analysis allows us to propose a scenario for the temperature-dependent structure transformations of BaVS3.

3.3. A possible scenario for the temperature-dependent structure transformations of BaVS3 below 295 K

The analysis described above indicates the existence of a unique mechanism causing the evolution of the BaVS3 structure with decreasing temperature. This mechanism manifests itself as a successive deformation of regular V4+S6 octahedra stable at room temperature, towards the stabilization of the V4+S5 pyramids, which is completed at temperatures below TLOCK. This deformation of the octahedra is realized by successive contraction of one of the apical V–S contacts and the corresponding increase of the other one, while maintaining the equatorial V–S contacts in the VS6 octahedra, as illustrated in Figs. 5[link] and 6[link]. In the hexagonal phase, the contraction of the apical V–S contact is possible only if the V atoms move closer together along the V-chain. Even a slight compression of this contact (e.g. 0.03 Å at 250 K) leads to the formation of an unstable short V–V contact (e.g. 2.70 Å at 250 K), which causes the first structural phase transition at TS (Fig. 6[link]a). As a result of this transition, the apical V–S contacts decrease essentially due to the appearance of a V–V–V angle of about 165°, which in turn recovers the stable V–V distances. The structure remains practically unchanged down to 150 K with short apical contacts of about 2.23 Å and a V4+S6 octahedron for two V atoms connected by a centre of inversion within the V-chain. An additional temperature decrease induces further contraction of the V–S apical contacts. A significant shortening of one of them occurs at TLOCK, stabilizing its V4+S5 pyramid, while the V4+S6 octahedron is still stable for the second V atom (Figs. 5[link]c and 6[link]b). The loss of the inversion centre in the V-chain leads to a significant distortion in the short V–S apical contacts (2.19 versus 2.26 Å) and the corresponding polyhedra characteristic of two V atoms. The distortions are completely eliminated at TMI due to the doubling of the unit-cell c parameters (Figs. 5[link]c and 6c[link]). At T < TMI, the structure becomes stable with respect to charge compensation within the V4+S5 pyramids for the whole set of V atoms. However, this is accompanied by a significant difference (2.94 versus 2.78 Å) in V–V distances in the V-chain, in agreement with most of the previous studies. It is important to note that each described structural transition can be considered as initiated by the displacement of V atoms, as shown in Fig. 6[link]. This indicates the electronic instability of V as the main cause of structural transformations, which already manifest themselves as diffusion scattering at temperatures below 170 K (Fagot et al., 2003[Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P. & Berger, H. (2003). Phys. Rev. Lett. 90, 196401.]).

[Figure 6]
Figure 6
Illustration of the transformation of VS6 octahedra into VS5 pyramids as a general underlying principle for changes in the BaVS3 structure as a function of temperature. The interatomic distances are given in Å. Arched arrows point to the transformation of short apical V–S contacts in VS6 octahedra. The numerical values of the distances are highlighted in red, which change as a result of the corresponding structural phase transitions. Straight red arrows show displacements of V atoms, which initiate the transformation of the structure. (a) Compression of the apical V–S contacts in the hexagonal phase results in a too-short V–V contact, indicated in brown. During the TS transition, this contact relaxes due to its increase as a result of the V-atom displacement, which leads to a zigzag deformation of the V-chain. (b) At the TLOCK phase transition, further compression of the apical V–S contact for one V atom occurs due to its predominant displacement, which leads to the loss of the inversion centre (black crosses) in the V-chain. This results in two sites, V1 and V2, for the V atom instead of one. (c) During the TMI structural transition, the uniformly compressed apical V–S contact for each V atom is realized due to different displacements of the V atoms along the c axis. As a consequence, the number of V sites increases from two to four (V1, V2, V3 and V4). A side effect is a significant difference of the intra-chain V–V distances, indicated in brown.

4. Summary

Using single-crystal X-ray synchrotron diffraction experiments, we reveal that, upon decreasing the temperature, the series of structural phase transitions in the complex quasi-1D metallic system BaVS3 satisfies the group–subgroup symmetry relationships only if its structure is considered as a 1D commensurate composite, which consists of the host (H), the BaS3 hcp matrix and the guest (G) V-chains. The host–guest structure model reveals a structural phase transition at TLOCK = 130 ± 20 K, which was not previously observed and which can be considered as a prerequisite for the metal–insulator transformation. The refined structural characteristics obtained in the 10–295 K temperature range indicate the presence of a unique ingredient required for the correct description of the structural evolution with temperature. It is associated with the VS6 octahedra that characterize the structure at room temperature, which successively transform upon decreasing the temperature into VS5 tetragonal pyramids, characteristic of the structure below TMI = 69 K. We are convinced that our findings will yield a better understanding of the low-temperature driven electronic transformations of the BaVS3 quasi-1D electronic system.

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to refine structure: JANA2006 (Petčíček et al., 2014).

