

research papers
One-dimensional composite host–guest structure in BaVS3
aSB IPHYS LPMC, EPFL, Bâtiment PH Station 3, Lausanne, CH-1015, Switzerland, bPhase Solutions Ltd, Ch. des Mésanges 7, Lausanne, CH-1015, Switzerland, cSNBL, ESRF, 71 Avenue des Martyrs, Cedex 9, Grenoble, 38043, France, dSB IPHYS LQM, EPFL, Bâtiment PH Station 3, Lausanne, CH-1015, Switzerland, eSB IPHYS BSP/Cubotron, EPFL, Lausanne, CH-1015, Switzerland, fDepartment of Physics, Faculty of Science, University of Zagreb, Zagreb, HR-100000, Croatia, and gInstitute of Solid State Physics, TU Wien, Vienna, 1040, Austria
*Correspondence e-mail: alla.arakcheeva@epfl.ch
A detailed synchrotron X-ray diffraction (XRD) study performed with a single crystal of BaVS3 (barium vanadium trisulfide) in the temperature range between 10 and 295 K is reported. Aside from the known tetragonal–orthorhombic (240 K) and orthorhombic–monoclinic (69 K) phase transitions, in the 130 < T ≤ 295 K range the overall structure can be viewed as a host–guest (H–G) composite. The BaS3 matrix is the host, while the V-chains form the guest. The two subsystems lock in at TLOCK = 130 ± 20 K. This temperature is marked by a symmetry change from orthorhombic to monoclinic. This results in the formation of twins, implying a structural identified here for the first time. From the refined structural data, it is possible to follow, starting already at 295 K downwards, the stepwise transformation of VS6 octahedra into VS5 tetragonal pyramids as the origin of the structure evolution. The new findings will yield a better understanding of the complex electronic phase diagram of BaVS3.
Keywords: barium vanadium trisulfide; 1D commensurate composite; temperature-dependent phase transition; crystal structure; synchrotron.
1. Introduction
The 3 can be described as consisting of hexagonal close packed (hcp) Ba and S atoms with V-chains located in the hexagonal channels formed by S atoms (Fig. 1). The short V–V distances of 2.8 Å along the V-chains, compared to the distance of more than 6 Å between them, was the reason to consider BaVS3 as an electronically quasi-one-dimensional (quasi-1D) system, expected to exhibit strong on-chain correlations. Indeed, BaVS3 undergoes a metal–insulator (MI) transition at TMI = 69 K (Gardner et al., 1969
; Takano et al., 1977
; Massenet et al., 1978
; Graf et al., 1995
; Kuriyaki et al., 1995
; Imada et al., 1998
; Forró et al., 2000
; Mihály et al., 2000
; Inami et al., 2002
; Fagot et al., 2005
; Sanna et al., 2004
; Choi et al., 2009
), followed by magnetic ordering below TN = 31 K (Heidemann & Takano, 1980
; Leininger et al., 2011
; Sugiyama et al., 2020
). However, the anisotropy of the conductivity for T > TMI of σc/σa = 3–4 is surprisingly low (Mihály et al., 2000
; Barišić, 2004
; Kézsmárki et al., 2006
). Therefore, its remarkable and intriguing electrical and magnetic properties have been extensively studied starting from 1969 (Gardner et al., 1969
) to very recently (Sugiyama et al., 2020
). Besides the MI transition and magnetic ordering, numerous measurements of other physical properties are reported in the literature, such as: (i) electrical resistivity (Gardner et al., 1969
; Kuriyaki et al., 1995
; Graf et al., 1995
; Booth et al., 1999
; Mihály et al., 2000
; Kézsmárki et al., 2006
), (ii) Hall coefficient (Booth et al., 1999
), (iii) Raman response with in-chain polarization (Choi et al., 2009
), (iv) V L-edge X-ray absorption spectroscopy (Ilakovac et al., 2012
), (v) specific heat (Imai et al., 1996
), (vi) thermopower (Barišić, 2004
). These studies show anomalies at 130 ± 20 K, as do some theoretical models (Jiang & Guo, 2004
). This temperature can be associated with an increase of the 1D electronic fluctuations towards the at 69 K (Foury-Leylekian et al., 2012
). From the observation of diffuse scattering lines, it appears that the onset of these fluctuations (Fagot et al., 2003
) already occurs at 170 K.
![]() | Figure 1 Schematic representation of the BaVS3 The ab projection (top) and perspective view (bottom) are shown. Ba and S together form a hexagonal close packing (hcp). V-chains are located in the hexagonal channels formed by S atoms. Relationships between the unit-cell parameters are indicated for the hexagonal, orthorhombic and monoclinic settings: ahex = bhex ≃ 6.7 Å, chex ≃ corth ≃ cmono ≃ 5.6 Å; aorth = amono ≃ ![]() |
Two structural transitions have been well documented in the 5–300 K temperature range (Gardner et al., 1969; Imada et al., 1998
; Inami et al., 2002
; Fagot et al., 2005
; Foury-Leylekian et al., 2012
). In the first at TS = 240 K, the higher-temperature hexagonal metallic phase transforms to orthorhombic. The second transition is associated with TMI = 69 K, where the orthorhombic phase converts to monoclinic with a doubling of the translation along the c axis. No noticeable structural changes have been detected for the magnetic transitions at TN = 31 K (Fagot et al., 2005
). Although the hexagonal and orthorhombic symmetries have commonly been described by the space groups P63/mmc and Ccm21, respectively, observations of a series of extra X-ray diffraction reflections violate both of them (Inami et al., 2002
; Girard et al., 2019
). Some doubts with regard to these space-group attributions also arose from neutron diffraction studies (Ghedira et al., 1981
). Finally, the interplay between the structural and electronic phase transformations is still not entirely clear, in particular since the symmetry determination raises some questions for both the hexagonal and orthorhombic phases.
Here we report synchrotron XRD experiments performed on a single crystal of BaVS3 at ten different temperatures in the range 10–295 K. We show that the mismatch between the space groups P63/mmc and Ccm21, and the presence of extra reflections that violate them, can be resolved by a host–guest (H–G) composite model. Accordingly, we consider the BaVS3 structure as a 1D commensurate composite, which consists of a host (H) BaS3 matrix and guest (G) V-chains for T > 130 K. H and G change their symmetry individually up to 295 K. The space groups mentioned above are correct, but they relate only to H, while the symmetry of G is systematically lower, which leads to the appearance of the extra reflections. Unlike in the classical approach, this host–guest concept allows us to identify a structural at TLOCK = 130 ± 20 K. At this temperature, the H and G subsystems lock together, ceasing to behave independently. The low-temperature step-by-step transformation of the VS6 octahedra into VS5 pyramids is an essential consequence of the whole set of structural transformations that starts at T < 295 K. Finally, our findings related to structural properties should have a counterpart in the electronic and spin sector, and will thus help the interpretation of the intriguing electronic properties and states observed in BaVS3.
2. Experimental
2.1. Synthesis and crystallization
All details of the synthesis and crystallization of high-quality single crystals have been described by Kuriyaki et al. (1995).
2.2. Single-crystal synchrotron XRD experiments
Single-crystal XRD data were collected at the Swiss–Norwegian Beamline BM01A (ESRF, Grenoble) at the following temperatures: 10, 40, 70, 100, 110, 150, 200, 220, 250 and 295 K (before and after cooling). The wavelength of λ = 0.7 Å was selected for the measurements. The CrysAlis PRO software (Agilent, 2014) was used for the systematic investigation of the Absorption was corrected for by multi-scan methods (CrysAlis PRO; Agilent, 2014
). An empirical absorption correction using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm. studies were performed using the JANA2006 program package (Petříček et al., 2014
). Experimental details are shown in Table 1
for five structures selected from different representative temperature ranges and in Table S1 (see supporting information) for the remaining temperatures.
|
2.2.1. observations at different temperatures
Our observations of systematic extra reflections shown in Fig. 2 contradict the generally accepted P63/mmc for the hexagonal phase and Ccm21 for the orthorhombic phase, and, in this respect, confirm the observations reported earlier by Imani et al. (2002
) and Girard et al. (2019
). The clearly observed hhl reflections with l = 2n+1 are incompatible with the c-glide plane of the P63/mmc which was expected at T > TS = 240 K. Reflections of this type are also clearly visible in the 0kl section with l = 2n+1 in the 70–220 K temperature range, where the orthorhombic phase is expected. These reflections are not compatible with the c-glide plane of the orthorhombic Ccm21.
![]() | Figure 2 Selected sections of the experimental reciprocal space for BaVS3 in the 70–295 K temperature range. (a) In the hk3 and 0kl sections taken for the hexagonal phase at 295 K, the red circles highlight 00l and hhl reflections with l = 2n+1, which violate the hexagonal P63/mmc. The symmetry of the patterns indicates the 6/mmm (b) In the 0kl section taken at different temperatures between 70 and 220 K, the red arrows point to rows of 0kl reflections with l = 2n+1, which violate the orthorhombic Ccm21. |
New and surprising observations occur in the temperature range between TS = 240 K and TMI = 69 K. The splitting of reflections, which is expected below TS = 240 K due to the hexagonal–orthorhombic symmetry reduction, changes sharply between 150 and 110 K (Fig. 3). The predicted maximum reflection splitting is determined by the order relationship between the hexagonal and orthorhombic i.e. 24/8 = 3. This is what is indeed observed in the temperature range from 150 to 220 K. However, the observed splitting is of a much higher order at 110 K and below (Fig. 3
), and it is similar to the monoclinic splitting that is typical for temperatures below TMI = 69 K. The observed splitting evolution is completely reversible with respect to temperature. This new observation is corroborated by observations of anomalies in the above-mentioned physical properties, which indicate a remarkable electronic transition at about 130 K. It should be emphasized that in parallel, starting around 170 K, diffuse scattering lines were observed by Fagot et al. (2003
). Their intensity and sharpness increase upon cooling, being a signature of 1D structural fluctuations. They are accompanied by a change in electrical resistivity which increases strongly from about 130 K down to TMI (Gardner et al., 1969
; Kuriyaki et al., 1995
; Kézsmárki et al., 2006
; Barišić, 2004
; see also Fig. S2 in the supporting information).
![]() | Figure 3 The hk0 sections of the showing a correlation between the splitting of reflections and the published electrical properties of BaVS3. In the insets, framed with red squares, one of the reflections is enlarged for each temperature. |
It is worth mentioning one more observation related to the structure below TS = 69 K. Some systematic reflections could possibly but mistakenly be indexed with the new modulation vector q′ = 0.5a + 0.5b + 0.5chex. However, these reflections originate from three twin components related by the threefold axis, as illustrated in Fig. S1 (see supporting information).
Summarizing the analysis of the 3 needs to be revised in the temperature range 69–295 K.
at different temperatures, we establish with certainty that the symmetry of BaVS2.2.2. Revising the BaVS3 space-group symmetry down to TMI = 69 K
The 6/mmm of the hexagonal phase (Fig. 2a) and the presence of the extra reflections in the hexagonal and orthorhombic phases leads to the P
m2 (instead of P63/mmc) for the hexagonal phase and its Cmm2 (instead of Ccm21) for the orthorhombic phase, in agreement with the reported symmetries by Inami et al. (2002
). However, down to 130 K, structure refinements based on about 3000 experimental single-crystal reflections (which includes about 200 extra reflections) show that Ba and S atoms can only be correctly fitted within the commonly used space groups: P63/mmc for the hexagonal phase and Ccm21 for the orthorhombic phase. This implies that the BaS3 does not contribute to the intensity of the extra reflections. These weak reflections arise from a small difference in two V–V distances along the c axis. The difference can only be achieved with lower V-chain symmetry: the P
m1 (instead of P63/mmc for BaS3) and its monoclinic C2/m (instead of the orthorhombic Ccm21 for BaS3), with a shift of about (but not identical to) 0.25c between origins (inversion centers in the hexagonal phase) characterizing the BaS3 hcp matrix and the V-chain (Fig. 1
). Here we face a discrepancy in the description of the symmetry of the two parts of the same structure.
This controversy could be resolved by applying an approach called the host–guest commensurate composite structure (Arakcheeva et al., 2002; Höhn et al., 2006
; McMahon & Nelmes, 2006
). This type of assumes different symmetries for the host (usually a 3D matrix) and the guest (usually a chain inside a 3D matrix) with the same parameters. Similarly, we consider the BaS3 hcp matrix as the host (H) and V-chains as the guest (G). Consequently, to refine the hexagonal phase (at 295 and 250 K), we use the P3m1, which is common for H and G, and additional pairwise restrictions for Ba, S and V sites according to their true symmetry. For the orthorhombic phase (at 220, 200 and 150 K), the C1m1 which is common for H and G, was used with the corresponding pairwise restrictions for Ba, V and two S sites. Examples of atomic sites and the applied restrictions are available in the supporting information. The host–guest approach perfectly fits our diffraction experiments down to 150 K. It should be mentioned that the contribution of quasi-elastic scattering to the intensities of the extra reflections (Girard et al., 2019
) cannot be excluded since their calculated intensities are systematically somewhat lower than those observed.
Starting from 110 K and down to TMI = 69 K, both H and G adopt the common monoclinic symmetry C1m1 in agreement with the above-described observations of the monoclinic splitting for diffraction reflections below 130 K (Fig. 3).
Our study confirms the I1m1 with a double unit-cell c parameter, which has been reported numerous times for the structure below TMI after the initial publication by Fagot et al. (2005).
The summary of the structure symmetry reconsideration is presented in Fig. 4, which shows a scheme of the group–subgroup relationships found for BaVS3 in the 10–295 K temperature range.
![]() | Figure 4 The group–subgroup relationships for BaVS3 between 10 and 295 K. The bold black arrows indicate the relationships within the host (H) and the guest (G) components of the structure. Below TLOCK, both components acquire the same (equilibrium) monoclinic symmetry. The lowering to monoclinic symmetry at TMI is due to a doubling of the unit-cell c parameter. |
3. Results and discussion
3.1. Structural at TLOC at 130 ± 20 K
The first important result of the present study follows directly from the symmetry revision of BaVS3 at different temperatures above TMI (Figs. 3 and 4
). It appears that the structural observed at 130 ± 20 K correlates remarkably well with the change in the slope of the electrical resistivity from negative to positive at about 130 K (Kézsmárki et al., 2006
; see also Fig. S2 in the supporting information). As already mentioned in the Introduction, other properties also show changes/anomalies in the behaviour at this temperature. This consists of a monoclinic transformation of the entire BaVS3 structure and the loss of the inversion centre in the V-chains. This leads to a locking of the two structural subsystems, H and G, so that we denote the transition temperature as TLOCK = 130 ± 20 K. It is important to emphasize that, at this temperature, instead of one V site, two independent crystallographic V sites appear with monoclinic (m) This novel insight should be carefully considered theoretically with respect to the 1D electronic instability which is clearly visible below TLOCK.
3.2. Analysis of the temperature-dependent geometric characteristics
Another set of important information is obtained from the analysis of the T-dependent geometric characteristics of the BaVS3 structure (Fig. 5). Namely, we analyze here the evolution of: (i) intra-chain V–V–V angles; (ii) V–V and V–S interatomic distances, which are then related to (iii) the bond valence sum (BVS) of V4+. BVS is calculated for each V site in its octahedral (VS6) and pyramidal (VS5) environment and compared to the nominal BVS = 4 for V4+.