(I) top
Crystal data top
BaVS3F(000) = 1016
Mr = 284.5Dx = 4.359 Mg m3
Monoclinic, ImSynchrotron radiation, λ = 0.70814 Å
Hall symbol: I -2yCell parameters from 4005 reflections
a = 11.456 (1) Åθ = 2.5–28.4°
b = 6.764 (1) ŵ = 12.18 mm1
c = 11.188 (1) ÅT = 10 K
β = 90.048 (9)°Irregular, grey
V = 866.94 (9) Å30.05 × 0.03 × 0.02 mm
Z = 8
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1186 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.030
Synchrotron monochromatorθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1515
Tmin = 0.671, Tmax = 1.000k = 88
4005 measured reflectionsl = 1111
1187 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F > 3σ(F)] = 0.016(Δ/σ)max = 0.028
wR(F) = 0.027Δρmax = 0.37 e Å3
S = 1.16Δρmin = 0.42 e Å3
1187 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
110 parametersExtinction coefficient: 70 (30)
0 restraintsAbsolute structure: 587 of Friedel pairs used in the refinement
0 constraintsAbsolute structure parameter: 0.097 (19)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.33648600.1236030.0108 (3)
Ba20.33423 (6)00.37488 (10)0.0121 (4)
Ba30.34143 (4)00.62323 (4)0.0114 (3)
Ba40.33819 (7)00.86942 (10)0.0099 (2)
V20.0250 (3)00.23737 (18)0.0070 (6)
V30.0235 (3)00.4968 (2)0.0125 (7)
V10.0235 (3)00.73899 (19)0.0078 (6)
V40.0234 (3)00.9872 (2)0.0100 (5)
S10.8264 (7)00.1185 (6)0.0132 (11)
S20.8301 (8)00.3752 (6)0.0122 (10)
S30.8276 (7)00.6207 (6)0.0129 (10)
S40.8297 (8)00.8658 (6)0.0142 (11)
S50.0814 (7)0.2429 (5)0.1271 (5)0.0111 (7)
S60.0859 (7)0.2440 (5)0.3793 (5)0.0107 (7)
S70.0801 (7)0.2463 (5)0.6282 (5)0.0108 (8)
S80.0848 (7)0.2451 (5)0.8773 (5)0.0103 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0071 (6)0.0193 (3)0.0060 (5)00.0029 (5)0
Ba20.0075 (7)0.0193 (3)0.0095 (8)00.0010 (6)0
Ba30.0090 (8)0.0193 (3)0.0058 (5)00.0018 (5)0
Ba40.0055 (5)0.0196 (3)0.0048 (5)00.0036 (4)0
V20.0015 (11)0.0151 (4)0.0043 (14)00.0018 (10)0
V30.0048 (12)0.0234 (5)0.0094 (15)00.0001 (9)0
V10.0027 (11)0.0125 (4)0.0080 (15)00.0015 (10)0
V40.0049 (12)0.0217 (4)0.0034 (10)00.0032 (12)0
S10.004 (2)0.0210 (11)0.0149 (19)00.0058 (13)0
S20.012 (2)0.0174 (9)0.0072 (15)00.0019 (14)0
S30.002 (2)0.0225 (11)0.0141 (18)00.0030 (13)0
S40.017 (3)0.0154 (8)0.0100 (17)00.0051 (15)0
S50.0058 (18)0.0203 (8)0.0072 (9)0.0045 (8)0.0030 (14)0.0008 (10)
S60.0069 (17)0.0166 (7)0.0087 (11)0.0044 (8)0.0061 (14)0.0015 (8)
S70.0046 (19)0.0198 (7)0.0080 (10)0.0030 (8)0.0030 (14)0.0006 (10)
S80.0090 (17)0.0158 (7)0.0062 (9)0.0027 (8)0.0046 (14)0.0016 (8)
Geometric parameters (Å, º) top
Ba1—S2i3.403 (8)V3—S62.453 (6)
Ba1—S3ii3.3837 (3)V3—S6v2.453 (6)
Ba1—S3iii3.3837 (3)V3—S72.314 (5)
Ba1—S4iv3.454 (7)V3—S7v2.314 (5)
Ba1—S53.353 (7)V1—V42.828 (3)
Ba1—S5v3.353 (7)V1—S3x2.158 (8)
Ba1—S6vi3.356 (6)V1—S4i2.635 (9)
Ba1—S6vii3.356 (6)V1—S72.392 (6)
Ba1—S7viii3.277 (7)V1—S7v2.392 (6)
Ba1—S7ix3.277 (7)V1—S82.374 (5)
Ba1—S8vi3.441 (6)V1—S8v2.374 (5)
Ba1—S8vii3.441 (6)V4—S1xx2.695 (8)
Ba2—S1x3.409 (7)V4—S4i2.163 (9)
Ba2—S3x3.315 (7)V4—S5xxiii2.364 (5)
Ba2—S4viii3.3839 (2)V4—S5xxiv2.364 (5)
Ba2—S4vi3.3839 (2)V4—S82.407 (6)
Ba2—S5xi3.454 (6)V4—S8v2.407 (6)
Ba2—S5xii3.454 (6)S1—S5i3.353 (10)
Ba2—S63.289 (7)S1—S5xxv3.353 (10)
Ba2—S6v3.289 (7)S1—S6i3.499 (8)
Ba2—S7ii3.394 (6)S1—S6xxv3.499 (8)
Ba2—S7xiii3.394 (6)S1—S7viii3.304 (10)
Ba2—S8iii3.349 (7)S1—S7ix3.304 (10)
Ba2—S8xiv3.349 (7)S1—S8iv3.327 (8)
Ba3—S1xi3.3868 (4)S1—S8xxvi3.327 (8)
Ba3—S1xv3.3868 (4)S2—S5x3.381 (8)
Ba3—S2i3.399 (8)S2—S5xxvii3.381 (8)
Ba3—S4i3.349 (8)S2—S6x3.363 (11)
Ba3—S5xvi3.253 (7)S2—S6xxvii3.363 (11)
Ba3—S5xvii3.253 (7)S2—S7x3.442 (8)
Ba3—S6xviii3.449 (6)S2—S7xxvii3.442 (8)
Ba3—S6xix3.449 (6)S2—S8iii3.297 (11)
Ba3—S73.426 (7)S2—S8xiv3.297 (11)
Ba3—S7v3.426 (7)S3—S5xvi3.315 (10)
Ba3—S8vi3.356 (6)S3—S5xvii3.315 (10)
Ba3—S8vii3.356 (6)S3—S6i3.317 (8)
Ba4—S1xx3.364 (7)S3—S6xxv3.317 (8)
Ba4—S2xvi3.3839 (3)S3—S7i3.339 (10)
Ba4—S2xviii3.3839 (3)S3—S7xxv3.339 (10)
Ba4—S3x3.371 (7)S3—S8i3.464 (8)
Ba4—S5xi3.349 (6)S3—S8xxv3.464 (8)
Ba4—S5xii3.349 (6)S4—S6xv3.290 (11)
Ba4—S6xv3.326 (7)S4—S6xxi3.290 (11)
Ba4—S6xxi3.326 (7)S4—S7x3.303 (8)
Ba4—S7xi3.494 (6)S4—S7xxvii3.303 (8)
Ba4—S7xii3.494 (6)S4—S8x3.363 (11)
Ba4—S83.344 (7)S4—S8xxvii3.363 (11)
Ba4—S8v3.344 (7)S5—S5v3.286 (5)
V2—V32.955 (3)S5—S5xxviii3.478 (5)
V2—V4xxii2.854 (3)S5—S6v3.412 (9)
V2—S1x2.159 (8)S5—S8xxix3.380 (9)
V2—S2i2.713 (9)S6—S6xxx3.464 (4)
V2—S52.389 (6)S6—S6v3.300 (4)
V2—S5v2.389 (6)S6—S7v3.371 (9)
V2—S62.394 (5)S7—S7v3.331 (5)
V2—S6v2.394 (5)S7—S7xxviii3.433 (5)
V3—V12.763 (3)S7—S8v3.369 (9)
V3—S2i2.161 (9)S8—S8xxx3.448 (4)
V3—S3x2.638 (8)S8—S8v3.316 (4)
V3—V2—V4xxii157.96 (16)V3—V1—V4157.80 (16)
S1x—V2—S2i176.6 (3)S3x—V1—S4i174.8 (3)
S1x—V2—S594.8 (2)S3x—V1—S794.3 (2)
S1x—V2—S5v94.8 (2)S3x—V1—S7v94.3 (2)
S1x—V2—S6100.3 (3)S3x—V1—S899.6 (3)
S1x—V2—S6v100.3 (3)S3x—V1—S8v99.6 (3)
S2i—V2—S582.7 (2)S4i—V1—S782.0 (2)
S2i—V2—S5v82.7 (2)S4i—V1—S7v82.0 (2)
S2i—V2—S682.1 (2)S4i—V1—S884.2 (2)
S2i—V2—S6v82.1 (2)S4i—V1—S8v84.2 (2)
S5—V2—S5v86.9 (2)S7—V1—S7v88.3 (2)
S5—V2—S6164.9 (3)S7—V1—S8166.2 (3)
S5—V2—S6v90.99 (18)S7—V1—S8v89.93 (18)
S5v—V2—S690.99 (18)S7v—V1—S889.93 (18)
S5v—V2—S6v164.9 (3)S7v—V1—S8v166.2 (3)
S6—V2—S6v87.13 (18)S8—V1—S8v88.57 (19)
V2—V3—V1157.94 (16)V2xxiii—V4—V1157.82 (16)
S2i—V3—S3x172.7 (3)S1xx—V4—S4i174.2 (3)
S2i—V3—S693.4 (2)S1xx—V4—S5xxiii82.7 (2)
S2i—V3—S6v93.4 (2)S1xx—V4—S5xxiv82.7 (2)
S2i—V3—S7100.5 (3)S1xx—V4—S881.2 (2)
S2i—V3—S7v100.5 (3)S1xx—V4—S8v81.2 (2)
S3x—V3—S681.2 (2)S4i—V4—S5xxiii101.4 (3)
S3x—V3—S6v81.2 (2)S4i—V4—S5xxiv101.4 (3)
S3x—V3—S784.5 (2)S4i—V4—S894.6 (2)
S3x—V3—S7v84.5 (2)S4i—V4—S8v94.6 (2)
S6—V3—S6v84.5 (2)S5xxiii—V4—S5xxiv88.04 (19)
S6—V3—S7165.4 (3)S5xxiii—V4—S8163.9 (3)
S6—V3—S7v89.95 (18)S5xxiii—V4—S8v90.21 (18)
S6v—V3—S789.95 (18)S5xxiv—V4—S890.21 (18)
S6v—V3—S7v165.4 (3)S5xxiv—V4—S8v163.9 (3)
S7—V3—S7v92.1 (2)S8—V4—S8v87.1 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z1; (v) x, y, z; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y1/2, z1/2; (viii) x+1/2, y1/2, z1/2; (ix) x+1/2, y+1/2, z1/2; (x) x1, y, z; (xi) x1/2, y1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+1/2; (xix) x+1/2, y1/2, z+1/2; (xx) x1, y, z+1; (xxi) x1/2, y1/2, z+1/2; (xxii) x, y, z1; (xxiii) x, y, z+1; (xxiv) x, y, z+1; (xxv) x+1, y, z; (xxvi) x+1, y, z1; (xxvii) x1, y, z; (xxviii) x, y+1, z; (xxix) x, y, z1; (xxx) x, y1, z.
(II) top
Crystal data top
BaVS3F(000) = 1016
Mr = 284.5Dx = 4.357 Mg m3
Monoclinic, ImSynchrotron radiation, λ = 0.70814 Å
Hall symbol: I -2yCell parameters from 4010 reflections
a = 11.458 (1) Åθ = 2.5–28.4°
b = 6.764 (1) ŵ = 12.18 mm1
c = 11.190 (1) ÅT = 40 K
β = 90.045 (1)°Irregular, grey
V = 867.25 (9) Å30.05 × 0.03 × 0.02 mm
Z = 8
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1185 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.031
Synchrotron monochromatorθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1515
Tmin = 0.632, Tmax = 1.000k = 88
4010 measured reflectionsl = 1111
1185 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F > 3σ(F)] = 0.027(Δ/σ)max = 0.043
wR(F) = 0.036Δρmax = 0.87 e Å3
S = 1.45Δρmin = 1.07 e Å3
1185 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
110 parametersExtinction coefficient: 60 (40)
0 restraintsAbsolute structure: 586 of Friedel pairs used in the refinement
0 constraintsAbsolute structure parameter: 0.11 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.33648600.1236030.0113 (3)
Ba20.33472 (7)00.37543 (11)0.0136 (4)
Ba30.34085 (5)00.62344 (5)0.0130 (3)
Ba40.33846 (8)00.87039 (11)0.0121 (3)
V20.0272 (4)00.2392 (2)0.0110 (8)
V30.0216 (4)00.4975 (3)0.0118 (8)
V10.0257 (4)00.7411 (3)0.0125 (8)
V40.0214 (4)00.9889 (3)0.0123 (8)
S10.8283 (7)00.1184 (8)0.0185 (10)
S20.8285 (8)00.3773 (7)0.0131 (9)
S30.8293 (7)00.6210 (8)0.0179 (9)
S40.8285 (8)00.8692 (8)0.0183 (12)
S50.0884 (9)0.2413 (6)0.1295 (6)0.0122 (9)
S60.0785 (8)0.2433 (5)0.3789 (6)0.0100 (9)
S70.0874 (9)0.2457 (7)0.6304 (7)0.0122 (9)
S80.0775 (8)0.2456 (5)0.8771 (6)0.0099 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0040 (6)0.0224 (4)0.0074 (4)00.0029 (4)0
Ba20.0091 (9)0.0224 (4)0.0092 (8)00.0006 (5)0
Ba30.0091 (8)0.0231 (4)0.0067 (4)00.0033 (5)0
Ba40.0047 (7)0.0225 (4)0.0091 (5)00.0039 (4)0
V20.0047 (17)0.0216 (10)0.0066 (14)00.0005 (14)0
V30.0044 (17)0.0244 (10)0.0066 (12)00.0039 (13)0
V10.0069 (18)0.0219 (10)0.0085 (14)00.0013 (15)0
V40.0045 (17)0.0240 (10)0.0083 (14)00.0052 (14)0
S10.002 (2)0.0240 (13)0.029 (3)00.0001 (1)0
S20.014 (2)0.0209 (13)0.0048 (14)00.0014 (14)0
S30.003 (2)0.0224 (13)0.028 (2)00.0001 (1)0
S40.013 (2)0.0203 (13)0.022 (3)00.0025 (16)0
S50.007 (2)0.0272 (10)0.0024 (12)0.0013 (12)0.0024 (19)0.0005 (11)
S60.005 (2)0.0173 (9)0.0075 (14)0.0044 (9)0.0036 (17)0.0026 (10)
S70.008 (2)0.0280 (9)0.0005 (13)0.0013 (12)0.0015 (19)0.0006 (11)
S80.006 (2)0.0169 (8)0.0071 (13)0.0037 (10)0.0041 (16)0.0025 (9)
Geometric parameters (Å, º) top
Ba1—S2i3.412 (9)V3—S62.405 (7)
Ba1—S3ii3.3831 (2)V3—S6v2.405 (7)
Ba1—S3iii3.3831 (2)V3—S72.353 (7)
Ba1—S4iv3.416 (9)V3—S7v2.353 (7)
Ba1—S53.279 (9)V1—V42.825 (4)
Ba1—S5v3.279 (9)V1—S3x2.135 (9)
Ba1—S6vi3.386 (7)V1—S4i2.675 (10)
Ba1—S6vii3.386 (7)V1—S72.445 (8)
Ba1—S7viii3.351 (9)V1—S7v2.445 (8)
Ba1—S7ix3.351 (9)V1—S82.330 (6)
Ba1—S8vi3.460 (7)V1—S8v2.330 (6)
Ba1—S8vii3.460 (7)V4—S1xx2.645 (9)
Ba2—S1x3.431 (9)V4—S4i2.180 (10)
Ba2—S3x3.329 (9)V4—S5xxiii2.393 (7)
Ba2—S4viii3.3835 (3)V4—S5xxiv2.393 (7)
Ba2—S4vi3.3835 (3)V4—S82.368 (7)
Ba2—S5xi3.453 (7)V4—S8v2.368 (7)
Ba2—S5xii3.453 (7)S1—S5i3.399 (12)
Ba2—S63.366 (9)S1—S5xxv3.399 (12)
Ba2—S6v3.366 (9)S1—S7viii3.256 (11)
Ba2—S7ii3.357 (7)S1—S7ix3.256 (11)
Ba2—S7xiii3.357 (7)S1—S8iv3.350 (10)
Ba2—S8iii3.271 (8)S1—S8xxvi3.350 (10)
Ba2—S8xiv3.271 (8)S2—S5x3.355 (10)
Ba3—S1xi3.3855 (4)S2—S5xxvii3.355 (10)
Ba3—S1xv3.3855 (4)S2—S6x3.304 (12)
Ba3—S2i3.367 (9)S2—S6xxvii3.304 (12)
Ba3—S4i3.367 (9)S2—S7x3.422 (10)
Ba3—S5xvi3.333 (9)S2—S7xxvii3.422 (10)
Ba3—S5xvii3.333 (9)S2—S8iii3.351 (11)
Ba3—S6xviii3.469 (7)S2—S8xiv3.351 (11)
Ba3—S6xix3.469 (7)S3—S5xvi3.270 (11)
Ba3—S73.347 (9)S3—S5xvii3.270 (11)
Ba3—S7v3.347 (9)S3—S6i3.342 (10)
Ba3—S8vi3.382 (7)S3—S6xxv3.342 (10)
Ba3—S8vii3.382 (7)S3—S7i3.393 (11)
Ba4—S1xx3.368 (9)S3—S7xxv3.393 (11)
Ba4—S2xvi3.3848 (4)S3—S8i3.479 (11)
Ba4—S2xviii3.3848 (4)S3—S8xxv3.479 (11)
Ba4—S3x3.390 (9)S4—S5xx3.472 (10)
Ba4—S5xi3.321 (7)S4—S5xxviii3.472 (10)
Ba4—S5xii3.321 (7)S4—S6xv3.351 (12)
Ba4—S6xv3.254 (8)S4—S6xxi3.351 (12)
Ba4—S6xxi3.254 (8)S4—S7x3.291 (10)
Ba4—S7xi3.486 (7)S4—S7xxvii3.291 (10)
Ba4—S7xii3.486 (7)S4—S8x3.302 (12)
Ba4—S83.422 (9)S4—S8xxvii3.302 (12)
Ba4—S8v3.422 (9)S5—S5v3.264 (6)
V2—V32.944 (4)S5—S6v3.384 (11)
V2—V4xxii2.857 (4)S5—S8xxix3.403 (11)
V2—S1x2.136 (9)S6—S6xxx3.472 (5)
V2—S2i2.751 (9)S6—S6v3.292 (5)
V2—S52.435 (8)S6—S7v3.395 (11)
V2—S5v2.435 (8)S7—S7v3.323 (6)
V2—S62.345 (6)S7—S7xxxi3.441 (6)
V2—S6v2.345 (6)S7—S8v3.347 (11)
V3—V12.779 (4)S8—S8xxx3.441 (5)
V3—S2i2.183 (9)S8—S8v3.323 (5)
V3—S3x2.602 (9)
V3—V2—V4xxii157.80 (19)V3—V1—V4157.7 (2)
S1x—V2—S2i174.9 (3)S3x—V1—S4i173.4 (3)
S1x—V2—S595.9 (3)S3x—V1—S795.4 (3)
S1x—V2—S5v95.9 (3)S3x—V1—S7v95.4 (3)
S1x—V2—S6103.1 (3)S3x—V1—S8102.3 (3)
S1x—V2—S6v103.1 (3)S3x—V1—S8v102.3 (3)
S2i—V2—S580.4 (3)S4i—V1—S779.9 (3)
S2i—V2—S5v80.4 (3)S4i—V1—S7v79.9 (3)
S2i—V2—S680.4 (3)S4i—V1—S882.3 (3)
S2i—V2—S6v80.4 (3)S4i—V1—S8v82.3 (3)
S5—V2—S5v84.2 (2)S7—V1—S7v85.6 (3)
S5—V2—S6160.6 (4)S7—V1—S8162.0 (4)
S5—V2—S6v90.1 (2)S7—V1—S8v89.0 (2)
S5v—V2—S690.1 (2)S7v—V1—S889.0 (2)
S5v—V2—S6v160.6 (4)S7v—V1—S8v162.0 (4)
S6—V2—S6v89.2 (2)S8—V1—S8v90.9 (2)
V2—V3—V1157.8 (2)V2xxiii—V4—V1157.7 (2)
S2i—V3—S3x174.0 (3)S1xx—V4—S4i175.3 (3)
S2i—V3—S692.0 (3)S1xx—V4—S5xxiii84.7 (3)
S2i—V3—S6v92.0 (3)S1xx—V4—S5xxiv84.7 (3)
S2i—V3—S797.9 (3)S1xx—V4—S883.6 (3)
S2i—V3—S7v97.9 (3)S1xx—V4—S8v83.6 (3)
S3x—V3—S683.7 (3)S4i—V4—S5xxiii98.7 (3)
S3x—V3—S6v83.7 (3)S4i—V4—S5xxiv98.7 (3)
S3x—V3—S786.3 (3)S4i—V4—S893.0 (3)
S3x—V3—S7v86.3 (3)S4i—V4—S8v93.0 (3)
S6—V3—S6v86.4 (2)S5xxiii—V4—S5xxiv86.0 (2)
S6—V3—S7169.8 (4)S5xxiii—V4—S8168.2 (3)
S6—V3—S7v91.0 (2)S5xxiii—V4—S8v91.3 (2)
S6v—V3—S791.0 (2)S5xxiv—V4—S891.3 (2)
S6v—V3—S7v169.8 (4)S5xxiv—V4—S8v168.2 (3)
S7—V3—S7v89.8 (2)S8—V4—S8v89.1 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z1; (v) x, y, z; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y1/2, z1/2; (viii) x+1/2, y1/2, z1/2; (ix) x+1/2, y+1/2, z1/2; (x) x1, y, z; (xi) x1/2, y1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y+1/2, z+1/2; (xvi) x+1/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+1/2; (xix) x+1/2, y1/2, z+1/2; (xx) x1, y, z+1; (xxi) x1/2, y1/2, z+1/2; (xxii) x, y, z1; (xxiii) x, y, z+1; (xxiv) x, y, z+1; (xxv) x+1, y, z; (xxvi) x+1, y, z1; (xxvii) x1, y, z; (xxviii) x1, y, z+1; (xxix) x, y, z1; (xxx) x, y1, z; (xxxi) x, y+1, z.
(III) top
Crystal data top
BaS3VF(000) = 508
Mr = 284.5Dx = 4.364 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.70814 Å
Hall symbol: C -2yCell parameters from 1782 reflections
a = 11.496 (9) Åθ = 3.5–28.5°
b = 6.742 (7) ŵ = 12.17 mm1
c = 5.597 (5) ÅT = 70 K
β = 90.012 (6)°Irregular, grey
V = 433.8 (7) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
769 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.025
Synchrotron monochromatorθmax = 28.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1415
Tmin = 0.529, Tmax = 1.000k = 08
1782 measured reflectionsl = 55
770 independent reflections
Refinement top
Refinement on F2 constraints
R[F > 3σ(F)] = 0.048Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.065(Δ/σ)max = 0.035
S = 5.44Δρmax = 2.26 e Å3
770 reflectionsΔρmin = 1.77 e Å3
53 parametersAbsolute structure: 367 of Friedel pairs used in the refinement
0 restraintsAbsolute structure parameter: 0.05 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.33605300.0003030.0131 (4)
Ba20.33852 (10)00.5010 (5)0.0120 (4)
V10.0205 (5)00.2417 (14)0.0164 (11)
V20.0238 (6)00.2635 (12)0.0093 (10)
S10.1730 (15)00.014 (3)0.013 (2)
S20.0833 (13)0.2459 (8)0.000 (3)0.0148 (12)
S30.1689 (15)00.506 (3)0.0117 (19)
S40.0836 (12)0.2427 (7)0.495 (3)0.0132 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0170 (8)0.0143 (4)0.0079 (9)00.0003 (12)0
Ba20.0130 (6)0.0145 (5)0.0084 (8)00.0016 (11)0
V10.0164 (17)0.0118 (9)0.021 (3)00.003 (3)0
V20.0094 (14)0.0165 (10)0.002 (3)00.003 (2)0
S10.015 (5)0.0205 (18)0.005 (4)00.000 (4)0
S20.021 (3)0.0151 (12)0.008 (2)0.0047 (16)0.002 (3)0.003 (2)
S30.016 (4)0.0109 (15)0.008 (3)00.002 (3)0
S40.0136 (18)0.0124 (11)0.014 (2)0.0067 (16)0.002 (3)0.0021 (18)
Geometric parameters (Å, º) top
Ba1—S1i3.374 (7)V1—S3v2.60 (2)
Ba1—S1ii3.374 (7)V1—S4v2.318 (14)
Ba1—S23.346 (14)V1—S4xvi2.318 (14)
Ba1—S2i3.319 (14)V2—S12.658 (19)
Ba1—S2iii3.346 (14)V2—S22.321 (14)
Ba1—S2iv3.319 (14)V2—S2iii2.321 (14)
Ba1—S3v3.364 (19)V2—S32.15 (2)
Ba1—S33.425 (19)V2—S42.426 (14)
Ba1—S4vi3.440 (17)V2—S4iii2.426 (14)
Ba1—S4ii3.399 (16)S1—S23.38 (2)
Ba1—S4vii3.440 (17)S1—S2x3.28 (2)
Ba1—S4viii3.399 (16)S1—S2iii3.38 (2)
Ba2—S13.323 (18)S1—S2xii3.28 (2)
Ba2—S1ix3.446 (18)S1—S4v3.49 (2)
Ba2—S2x3.405 (17)S1—S43.31 (2)
Ba2—S2xi3.399 (17)S1—S4xvi3.49 (2)
Ba2—S2xii3.405 (17)S1—S4iii3.31 (2)
Ba2—S2xiii3.399 (17)S2—S2iii3.316 (10)
Ba2—S3x3.372 (7)S2—S2xvii3.426 (10)
Ba2—S3xiv3.372 (7)S2—S3v3.37 (2)
Ba2—S43.357 (13)S2—S33.43 (2)
Ba2—S4xiv3.308 (13)S2—S4xvi3.42 (2)
Ba2—S4iii3.357 (13)S2—S4iii3.37 (2)
Ba2—S4xv3.308 (13)S3—S43.33 (2)
V1—V2v2.816 (12)S3—S4ii3.33 (2)
V1—V22.873 (12)S3—S4iii3.33 (2)
V1—S12.264 (19)S3—S4viii3.33 (2)
V1—S22.451 (14)S4—S4xviii3.469 (10)
V1—S2iii2.451 (14)S4—S4iii3.273 (9)
V2v—V1—V2159.3 (3)V1—V2—V1ix159.3 (3)
S1—V1—S291.6 (6)S1—V2—S285.3 (5)
S1—V1—S2iii91.6 (6)S1—V2—S2iii85.3 (5)
S1—V1—S3v173.7 (7)S1—V2—S3172.5 (7)
S1—V1—S4v99.2 (5)S1—V2—S481.2 (5)
S1—V1—S4xvi99.2 (5)S1—V2—S4iii81.2 (5)
S2—V1—S2iii85.1 (5)S2—V2—S2iii91.2 (5)
S2—V1—S3v83.8 (5)S2—V2—S399.9 (6)
S2—V1—S4v168.8 (6)S2—V2—S4166.2 (6)
S2—V1—S4xvi91.5 (4)S2—V2—S4iii90.4 (4)
S2iii—V1—S3v83.8 (5)S2iii—V2—S399.9 (6)
S2iii—V1—S4v91.5 (4)S2iii—V2—S490.4 (4)
S2iii—V1—S4xvi168.8 (6)S2iii—V2—S4iii166.2 (6)
S3v—V1—S4v85.2 (5)S3—V2—S493.3 (6)
S3v—V1—S4xvi85.2 (5)S3—V2—S4iii93.3 (6)
S4v—V1—S4xvi89.8 (5)S4—V2—S4iii84.8 (4)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z; (v) x, y, z1; (vi) x+1/2, y+1/2, z1; (vii) x+1/2, y1/2, z1; (viii) x+1/2, y1/2, z; (ix) x, y, z+1; (x) x1/2, y1/2, z; (xi) x1/2, y1/2, z+1; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+1/2, z+1; (xiv) x1/2, y+1/2, z; (xv) x1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(IV) top
Crystal data top
BaS3VF(000) = 508
Mr = 284.5Dx = 4.354 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.70000 Å
Hall symbol: C -2yCell parameters from 3199 reflections
a = 11.485 (7) Åθ = 3.5–31.8°
b = 6.751 (5) ŵ = 11.79 mm1
c = 5.597 (3) ÅT = 100 K
β = 90.011 (5)°Irregular, grey
V = 434.0 (5) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Mar345 image plate
diffractometer
1934 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.031
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
θmax = 31.8°, θmin = 3.5°
Tmin = 0.627, Tmax = 1.000h = 1717
3199 measured reflectionsk = 99
1935 independent reflectionsl = 88
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.032Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.045(Δ/σ)max = 0.048
S = 3.27Δρmax = 1.39 e Å3
1935 reflectionsΔρmin = 1.76 e Å3
59 parametersAbsolute structure: 806 of Friedel pairs used in the refinement
0 restraintsAbsolute structure parameter: 0.05 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.3351 (3)00.4995 (9)0.0094 (9)
Ba20.338683000.0088 (9)
V10.0225 (10)00.2424 (16)0.007 (2)
V20.0211 (10)00.2593 (15)0.011 (2)
S10.173 (2)00.015 (3)0.006 (3)
S20.0785 (19)0.2431 (19)0.000 (2)0.009 (2)
S30.167 (2)00.512 (2)0.006 (3)
S40.0861 (18)0.2462 (18)0.493 (2)0.007 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0116 (16)0.0096 (19)0.0070 (9)00.0016 (10)0
Ba20.0113 (18)0.007 (2)0.0079 (9)00.0034 (11)0
V10.004 (3)0.011 (5)0.007 (2)00.001 (3)0
V20.015 (4)0.009 (5)0.010 (2)00.000 (3)0
S10.005 (5)0.006 (6)0.006 (4)00.0016 (16)0
S20.012 (5)0.010 (4)0.005 (2)0.002 (3)0.002 (3)0.001 (3)
S30.008 (6)0.004 (6)0.005 (4)00.004 (2)0
S40.006 (4)0.004 (5)0.012 (3)0.001 (2)0.002 (3)0.002 (2)
Geometric parameters (Å, º) top
Ba1—S13.291 (19)V1—S2vii2.425 (17)
Ba1—S1i3.429 (19)V1—S3xii2.58 (2)
Ba1—S2ii3.437 (14)V1—S4xii2.343 (15)
Ba1—S2iii3.440 (14)V1—S4xvi2.343 (15)
Ba1—S2iv3.437 (14)V2—S12.62 (2)
Ba1—S2v3.440 (14)V2—S22.288 (15)
Ba1—S3ii3.3763 (6)V2—S2vii2.288 (15)
Ba1—S3vi3.3763 (6)V2—S32.19 (2)
Ba1—S43.308 (19)V2—S42.447 (17)
Ba1—S4vi3.354 (19)V2—S4vii2.447 (17)
Ba1—S4vii3.308 (19)S1—S23.33 (3)
Ba1—S4viii3.354 (19)S1—S2ii3.34 (3)
Ba2—S1ix3.3792 (12)S1—S2vii3.33 (3)
Ba2—S1x3.3792 (12)S1—S2iv3.34 (3)
Ba2—S23.41 (2)S1—S43.31 (2)
Ba2—S2ix3.26 (2)S1—S4vii3.31 (2)
Ba2—S2vii3.41 (2)S2—S2vii3.282 (19)
Ba2—S2xi3.26 (2)S2—S2xvii3.469 (19)
Ba2—S3xii3.370 (18)S2—S3xii3.345 (19)
Ba2—S33.478 (18)S2—S33.454 (19)
Ba2—S4xiii3.426 (13)S2—S4xvi3.41 (2)
Ba2—S4x3.361 (13)S2—S4vii3.35 (2)
Ba2—S4xiv3.426 (13)S3—S43.35 (3)
Ba2—S4xv3.361 (13)S3—S4x3.32 (3)
V1—V2xii2.834 (12)S3—S4vii3.35 (3)
V1—V22.852 (12)S3—S4xv3.32 (3)
V1—S12.25 (2)S4—S4xviii3.427 (17)
V1—S22.425 (17)S4—S4vii3.324 (17)
V2xii—V1—V2159.7 (5)V1—V2—V1i159.7 (5)
S1—V1—S290.6 (6)S1—V2—S285.1 (6)
S1—V1—S2vii90.6 (6)S1—V2—S2vii85.1 (6)
S1—V1—S3xii172.6 (8)S1—V2—S3171.4 (8)
S1—V1—S4xii99.5 (7)S1—V2—S481.4 (6)
S1—V1—S4xvi99.5 (7)S1—V2—S4vii81.4 (6)
S2—V1—S2vii85.2 (6)S2—V2—S2vii91.6 (6)
S2—V1—S3xii83.9 (6)S2—V2—S3100.9 (7)
S2—V1—S4xii169.4 (8)S2—V2—S4166.2 (9)
S2—V1—S4xvi91.3 (5)S2—V2—S4vii89.8 (5)
S2vii—V1—S3xii83.9 (6)S2vii—V2—S3100.9 (7)
S2vii—V1—S4xii91.3 (5)S2vii—V2—S489.8 (5)
S2vii—V1—S4xvi169.4 (8)S2vii—V2—S4vii166.2 (9)
S3xii—V1—S4xii85.7 (6)S3—V2—S492.3 (6)
S3xii—V1—S4xvi85.7 (6)S3—V2—S4vii92.3 (6)
S4xii—V1—S4xvi90.4 (6)S4—V2—S4vii85.6 (6)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x+1/2, y1/2, z1; (xv) x+1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(V) top
Crystal data top
BaVS3F(000) = 508
Mr = 284.5Dx = 4.336 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.70814 Å
Hall symbol: C -2yCell parameters from 1319 reflections
a = 11.5839 (7) Åθ = 3.5–28.7°
b = 6.7016 (5) ŵ = 12.12 mm1
c = 5.5956 (3) ÅT = 150 K
β = 90°Irregular, grey
V = 434.39 (5) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1409 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.023
Synchrotron monochromatorθmax = 28.7°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1414
Tmin = 0.658, Tmax = 1.000k = 88
3834 measured reflectionsl = 55
1409 independent reflections
Refinement top
Refinement on F28 constraints
R[F > 3σ(F)] = 0.046Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.072(Δ/σ)max = 0.018
S = 4.83Δρmax = 2.16 e Å3
1409 reflectionsΔρmin = 1.62 e Å3
30 parametersAbsolute structure: 653 of Friedel pairs used in the refinement
0 restraintsAbsolute structure parameter: 0.02 (4)
Special details top

Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.33666 (4)00.5079180.0127 (2)
Ba1b0.33666 (4)00.0079180.0127 (2)
V1a0.02090 (11)00.2505 (3)0.0131 (4)
V1b0.02090 (11)00.2505 (3)0.0131 (4)
S1a0.16932 (16)00.0029 (7)0.0126 (9)
S2a0.08307 (13)0.24518 (15)0.0226 (6)0.0102 (7)
S1b0.16932 (16)00.4971 (7)0.0126 (9)
S2b0.08307 (13)0.24518 (15)0.5226 (6)0.0102 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0150 (4)0.0142 (3)0.0091 (5)00.0005 (3)0
Ba1b0.0150 (4)0.0142 (3)0.0091 (5)00.0005 (3)0
V1a0.0137 (7)0.0180 (6)0.0074 (9)00.0006 (5)0
V1b0.0137 (7)0.0180 (6)0.0074 (9)00.0006 (5)0
S1a0.0109 (12)0.0168 (13)0.010 (2)00.0001 (11)0
S2a0.0158 (10)0.0140 (10)0.0010 (15)0.0029 (5)0.0013 (10)0.0000 (5)
S1b0.0109 (12)0.0168 (13)0.010 (2)00.0001 (11)0
S2b0.0158 (10)0.0140 (10)0.0010 (15)0.0029 (5)0.0013 (10)0.0000 (5)
Geometric parameters (Å, º) top
Ba1a—S1a3.454 (3)V1a—S2avii2.356 (3)
Ba1a—S1ai3.354 (3)V1a—S1bxii2.225 (3)
Ba1a—S2aii3.340 (3)V1a—S2bxii2.401 (2)
Ba1a—S2aiii3.475 (3)V1a—S2bxvi2.401 (2)
Ba1a—S2aiv3.340 (3)V1b—S1a2.228 (3)
Ba1a—S2av3.475 (3)V1b—S2a2.403 (2)
Ba1a—S1bii3.3521 (5)V1b—S2avii2.403 (2)
Ba1a—S1bvi3.3521 (5)V1b—S1b2.600 (3)
Ba1a—S2b3.3669 (15)V1b—S2b2.353 (3)
Ba1a—S2bvi3.3272 (15)V1b—S2bvii2.353 (3)
Ba1a—S2bvii3.3669 (15)S1a—S2a3.357 (2)
Ba1a—S2bviii3.3272 (15)S1a—S2aii3.341 (2)
Ba1b—S1aix3.3521 (5)S1a—S2avii3.357 (2)
Ba1b—S1ax3.3521 (5)S1a—S2aiv3.341 (2)
Ba1b—S2a3.3669 (15)S1a—S2bxii3.278 (4)
Ba1b—S2aix3.3272 (15)S1a—S2bxvi3.278 (4)
Ba1b—S2avii3.3669 (15)S2a—S2avii3.2862 (15)
Ba1b—S2axi3.3272 (15)S2a—S2axvii3.4154 (15)
Ba1b—S1bxii3.454 (3)S2a—S1b3.278 (4)
Ba1b—S1b3.354 (3)S2a—S2bxvi3.396 (4)
Ba1b—S2bxiii3.340 (3)S2a—S2bvii3.396 (4)
Ba1b—S2bx3.475 (3)S1b—S2b3.357 (2)
Ba1b—S2bxiv3.340 (3)S1b—S2bx3.341 (2)
Ba1b—S2bxv3.475 (3)S1b—S2bvii3.357 (2)
V1a—V1bxii2.834 (2)S1b—S2bxv3.341 (2)
V1a—V1b2.845 (2)S2b—S2bxviii3.4154 (15)
V1a—S1a2.603 (3)S2b—S2bvii3.2862 (15)
V1a—S2a2.356 (3)
V1bxii—V1a—V1b160.36 (6)V1a—V1b—V1ai160.36 (6)
S1a—V1a—S2a85.04 (9)S1a—V1b—S2a92.81 (10)
S1a—V1a—S2avii85.04 (9)S1a—V1b—S2avii92.81 (10)
S1a—V1a—S1bxii172.76 (13)S1a—V1b—S1b172.55 (13)
S1a—V1a—S2bxii81.77 (9)S1a—V1b—S2b100.11 (9)
S1a—V1a—S2bxvi81.77 (9)S1a—V1b—S2bvii100.11 (9)
S2a—V1a—S2avii88.42 (9)S2a—V1b—S2avii86.26 (8)
S2a—V1a—S1bxii100.11 (9)S2a—V1b—S1b81.78 (9)
S2a—V1a—S2bxii166.80 (10)S2a—V1b—S2b166.93 (10)
S2a—V1a—S2bxvi91.09 (8)S2a—V1b—S2bvii91.11 (8)
S2avii—V1a—S1bxii100.11 (9)S2avii—V1b—S1b81.78 (9)
S2avii—V1a—S2bxii91.09 (8)S2avii—V1b—S2b91.11 (8)
S2avii—V1a—S2bxvi166.80 (10)S2avii—V1b—S2bvii166.93 (10)
S1bxii—V1a—S2bxii92.97 (10)S1b—V1b—S2b85.17 (9)
S1bxii—V1a—S2bxvi92.97 (10)S1b—V1b—S2bvii85.17 (9)
S2bxii—V1a—S2bxvi86.39 (8)S2b—V1b—S2bvii88.58 (10)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x+1/2, y1/2, z1; (xv) x+1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(VI) top
Crystal data top
BaS3VF(000) = 508
Mr = 284.5Dx = 4.327 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.693 Å
Hall symbol: C -2yCell parameters from 1653 reflections
a = 11.5729 (7) Åθ = 3.5–28.7°
b = 6.7116 (5) ŵ = 12.09 mm1
c = 5.6015 (3) ÅT = 200 K
β = 90°Irregular, grey
V = 435.08 (5) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
2191 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.021
Synchrotron monochromatorθmax = 32.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1716
Tmin = 0.595, Tmax = 1.000k = 99
3593 measured reflectionsl = 88
2206 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F > 3σ(F)] = 0.021(Δ/σ)max = 0.020
wR(F) = 0.026Δρmax = 0.62 e Å3
S = 1.15Δρmin = 0.80 e Å3
2206 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
31 parametersExtinction coefficient: 510 (40)
0 restraintsAbsolute structure: 974 of Friedel pairs used in the refinement
28 constraintsAbsolute structure parameter: 0.17 (3)
Special details top

Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.33533 (5)00.5041910.01417 (15)
Ba1b0.33533 (5)00.0041910.01417 (15)
V1a0.01585 (9)00.2520 (3)0.0211 (3)
V1b0.01585 (9)00.2520 (3)0.0211 (3)
S1a0.16705 (13)00.0068 (6)0.0123 (10)
S2a0.08293 (11)0.24686 (16)0.0088 (10)0.0133 (7)
S1b0.16705 (13)00.4932 (6)0.0123 (10)
S2b0.08293 (11)0.24686 (16)0.5088 (10)0.0133 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0150 (3)0.0148 (3)0.01268 (10)00.0002 (3)0
Ba1b0.0150 (3)0.0148 (3)0.01268 (10)00.0002 (3)0
V1a0.0186 (6)0.0335 (8)0.01127 (19)00.0023 (5)0
V1b0.0186 (6)0.0335 (8)0.01127 (19)00.0023 (5)0
S1a0.0141 (18)0.0102 (18)0.0125 (14)00.0004 (15)0
S2a0.0180 (16)0.0097 (14)0.0122 (8)0.0020 (8)0.0008 (13)0.0006 (6)
S1b0.0141 (18)0.0102 (18)0.0125 (14)00.0004 (15)0
S2b0.0180 (16)0.0097 (14)0.0122 (8)0.0020 (8)0.0008 (13)0.0006 (6)
Geometric parameters (Å, º) top
Ba1a—S1a3.462 (3)V1a—S1bxii2.258 (3)
Ba1a—S1ai3.361 (3)V1a—S2bxii2.418 (3)
Ba1a—S2aii3.388 (5)V1a—S2bxvi2.418 (3)
Ba1a—S2aiii3.431 (5)V1b—S1a2.272 (3)
Ba1a—S2aiv3.388 (5)V1b—S2a2.430 (3)
Ba1a—S2av3.431 (5)V1b—S2avii2.430 (3)
Ba1a—S1bii3.3565 (5)V1b—S1b2.511 (3)
Ba1a—S1bvi3.3565 (5)V1b—S2b2.328 (4)
Ba1a—S2b3.3582 (14)V1b—S2bvii2.328 (4)
Ba1a—S2bvi3.3314 (14)S1a—S2a3.3350 (18)
Ba1a—S2bvii3.3582 (14)S1a—S2aii3.3566 (18)
Ba1a—S2bviii3.3314 (14)S1a—S2avii3.3350 (18)
Ba1b—S1aix3.3565 (5)S1a—S2aiv3.3566 (18)
Ba1b—S1ax3.3565 (5)S1a—S2bxii3.325 (5)
Ba1b—S2a3.3582 (14)S1a—S2b3.469 (5)
Ba1b—S2aix3.3314 (14)S1a—S2bxvi3.325 (5)
Ba1b—S2avii3.3582 (14)S1a—S2bvii3.469 (5)
Ba1b—S2axi3.3314 (14)S2a—S2avii3.3137 (16)
Ba1b—S1bxii3.462 (3)S2a—S2axvii3.3979 (16)
Ba1b—S1b3.361 (3)S2a—S1bxii3.469 (5)
Ba1b—S2bxiii3.388 (5)S2a—S1b3.325 (5)
Ba1b—S2bx3.431 (5)S2a—S2bxvi3.395 (6)
Ba1b—S2bxiv3.388 (5)S2a—S2bvii3.395 (6)
Ba1b—S2bxv3.431 (5)S1b—S2b3.3350 (18)
V1a—V1bxii2.803 (2)S1b—S2bx3.3566 (18)
V1a—V1b2.847 (2)S1b—S2bvii3.3350 (18)
V1a—S1a2.523 (3)S1b—S2bxv3.3566 (18)
V1a—S2a2.341 (4)S2b—S2bxviii3.3979 (16)
V1a—S2avii2.341 (4)S2b—S2bvii3.3137 (16)
V1bxii—V1a—V1b165.08 (5)V1a—V1b—V1ai165.08 (5)
S1a—V1a—S2a86.47 (10)S1a—V1b—S2a90.27 (11)
S1a—V1a—S2avii86.47 (10)S1a—V1b—S2avii90.27 (11)
S1a—V1a—S1bxii173.78 (12)S1a—V1b—S1b172.92 (12)
S1a—V1a—S2bxii84.55 (10)S1a—V1b—S2b97.90 (10)
S1a—V1a—S2bxvi84.55 (10)S1a—V1b—S2bvii97.90 (10)
S2a—V1a—S2avii90.08 (13)S2a—V1b—S2avii85.96 (11)
S2a—V1a—S1bxii97.90 (10)S2a—V1b—S1b84.55 (10)
S2a—V1a—S2bxii170.87 (11)S2a—V1b—S2b171.31 (10)
S2a—V1a—S2bxvi91.01 (11)S2a—V1b—S2bvii91.03 (11)
S2avii—V1a—S1bxii97.90 (10)S2avii—V1b—S1b84.55 (10)
S2avii—V1a—S2bxii91.01 (11)S2avii—V1b—S2b91.03 (11)
S2avii—V1a—S2bxvi170.87 (11)S2avii—V1b—S2bvii171.31 (10)
S1bxii—V1a—S2bxii90.93 (11)S1b—V1b—S2b87.05 (10)
S1bxii—V1a—S2bxvi90.93 (11)S1b—V1b—S2bvii87.05 (10)
S2bxii—V1a—S2bxvi86.51 (11)S2b—V1b—S2bvii90.76 (13)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x+1/2, y1/2, z1; (xv) x+1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(VII) top
Crystal data top
BaVS3F(000) = 508
Mr = 284.5Dx = 4.336 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.70814 Å
Hall symbol: C -2yCell parameters from 1812 reflections
a = 11.593 (7) Åθ = 3.5–28.6°
b = 6.708 (5) ŵ = 12.12 mm1
c = 5.604 (3) ÅT = 220 K
β = 90°Irregular, grey
V = 435.8 (5) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
1464 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.014
Synchrotron monochromatorθmax = 28.6°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1515
Tmin = 0.606, Tmax = 1.000k = 88
3944 measured reflectionsl = 55
1464 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F > 3σ(F)] = 0.019(Δ/σ)max = 0.045
wR(F) = 0.040Δρmax = 0.96 e Å3
S = 2.83Δρmin = 0.72 e Å3
1464 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
32 parametersExtinction coefficient: 580 (40)
0 restraintsAbsolute structure: 668 of Friedel pairs used in the refinement
27 constraintsAbsolute structure parameter: 0.28 (2)
Special details top

Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.33471 (3)00.5046 (4)0.01489 (16)
Ba1b0.33471 (3)00.0046 (4)0.01489 (16)
V1a0.01545 (6)00.25311 (9)0.0213 (2)
V1b0.01545 (6)00.25311 (9)0.0213 (2)
S1a0.16657 (9)00.0040 (15)0.0162 (6)
S2a0.08293 (7)0.24697 (8)0.0193 (13)0.0114 (5)
S1b0.16657 (9)00.5040 (15)0.0162 (6)
S2b0.08293 (7)0.24697 (8)0.5193 (13)0.0114 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0146 (3)0.0141 (3)0.0160 (3)00.0008 (2)0
Ba1b0.0146 (3)0.0141 (3)0.0160 (3)00.0008 (2)0
V1a0.0212 (4)0.0301 (5)0.0125 (4)00.0011 (4)0
V1b0.0212 (4)0.0301 (5)0.0125 (4)00.0011 (4)0
S1a0.0107 (9)0.0153 (9)0.0226 (13)00.0003 (9)0
S2a0.0142 (8)0.0110 (7)0.0089 (10)0.0017 (3)0.0003 (9)0.0000 (3)
S1b0.0107 (9)0.0153 (9)0.0226 (13)00.0003 (9)0
S2b0.0142 (8)0.0110 (7)0.0089 (10)0.0017 (3)0.0003 (9)0.0000 (3)
Geometric parameters (Å, º) top
Ba1a—S1a3.416 (8)V1a—S1bxii2.218 (6)
Ba1a—S1ai3.411 (8)V1a—S2bxii2.382 (5)
Ba1a—S2aii3.345 (7)V1a—S2bxvi2.382 (5)
Ba1a—S2aiii3.480 (7)V1b—S1a2.240 (6)
Ba1a—S2aiv3.345 (7)V1b—S2a2.400 (5)
Ba1a—S2av3.480 (7)V1b—S2avii2.400 (5)
Ba1a—S1bii3.354 (5)V1b—S1b2.536 (5)
Ba1a—S1bvi3.354 (5)V1b—S2b2.363 (5)
Ba1a—S2b3.357 (3)V1b—S2bvii2.363 (5)
Ba1a—S2bvi3.342 (3)S1a—S2a3.334 (3)
Ba1a—S2bvii3.357 (3)S1a—S2aii3.365 (3)
Ba1a—S2bviii3.342 (3)S1a—S2avii3.334 (3)
Ba1b—S1aix3.354 (5)S1a—S2aiv3.365 (3)
Ba1b—S1ax3.354 (5)S1a—S2bxii3.326 (10)
Ba1b—S2a3.357 (3)S1a—S2b3.468 (10)
Ba1b—S2aix3.342 (3)S1a—S2bxvi3.326 (10)
Ba1b—S2avii3.357 (3)S1a—S2bvii3.468 (10)
Ba1b—S2axi3.342 (3)S2a—S2avii3.313 (5)
Ba1b—S1bxii3.416 (8)S2a—S2axvii3.395 (5)
Ba1b—S1b3.411 (8)S2a—S1bxii3.468 (10)
Ba1b—S2bxiii3.345 (7)S2a—S1b3.326 (10)
Ba1b—S2bx3.480 (7)S2a—S2bxvi3.398 (9)
Ba1b—S2bxiv3.345 (7)S2a—S2bvii3.398 (9)
Ba1b—S2bxv3.480 (7)S1b—S2b3.334 (3)
V1a—V1bxii2.790 (3)S1b—S2bx3.365 (3)
V1a—V1b2.859 (3)S1b—S2bvii3.334 (3)
V1a—S1a2.555 (5)S1b—S2bxv3.365 (3)
V1a—S2a2.385 (5)S2b—S2bxviii3.395 (5)
V1a—S2avii2.385 (5)S2b—S2bvii3.313 (5)
V1bxii—V1a—V1b165.43 (4)V1a—V1b—V1ai165.43 (4)
S1a—V1a—S2a84.83 (15)S1a—V1b—S2a91.80 (17)
S1a—V1a—S2avii84.83 (15)S1a—V1b—S2avii91.80 (17)
S1a—V1a—S1bxii176.5 (2)S1a—V1b—S1b175.1 (2)
S1a—V1a—S2bxii84.64 (16)S1a—V1b—S2b97.73 (16)
S1a—V1a—S2bxvi84.64 (16)S1a—V1b—S2bvii97.73 (16)
S2a—V1a—S2avii88.00 (17)S2a—V1b—S2avii87.29 (14)
S2a—V1a—S1bxii97.68 (16)S2a—V1b—S1b84.68 (16)
S2a—V1a—S2bxii169.47 (15)S2a—V1b—S2b170.37 (14)
S2a—V1a—S2bxvi90.96 (16)S2a—V1b—S2bvii91.03 (16)
S2avii—V1a—S1bxii97.68 (16)S2avii—V1b—S1b84.68 (16)
S2avii—V1a—S2bxii90.96 (16)S2avii—V1b—S2b91.03 (16)
S2avii—V1a—S2bxvi169.47 (15)S2avii—V1b—S2bvii170.37 (14)
S1bxii—V1a—S2bxii92.84 (18)S1b—V1b—S2b85.72 (15)
S1bxii—V1a—S2bxvi92.84 (18)S1b—V1b—S2bvii85.72 (15)
S2bxii—V1a—S2bxvi88.15 (14)S2b—V1b—S2bvii89.04 (17)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x+1/2, y1/2, z1; (xv) x+1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(VIII) top
Crystal data top
BaVS3F(000) = 508
Mr = 284.5Dx = 4.324 Mg m3
Monoclinic, CmSynchrotron radiation, λ = 0.7 Å
Hall symbol: C -2yCell parameters from 2084 reflections
a = 11.585 (7) Åθ = 3.5–32.4°
b = 6.724 (5) ŵ = 11.71 mm1
c = 5.610 (2) ÅT = 240 K
β = 90°Irregular, grey
V = 437.0 (4) Å30.05 × 0.03 × 0.02 mm
Z = 4
Data collection top
Mar345 image plate
diffractometer
1724 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.018
Synchrotron monochromatorθmax = 32.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1717
Tmin = 0.623, Tmax = 1.000k = 1010
2084 measured reflectionsl = 78
1751 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
R[F > 3σ(F)] = 0.021(Δ/σ)max = 0.002
wR(F) = 0.033Δρmax = 1.27 e Å3
S = 2.02Δρmin = 0.98 e Å3
1751 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
32 parametersExtinction coefficient: 510 (60)
0 restraintsAbsolute structure: 573 of Friedel pairs used in the refinement
27 constraintsAbsolute structure parameter: 0.20 (5)
Special details top

Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.33427 (6)00.5014 (8)0.01674 (14)
Ba1b0.33427 (6)00.0014 (8)0.01674 (14)
V1a0.01168 (9)00.2553 (3)0.0282 (4)
V1b0.01168 (9)00.2553 (3)0.0282 (4)
S1a0.16583 (15)00.005 (3)0.0158 (8)
S2a0.08287 (13)0.24755 (18)0.006 (3)0.0153 (5)
S1b0.16583 (15)00.495 (3)0.0158 (8)
S2b0.08287 (13)0.24755 (18)0.506 (3)0.0153 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0153 (3)0.0164 (3)0.01850 (16)00.0006 (3)0
Ba1b0.0153 (3)0.0164 (3)0.01850 (16)00.0006 (3)0
V1a0.0254 (7)0.0441 (10)0.0152 (4)00.0007 (7)0
V1b0.0254 (7)0.0441 (10)0.0152 (4)00.0007 (7)0
S1a0.0100 (10)0.0174 (12)0.0200 (18)00.0007 (10)0
S2a0.0134 (8)0.0145 (9)0.0179 (10)0.0023 (4)0.0004 (9)0.0004 (5)
S1b0.0100 (10)0.0174 (12)0.0200 (18)00.0007 (10)0
S2b0.0134 (8)0.0145 (9)0.0179 (10)0.0023 (4)0.0004 (9)0.0004 (5)
Geometric parameters (Å, º) top
Ba1a—S1a3.446 (13)V1a—S1bxii2.269 (9)
Ba1a—S1ai3.388 (13)V1a—S2bxii2.400 (8)
Ba1a—S2aii3.395 (12)V1a—S2bxvi2.400 (8)
Ba1a—S2aiii3.438 (12)V1b—S1a2.307 (10)
Ba1a—S2aiv3.395 (12)V1b—S2a2.434 (8)
Ba1a—S2av3.438 (12)V1b—S2avii2.434 (8)
Ba1a—S1bii3.362 (5)V1b—S1b2.457 (9)
Ba1a—S1bvi3.362 (5)V1b—S2b2.330 (9)
Ba1a—S2b3.355 (4)V1b—S2bvii2.330 (9)
Ba1a—S2bvi3.343 (4)S1a—S2a3.328 (4)
Ba1a—S2bvii3.355 (4)S1a—S2aii3.371 (4)
Ba1a—S2bviii3.343 (4)S1a—S2avii3.328 (4)
Ba1b—S1aix3.362 (5)S1a—S2aiv3.371 (4)
Ba1b—S1ax3.362 (5)S1a—S2bxii3.350 (17)
Ba1b—S2a3.355 (4)S1a—S2b3.451 (17)
Ba1b—S2aix3.343 (4)S1a—S2bxvi3.350 (17)
Ba1b—S2avii3.355 (4)S1a—S2bvii3.451 (17)
Ba1b—S2axi3.343 (4)S2a—S2avii3.329 (5)
Ba1b—S1bxii3.446 (13)S2a—S2axvii3.395 (5)
Ba1b—S1b3.388 (13)S2a—S1bxii3.451 (17)
Ba1b—S2bxiii3.395 (12)S2a—S1b3.350 (17)
Ba1b—S2bx3.438 (12)S2a—S2bxvi3.399 (17)
Ba1b—S2bxiv3.395 (12)S2a—S2bvii3.399 (17)
Ba1b—S2bxv3.438 (12)S1b—S2b3.328 (4)
V1a—V1bxii2.758 (3)S1b—S2bx3.371 (4)
V1a—V1b2.878 (3)S1b—S2bvii3.328 (4)
V1a—S1a2.491 (9)S1b—S2bxv3.371 (4)
V1a—S2a2.367 (9)S2b—S2bxviii3.395 (5)
V1a—S2avii2.367 (9)S2b—S2bvii3.329 (5)
V1bxii—V1a—V1b168.98 (5)V1a—V1b—V1ai168.98 (5)
S1a—V1a—S2a86.5 (3)S1a—V1b—S2a89.1 (3)
S1a—V1a—S2avii86.5 (3)S1a—V1b—S2avii89.1 (3)
S1a—V1a—S1bxii176.3 (4)S1a—V1b—S1b173.9 (4)
S1a—V1a—S2bxii86.4 (3)S1a—V1b—S2b96.2 (3)
S1a—V1a—S2bxvi86.4 (3)S1a—V1b—S2bvii96.2 (3)
S2a—V1a—S2avii89.4 (3)S2a—V1b—S2avii86.3 (3)
S2a—V1a—S1bxii96.2 (3)S2a—V1b—S1b86.4 (3)
S2a—V1a—S2bxii172.8 (3)S2a—V1b—S2b173.99 (15)
S2a—V1a—S2bxvi91.0 (3)S2a—V1b—S2bvii91.0 (3)
S2avii—V1a—S1bxii96.2 (3)S2avii—V1b—S1b86.4 (3)
S2avii—V1a—S2bxii91.0 (3)S2avii—V1b—S2b91.0 (3)
S2avii—V1a—S2bxvi172.8 (3)S2avii—V1b—S2bvii173.99 (15)
S1bxii—V1a—S2bxii90.9 (3)S1b—V1b—S2b88.0 (3)
S1bxii—V1a—S2bxvi90.9 (3)S1b—V1b—S2bvii88.0 (3)
S2bxii—V1a—S2bxvi87.8 (3)S2b—V1b—S2bvii91.2 (3)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z1; (xiv) x+1/2, y1/2, z1; (xv) x+1/2, y1/2, z; (xvi) x, y, z1; (xvii) x, y+1, z; (xviii) x, y1, z.
(IX) top
Crystal data top
BaVS3Dx = 4.312 Mg m3
Mr = 284.5Synchrotron radiation, λ = 0.70814 Å
Trigonal, P3m1Cell parameters from 1783 reflections
Hall symbol: P 3;-2"θ = 3.5–28.6°
a = 6.7164 (2) ŵ = 12.05 mm1
c = 5.6088 (2) ÅT = 250 K
V = 219.12 (1) Å3Irregular, grey
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 254
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
196 reflections with I > 3σ(I)
Radiation source: synchrotronRint = 0.034
Synchrotron monochromatorθmax = 28.6°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 88
Tmin = 0.649, Tmax = 1.000k = 88
2069 measured reflectionsl = 55
196 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.00034225F2)
R[F > 3σ(F)] = 0.034(Δ/σ)max = 0.018
wR(F) = 0.146Δρmax = 1.67 e Å3
S = 1.67Δρmin = 1.94 e Å3
196 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
13 parametersExtinction coefficient: 600 (400)
0 restraintsAbsolute structure: 0 of Friedel pairs used in the refinement
12 constraints
Special details top

Refinement. Structure is considered as a commensurate composite with P63/mmc space group for the BaS3 matrix and P3/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.3333330.6666670.50.0170 (13)
Ba1b0.3333330.66666700.0170 (13)
V1a000.2593 (16)0.0339 (19)
V1b000.2598 (16)0.0339 (19)
S1a0.16378 (19)0.16378 (19)00.018 (3)
S1b0.16378 (19)0.1637830.50.018 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0149 (15)0.0149 (15)0.021 (3)0.0074 (7)00
Ba1b0.0149 (15)0.0149 (15)0.021 (3)0.0074 (7)00
V1a0.040 (2)0.040 (2)0.021 (4)0.0201 (11)00
V1b0.040 (2)0.040 (2)0.021 (4)0.0201 (11)00
S1a0.018 (3)0.018 (3)0.025 (6)0.013 (2)0.0002 (7)0.0002 (7)
S1b0.018 (3)0.018 (3)0.025 (6)0.013 (2)0.0002 (7)0.0002 (7)
Geometric parameters (Å, º) top
Ba1a—S1ai3.4286 (9)V1a—V1b2.912 (13)
Ba1a—S1aii3.4286 (9)V1a—S1a2.397 (6)
Ba1a—S1aiii3.4286 (9)V1a—S1aiii2.397 (6)
Ba1a—S1aiv3.4286 (9)V1a—S1ax2.397 (6)
Ba1a—S1av3.4286 (9)V1a—S1bxxi2.335 (5)
Ba1a—S1avi3.4286 (9)V1a—S1bxviii2.335 (5)
Ba1a—S1b3.3584 (7)V1a—S1bxxii2.335 (5)
Ba1a—S1bvii3.3584 (7)V1b—S1a2.399 (5)
Ba1a—S1bviii3.3584 (7)V1b—S1aiii2.399 (5)
Ba1a—S1bix3.3584 (7)V1b—S1ax2.399 (5)
Ba1a—S1bx3.3584 (15)V1b—S1b2.333 (5)
Ba1a—S1bxi3.3584 (15)V1b—S1biii2.333 (5)
Ba1b—S1axii3.3584 (10)V1b—S1bx2.333 (5)
Ba1b—S1a3.3584 (10)S1a—S1axiv3.416 (2)
Ba1b—S1axiii3.3584 (16)S1a—S1aiii3.300 (2)
Ba1b—S1axiv3.3584 (16)S1a—S1ax3.300 (2)
Ba1b—S1axv3.3584 (16)S1a—S1axxiii3.416 (2)
Ba1b—S1ax3.3584 (16)S1a—S1bxviii3.3904 (7)
Ba1b—S1bxvi3.4286 (7)S1a—S1biii3.3904 (7)
Ba1b—S1bxvii3.4286 (7)S1a—S1bxxii3.3904 (9)
Ba1b—S1bxviii3.4286 (7)S1a—S1bx3.3904 (9)
Ba1b—S1biii3.4286 (7)S1b—S1biii3.3001 (15)
Ba1b—S1bxix3.4286 (7)S1b—S1bviii3.4163 (15)
Ba1b—S1bxx3.4286 (7)S1b—S1bxxiv3.416 (2)
V1a—V1bxxi2.697 (13)S1b—S1bx3.300 (2)
V1bxxi—V1a—V1b180V1a—V1b—V1axxv180
S1a—V1a—S1aiii87.0 (3)S1a—V1b—S1aiii86.9 (2)
S1a—V1a—S1ax87.0 (3)S1a—V1b—S1ax86.9 (2)
S1a—V1a—S1bxxi178.0 (4)S1a—V1b—S1b177.9 (3)
S1a—V1a—S1bxviii91.52 (3)S1a—V1b—S1biii91.52 (3)
S1a—V1a—S1bxxii91.52 (4)S1a—V1b—S1bx91.52 (4)
S1aiii—V1a—S1ax87.0 (3)S1aiii—V1b—S1ax86.9 (2)
S1aiii—V1a—S1bxxi91.52 (4)S1aiii—V1b—S1b91.52 (4)
S1aiii—V1a—S1bxviii178.0 (4)S1aiii—V1b—S1biii177.9 (3)
S1aiii—V1a—S1bxxii91.52 (3)S1aiii—V1b—S1bx91.52 (3)
S1ax—V1a—S1bxxi91.52 (5)S1ax—V1b—S1b91.52 (5)
S1ax—V1a—S1bxviii91.52 (2)S1ax—V1b—S1biii91.52 (2)
S1ax—V1a—S1bxxii178.0 (4)S1ax—V1b—S1bx177.9 (3)
S1bxxi—V1a—S1bxviii89.9 (3)S1b—V1b—S1biii90.0 (2)
S1bxxi—V1a—S1bxxii89.9 (3)S1b—V1b—S1bx90.0 (3)
S1bxviii—V1a—S1bxxii89.9 (3)S1biii—V1b—S1bx90.0 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) y, xy, z; (iv) y, xy, z+1; (v) x+y+1, x+1, z; (vi) x+y+1, x+1, z+1; (vii) x+1, y+1, z; (viii) y, xy+1, z; (ix) y+1, xy+1, z; (x) x+y, x, z; (xi) x+y, x+1, z; (xii) x1, y1, z; (xiii) y1, xy1, z; (xiv) y, xy1, z; (xv) x+y, x1, z; (xvi) x, y1, z1; (xvii) x, y1, z; (xviii) y, xy, z1; (xix) x+y1, x1, z1; (xx) x+y1, x1, z; (xxi) x, y, z1; (xxii) x+y, x, z1; (xxiii) x+y+1, x, z; (xxiv) x+y1, x, z; (xxv) x, y, z+1.
(X) top
Crystal data top
BaVS3Dx = 4.305 Mg m3
Mr = 284.5Synchrotron radiation, λ = 0.6622 Å
Trigonal, P3m1Cell parameters from 2946 reflections
Hall symbol: P 3;-2"θ = 3.3–24.4°
a = 6.7180 (5) ŵ = 10.01 mm1
c = 5.6150 (2) ÅT = 295 K
V = 219.46 (2) Å3Irregular, grey
Z = 20.05 × 0.03 × 0.02 mm
F(000) = 254
Data collection top
Dectris-CrysAlisPro-abstract goniometer imported dectris images
diffractometer
168 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.038
Synchrotron monochromatorθmax = 24.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 88
Tmin = 0.556, Tmax = 1.000k = 88
2946 measured reflectionsl = 66
173 independent reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.00034225F2)
R[F > 3σ(F)] = 0.028(Δ/σ)max = 0.001
wR(F) = 0.063Δρmax = 0.76 e Å3
S = 3.13Δρmin = 0.73 e Å3
173 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
13 parametersExtinction coefficient: 2700 (700)
0 restraintsAbsolute structure: 0 of Friedel pairs used in the refinement
12 constraintsAbsolute structure parameter: not applicable for the particular case
Special details top