![]() | Figure 5 Structural characteristics of BaVS3 between 10 and 295 K. (a) The VS6 chain represents ranges separated by the transformation temperatures. VS5 tetragonal pyramids (green) and VS6 octahedra (blue), highlighted according to (b) V–S distances and (c) the bond valence sum of V. For each V polyhedron, the equatorial (orange) and apical (brown) V–S contacts are shown; dashed brown lines specify the longest apical contacts. (b) Geometry characteristics: V–V–V angles and V–V and V–S distances. The markers indicate experimental values; the lines are guides for the eyes. (c) Bond valence sums (BVSs) calculated for each V atom in its octahedral (V4+S6, blue rhombuses) and pyramidal (V4+S5, green triangles) environment. The choice of polyhedron (dashed blue and green lines) is confirmed by the calculations, which are very close to the nominal BVS = 4. The colour coding is identical in all panels. |
In agreement with the previously published studies, the essential change of the V–V–V angle (from 180 to 165.4°) is observed at TS, and the difference in the V–V distances varies within the range of about 0.2 Å below TMI.
The new experimental data characterize the host–guest structure at temperatures above TLOCK and the monoclinic structure between TMI and TLOCK. Unlike in all previously published studies, the difference between the intra-chain V–V distances is observed even in the hexagonal phase, i.e. above the temperature of the at TS. This difference, of about 0.1 Å at 295 K, increases to about 0.2 Å at 250 K. The zigzag deformation of the V-chain arising at TS reduces the difference to 0.07 Å at 220 K and then to 0.04 Å at 150 K. This small difference is maintained almost down to TMI. The small increase of this value up to 0.07 Å is observed at 70 K, i.e. immediately before the MI transition.
The analysis of the V–S distances points to a remarkable difference between the equatorial (yellow dots/lines in Fig. 5) and apical (brown dots/lines in Fig. 5
) interatomic contacts in the temperature-dependent VS6 octahedra. The equatorial V–S distances are more of less stable within 2.35 ± 0.05 Å at any temperature, while the apical contacts are strongly temperature dependent. At temperatures above TS (295 and 250 K), there are no differences between them. However, below TS, the difference appears and increases systematically to about 0.6 Å at 10 K. This is the main tendency of the BaVS3 structure evolution between 295 and 10 K (Fig. 5
). This observation leads us to consider an optimal number of S2− ions, i.e. six in a V4+S6 octahedron or five in a V4+S5 pyramid, which can exactly fit the expecting of V4+. The BVS presented in Fig. 5
(c) indicates that the V4+S6 octahedron is preferable down to TLOCK. Two different polyhedra, i.e. a V4+S6 octahedron and a V4+S5 pyramid, can be recognized between TLOCK and TMI, and only the V4+S5 pyramid has the exact characteristics of the structure below TMI.
This analysis allows us to propose a scenario for the temperature-dependent structure transformations of BaVS3.
3.3. A possible scenario for the temperature-dependent structure transformations of BaVS3 below 295 K
The analysis described above indicates the existence of a unique mechanism causing the evolution of the BaVS3 structure with decreasing temperature. This mechanism manifests itself as a successive deformation of regular V4+S6 octahedra stable at room temperature, towards the stabilization of the V4+S5 pyramids, which is completed at temperatures below TLOCK. This deformation of the octahedra is realized by successive contraction of one of the apical V–S contacts and the corresponding increase of the other one, while maintaining the equatorial V–S contacts in the VS6 octahedra, as illustrated in Figs. 5 and 6
. In the hexagonal phase, the contraction of the apical V–S contact is possible only if the V atoms move closer together along the V-chain. Even a slight compression of this contact (e.g. 0.03 Å at 250 K) leads to the formation of an unstable short V–V contact (e.g. 2.70 Å at 250 K), which causes the first structural at TS (Fig. 6
a). As a result of this transition, the apical V–S contacts decrease essentially due to the appearance of a V–V–V angle of about 165°, which in turn recovers the stable V–V distances. The structure remains practically unchanged down to 150 K with short apical contacts of about 2.23 Å and a V4+S6 octahedron for two V atoms connected by a centre of inversion within the V-chain. An additional temperature decrease induces further contraction of the V–S apical contacts. A significant shortening of one of them occurs at TLOCK, stabilizing its V4+S5 pyramid, while the V4+S6 octahedron is still stable for the second V atom (Figs. 5
c and 6
b). The loss of the inversion centre in the V-chain leads to a significant distortion in the short V–S apical contacts (2.19 versus 2.26 Å) and the corresponding polyhedra characteristic of two V atoms. The distortions are completely eliminated at TMI due to the doubling of the unit-cell c parameters (Figs. 5
c and 6c
). At T < TMI, the structure becomes stable with respect to charge compensation within the V4+S5 pyramids for the whole set of V atoms. However, this is accompanied by a significant difference (2.94 versus 2.78 Å) in V–V distances in the V-chain, in agreement with most of the previous studies. It is important to note that each described can be considered as initiated by the displacement of V atoms, as shown in Fig. 6
. This indicates the electronic instability of V as the main cause of structural transformations, which already manifest themselves as diffusion scattering at temperatures below 170 K (Fagot et al., 2003
).
![]() | Figure 6 Illustration of the transformation of VS6 octahedra into VS5 pyramids as a general underlying principle for changes in the BaVS3 structure as a function of temperature. The interatomic distances are given in Å. Arched arrows point to the transformation of short apical V–S contacts in VS6 octahedra. The numerical values of the distances are highlighted in red, which change as a result of the corresponding structural phase transitions. Straight red arrows show displacements of V atoms, which initiate the transformation of the structure. (a) Compression of the apical V–S contacts in the hexagonal phase results in a too-short V–V contact, indicated in brown. During the TS transition, this contact relaxes due to its increase as a result of the V-atom displacement, which leads to a zigzag deformation of the V-chain. (b) At the TLOCK further compression of the apical V–S contact for one V atom occurs due to its predominant displacement, which leads to the loss of the inversion centre (black crosses) in the V-chain. This results in two sites, V1 and V2, for the V atom instead of one. (c) During the TMI the uniformly compressed apical V–S contact for each V atom is realized due to different displacements of the V atoms along the c axis. As a consequence, the number of V sites increases from two to four (V1, V2, V3 and V4). A side effect is a significant difference of the intra-chain V–V distances, indicated in brown. |
4. Summary
Using single-crystal X-ray synchrotron diffraction experiments, we reveal that, upon decreasing the temperature, the series of structural phase transitions in the complex quasi-1D metallic system BaVS3 satisfies the group–subgroup symmetry relationships only if its structure is considered as a 1D commensurate composite, which consists of the host (H), the BaS3 hcp matrix and the guest (G) V-chains. The host–guest structure model reveals a structural at TLOCK = 130 ± 20 K, which was not previously observed and which can be considered as a prerequisite for the metal–insulator transformation. The refined structural characteristics obtained in the 10–295 K temperature range indicate the presence of a unique ingredient required for the correct description of the structural evolution with temperature. It is associated with the VS6 octahedra that characterize the structure at room temperature, which successively transform upon decreasing the temperature into VS5 tetragonal pyramids, characteristic of the structure below TMI = 69 K. We are convinced that our findings will yield a better understanding of the low-temperature driven electronic transformations of the BaVS3 quasi-1D electronic system.
Supporting information
https://doi.org//10.1107/S2052520620016108/dk5104sup1.cif
contains datablocks global, I, II, III, IV, V, VI, VII, VIII, IX, X. DOI:Structure factors: contains datablock I. DOI: https://doi.org//10.1107/S2052520620016108/dk5104Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org//10.1107/S2052520620016108/dk5104IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org//10.1107/S2052520620016108/dk5104IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org//10.1107/S2052520620016108/dk5104IVsup5.hkl
Structure factors: contains datablock V. DOI: https://doi.org//10.1107/S2052520620016108/dk5104Vsup6.hkl
Structure factors: contains datablock VI. DOI: https://doi.org//10.1107/S2052520620016108/dk5104VIsup7.hkl
Structure factors: contains datablock VII. DOI: https://doi.org//10.1107/S2052520620016108/dk5104VIIsup8.hkl
Structure factors: contains datablock VIII. DOI: https://doi.org//10.1107/S2052520620016108/dk5104VIIIsup9.hkl
Structure factors: contains datablock IX. DOI: https://doi.org//10.1107/S2052520620016108/dk5104IXsup10.hkl
Structure factors: contains datablock X. DOI: https://doi.org//10.1107/S2052520620016108/dk5104Xsup11.hkl
Supporting information. DOI: https://doi.org//10.1107/S2052520620016108/dk5104sup12.pdf
For all structures, data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to refine structure: JANA2006 (Petčíček et al., 2014).BaVS3 | F(000) = 1016 |
Mr = 284.5 | Dx = 4.359 Mg m−3 |
Monoclinic, Im | Synchrotron radiation, λ = 0.70814 Å |
Hall symbol: I -2y | Cell parameters from 4005 reflections |
a = 11.456 (1) Å | θ = 2.5–28.4° |
b = 6.764 (1) Å | µ = 12.18 mm−1 |
c = 11.188 (1) Å | T = 10 K |
β = 90.048 (9)° | Irregular, grey |
V = 866.94 (9) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 8 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1186 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.030 |
Synchrotron monochromator | θmax = 28.4°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −15→15 |
Tmin = 0.671, Tmax = 1.000 | k = −8→8 |
4005 measured reflections | l = −11→11 |
1187 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F > 3σ(F)] = 0.016 | (Δ/σ)max = 0.028 |
wR(F) = 0.027 | Δρmax = 0.37 e Å−3 |
S = 1.16 | Δρmin = −0.42 e Å−3 |
1187 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
110 parameters | Extinction coefficient: 70 (30) |
0 restraints | Absolute structure: 587 of Friedel pairs used in the refinement |
0 constraints | Absolute structure parameter: 0.097 (19) |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.336486 | 0 | 0.123603 | 0.0108 (3) | |
Ba2 | −0.33423 (6) | 0 | 0.37488 (10) | 0.0121 (4) | |
Ba3 | 0.34143 (4) | 0 | 0.62323 (4) | 0.0114 (3) | |
Ba4 | −0.33819 (7) | 0 | 0.86942 (10) | 0.0099 (2) | |
V2 | −0.0250 (3) | 0 | 0.23737 (18) | 0.0070 (6) | |
V3 | 0.0235 (3) | 0 | 0.4968 (2) | 0.0125 (7) | |
V1 | −0.0235 (3) | 0 | 0.73899 (19) | 0.0078 (6) | |
V4 | 0.0234 (3) | 0 | 0.9872 (2) | 0.0100 (5) | |
S1 | 0.8264 (7) | 0 | 0.1185 (6) | 0.0132 (11) | |
S2 | −0.8301 (8) | 0 | 0.3752 (6) | 0.0122 (10) | |
S3 | 0.8276 (7) | 0 | 0.6207 (6) | 0.0129 (10) | |
S4 | −0.8297 (8) | 0 | 0.8658 (6) | 0.0142 (11) | |
S5 | 0.0814 (7) | 0.2429 (5) | 0.1271 (5) | 0.0111 (7) | |
S6 | −0.0859 (7) | −0.2440 (5) | 0.3793 (5) | 0.0107 (7) | |
S7 | 0.0801 (7) | 0.2463 (5) | 0.6282 (5) | 0.0108 (8) | |
S8 | −0.0848 (7) | −0.2451 (5) | 0.8773 (5) | 0.0103 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0071 (6) | 0.0193 (3) | 0.0060 (5) | 0 | −0.0029 (5) | 0 |
Ba2 | 0.0075 (7) | 0.0193 (3) | 0.0095 (8) | 0 | −0.0010 (6) | 0 |
Ba3 | 0.0090 (8) | 0.0193 (3) | 0.0058 (5) | 0 | −0.0018 (5) | 0 |
Ba4 | 0.0055 (5) | 0.0196 (3) | 0.0048 (5) | 0 | −0.0036 (4) | 0 |
V2 | 0.0015 (11) | 0.0151 (4) | 0.0043 (14) | 0 | −0.0018 (10) | 0 |
V3 | 0.0048 (12) | 0.0234 (5) | 0.0094 (15) | 0 | 0.0001 (9) | 0 |
V1 | 0.0027 (11) | 0.0125 (4) | 0.0080 (15) | 0 | −0.0015 (10) | 0 |
V4 | 0.0049 (12) | 0.0217 (4) | 0.0034 (10) | 0 | −0.0032 (12) | 0 |
S1 | 0.004 (2) | 0.0210 (11) | 0.0149 (19) | 0 | −0.0058 (13) | 0 |
S2 | 0.012 (2) | 0.0174 (9) | 0.0072 (15) | 0 | 0.0019 (14) | 0 |
S3 | 0.002 (2) | 0.0225 (11) | 0.0141 (18) | 0 | −0.0030 (13) | 0 |
S4 | 0.017 (3) | 0.0154 (8) | 0.0100 (17) | 0 | −0.0051 (15) | 0 |
S5 | 0.0058 (18) | 0.0203 (8) | 0.0072 (9) | −0.0045 (8) | 0.0030 (14) | 0.0008 (10) |
S6 | 0.0069 (17) | 0.0166 (7) | 0.0087 (11) | 0.0044 (8) | 0.0061 (14) | 0.0015 (8) |
S7 | 0.0046 (19) | 0.0198 (7) | 0.0080 (10) | −0.0030 (8) | 0.0030 (14) | 0.0006 (10) |
S8 | 0.0090 (17) | 0.0158 (7) | 0.0062 (9) | 0.0027 (8) | 0.0046 (14) | 0.0016 (8) |
Ba1—S2i | 3.403 (8) | V3—S6 | 2.453 (6) |
Ba1—S3ii | 3.3837 (3) | V3—S6v | 2.453 (6) |
Ba1—S3iii | 3.3837 (3) | V3—S7 | 2.314 (5) |
Ba1—S4iv | 3.454 (7) | V3—S7v | 2.314 (5) |
Ba1—S5 | 3.353 (7) | V1—V4 | 2.828 (3) |
Ba1—S5v | 3.353 (7) | V1—S3x | 2.158 (8) |
Ba1—S6vi | 3.356 (6) | V1—S4i | 2.635 (9) |
Ba1—S6vii | 3.356 (6) | V1—S7 | 2.392 (6) |
Ba1—S7viii | 3.277 (7) | V1—S7v | 2.392 (6) |
Ba1—S7ix | 3.277 (7) | V1—S8 | 2.374 (5) |
Ba1—S8vi | 3.441 (6) | V1—S8v | 2.374 (5) |
Ba1—S8vii | 3.441 (6) | V4—S1xx | 2.695 (8) |
Ba2—S1x | 3.409 (7) | V4—S4i | 2.163 (9) |
Ba2—S3x | 3.315 (7) | V4—S5xxiii | 2.364 (5) |
Ba2—S4viii | 3.3839 (2) | V4—S5xxiv | 2.364 (5) |
Ba2—S4vi | 3.3839 (2) | V4—S8 | 2.407 (6) |
Ba2—S5xi | 3.454 (6) | V4—S8v | 2.407 (6) |
Ba2—S5xii | 3.454 (6) | S1—S5i | 3.353 (10) |
Ba2—S6 | 3.289 (7) | S1—S5xxv | 3.353 (10) |
Ba2—S6v | 3.289 (7) | S1—S6i | 3.499 (8) |
Ba2—S7ii | 3.394 (6) | S1—S6xxv | 3.499 (8) |
Ba2—S7xiii | 3.394 (6) | S1—S7viii | 3.304 (10) |
Ba2—S8iii | 3.349 (7) | S1—S7ix | 3.304 (10) |
Ba2—S8xiv | 3.349 (7) | S1—S8iv | 3.327 (8) |
Ba3—S1xi | 3.3868 (4) | S1—S8xxvi | 3.327 (8) |
Ba3—S1xv | 3.3868 (4) | S2—S5x | 3.381 (8) |
Ba3—S2i | 3.399 (8) | S2—S5xxvii | 3.381 (8) |
Ba3—S4i | 3.349 (8) | S2—S6x | 3.363 (11) |
Ba3—S5xvi | 3.253 (7) | S2—S6xxvii | 3.363 (11) |
Ba3—S5xvii | 3.253 (7) | S2—S7x | 3.442 (8) |
Ba3—S6xviii | 3.449 (6) | S2—S7xxvii | 3.442 (8) |
Ba3—S6xix | 3.449 (6) | S2—S8iii | 3.297 (11) |
Ba3—S7 | 3.426 (7) | S2—S8xiv | 3.297 (11) |
Ba3—S7v | 3.426 (7) | S3—S5xvi | 3.315 (10) |
Ba3—S8vi | 3.356 (6) | S3—S5xvii | 3.315 (10) |
Ba3—S8vii | 3.356 (6) | S3—S6i | 3.317 (8) |
Ba4—S1xx | 3.364 (7) | S3—S6xxv | 3.317 (8) |
Ba4—S2xvi | 3.3839 (3) | S3—S7i | 3.339 (10) |
Ba4—S2xviii | 3.3839 (3) | S3—S7xxv | 3.339 (10) |
Ba4—S3x | 3.371 (7) | S3—S8i | 3.464 (8) |
Ba4—S5xi | 3.349 (6) | S3—S8xxv | 3.464 (8) |
Ba4—S5xii | 3.349 (6) | S4—S6xv | 3.290 (11) |
Ba4—S6xv | 3.326 (7) | S4—S6xxi | 3.290 (11) |
Ba4—S6xxi | 3.326 (7) | S4—S7x | 3.303 (8) |
Ba4—S7xi | 3.494 (6) | S4—S7xxvii | 3.303 (8) |
Ba4—S7xii | 3.494 (6) | S4—S8x | 3.363 (11) |
Ba4—S8 | 3.344 (7) | S4—S8xxvii | 3.363 (11) |
Ba4—S8v | 3.344 (7) | S5—S5v | 3.286 (5) |
V2—V3 | 2.955 (3) | S5—S5xxviii | 3.478 (5) |
V2—V4xxii | 2.854 (3) | S5—S6v | 3.412 (9) |
V2—S1x | 2.159 (8) | S5—S8xxix | 3.380 (9) |
V2—S2i | 2.713 (9) | S6—S6xxx | 3.464 (4) |
V2—S5 | 2.389 (6) | S6—S6v | 3.300 (4) |
V2—S5v | 2.389 (6) | S6—S7v | 3.371 (9) |
V2—S6 | 2.394 (5) | S7—S7v | 3.331 (5) |
V2—S6v | 2.394 (5) | S7—S7xxviii | 3.433 (5) |
V3—V1 | 2.763 (3) | S7—S8v | 3.369 (9) |
V3—S2i | 2.161 (9) | S8—S8xxx | 3.448 (4) |
V3—S3x | 2.638 (8) | S8—S8v | 3.316 (4) |
V3—V2—V4xxii | 157.96 (16) | V3—V1—V4 | 157.80 (16) |
S1x—V2—S2i | 176.6 (3) | S3x—V1—S4i | 174.8 (3) |
S1x—V2—S5 | 94.8 (2) | S3x—V1—S7 | 94.3 (2) |
S1x—V2—S5v | 94.8 (2) | S3x—V1—S7v | 94.3 (2) |
S1x—V2—S6 | 100.3 (3) | S3x—V1—S8 | 99.6 (3) |
S1x—V2—S6v | 100.3 (3) | S3x—V1—S8v | 99.6 (3) |
S2i—V2—S5 | 82.7 (2) | S4i—V1—S7 | 82.0 (2) |
S2i—V2—S5v | 82.7 (2) | S4i—V1—S7v | 82.0 (2) |
S2i—V2—S6 | 82.1 (2) | S4i—V1—S8 | 84.2 (2) |
S2i—V2—S6v | 82.1 (2) | S4i—V1—S8v | 84.2 (2) |
S5—V2—S5v | 86.9 (2) | S7—V1—S7v | 88.3 (2) |
S5—V2—S6 | 164.9 (3) | S7—V1—S8 | 166.2 (3) |
S5—V2—S6v | 90.99 (18) | S7—V1—S8v | 89.93 (18) |
S5v—V2—S6 | 90.99 (18) | S7v—V1—S8 | 89.93 (18) |
S5v—V2—S6v | 164.9 (3) | S7v—V1—S8v | 166.2 (3) |
S6—V2—S6v | 87.13 (18) | S8—V1—S8v | 88.57 (19) |
V2—V3—V1 | 157.94 (16) | V2xxiii—V4—V1 | 157.82 (16) |
S2i—V3—S3x | 172.7 (3) | S1xx—V4—S4i | 174.2 (3) |
S2i—V3—S6 | 93.4 (2) | S1xx—V4—S5xxiii | 82.7 (2) |
S2i—V3—S6v | 93.4 (2) | S1xx—V4—S5xxiv | 82.7 (2) |
S2i—V3—S7 | 100.5 (3) | S1xx—V4—S8 | 81.2 (2) |
S2i—V3—S7v | 100.5 (3) | S1xx—V4—S8v | 81.2 (2) |
S3x—V3—S6 | 81.2 (2) | S4i—V4—S5xxiii | 101.4 (3) |
S3x—V3—S6v | 81.2 (2) | S4i—V4—S5xxiv | 101.4 (3) |
S3x—V3—S7 | 84.5 (2) | S4i—V4—S8 | 94.6 (2) |
S3x—V3—S7v | 84.5 (2) | S4i—V4—S8v | 94.6 (2) |
S6—V3—S6v | 84.5 (2) | S5xxiii—V4—S5xxiv | 88.04 (19) |
S6—V3—S7 | 165.4 (3) | S5xxiii—V4—S8 | 163.9 (3) |
S6—V3—S7v | 89.95 (18) | S5xxiii—V4—S8v | 90.21 (18) |
S6v—V3—S7 | 89.95 (18) | S5xxiv—V4—S8 | 90.21 (18) |
S6v—V3—S7v | 165.4 (3) | S5xxiv—V4—S8v | 163.9 (3) |
S7—V3—S7v | 92.1 (2) | S8—V4—S8v | 87.1 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, y−1/2, z−1/2; (iii) x−1/2, y+1/2, z−1/2; (iv) x+1, y, z−1; (v) x, −y, z; (vi) x+1/2, y+1/2, z−1/2; (vii) x+1/2, −y−1/2, z−1/2; (viii) x+1/2, y−1/2, z−1/2; (ix) x+1/2, −y+1/2, z−1/2; (x) x−1, y, z; (xi) x−1/2, y−1/2, z+1/2; (xii) x−1/2, −y+1/2, z+1/2; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) x−1/2, −y−1/2, z−1/2; (xv) x−1/2, y+1/2, z+1/2; (xvi) x+1/2, y−1/2, z+1/2; (xvii) x+1/2, −y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+1/2; (xix) x+1/2, −y−1/2, z+1/2; (xx) x−1, y, z+1; (xxi) x−1/2, −y−1/2, z+1/2; (xxii) x, y, z−1; (xxiii) x, y, z+1; (xxiv) x, −y, z+1; (xxv) x+1, −y, z; (xxvi) x+1, −y, z−1; (xxvii) x−1, −y, z; (xxviii) x, −y+1, z; (xxix) x, −y, z−1; (xxx) x, −y−1, z. |
BaVS3 | F(000) = 1016 |
Mr = 284.5 | Dx = 4.357 Mg m−3 |
Monoclinic, Im | Synchrotron radiation, λ = 0.70814 Å |
Hall symbol: I -2y | Cell parameters from 4010 reflections |
a = 11.458 (1) Å | θ = 2.5–28.4° |
b = 6.764 (1) Å | µ = 12.18 mm−1 |
c = 11.190 (1) Å | T = 40 K |
β = 90.045 (1)° | Irregular, grey |
V = 867.25 (9) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 8 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1185 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.031 |
Synchrotron monochromator | θmax = 28.4°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −15→15 |
Tmin = 0.632, Tmax = 1.000 | k = −8→8 |
4010 measured reflections | l = −11→11 |
1185 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F > 3σ(F)] = 0.027 | (Δ/σ)max = 0.043 |
wR(F) = 0.036 | Δρmax = 0.87 e Å−3 |
S = 1.45 | Δρmin = −1.07 e Å−3 |
1185 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
110 parameters | Extinction coefficient: 60 (40) |
0 restraints | Absolute structure: 586 of Friedel pairs used in the refinement |
0 constraints | Absolute structure parameter: 0.11 (2) |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.336486 | 0 | 0.123603 | 0.0113 (3) | |
Ba2 | −0.33472 (7) | 0 | 0.37543 (11) | 0.0136 (4) | |
Ba3 | 0.34085 (5) | 0 | 0.62344 (5) | 0.0130 (3) | |
Ba4 | −0.33846 (8) | 0 | 0.87039 (11) | 0.0121 (3) | |
V2 | −0.0272 (4) | 0 | 0.2392 (2) | 0.0110 (8) | |
V3 | 0.0216 (4) | 0 | 0.4975 (3) | 0.0118 (8) | |
V1 | −0.0257 (4) | 0 | 0.7411 (3) | 0.0125 (8) | |
V4 | 0.0214 (4) | 0 | 0.9889 (3) | 0.0123 (8) | |
S1 | 0.8283 (7) | 0 | 0.1184 (8) | 0.0185 (10) | |
S2 | −0.8285 (8) | 0 | 0.3773 (7) | 0.0131 (9) | |
S3 | 0.8293 (7) | 0 | 0.6210 (8) | 0.0179 (9) | |
S4 | −0.8285 (8) | 0 | 0.8692 (8) | 0.0183 (12) | |
S5 | 0.0884 (9) | 0.2413 (6) | 0.1295 (6) | 0.0122 (9) | |
S6 | −0.0785 (8) | −0.2433 (5) | 0.3789 (6) | 0.0100 (9) | |
S7 | 0.0874 (9) | 0.2457 (7) | 0.6304 (7) | 0.0122 (9) | |
S8 | −0.0775 (8) | −0.2456 (5) | 0.8771 (6) | 0.0099 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0040 (6) | 0.0224 (4) | 0.0074 (4) | 0 | −0.0029 (4) | 0 |
Ba2 | 0.0091 (9) | 0.0224 (4) | 0.0092 (8) | 0 | −0.0006 (5) | 0 |
Ba3 | 0.0091 (8) | 0.0231 (4) | 0.0067 (4) | 0 | −0.0033 (5) | 0 |
Ba4 | 0.0047 (7) | 0.0225 (4) | 0.0091 (5) | 0 | −0.0039 (4) | 0 |
V2 | 0.0047 (17) | 0.0216 (10) | 0.0066 (14) | 0 | −0.0005 (14) | 0 |
V3 | 0.0044 (17) | 0.0244 (10) | 0.0066 (12) | 0 | 0.0039 (13) | 0 |
V1 | 0.0069 (18) | 0.0219 (10) | 0.0085 (14) | 0 | 0.0013 (15) | 0 |
V4 | 0.0045 (17) | 0.0240 (10) | 0.0083 (14) | 0 | −0.0052 (14) | 0 |
S1 | 0.002 (2) | 0.0240 (13) | 0.029 (3) | 0 | −0.0001 (1) | 0 |
S2 | 0.014 (2) | 0.0209 (13) | 0.0048 (14) | 0 | 0.0014 (14) | 0 |
S3 | 0.003 (2) | 0.0224 (13) | 0.028 (2) | 0 | −0.0001 (1) | 0 |
S4 | 0.013 (2) | 0.0203 (13) | 0.022 (3) | 0 | −0.0025 (16) | 0 |
S5 | 0.007 (2) | 0.0272 (10) | 0.0024 (12) | 0.0013 (12) | 0.0024 (19) | 0.0005 (11) |
S6 | 0.005 (2) | 0.0173 (9) | 0.0075 (14) | −0.0044 (9) | 0.0036 (17) | −0.0026 (10) |
S7 | 0.008 (2) | 0.0280 (9) | 0.0005 (13) | 0.0013 (12) | 0.0015 (19) | 0.0006 (11) |
S8 | 0.006 (2) | 0.0169 (8) | 0.0071 (13) | −0.0037 (10) | 0.0041 (16) | −0.0025 (9) |
Ba1—S2i | 3.412 (9) | V3—S6 | 2.405 (7) |
Ba1—S3ii | 3.3831 (2) | V3—S6v | 2.405 (7) |
Ba1—S3iii | 3.3831 (2) | V3—S7 | 2.353 (7) |
Ba1—S4iv | 3.416 (9) | V3—S7v | 2.353 (7) |
Ba1—S5 | 3.279 (9) | V1—V4 | 2.825 (4) |
Ba1—S5v | 3.279 (9) | V1—S3x | 2.135 (9) |
Ba1—S6vi | 3.386 (7) | V1—S4i | 2.675 (10) |
Ba1—S6vii | 3.386 (7) | V1—S7 | 2.445 (8) |
Ba1—S7viii | 3.351 (9) | V1—S7v | 2.445 (8) |
Ba1—S7ix | 3.351 (9) | V1—S8 | 2.330 (6) |
Ba1—S8vi | 3.460 (7) | V1—S8v | 2.330 (6) |
Ba1—S8vii | 3.460 (7) | V4—S1xx | 2.645 (9) |
Ba2—S1x | 3.431 (9) | V4—S4i | 2.180 (10) |
Ba2—S3x | 3.329 (9) | V4—S5xxiii | 2.393 (7) |
Ba2—S4viii | 3.3835 (3) | V4—S5xxiv | 2.393 (7) |
Ba2—S4vi | 3.3835 (3) | V4—S8 | 2.368 (7) |
Ba2—S5xi | 3.453 (7) | V4—S8v | 2.368 (7) |
Ba2—S5xii | 3.453 (7) | S1—S5i | 3.399 (12) |
Ba2—S6 | 3.366 (9) | S1—S5xxv | 3.399 (12) |
Ba2—S6v | 3.366 (9) | S1—S7viii | 3.256 (11) |
Ba2—S7ii | 3.357 (7) | S1—S7ix | 3.256 (11) |
Ba2—S7xiii | 3.357 (7) | S1—S8iv | 3.350 (10) |
Ba2—S8iii | 3.271 (8) | S1—S8xxvi | 3.350 (10) |
Ba2—S8xiv | 3.271 (8) | S2—S5x | 3.355 (10) |
Ba3—S1xi | 3.3855 (4) | S2—S5xxvii | 3.355 (10) |
Ba3—S1xv | 3.3855 (4) | S2—S6x | 3.304 (12) |
Ba3—S2i | 3.367 (9) | S2—S6xxvii | 3.304 (12) |
Ba3—S4i | 3.367 (9) | S2—S7x | 3.422 (10) |
Ba3—S5xvi | 3.333 (9) | S2—S7xxvii | 3.422 (10) |
Ba3—S5xvii | 3.333 (9) | S2—S8iii | 3.351 (11) |
Ba3—S6xviii | 3.469 (7) | S2—S8xiv | 3.351 (11) |
Ba3—S6xix | 3.469 (7) | S3—S5xvi | 3.270 (11) |
Ba3—S7 | 3.347 (9) | S3—S5xvii | 3.270 (11) |
Ba3—S7v | 3.347 (9) | S3—S6i | 3.342 (10) |
Ba3—S8vi | 3.382 (7) | S3—S6xxv | 3.342 (10) |
Ba3—S8vii | 3.382 (7) | S3—S7i | 3.393 (11) |
Ba4—S1xx | 3.368 (9) | S3—S7xxv | 3.393 (11) |
Ba4—S2xvi | 3.3848 (4) | S3—S8i | 3.479 (11) |
Ba4—S2xviii | 3.3848 (4) | S3—S8xxv | 3.479 (11) |
Ba4—S3x | 3.390 (9) | S4—S5xx | 3.472 (10) |
Ba4—S5xi | 3.321 (7) | S4—S5xxviii | 3.472 (10) |
Ba4—S5xii | 3.321 (7) | S4—S6xv | 3.351 (12) |
Ba4—S6xv | 3.254 (8) | S4—S6xxi | 3.351 (12) |
Ba4—S6xxi | 3.254 (8) | S4—S7x | 3.291 (10) |
Ba4—S7xi | 3.486 (7) | S4—S7xxvii | 3.291 (10) |
Ba4—S7xii | 3.486 (7) | S4—S8x | 3.302 (12) |
Ba4—S8 | 3.422 (9) | S4—S8xxvii | 3.302 (12) |
Ba4—S8v | 3.422 (9) | S5—S5v | 3.264 (6) |
V2—V3 | 2.944 (4) | S5—S6v | 3.384 (11) |
V2—V4xxii | 2.857 (4) | S5—S8xxix | 3.403 (11) |
V2—S1x | 2.136 (9) | S6—S6xxx | 3.472 (5) |
V2—S2i | 2.751 (9) | S6—S6v | 3.292 (5) |
V2—S5 | 2.435 (8) | S6—S7v | 3.395 (11) |
V2—S5v | 2.435 (8) | S7—S7v | 3.323 (6) |
V2—S6 | 2.345 (6) | S7—S7xxxi | 3.441 (6) |
V2—S6v | 2.345 (6) | S7—S8v | 3.347 (11) |
V3—V1 | 2.779 (4) | S8—S8xxx | 3.441 (5) |
V3—S2i | 2.183 (9) | S8—S8v | 3.323 (5) |
V3—S3x | 2.602 (9) | ||
V3—V2—V4xxii | 157.80 (19) | V3—V1—V4 | 157.7 (2) |
S1x—V2—S2i | 174.9 (3) | S3x—V1—S4i | 173.4 (3) |
S1x—V2—S5 | 95.9 (3) | S3x—V1—S7 | 95.4 (3) |
S1x—V2—S5v | 95.9 (3) | S3x—V1—S7v | 95.4 (3) |
S1x—V2—S6 | 103.1 (3) | S3x—V1—S8 | 102.3 (3) |
S1x—V2—S6v | 103.1 (3) | S3x—V1—S8v | 102.3 (3) |
S2i—V2—S5 | 80.4 (3) | S4i—V1—S7 | 79.9 (3) |
S2i—V2—S5v | 80.4 (3) | S4i—V1—S7v | 79.9 (3) |
S2i—V2—S6 | 80.4 (3) | S4i—V1—S8 | 82.3 (3) |
S2i—V2—S6v | 80.4 (3) | S4i—V1—S8v | 82.3 (3) |
S5—V2—S5v | 84.2 (2) | S7—V1—S7v | 85.6 (3) |
S5—V2—S6 | 160.6 (4) | S7—V1—S8 | 162.0 (4) |
S5—V2—S6v | 90.1 (2) | S7—V1—S8v | 89.0 (2) |
S5v—V2—S6 | 90.1 (2) | S7v—V1—S8 | 89.0 (2) |
S5v—V2—S6v | 160.6 (4) | S7v—V1—S8v | 162.0 (4) |
S6—V2—S6v | 89.2 (2) | S8—V1—S8v | 90.9 (2) |
V2—V3—V1 | 157.8 (2) | V2xxiii—V4—V1 | 157.7 (2) |
S2i—V3—S3x | 174.0 (3) | S1xx—V4—S4i | 175.3 (3) |
S2i—V3—S6 | 92.0 (3) | S1xx—V4—S5xxiii | 84.7 (3) |
S2i—V3—S6v | 92.0 (3) | S1xx—V4—S5xxiv | 84.7 (3) |
S2i—V3—S7 | 97.9 (3) | S1xx—V4—S8 | 83.6 (3) |
S2i—V3—S7v | 97.9 (3) | S1xx—V4—S8v | 83.6 (3) |
S3x—V3—S6 | 83.7 (3) | S4i—V4—S5xxiii | 98.7 (3) |
S3x—V3—S6v | 83.7 (3) | S4i—V4—S5xxiv | 98.7 (3) |
S3x—V3—S7 | 86.3 (3) | S4i—V4—S8 | 93.0 (3) |
S3x—V3—S7v | 86.3 (3) | S4i—V4—S8v | 93.0 (3) |
S6—V3—S6v | 86.4 (2) | S5xxiii—V4—S5xxiv | 86.0 (2) |
S6—V3—S7 | 169.8 (4) | S5xxiii—V4—S8 | 168.2 (3) |
S6—V3—S7v | 91.0 (2) | S5xxiii—V4—S8v | 91.3 (2) |
S6v—V3—S7 | 91.0 (2) | S5xxiv—V4—S8 | 91.3 (2) |
S6v—V3—S7v | 169.8 (4) | S5xxiv—V4—S8v | 168.2 (3) |
S7—V3—S7v | 89.8 (2) | S8—V4—S8v | 89.1 (2) |
Symmetry codes: (i) x+1, y, z; (ii) x−1/2, y−1/2, z−1/2; (iii) x−1/2, y+1/2, z−1/2; (iv) x+1, y, z−1; (v) x, −y, z; (vi) x+1/2, y+1/2, z−1/2; (vii) x+1/2, −y−1/2, z−1/2; (viii) x+1/2, y−1/2, z−1/2; (ix) x+1/2, −y+1/2, z−1/2; (x) x−1, y, z; (xi) x−1/2, y−1/2, z+1/2; (xii) x−1/2, −y+1/2, z+1/2; (xiii) x−1/2, −y+1/2, z−1/2; (xiv) x−1/2, −y−1/2, z−1/2; (xv) x−1/2, y+1/2, z+1/2; (xvi) x+1/2, y−1/2, z+1/2; (xvii) x+1/2, −y+1/2, z+1/2; (xviii) x+1/2, y+1/2, z+1/2; (xix) x+1/2, −y−1/2, z+1/2; (xx) x−1, y, z+1; (xxi) x−1/2, −y−1/2, z+1/2; (xxii) x, y, z−1; (xxiii) x, y, z+1; (xxiv) x, −y, z+1; (xxv) x+1, −y, z; (xxvi) x+1, −y, z−1; (xxvii) x−1, −y, z; (xxviii) x−1, −y, z+1; (xxix) x, −y, z−1; (xxx) x, −y−1, z; (xxxi) x, −y+1, z. |
BaS3V | F(000) = 508 |
Mr = 284.5 | Dx = 4.364 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.70814 Å |
Hall symbol: C -2y | Cell parameters from 1782 reflections |
a = 11.496 (9) Å | θ = 3.5–28.5° |
b = 6.742 (7) Å | µ = 12.17 mm−1 |
c = 5.597 (5) Å | T = 70 K |
β = 90.012 (6)° | Irregular, grey |
V = 433.8 (7) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 769 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.025 |
Synchrotron monochromator | θmax = 28.5°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −14→15 |
Tmin = 0.529, Tmax = 1.000 | k = 0→8 |
1782 measured reflections | l = −5→5 |
770 independent reflections |
Refinement on F | 2 constraints |
R[F > 3σ(F)] = 0.048 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.065 | (Δ/σ)max = 0.035 |
S = 5.44 | Δρmax = 2.26 e Å−3 |
770 reflections | Δρmin = −1.77 e Å−3 |
53 parameters | Absolute structure: 367 of Friedel pairs used in the refinement |
0 restraints | Absolute structure parameter: 0.05 (5) |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.336053 | 0 | −0.000303 | 0.0131 (4) | |
Ba2 | −0.33852 (10) | 0 | 0.5010 (5) | 0.0120 (4) | |
V1 | −0.0205 (5) | 0 | −0.2417 (14) | 0.0164 (11) | |
V2 | 0.0238 (6) | 0 | 0.2635 (12) | 0.0093 (10) | |
S1 | −0.1730 (15) | 0 | 0.014 (3) | 0.013 (2) | |
S2 | 0.0833 (13) | 0.2459 (8) | 0.000 (3) | 0.0148 (12) | |
S3 | 0.1689 (15) | 0 | 0.506 (3) | 0.0117 (19) | |
S4 | −0.0836 (12) | −0.2427 (7) | 0.495 (3) | 0.0132 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0170 (8) | 0.0143 (4) | 0.0079 (9) | 0 | 0.0003 (12) | 0 |
Ba2 | 0.0130 (6) | 0.0145 (5) | 0.0084 (8) | 0 | 0.0016 (11) | 0 |
V1 | 0.0164 (17) | 0.0118 (9) | 0.021 (3) | 0 | −0.003 (3) | 0 |
V2 | 0.0094 (14) | 0.0165 (10) | 0.002 (3) | 0 | −0.003 (2) | 0 |
S1 | 0.015 (5) | 0.0205 (18) | 0.005 (4) | 0 | 0.000 (4) | 0 |
S2 | 0.021 (3) | 0.0151 (12) | 0.008 (2) | 0.0047 (16) | 0.002 (3) | 0.003 (2) |
S3 | 0.016 (4) | 0.0109 (15) | 0.008 (3) | 0 | 0.002 (3) | 0 |
S4 | 0.0136 (18) | 0.0124 (11) | 0.014 (2) | −0.0067 (16) | 0.002 (3) | 0.0021 (18) |
Ba1—S1i | 3.374 (7) | V1—S3v | 2.60 (2) |
Ba1—S1ii | 3.374 (7) | V1—S4v | 2.318 (14) |
Ba1—S2 | 3.346 (14) | V1—S4xvi | 2.318 (14) |
Ba1—S2i | 3.319 (14) | V2—S1 | 2.658 (19) |
Ba1—S2iii | 3.346 (14) | V2—S2 | 2.321 (14) |
Ba1—S2iv | 3.319 (14) | V2—S2iii | 2.321 (14) |
Ba1—S3v | 3.364 (19) | V2—S3 | 2.15 (2) |
Ba1—S3 | 3.425 (19) | V2—S4 | 2.426 (14) |
Ba1—S4vi | 3.440 (17) | V2—S4iii | 2.426 (14) |
Ba1—S4ii | 3.399 (16) | S1—S2 | 3.38 (2) |
Ba1—S4vii | 3.440 (17) | S1—S2x | 3.28 (2) |
Ba1—S4viii | 3.399 (16) | S1—S2iii | 3.38 (2) |
Ba2—S1 | 3.323 (18) | S1—S2xii | 3.28 (2) |
Ba2—S1ix | 3.446 (18) | S1—S4v | 3.49 (2) |
Ba2—S2x | 3.405 (17) | S1—S4 | 3.31 (2) |
Ba2—S2xi | 3.399 (17) | S1—S4xvi | 3.49 (2) |
Ba2—S2xii | 3.405 (17) | S1—S4iii | 3.31 (2) |
Ba2—S2xiii | 3.399 (17) | S2—S2iii | 3.316 (10) |
Ba2—S3x | 3.372 (7) | S2—S2xvii | 3.426 (10) |
Ba2—S3xiv | 3.372 (7) | S2—S3v | 3.37 (2) |
Ba2—S4 | 3.357 (13) | S2—S3 | 3.43 (2) |
Ba2—S4xiv | 3.308 (13) | S2—S4xvi | 3.42 (2) |
Ba2—S4iii | 3.357 (13) | S2—S4iii | 3.37 (2) |
Ba2—S4xv | 3.308 (13) | S3—S4 | 3.33 (2) |
V1—V2v | 2.816 (12) | S3—S4ii | 3.33 (2) |
V1—V2 | 2.873 (12) | S3—S4iii | 3.33 (2) |
V1—S1 | 2.264 (19) | S3—S4viii | 3.33 (2) |
V1—S2 | 2.451 (14) | S4—S4xviii | 3.469 (10) |
V1—S2iii | 2.451 (14) | S4—S4iii | 3.273 (9) |
V2v—V1—V2 | 159.3 (3) | V1—V2—V1ix | 159.3 (3) |
S1—V1—S2 | 91.6 (6) | S1—V2—S2 | 85.3 (5) |
S1—V1—S2iii | 91.6 (6) | S1—V2—S2iii | 85.3 (5) |
S1—V1—S3v | 173.7 (7) | S1—V2—S3 | 172.5 (7) |
S1—V1—S4v | 99.2 (5) | S1—V2—S4 | 81.2 (5) |
S1—V1—S4xvi | 99.2 (5) | S1—V2—S4iii | 81.2 (5) |
S2—V1—S2iii | 85.1 (5) | S2—V2—S2iii | 91.2 (5) |
S2—V1—S3v | 83.8 (5) | S2—V2—S3 | 99.9 (6) |
S2—V1—S4v | 168.8 (6) | S2—V2—S4 | 166.2 (6) |
S2—V1—S4xvi | 91.5 (4) | S2—V2—S4iii | 90.4 (4) |
S2iii—V1—S3v | 83.8 (5) | S2iii—V2—S3 | 99.9 (6) |
S2iii—V1—S4v | 91.5 (4) | S2iii—V2—S4 | 90.4 (4) |
S2iii—V1—S4xvi | 168.8 (6) | S2iii—V2—S4iii | 166.2 (6) |
S3v—V1—S4v | 85.2 (5) | S3—V2—S4 | 93.3 (6) |
S3v—V1—S4xvi | 85.2 (5) | S3—V2—S4iii | 93.3 (6) |
S4v—V1—S4xvi | 89.8 (5) | S4—V2—S4iii | 84.8 (4) |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, −y, z; (iv) x+1/2, −y+1/2, z; (v) x, y, z−1; (vi) x+1/2, y+1/2, z−1; (vii) x+1/2, −y−1/2, z−1; (viii) x+1/2, −y−1/2, z; (ix) x, y, z+1; (x) x−1/2, y−1/2, z; (xi) x−1/2, y−1/2, z+1; (xii) x−1/2, −y+1/2, z; (xiii) x−1/2, −y+1/2, z+1; (xiv) x−1/2, y+1/2, z; (xv) x−1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaS3V | F(000) = 508 |
Mr = 284.5 | Dx = 4.354 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.70000 Å |
Hall symbol: C -2y | Cell parameters from 3199 reflections |
a = 11.485 (7) Å | θ = 3.5–31.8° |
b = 6.751 (5) Å | µ = 11.79 mm−1 |
c = 5.597 (3) Å | T = 100 K |
β = 90.011 (5)° | Irregular, grey |
V = 434.0 (5) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Mar345 image plate diffractometer | 1934 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.031 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | θmax = 31.8°, θmin = 3.5° |
Tmin = 0.627, Tmax = 1.000 | h = −17→17 |
3199 measured reflections | k = −9→9 |
1935 independent reflections | l = −8→8 |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.032 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.045 | (Δ/σ)max = 0.048 |
S = 3.27 | Δρmax = 1.39 e Å−3 |
1935 reflections | Δρmin = −1.76 e Å−3 |
59 parameters | Absolute structure: 806 of Friedel pairs used in the refinement |
0 restraints | Absolute structure parameter: 0.05 (4) |
x | y | z | Uiso*/Ueq | ||
Ba1 | −0.3351 (3) | 0 | 0.4995 (9) | 0.0094 (9) | |
Ba2 | 0.338683 | 0 | 0 | 0.0088 (9) | |
V1 | −0.0225 (10) | 0 | −0.2424 (16) | 0.007 (2) | |
V2 | 0.0211 (10) | 0 | 0.2593 (15) | 0.011 (2) | |
S1 | −0.173 (2) | 0 | 0.015 (3) | 0.006 (3) | |
S2 | 0.0785 (19) | 0.2431 (19) | 0.000 (2) | 0.009 (2) | |
S3 | 0.167 (2) | 0 | 0.512 (2) | 0.006 (3) | |
S4 | −0.0861 (18) | −0.2462 (18) | 0.493 (2) | 0.007 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0116 (16) | 0.0096 (19) | 0.0070 (9) | 0 | −0.0016 (10) | 0 |
Ba2 | 0.0113 (18) | 0.007 (2) | 0.0079 (9) | 0 | −0.0034 (11) | 0 |
V1 | 0.004 (3) | 0.011 (5) | 0.007 (2) | 0 | −0.001 (3) | 0 |
V2 | 0.015 (4) | 0.009 (5) | 0.010 (2) | 0 | 0.000 (3) | 0 |
S1 | 0.005 (5) | 0.006 (6) | 0.006 (4) | 0 | 0.0016 (16) | 0 |
S2 | 0.012 (5) | 0.010 (4) | 0.005 (2) | −0.002 (3) | −0.002 (3) | −0.001 (3) |
S3 | 0.008 (6) | 0.004 (6) | 0.005 (4) | 0 | −0.004 (2) | 0 |
S4 | 0.006 (4) | 0.004 (5) | 0.012 (3) | −0.001 (2) | −0.002 (3) | −0.002 (2) |
Ba1—S1 | 3.291 (19) | V1—S2vii | 2.425 (17) |
Ba1—S1i | 3.429 (19) | V1—S3xii | 2.58 (2) |
Ba1—S2ii | 3.437 (14) | V1—S4xii | 2.343 (15) |
Ba1—S2iii | 3.440 (14) | V1—S4xvi | 2.343 (15) |
Ba1—S2iv | 3.437 (14) | V2—S1 | 2.62 (2) |
Ba1—S2v | 3.440 (14) | V2—S2 | 2.288 (15) |
Ba1—S3ii | 3.3763 (6) | V2—S2vii | 2.288 (15) |
Ba1—S3vi | 3.3763 (6) | V2—S3 | 2.19 (2) |
Ba1—S4 | 3.308 (19) | V2—S4 | 2.447 (17) |
Ba1—S4vi | 3.354 (19) | V2—S4vii | 2.447 (17) |
Ba1—S4vii | 3.308 (19) | S1—S2 | 3.33 (3) |
Ba1—S4viii | 3.354 (19) | S1—S2ii | 3.34 (3) |
Ba2—S1ix | 3.3792 (12) | S1—S2vii | 3.33 (3) |
Ba2—S1x | 3.3792 (12) | S1—S2iv | 3.34 (3) |
Ba2—S2 | 3.41 (2) | S1—S4 | 3.31 (2) |
Ba2—S2ix | 3.26 (2) | S1—S4vii | 3.31 (2) |
Ba2—S2vii | 3.41 (2) | S2—S2vii | 3.282 (19) |
Ba2—S2xi | 3.26 (2) | S2—S2xvii | 3.469 (19) |
Ba2—S3xii | 3.370 (18) | S2—S3xii | 3.345 (19) |
Ba2—S3 | 3.478 (18) | S2—S3 | 3.454 (19) |
Ba2—S4xiii | 3.426 (13) | S2—S4xvi | 3.41 (2) |
Ba2—S4x | 3.361 (13) | S2—S4vii | 3.35 (2) |
Ba2—S4xiv | 3.426 (13) | S3—S4 | 3.35 (3) |
Ba2—S4xv | 3.361 (13) | S3—S4x | 3.32 (3) |
V1—V2xii | 2.834 (12) | S3—S4vii | 3.35 (3) |
V1—V2 | 2.852 (12) | S3—S4xv | 3.32 (3) |
V1—S1 | 2.25 (2) | S4—S4xviii | 3.427 (17) |
V1—S2 | 2.425 (17) | S4—S4vii | 3.324 (17) |
V2xii—V1—V2 | 159.7 (5) | V1—V2—V1i | 159.7 (5) |
S1—V1—S2 | 90.6 (6) | S1—V2—S2 | 85.1 (6) |
S1—V1—S2vii | 90.6 (6) | S1—V2—S2vii | 85.1 (6) |
S1—V1—S3xii | 172.6 (8) | S1—V2—S3 | 171.4 (8) |
S1—V1—S4xii | 99.5 (7) | S1—V2—S4 | 81.4 (6) |
S1—V1—S4xvi | 99.5 (7) | S1—V2—S4vii | 81.4 (6) |
S2—V1—S2vii | 85.2 (6) | S2—V2—S2vii | 91.6 (6) |
S2—V1—S3xii | 83.9 (6) | S2—V2—S3 | 100.9 (7) |
S2—V1—S4xii | 169.4 (8) | S2—V2—S4 | 166.2 (9) |
S2—V1—S4xvi | 91.3 (5) | S2—V2—S4vii | 89.8 (5) |
S2vii—V1—S3xii | 83.9 (6) | S2vii—V2—S3 | 100.9 (7) |
S2vii—V1—S4xii | 91.3 (5) | S2vii—V2—S4 | 89.8 (5) |
S2vii—V1—S4xvi | 169.4 (8) | S2vii—V2—S4vii | 166.2 (9) |
S3xii—V1—S4xii | 85.7 (6) | S3—V2—S4 | 92.3 (6) |
S3xii—V1—S4xvi | 85.7 (6) | S3—V2—S4vii | 92.3 (6) |
S4xii—V1—S4xvi | 90.4 (6) | S4—V2—S4vii | 85.6 (6) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y−1/2, z+1; (iv) x−1/2, −y+1/2, z; (v) x−1/2, −y+1/2, z+1; (vi) x−1/2, y+1/2, z; (vii) x, −y, z; (viii) x−1/2, −y−1/2, z; (ix) x+1/2, y−1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, −y+1/2, z; (xii) x, y, z−1; (xiii) x+1/2, y+1/2, z−1; (xiv) x+1/2, −y−1/2, z−1; (xv) x+1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaVS3 | F(000) = 508 |
Mr = 284.5 | Dx = 4.336 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.70814 Å |
Hall symbol: C -2y | Cell parameters from 1319 reflections |
a = 11.5839 (7) Å | θ = 3.5–28.7° |
b = 6.7016 (5) Å | µ = 12.12 mm−1 |
c = 5.5956 (3) Å | T = 150 K |
β = 90° | Irregular, grey |
V = 434.39 (5) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1409 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.023 |
Synchrotron monochromator | θmax = 28.7°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −14→14 |
Tmin = 0.658, Tmax = 1.000 | k = −8→8 |
3834 measured reflections | l = −5→5 |
1409 independent reflections |
Refinement on F | 28 constraints |
R[F > 3σ(F)] = 0.046 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.072 | (Δ/σ)max = 0.018 |
S = 4.83 | Δρmax = 2.16 e Å−3 |
1409 reflections | Δρmin = −1.62 e Å−3 |
30 parameters | Absolute structure: 653 of Friedel pairs used in the refinement |
0 restraints | Absolute structure parameter: 0.02 (4) |
Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | −0.33666 (4) | 0 | 0.507918 | 0.0127 (2) | |
Ba1b | 0.33666 (4) | 0 | 0.007918 | 0.0127 (2) | |
V1a | 0.02090 (11) | 0 | −0.2505 (3) | 0.0131 (4) | |
V1b | −0.02090 (11) | 0 | 0.2505 (3) | 0.0131 (4) | |
S1a | −0.16932 (16) | 0 | −0.0029 (7) | 0.0126 (9) | |
S2a | 0.08307 (13) | 0.24518 (15) | 0.0226 (6) | 0.0102 (7) | |
S1b | 0.16932 (16) | 0 | 0.4971 (7) | 0.0126 (9) | |
S2b | −0.08307 (13) | −0.24518 (15) | 0.5226 (6) | 0.0102 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0150 (4) | 0.0142 (3) | 0.0091 (5) | 0 | −0.0005 (3) | 0 |
Ba1b | 0.0150 (4) | 0.0142 (3) | 0.0091 (5) | 0 | −0.0005 (3) | 0 |
V1a | 0.0137 (7) | 0.0180 (6) | 0.0074 (9) | 0 | 0.0006 (5) | 0 |
V1b | 0.0137 (7) | 0.0180 (6) | 0.0074 (9) | 0 | 0.0006 (5) | 0 |
S1a | 0.0109 (12) | 0.0168 (13) | 0.010 (2) | 0 | 0.0001 (11) | 0 |
S2a | 0.0158 (10) | 0.0140 (10) | 0.0010 (15) | −0.0029 (5) | −0.0013 (10) | 0.0000 (5) |
S1b | 0.0109 (12) | 0.0168 (13) | 0.010 (2) | 0 | 0.0001 (11) | 0 |
S2b | 0.0158 (10) | 0.0140 (10) | 0.0010 (15) | −0.0029 (5) | −0.0013 (10) | 0.0000 (5) |
Ba1a—S1a | 3.454 (3) | V1a—S2avii | 2.356 (3) |
Ba1a—S1ai | 3.354 (3) | V1a—S1bxii | 2.225 (3) |
Ba1a—S2aii | 3.340 (3) | V1a—S2bxii | 2.401 (2) |
Ba1a—S2aiii | 3.475 (3) | V1a—S2bxvi | 2.401 (2) |
Ba1a—S2aiv | 3.340 (3) | V1b—S1a | 2.228 (3) |
Ba1a—S2av | 3.475 (3) | V1b—S2a | 2.403 (2) |
Ba1a—S1bii | 3.3521 (5) | V1b—S2avii | 2.403 (2) |
Ba1a—S1bvi | 3.3521 (5) | V1b—S1b | 2.600 (3) |
Ba1a—S2b | 3.3669 (15) | V1b—S2b | 2.353 (3) |
Ba1a—S2bvi | 3.3272 (15) | V1b—S2bvii | 2.353 (3) |
Ba1a—S2bvii | 3.3669 (15) | S1a—S2a | 3.357 (2) |
Ba1a—S2bviii | 3.3272 (15) | S1a—S2aii | 3.341 (2) |
Ba1b—S1aix | 3.3521 (5) | S1a—S2avii | 3.357 (2) |
Ba1b—S1ax | 3.3521 (5) | S1a—S2aiv | 3.341 (2) |
Ba1b—S2a | 3.3669 (15) | S1a—S2bxii | 3.278 (4) |
Ba1b—S2aix | 3.3272 (15) | S1a—S2bxvi | 3.278 (4) |
Ba1b—S2avii | 3.3669 (15) | S2a—S2avii | 3.2862 (15) |
Ba1b—S2axi | 3.3272 (15) | S2a—S2axvii | 3.4154 (15) |
Ba1b—S1bxii | 3.454 (3) | S2a—S1b | 3.278 (4) |
Ba1b—S1b | 3.354 (3) | S2a—S2bxvi | 3.396 (4) |
Ba1b—S2bxiii | 3.340 (3) | S2a—S2bvii | 3.396 (4) |
Ba1b—S2bx | 3.475 (3) | S1b—S2b | 3.357 (2) |
Ba1b—S2bxiv | 3.340 (3) | S1b—S2bx | 3.341 (2) |
Ba1b—S2bxv | 3.475 (3) | S1b—S2bvii | 3.357 (2) |
V1a—V1bxii | 2.834 (2) | S1b—S2bxv | 3.341 (2) |
V1a—V1b | 2.845 (2) | S2b—S2bxviii | 3.4154 (15) |
V1a—S1a | 2.603 (3) | S2b—S2bvii | 3.2862 (15) |
V1a—S2a | 2.356 (3) | ||
V1bxii—V1a—V1b | 160.36 (6) | V1a—V1b—V1ai | 160.36 (6) |
S1a—V1a—S2a | 85.04 (9) | S1a—V1b—S2a | 92.81 (10) |
S1a—V1a—S2avii | 85.04 (9) | S1a—V1b—S2avii | 92.81 (10) |
S1a—V1a—S1bxii | 172.76 (13) | S1a—V1b—S1b | 172.55 (13) |
S1a—V1a—S2bxii | 81.77 (9) | S1a—V1b—S2b | 100.11 (9) |
S1a—V1a—S2bxvi | 81.77 (9) | S1a—V1b—S2bvii | 100.11 (9) |
S2a—V1a—S2avii | 88.42 (9) | S2a—V1b—S2avii | 86.26 (8) |
S2a—V1a—S1bxii | 100.11 (9) | S2a—V1b—S1b | 81.78 (9) |
S2a—V1a—S2bxii | 166.80 (10) | S2a—V1b—S2b | 166.93 (10) |
S2a—V1a—S2bxvi | 91.09 (8) | S2a—V1b—S2bvii | 91.11 (8) |
S2avii—V1a—S1bxii | 100.11 (9) | S2avii—V1b—S1b | 81.78 (9) |
S2avii—V1a—S2bxii | 91.09 (8) | S2avii—V1b—S2b | 91.11 (8) |
S2avii—V1a—S2bxvi | 166.80 (10) | S2avii—V1b—S2bvii | 166.93 (10) |
S1bxii—V1a—S2bxii | 92.97 (10) | S1b—V1b—S2b | 85.17 (9) |
S1bxii—V1a—S2bxvi | 92.97 (10) | S1b—V1b—S2bvii | 85.17 (9) |
S2bxii—V1a—S2bxvi | 86.39 (8) | S2b—V1b—S2bvii | 88.58 (10) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y−1/2, z+1; (iv) x−1/2, −y+1/2, z; (v) x−1/2, −y+1/2, z+1; (vi) x−1/2, y+1/2, z; (vii) x, −y, z; (viii) x−1/2, −y−1/2, z; (ix) x+1/2, y−1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, −y+1/2, z; (xii) x, y, z−1; (xiii) x+1/2, y+1/2, z−1; (xiv) x+1/2, −y−1/2, z−1; (xv) x+1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaS3V | F(000) = 508 |
Mr = 284.5 | Dx = 4.327 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.693 Å |
Hall symbol: C -2y | Cell parameters from 1653 reflections |
a = 11.5729 (7) Å | θ = 3.5–28.7° |
b = 6.7116 (5) Å | µ = 12.09 mm−1 |
c = 5.6015 (3) Å | T = 200 K |
β = 90° | Irregular, grey |
V = 435.08 (5) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 2191 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.021 |
Synchrotron monochromator | θmax = 32.0°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −17→16 |
Tmin = 0.595, Tmax = 1.000 | k = −9→9 |
3593 measured reflections | l = −8→8 |
2206 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F > 3σ(F)] = 0.021 | (Δ/σ)max = 0.020 |
wR(F) = 0.026 | Δρmax = 0.62 e Å−3 |
S = 1.15 | Δρmin = −0.80 e Å−3 |
2206 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
31 parameters | Extinction coefficient: 510 (40) |
0 restraints | Absolute structure: 974 of Friedel pairs used in the refinement |
28 constraints | Absolute structure parameter: 0.17 (3) |
Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | −0.33533 (5) | 0 | 0.504191 | 0.01417 (15) | |
Ba1b | 0.33533 (5) | 0 | 0.004191 | 0.01417 (15) | |
V1a | 0.01585 (9) | 0 | −0.2520 (3) | 0.0211 (3) | |
V1b | −0.01585 (9) | 0 | 0.2520 (3) | 0.0211 (3) | |
S1a | −0.16705 (13) | 0 | −0.0068 (6) | 0.0123 (10) | |
S2a | 0.08293 (11) | 0.24686 (16) | 0.0088 (10) | 0.0133 (7) | |
S1b | 0.16705 (13) | 0 | 0.4932 (6) | 0.0123 (10) | |
S2b | −0.08293 (11) | −0.24686 (16) | 0.5088 (10) | 0.0133 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0150 (3) | 0.0148 (3) | 0.01268 (10) | 0 | 0.0002 (3) | 0 |
Ba1b | 0.0150 (3) | 0.0148 (3) | 0.01268 (10) | 0 | 0.0002 (3) | 0 |
V1a | 0.0186 (6) | 0.0335 (8) | 0.01127 (19) | 0 | 0.0023 (5) | 0 |
V1b | 0.0186 (6) | 0.0335 (8) | 0.01127 (19) | 0 | 0.0023 (5) | 0 |
S1a | 0.0141 (18) | 0.0102 (18) | 0.0125 (14) | 0 | 0.0004 (15) | 0 |
S2a | 0.0180 (16) | 0.0097 (14) | 0.0122 (8) | −0.0020 (8) | −0.0008 (13) | 0.0006 (6) |
S1b | 0.0141 (18) | 0.0102 (18) | 0.0125 (14) | 0 | 0.0004 (15) | 0 |
S2b | 0.0180 (16) | 0.0097 (14) | 0.0122 (8) | −0.0020 (8) | −0.0008 (13) | 0.0006 (6) |
Ba1a—S1a | 3.462 (3) | V1a—S1bxii | 2.258 (3) |
Ba1a—S1ai | 3.361 (3) | V1a—S2bxii | 2.418 (3) |
Ba1a—S2aii | 3.388 (5) | V1a—S2bxvi | 2.418 (3) |
Ba1a—S2aiii | 3.431 (5) | V1b—S1a | 2.272 (3) |
Ba1a—S2aiv | 3.388 (5) | V1b—S2a | 2.430 (3) |
Ba1a—S2av | 3.431 (5) | V1b—S2avii | 2.430 (3) |
Ba1a—S1bii | 3.3565 (5) | V1b—S1b | 2.511 (3) |
Ba1a—S1bvi | 3.3565 (5) | V1b—S2b | 2.328 (4) |
Ba1a—S2b | 3.3582 (14) | V1b—S2bvii | 2.328 (4) |
Ba1a—S2bvi | 3.3314 (14) | S1a—S2a | 3.3350 (18) |
Ba1a—S2bvii | 3.3582 (14) | S1a—S2aii | 3.3566 (18) |
Ba1a—S2bviii | 3.3314 (14) | S1a—S2avii | 3.3350 (18) |
Ba1b—S1aix | 3.3565 (5) | S1a—S2aiv | 3.3566 (18) |
Ba1b—S1ax | 3.3565 (5) | S1a—S2bxii | 3.325 (5) |
Ba1b—S2a | 3.3582 (14) | S1a—S2b | 3.469 (5) |
Ba1b—S2aix | 3.3314 (14) | S1a—S2bxvi | 3.325 (5) |
Ba1b—S2avii | 3.3582 (14) | S1a—S2bvii | 3.469 (5) |
Ba1b—S2axi | 3.3314 (14) | S2a—S2avii | 3.3137 (16) |
Ba1b—S1bxii | 3.462 (3) | S2a—S2axvii | 3.3979 (16) |
Ba1b—S1b | 3.361 (3) | S2a—S1bxii | 3.469 (5) |
Ba1b—S2bxiii | 3.388 (5) | S2a—S1b | 3.325 (5) |
Ba1b—S2bx | 3.431 (5) | S2a—S2bxvi | 3.395 (6) |
Ba1b—S2bxiv | 3.388 (5) | S2a—S2bvii | 3.395 (6) |
Ba1b—S2bxv | 3.431 (5) | S1b—S2b | 3.3350 (18) |
V1a—V1bxii | 2.803 (2) | S1b—S2bx | 3.3566 (18) |
V1a—V1b | 2.847 (2) | S1b—S2bvii | 3.3350 (18) |
V1a—S1a | 2.523 (3) | S1b—S2bxv | 3.3566 (18) |
V1a—S2a | 2.341 (4) | S2b—S2bxviii | 3.3979 (16) |
V1a—S2avii | 2.341 (4) | S2b—S2bvii | 3.3137 (16) |
V1bxii—V1a—V1b | 165.08 (5) | V1a—V1b—V1ai | 165.08 (5) |
S1a—V1a—S2a | 86.47 (10) | S1a—V1b—S2a | 90.27 (11) |
S1a—V1a—S2avii | 86.47 (10) | S1a—V1b—S2avii | 90.27 (11) |
S1a—V1a—S1bxii | 173.78 (12) | S1a—V1b—S1b | 172.92 (12) |
S1a—V1a—S2bxii | 84.55 (10) | S1a—V1b—S2b | 97.90 (10) |
S1a—V1a—S2bxvi | 84.55 (10) | S1a—V1b—S2bvii | 97.90 (10) |
S2a—V1a—S2avii | 90.08 (13) | S2a—V1b—S2avii | 85.96 (11) |
S2a—V1a—S1bxii | 97.90 (10) | S2a—V1b—S1b | 84.55 (10) |
S2a—V1a—S2bxii | 170.87 (11) | S2a—V1b—S2b | 171.31 (10) |
S2a—V1a—S2bxvi | 91.01 (11) | S2a—V1b—S2bvii | 91.03 (11) |
S2avii—V1a—S1bxii | 97.90 (10) | S2avii—V1b—S1b | 84.55 (10) |
S2avii—V1a—S2bxii | 91.01 (11) | S2avii—V1b—S2b | 91.03 (11) |
S2avii—V1a—S2bxvi | 170.87 (11) | S2avii—V1b—S2bvii | 171.31 (10) |
S1bxii—V1a—S2bxii | 90.93 (11) | S1b—V1b—S2b | 87.05 (10) |
S1bxii—V1a—S2bxvi | 90.93 (11) | S1b—V1b—S2bvii | 87.05 (10) |
S2bxii—V1a—S2bxvi | 86.51 (11) | S2b—V1b—S2bvii | 90.76 (13) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y−1/2, z+1; (iv) x−1/2, −y+1/2, z; (v) x−1/2, −y+1/2, z+1; (vi) x−1/2, y+1/2, z; (vii) x, −y, z; (viii) x−1/2, −y−1/2, z; (ix) x+1/2, y−1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, −y+1/2, z; (xii) x, y, z−1; (xiii) x+1/2, y+1/2, z−1; (xiv) x+1/2, −y−1/2, z−1; (xv) x+1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaVS3 | F(000) = 508 |
Mr = 284.5 | Dx = 4.336 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.70814 Å |
Hall symbol: C -2y | Cell parameters from 1812 reflections |
a = 11.593 (7) Å | θ = 3.5–28.6° |
b = 6.708 (5) Å | µ = 12.12 mm−1 |
c = 5.604 (3) Å | T = 220 K |
β = 90° | Irregular, grey |
V = 435.8 (5) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 1464 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.014 |
Synchrotron monochromator | θmax = 28.6°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −15→15 |
Tmin = 0.606, Tmax = 1.000 | k = −8→8 |
3944 measured reflections | l = −5→5 |
1464 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F > 3σ(F)] = 0.019 | (Δ/σ)max = 0.045 |
wR(F) = 0.040 | Δρmax = 0.96 e Å−3 |
S = 2.83 | Δρmin = −0.72 e Å−3 |
1464 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
32 parameters | Extinction coefficient: 580 (40) |
0 restraints | Absolute structure: 668 of Friedel pairs used in the refinement |
27 constraints | Absolute structure parameter: 0.28 (2) |
Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | −0.33471 (3) | 0 | 0.5046 (4) | 0.01489 (16) | |
Ba1b | 0.33471 (3) | 0 | 0.0046 (4) | 0.01489 (16) | |
V1a | 0.01545 (6) | 0 | −0.25311 (9) | 0.0213 (2) | |
V1b | −0.01545 (6) | 0 | 0.25311 (9) | 0.0213 (2) | |
S1a | −0.16657 (9) | 0 | 0.0040 (15) | 0.0162 (6) | |
S2a | 0.08293 (7) | 0.24697 (8) | 0.0193 (13) | 0.0114 (5) | |
S1b | 0.16657 (9) | 0 | 0.5040 (15) | 0.0162 (6) | |
S2b | −0.08293 (7) | −0.24697 (8) | 0.5193 (13) | 0.0114 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0146 (3) | 0.0141 (3) | 0.0160 (3) | 0 | −0.0008 (2) | 0 |
Ba1b | 0.0146 (3) | 0.0141 (3) | 0.0160 (3) | 0 | −0.0008 (2) | 0 |
V1a | 0.0212 (4) | 0.0301 (5) | 0.0125 (4) | 0 | 0.0011 (4) | 0 |
V1b | 0.0212 (4) | 0.0301 (5) | 0.0125 (4) | 0 | 0.0011 (4) | 0 |
S1a | 0.0107 (9) | 0.0153 (9) | 0.0226 (13) | 0 | −0.0003 (9) | 0 |
S2a | 0.0142 (8) | 0.0110 (7) | 0.0089 (10) | −0.0017 (3) | −0.0003 (9) | 0.0000 (3) |
S1b | 0.0107 (9) | 0.0153 (9) | 0.0226 (13) | 0 | −0.0003 (9) | 0 |
S2b | 0.0142 (8) | 0.0110 (7) | 0.0089 (10) | −0.0017 (3) | −0.0003 (9) | 0.0000 (3) |
Ba1a—S1a | 3.416 (8) | V1a—S1bxii | 2.218 (6) |
Ba1a—S1ai | 3.411 (8) | V1a—S2bxii | 2.382 (5) |
Ba1a—S2aii | 3.345 (7) | V1a—S2bxvi | 2.382 (5) |
Ba1a—S2aiii | 3.480 (7) | V1b—S1a | 2.240 (6) |
Ba1a—S2aiv | 3.345 (7) | V1b—S2a | 2.400 (5) |
Ba1a—S2av | 3.480 (7) | V1b—S2avii | 2.400 (5) |
Ba1a—S1bii | 3.354 (5) | V1b—S1b | 2.536 (5) |
Ba1a—S1bvi | 3.354 (5) | V1b—S2b | 2.363 (5) |
Ba1a—S2b | 3.357 (3) | V1b—S2bvii | 2.363 (5) |
Ba1a—S2bvi | 3.342 (3) | S1a—S2a | 3.334 (3) |
Ba1a—S2bvii | 3.357 (3) | S1a—S2aii | 3.365 (3) |
Ba1a—S2bviii | 3.342 (3) | S1a—S2avii | 3.334 (3) |
Ba1b—S1aix | 3.354 (5) | S1a—S2aiv | 3.365 (3) |
Ba1b—S1ax | 3.354 (5) | S1a—S2bxii | 3.326 (10) |
Ba1b—S2a | 3.357 (3) | S1a—S2b | 3.468 (10) |
Ba1b—S2aix | 3.342 (3) | S1a—S2bxvi | 3.326 (10) |
Ba1b—S2avii | 3.357 (3) | S1a—S2bvii | 3.468 (10) |
Ba1b—S2axi | 3.342 (3) | S2a—S2avii | 3.313 (5) |
Ba1b—S1bxii | 3.416 (8) | S2a—S2axvii | 3.395 (5) |
Ba1b—S1b | 3.411 (8) | S2a—S1bxii | 3.468 (10) |
Ba1b—S2bxiii | 3.345 (7) | S2a—S1b | 3.326 (10) |
Ba1b—S2bx | 3.480 (7) | S2a—S2bxvi | 3.398 (9) |
Ba1b—S2bxiv | 3.345 (7) | S2a—S2bvii | 3.398 (9) |
Ba1b—S2bxv | 3.480 (7) | S1b—S2b | 3.334 (3) |
V1a—V1bxii | 2.790 (3) | S1b—S2bx | 3.365 (3) |
V1a—V1b | 2.859 (3) | S1b—S2bvii | 3.334 (3) |
V1a—S1a | 2.555 (5) | S1b—S2bxv | 3.365 (3) |
V1a—S2a | 2.385 (5) | S2b—S2bxviii | 3.395 (5) |
V1a—S2avii | 2.385 (5) | S2b—S2bvii | 3.313 (5) |
V1bxii—V1a—V1b | 165.43 (4) | V1a—V1b—V1ai | 165.43 (4) |
S1a—V1a—S2a | 84.83 (15) | S1a—V1b—S2a | 91.80 (17) |
S1a—V1a—S2avii | 84.83 (15) | S1a—V1b—S2avii | 91.80 (17) |
S1a—V1a—S1bxii | 176.5 (2) | S1a—V1b—S1b | 175.1 (2) |
S1a—V1a—S2bxii | 84.64 (16) | S1a—V1b—S2b | 97.73 (16) |
S1a—V1a—S2bxvi | 84.64 (16) | S1a—V1b—S2bvii | 97.73 (16) |
S2a—V1a—S2avii | 88.00 (17) | S2a—V1b—S2avii | 87.29 (14) |
S2a—V1a—S1bxii | 97.68 (16) | S2a—V1b—S1b | 84.68 (16) |
S2a—V1a—S2bxii | 169.47 (15) | S2a—V1b—S2b | 170.37 (14) |
S2a—V1a—S2bxvi | 90.96 (16) | S2a—V1b—S2bvii | 91.03 (16) |
S2avii—V1a—S1bxii | 97.68 (16) | S2avii—V1b—S1b | 84.68 (16) |
S2avii—V1a—S2bxii | 90.96 (16) | S2avii—V1b—S2b | 91.03 (16) |
S2avii—V1a—S2bxvi | 169.47 (15) | S2avii—V1b—S2bvii | 170.37 (14) |
S1bxii—V1a—S2bxii | 92.84 (18) | S1b—V1b—S2b | 85.72 (15) |
S1bxii—V1a—S2bxvi | 92.84 (18) | S1b—V1b—S2bvii | 85.72 (15) |
S2bxii—V1a—S2bxvi | 88.15 (14) | S2b—V1b—S2bvii | 89.04 (17) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y−1/2, z+1; (iv) x−1/2, −y+1/2, z; (v) x−1/2, −y+1/2, z+1; (vi) x−1/2, y+1/2, z; (vii) x, −y, z; (viii) x−1/2, −y−1/2, z; (ix) x+1/2, y−1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, −y+1/2, z; (xii) x, y, z−1; (xiii) x+1/2, y+1/2, z−1; (xiv) x+1/2, −y−1/2, z−1; (xv) x+1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaVS3 | F(000) = 508 |
Mr = 284.5 | Dx = 4.324 Mg m−3 |
Monoclinic, Cm | Synchrotron radiation, λ = 0.7 Å |
Hall symbol: C -2y | Cell parameters from 2084 reflections |
a = 11.585 (7) Å | θ = 3.5–32.4° |
b = 6.724 (5) Å | µ = 11.71 mm−1 |
c = 5.610 (2) Å | T = 240 K |
β = 90° | Irregular, grey |
V = 437.0 (4) Å3 | 0.05 × 0.03 × 0.02 mm |
Z = 4 |
Mar345 image plate diffractometer | 1724 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.018 |
Synchrotron monochromator | θmax = 32.4°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −17→17 |
Tmin = 0.623, Tmax = 1.000 | k = −10→10 |
2084 measured reflections | l = −7→8 |
1751 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F > 3σ(F)] = 0.021 | (Δ/σ)max = 0.002 |
wR(F) = 0.033 | Δρmax = 1.27 e Å−3 |
S = 2.02 | Δρmin = −0.98 e Å−3 |
1751 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
32 parameters | Extinction coefficient: 510 (60) |
0 restraints | Absolute structure: 573 of Friedel pairs used in the refinement |
27 constraints | Absolute structure parameter: 0.20 (5) |
Refinement. Structure is considered as a commensurate composite with Ccm21 space group for the BaS3 matrix and C2/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | −0.33427 (6) | 0 | 0.5014 (8) | 0.01674 (14) | |
Ba1b | 0.33427 (6) | 0 | 0.0014 (8) | 0.01674 (14) | |
V1a | 0.01168 (9) | 0 | −0.2553 (3) | 0.0282 (4) | |
V1b | −0.01168 (9) | 0 | 0.2553 (3) | 0.0282 (4) | |
S1a | −0.16583 (15) | 0 | −0.005 (3) | 0.0158 (8) | |
S2a | 0.08287 (13) | 0.24755 (18) | 0.006 (3) | 0.0153 (5) | |
S1b | 0.16583 (15) | 0 | 0.495 (3) | 0.0158 (8) | |
S2b | −0.08287 (13) | −0.24755 (18) | 0.506 (3) | 0.0153 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0153 (3) | 0.0164 (3) | 0.01850 (16) | 0 | −0.0006 (3) | 0 |
Ba1b | 0.0153 (3) | 0.0164 (3) | 0.01850 (16) | 0 | −0.0006 (3) | 0 |
V1a | 0.0254 (7) | 0.0441 (10) | 0.0152 (4) | 0 | 0.0007 (7) | 0 |
V1b | 0.0254 (7) | 0.0441 (10) | 0.0152 (4) | 0 | 0.0007 (7) | 0 |
S1a | 0.0100 (10) | 0.0174 (12) | 0.0200 (18) | 0 | 0.0007 (10) | 0 |
S2a | 0.0134 (8) | 0.0145 (9) | 0.0179 (10) | −0.0023 (4) | 0.0004 (9) | 0.0004 (5) |
S1b | 0.0100 (10) | 0.0174 (12) | 0.0200 (18) | 0 | 0.0007 (10) | 0 |
S2b | 0.0134 (8) | 0.0145 (9) | 0.0179 (10) | −0.0023 (4) | 0.0004 (9) | 0.0004 (5) |
Ba1a—S1a | 3.446 (13) | V1a—S1bxii | 2.269 (9) |
Ba1a—S1ai | 3.388 (13) | V1a—S2bxii | 2.400 (8) |
Ba1a—S2aii | 3.395 (12) | V1a—S2bxvi | 2.400 (8) |
Ba1a—S2aiii | 3.438 (12) | V1b—S1a | 2.307 (10) |
Ba1a—S2aiv | 3.395 (12) | V1b—S2a | 2.434 (8) |
Ba1a—S2av | 3.438 (12) | V1b—S2avii | 2.434 (8) |
Ba1a—S1bii | 3.362 (5) | V1b—S1b | 2.457 (9) |
Ba1a—S1bvi | 3.362 (5) | V1b—S2b | 2.330 (9) |
Ba1a—S2b | 3.355 (4) | V1b—S2bvii | 2.330 (9) |
Ba1a—S2bvi | 3.343 (4) | S1a—S2a | 3.328 (4) |
Ba1a—S2bvii | 3.355 (4) | S1a—S2aii | 3.371 (4) |
Ba1a—S2bviii | 3.343 (4) | S1a—S2avii | 3.328 (4) |
Ba1b—S1aix | 3.362 (5) | S1a—S2aiv | 3.371 (4) |
Ba1b—S1ax | 3.362 (5) | S1a—S2bxii | 3.350 (17) |
Ba1b—S2a | 3.355 (4) | S1a—S2b | 3.451 (17) |
Ba1b—S2aix | 3.343 (4) | S1a—S2bxvi | 3.350 (17) |
Ba1b—S2avii | 3.355 (4) | S1a—S2bvii | 3.451 (17) |
Ba1b—S2axi | 3.343 (4) | S2a—S2avii | 3.329 (5) |
Ba1b—S1bxii | 3.446 (13) | S2a—S2axvii | 3.395 (5) |
Ba1b—S1b | 3.388 (13) | S2a—S1bxii | 3.451 (17) |
Ba1b—S2bxiii | 3.395 (12) | S2a—S1b | 3.350 (17) |
Ba1b—S2bx | 3.438 (12) | S2a—S2bxvi | 3.399 (17) |
Ba1b—S2bxiv | 3.395 (12) | S2a—S2bvii | 3.399 (17) |
Ba1b—S2bxv | 3.438 (12) | S1b—S2b | 3.328 (4) |
V1a—V1bxii | 2.758 (3) | S1b—S2bx | 3.371 (4) |
V1a—V1b | 2.878 (3) | S1b—S2bvii | 3.328 (4) |
V1a—S1a | 2.491 (9) | S1b—S2bxv | 3.371 (4) |
V1a—S2a | 2.367 (9) | S2b—S2bxviii | 3.395 (5) |
V1a—S2avii | 2.367 (9) | S2b—S2bvii | 3.329 (5) |
V1bxii—V1a—V1b | 168.98 (5) | V1a—V1b—V1ai | 168.98 (5) |
S1a—V1a—S2a | 86.5 (3) | S1a—V1b—S2a | 89.1 (3) |
S1a—V1a—S2avii | 86.5 (3) | S1a—V1b—S2avii | 89.1 (3) |
S1a—V1a—S1bxii | 176.3 (4) | S1a—V1b—S1b | 173.9 (4) |
S1a—V1a—S2bxii | 86.4 (3) | S1a—V1b—S2b | 96.2 (3) |
S1a—V1a—S2bxvi | 86.4 (3) | S1a—V1b—S2bvii | 96.2 (3) |
S2a—V1a—S2avii | 89.4 (3) | S2a—V1b—S2avii | 86.3 (3) |
S2a—V1a—S1bxii | 96.2 (3) | S2a—V1b—S1b | 86.4 (3) |
S2a—V1a—S2bxii | 172.8 (3) | S2a—V1b—S2b | 173.99 (15) |
S2a—V1a—S2bxvi | 91.0 (3) | S2a—V1b—S2bvii | 91.0 (3) |
S2avii—V1a—S1bxii | 96.2 (3) | S2avii—V1b—S1b | 86.4 (3) |
S2avii—V1a—S2bxii | 91.0 (3) | S2avii—V1b—S2b | 91.0 (3) |
S2avii—V1a—S2bxvi | 172.8 (3) | S2avii—V1b—S2bvii | 173.99 (15) |
S1bxii—V1a—S2bxii | 90.9 (3) | S1b—V1b—S2b | 88.0 (3) |
S1bxii—V1a—S2bxvi | 90.9 (3) | S1b—V1b—S2bvii | 88.0 (3) |
S2bxii—V1a—S2bxvi | 87.8 (3) | S2b—V1b—S2bvii | 91.2 (3) |
Symmetry codes: (i) x, y, z+1; (ii) x−1/2, y−1/2, z; (iii) x−1/2, y−1/2, z+1; (iv) x−1/2, −y+1/2, z; (v) x−1/2, −y+1/2, z+1; (vi) x−1/2, y+1/2, z; (vii) x, −y, z; (viii) x−1/2, −y−1/2, z; (ix) x+1/2, y−1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, −y+1/2, z; (xii) x, y, z−1; (xiii) x+1/2, y+1/2, z−1; (xiv) x+1/2, −y−1/2, z−1; (xv) x+1/2, −y−1/2, z; (xvi) x, −y, z−1; (xvii) x, −y+1, z; (xviii) x, −y−1, z. |
BaVS3 | Dx = 4.312 Mg m−3 |
Mr = 284.5 | Synchrotron radiation, λ = 0.70814 Å |
Trigonal, P3m1 | Cell parameters from 1783 reflections |
Hall symbol: P 3;-2" | θ = 3.5–28.6° |
a = 6.7164 (2) Å | µ = 12.05 mm−1 |
c = 5.6088 (2) Å | T = 250 K |
V = 219.12 (1) Å3 | Irregular, grey |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 254 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 196 reflections with I > 3σ(I) |
Radiation source: synchrotron | Rint = 0.034 |
Synchrotron monochromator | θmax = 28.6°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −8→8 |
Tmin = 0.649, Tmax = 1.000 | k = −8→8 |
2069 measured reflections | l = −5→5 |
196 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.00034225F2) |
R[F > 3σ(F)] = 0.034 | (Δ/σ)max = 0.018 |
wR(F) = 0.146 | Δρmax = 1.67 e Å−3 |
S = 1.67 | Δρmin = −1.94 e Å−3 |
196 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
13 parameters | Extinction coefficient: 600 (400) |
0 restraints | Absolute structure: 0 of Friedel pairs used in the refinement |
12 constraints |
Refinement. Structure is considered as a commensurate composite with P63/mmc space group for the BaS3 matrix and P3/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | 0.333333 | 0.666667 | 0.5 | 0.0170 (13) | |
Ba1b | −0.333333 | −0.666667 | 0 | 0.0170 (13) | |
V1a | 0 | 0 | −0.2593 (16) | 0.0339 (19) | |
V1b | 0 | 0 | 0.2598 (16) | 0.0339 (19) | |
S1a | 0.16378 (19) | −0.16378 (19) | 0 | 0.018 (3) | |
S1b | −0.16378 (19) | 0.163783 | 0.5 | 0.018 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0149 (15) | 0.0149 (15) | 0.021 (3) | 0.0074 (7) | 0 | 0 |
Ba1b | 0.0149 (15) | 0.0149 (15) | 0.021 (3) | 0.0074 (7) | 0 | 0 |
V1a | 0.040 (2) | 0.040 (2) | 0.021 (4) | 0.0201 (11) | 0 | 0 |
V1b | 0.040 (2) | 0.040 (2) | 0.021 (4) | 0.0201 (11) | 0 | 0 |
S1a | 0.018 (3) | 0.018 (3) | 0.025 (6) | 0.013 (2) | 0.0002 (7) | −0.0002 (7) |
S1b | 0.018 (3) | 0.018 (3) | 0.025 (6) | 0.013 (2) | 0.0002 (7) | −0.0002 (7) |
Ba1a—S1ai | 3.4286 (9) | V1a—V1b | 2.912 (13) |
Ba1a—S1aii | 3.4286 (9) | V1a—S1a | 2.397 (6) |
Ba1a—S1aiii | 3.4286 (9) | V1a—S1aiii | 2.397 (6) |
Ba1a—S1aiv | 3.4286 (9) | V1a—S1ax | 2.397 (6) |
Ba1a—S1av | 3.4286 (9) | V1a—S1bxxi | 2.335 (5) |
Ba1a—S1avi | 3.4286 (9) | V1a—S1bxviii | 2.335 (5) |
Ba1a—S1b | 3.3584 (7) | V1a—S1bxxii | 2.335 (5) |
Ba1a—S1bvii | 3.3584 (7) | V1b—S1a | 2.399 (5) |
Ba1a—S1bviii | 3.3584 (7) | V1b—S1aiii | 2.399 (5) |
Ba1a—S1bix | 3.3584 (7) | V1b—S1ax | 2.399 (5) |
Ba1a—S1bx | 3.3584 (15) | V1b—S1b | 2.333 (5) |
Ba1a—S1bxi | 3.3584 (15) | V1b—S1biii | 2.333 (5) |
Ba1b—S1axii | 3.3584 (10) | V1b—S1bx | 2.333 (5) |
Ba1b—S1a | 3.3584 (10) | S1a—S1axiv | 3.416 (2) |
Ba1b—S1axiii | 3.3584 (16) | S1a—S1aiii | 3.300 (2) |
Ba1b—S1axiv | 3.3584 (16) | S1a—S1ax | 3.300 (2) |
Ba1b—S1axv | 3.3584 (16) | S1a—S1axxiii | 3.416 (2) |
Ba1b—S1ax | 3.3584 (16) | S1a—S1bxviii | 3.3904 (7) |
Ba1b—S1bxvi | 3.4286 (7) | S1a—S1biii | 3.3904 (7) |
Ba1b—S1bxvii | 3.4286 (7) | S1a—S1bxxii | 3.3904 (9) |
Ba1b—S1bxviii | 3.4286 (7) | S1a—S1bx | 3.3904 (9) |
Ba1b—S1biii | 3.4286 (7) | S1b—S1biii | 3.3001 (15) |
Ba1b—S1bxix | 3.4286 (7) | S1b—S1bviii | 3.4163 (15) |
Ba1b—S1bxx | 3.4286 (7) | S1b—S1bxxiv | 3.416 (2) |
V1a—V1bxxi | 2.697 (13) | S1b—S1bx | 3.300 (2) |
V1bxxi—V1a—V1b | 180 | V1a—V1b—V1axxv | 180 |
S1a—V1a—S1aiii | 87.0 (3) | S1a—V1b—S1aiii | 86.9 (2) |
S1a—V1a—S1ax | 87.0 (3) | S1a—V1b—S1ax | 86.9 (2) |
S1a—V1a—S1bxxi | 178.0 (4) | S1a—V1b—S1b | 177.9 (3) |
S1a—V1a—S1bxviii | 91.52 (3) | S1a—V1b—S1biii | 91.52 (3) |
S1a—V1a—S1bxxii | 91.52 (4) | S1a—V1b—S1bx | 91.52 (4) |
S1aiii—V1a—S1ax | 87.0 (3) | S1aiii—V1b—S1ax | 86.9 (2) |
S1aiii—V1a—S1bxxi | 91.52 (4) | S1aiii—V1b—S1b | 91.52 (4) |
S1aiii—V1a—S1bxviii | 178.0 (4) | S1aiii—V1b—S1biii | 177.9 (3) |
S1aiii—V1a—S1bxxii | 91.52 (3) | S1aiii—V1b—S1bx | 91.52 (3) |
S1ax—V1a—S1bxxi | 91.52 (5) | S1ax—V1b—S1b | 91.52 (5) |
S1ax—V1a—S1bxviii | 91.52 (2) | S1ax—V1b—S1biii | 91.52 (2) |
S1ax—V1a—S1bxxii | 178.0 (4) | S1ax—V1b—S1bx | 177.9 (3) |
S1bxxi—V1a—S1bxviii | 89.9 (3) | S1b—V1b—S1biii | 90.0 (2) |
S1bxxi—V1a—S1bxxii | 89.9 (3) | S1b—V1b—S1bx | 90.0 (3) |
S1bxviii—V1a—S1bxxii | 89.9 (3) | S1biii—V1b—S1bx | 90.0 (2) |
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) −y, x−y, z; (iv) −y, x−y, z+1; (v) −x+y+1, −x+1, z; (vi) −x+y+1, −x+1, z+1; (vii) x+1, y+1, z; (viii) −y, x−y+1, z; (ix) −y+1, x−y+1, z; (x) −x+y, −x, z; (xi) −x+y, −x+1, z; (xii) x−1, y−1, z; (xiii) −y−1, x−y−1, z; (xiv) −y, x−y−1, z; (xv) −x+y, −x−1, z; (xvi) x, y−1, z−1; (xvii) x, y−1, z; (xviii) −y, x−y, z−1; (xix) −x+y−1, −x−1, z−1; (xx) −x+y−1, −x−1, z; (xxi) x, y, z−1; (xxii) −x+y, −x, z−1; (xxiii) −x+y+1, −x, z; (xxiv) −x+y−1, −x, z; (xxv) x, y, z+1. |
BaVS3 | Dx = 4.305 Mg m−3 |
Mr = 284.5 | Synchrotron radiation, λ = 0.6622 Å |
Trigonal, P3m1 | Cell parameters from 2946 reflections |
Hall symbol: P 3;-2" | θ = 3.3–24.4° |
a = 6.7180 (5) Å | µ = 10.01 mm−1 |
c = 5.6150 (2) Å | T = 295 K |
V = 219.46 (2) Å3 | Irregular, grey |
Z = 2 | 0.05 × 0.03 × 0.02 mm |
F(000) = 254 |
Dectris-CrysAlisPro-abstract goniometer imported dectris images diffractometer | 168 reflections with I > 2σ(I) |
Radiation source: synchrotron | Rint = 0.038 |
Synchrotron monochromator | θmax = 24.4°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −8→8 |
Tmin = 0.556, Tmax = 1.000 | k = −8→8 |
2946 measured reflections | l = −6→6 |
173 independent reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.00034225F2) |
R[F > 3σ(F)] = 0.028 | (Δ/σ)max = 0.001 |
wR(F) = 0.063 | Δρmax = 0.76 e Å−3 |
S = 3.13 | Δρmin = −0.73 e Å−3 |
173 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
13 parameters | Extinction coefficient: 2700 (700) |
0 restraints | Absolute structure: 0 of Friedel pairs used in the refinement |
12 constraints | Absolute structure parameter: not applicable for the particular case |
Refinement. Structure is considered as a commensurate composite with P63/mmc space group for the BaS3 matrix and P3/m space group for the V-chain. The corresponding constrains are applied for the corresponding atomic sides. |
x | y | z | Uiso*/Ueq | ||
Ba1a | 0.333333 | 0.666667 | 0.5 | 0.0183 (7) | |
Ba1b | −0.333333 | −0.666667 | 0 | 0.0183 (7) | |
V1a | 0 | 0 | −0.2540 (9) | 0.0337 (9) | |
V1b | 0 | 0 | 0.2558 (9) | 0.0337 (9) | |
S1a | 0.16500 (10) | −0.16500 (10) | 0 | 0.0171 (13) | |
S1b | −0.16500 (10) | 0.164998 | 0.5 | 0.0171 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1a | 0.0171 (9) | 0.0171 (9) | 0.0206 (10) | 0.0086 (4) | 0 | 0 |
Ba1b | 0.0171 (9) | 0.0171 (9) | 0.0206 (10) | 0.0086 (4) | 0 | 0 |
V1a | 0.0410 (12) | 0.0410 (12) | 0.0192 (14) | 0.0205 (6) | 0 | 0 |
V1b | 0.0410 (12) | 0.0410 (12) | 0.0192 (14) | 0.0205 (6) | 0 | 0 |
S1a | 0.0187 (15) | 0.0187 (15) | 0.017 (2) | 0.0117 (10) | 0.0000 (3) | 0.0000 (3) |
S1b | 0.0187 (15) | 0.0187 (15) | 0.017 (2) | 0.0117 (10) | 0.0000 (3) | 0.0000 (3) |
Ba1a—S1ai | 3.4233 (5) | V1a—V1b | 2.862 (7) |
Ba1a—S1aii | 3.4233 (5) | V1a—S1a | 2.392 (3) |
Ba1a—S1aiii | 3.4233 (5) | V1a—S1aiii | 2.392 (3) |
Ba1a—S1aiv | 3.4233 (5) | V1a—S1ax | 2.392 (3) |
Ba1a—S1av | 3.4233 (5) | V1a—S1bxxi | 2.365 (3) |
Ba1a—S1avi | 3.4233 (5) | V1a—S1bxviii | 2.365 (3) |
Ba1a—S1b | 3.3591 (8) | V1a—S1bxxii | 2.365 (3) |
Ba1a—S1bvii | 3.3591 (8) | V1b—S1a | 2.398 (3) |
Ba1a—S1bviii | 3.3591 (6) | V1b—S1aiii | 2.398 (3) |
Ba1a—S1bix | 3.3591 (6) | V1b—S1ax | 2.398 (3) |
Ba1a—S1bx | 3.3591 (9) | V1b—S1b | 2.359 (3) |
Ba1a—S1bxi | 3.3591 (9) | V1b—S1biii | 2.359 (3) |
Ba1b—S1axii | 3.3591 (9) | V1b—S1bx | 2.359 (3) |
Ba1b—S1a | 3.3591 (9) | S1a—S1axiv | 3.3926 (13) |
Ba1b—S1axiii | 3.3591 (9) | S1a—S1aiii | 3.3254 (13) |
Ba1b—S1axiv | 3.3591 (9) | S1a—S1ax | 3.3254 (13) |
Ba1b—S1axv | 3.3591 (9) | S1a—S1axxiii | 3.3926 (13) |
Ba1b—S1ax | 3.3591 (9) | S1a—S1bxviii | 3.4012 (4) |
Ba1b—S1bxvi | 3.4233 (4) | S1a—S1biii | 3.4012 (4) |
Ba1b—S1bxvii | 3.4233 (4) | S1a—S1bxxii | 3.4012 (5) |
Ba1b—S1bxviii | 3.4233 (4) | S1a—S1bx | 3.4012 (5) |
Ba1b—S1biii | 3.4233 (4) | S1b—S1biii | 3.3254 (9) |
Ba1b—S1bxix | 3.4233 (4) | S1b—S1bviii | 3.3926 (9) |
Ba1b—S1bxx | 3.4233 (4) | S1b—S1bxxiv | 3.3926 (11) |
V1a—V1bxxi | 2.753 (7) | S1b—S1bx | 3.3254 (11) |
V1bxxi—V1a—V1b | 180 | V1a—V1b—V1axxv | 180 |
S1a—V1a—S1aiii | 88.09 (15) | S1a—V1b—S1aiii | 87.81 (14) |
S1a—V1a—S1ax | 88.09 (15) | S1a—V1b—S1ax | 87.81 (14) |
S1a—V1a—S1bxxi | 179.1 (2) | S1a—V1b—S1b | 178.7 (2) |
S1a—V1a—S1bxviii | 91.287 (16) | S1a—V1b—S1biii | 91.281 (17) |
S1a—V1a—S1bxxii | 91.29 (2) | S1a—V1b—S1bx | 91.28 (2) |
S1aiii—V1a—S1ax | 88.09 (15) | S1aiii—V1b—S1ax | 87.81 (14) |
S1aiii—V1a—S1bxxi | 91.29 (2) | S1aiii—V1b—S1b | 91.28 (2) |
S1aiii—V1a—S1bxviii | 179.1 (2) | S1aiii—V1b—S1biii | 178.7 (2) |
S1aiii—V1a—S1bxxii | 91.287 (17) | S1aiii—V1b—S1bx | 91.281 (17) |
S1ax—V1a—S1bxxi | 91.29 (2) | S1ax—V1b—S1b | 91.28 (2) |
S1ax—V1a—S1bxviii | 91.287 (13) | S1ax—V1b—S1biii | 91.281 (13) |
S1ax—V1a—S1bxxii | 179.1 (2) | S1ax—V1b—S1bx | 178.7 (2) |
S1bxxi—V1a—S1bxviii | 89.33 (15) | S1b—V1b—S1biii | 89.61 (15) |
S1bxxi—V1a—S1bxxii | 89.33 (15) | S1b—V1b—S1bx | 89.61 (15) |
S1bxviii—V1a—S1bxxii | 89.33 (15) | S1biii—V1b—S1bx | 89.61 (15) |
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) −y, x−y, z; (iv) −y, x−y, z+1; (v) −x+y+1, −x+1, z; (vi) −x+y+1, −x+1, z+1; (vii) x+1, y+1, z; (viii) −y, x−y+1, z; (ix) −y+1, x−y+1, z; (x) −x+y, −x, z; (xi) −x+y, −x+1, z; (xii) x−1, y−1, z; (xiii) −y−1, x−y−1, z; (xiv) −y, x−y−1, z; (xv) −x+y, −x−1, z; (xvi) x, y−1, z−1; (xvii) x, y−1, z; (xviii) −y, x−y, z−1; (xix) −x+y−1, −x−1, z−1; (xx) −x+y−1, −x−1, z; (xxi) x, y, z−1; (xxii) −x+y, −x, z−1; (xxiii) −x+y+1, −x, z; (xxiv) −x+y−1, −x, z; (xxv) x, y, z+1. |
Acknowledgements
The authors would like to thank the Swiss–Norwegian Beamline Consortium for providing access to synchrotron radiation on BM01/ESRF.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Arakcheeva, A., Chapuis, G. & Grinevitch, V. (2002). Acta Cryst. B58, 1–7. CrossRef ICSD CAS IUCr Journals Google Scholar
Barišić, N. (2004). Thesis. Ecole polytechnique fédérale de Lausanne, Switzerland. Google Scholar
Booth, C. H., Figueroa, E., Lawrence, J. M., Hundley, M. F. & Thompson, J. D. (1999). Phys. Rev. B, 60, 14852–14856. CrossRef CAS Google Scholar
Choi, K.-Y., Wulferding, D., Berger, H. & Lemmens, P. (2009). Phys. Rev. B, 80, 245108. CrossRef Google Scholar
Dyadkin, V., Pattison, P., Dmitriev, V. & Chernyshov, D. (2016). J. Synchrotron Rad. 23, 825–829. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P., Anne, M., Popov, G., Lobanov, M. V. & Greenblatt, M. (2005). Solid State Sci. 7, 718–725. CrossRef ICSD CAS Google Scholar
Fagot, S., Foury-Leylekian, P., Ravy, S., Pouget, J.-P. & Berger, H. (2003). Phys. Rev. Lett. 90, 196401. CrossRef PubMed Google Scholar
Forró, L., Gaál, R., Berger, H., Fazekas, P., Penc, K., Kézsmárki, I. & Mihály, G. (2000). Phys. Rev. Lett. 85, 1938–1941. PubMed Google Scholar
Foury-Leylekian, P., Leininger, P., Ilakovac, V., Joly, Y., Bernu, S., Fagot, S. & Pouget, J.-P. (2012). Physica B, 407, 1692–1695. CAS Google Scholar
Gardner, R. A., Vlasse, M. & Wold, A. (1969). Acta Cryst. B25, 781–787. CrossRef ICSD IUCr Journals Google Scholar
Ghedira, M., Chenavas, J., Sayetat, F., Marezio, M., Massenet, O. & Mercier, J. (1981). Acta Cryst. B37, 1491–1496. CrossRef ICSD CAS IUCr Journals Google Scholar
Girard, A., Ilakovac, V., Stekiel, M., Morgenroth, W., Berger, H., Yoshikazu, T., Hasegawa, T., Bosak, A. & Winkler, B. (2019). Phys. Rev. B, 99, 144104. CrossRef Google Scholar
Graf, T., Mandrus, D., Lawrence, J. M., Thompson, J. D., Canfield, P. C., Cheong, S.-W. & Rupp, L. W. (1995). Phys. Rev. B, 51, 2037–2044. CrossRef CAS Google Scholar
Heidemann, A. & Takano, M. (1980). Phys. Status Solidi B, 100, 343–346. CrossRef CAS Google Scholar
Höhn, P., Auffermann, G., Ramlau, R., Rosner, H., Schnelle, W. & Kniep, R. (2006). Angew. Chem. Int. Ed. 45, 6681–6685. Google Scholar
Ilakovac, V., Brookes, N. B., Cezar, J. C., Thakur, P., Bisogni, V., Dallera, C., Ghiringhelli, G., Braicovich, L., Bernu, S., Berger, H., Forró, L., Akrap, A. & Hague, C. F. (2012). J. Phys. Condens. Matter, 24, 045503. CrossRef PubMed Google Scholar
Imada, M., Fujimori, A. & Tokura, Y. (1998). Rev. Mod. Phys. 70, 1039–1263. Web of Science CrossRef CAS Google Scholar
Imai, H., Wada, H. & Shiga, M. (1996). J. Phys. Soc. Jpn, 65, 3460–3463. CrossRef CAS Google Scholar
Inami, T., Ohwada, K., Kimura, H., Watanabe, M., Noda, Y., Nakamura, H., Yamasaki, T., Shiga, M., Ikeda, N. & Murakami, Y. (2002). Phys. Rev. B, 66, 073108. CrossRef Google Scholar
Jiang, X. & Guo, G. Y. (2004). Phys. Rev. B, 70, 035110. CrossRef Google Scholar
Kézsmárki, I., Mihály, G., Gaál, R., Barišić, N., Akrap, A., Berger, H., Forró, L., Homes, C. C. & Mihály, L. (2006). Phys. Rev. Lett. 96, 186402. PubMed Google Scholar
Kuriyaki, H., Berger, H., Nishioka, S., Kawakami, H., Hirakawa, K. & Lévy, F. A. (1995). Synth. Met. 71, 2049–2050. CrossRef CAS Google Scholar
Leininger, Ph., Ilakovac, V., Joly, Y., Schierle, E., Weschke, E., Bunau, O., Berger, H., Pouget, J.-P. & Foury-Leylekian, P. (2011). Phys. Rev. Lett. 106, 167203. CrossRef PubMed Google Scholar
Massenet, O., Buder, R., Since, J. J., Schlenker, C., Mercier, J., Kelber, J. & Stucky, D. G. (1978). Mater. Res. Bull. 13, I87–195. CrossRef Google Scholar
McMahon, M. I. & Nelmes, R. J. (2006). Chem. Soc. Rev. 35, 943–963. Web of Science CrossRef PubMed CAS Google Scholar
Mihály, G. T., Kézsmárki, I., Zámborszky, F., Miljak, M., Penc, K., Fazekas, P., Berger, H. & Forró, L. (2000). Phys. Rev. B, 61, R7831–R7834. Google Scholar
Petříček, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Sanna, A., Franchini, C., Massidda, S. & Gauzzi, A. (2004). Phys. Rev. B, 70, 235102. CrossRef Google Scholar
Sugiyama, J., Andreica, D., Forslund, O. K., Nocerino, E., Matsubara, N., Sassa, Y., Guguchia, Z., Khasanov, R., Pratt, F. L., Nakamura, H. & Månsson, M. (2020). Phys. Rev. B, 101, 174403. CrossRef Google Scholar
Takano, M., Kosugi, H., Nakanishi, N., Shimada, M., Wada, T. & Koizumi, M. (1977). J. Phys. Soc. Jpn, 43, 1101–1102. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.