Refinement. Structure is considered as a commensurate composite with P63/mmc space group for the BaS3 matrix and P3/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba1a0.3333330.6666670.50.0183 (7)
Ba1b0.3333330.66666700.0183 (7)
V1a000.2540 (9)0.0337 (9)
V1b000.2558 (9)0.0337 (9)
S1a0.16500 (10)0.16500 (10)00.0171 (13)
S1b0.16500 (10)0.1649980.50.0171 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba1a0.0171 (9)0.0171 (9)0.0206 (10)0.0086 (4)00
Ba1b0.0171 (9)0.0171 (9)0.0206 (10)0.0086 (4)00
V1a0.0410 (12)0.0410 (12)0.0192 (14)0.0205 (6)00
V1b0.0410 (12)0.0410 (12)0.0192 (14)0.0205 (6)00
S1a0.0187 (15)0.0187 (15)0.017 (2)0.0117 (10)0.0000 (3)0.0000 (3)
S1b0.0187 (15)0.0187 (15)0.017 (2)0.0117 (10)0.0000 (3)0.0000 (3)
Geometric parameters (Å, º) top
Ba1a—S1ai3.4233 (5)V1a—V1b2.862 (7)
Ba1a—S1aii3.4233 (5)V1a—S1a2.392 (3)
Ba1a—S1aiii3.4233 (5)V1a—S1aiii2.392 (3)
Ba1a—S1aiv3.4233 (5)V1a—S1ax2.392 (3)
Ba1a—S1av3.4233 (5)V1a—S1bxxi2.365 (3)
Ba1a—S1avi3.4233 (5)V1a—S1bxviii2.365 (3)
Ba1a—S1b3.3591 (8)V1a—S1bxxii2.365 (3)
Ba1a—S1bvii3.3591 (8)V1b—S1a2.398 (3)
Ba1a—S1bviii3.3591 (6)V1b—S1aiii2.398 (3)
Ba1a—S1bix3.3591 (6)V1b—S1ax2.398 (3)
Ba1a—S1bx3.3591 (9)V1b—S1b2.359 (3)
Ba1a—S1bxi3.3591 (9)V1b—S1biii2.359 (3)
Ba1b—S1axii3.3591 (9)V1b—S1bx2.359 (3)
Ba1b—S1a3.3591 (9)S1a—S1axiv3.3926 (13)
Ba1b—S1axiii3.3591 (9)S1a—S1aiii3.3254 (13)
Ba1b—S1axiv3.3591 (9)S1a—S1ax3.3254 (13)
Ba1b—S1axv3.3591 (9)S1a—S1axxiii3.3926 (13)
Ba1b—S1ax3.3591 (9)S1a—S1bxviii3.4012 (4)
Ba1b—S1bxvi3.4233 (4)S1a—S1biii3.4012 (4)
Ba1b—S1bxvii3.4233 (4)S1a—S1bxxii3.4012 (5)
Ba1b—S1bxviii3.4233 (4)S1a—S1bx3.4012 (5)
Ba1b—S1biii3.4233 (4)S1b—S1biii3.3254 (9)
Ba1b—S1bxix3.4233 (4)S1b—S1bviii3.3926 (9)
Ba1b—S1bxx3.4233 (4)S1b—S1bxxiv3.3926 (11)
V1a—V1bxxi2.753 (7)S1b—S1bx3.3254 (11)
V1bxxi—V1a—V1b180V1a—V1b—V1axxv180
S1a—V1a—S1aiii88.09 (15)S1a—V1b—S1aiii87.81 (14)
S1a—V1a—S1ax88.09 (15)S1a—V1b—S1ax87.81 (14)
S1a—V1a—S1bxxi179.1 (2)S1a—V1b—S1b178.7 (2)
S1a—V1a—S1bxviii91.287 (16)S1a—V1b—S1biii91.281 (17)
S1a—V1a—S1bxxii91.29 (2)S1a—V1b—S1bx91.28 (2)
S1aiii—V1a—S1ax88.09 (15)S1aiii—V1b—S1ax87.81 (14)
S1aiii—V1a—S1bxxi91.29 (2)S1aiii—V1b—S1b91.28 (2)
S1aiii—V1a—S1bxviii179.1 (2)S1aiii—V1b—S1biii178.7 (2)
S1aiii—V1a—S1bxxii91.287 (17)S1aiii—V1b—S1bx91.281 (17)
S1ax—V1a—S1bxxi91.29 (2)S1ax—V1b—S1b91.28 (2)
S1ax—V1a—S1bxviii91.287 (13)S1ax—V1b—S1biii91.281 (13)
S1ax—V1a—S1bxxii179.1 (2)S1ax—V1b—S1bx178.7 (2)
S1bxxi—V1a—S1bxviii89.33 (15)S1b—V1b—S1biii89.61 (15)
S1bxxi—V1a—S1bxxii89.33 (15)S1b—V1b—S1bx89.61 (15)
S1bxviii—V1a—S1bxxii89.33 (15)S1biii—V1b—S1bx89.61 (15)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) y, xy, z; (iv) y, xy, z+1; (v) x+y+1, x+1, z; (vi) x+y+1, x+1, z+1; (vii) x+1, y+1, z; (viii) y, xy+1, z; (ix) y+1, xy+1, z; (x) x+y, x, z; (xi) x+y, x+1, z; (xii) x1, y1, z; (xiii) y1, xy1, z; (xiv) y, xy1, z; (xv) x+y, x1, z; (xvi) x, y1, z1; (xvii) x, y1, z; (xviii) y, xy, z1; (xix) x+y1, x1, z1; (xx) x+y1, x1, z; (xxi) x, y, z1; (xxii) x+y, x, z1; (xxiii) x+y+1, x, z; (xxiv) x+y1, x, z; (xxv) x, y, z+1.
 

Acknowledgements

The authors would like to thank the Swiss–Norwegian Beamline Consortium for providing access to synchrotron radiation on BM01/ESRF.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationArakcheeva, A., Chapuis, G. & Grinevitch, V. (2002). Acta Cryst. B58, 1–7.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationBarišić, N. (2004). Thesis. Ecole polytechnique fédérale de Lausanne, Switzerland.  Google Scholar
First citationBooth, C. H., Figueroa, E., Lawrence, J. M., Hundley, M. F. & Thompson, J. D. (1999). Phys. Rev. B, 60, 14852–14856.  CrossRef CAS Google Scholar
First citationChoi, K.-Y., Wulferding, D., Berger, H. & Lemmens, P. (2009). Phys. Rev. B, 80, 245108.  CrossRef Google Scholar
First citationDyadkin, V., Pattison, P., Dmitriev, V. & Chernyshov, D. (2016). J. Synchrotron Rad. 23, 825–829.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718–725.  CrossRef ICSD CAS Google Scholar
First citationFagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P. & Berger, H. (2003). Phys. Rev. Lett. 90, 196401.  CrossRef PubMed Google Scholar
First citationForró, L., Gaál, R., Berger, H., Fazekas, P., Penc, K., Kézsmárki, I. & Mihály, G. (2000). Phys. Rev. Lett. 85, 1938–1941.  PubMed Google Scholar
First citationFoury-Leylekian, P., Leininger, P., Ilakovac, V., Joly, Y., Bernu, S., Fagot, S. & Pouget, J.-P. (2012). Physica B, 407, 1692–1695.  CAS Google Scholar
First citationGardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781–787.  CrossRef ICSD IUCr Journals Google Scholar
First citationGhedira, M., Chenavas, J., Sayetat, F., Marezio, M., Massenet, O. & Mercier, J. (1981). Acta Cryst. B37, 1491–1496.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationGirard, A., Ilakovac, V., Stekiel, M., Morgenroth, W., Berger, H., Yoshikazu, T., Hasegawa, T., Bosak, A. & Winkler, B. (2019). Phys. Rev. B, 99, 144104.  CrossRef Google Scholar
First citationGraf, T., Mandrus, D., Lawrence, J. M., Thompson, J. D., Canfield, P. C., Cheong, S.-W. & Rupp, L. W. (1995). Phys. Rev. B, 51, 2037–2044.  CrossRef CAS Google Scholar
First citationHeidemann, A. & Takano, M. (1980). Phys. Status Solidi B, 100, 343–346.  CrossRef CAS Google Scholar
First citationHöhn, P., Auffermann, G., Ramlau, R., Rosner, H., Schnelle, W. & Kniep, R. (2006). Angew. Chem. Int. Ed. 45, 6681–6685.  Google Scholar
First citationIlakovac, V., Brookes, N. B., Cezar, J. C., Thakur, P., Bisogni, V., Dallera, C., Ghiringhelli, G., Braicovich, L., Bernu, S., Berger, H., Forró, L., Akrap, A. & Hague, C. F. (2012). J. Phys. Condens. Matter, 24, 045503.  CrossRef PubMed Google Scholar
First citationImada, M., Fujimori, A. & Tokura, Y. (1998). Rev. Mod. Phys. 70, 1039–1263.  Web of Science CrossRef CAS Google Scholar
First citationImai, H., Wada, H. & Shiga, M. (1996). J. Phys. Soc. Jpn, 65, 3460–3463.  CrossRef CAS Google Scholar
First citationInami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108.  CrossRef Google Scholar
First citationJiang, X. & Guo, G. Y. (2004). Phys. Rev. B, 70, 035110.  CrossRef Google Scholar
First citationKézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402.  PubMed Google Scholar
First citationKuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049–2050.  CrossRef CAS Google Scholar
First citationLeininger, Ph., Ilakovac, V., Joly, Y., Schierle, E., Weschke, E., Bunau, O., Berger, H., Pouget, J.-P. & Foury-Leylekian, P. (2011). Phys. Rev. Lett. 106, 167203.  CrossRef PubMed Google Scholar
First citationMassenet, O., Buder, R., Since, J. J., Schlenker, C., Mercier, J., Kelber, J. & Stucky, D. G. (1978). Mater. Res. Bull. 13, I87–195.  CrossRef Google Scholar
First citationMcMahon, M. I. & Nelmes, R. J. (2006). Chem. Soc. Rev. 35, 943–963.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMihály, G. T., Kézsmárki, I., Zámborszky, F., Miljak, M., Penc, K., Fazekas, P., Berger, H. & Forró, L. (2000). Phys. Rev. B, 61, R7831–R7834.  Google Scholar
First citationPetříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSanna, A., Franchini, C., Massidda, S. & Gauzzi, A. (2004). Phys. Rev. B, 70, 235102.  CrossRef Google Scholar
First citationSugiyama, J., Andreica, D., Forslund, O. K., Nocerino, E., Matsubara, N., Sassa, Y., Guguchia, Z., Khasanov, R., Pratt, F. L., Nakamura, H. & Månsson, M. (2020). Phys. Rev. B, 101, 174403.  CrossRef Google Scholar
First citationTakano, M., Kosugi, H., Nakanishi, N., Shimada, M., Wada, T. & Koizumi, M. (1977). J. Phys. Soc. Jpn, 43, 1101–1102.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL SCIENCE
CRYSTAL ENGINEERING
MATERIALS
ISSN: 2052-5206
Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds